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Abstract

The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km
' (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have

been conducted at the NTS since late 1962 and ground water beneath the NTS has been
. contaminated with radionuclides produced by these tests. No member of the public is expected

to be exposed to this radionuclide-contaminated ground water in the immediate future. However,
an increasing demand for water created by continued population growth and expanding
development in the region and the possible loss of institutional control over the NTS after 100 y
have led to a concern that individuals in future generations might become exposed to the
radionuclide-contaminated ground water. This concern prompted this examination of the
potential health risk to these individuals from drinking the contaminated ground water either at a
location on the NTS (assuming loss of institutional control after 100 y) or at one offsite
(considering groundwater migration). For the purpose of this assessment, a representative mix of
the radionuclides of importance and their concentrations in ground water beneath the NTS were
identified from measurements of radionuclide concentrations in groundwater samples-of-
opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite
was evaluated using a travel-time-transport approach. At both locations of interest, potential
human-health risk was calculated for an individual ingesting radionuclide-contaminated ground
water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as
well as about estimates of physical detriment per unit of radioactive material, were quantified
and incorporated into the estimates of risk. The maximum potential excess lifetime risk of
cance; mortality estimated for an individual at the offsite location ranges from 7 x 10-7 to
1 × 10-5, and at the onsite location ranges from 3 x 10-3 to 2 x 10-2. Both the offsite and the
onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of
radionuclides in ground water, the critical uncertainty is their concentration today under the
entire NTS.
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Introduction

, The Nevada Test Site (NTS) is located in Nye County, Nevada, about 105 km (65 mi)
northwest of the city of Las Vegas. Since 1951, the NTS has been used primarily for conducting
tests of nuclear weapons devices; nearly all of the tests performed after late 1962 occurred
underground in sealed vertical shafts or in horizontal tunnels (Wruble and McDowell, 1990).
Figure 1 shows the location of the NTS in southern Nevada, the designated areas into which the
NTS has been divided, and the buffer zone of restricted access formed by the Nellis Air Force
Base Range Complex. Together, the NTS and the surrounding U.S. Air Force property occupy
an area of about 14,200 km 2 (5,470 mi2), which represents one of the largest unpopulated land
areas in the U.S. today (Wruble and McDowell, 1990).

Many of the underground tests of nuclear weapons devices at the NTS have been conducted
at depths near or below the water table (Marsh, 1992). In Area 20, testing has occured below the
water ',able near the boundary of the NTS. (The dot in Fig. 1 denotes approximately where
testing occurred.) This boundary is also the closest site to existing groundwater wells offsite.
These offsite wells are located to the southwest of the Area 20 boundary, beyond the buffer zone,
in the Oasis Valley north of Beatty, NV. The wells are believed to be in the general direction of
groundwater flow from Area 20.

Following underground detonation of nuclear weapons devices (also known _.._s"shots") near
or below the water table, a cavity is formed (see Fig. 2) and ground water that is displaced by
explosive forces typically returns to fill the cavity. Although there have been only a very limited
number of groundwater samples taken from or near shot cavities, the few samples..of-opportunity
that have been collected reveal that many different radionuclides have been introduced into the
returning ground water.

There are a number of reasons why the public is not considered in jeopardy of being exposed
in the immediate future to the radionuclide-contaminated ground water beneath the NTS. First,
access to the NTS (and its subterranean environment, including any radionuclide contaminated
ground water), continues to be strictly controlled for security reasons. Second, slow groundwater
movement and exceedingly slow downward movement of water in the overlying ._;aturatedzone
at the NTS indicate that any radionuclides appearing in a deep groundwater aquifer are not likely
to be transported rapidly to accessible locations offsite. Finally, there is no reported evidence to
date to suggest that contaminated ground water from beneath the NTS has ever migrated offsite
to an accessible area.

Recently, however, two issues have emerged that have led to a concern that future
generations could become exposed to the radionuclide-contaminated ground water from the NTS.
The southern pz,rt of Nevada and, specifically, the greater metropolitan area t_f Las Vegas,
continue to experience a dramatic growth in population and development. This situation has
created an ever increasing demand for a most limited resource in this arid region--water
(Spencer, 1992). Pumping more ground water from beneath the agricultural lands nearest the
NTS may be a way to provide some of the water needed to support this growth. Any

• radionuclide-contaminated ground water underneath the NTS that migrates to these offsite
locations could then be pumped to the surface for purposes of consumption by humans.
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The other issue occurs because there is a temporary nuclear test moratorium in the U.S., which
might become permanent before the end of the twentieth century; there is also a question of how
long the U.S. Air Force range complex will exist in its present form and continue to provide a
buffer zone around the NTS. Accordingly, the ultimate disposition and institutional control of
the NTS and its buffer zone are now somewhat uncertain. A possible consequence of losing such
institutional control is human intrusion onto or immediately next to the NTS. In this situation,
the radionuclide-contaminated ground water from directly beneath the NTS could be pumped to
the surface.

A sensible and effective strategy for addressing the concern raised by the issues just
described is to estimate, as realistically and pragmatically as data permit, the magnitude and
uncertainty of the potential public health risk associated with exposure to the radionuclide-
contaminated ground water on the NTS and offsite in the direction of groundwater flow. The
exposures associated with unacceptable levels of risk should then receive the most consideration
with respect to devoting resources to their limitation or prevention, or further examination.

To accomplish this objective, a risk-based screening analysis was implemented to quantify
the magnitude and uncertainty of the potential excess cancer mortality risk from the pertinent
data available concerning this ground water at the NTS. Such pertinent data were so limited that
it was necessary to adopt several conservative assumptions about radionuclide concentrations in
the ground water, and about directions of groundwater flow, as well as about the exposure period
(to include adults as well as infants and children).

Specifically, the risk-based screening analysis is designed to furnish conceivable ranges for
the maximum potential incremental cancer mortality risk applicable to an exposed individual.
Exposed individuals are considered to be those in future generations who might consume the
ground water from the NTS over a 70-y lifetime either at a location on that border of the NTS
(assuming loss of institutional control after 100 y) nearest the accessible offsite environment
where ground water could be obtained, or at a location offsite in that nearby environment
(considering groundwater migration).

The boundary of Area 20 was selected to represent the onsite location, lt is the boundary ot"
the NTS in closest proximity to existing groundwater wells offsite (in the Oasis Valley). A
location 19 km away from the boundary of Area 20, in the Oasis Valley, was selected to
represent the offsite location. This offsite location is considered to be in the general direction of
groundwater flow from Area 20 and to be the nearest accessible offsite environment to the NTS
for obtaining ground water.

The conceivable ranges for risk based on potential intakes of the NTS ground water at these
onsite and offsite locations are more useful to decision makers than calculating maximum point
estimates. For example, a conceivable range for risk reflects the combined uncertainty in the
applicable input parameters. Additionally, a range for risk having significantly elevated upper
and lower limits implies that a potentially serious threat to pubic health could be associated with
intake of tlhe NTS ground water at that particular location or perhaps at other locations in that
category (e.g., onsite or offsite).



1. Approach

,., _ mentioned previously, underground tests of nuclear weapons devices conducted at or
belov' the water table at the NTS have contaminated the ground water with a variety of different
radionuclides. Unfortunately, the radionuclides themselves and their concentrations in this
ground water have not been well characterized. For this reason a sequence of steps was

• developed to determine a conceivable range for the maximurri incremental cancer risk for an
individual consuming the NTS ground water either onsite at the Area 20 boundary beginning
after 100 y, or offsite, 19 km away in the Oasis Valley after possible migration of the ground
water from the Area 20 boundary.

The first step in the approach involves identifying those radionuclides and their maximum
concentrations that are representative of the mix that could be present in the ground water
beneath the Area 20 boundary today. This collection of radionuclides and their maximum
concentrations then serve as the source term for the next step, projecting maximum groundwater
concentrations for these radionuclides at the specific onsite and offsite locations for each year

. during an entire 70-y lifetime. In the third step, the potential lifetime internal doses are
determined for an individual at each location. The tast step entails estimating the probability of
developing a fatal cancer per unit dose, and then using that estimate to compute maximum
potential excess lifetime-cancer-mortality risk for each of the potential lifetime internal doses.
Because parameter uncertainties and correlations are assessed and propagated throughout the
entire process, the calculated estimates of maximum potential excess lifetime-cancer-mortality
risk are expressed as ranges of values that reflect the overall uncertainty.

2. Source Term

Published measurements of radionuclide concentrations in ground water sampled from shot
cavities beneath the NTS were used to as---_"in the representative mix of radionuclides and their
maximum concentrations that could be present today in the ground water beneath the Area 20
boundary. Included among these radionuclides are those with short or long half lives and those
that are radiologically important in terms of producing adverse health effects following intake.

Unfortunately, relevant groundwater sampling data were available from only three shot
cavities created at different locations beneath the NTS. However, each of these three shot
cavities was at or below the water table and the groundwater samples were taken either by
penetration of the shot cavity or the geologic material immediately near it. Figure 3 shows the
designated areas of the NTS; some major natural topographic features, including the Oasis
Valley; and the locations of the three shot cavities (Cheshire in Area 20, Bilby in Area 3, and
Cambric in Area 5) from which the groundwater samples-of-opportunity were obtained. For
purposes of this assessment, the basis for reasonable first approximations for the representative
mix and corresponding maximum concentrations of radionuclides that could be present today in

• ground water beneath the Area 20 boundary are the radionuclides and their associated maximum
concentrations measured at the time of collection in the groundwater samples-of-opportunity

. obtained from the three shot cavities• This representative mix of radionuclides, along with their
maximum observed concentrations (Bq L-l) and original sampling locations, are presented in
Table 1.



Table I. Maximum observed concentrations (Bq L-1) of radionuclides measured at the time
of collection in groundwater samples-of-opportunity from three different shot cavities under
the Nevada Test Site, representative of the mix at Area 20.

Maximum observed NTS sampling
Radionuclide concentration location (shot cavity) Reference

(Bq L-l) a

Americium-241 9.2 x 10-2 Area 20 (Cheshire) Buddemeier and Isherwood (1985) .

Antimony-125 4.4 x 10+2 Area 5 (Cambric) Hoffman et al. (1977)
Cerium-144 8.1 x 10-1 Area 20 (Cheshire) Buddemeier and Isherwood (1985)

Cesium-137 1.8 x 10+2 Area 5 (Cambric) Hoffman et al. (1977)

Cobalt-60 1.2 x 10-1 Area 20 (Cheshire) Buddemeier (1988)

Europium-IS2 4.1 x 10-1 Area 20 (Cheshire) Buddemeier and Isherwood (1985)
Iodine-129 4.1 x 10-1 Area 5 (Cambric) Fraser (1982)

Plutonium-239 2.3 x 10-1 Area 5 (Cambric) Hoffman et al. (1977)

Radium-226 1.1 x 10-1 Area 3 (Bilby) Erikson and Jacobson (1990)b

Ruthenium-lO6 3.3 x 10-1 Area 5 (Cambric) Hoffman et al. (1977)

Strontium-90 1.5 x 10+2 Area 5 (Cambric) Hoffman et al. (1977)

Technetium-99 2.6 x 10+0 Area 3 (Bilby) Silva et al. (1986)

Tritium [H-3] 2.8 x 10+8 .area 5 (Cambric) Hoffman et al. (1977)

Uranium-234 1.8 × 10-1 Area 3 (Bilby) EHkson and Jacobson (1990)c

Uranium-235 3.2 x 10-2 Area 3 (Bilby) Buddemeier and Isherwood (1985)

Uranium-238 1.0 x 10+0 Area 3 (Bilby) Buddemeier and Isherwood (1985)

a Rounded values; to convert Bq L-1 to pCi mL -1 multiply Bq L-1 by 2.7 x 10 "2.

b U.S. Environmental Protection Agency (EPA) raw data collected in 1974 as part of the 1974 U.S. EPA Long-Term

Hydrologic Monitoring Program (LTHM).

c U.S. Environmental Protection Agency (EPA) raw data collected in 1973 as part of the 1973 U.S. EPA Long-Term

Hydrologic Monitoring Program (LTHM).

As indicated in Figure 3, the approximate distance from the southwestern boundary of

Area 20 to that part of the Oasis Valley just outside the buffer zone is 19 km (12 mi). Ground

water flows in volcanic rocks beneath Area 20 in the general direction of the Oasis Valley. The

water table below Area 20 typically is found at depths from about 580 to 730 m (1,900 to

2,400 ft) and contains water ranging in age from 10,000 to 15,000 years before present time. lt is

hypothesized that the most dramatic movement within this system would probably occur along

highly transmissive fractures, many of which could be present beneath the NTS. The

characteristics of this aquifer system are described in detail by Winograd and Thordarson (1975).





3. Estimation of Maximum Annual
Concentrations of Radionuclides in Ground

Water at Locations of Interest

Water consumption Ly an individual at the boundary of Area 20 is assumed to begin 101 y in
the future. Water consumption 19 km away from the Area 20 boundary in the Oasis Valley is
considered to commence at the beginning of a hypothetical 70-y interval when ali of the
radionuclides in the ground water from the Area 20 boundary are predicted to have arrived at the
Oasis Valley and to be present at their respective maximum annual concentrations. At both
locations of potential exposure, an individual is considered to consume the ground water for an
entire 70-y lifetime.

Because data describing the movement of radionuclides in ground water at the NTS is so
limited, the concentrations of the radionuclides in the ground water are considered to be affected
only by radioactive decay. Therefore, no account is taken of possible removals through sorption
of radionuclides on geologic material along the groundwater-flow path, nor are the radionuclide
concentrations assumed to be diluted by the inflow of noncontaminated ground water. On the
basis of these conservatisms, the projected annual concentrations for the representative mix of
radionuclides at both locations are regarded as estimates of maximum values.

3.1. Radionuclide Concentrations at the Area 20 Boundary

As a consequence of these assumptions, the maximum annual concentrations of radionuclides
in the ground water at the Area 20 boundary can be calculated for each year of a 70-y interval
beginning 101 y in the future using the first-order decay equation:

A(t) = A(0) e-_.t. (1)

In Equation 1, A(t) is the concentration (Bq L-1) at time t (y) in the future at the Area 20
boundary, A(0) is the maximum concentration assumed to be present today at the Area 20
boundary (Bq L-1 appearing in Table 1), and _,is the radioactive decay constant [0.693/half life
(y) for the radionuclide of interest]. Table 2 shows the ranges for the predicted annual
concentrations of the radionuclides in the ground water at the Area 20 boundary during the 70-y
interval beginning 101 y hence.

3.2. Radionuclide Concentrations at Oasis Valley

The second location for estimating radionuclide intake is at the edge of the Oasis Valley,
19 km (12 mi) southwest of the Area 20 boundary (see Fig. 3). To determine the potential
maximum annual radionuclide concentrations in the ground water over a 70-y interval in the
future, allowance must be made for the radioactive decay of the radionuclides during the time of
their migration in the ground water from the Area 20 boundary. Again, it is assumed that the
initial concentrations of the representative mix of radionuclides at the Area 20 boundary today



Table 2. Predicted ranges for the maximum annual concentrations (Bq L-I) in ground water

of the representative mix of radionuclides during a 70-y interval in the future at the Area 20

boundary (after decay), and 19 km away, offsite in the Oasis Valley (after migration), a
• HII III

• Range for maximum annual

concentrations (Bq L-l) b over 70-y period

Radionuclide Area 20 boundary Oasis Valley (70-y interval
(101 to 170 y due to decay) offsite due to travel) c

Americium-241 7.8 x 10-2 to 7.0 x 10- 2 2.6 x 10- 5 to 2.7 x 10- 5 (344 to 413)

Antimony-125 7.8 x 10--9 to 3.0 x 10-16 2.3 x 10-27 to 3.6 x 10-7 (1 to 70)

Cerium-144 2.0 x 10- 38 to 2.1 x 10-64 8.9 x 10 -32 to 8.1 x 10-13 (1 to 70)

Cesium-137 1.8 x 10 +1 to 3.7 x 10+0 8.9 x 10-4 to 1.2 x 10- 3 (72 to 141)

Cobalt-60 2.6 x 10-7 to 3.1 x 10-11 5.6 x 10 -24 to 2.6 x 10-9 (1 to 70)

Europium-IS2 2.2 x 10- 3 to 5.9 x 10- 5 7.4 x 10 -8 to 2.6 x 10- `7 (28 to 97)

Iodine-129 4.1 x 10"1 to 4.1 x 10-1 2.4 x 10-4 to 2.4 x 10-4 (539 to 608)

Plutonium-239 2.3 x 10- I, to 2.3 x 10-1 1.4 x 10 -4 to 1.4 x 10-4 (533 to 602)

Radium-226 1.1 x 10-1 to 1.0 x 10-1 5.2 x 10- 5 to 5.2 x 10- s (461 to 530)

Ruthenium-106 2.6 x 10- 28 to 4.4 x 10-49 6.7 x 10- 24 to 1.3 x 10-9 (1 to 70)

Strontium-90 1.4 x 10+1 to 2.7 x 10+0 6.7 x 10 -4 to 8.9 x 10-4 (70 to 139)

Technetium-99 2.6 x 10+0 to 2.6 x 10+0 1.6 x 10- 3 to 1.6 x 10- 3 (539 to 608)

Tritium [H-3] 1.1 x 10+6 to 2.3 x 10+4 3.3 x 10+1 to 1.4 x 10+2 (25 to 94)

Uranium-234 1.9 x 10-1 to 1.9 x 10-1 1.1 x 10 -4 to 1.1 x 10-4 (539 to 608)

Uranium-235 2.6 x 10- 2 to 2.6 x 10- 2 1.9 x 10- 7 to 1.9 x 10- 7 (539 to 608)

Uranium-238 1.0 x 10+0 to 1.0 x 10 +0 5.9 x 10-4 to 5.9 x 10-4 (539 to 608)
I

a Based on maximum concentrations reported for these radionuclides at the time of the collection of
groundwater samples-of-opportunity from three shot cavities on NTS (see Table 1 and Fig. 3).

b Rounded values; to convert Bq L-1 to pCi mL-1 multiply Bq L-1 by 2.7 x 10-2.

c The 70-y period during which the maximum annual concentrations for a radionuclide are predicted to be
present at the Oasis Valley, based on the results of the travel-time transport model.

equate to the maximum concentrations of these radionuclides measured at the time of collection

in the samples-of-opportunity from the Cambric, Cheshire, and Bilby shot cavities.

Precise hydrogeological data concerning groundwater migration from the NTS to offsite

locations, such as the. Oasis Valley, are not available. Therefore, a classical hydrological

transport model that would employ such information and accurately predict a point estimate of

activity of a radionuclide at a particular location spatially and temporally cannot be employed.

Instead, the travel-time-transport approach, which is not dependent on such detailed information,

will be used. The principal output of the model is a probability-density function (pdf)

• conditioned on the set of parameters used to describe processes such as velocity, advection,

dispersion, and radioact.ive decay. Importantly, the travel-time-transport model takes into

consideration parameter :mcertainty and any possible correlation among parameters.



Flux-averaged concentrations, which are defined in terms of the ratio of solute flux to water
flux (Kreft and Zuber, 1978), are used as input parameters. Therefore, the maximum
concentrations for the representative mix of radionuclides assumed to be present in ground water
beneath the Area 20 boundary today (see Table 1) are considered to represent flux-averaged
concentrations and are input directly into the model.

The travel-time distribution is derived from the Lagrangian concept of particle displacement
(Taylor, 1921; Dagan, 1982, 1984, 1987; Shapiro and Cvetkovic, 1988; Dagan and Nguyen,
1989). In this concept, the solute is represented as a coUection of particles transported by ground
water under advection, dispersion, and other physical and chemical processes. The groundwater-
flow velocity (Vx, Vy, and Vz) satisfies Darcy's law and the equation of continuity and will
fluctuate from one point (x, y, z) to another because of locally variable hydrogeologic conditions.
We assume that the velocity distribution can be decomposed into (i.e., represented as) a mean, or
average value of magnitude U aligned with the x axis, and a fluctuating part whose spatial
average is zero. The travel time for a solute particle to move a distance L in the mean-flow (x)
direction may be estimated from (Shapiro and Cvetkovic, 1988)

t(L)= j'o' dx ' (2)

where Vx = Vx (x, 0, 0) is the x-component of the velocity along the x axis. For our purposes,
the x axis will be anchored at the boundary of Area 20 and point toward the Oasis Valley.
Radionuclide transport and travel-time analyses will be considered along this path using
L = 19 km. On the basis of the limited data available for NTS hydrogeology, the velocity
component, Vx, of the ground water migrating in the direction of the Oasis Valley is considered
to be a lognormally distributed variable with an expected value (arithmetic mean), U, equal to
17 m/y (derived from data presented by Blankennagel and Weir, 1973; and Winograd and
Thordarson, 1975). As a consequence of the uncertainties in the transport mechanism, such as
estimation of parameters characterizing flow and transport, and spatial variability of the aquifer
properties, such as permeability and porosity, radionuclide arrival at Oasis Valley in ground
water migrating from the Area 20 boundary will be distributed in time and described by a

lognormal travel-time pdf, p[t;LlU] (Andricevic et al., 1993). Different velocities associated
with locally variable hydrogeologic conditions will tend to transport different elements of an
initial pulse of mass at different rates; hence, downstream arrival times will be distributed

according to p[t;LIU ]. The product of p[t;LlU] anda time interval, dt, represents the fraction
of mass released at x = 0, t = 0 that awives at x = L between t and t + dt, conditioned on a mean
velocity, U (as we see later, the estimate of this average may, in fact, be uncertain, and may be
associated with its own lognormal pdf, p[U]). The incorporation of radioactive decay in the

travel-time-transport model will result in a modified travel-time pdf, ,_[t;LIU], because longer
travel times will become less likely as a result of decay along travel paths:

/ / '_[t;LIU] =exp-_12t p[t;LlU ] . (3)
2

10



Here, t is the travel time (y), t_ is the radioactive half-life (y) of the radionuclide of interest,

and p[t; L_I] is the travel-time pdf of the solute conditioned on the uncertainty coming from the
estimated mean velocity, U, and which takes the form of the lognormal distribution. The

• modified travel-time pdf has to be r'ormalized to obtain the full travel-time pdf; this is
accomplished by dividing the right side of that equation by the constant C, which is obtained
from the following expression:

C = _oeXp(-_2 tt[t;L_.l]dt._ (4)

Thus, the unconditional travel-time cumulative distributio_ function (cdf), G[t*;L], can be
expressed mathematically as

where t* is the travel time of interest (y), t_ is the radioactive half-life of the radionuclide of

interest; and p[t;LIU ] is the travel-time pdf of the solute. This last parameter is lognormal,
conditioned on the uncertaiaty coming from the estimated mean velocity, U, and accounts for
advection and hydrodynamic dispersion. The term, p[U], is the pdf of the mean velocity
estimate, which also takes the form of the lognormal distribution. The integration of the cdf
equation is performed numerically. The cdf expression is used to estimate the accumulation over
time of each radionuclide at Oasis Valley following transport in ground water from the Area 20
boundary. This information is then employed to determine the 70 maximum annual
concentrations of each radionuclide in the ground water at Oasis Valley and the corresponding
70-y interval during which these concentrations occur.* The range of maximum annual
concentrations for each radionuclide of interest in groundwater at Oasis Valley is shown in
Table 2, along with the 70-y interval associated with these concentrations.

The maximum annual concentrations appearing in Table 2 are assumed to be geometric mean
values of lognormally distributed variables, and the geometric standard deviation corresponding
to each of the values for Oasis Valley is assumed to equal 2.0. By not incorporating into the
travel-time-transport calculations the possibility of sorption of radionuclides on geologic material
along the flow path, the remote possibility is addressed that radionuclides sorbed to geologic
material could still be transported in ground water as a result of the movement of the geologic
material as a colloid from the Area 20 boundary to the Oasis Valley.

Figure 4 graphically illustrates the impact of radioactive decay on the travel-time pdf for
, radionuclides arriving at Oasis Valley in ground water migrating from the Area 20 boundary. As

* The corteentration of a radionuclide in any single yearcan be derived from the model. The 70-y interval containing the
maximum armua]concenu'ations are then selected for this assessment.
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Figure4. The Impactof radioactivedecayon travel-timeprobability-densitytunctlon(pdf)for
threedifferentradionuclides.

stated previously, retention of individual radionuclides on geologic material along the flow path
to the Oasis Valley was not taken into consideration. For simplicity, ali three radionuclides used
in this illustration are considered to be at the same initial concentration in ground water at the
Area 20 boundary. Comparison of the curves in Figure 4 reveals that the shorter the radioactive
half-life, the more the peak of the pdf flattens (i.e., the maximum values of the maximum annual

concentrations are reduced) and shifts toward the origin, with a smaller total quantity of
radioactive material arriving at the Oasis Valley, annually and cumulatively. Accordingly, it is
only because there is an infinitesimally small probability of relatively fast groundwater flow,
such as might occur through fractures, caves, or along faults (as manifested in a tail of the
lognormal model of the velocity disuibution), that any radionuclide with a short radioactive half-
life would be predicted to arrive at the Oasis Valley.
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4. Intake of Radionuclide-Contaminated
Ground Water

• The first scenario to be examined concerns an individual living on the NTS in the immediate
vicinity of the Area 20 boundary, some 101 years from now, when institutional control of the
NTS is assumed to have been lost, Although access to the deep ground water at this location is
considered feasible, acquisition of this ground water would be difficult and expensive because of
its depth. Nonetheless, for purposes of this assessment, it is assumed that the deep ground water
at this location will be accessible, this water will represent the only source of drinking water, an
individual will consume exclusively this water and its radionuclide constituents, and that such
exposure will begin at birth and continue without interruption over an entire70-y lifespan.

The second scenario focuses on an individual living in the immediate vicinity of the springs
at Oasis Valley, presumably as a consequence of northward expansion of the nearby community
of Beatty (see Figs. 1 and 3). Again, this offsite vicinity is of interest because it represents the
nearest practical location to any boundary of the NTS where potential human exposure to ground
water migrating from the NTS could occur. The ground water in this offsite vicinity is much
shallower and will be more accessible as a source of drinking water, both technically and
financially, than on the NTS itself.

Because the travel-time transport model indicates that the 70-y interval of maximum annual
concentrations will be different for many of the radionuclides arriving at the Oasis Valley from
the Area 20 boundary (see last column of Table 2), it is highly unlikely that an individual could
be exposed to ground water containing all of the radionuclides together at their 70 predicted
maximum annual concentrations (ranges also shown in Table 2). Nevertheless, estimates of dose
and health risk are derived. This approach is taken to ascertain whether one radionuclide could
dominate the dose more than any of the others, and whether the estimate of risk is of sufficient
concern to indicate that a more realistic, but far more complicated, analysis of risk is warranted.
Again, it is assumed that the ground water in the Oasis Valley will be accessible, will represent
the only source of drinking water, will be consumed exclusively, and that such exposure will
begin at birth and continue without interruption over an entire 70-y lifespan.

Data compiled by Ershow and Cantor (1989) from a U.S. survey of tapwater intake shows
that the rate of intake increases with age, and can vary by geographic region (presumably as a
consequence of climate) for both sexes and ali seasons of the year. In that survey, tap water was
assumed to be from a local source and was defined as water consumed either directly for
drinking, or indirectly, in preparation of foods or other beverages, such as tea and coffee. Of
primary interest was tapwater intake from birth to age 70 for an individual living in the southern
part of Nevada. Therefore, dose estimations for someone living on or near the NTS are based on
age-specific tapwater intake for both sexes and broad age categories for the western region of the
U.S., quantified by Ershow and Cantor (1989).

The rate of tapwater intake is assumed to be a lognormally distributed variable. Shown in
Table 3 are the weighted arithmetic mean (Xe) and standard deviation (Se) values for age-specific
annual tapwater intake for the western United States reported by Ershow and Cantor (1989).

• Table 3 also contains the corresponding geometric mean (GMe) and geometric standard deviation
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Table 3. Summary of annual tapwater intake a (L y-l) for both sexes by broad age category
and over all seasons for the western United States, including Nevada (from Etshow and
Cantor, 1989)b.

I I I III I

Weighted arithmetic Corresponding geometric .

Age Standarddeviation Standard deviation
(y) Mean (_c) (Se) Mean_GMe) (GSD)

0 to1 1.3x 102 1.0x 102 1.0x 102 1.97

I to I 2.8x 102 1.5x 102 2.5x 102 1.65

11 to20 3.6x 102 2.1x 102 3.1 x 102 1.72

20to65 5.3x102 3.0x102 4.6x102 1.69

65to70 S.6x102 2.3x102 S.2x102 1.48
i i , i

a Rounded values.

b Weighted arithmeticmean and standarddeviationarereportedinmL d-1by

En,how and Cantor (1989),and convert,_dtoL y-1by multiplyingby 365 d y -1and dividingby 103mL L-I.

(GSDe)valuesbasedon thesereportedage-andregion-specificannualratesoftapwatcrintake.
Becausethelogarithmoftapwaterintakeisassumedtobea normallydistributedvariable(i.e.,
tapwaterintakeislognormallydistributed),therespectiveGMe andGSDe termsinTable3 are
derivedusingthefollowingexpressions(fromNg elal.,1990):

--2

x_ , and (6)
GMe = 4_2+ s.2

GSDe=exp In 1 + (£_) . (7)

5. Dose Corresponding To Intake

Before the potential excess-cancer risk for an individual consuming radionuclide-
contaminated ground water can be quantified, it is first necessary to estimate the internal
radiation dose corresponding to these exposures. Because ingestion of the contaminated ground
water represents the primary exposure pathway, other potential pathways (e.g., inhalation and
dermal absorption associated with bathing, and ingestion of contaminated locally grown fruits
and vegetables) will not be considered to contribute substantially to the internal dose.

The approach for constructing an individual's lifetime estimate of internal radiation dose is
based on the dosimetric formalisms adopted for this purpose by the International Commission on
Radiological Protection (ICRP) and described in ICRP Publication 60 (ICRP, 1991a). The ICRP
methodology was developed for the purpose of radiation protection and readily addresses a
substantial number of radionuclides. By design, it provides an estimate of the total dose an
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individual is committed to receive from an internally deposited radionuclide, which equates not
only to the dose delivered during the year of intake but also to any dose delivered in the future as
a result of the continued presence of the radionuclide in ;he body (NCRP, 1987). However, for
those radionuclides that are retained in the body for only a short amount of time or have short

, radioactive half lives (i.e., equating to effective half lives of less than or equal to about three
months), the committed total dose from a single intake will numerically approximate the annual
dose from a continuous intake for one year. Thus, the committed total dose determined by this

• process will overestimate only the committed annual dose from the intake of those radionuclides
that have both long radioactive half lives and long physiological retention times (i.e., lengthy
effective half lives). Because radionuclides of both types are considered to be in the NTS ground
water, only some of these radionuclides will contribute to any overestimate of the total ingested
dose. Revising the ICRP methodology to reduce such error is unnecessary, as this procedure is
being used here primarily to screen for those radionuclides making the greatest contribution to
potential excess lifetime dose and risk and to indicate the possible magnitude of such risk.
Additionally, such error will be small should a radionuclide with a short effective half-life (e.g.,
tritium) be shown to dominate the dose.

The procedure for calculating an individual's dose from the intake of a specific radionuclide
over a 70-y lifetime involves summing over that exposure period the products of (1)the
appropriate age-specific dose-conversion factor for each year of a 70-y lifespan (Sv Bq-1),
(2) the corresponding age-related annual intake of tap water (L y-l), and (3) the annual estimate
of the concentrations of the radionuclide in the water (Bq L-1) at a specific location. The latter
two factors have already been described. In the sections that follow, the age-specific
dose-conversion factors are derived. Then the derivation and estimation of the maximum 70-y
lifetime dose, including the associated uncertainties, are presented for an individual exposed to
the maximum annual radionuclide concentrations in ground water at either the Area 20 boundary
or offsite at Oasis Valley.

5.1. Dose-Conversion Factors for Intake by Ingestion

Age-dependent, organ-specific, committed equivalent doses per unit of radioactive material
ingested (Sv Bq -1) for the most radiologically significant radionuclides released into the
environment were compiled for the general public in ICRP Publication 56 (ICRP, 1990). These
committed equivalent doses were calculated by the ICRP using biokinetic data and dosimetric
models. In this process, the absorbed dose averaged over a specific target tissue or organ
(Gy Bq-1) is weighted by a factor that relates the type and energy emitted by the radionuclide to
the effectiveness of that radiation, compared to other radiations, for inducing stochastic effects.
This term is the radiation weighting factor. Also addressed in these calculations is the effect of
age on both the biokinetics of a radionuclide and on human physiological and anatomical
properties. Additionally, the committed equivalent doses for radionuclides tabulated in
ICRP Publication 56 represent total equivalent doses accumulated by tissues or organs as a
consequence of varying dose rate and protraction of exposure over a time period following
intake. This time period is considered to be 70 y for infants, children, and adolescents, and 50 y
for adults.

The concept of committed effective dose (ICRP, 1991a) allows doses resulting from tissue or
organ (partial-body) exposures, which can result from ingestion of radionuclides, to be converted
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into a dose to the whole body that has an equal level of risk associated with it (Moeller, 1992).
In this approach, age-dependent committed effective doses are derived from age-dependent,
organ-specific committed equivalent doses using tissue-weighting factors. Specifically,
age-dependent committed effective doses per unit intake of activity (Sv Bq-1) are calculated by
summing the products of organ-specific, committed equivalent doses for an age category and the
tissue-weighting factors assigned to each of the specified tissues and organs of the body. As
discussed by Moeller (1992), tissue-weighting factors represent the contributions to the total risk
associated with exposures to specific tissues and organs, and they are determined by taking into
consideration parameters that include the likelihood that radiation can induce a given cancer or
genetic effect, and that account for years of life lost for those who die of latent cancers. Tissue
weighting factors were revised in ICRP Publication 60 (ICRP, 1991a) to be consistent with the
mosticurrent understanding of radiobiology, and thus the committed effective dose factors
presented in ICRP Publication 56 (ICRP 1990) are no longer current.

Only 8 of the 16 radionuclides that are considered representative of the mix of radionuclides
that are present today at the Area 20 boundary and that were measured in ground water collected
from the three specific shot cavities (see Table 1) have age-dependent, organ-specific committed
equivalent doses tabulated in ICRP Publication 56 (ICRP, 1990). To calculate age-dependent
committed effective doses for these eight radionuclides--(1) Americium-241 (Am-241),
(2) Cerium-144 (Ce-144), (3) Cesium-137, (4) Iodine-129 (I-129), (5) Plutonium-239 (Pu-239),
(6) Ruthenium-106, (7) Strontium-90, and (8) Tritium (H-3)----each organ-specific committed
equivalent dose in a given age category for each radionuclide was multiplied by its respective
tissue-weighting factor and the products for that age category were then summed. The resulting
age-category-dependent committed effective doses agree with those calculated for these
radionuclides and age-categories by Jain et al. (1992) using an analogous procedure. For
purposes of this report, these age-category specific committed effective doses (Sv Bq-1) were
considered to apply to each year of life identified for that age category by the ICRP (1990) in
ICRP Publication 56. Consequently, these annual age-specific committed effective doses are the
dose-conversion factors used for estimating the lifetime dose for each of these eight
radionuclides in NTS ground water.

Similar dose-conversion factors were calculated for each of the remaining eight radionuclides
of interest (see Table 1)--(9) Antimony-125 (Sb-125), (10) Cobalt-60(Co-60),
(11) Europium-152 (Eu-152), (12) Radium-226 (Ra-226), (13) Technetium-99 (Tc-99),
(14) Uranium-234 (U-234), (15) Uranium-235 (U-235), and (16) Uranium-238 (U-238)--using
the recommended annual limit on intake (ALI) for occupational exposures resulting from
ingestion of these radionuclides. These ALIs are published in ICRP Publication 61
(ICRP, 1991b). The ALI (Bq) for any radionuclide for occupational exposure through ingestion
is derived by dividing the recommended annual average effective dose limit for occupational
exposure (0.02 Sv) by the committed effective dose per unit of radioactive material ingested
(Sv Bq -1) for the 50-y period following intake by an adult. Thus, even though the ICRP has not
yet explicitly provided revised values of committed effective doses per unit of activity for these
eight radienuclides, the committed effective dose per unit of radionuclide intake for a 50-y
period following intake during any year of life in the adult-age category can still be determined.
For the public, however, adjustments must be made in these age-dependent committed effective
doses (i.e., increasing the dose commitment from 50 to 70 y). The result of this adjustment is the
annual age-specific committed effective dose for a 70-y period following intake of each

16



radionuclide. This quantity is considered to be the dose-conversion factor applicable to ali ages
beginning at birth and lasting over an entire 70-y lifespan.

For those radionuclides having a relatively long biological half-life (i.e., retained in tissues or
organs), compared to a 70-y lifetime of chronic ingestion exposure, protracted internal exposure

' can occur. The adjustment factor with the least amount of error for converting the committed
effective dose for adult ages to one applicable to all ages for these radionuclides equates to the

, ratio of a radionuclide-specific retention function, integrated over 70 y, to the same retention
function integrated over 50 y. The radionuclides in this category are Ra-226, U-234, U-235, and
U-238. The adjustment factor for Ra-226 is 1.2 and was estimated from the integrals of the
retention function for the whole body for infinite time after exposure (which was used as a
surrogate for 70 y after exposure) and for 50 y after exposure. These integrals of the retention
function for the whole body for Ra-226 are presented in Table 36 of ICRP Publication 20
(ICRP, 1973). The adjustment factor for ali three isotopes of uranium (234, 235, and 238) is 1.1,
and was obtained from the ratio of the retention function for bone integrated over 70 y and over
50 y. The retention function for bone for uranium is presented in ICRP Publication 30, Part 1
(ICRP, 1979).

For radionuclides with biological half lives that are relatively negligible compared to a 70-y
lifetime, the adjustment factor is obtained by dividing 70 y by 50 y (i.e., 1.4). The radionuclides
for which this adjustment factor was used are Sb-125, Co-60, Eu-152, and Tc-99.

Table 4 summarizes the radionuclide-specific, age-dependent dose-conversion factors
calculated for ali 16 radionuclides of interest. Each value is assumed to represent the geometric
mean (GM) of a lognormally distributed variable. The geometric standard deviation (GSD)
associated with each GM in Table 4 is assumed to be equal to 1.8. This assumption is based on
the one made by Ng et al. (1990) in which a default geometric standard deviation of 1.8 is
assumed for ingestion dose factors for ali target organs for which a GSD is not specified.

5.2. Maximmm Dose and Associated Uncertainty

As previously indicated, it is assumed that the estimates of the (I)annual concentrations
(Bq L-1) for the radionuclidc_i of interest in ground water at a particular location, (2)age-
dependent annual rates of tapwatcr intake (L y-l) for individuals in Nevada, and (3) age-
dependent dose-conversion factors (Sv Bq-1) for the radionuclides of interest, are all lognormally
distributed variables. Lognormality was assumed for these variables because in ali three
instances, two conditions commonly used as criteria for making this assumption are satisfied:
the values are constrained to be positive, and the variability for each quantity is considered
relatively large with respect to the mean (Puskin, 1992). As a result of making this assumption,
the mathematical procedures described by Hoffman and Gardner (1983) and by Ng et al. (1990)
can be applied to estimate the statistical parameters and their uncertainty for the distribution
resulting from the combination of these lognormally distributed variables.

• Table 5 contains the arithmetic means and variances for the lifetime committed effective

doses received by an individual from ingestion of the respective radionuclides in ground water
during their respective 70-y intervals of maximum annual concentrations (or intakes) at either the
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Table 4. Summary of estimated radionuclide-specific, age-dependent (committed effective)

dose-conversion factors (Sv Bq -1) for the 16 radionuclides of interest; ali values are assumed

to be geometric means and to have geometric standard deviations equal to 1.8.
.j . ,,,|, , ,, L Lt .................. "" , , ,,,,, ,,,, , , ,,i . L . ,,,, ,,, , ,, ,l I , , ,,,., , ,,_

Chronological a_e category (applicable.time period)

Radionuclide 3 mo I y 5 y 10 y 15 y Adult
(1 year) (I year) (5 years) (5 years) (5 years) (53 years)

Am-241 a 7.3 x 10-6 7.3 x 10-7 5.7 x 10- 7 4.8 x 10-7 4.7 x 10-7 4.5 x 10-7

Sb-125 b 1.4 x 10-9 1.4 x 10-9 1.4 x 10 -9 1.4 x 10-9 1.4 x 10-9 1.4 x 10-9

Ce-144 a 1.1 x 10-7 6.2 x 10-8 3.0 x 10 -8 1.9 x 10-8 1.0 x 10-8 8.4 x 10-9

Cs-137 a 2.0 x 10-8 1.1 x 10-8 8.9 x 10-9 9.7 x 10-9 1.3 x 10-8 1.3 x 10-8

Co-60 b 4.0 x 10-9 4.0 x 10-9 4.0 x 10-9 4.0 x 10-9 4.0 x 10-9 4.0 x 10-9

Eu-152 b 2.8 x 10-9 2.8 x 10-9 2.8 x 10-9 2.8 x 10-9 2.8 x 10-9 2.8 x 10-9

1-129a 1.9 x 10-7 2.2 x 10-7 1.7 x 10-7 1.9 x 10-7 1.4 x 10-7 1.1 x 10-7

Pu-239 a 9.0 x 10-6 9.0 x 10 -7 7.2 x 10-'! 5.9 x 10-7 5.6 x 10-7 5.5 x 10-7

Ra-226 b 2.8 x 10-7 2.8 x 10 -7 2.8 x 10-7 2.8 x 10-7 2.8 x 10-7 2.8 x 10-7

Ru-106 a 1.2 x 10-7 7.3 x 10 -8 3.7 x 10-8 2.1 x 10-8 1.3 x 10-8 1.0 x 10-8

Sr-90 a 1.2 x 10-7 8.1 x 10-8 3.6 x 10-8 3.4 x 10-8 4.5 x 10-8 2.9 x 10-8

Tc-99 b 9.3 x 10-10 9.3 x 10 °10 9.3 x 10"10 9.3 x 10"10 9.3 x 10-10 9.3 x 10"10

H-3 a 5.5 x 10-11 4.1 x 10-11 2.6 x 10-11 1.9 x 10-11 1.6 x 10-11 1.6 x 10"11

U-234 b 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8

U-235 b 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8 3.0 x 10-8

U-238 b 2.6 x 10-8 2.6 x 10-8 2.6 x 10-8 2.6 x 10-8 2.6 x 10 -8 2.6 x 10-8

a Derived according to the method described in the text from age-dependent', organ-specific committed
equivalent doses appearing in ICRP Publication 56 (ICRP, 1990). Results agree with those computed by
Jain et al. (1992) using a similar procedure.

b Derived according to the method described in the text from the annual limit on intake (ALI) for ingestion as
given in ICRP Publication 61 (ICRP, 1991b).

boundary of Area 20 or at the Oasis Valley. According to these figures, at each location, tritium

(H-3) is calculated to be responsible for nearly 90% of the total lifetime committed effective

dose. These estimates were derived using the following procedures.

First, the geometric mean of an annual committed effective dose (GMCED A) was calculated
for a particular radionuclide by multiplying together the geometric mean values for each of the

three factors identified above. Next, the total log-transformed variance for this annual dose was

computed, and any correlation was accounted for between dose-conversion factor and annual
intake.
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Table 5. Lifetime maximum 70-y committed effective doses (Sv) for radionuclides of interest
at Area 20 and offsite, 19 km away at the Oasis Valley.

IIII I IIIIIIII

Lifetime committed effective dose (Sv)

Area 20 boundary 0asil_ Valley
Arithmetic Arithmetic

• Radionuclide mean variance mean variance

Americium-241 1.2 x 10-3 5.4 x 10-7 5.6 x 10--7 3.3 x 10-13

Antimony-125 1.6 x 10-14 1.7 x 10- 28 6.4 x 10-12 6.6 x 10- 23
Cerium-144 4.4 x 10-43 4.4 x 10.-86 4.6 x 10-17 1.6 x 10"_

Cesium-137 4.5 x 10-3 2.1 x 10- 5 7.8 x 10-7 1.3 x 10-12

Cobalt-60 3.0 x 10-12 6.1 x 10- 24 2.7 x 10-13 1.2 x 10- 25

Europium-152 5.3 x 10-8 2.0 x 10"15 3.0 x 10"'11 1.4 x 10-21

Iodine-129 1.5 x 10-3 1.4 x 10--7 1.1 x 1Ct"6 7.3 x 10-13

Plutonium-239 4.8 x 10-3 7.8 x 10.-6 3.6 x 10-6 1.3 x 10"11

Radium-226 1.1 x 10-3 8.6 x 10- 7 7.2 x 10-7 8.2 x 10-13

Ruthenium-106 7.7 x 10- 33 1.2 x 10-65 9.3 x 10-14 6.7 x 10- 27

Strontium-90 6.5 x 10- 3 8.8 x 10-6 1.1 x 10-6 9.2 x 10-13

Technetium-99 9.4 x l0 -s 6.0 x 10.-9 7.1 x 10-8 8.1 x 10- ls

Tritium [H-3] 1.4 x 10-1 3.4 x 10-3 7.7 x 10-5 4.7 x 10--9

Uranium-234 2.2 x 10-4 3.2 x 10-8 1.6 × 10- 7 4.3 x 10-14

Uranium-235 3.8 x 10- 5 9.5 x 10-10 2.8 × 10-10 1.3 x 10"19

Uranium-238 1.0 x 10- 3 7.1 x 10- 7 7.8 × 10- 7 9.6 x 10-13
' r i ' T |

The total log-transformed variance for an annual dose, where correlation between two terms

is possible, was calculated using the following equation:

c

2 )2 2r(ln GSD.)(ln GSD b) (8)O1^ = _(In GSD i +
i,,a

2

where (31^ is the total annual log-transform variance for the combined log-transformed variances
and the variance attributable to correlated parameters; GSDi is the geometric standard deviation
of the i-th variable (e.g., GSDs for annual dose-conversion factor, annual intake, and annual

concentrations in ground water); r is the linear correlation coefficient between two parameters
(e.g., annual dose-conversion factor and annual rate of intake); and GSDa and GSDb are the

geometric standard deviations of the correlated parameters. This equation and its application has

been described by Hoffman and Gardner (1983) and by Ng et al. (1990).

Of course, it is not possible to examine the correlation between the dose-conversion factors

' and the intake for the eight radionuclides with dose-conversion factors derived from ALIs (i.e.,

Sb-125, Co-60, Eu-152, Ra-226, Tc-99, and U-234, U-235, and U-238). Consequently, the
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assumption was made that there is no correlation, and the correlation coefficient for these
radionuclides has been set equal to zero. Because any real correlations would likely be negative,
the net effect is to overestimate the variance.

For seven of the eight radionuclides that were calculated from ICRP Publication 56, the
linear correlation coefficient was negative and was about -0.40 for both Am-241 and Pu-239;
about -0.60 for Sr-90; about -0.70 for Ce-144, Ru-106, and H-3; and was highest for 1-129, at a
value of about -0.90. The linear correlation coefficient was positive for Cs-137, at a value of
about +0.40, because the biological half-life of this radionuclide increases with age (Leggett,
1986).

The arithmetic n iean of the annual committed effective dose, gCEDA,was then determined
using the following equation:

_CEDA = GMcED^ x exp(lc_2k2lA) ' (9)

where GMCEDA is the geometric mean of the annual committed effective dose (Sv) and O2 isla

the total annual log-transform variance. The corresponding annual arithmetic variance, s 2 ,
CEDA

was calculated according to the following exPression:

The arithmetic mean and arithmetic variance of the annual committed effective dose for each

year of a 70-y period of exposure was used to calculate the arithmetic mean and arithmetic
variance of the lifetime committed effective dose. The arithmetic mean of the lifetime

committed effective dose (_cED.) for an individual radionuclide is simply the sum of the annual
1

arithmetic means for that radionuclide. The arithmetic variance has two terms: the sum of the

annual arithmetic variances and a co-variance term addressing the correlation between the
presence of a radionuclide in the ground water in one year being positively correlated with its
presence in the ground water during the next year. The linear correlation coefficient for this
relationship is considered to be equal to 0.8.

The total variance in the lifetime committed effective dose, s2 is then the sum of the
T L '

annual arithmetic variances and the sum of covariance terms that account for the correlations
between years to the total dose:

70 70-1 70

S'2rL= E is.2 + 2rk,l E E Sk ' (11)
j=l CED A k=l l=k+l CEDA SlCEDA

where s.2 istheannualarithmeticvariancc,rk,IisthecorrelationcoefficientdescribingtheJCED A J

correlationincommittedeffectivedosebetweenyears(i.e.,assumedtobe0.8),and SkcEDA and
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S]CED̂ are the arithmetic standard deviations of annual variance for a radionuclide from year k
and year 1.

Because an estimate of the maximum potential risk confronting an individual ingesting NTS
ground water either at the boundary of Area 20 or at the Oasis Valley is of primary interest, the
maximum dose must first be calculated. At the Area 20 boundary on NTS, the maximum dose is
that dose resulting from ingestion of ali the radionuclides considered to be representative of those

' in the ground water during the 70-y interval beginning 101 y in the future. At Oasis Valley, the
maximum dose is that considered to result from ingesting the 70 maximum annual concentrations
of each of the representative mix of radionuclides that have been modeled to be present at this
location following transport in the ground water from the boundary of Area 20. Although the
likelihood of ali such radionuclides being present at the Oasis Valley simultaneously at their
maximum concentration is very small, it is not impossible and, given the limited nature of the
data concerning radionuclide concentrations in ground water beneath the NTS and their rate of
movement, this assumption is not regarded as overly conservative.

The next item to be computed was the geometric mean and geometric standard deviation for
the lognormally distributed committed effective dose associated with exposure to the maximum
concentrations of ali radionuclides of concern present simultaneously over a 70-y interval either
at the Area 20 boundary or at the Oasis Valley. This was accomplished using the respective
arithmetic means and arithmetic standard deviations for these radionuclides appearing in Table 5.

First, the arithmetic means of the lifetime committed effective doses associated with
individual radionuclides at a specific location are summed to yield an arithmetic mean for the
maximum potential lifetime committed effective dose from exposure to maximum concentrations

from the grand total of ali 16 radionuclides of concern, XCEDGTL" The associated arithmetic
variance in the maximum possible committed effective dose over a 70-y lifetime has two terms:
the sum of the arithmetic variances of the committed effective doses over a 70-y lifetime for each
radionuclide and a co-variance term addressing the correlation between contributions of pairs of
radionuclides to the total lifetime committed effective dose. Based on the linear correlation
coefficients derived by Ng et al. (1990) for several radionuclides, the linear correlation
coefficient for this relationship was assumed to be equal to 0.8. The total variance in the lifetime

committed effective dose from ali radionuclides of concern, 2 , at a specific location wasSCEDGTL
then calculated according to the following equation:

N N-1 N

T=1 L k=l l=k+l S1CEDL #

2 is the total .lifetime arithmetic variance for an individua', radionuclide; rk,_ is thewhere sT
L

linear correlation coefficient between lifetime committed effective doses from radionuclides k
and are the arithmetic standard deviations of the

and I (i.e., assumed to be 0.8); SkcEoL S1CEDL
I*

lifetime committed effective dose from radionuclides k and 1; and N equals 16.

, The geometric mean of the lifetime committed effective dose from exposure to the grand

total of all 16 radionuclides of concern (GMCEDGTL) at a specific location is determined from
the grand total arithmetic mean and arithmetic variance of the committed effective dose:
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.. CED,=TL_ (13)GMCEDGTL / "2 2 "

_Xc-F_ + Scm_

The associated geometric standard deviation of the lifetime committed effective dose from

exposure to ali 16 radionuclides (GSDCEDGTL) also is computed from the arithmetic mean and
arithmetic variance of the committed effective dose for lifetime exposure to the grand total of ali
16 radiounuclides: 0

SCED_rL

GSDCEDGTL = exp In 1 + _2 • (14)
CED_L

For an individual exposed from birth for a 70-y lifetime at the Area 20 boundary, the

GMcEDGT L equals 1.5 x 10-1 Sv and the corresponding GSDCEDGTL equals 1.4. Similarly, for
the individual exposed from birth for a 70-y lifetime at Oasis Valley, the GMCEDGTL equals
6.5 x 10-5 Sv and the corresponding GSDCEDGTL equals 2.1. As a minor point, it should be
noted that the Am-241 still will be growing in from the decay of its parent, Pu-241. As the
measured value of Am-241 was reported seven years after its associated event (the nuclear
weapons test that served as its source), it is estimated that the final Am-241 concentration will be
about three times higher. Even so, Am-241 would be less important than Sr-90, and Pu-239; and
tritium would still dominate overwhelmingly the contribution to dose.

6. Estimate of Cancer Risk and
Associated Uncertainty

The ICRP (1991a) in ICRP Publication 60, and the National Research Council (NRC)
Committee on the Biological Effects of Ionizing Radiation (BEIR) in the BEIR V report (NRC,
1990) provide important reviews regarding the effectiveness of various forms of radiation to
induce fatal cancers in humans and, specifically, the associated risks. The information in these
reviews was directly applicable for identifying an appropriate estimate of the risk factor for
radiation induced fatal cancer related to intake of radionuclides in ground water and for
evaluating the uncertainty in this estimate.

On the basis of the data regarding excess mortality due to radiation induced cancers for
human populations that are discussed in the BEIR V report (NRC, 1990), the risk factor for fatal
cancer was considered to be a lognormally distributed variable. In ICRP Publication 60, the
ICRP (1991a) averaged various estimates of the risk factor for radiation induced fatal cancers
from different studies, including the BEIR V report (NRC, 1990), and arrived at a nominal risk
value of 5 x 10-2 per Sv of lifetime committed effective dose for the probability of induced fatal
cancer in a population of ali ages following chronic low-dose exposure. For purposes of this
report, this risk factor is considered to be the geometric mean value (GMRF) of a lognormally
distributed variable. Also, the assumption is made that the population for which this risk factor #

is applicable remains stationary, has the age distribution of the current U.S. population, and a
male to female ratio of unitympopulation characteristics that will not change over time.
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Discussions contained in the BEIR V report (NRC. 1990) and in ICRP Publication 60
(ICRP. 199la) indicate that the total variability associated wit!_ rbe risk factor for fatal cancer
from chronic low-dose exposure is attributed primarily to uncertainties contributed by (1) the
chance sampling variation in the available epidemiological data from Japanese survivors of the

. 1945 atomic bomb explosions that are used for describing th_ relationship between in.eased
cancer mortality and an elevat_! acute whole-body dose in predictive models; (2) the dose-rate
effectiveness factor (DREF) that is used to adjust dose-response data for elevated acute whole-

" body dose to agree with evidence from animal studies and limited human data suggesting that
cancer induction at low do_s and low dose rates is likely to be lower than that observed after
high doses and dose rates; and (3)elements external ,_omodel parameters, including model
rnisspecification with regard to males and females, population differences (e.g., Oriental vs.
Occidental), uncertainty in the actual dosimetry estimates, and the accuracy of the estimated
doses to the people on whom these risk factors are based (most particularly, the Japanese
survivors of the atorrfic bombs). In fact, a review of lhc estimated doses to the Japanese
survivors cmrcntly is '_nprogress and the results cou!d !cad to future adjustments in the risk
factor.

Each of these three components is assumed to be lognormally distributed and the associated
geometa-it' standard deviations are derived using the applicable data appearing in BEIR V
(NRC, 1990). For example, the geometric standard deviation for the first two components
(GSDc) is Gbtained by inserti,g the 95% upper confidence limit (UCL) and 5% lower confidence
limit (LCL) describing the range of the 90% confidence interval for each component into the
following equation:

1

GSDc = (95-%"UCL)3-_\ 5% LCL " (15)

The geometric 2tand',u'd deviation of the third component was obtained by combining the GSDs
for males and females for ali cancers that were construc';ed from estimates of the GSDs for ali

nonmodel attributes contfibu'_ing to the total variability in this component.

Because of sampling variation alone, t_e 90% confidence interval for risk of increased cancer
mortality due to an acute whole-body dose for males and iemales combined was reported to
range from 0.11 per Sv to 0.24 _r Sv, yielding a GSDc for this component of i.3. lt is assumed
that the narrow range from 2 to 5 reported for the DREF, as a result of a review of lalx)ratory
animal studies focusing on tumorigenesis, represents the limits for the 90% confidence interval,
and the resulting GSDc for this component also is 1.3. Finally, the GSDc associated with overall
uncertainty contributed by ali of the elements considered external Io model parameters was
assumed to equal that calculated by adding in quadrature the na,ural logarithms of the male GSD
of 1.31 and the female GSD of 1.27. The mathematical expression for deriving the GSDc tbr this
third component is

li

GSDc = exp_/iln GSD_,,,) _"+(In GSD,_,,_I,)2 , (16)
Ib
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and it produces a value equal to 1.4. The geometric standard deviation of the total error for the
risk factor (GSDTRF), which reflects the contribution to overall uncertainty from ali three
components, is derived using a formula similar to Eq. 16:

GSDTRp = exp_/(ln 1.3) 2 +(In 1.3) 2 +(In 1.4) 2 . (17_ '

o

Accordingly, the GSDTRF equals 1.65.

The geometric mean of the maximum potential excess lifetime risk of cancer mortality
(GMMPR) for an individual either at Area 20 or at Oasis Valley from ingestion of the estimated
maximum annual concentrations of the 16 radionuclides of interest in ground water at these
locations was obtained as the product of the geometric mean of the total committed effective

dose (GMcEDGTL) and the geometric mean of the risk factor (GMRF = 0.05 Sv-l). The total
geometric standard deviation for this risk is determined by solving the following equation, which
is analogous to Equation 16:

GSDMPR = exp_iln GSDc_DoTL (In GSDTRF)2 (18)2 + .

For an individual at the Area 20 boundary, the GMMPR equals 7 x 10-3 and the GSDMPR
equals about 1.9. For an individual in the Oasis Valley, the GMMPR equals 7 x l0 -7 and the
corresponding GSDMPR equals about 2.5. The 90% confidence interval is obtained in both cases
by multiplying the respective GMMPRby the corresponding GSDMPR+1"645.The resulting range
of risk for an individual in Oasis Valley is from 7 x l0 --/to 1 x l0 -5, and for an individual at the
Area 20 boundary the range of risk is from 3 x 10-3 to 2 x 10-2.

7. Discussion

Clearly, there is a scarcity of useful data available concerning the con':entrations of
radionuclides in the ground water beneath the NTS today, and regarding the rates and directions
of the flow of this ground water. Therefore, some conservative assumptions were adopted in
order to assess responsibly the potential human health risks from the possible intake of such
radionuclide-contaminated ground water by individuals in the future, either at a location onsite
(assuming a loss of institutional control after 100 y) or at one offsite (as a result of transport in
migrating groundwater). For example, none of the radionuclides of concern were considered to
undergo adsorption and retention on geologic material. Also, any potential for dilution of the
radionuclide-contaminated ground water by uncontaminated water was ignored. Yet, these
conservative assumptions, and even the use of the concept of committed effective dose, do not
appear to lead to gross overestimates of dose and risk, providing the approximations of
maximum concentrations of radionuclides in ground water that are use0_are reasonable. The
reason for this is that tritium, which moves as water and has a short effective half-life (both
physical and biological half-life are short), was found to be responsible for nearly 90% of the

,J

total lifetime committed effective dose, when the representative mix of radionuclides are
considered to _ present together at their maximum annual concentrations at either the onsite or
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the offsite locations of interest. Consequently, adsorption and retention of any radionuclide other
than tritium on geologic media will mean the reduction of that particular radionuclide's
concentration in the ground water, and a corresponding reduction in the contribution to the total
ingested dose from that radionuclide. Based on the ICRP methodology for calculating dose, this

, reduction will be more for a radionuclide having a lengthy effective half-life. Accordingly, the
tritium contribution to the total dose will be even greater than 90%. Under such circumstances,
the corresponding contribution of tritium to the total risk will also increase. Additionally, the

' travel-time transport model actually indicates that the risk from tritium at the offsite location in
the Oasis Valley is likely to be greatest for an individual exposed between 25 and 94 y in the
future (see Table 2) and so exposures to ground water and the corresponding dose and risk
occurring at this location before or after this 70-y interval will be lower.

A!_hough only ingestion of radionuclide-contaminated ground water was considered, this
pathway of exposure probably accounts for substantially more than 50% of the total dose of
tritium. Accordingly, the predicted ranges for risk might be greater, but probably only by as
much as a factor of two, if ali other possible exposure pathways also are considered. This
possible increase is not very meaningful, given the variability in the available data, and so
rigorously addressing such additional pathways is unnecessary for purposes of this screening
exercise.

8. Conclusions

The results from the risk-based screening analysis are based on conservative assumptions,
and, where possible, defined estimates of uncertainty. These results indicate that tritium will
likely be the radionuclide constituting the dominant contribution to dose and risk for humans
exposed to ground water from the NTS.

Incorporating the maximum observed concentrations of a representative mix of radionuclides
obtained from groundwater samples-of-opportunity into the travel-time transport model yields
projected concentrations for these radionuclides offsite that do not appear to pose a serious
concern for human exposure and risk. For example, the U.S. Environmental Protection Agencv
(USEPA, I990) has established a goal for excess risk from exposure to contaminants i,
environmental media of 1 x 10-6, but also acknowledges that an excess risk as large as 1 x 10--4
may 'e acceptable. Clearly, the 90% confidence interval for excess cancer mortality risk at
Oasis Valley, which is from 7 x 10-7 to 1 x 10-5, concurs with this guidance. However, should
tritium be present beneath the NTS today at 10 or 100 times the concentration considered to be
maximum (see Table 1), then predicted ranges for risk could also be 10 to 100 times higher,
respectively, according to the approach that has been used. These concentrations may be
unlikely, but would be of possible concern, especially for individuals offsite.

The results of the risk-based screening analysis that was performed using maximum observed
concentrations of radionuclides in ground water samples-of-opportunity also strongly suggest

b

that a contingency plan may need to be developed for continuing institutional control of the NTS,
and its subterranean mineral and water fights, beyond 100 y in the future. This conclusion is

• evident as a direct consequence of the possibility that a 90% confidence interval for the
maximum possible cancer mortality risk for an individual consuming NTS ground water for a
70-y lifetime beginning 101 y in the future was determined to range from 3 x 10-3 to 2 x 10-2,
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and neither end of this range of risk would be considered acceptable according to the USEPA
(1990), or probably any other state or federal agency.

More definitive conclusions with regard to the possible risk from lifetime exposure to
radionuclide contaminated tap water, both on the NTS and offsite, may be obtained given a better

I

understanding of the relationship between the radionuclides produced by underground weapons
tests (radiochemical source term) and their presence in ground water (hydrologic source term).
For example, the maximum concentrations of the radionuclides used in our risk-based screening
analysis, even for tritium, were ali measured in ground water obtained as samples-of-opportunity.
Althot_gh the existence of higher radionuclide concentrations in NTS ground water than were
assumed here remain speculative, such higher concentrations may be consider-xi possible, at least
until the data base is improved. Thus, a dedicated groundwater-sampling strategy, in
combination with a realistic estimate of the quantities of radioactive material introduced beneath
the NTS can lead to refined estimates of risk and improved decision making, especially with
respect to contingency plans for institutional control and the dedication of limited resources for
groundwater cleanup. On the basis of the data available today, the risk-based screening analysis
provides a reasonable indication that dedicating limited resources for the cleanup of radionuclide
contaminated ground water beneath the NTS may not be necessary. However, planning well into
the future for maintaining institutional control of the NTS and/or its subterranean minerals and
ground water resources is probably prudent.
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