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ABSTRACT

A simplified equation of motion is derived for the flow of liquid through an
idealized onc-dimensional fracture situated in an unsaturated imbibing porous medium.
The equation is valid for the case where the mauix material has a much lower
saturated conductivity than that of the fracture and the capillary ension in the matrix
is sufficiently stronger than gravity. Asympiotic solutions and, in same ¢ases, closed-
form solutions are given for the motion of the liquid front in a parallel fracture sys-
tem. With the introduction of natural time constanes and dimensionless parameters,

the flow behavior can be shown to possess various temporal flow regimes.

This work is part of the Nevada Nuclear Waste Storage (INNWSI) Project and is
applicable to understanding some of the various physical parameters affecting liquid
flow through a fracture in an unsaturated porous medium, and is particutarly usefn) as
a step in understanding the hydrological processes around a nuclear waste repository
in an uynsaturated environment as well as in other applications where unsaturated frac-
ture flow conditions exist The solutions are also relevam to numerical model

verification,
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Nomenclature

Greek Symbols

cosine of the angle of inclination from the vertical

-4 W

the gamma function

b fracture storativity ratio, the initial unsaturaied pore volume of the matrix
relative 10 the volume of the fracture

Q  function Q(y) denoting the time at which the fracture {ront
first reaches point y

4] matrix porosity

matrix capillary head

g  matrix diffusivity, or effecive matrix diffusivity

<

Roman Symbols

a cne-half the distance bewween adjacent paratlel fractures

b one-half the fracture aperture width

Cs.  constant given by (4.9)

D diffusivity function

h distance of liquid front leading edge from the fracturc entrance

K, fracture-saturated hydraulic conductivity

K, matrix-saturated hydraulic conductivity

k,  matrix relative permeability function
kernel function given as inverse Laplace transform of expression given by (3.6)

p pressure in units of liguid head along the fraciure

Po  pressure in units of liquid hcad at the fracture cntrance

q specific volumetric flux into the matrix

qr  liquid velocity at the fracture entrance

g  imbibition function into the matrix

§ liquid saturation in the matrix

S, imitial liquid saturation in the matrix

! time

1s fracture interference time scale, approximate time for matrix fronl 1o reach
the no-flow boundary

t,  fracture storativity time scale, approximate time for cumutative matrix imbibition
flux 10 become comparable 10 the volume in the fracwure

u liquid velocity along the fracture

uo  liquid velocity at the fracture entrance
coordinate distance normal 1o the fracture
coordinate distance longitudinal to the fracture
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longitudinal distance along fracture from the entrance where flow region III begins
(Figure 7, [Nitao and Buscheck, 1989])

longitudinal distance along fracture from the enwance where flow tegion Il begins
Laplace transform complex variable

flow region length



1. Intraduction

In this paper, we mathematically derive the conclusions that are described by Nitao and Buscheck
[1989]. Under our simplifying assumptions, we show that the equations governing the flow down a
one-dimensional fracture can be reduced to a single intcgro-differential equation in the fracture penctra-
tion. The asympiotic behavior of the solutions to this equation is shown to be directly related to the
behavior of the Laplace transform of the matrix imbibiion function. This function and s Laplace
transform 42 derived for the case of a system of parallel fractures. For the case of constant boundary
conditions, we demonstrate the existence of different flow regimes with the behavior of the solutions in
each regime being described by its asymplotic expansion. In some cascs a closed-form solution is

derived. Some expressions for the solwiion are also given for the gencral- problem with time-dependent

boundary conditions.

2, Derivation of the Governing Equations

Using the simplifying physical assumplions given in Nitao and Buscheck [1989) we will derive
the equations describing the movement of a liquid front in the fracture. We consider two separate types
of boundary conditions at the entrance to the fracture: pressure head po(r) and flux uo(r). It will be
shown that, in each case, the govering equations reduce to a single cquation for the location of the
leading edge of the liquid (ront in the fracture with respect 1o the entrance to the fracture. This loca-
tion will be referred 10 as the fracture penctration depth A (t). These equations arc integro-differential
equations of the Volterra 1ype [Burton, 1983].

In Nitao and Buschieck [1989] we saw that the following equations described the flow in the frac-

ture and the matrix,

2 ]

5 = " @ -0 @
-k, (%2

w G0 = K (F B @2

dh

28 - wkhw.o 23

Q) = ¢ (24)
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We now reduce these equations 1o a single equation in the fracture penctration.

Applied Flux Boundary Condiiion

We first consider the problem where a given time-dependent flux 24(r) is applied to the opening

of the fracture. The applicable boundary condition is
ul0,0) = uolt) 2.5

For this case, some care must be taken 1o see that the boundary condition is consistent with the
assumptions of our derivation before applying the results for an applied flux boundary condition. Too
great of a flux will create large pressure gradienss in the fracwre, thus violating the assumption of small
gradients. Too small of a flux will result in a fracture front speed that is slower than the matrix fluxcs
which invalidates the assumption that the matrix streamiines are predominantly in a direction normal to
the fracture.

We first imegrate (2.1) from y =0 10 y = h{r) and use (2.3) and (2.5). Making the change of

variables y = A (&) inside the integral, and using (2.4) we obtain
i
dh (1) 1 dh
al) _ -~ (g0 -8 2a @6
7 0y =~y far -8 gpdt )

which is the desired equation in k(r).

Applied Pressure Head Boundary Condition

We now consider the case where the opening to the fracture al the ground surface is some known
function of time p;(¢) and the pressure at the leading edge of the fraciure front is kept at p,(¢). The

boundary condition is therefare
py=0.1) = pi@) plr=h(t), 1) = p,Q) 2.

This set of conditions can, for example, be used to incorporate a constant capillary pressure drop at the
leading edge of the front, or W include the effects of a constant head of water at the entrance. Note
that since the form of the equalions depends only on gradients in p, the solutions with these boundary

conditions arc eguivalent to those salisfying

p =01}y = pg@) ply=h(t),t) = 0 (2.8)



where p, is defined as
polt) = pi(t) - p2(1}

One must be careful that the magnitude of the pressure boundary condition pg is sufficiently small that

the assumption of small pressure gradients in the fracture are satisfied.

We first solve (2.1} and (2.2) subject to (2.8). Substituting (2.2) into (2.1) we have

2 1
%y‘;— = %3900 29

Tthe solution o this equation that satisfics (2.8) can be shown (o be

- a-X 1 _ X
2.0y = (1 h)po(t)+ K, F@,0 hF(h-f)} (2.10)
where we define
Yy
Fy.t) = “ q (U, 1)dpdn (2.1
0

and where as before A is the fracture penetration depth. From Darcy’s Law, (2.2), we have that the

fluid velocity at the leading edge of the liguid fracwre front is given by

dh
o w(h,t) (2.12)

1

Poll) 1 |oF 1
K (B + T) -3 —5;(11,{) - ;F(h,r)

Using the change of variables of the form g = A(f) in the same manner as we have dene before, it

can be shown that

oF dh
EXCU Iq,a—f,) df.f’ at @.13)

Using a similar change of variables twice in the double imegral ~ (4, 1) and performing an interchange

in the order of integration we obtain
t
. dh{g
Flha) = h(:)Jq, -9 88 ag - [qu-preGEa @19
1]
Substituting these expressions into (2.12) and using (2.3) we finally obtain

k() dh(l)

= K 0B + pot) - 3ot -0r@ AE a 2.15)
1}
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which is the desired equation for k (¢). Note that this cquation is ron-finear in contrast to that for the
specified flux boundary condition. The soluiion must also satisfy the initial condition
h(Q) =

since the penetration depth is taken 1o be zero at ime zero. Note that in the special case when py is
identically zero, the trivial solution is one of the solutions to the problem, and a problem with non-
uniqueness of the solutions may occur. It will be shown later that the non-trivial solution has the
asymplotic expansion A(t) ~ Ky, which can be used io start numerical solutions along the correct
solution.

For the case of a horizontal fraclure where gravity is not imporiant we have
dh
29 o kg - jq. (-ohe L8 o @.16)

We will later ke advaniage of the fact that this equation is linear in k di/dr and, as will be shown

later, has a similar forn to the equation (2.6) for the constant flux boundaiy vaive problem.

The net specific volumeiric flux g, {#) at the opening 1o the fracture, per unit area of opening, is
an important quantity. By utilizing the same algebraic manipulations as us2d above if can be shown to

be given by

I3
g =, ﬁq,(: E)dé dt @.17)

3. Techniques for Analyvtic and Asymptotic Solution

We now describe some general methods for obtaining anaiyiic and asymptotic solutions of the
integro-differential equation derived in the previous secuon. The case where a specified flux boundary
condition is applied at the entrance 1o the fracture and the case where a specified pressure head exiss,
but with gravity neglected, can through renaming variables both be reduced to the foliowing form

4 1 ) &
B =10~ glav-0%Ba 3.1

where the definitien of g () and f (r) depends on the boundary condition and is given by



Case 1. (fiux boundary condition )
gl) = A £ = uw®) 3.2)

Case 2. (pressure head boundary condition but no gravity i = 0)
1 .
gw) = Eh(l)2 f@) = K polr) (3.3)

Equation (3.1) is linear and its solution g(t) can be found by the taking the LaPlace transform.
The Laplace transform of g(t), through the use of the convalution thearem [Doctsch, 1974], can be

shown to be
i@ = M@fe (3.4)

Using the convolution theorem again, we have
g = (M@ -Bf ®a 3.5
o

where, here, M is the inverse Laplace transform of a Laplace transform function giver by
- 1
M@y = - (3.6)
20+ 3 aE)

with the * s denoting the Laplace transform operation. In the special case where the boundary condi-

tion is a constanl in time, the function f (¢) will be a constant, say f. 2 the solution reduces to
r
80 = fo[M@dE a7
[

Asympiotic forms for g{i) can be most easily derived through looking a1 the asymptotic behavior
of its commesponding Laplace transform. This was also the technique used by Philip {1968] in his study
of infiltration into aggregated media. If the Laplace transform £ (z) of a function g (r) has the asymp-

totic expansion near r = ¢ of the form
n-1
g(f) ~ Y at + 00 t > 0 (38)
t=0

then its Laplace transform for large z has the expansion

n-1
§@) ~ Yo TOAD o, . (39)
k=0 z

and vice versa [Doctsch, 1974]. Thus, the behavior at carly time can be deduced (rom the behavior of



-« 10 -

the Laplacc transform at infinity.
To determine the solution behavior a law times, if the Laplace transform { (2) has the expansion

about its extreme singularity z* of the form
ﬂ_l L[] -
iy ~ @-2Y'E Az -") z o oz (3.10)
k=D

then g (r) has the evpansion

a-t
v-l et B,

gy ~ Ve - o 3.1y

w0
where B, is defined as zero for & such that v — k is a negalive integer but is otherwise given by

Ax

B = w5

The cxtreme singularity of a complex function is defined 10 be its singularity that has the largest real
part. Some functions can have more than one extreme singularity, in which case there will be a sum uf

expansions of the {form (3.11) for each one. We refer the reader to Doetsch {1974) for more details.

Using (3.3) we can obtain the behavior of § (z) in terms of of M (2} and f (z) and cam, therclore,
derive the asymptotic expansions of g(¢) using the :clationships we have just described. The asymp-
totic form for small time is given by the form for M (z)f (). For large time, onc must find the
extreme s.ngularity of g (z), that is, the singularity out of all thosc of either M or f that is the right-
most in the complex plane. The asymptotic behavior of the product M (z) f (z) must then be found at
thiz paint. Noie that the pe.at is not necessarily the extreme singularity of both factors, although it will
be of one them, so that, in general, the time domain behavior of M (¢) and f (¢) at infinity can not be
necessarily used 1o deduce the asympiotic behavior of g (r). Analysis in the Laplace domain is essen-
al,

Since the Lavlace transform function M depends on the transform of the imbibition function §;,
the task of the following scction will be to derive this function and its asymplotic cxpansions. Since
the extreme singularity of M will tum out to be at z = 0, the behavior of g at this point will be
important. Apain, this behavior does not necessarily correspond to that of g; at r — oo since the
extreme singularity of its transform is not necessarily at the point of intercst z = 0. For example, an
exponentially decreasing imbibition function has its extreme singularity on the negative recal axis, not a’

2 =0
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While the techniques given above apply to the problem with a pressure head boundary condition
without gravity, the problem with gravily as given by (2.15) is non-lincar and, therefore, can not be as
readily nor as thoroughly treated. Bul. asymplolic solutions can still be obtained by making trial subsi-
tutions with various forms in ¢, equating like terms, and neglecting lower order terms as in done in
siandard perturbation theory [Nayich, 1973). While. this technique can give the leading terms of the
¢xpansion, in some cases, obtaining the: higher order terms can cause problems. For example, in the
case of constant bonndary condition the higher terms can be shown 1o be negative powers in ¢ (hat go
to infinity at ¢ = 0 and, hence, the integral in (2.15) diverges when these terms are substituled. The
way 10 avoid this problem is to perform the trial substitution in the Laplace transform domain insiead of
the time domain. By taking the Laplace transforim of (2.15), we can rclate the transform of the function

h to the transform of the function squarcd as
Kz) = Ky M () Bh@) + pola) (3.12)

Let us restrict oursclves now to the case where pg is a constant so that fg(z) = pg/z. The imbibition
functions that we will cncounter will be such that the resulting [unction M(z) will have an cxireme
singularity at z = 0. Therefore, trial asymptotic forms for the solulion A (z) that also havc an extreme
singularity at this point are a likely choice. These functions tum out io be those that in the time
dor2in increase as posilive powers in time for large time. Their Laplace wansform behavior at z = 0
is a power in z, and by expanding (3.12) in powers of : and equating like terms, onc can cbliin an
asymptotic expansion in z and therefore in ¢. Since a mathematical proof as to the form of the expan-
sion is not available, one must confirm the expansion using numerical mcthods of solution. Again, the

Laplace transform behavior of §; at z = O plays an important rol¢ in the analysis.
The asymptotic behavior of the specific flux ¢y into Tracture as given by (2.17) can also be {ound
using the Laplace transform. Iis transform is given as

o) = 11 TaE12he) 3.13)

Therefore, the asympiotic behavior can be found directly from the asymptotic behavior of the Laplace

transforms §; (¢ and 4 (¢) near the extreme singularity z = 0.
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4. Imbibition Fluxes into the Matrix

Equations (2.6) ard (2.135) beth require knowledge of the imbibition fux g; from the fracture and
into the matrix as a function of time. The behavior of its Laplace transform is important in that it
determines the asymptotic behavior of the solutions. We will therefore derive in this scction these
imbibition functions under the assumptions stated in Nitac and Buscheck [1989] ---- the matrix stream-
lines are predominately in the direction normal 1o the fracture plane and the effect of gravity is negligi-
ble in the matrix. These imbibition functions will first be dcrived for the case of a single fraclure with
semi-infiite marrix blocks on both sides. Then, we consider the case of an infinite array of paraliel
and equally spaced fractures. The last case we consider is when the fractures are stll parallel but not
necessarily equally spaced from each other.  Although the first two cases are included in the last case in

the limit, their corresponding formulas will be useful in deriving simpler cxpressions.

Under our assumptions the flow in the mawrix becomes one-dimensional, and the equation for the
:

saturation licld § reduces o

as d a8
o _ 4 o 4.1
d ox {D &) Bx} @

where D is the diffusivity function given by D (S)= (K, & /$)dy/dS. A satrated boundary condi-
lion occurs at a point on the fracture face for lime 1 from the time the liquid fracwre from ﬁ_"rsz arrives
at that point. Here, we will 1ake the Lime ongin to be at zero. Therefore, the boundary condition at the

fracture face x = Q of the matrix is

$(x=0,r) = 1 t

[\

0 4.2)

Additional boundary conditions will be present depending on the problem. The initial sawradon in the

matrix is assumed ta be uniform
Sha=0) = § x 20 (4.3)

The imbibition flux at x = Q is given by

- - LA
gy = —eDW) 3 (x=0,1) @4
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4.1 Semi-Infinite Matrix

We now derive the one-dimensional imbibition flux into the end of a semi-infinile slab of matrix.

The boundary conditions arc

SG=0,1) = 1 S{x=eo) = 5 4.5
The Boltzmann transformation [Marshall and Holmes, 1979, p. 115]

m o= x/Vr (4.6)

can be shown o reduce (4.1) 1o an equation with only n as the depriadent variable; and, thercfore, the

solution can be shown to be of the form

S, )= —-8)F (x/t) @7
where F is a function that depends only on §; but not on ¢. Using (4.4) the imbibition flux is thercfore
equal 1o

@) = a(1-5)Cs 172 (4.8)
where we define the constant

¢, = Ew-0 “49)

which, in general, depends on S;. For constant diffusivity, D(S) = ¢, it can bc shown [Carslaw and
Jaeger, 1959] that

q
o= — 4.10
Cs, \/ - 4.10)
By analogy, we define for non-constant D (§), the "cffective diffusivity” & as
c = =aCg? @.11)

so that (4.10) holds For non-constant D (§) the effective diffusivity is a function of the iniual satura-

tion S;, unlike the constant D (S) case. We have for the imbibition flux
2
@) = ¢(1—S.»)'\j; 4.12)

A natural time consiam that will arise is the lime duration nccessary, per unit longitudinai area of
fracture, for the imbibition front 1o invade a volume equal 1o the void volume of the fracture. From

(4.12) this time is on the order of
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m(b/(1-5)¢)7

b = 4.13)

The imbibition flux (4.8) can be rewritten in terms of this constant as
+
b
{ = (4. I‘n

g (1) N
The Laplace transform is given by

G4y = baf T @.15)

2

4.2 Finite Matrix

We now derive an imbibition flux function for the case of an infinite array of parallel fractures
having equal spacing 2a. The linc at x = ¢ wiil be a symmetry line and is assumed (o be a no-flow

boundary. The boundary conditions are then

n

S (x=0,0) g—f(xq.l) =0 (4.16)

The initial condition is, as before,

s, @.17

$ (x,1=0)

In order to derive the saturation ficld we will have o assume, in contrast lo the semi-infinitc case, that
the diffusivity D (S) can be approximated as being equal to the effective diffusivity o. This value will
ensure that the imbibition flux will be accurate at least until the umbibition front reaches the no-flow
boundary. Afier that the imbibition flux will decline and will not make a significant contribution 1o the

lotal imbibition flux occurring along the entire facture wall.

We first introduce the ume constant
f, = —=x 3.18
p {4.18)

which is the approximate time necessary for the imbibition front to reach the no-flow symmetry line
between fractures. We will also use the time constant 1, given by (4.13),
The solution found by using the Fourier serics method is {Kirkham and Powers, 1972; Carslaw

and Jaeger, 1959]
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- 2 £ X
e fxtir, . L
" “ sin

S¢x,1) = E—l-e
L)

1 -20-5)%
a=)

wheree, = (2n + Dm/2.

The imbibition flux into the matrix from the fracture is thercfore

>0

- —6g S = b~
q @) = -0 ™ (x=0,¢) = =nb o Alreit,) :

where we define the function A by

2
284!
__2—-1} £
AE) =

2 i e [
n=0
It can be shown {Appendix) that its Laplace transform AQz) is given by f\(z) =

hence,

\ anhvL z /1

gty = iin

1
b
This function has two separate expansions

T
Al —.
Z iy

>> 1

g1 (z) ~ 1,2

Q|-

.2

1
Al 3 m

<< 1

Y. faz

gr(z) ~

|-

for large and small 2. They will be used later to determine the fracture penctration at ¢

t >> ,, respectively.

{4.19)

(1.20)

4.21)

1 -
ey unhvz , and,

(4.22)

(4.23)

(4.24)

<< [, and

In order 1o gain a perspective on the function A from another dircction, the solution to the satura-

tion field by a different method, the method of images, gives

S.r) = 31y [f(x+2na.l) + f((2n+2)a—x.t)}
a=0

(4.25)

where f (x, r) is the solution [Carslaw and Jaeger, 1959] for the semi-infinite case given by

2(] "Sx) r2vor N
S(e,r) = 1 - —— e 5 dg
v 3

The resulting alternate expression for the imbibition flux is

lzlﬂ

1 +2Y (-lye ™ t > 0

a=1

i
Vet

1
34’/(!) =

(4.26)

(4.27)
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Therefore,
1 1 1 Tmiiay)
—qg, (1) ~ - + 0 ¢ a ro<< 1 {4.28)
5 TN VR /i, ¢ *

This cspansion expresses the fact that for small time the imbibition flux is approximatcly the same as

for the semi-infinite matrix.

4.3 Unequally Sized Matrix Blocks

We now consider the effect of non-cqual spacing on the imnbibition flux. In Figure 3 of Nitao and
Buscheck [1989] we have a fracture that is part of an array of fractures whose scparations alternate
between distances 2a, and 2a;. The no-flow symmetry lines in the matrix are therefore @, from one
side of the fracture nd g, from :he other. Eack side is allowed to have differcnt material propertics &y
and o, (& =1, 2), as well as initial saturation S;.

We introduce natural time constants analogous 10 those encountered for equidisiant fracture sys-

tems.
(267 (1 - 5i3)0¢ Pr a;’
fhy = —E-— tgy = G_TTC k=1,2 (4.29)

Note that there is a factor of two inside the brackets in the definition of ¢,, which is not present
in 1,. The 1, refer to each of the matrix blocks, singly, draining the entire [racture width 25 by imbi-

siton while 7, refers to simultaneous imbibition into both marrix blocks. [.2t us now assum= that
oy << lgo {4.30)

If the matrix diffusivity @ were cqual on both sides of the fracture, this assumption would correspond
physically to an array of fracwres with separations aliernating betwecn a smau distance apart and a
large distance apart.

At any given point along the fracture the imbibition flux g, (r) into the maurix, at time ¢ from
start of irmbibition, can be writies as the sum of the Qux into the two sides of the fracwre. Using the
expression (4.20) for the imbibition fux into 2 finile matrix slab, the Mux from the two sides of the frac-

ture into a half-fracture is

M

1
qu(l) = =n

al a

Almirtg)) + rﬁ.\(mu”)} (4.31)
2
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where the function A (1) was defined in (4.21), and where we define
tak
7&,; = (432)
tpx

We now determine some asymptotic expansions for ;. For early times such that t << ¢, we

have from (4.28) that

1 1 1 1
—a 1) ~ + = {1t 4.33
bQI() Tm i (r 1) 4.33)
where 1, is defined as the harmonic-too! mean
1 1 1
—_ = = + —— (4.34)
n Viy1 ™

At intermediate limes, f,; << I << [, we have from (4.20) and (4.28),

1 TIT

A
%..], ) ~ m—Amrig,) + M+ OF ) (4.35)

a1 \‘ﬂl/l,z

The contributior of the imbibition flux into matrix block number 1 as given by the frst term on the
right decays exponentially with time while the second term, the flux imo 2, is dominam since it decays

as a power in time.

Using (4.22) the Laplace transform is given by

1. tanhvi, 2 /1 tanhi, ,z /m
Sty = N + A al (4.36)
b N zim Vigazim

Each of the two terms is in the form of (4.22) so that they have expansions of the form (4.23) and

(4.24). If we assume, without loss of generality, that r,, < 1,5 then we have the following expan-

sions

1. 4

2é - =, 7l >> 1 (4.37)
b

1. 1 g2 T

S~ Y - T x ) + Kz-;_ 20, << 1, 4, >> 1 (438)

1. Y 1 .

T4~ - —372“.11,1 + Ala2), 74y, << | (4.39)

These will comrespond to the three flow periods ¢ <<t 1, << | << 5, and {4, << I, fepec-

tively, of the fracture penctration solution A(f).
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4.4 Imbibition Kernel Function
The imbibition kernel funciion function M (¢) given by (3.6) has been summarized in Table 1 for
the fracture geomelrics we have just considered.
Table 1. Laplace Transform of the Imbibition Kernel Function

M €3]
1

- 3
gz (\’;-wJ:)
1
2(1+ h—Ltanh Vi 77

semi-infinite matrix

finite matrix

“Jr.zht
staggered fractures Y ! Y
1 Iy 2
z(1+ tanh NG 2 /T + —— lanh Vi, 22 / 7T)
\}I,,ZH! o \h,,,zln 2

5. Non-Gravity Driven Flow

In this section we derive the solutions for the (wo types of boundary conditions, applicd flux
ug (¢} and applied pressure head po(r) with no gravity. Urder the appropriate transformation of vari-
ables given by (3.2) and (3.3), the problems were snown to reduce 1o the same equation (3.1). In this
section we will aoeive expressions for the solutions to this equation. Although the general time-
dependent boun-iary condition will be considered first, we will be particuiarty interested in the asymp-

1otic behavior of the solutions in the case where the boundary condition is kept at a constant value.

5.1 Time-Dependent Boundary Condition

The Laplace transforms M (z) of the imbibition kemel functicn M (1) were given in Table 1 for
various geometrics. In the ¢t for a single fracture with semi-infinite matrix the inverse Laplace

trapsform is known and is given by [Abrahamowitz and Siegun, 1964, p. 1024]

M@y = e terfeNuiin, (5.1)

vhere eryc is the complementary etror function. Therefore, (3.5) can be used 1o give an expressica for

the general solmion to g{r), and the penerration depth can be found by (3.2) and (3.3) for the



-19 -

appropriate boundary condition.

For the case of a system of parallel fractures equally spaced, the kernel function can be found by wking
the inverse transform of the expression for M {(z) given in Table I by the method of residues [Doctsch,

1974]. 1t is given as an infinitc sum

2
;_ Rrig,

1
M = — 2A 5.2
@ T+2 Z {;,2+k+k2 e
where the (, are the roots of the equation
dumnf, = L., =123 .- (5.3)

in ascending order. The ath term in the infinite sum corresponds to the exponcntially decaying

interference from the iracture that is the ath onc away from the fracture of interest.

5.2 Constant Boundary Condition

We novs consider the solutions w (3.1} in the case where the boundary condition f (1) is equal o
a conerant fo. Using (3.7), we find that the solution in the case of a single fracture with semi-infinite

matrix is the integral of {5.1). Using various integral equalitics we have that

$, ! N
g0 = le" Perfo WRTTG) — 1+ 2(116)7) (5.4)
For the case of a system of eguidisiant parallel fracwures the soluion is given by (3.7), which has
as its Laplace transform M (z)/z where M is taken from Table [. We use the method of residues 10

take ihe inverse transform of this expression to obtain

] Al 28, = 1 ey

3y = + —
A e A S P r ZTACIeren "

where the £, are given by (5.3).

The asymptotic expansions of the solution can be most easily derived by looking at the asymp-

tolic cxpansions of its Laplace transform. From the convolution theorem we have
. L,
§@)fe = S MQ) (5.6)

We consider the case of a system of fractures with staggercd spacing. This case encompasses the other
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cases as limiting cases. From (4.37) 10 (4.39) the asympiotic expansions of M (z) and hence of £ (z}

can be found and are given in Table 11. The corresponding expansion for g (r) ic also shown.

Table L. Expausions for %z«‘r (zyand g ) fo

Flow Period £e) lM(z) £6)
fo 7 fo
I. ? — 27%nr, PR T
3 Y
<<z Le<t
3 - 2 12
1L 2 him ~ 2l in ;(r,,n - IR
Zyt gz <<yt b << <<ty
M. e YT I S I B YNYE %({.;l)m = (1 + ) parn
L'l<<z <<, 7 <<ty h <<t <<y By <<t
1L e 1 ezt Mg+ gt 1 .+ Alay + Aata2
' 1+ A 3l + AY 1+ A 3n(l + AP
7 <<yt <<t
- 1 - Aylay 1 LY
Ifa.! 1 277 o+
1+ 3ndl + A 1+ & In(l+ A
Lil<<z <t z >3 4y fy <<t €<y, fhy 2>t
[la.2 same as for Iil.a same as for [Il.a
oyl <<z <<y 1hp €< €< 1I52

€. Gravity Driven Flow

The case where there is gravity driven flow with a pressure head boundary conduion posscsses
the goveming equation given by (2.15). We will consider the sclution when the boundary head is equal

1o some posilive constant pg.
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6.1 Asymptotic Sclution

The asymplotic expansions 10 {2.15) were given in Table I of Nitao and Buscheck [1989]. They
were obuined by substituting the expansions for M (2) as given in Tablc II of this paper into a version

of (3.12% given by

; -~ . ., Po

hi(z) = K, MEYBRZ) + —z—) 6.1y
We then ury the following functional form

R(z) ~ az™

where v > 0. This assumption is equivalent to assuming that the form of the solution is

ht) ~ oUW

By equating the leading terms in z one can find the value of @ and v. The higher-order werm can be
added and its coefficient and power can be found. This process is straightforward if the toundary head
Po is zero with respect to ambient. Otherwise, one expects that the effects of the bouadary head will
dominale at early times when the head of iiquid in the &acwure is small with respect w the boundary
head. And, at later times, when the converse becomes true the effects of the gravity head will become
dominant over the boundary head. Hence, the leading term in the expansion for (6.1) will depend on
the relalive magnitude of the head term pg(r) in (2.15) w the liquid column head term Bk (r). The
time at which the boundary head dominaics can be estimated by comparing the expansion for B4 based
on zero boundary head with the term pg. This determination was performed for each of the flow

periods I through III as shown in Table II of Nitao and Buscheck [1989).

6.2 Comparison with Numerical Solutions to the Integro-Differential Equation

In order to confirm the asymplotic solutions for the case of a constant hourdary condition witk
gravity, we have also found solutions to (2.15) numerically. Originally, we discretized the equation by
the obvious procedure; the time derivatives were replaced by first-order differences and the integral with
a sum. However, we found that the errors due to the differences inside the sum can accumulate, requir-
ing very small time steps 1o be taken to maintain accuracy. A belter method is to reduce the cquation

10 a sysiem of 1wo equations while taking b and dh fdt as separale dependenl variables. In the end,
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this method was refined by using # and v as the dependent variables where v is defined as
2
-~ - K, Ph ©.2)
Equation (2.15) with pg zero is then equivalent o
1 t
vi) = —Ejmr~§)[v(€)+Kth(§)ld§ 6.3)
0

This choice of variables eliminates the round-off error duc to subtraction of the K, B/ and the integral

terms, These equations were discrenzed in time as foliows, where the superscript refers to the lime

level,
%(h(n-ﬂ))z _ -21-(11"'))2 b A Bat® 4y 64
P o % 3 g - ,(l))[um vk Bh"’] g 6.5)
k=1
— _,Jl;q‘ (% (,(Aol),_’(n))) %[v(n) + v(n+]) + K; ﬁ(h(n) + h(uﬂ)]] A‘(n'rl)
where

A = gy _ gl

In Nitao and Buscheck [1989] comparisons were also made with solutions usiag a two-
dimensional unsaturated flow simulator. These simulations will be discussed in more detail in a future

repart.

7. Fracture Influx Rate

The expression for the Laplace wansform of the specific fracture influx rate g, was given by
(3.13). Tu requires the behavior of the Laplace transform for the imbibition function ¢; and the fracture
penctration #(¢) which have been found in the previous sections, Therefore, the asymplotic behavior of
g, tan be founq, as shown in table V of Nitaa and Buscheck [1989], using the techniques in scction 3
that relate the asymptotic behavior of the Laplace transform to that of the ciiginal function in the lime

domain.
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8. Matrix Flow Regions

We briefly explain how the lengths of the various matrix flow regions shown in Table VI of Nitao
and Buscheck [1989) were derived. We first find the distances y, and y, (referring to Figure 7 of Nilao
and Buscheck [1989]) of the flow rcgions from the fracture entrance as funclions of time. To find
Yo (t) we note that the time elapsed from when the fracture front first hits a point y° is given as
{ = Q(y"). When this time increment equals 1, , the saturation front corresponding to this point has felt
the no-flow boundary due to the acighboring fraclure, according to the definition of ¢,. Hence, the

leading edge y, of the "saturated” flow region is at this point y". This may be expressed as
- QW) = 1
Since £ is the inverse Tunction of the fracture penetration #, we have

Ya (’) = h(l—ln)'

Similarly, ¥, is given as y, (1) A (t - ). Hence,

Z, R() =y, = A(t) ~ B(t-1) (8.1)

]

Z; = Yo = Ya = h(l_tb) - h(r_[n) (8.2)

By substitnung the asymptotic expansions for & {t) and dropping any highcr-order terms one can obuin
expansions for Z, and Z5.

In particulas, the entrics in Table V1 of Nitao and Buscheck {1989) were derived using the expan-
sions for s that are valid for ¢ >> ¢,. The requircment that the arguments of & in (8.1) and (8.2}

satisfy this condition on 1 translates to having ¢t >> 2¢,.

9. Cenclusions

We have found that the unsaturated flow of a liquid front in a fraclure can, under ceriain situa-
uons, be described by a single integro-differential equation whose solution gives the localion of lhe
front in vhe fracture. This equation can be most satisfactorily treated by using Laplace wansform tech-

niques.  Various asymptotic approximations can be derived which are sufficient to characierize the
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physical processes of the system inctuding various flow periods, regions in the matrix saturation ficld,
and the liquid Nux into the fracture. Closed-form solutions were derived for some types of boundary
conditions.

The use of the Laplace transform has been found 1o be a very convenient device fo. the deriva-
tion of asymptotic solutions to our problem. The method is general enough to be applicable 1o other

types of i hikition functions in addition to those treated in this report.

In the special case of a single fracture with semi-infinile matrix the analysis is applicable even
when the matrix diffusivily is a non-constant function of saturation. In our morc gencral analyses when
the matrix is finite, the matrix diftusivity has 10 be approximated by a constant effective diffusivity
which is defined in 1erms of the expression for the imbibition flux in a semi-infinite sysiem. Comparis-
ons with numerical simulations indicale that this approximation gives good results for the i¢sl cases
considered. The reason for the agrecment stems from the fact that the frontal movement in the fracturc
depends on the matrix imbibition flux along tke fraci..e wall and not on the actual form of the satura-
tion field. Either the imbibition flux along the fracture is (1) nearly the same as for a scmi-infinitc
matrix because the mauix front has not yet felt the no-flow boundary with the neighboring fracure, (2)
is very small hecause the the matnx block is almost saturated, or (3) has values iniermediate 10 those in
(1) and (2). In most cases, enly a small amount of the net imbibiuon flux wilt be due to (2) and (3)

which evnlains the applicability of the constant effective diffusivity approximation.
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Appendix --- Laplace Transform of the Function A (€)

[t is well known that the Laplace wransform of the cxponertial function e™% is given by

1#{z + ). Thus,

- d 1
= 2 ————
A -.‘E'o 2+ ((2r + ns2)?

Integrating this function with respect to z starting from z = 0 gives

)

Z
@n + 1)m2)?J

JA@)dn Ziln[l +
a n=0

21 = -z
“!1[‘ T an +1)n/2)1]

Using the identity [Gradstehyn and Ryzhik, p. 37]

cosh{ = I:[[l __f_]

+
=0 (2n + Dm/2)?

Jﬂ Mmdn = 2lncoshvVz
0

Taking the derivative,

Aiz) = %mnh\f'{
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