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ABSTRACT 

A simplified equation of motion is derived for the flow of liquid through an 

idealized one-dimensional fracture situated in an unsaturated imbibing porous medium. 

The equation is valid for the case where the matrix material has a much lower 

saturated conductivity than that of the fracture and the capillary tension in the matrix 

is sufficiently stronger than gravity. Asymptotic solutions and, in same cases, closed-

form solutions are given for the motion of the liquid front in a parallel fracture sys­

tem. With the introduction of natural time constants and dimensionless parameters, 

the flow behavior can be shown to possess various temporal flow regimes. 

This work is part of the Nevada Nuclear Waste Storage (NNWS1) Project and is 

applicable to understanding some of the various physical parameters affecting liquid 

flow through a fracture in an unsaturated porous medium, and is particularly useful as 

a step in understanding the hydrological processes around a nuclear waste repository 

in an unsaturated environment as well as in otheT applications where unsaturated frac­

ture flow conditions exist. The solutions are also relevant to numerical model 

verification. 
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Nomenclature 

Greek Symbols 

p cosine of the angle of inclination from the vertical 
r the gamma function 
X fracture storativity ratio, the initial unsaturated p ° r e volume of the matrix 

relative to the volume of the fracture 
CI function Q(y) denoting the time at which the fracture front 

first reaches point y 
if matrix porosity 
y matrix capillary head 
a matrix diffusivity, or effective matrix diffusivily 

Roman Symbols 

a one-half the distance between adjacent parallel fractures 
b one-half the fracture aperture width 
Cs. constant given by (4.9) 

D diffusivity function 
h distance of liquid front leading edge from the fracture entrance 
Kf fracture-saturated hydraulic conductivity 
Km matrix-saturated hydraulic conductivity 
kr matrix relative permeability function 
M kernel function given as inverse Laplace transform of expression given by (3.6) 
p pressure in units of liquid head along the fracture 
pQ pressure in units of liquid head at the fracture entrance 
q specific volumetric flux into the matrix 
qs liquid velocity at the fracture entrance 
qi imbibition function into the matrix 
S tiquid saturation in the matrix 
S, initial liquid saturation in the matrix 
i time 
ia fracture interference time scale, approximate time for matrix from IO reach 

the no-flow boundary 
it, fracture storativity time scale, approximate lime for cumulative matrix imbibition 

flux to become comparable to the volume in the fracture 
u liquid velocity along the fracture 
u0 liquid velocity at the fracture entrance 
x coordinate distance normal to the fracture 
y coordinate distance longitudinal lo the fracture 
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ya longitudinal distance along fracture from the entrance where flow region III begins 
(Figure 7, [Nitao and Buscheck, 1989]) 

yb longitudinal distance along fracture from the entrance where flow region It begins 
2 Laplace transform complex variable 
Z flow region length 
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I. Introduction 

In this paper, we mathematically derive the conclusions that we described by Nitao and Buschcck 

[1989). Under our simplifying assumplions, we show thai the equations governing the (low down a 

one-dimensional fracture can be reduced to a single intcgro-diffcrcntial equation in the fracture penetra­

tion. The asymptotic behavior of the solutions to this equation is shown to be directly related to the 

behavior of the Laplace transform of the matrix imbibition function. This function and its Laplace 

transform «ue derived for the case of a system of parallel fractures. For the case of constant boundary 

conditions, we demonstrate the existence of different flow regimes with die behavior of the solutions in 

each regime being described by its asymptotic expansion. In some cases a closed-form solution is 

derived. Some expressions for the solution are also given Tor the general problem with time-dependent 

boundary conditions. 

2. Derivation of the Governing Equations 

Using the simplifying physical assumplions given in Nitao and Buscheck [1989J we will derive 

the equations describing die movement of a liquid front in the fracture. We consider two separate types 

of boundary conditions at the entrance to me fracture: pressure head p0(t) and flux « 0(O- It will be 

shown that, in each case, the governing equations reduce to a single equation for the location of the 

leading edge of the liquid front in the fracture widi respect to the entrance to the fracture. This loca­

tion will be referred to as me fracture penetration deptfi h(t). These equations are integro-differential 

equations of the Volterra type (Burton, 1983]. 

In Nitao and Buscheck [1989] we saw that the following equations described the flow in the frac­

ture and the matrix. 

K{y,0 = - K > ( i H _ | » (2.2) 

^ P = »(*(D.O (2.3) 

fi (*(')) = ' (2A) 
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We now reduce these equations to a single equation in the fracture penetration. 

Applied Flux Boundary Condition 

We first consider the problem where a given lime-dependent flux u 0 (r) is applied to the opening 

of the fracture. The applicable boundary condition is 

u(0,l) = u 0(f) (2.5) 

For this case, some care must be taken to see that the boundary condition is consistent with the 

assumptions of our derivation before applying the results for an applied flux boundary condition. Too 

great of a flux will create large pressure gradients in the fracture, thus violating the assumption of small 

gradients. Too small of a flux will result in a fracture front speed that is slower than the matrix fluxes 

which invalidates the assumption that the matrix streamlines are predominantly in a direction normal to 

the fracture. 

We first integrate (2.1) from y = 0 to y = k{l) and use (23) and (2.5). Making the change of 

variables y = h (%) inside the integral, and using (2.4) we obtain 

^ - M » - i j * ( , - « > ^ (2.6) 

which is ihe desired equation in ft (r). 

Applied Pressure Head Boundary Condition 

We now consider the case where Ihe opening to the fracture at the ground surface is some known 

function of time p , (t) and the pressure at the leading edge of the fracture front is kept at ptU). The 

boundary condition is therefore 

p (y=0 , i ) = Pl(!) p(y=fc (»>.i) = p2(t) (2.7) 

This set of conditions can, for example, be used to incorporate a constant capillary pressure drop at the 

leading edge of the front, or 10 include the effects of a constant head of water at the entrance. Note 

that since the form of the equations depends only on gradients in p, the solutions with these boundary 

conditions are equivalent to those satisfying 

p(y=0,i) = p0(l) p(y=h {t),t) = 0 (2.8) 
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where pa is defined as 

PoQ) = P i ( 0 - PiC) 

One must be careful that the magnitude of the pressure boundary condition p0 is sufficiently small that 

the assumption of small pressure gradients in the fracture are satisfied. 

We first solve (2.1) and (2.2) subject to (2.8). Substituting (2.2) into (2.1) we have 

1 £> 
V K, b <?(y.O 

The solution to litis equation that satisfies (2.8) can be shown to be 

P(y.t) = d - f ) P o ( r ) + JY- F(y,t) - f^CA.O 

(2.9) 

(2.10) 

where we define 

o o 
(2.11) 

and where as before h is the fracture penetration depth. From Darey's Law, (2.2), we have that the 

fluid velocity at the leading edge of the liquid fracture front is given by 

= *'* + *f>-i 
(2.12) 

fc .o -^ ( A .o 
Using the change of variables of the form jx = hit) in the same manner as we have done before, it 

can be shown that 

dF_ (A.f) = /<?,(£ -%) dh(%) d% (2.13) 

Using a similar change of variables twice in the double integral F (h,t) and performing an interchange 

in Uic order of integration we obtain 

o d<i o d% 

Substituting these expressions into (2.12) and using (2.3) wc finally obtain 

« - KjMW + Po(01 - { j« , (z -f,)h®^dt. k(t)-
dt dk 

(2.14) 

(2.15) 
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which is the desired equation for ft ((). Note thai this equation is non-iinear in contrast to that for the 

specified flux boundary condition. The solution must also satisfy the initial condition 

A(0) = 0 

since the penetration depth is taken to be zero at time zero. Note that in the special case when p0 is 

identically zero, the trivial solution is one of the solutions to the problem, and a problem with non-

uniqueness of the solutions may occur. It will be shown later that the non-trivial solution has the 

asymptotic expansion A (r) ~ Kjt, which can be used to start numerical solutions along the correct 

solution. 

For the case of a horizontal fracture where gravity is not important we have 

ACD̂ P- = */Po(0- }j , , (*-B*©^« (2.16) 

We wilt later take advantage of the fact that this equation is linear in h dhlds and, as will be shown 

later, has a similar fonn to the equation (2.6) for the constant flux boundaiy value problem. 

The net specific volumetric flux qf {i) at the opening to the fracture, per unit area of opening, is 

an important quantity. By utilizing the same algebraic manipulations as ussd above ii can be shown to 

be given by 

*«-£ + ji**-«>S-'6 ( 2 n ) 

3. Techniques for Analytic and Asymptotic Solution 

We now describe some general methods for obtaining ana^-tic and asymptotic solutions of the 

integro-differential equation derived in the previous section. The case where a specified flux boundary 

condition is applied at the entrance to the fracture and the case where a specified pressure head exists, 

but with gravity neglected, can through renaming variables both be reduced to the following form 

where the definition of g (/) and / (r) depends on the boundary condition and is given by 
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Case 1. (flux boundary condition) 

g(0 = h{t) f(t) = «„(() (3.2) 

Case 2. (pressure head boundary condition but no gravity, p = 0) 

*(0 = yA<0 2 / ( ' ) = K;Po(t) (3.3) 

Equation (3.1) is linear and its solution g(i) can be found by the taking the LaPlacc transform. 

The Laplace transform of g(t), ihrough the use of the convolution theorem [Docisch, 19741, can be 

shown to be 

g(z) = M(z)f(z) (3,4) 

Using the convolution theorem again, we have 

i 

g(t) = \M(t-V)f<&d\ (3.5) 
o 

where, here, M is the inverse Laplace transform of a Laplace transform function given by 

MU) = (3.6) 

with the " 's denoting the Laplace transform operation. In the special case where the boundary condi­

tion is a constant in time, the function / ( O will be a constant, say / p , aLir! !hs solution reduces to 

r 

git) = fa\M(i,)d\ (3.7) 
o 

Asymptotic forms for g(() can be most easily derived through looking at the asymptotic behavior 

of its corresponding Laplace transform. This was also the technique used by Philip (1968] in his study 

of infiltration into aggregated media. If the Laplace transform g (?) of a function g (r) has the asymp­

totic expansion near t = 0 of the form 

? ( ' ) ~ ' v I a t f ' + 0 ( r " + v ) / -> 0 (3.8) 

then its Laplace transform for large z has the expansion 

- / x V-' r (v + A + l) 
4=0 ' 

and vice versa [Doetsch, 1974]. Thus, the behavior at early time can be deduced from the behavior of 
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thc Laplace transform at infinity. 

To determine the solution behavior al late times, if the Laplace transform £ (2) has the expansion 

about its extreme singularity 2" of the form 

|{>) ~ ( z - z V S A, (*-**)* * "> ** C3.10) 

then g (r) has the expansion 

where flt is defined as zero for k such that v - k is a negative integer but is otherwise given by 

A t 

B* ~ r(v-*) 

The extreme singularity of a complex function is defined to be its singularity that has the largest real 

pan. Some functions can havs more than one extreme singularity, in which •••i'-.c there will be a sum uf 

expansions of the f^tn (3.11) for each one. We refer the reader to Doetsch f 1974) f c more details. 

Using (3.3) we can obtain the behavior of g (2) in terms of of M (2) and f (z) and can, therefore, 

derive the asymptotic expansions of g(l) using the iclationships we have just described. The asymp­

totic form for small time is given by the form for M (z)f (2). For large lime, one must find the 

extreme singularity of g (2), that is, the singularity out of all those of either M or f that is the right­

most in the complex plane. The asymptotic behavior of the product M ( r ) / (2) must then be found at 

this point. Note that the pcnH is not necessarily the extreme singularity of both factors, although it will 

be of one them, so that, in general, the time domain behavior of M (t) and / (r) at infinity can not be 

necessarily used to deduce the asymptotic behavior of g (»). Analysis in the Laplace domain is essen-

•Jal. 

Since the Laplace transform function M depends on the transform of the imbibition function q,, 

the task of the following section will be to derive this function and its asymptotic expansions. Since 

the extreme singularity of M will tum out to be at z = 0 , the behavior of q, at this point will be 

important. Again, this behavior does not necessarily correspond to that of qt at 1 -> °° since the 

extreme singularity of its transform is not necessarily at the point of interest 2 = 0 . For example, an 

exponentially decreasing imbibition function has its extreme singularity on the negative real axis, not a.' 

2 =0. 
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While the techniques given above apply to the problem with a pressure head boundary condition 

without gravity, the problem with gravity as given by (2.15) is non-linear and, therefore, can not be as 

readily nor as thoroughly treated. But. asymptotic solutions can still be obtained by making trial substi­

tutions with various forms in (, equating like terms, and neglecting lower order terms as in done in 

standard perturbation theory [Nayich, 19731. While.this technique can give the leading terms of the 

expansion, in some cases, obtaining uV; higher order terms can cause problems. For example, in ihc 

case of constant boundary condition the higher terms can be shown to be negative powers in r that go 

to infinity at / = 0 and, hence, the integral in (2.15) diverges when these terms arc substituted. The 

way to avoid this problem is to perform the trial substitution in the Laplace transform domain instead of 

die lime domain. By taking the Laplace transform of (2.15), we can relate the transform of the function 

ft to the transform of the function squared as 

h2[z) = KfM{z)@h(z) + po(z)) (3.12) 

Let us restrict ourselves now to the case where p 0 is a constant so that fio(z) = Polz. The imbibition 

functions that we will encounter will be such that Ihe resulting function M(z) will have an extreme 

singularity at z = 0. Therefore, trial asymptotic forms for the solution ft (2) that also have an extreme 

singularity at this point are a likely choice. These functions turn out to be those thai in the lime 

dorain increase as positive powers in time for large lime. Their Laplace transform behavior at z = 0 

is a power in z, and by expanding (3.12) in powers of z and equaling like terms, one can obiain an 

asymptotic expansion in z and therefore in (. Since a mathematical proof as to the form of the expan­

sion is not available, one must confirm the expansion using numerical methods of solution. Again, the 

Laplace transform behavior of q, at z = 0 plays an important role in the analysis. 

The asymptotic behavior of the specific /lux qf into fracture as given by (2.17) can also be found 

using the Laplace transform. Its transform is given as 

<?/<*) = [1 -i jq,{z)]zh(z) (3.13) 

Therefore, the asymptotic behavior can be found directly from the asymptotic behavior of the Laplace 

transforms qs (r) and ft (() near the extreme singularity 2 = 0 . 
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4. Imbibition Fluxes into the Matrix 

Equations (2.6) at.d (2.15) both require knowledge of the imbibition flux q, from the fracture and 

into the matrix as a function of time. The behavior of its Laplace transform is important in that it 

determines the asymptotic behavior of the solutions. We will therefore derive in this section these 

imbibition functions under the assumptions stated in Nitao and Buscheck [1989] —- the matrix stream­

lines are predominately in the direction normal to the fracture plane and the effect of gravity is negligi­

ble in the matrix. These imbibition functions will first be derived for the case of a single fracture with 

semi-infinite matrix blocks on both sides. Then, we consider the case of an infinite array of parallel 

and equally spaced fractures. The last case wc consider is when the fractures are still parallel but not 

necessarily equally spaced from each other. Although trie first two cases are included in the last case in 

the limit, their corresponding formulas will be useful in deriving simpler expressions. 

Under our assumptions the flow in ihe matrix becomes one-dimensional, and the equation for the 

saturation field S reduces to 

31 = _L 
di dx r>(S)|M (4.n 

where D is the diffusivity function given by D (S)= (Kn kr/$)dy/dS. A saturated boundary condi­

tion occurs at a point on the fracture face for time / from the time the liquid fracture front first arrives 

at that point. Here, we will take the time origin to be at zero. Therefore, the boundary condition at the 

fracture face x - 0 of the matrix is 

5(x=0,r) = 1 l > 0 (4.2) 

Additional boundary conditions will be present depending on the problem. The initial saturation in the 

matrix is assumed to be uniform 

S(x.i=0) = S, x S 0 (4.3) 

The imbibition flux at x = 0 is given by 

q,(t) = - ^ ( D - g - C t - O , / ) (4.4) 
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4.1 Semi-Infinite Matrix 

We now derive the one-dimensional imbibition flux into the end of a semi-infinite slab or matrix. 

The boundary conditions are 

S(x=0,t) = 1 S <*=»,/) = St (4.5) 

The Boltzmann transformation [Marshall and Holmes, 1979, p, 115] 

T| = jt/VT (4.6) 

can be shown to reduce (4.1) to an equation with only n, as the dependent variable; and, therefore, the 

solution can be shown to be of the form 

Sfrrt) = (\-Si)F(xlJi) (4.7) 

where F is a function that depends only on 5, but not on $. Using (4.4) the imbibition flux is therefore 

equal to 

q,{t) = <K1 -S.) CSir1'2 (4.8) 

where we define the constant 

CSi = f j rC l = 0) (4.9) 

which, in general, depends on S,. For constant diffusivity, D(S) = c, it can be shown [Carslaw and 

Jaeger, 1959] that 

VI (4.10) 

By analogy, we define for non-constant D(S), the "effective diffusivity" a as 

o = nCs.2 (4.11) 

so that (4.10) holds For non-constant D(S) the effective diffusivity is a function of the initial satura­

tion Sf, unlike the constant D (5) case. We have for the imbibition flux 

,7,(0 = < > ( 1 - £ , W ^ - (4.12) 

A natural ume constant that will arise is the lime duration necessary, per unit longitudinal area of 

fracture, for the imbibition front to invade a volume equal to the void volume of the fracture. From 

(4.12) this time is on the order of 
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c 

The imbibition flux (4.8) can be rewritten in terms of this constant as 

q,(D = ~ p = (4-14) 

The Laplace transform is given by 

T 2 <i 

4.2 Finite Matrix 

We now derive an imbibition flux function for the case of an infinite array of parallel fractures 

having equal spacing la. The line at x = c wiiJ be a symmetry line and is assumed to be a no-flow 

boundary. The boundary conditions are then 

s(x=a,t) = : 4p<jc=a,o = o (4.16) 

The initial condition is, as before, 

5(x,;=0) = 5, (4.17) 

In order to derive the saturation field we will have to assume, in contrast lo the semi-infinite esse, that 

the diffusivity D(S) can be approximated as being equal to the effective diffusivity a. This value will 

ensure that the imbibition flux will be accurate at least until the imbibition front reaches the no-flow 

boundary. After that the imbibition flux will decline and will not make a significant contribution to the 

total imbibition flux occurring along the entire fracture wall. 

We first introduce the time constant 

(. = — it (4.18) 
O" 

which is the approximate time necessary for the imbibition front to reach the no-flow symmetry line 

between fractures. We will also use the time constant i t given by (4,13). 

The solution found by using the Fourier series method is (Kirkham and Powers, 1972; Carslaw 

and Jaeger, 1959] 



- 15 -

Sfc.O = 1 - 2 ( 1 - S;> £ — £ "sin 

where c„ = (2/1 + 1)7:/2. 

The imbibition flux into the matrix from the fracture is therefore 

<7,(t) = - < J > O | ^ ( J : = 0 , 0 = Tib— A(ntlta) i > 0 
nX ta 

where we define the function A by 

A© = 2 2 « l J 

(4.19) 

(4.20) 

(4.21) 

It can be shown (Appendix) that its Laplace transform A(z) is given by A(z) = -=• lanh'vT, and, 
Vz 

hence, 

tanhv/ETTTt 
]•<?,(,) = k 
J> -fit z IK 

This function has two separate expansions 

( , ! >> 1 l f t ( r , „ x ^ _ 5 _ . 

c? 3 7t 

(4.22) 

(4.23) 

(4.24) 

for large and small 2. They will be used later to determine the fracture penetration at t << l„ and 

1 >> 1,, respectively. 

In order to gain a perspective on the function A from another direction, the solution to the satura­

tion field by a different method, the method of images, gives 

•>(x,r) = £ ( - 1 ) " [ / ( j t+2na ,0 + / ( ( 2 n + 2 ) a - j t , o l (4-25) 

where f (x,t) is the solution [Carslaw and Jaeger, 1959] for the semi-ipfinite case given by 

S(x,t, = 1 
2(1-5 . ) 

v* I r*d\ (4.26) 

The resulting alternate expression for the imbibition flux is 

-?/ (0 1_ 1 + 2 2 (-1)" < *' 
n=i 

t > 0 (4.27; 
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Thcrcforc, 

1 , , 1 1 torn,) 
4mlta 

(4.28) 

This expansion expresses the fact that for small time the imbibition flux is approximately the same as 

for the semi-infinite matrix. 

4.3 Unequally Sized Matrix Blocks 

We now consider the effect of non-equal spacing on the i-.nbibition flux. In Figure 3 of Nitao and 

Buscheck [1989] we have a fracture that is part of an array of fractures whose separations alternate 

between distances 2a, and 2a 2. The no-flow symmetry lines in the matrix are therefore Oj from one 

side of the fracture snd a-i from the other. Each side is allowed to have different material properties r\i 

and o"t (A = I, 2), as well as initial saturation S^,. 

We introduce natural time constants analogous to those encountered for equidistant fracture sys­

tems. 

hk = ««t = — * A = 1,2 (4.29) 

Note that there is a factor of two inside the brackets in the definition of lbk which is not present 

in ij,. The ! j , t refer to each of the matrix blocks, singly, draining the entire fracture width 2 b by imbi­

bition while it, refers to simultaneous imbibition into both matrix blocks. Let us now assum". that 

r.i « '.2 (4-30) 

If the matrix diffustvity cr were equal on both sides of the fracture, this assumption would correspond 

physically to an array of fractures with separations alternating between a smalt distance apart and a 

large distance apart. 

At any given point along the fracture the imbibition flux qt (1) into the matrix, at lime r from 

start of imbibition, can be written as the sum of the flux into the two sides of the fracture. Using the 

expression (4.20) for the imbibition flux into a finite matrix slab, the flux from the two sides of the frac­

ture into a half-fracture is 

1 ^1 "h. I 
T<?/(<) = " — - A ( j i f / r a l ) + — A ( j t r / i o 2 ) . . _ , (4.31) 

r a 2 
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where the function A(r) was defined in (4.21), and where we define 

h = \ / — (432) 

We now determine some asymptotic expansions for q,. For early times such that r < < i„ x, we 

have fro/ii (4.28) that 

~q,(i) ~ -±= + -jL= = (rf6)-w (4.33) 

where ib is defined as the harmonic-roo! mean 

4=r = ~ + - p = (4.34) 

At intermediate tip-.cs, r„i << i << f„2, we have from (4.20) and (4,28), 

. !_ 
±-4,(.t) ~ n-±-A(itHiQ}) + ( /« t 2 ) -" 2 + 0 ( . - 1 — <• *'" '*) (4.35) 
O 'al SKI Hal 

The contribulior. of the imbibiuon flux into matrix block number 1 as given by the first term on the 

right decays exponentially with time while the second term, the flux into 2, is dominani since it decays 

as a power in time. 

Using (4.22) the Laplace transform is given by 

1 . „ tanh V<„ s 2 / JI . tanh •^iTTTTn 
- « , f c > = a., . -_ + 1*——=- (4.36) 
o V<.i«/it ita2zln 

Each of the two terms is in the form of (4.22) so that they have expansions of the form (4.23) and 

(4.24). If we assume, without loss of generality, that cal < ta2, then we have the following expan­

sions 

i4' - Vvr- "•• s > ! (4-37) 

1 K V ti,2z b 

1*1 ~ X ~ J ^ Z < ^ 1 ' « 1 + M.2>. *<aj << 1 (4.39) 

These will correspond to the three flow periods t << ta^,tQ[ « l « / a 2 , and ta2 << r.re-pcc-

tively, of the fracture penetration solution h(t). 

http://tip-.cs
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4.4 Imbibition Kernel Function 

The imbibition kernel function function M(/) given by (3.6) has been summarized in Tabic 1 for 

the fracture geometries we have just considered. 

Table 1. Laplace Transform of the Imbibition Kernel Function 

«(*) 
semi-infinite matrix 1 semi-infinite matrix 

finite matrix 1 finite matrix 
,(14.1 ! _ T a „ i , % / , wm 

Vf„ 2 In 

staggered fractures \ staggered fractures z 1 
, n + ! l a n h v l f a l 7 / i r + i ifinhV'j-' « l 

5. Non-Gravity Driven Flow 

in diis section we den^e the solutions for the two types of boundary conditions, applied flux 

u 0(. ') and applied pressure head Po(f) with no gravity. Under the appropriate transformation of vari­

ables given by (3,2) and (3.3), the problems were snown to reduce to the same equation (3.1). In this 

section we will arrive expressions for the solutions to this equation. Although the general lime-

dependent boun^ry condition will be considered first, we will be particuia.-!y interested in the asymp­

totic behavior of the solutions in the case where the bounda'y condition is Kept at a constant value. 

5.1 Time-Dependent Boundary Condition 

The Laplace transforms M (z) of the imbibition kernel function M(<) were given in Table 1 for 

various geometries. In the ct for a single fracture with semi-infinite matrix the inverse Laplace 

transform is known and is given by lAbrahamowitz md Stcgun, 1964, p. 1024] 

M {t) = e' kerfc Vrcr llb (5.1) 

v.here erjc is the complementary error function. Therefore, (3.5) can be used to give an expression for 

ihe general solution to g(r), and the penetration depth can be found by (3.2) and (3.3) for the 
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appropriate boundary condition. 

For the case of a system of parallel fractures equally spaced, the kernel function can be found by taking 

the inverse transform of the expression for M (z) given in Table I by the method of residues IDoctsch, 

1974]. It is given as an infinite sum 

_L_ + ?XY ] - - t . a " f " . "<'> = TTT + ̂ XriA^i' ( 5 - 2 ) 

where the £,„ are the roots of the equation 

XuaiC = C , « = 1,2,3, ••• (5.3) 

in ascending order. The nth term in the infinite sum corresponds to the exponentially decaying 

interference from the iraciure that is the nth one away from the fracture of interest. 

5.2 Constant Boundary Condition 

We now consider the solutions to (3.1) in the case where the boundary condition / (<) is equal to 

a con^'ant fa. Using (3.7), wc find that 'he solution in the case of a single fracture with semi-infinite 

matrix is the integral of (5.1). Using various integral equalities we have that 

S(D'/o = — ^'""erfc'^TT^) - 1 + 2{tltbf2\ (5.4) 
it 

For the case of a system of equidistant parallel fractures die solution is given by (3.7), which has 

as its Laplace transform M (z)lz where A.' is taken from Table 1. Wc use the method of residues to 

take the inverse transform of this expression to obtain 

li-3i 3 i r ( l+X) 2 >r „ = l C 2 (C„ 2 + /.+ X-) 

where the £„ are given by (5.3). 

The asymptotic expansions of the solution can be most easily derived by looking at the asymp­

totic expansions of its Laplace transform. From the convolution theorem we have 

g(z)/f0 = J M < Z ) (5.6) 

We consider the case of a system of fractures with staggered spacing. This case encompasses the other 
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cases as limiting cases. From (4.37) to (4.39) the asymptotic expansions of M (z) and hence or g ( J ) 

can be found and are given in TaWe 11. The corresponding expansion for g (r) is also shown. 

Table II. Expansions for — M ( i) and g ( O ' / o 

Flow Period 
ft 

I. r 2 - z-wV577T 

II. re 
tb < < t < < <„, 

Jlla. r-wV/»2/n - z"'(l + A,)Wrc 

I.2~ l < < z < < » . i ' 1 . z - :<I»2" 1 

- ( f * ! ' ) " 1 - <I+X,)WK 
ft 

IIIL. ..-2 1 .-1 ^ l ' « l + ' L 2 r •>. 
1 + X * 3jt(l + X)2 

z <<< a J" 1 

1 X trfli + X^ 2 
IIIL. ..-2 1 .-1 ^ l ' « l + ' L 2 r •>. 

1 + X * 3jt(l + X)2 

z <<< a J" 1 

1 + X 3 J I ( ] + X ) ! 

Ilia.! j - 2 1 , j - 1 *> '« ' 1 , X,,.,, Ilia.! 
1 + X, 3n(l + X,)3 1+X," ' InU + Xtf 

IIIa.2 same as for IH.a same as for III.a 
' b 2 < < ' «'.Z 

6. Gravity Driven Flow 

The case where there is gravity driven flow with a pressure head boundary condition possesses 

the governing equation given by (2.15). We will consider the solution when the boundary head is equal 

to some positive constant p0. 
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6.1 Asymptotic Solution 

The asymptotic expansions 1o (2.15) were given in Tabic II of Nitao and Buschcck f 19B9|. They 

were obtained by substituting the expansions for M (z) as given in Table H of this paper into a version 

of (3.121 given by 

h2(z) = K,Miz\(&h{z) + — ) (6.1; 
2 

We then try the following functional form 

k(z) ~ a : " ' 

where v > 0. This assumption is equivalent to assuming that the form of the solution is 

MO ~ a: ,"'/r(y) 

By equating the leading terms in z one can find the value of a and v. The higher-order term can be 

added ind its coefficient and power can be found. This process is straightforward if the boundary head 

Pa is zero with respect to ambient Otherwise, one expects that the effects of the boundary head will 

dominate at early times when the head of liquid in the fracture is small with respect to the boundary' 

head. And, at later times, when the converse becomes true the effects of the gravity head will become 

dominant over the boundary head. Hence, the leading term in the expansion for (6.1) will depend on 

the relative magnitude of die head term p 0 ( O in (2-15) to the liquid column head term [ift ((). The 

time at which the boundary head dominates can be estimated by comparing the expansion for (3 h based 

on zero boundary head with the term pB. This determination was performed for each of the flow 

periods I through III as shown in Table II of Nitao and Buscheck [1989]. 

6.2 Comparison with Numerical Solutions to the Integro-Differential Equation 

In order to confirm the asymptotic solutions for the case of a constant bourrfvy condition with 

gravity, we have also found solutions to (2.15) numerically. Originally, we discretized the equation by 

die obvious procedure: the time derivatives were replaced by first-order differences and the integral with 

a sum. However, we found that the errors due to the differences inside the sum can accumulate, requir­

ing very small time steps to be taken to maintain accuracy. A better method is to reduce the equation 

10 a system of two equations while taking h and dhidt as separate dependent variables, fn the end, 
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this method was refined by using h and v as the dependent variables where v is defined as 

v = \ ~ ~ Kf$h (6.2) 

Equation (2.15) with p 0 zero is then equivalent to 

t 

v ( 0 = - | j < ? / 0 - ^ t v ^ ) + « r /PA©ld^ (6.3) 

This choice of variables eliminates the round-off error due to subtraction of the ify P A and the integral 

terms. These equations were discreiizcd in ume as follows, where the superscript refers to the time 

level, 

I(A<» + '>) 2 = ~(hM)2 + ^'"^(ATy pB<"J + v(">) (6.4) 

V<«-|) = - I £ ? , (,<"*'>-r< t>)[v( t> + A7PA(*>'U<*' (6.5) 

- L1(I( l("'L,(>l)jiL(-) tvt»l) + J f f 1 ( / ,W + /,(»*»)]&,(»*" 
£> 2 2 L ' J 

where 

In Nitao and Buscheck [1989] comparisons were also made with solutions using a two-

dimensional unsaturated flow simulator. These simulations will be discussed in more detail in a future 

repon. 

7. Fracture Influx Rate 

The expression for the Laplace transform of the specific fracture influx rate qf was given by 

(3.13). It requires the behavior of the Laplace transform for the imbibition function qt and the fracture 

penetration k(c) which have been found in the previous sections, Therefore, the asymptotic behavior of 

q{ can be found, as shown in table V of Nitao and Buscheck [1989], using the techniques in section 3 

that relate the asymptotic behavior of ihe Laplace transform to that of the original function in the time 

domain. 
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8. Matrix Flow Regions 

We briefly explain how the lengths of the various matrix flow regions shown in Tabic VI of Nitao 

and Buscheck [1989] were derived. We first find the distances ya and yb (referring to Figure 1 of Nilao 

and Buscheck [1989]) of the flow regions from the fracture entrance as funciions of >>me. To find 

>„(() we note that the time elapsed from when the fracture front first hits a point y' is given as 

I - £}(y"). When this time increment equals i„, the saturation front corresponding to this point has felt 

the no-flow boundary due to the neighboring fracture, according to the definition of !„. Hence, the 

leading edge y„ oi the "saturated" flow region is at this point y*. This may be expressed as 

Since £1 is the inverse function of the fracture penetration h, we have 

y„(0 = h(t - ( „ ) . 

Similarly, y 4 is given asy b (t) - h(t-tb). Hence, 

Zi = h(t) - yb = h(t) - h(t-tb) (8.1) 

Z2 = ft - y« = h(i-tb) - h(t -ta) (8.2) 

By substituting the asymptotic expansions for h (f) and dropping any higher-order terms one can obuiin 

expansions for Z, and Z 2-

In particular, the entries in Table VI of Nilan and Buscheck (1989] were derived using the expan­

sions for h that are valid for t >> /„, The requirement that the arguments of A in (8.1) arid (8.2) 

satisfy this condition on i translates to having i >> 2 i a . 

9. Conclusions 

We have found that the unsaturated flow of a liquid front in a fradurc can, under certain situa­

tions, be described by a single intcgro-differential equalion whose solution gives the locauon of ihc 

from in the fracture. This equalion can be most satisfactorily treated by using Laplace transform tech­

niques. Various asymptotic approximations can be derived which are sufficient to characterize the 
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physical processes of the system including various flow periods, regions in (he matrix saturation field, 

and the liquid flux into the fracture. Closed-form solutions were derived for some typ"s of boundary 

conditioni. 

The use of tfic Laplace transform has been found to be a very convenient device fo. the deriva­

tion of asymptotic solutions to our problem. The method is general enough to be applicable to other 

types of inhibition functions in addition to those treated in uiis report. 

In the special case of a single fracture with semi-infinite matrix the analysis is applicable even 

when the matrix diffusivity is a non-constant function of saturation. In our more general analyses w.-hen 

the matrix is finite, Uie matrix diltusiviiy has to be approximated by a consiant effective diffusivity 

which is defined in terms of the expression for the imbibition flux in a semi-infinite system. Comparis­

ons with numerical simulations indicate that this approximation gives good results for the test cases 

considered. The reason for the agreement stems from the fact that the frontal movement in the fracture 

depends on the matrix imbibition flux along the fract.i/e wall and not on the actual form of the satura­

tion field. Either the imbibition flux along the fracture is (1) nearly the same as for a scmi-infiniic 

matrix because the matrix front has not yet felt the no-flow boundary with the neighboring fracture, (2) 

is very small because the the matrix block is almost saturated, or (3) has values intermediate to those in 

(1) and (2). In most cases, only a small amount of the net imbibition flux will be due to (2) and (3) 

which cnlains "Jie applicability of the constant effective diffusivity approximation. 
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Appendix — Laplace Transform of the Function A (!;) 

[l is well known that the Laplace transform of the exponential function e"°" is given by 

1 / {: - a). Thus, 

A (2) = 2 £ 1 
H z + ((2n + 1 ) T I / 2 ) 2 

Integrating this function with respect to z slatting from z = 0 gives 

JA(T|)dn = 2 2 > 

2 1 n n 
n=0 

1 + 

1 + 

(ft :n + l )n /2 ) 2 j 

((2n +3)n /2) 2 

Using the identity [Gradstehyn and Ryzhik, p. 37] 

C 2 

cosh £ = Yl 
n=0 

1 + 
((2n + l)7t/2) 2 

we have 

z 
JA(Tl)rfTi = 2 In cosh VF 
0 

Taking the derivative, 

A (z) = -=• tanh VF 
vz 
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