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On the Movement of a Liquid Front in an Unsaturated, Fractured
Porous Medium, Part 1.
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ABSTRACT

If a high-level nuclear waste repository is to bz built at Yucca Mountain,
Nevada, a better undersianding of the fracture flow dynamics occurring within unsa-
turated, fractured rock is needed for its design and licensing. In particular, possible
walier flow in the rock and fractures will affect waste package design, performance
assessment, in-situ testing, and site characterization. Most of previous work in frac-
ture flow applies only under saturated hydrological conditions, whercas the Yucca
Mountain site is in the unsaturated zone. In this scries of papers, as part of the Yucca
Mountain Project (YMP), we present an analytical and numerical study of the liquid

front movement in a single idealized fracture in an unsaturated porous medium,

The flow of liquid in the fractures is restricted to one dimension and has a pro-
perty which we have termed fracture—dominated flow. This property occurs when
the liquid flux in the fracture is sufficiently high that the fraciure liquid front advances
ahead of the liquid front in the sock. (Sufficient amounts of liquid are assumed to be
present at the fracture entrance such that a constant boundary condition is maintained.)
Another type of flow, which we catl matrix—dominated , oceurs when the flux into the
fracture is low enough that the fracture front lags behind the front in the matrix,
These papers will concenirate only on fracture-dominated flow. Matrix-dominated
flow will be the subject of fulure work. We should state here that the issue of when,
if, and where these types of flows aclually occur at Yucca Mountain has not, at this

time, been estabiished and is not the subject of this paper. It is imponant o note that
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fracture-dominated flows will be associated with relatively high fluxcs such as when a
pond of liguid exists at the fracture entrance.

The primary aim of this paper is to preseni approximate analytical solutions of
the fracture flow which gives the position of the liquid (racture front as a function of
time. These solutions demonstrate that the liquid movement in the fracture can be
classified into distinctive time periods, or flow regimes. It is also shown that when
plotted versus time using a log-log scale, the liquid fractute front position asympioki-
cally approaches a series of line segments. Two-dimensional nomerical simulations
were run utilizing input data applicable 1o the densely welded, fractured wff found at

Yucca Mountain in order to confirm these observations.

This work aids understanding of many physical parameters thai affect the flow
of water in a fractured unsaturated porous medium and, in particular, to some possible
hydrological mechanisms occurring at Yucca Mountain. The results could be useful in
future analyses requiring the estimation of water movement and in the verification of
numerical computer models. Other areas of hydrological study in which our work has
direct impact are hazardous waste disposal, petroleum recovery, and flow in soil
MACTOPOTES.
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Nomenpclature

Greek Symbols

B the cosine of the angle of inclination of the fracture from the vertical

x k, dy/dS

A fracture storativity ratio, the initial unsaturated pore volume of the matrix
relative to the volume of the fractuse

Q  function £)(y) denoting the time a1 which the fracture frons
first reaches point y

[ matrix porosity

vy matrix capillary pressure head

c matrix diffusivity, or effective matrix diffusivity

t  dimensionless time equal o7 /1,

T, il

Tor lppilp, k=12

*  dimensionless transition time from boundary dominated flow to
flow dominated by gravity and matrix capillary forces
Roman Symbols

a one-half the distance between adjacent parallel fractures

b one-half the fracture aperture widih

diy, matrix imbibition penetration depth

h distance of liquid front leading edge from the fracture entrance

K; fractre-saturated hydraulic conductivity

K, matrix-saturated hydraulic conductivity

k,  matrix relative permeability function

L, length that the fracture front would travel during time ¢,
if there were no mairix imbibition

P pressure in units of liquid head along the fracture

p.  capillary pressure head at liquid fracture front meniscus

po  pressure in units of liquid head at the fracture entrance

Po  dimensionless pressure head at the fracture entrance

q  specific volumetric flux into the matrix

q;  specific imbibition volumetric flux function into the matrix

qp  specific volumetric flux of waier omo to pond located at fracture entrance

gy specific volumetric flux at the fracture entrance

@, cumulative specific volumetric flux into the matrix

5 dummy variable of imegration

s liquid saturation in the malrix
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initial liquid saturation in the matrix

time

fracture interference time constant, approximate time for matrix frent to reach
the no-flow boundary

fracture storativity time constant, approximate time for cumulative matrix imbibition
flux to become comparable to the volume in the fraciure

liquid velocity along the fracture

liquid velocity ar the fracture entrance

coordinate distance normal to the fracture

coordinate distance longitudinal to the fracture

flow region length
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1. Introduction

The unsaturated zone at Yucca Mountain, Nevada, is currently being investigated as the possible
site for a national high-level nuclear waste repository. The various geological units consist primarily of
wffaceous rock with many of the units being highly fractured [Montazer and Wilson, 1984; Klavetter
and Peters, 1986). The mechanics of water infiltration into unsaturated fractured rock is, therefore, of
significant practical importance. In particular, near-field radionuclide transport calculaticns and waste
container design analyses require water inffux rates as input parameters. The travel time of water from
the waste package to the immediate environment is of primary concem to the overall perfonnance
assessment. Characierizing the repository site will require knowing whick physical parameters are criti-
cal to the flow of water. In turn, this knowledge will depend on the fundamental processzs occuring
during infiliration into fractured zock. The invasion of drilling water used in conswuction will be
important with regard to the on-site data gathering process in assessing the effecis on the in siu

environment [Buscheck and Nitao, 1988a).

Understanding multiphase fluid processes in fractured porous media is important in other fields of
study as well. The secondary recovery of petroleum from namrally fractured reservoirs through water
fooding is a prominent example, Our work is zlso appiicable to F-terogeneous unsaturated systems
where there is a sharp contrast in permeability between two types of materials. For example, the flow
in a thin layer of high-permeability rock that is sandwiched between two low-permeability layers is also
teatable by our analysis, while another area of study related to our work is the flew of water in soil

macropores [Beven and Germann, 1982].

The Bow of water in a real-fife fractured rock system is complicated by the complex geometry of
the fractures and their spatially varying aperture sizes. In general, the path of water may form sinuous
channels, or rivulets, of fluid as it flows through a fracture. In the unsaturated zone, further complica-
tions arise from the interaction between the fluid in the fractures and the surrounding matrix. Flow res-
micted to the matrix may possibly occur across fractures by way of contact points [Wang and
Narasimhan, 1985]. Before considering these more complicated aspects of fracture flow it would be
wise to investigate the simpler problem of flow after the introduction of liquid at one end of a single
fracture. We, therefore, censider a single fracture in an initially unsaturated porous medium interse-ting
2 planar exposed face of the rock mass (Figure 1). Suppose that water is allowed to enter into the
opening of the fracture with some type of fux or head boundary condition that is uniform across the

opening of the fracwire. The resulting flow of water in the fracture and the matrix is the focus of this
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paper, Note that a sufficient amount of water is assumed (o be present at the opening in order 10 main-
wain the boundary condition while, at the same time, guaranticcing a continuous front of water. For
example, in the case of constant pressure at the opening equal 1o a value above ambicnt conditions, a

pond of water must exist at the fracture opening.

In some situations the resulting flux into the fracture may be sufficienly low that most of the
water will be absorbed through matrix imbibition close to the entrance before any significant fracture
flow can occcur. Movement of the liquid front, if any, in the fracture will be small and wi'l lag behind
the front in the matrix, leading what we have termed in this paper as marrix—dominated flow. In other
cases, the Aux will be sufficiently high that the fracture flow along the longitudinal direction of the frac-
tere will advance ahead of that in the matrix, a situation we will call fracture -dominated flow. In this
latter case, the speed of the front will be governed by an interaction between the driving forces in the
fracture and the suction forces in the matrix. Relatively high fluxes are necessary for this case to occur,
such as, if there is ponding of water at the entrance to the fracture. A real fracture system existing in
the field will have significant spatial variabilities, and it is possible that these different types of flow
conditiens may occur simultaneously at different Iocations in the same fracture, Future work will also
have to consider matrix-dominated flows as well as the transition between the two types of flow.

In this series of papers we are interested in fracture-dominated flow. We treat the idealized prob-
ler: of one-dimensional flow in a uniform aperture, planar fracture. In spite of these simplificatisns it
will be seen that the analysis yiclds interesting results that may lead, in some cases, to techniques for
performing bounding calculations of water movement for more complicaed systems as well as an
understanding of some fracture flow processes.

In actual field applications the physical parameters that characterize the flow in a fractured system
are often difficult to measure and vary significantly in space. Therefore, their values wiil have a high
degree of uncertainty and variance. Thus, from a practical point of view, what can be realistically
achieved is to understand the various physical processes present in the system and, it is hoped, 10 bound
the problem. With these goals in mind we have been able, under a class of assumplions, te reduce the
govemning equations into a single equation of motion describing the movement of the liquid front in the
fracture. With this equation we are able to determine the asymptotic behavior of the flow. These solu-
tions are invaluable in reveaiing various flow processes and flow regimes that may occur and in deter-

mining the dependency of the flow on various physical parameters,

Most theoretical work in fracture flow has been iustricted to sawraied conditions and, until

recently, relatively linle has been done in unsawrated fracwre flow. Travis ct al. [1984] have
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presented analytic solulions to the problem of a single sluy of finite length traveling down 2 fracture in
an unsaturated porous medium with the flux into the matrix assutied to be a consiant in ime. Numeri-
cal solutions were given for more realistic time-varying matrix flux condition. Marincz [1988) has also
performed numerical calculations for a continnous front of water and has performed parameter studies
applied o Topopah Spring wff.

We note here that oné problem analyzed in this paper is mathematically identical to thai con-
sidered by J.R. Phiiip {1968] who looked at the infilration proce . in aggregated media. However,
most results presentec in this paper are believed to be new. Moreover, we are able 10 show in the con-
text of fracture flow that for the same mathematici1 problem treated by Phiilip there exists an “inter-
mediate” flow period in addition to the two periods Swund v Philip for flow in aggregated media. We
also mention here thay Davidson F1987) has vecently cons.dered infiltration from a saturated fracture of
finite length.

Another area where theoretical work in mulliphase fracture low has been active is the secondary
recovery of petroleum reservoirs through wat flooding. There, workers have been interested ir the
imbibition « © water into a naurally fractured oil-bearing formnation. Van Golf-Rachi [1982] summarizes
the work in this area. [Irevious analyses in the petroleum literature, however, have not given the
detailed behavior of the st.iations, nor have they eluborated on the various time consiants and length

£ales importziu to the frent movement process,

2. Assumptioiis

We consider the flow reculting from the introduction of a liquid into one end of an initiall dry
plezar fracture with constant apenture. The flow inside the fracture is treated as a one-diinensional front
vath a capillary pressure drop across the leading meniscus. The fraciure aperture is assurr . o be
sraall encugh that, at each point of the fracture front, liquid completely fills the space betwesn the rock
walls. The partially saturat: 1 rock is assumed to be at uniform initial saturation. In some cases it will
be necessary to assume that the matrix diffusivity for capillary imbibition can ve approximated by 2
consiant. We will restrict ourselves 1o the time span of flow until the front reaches the end of the frac-

ture. The fracwre is assumed to have no intersections with other fraclures.
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The arrival of the liquid front in the fracture at any given point on the fracture face will result in
a capillary dsiven flux into the matrix ai that point. The flow ficld in the matrix as a result of these
fluxes will, in general, be multi-dimensional. However, if the flow in the system is high enough that it
is Fracture —dominated , as defined earlier, most of the flow lincs in the matrix will be primarily orthog-
onal 10 the fracture plane (except in the immediate vicinity of the leading cdge of the front). Thus, the
flow into the matrix at each point on the fracture can be uncoupled and treated individually as that of
flow into a one-dimensicnal sub-system. Because the permeability of the matrix is belicved to be many
orders of magnitude less than the fractures [Klavetter and Peters, 1986]), this weatment is applicable to
the various tuffaceous units found at Yucca Mountain, This assumption was also used by Travis et al.

[1984] and Martnez {1988], and has been confirmed by our numerical simulations.

Our analysis will not consider e effect of pressure gradicnts along the length of the fracture
upon the imbibition rates into the matrix, This effect will be small if the magnitude of the initial suc-
tion pressures in the matrix are large relative to the overpressure in the fracture. We will also assume
that the inital suctgn forces in the matrix are large cnough that for the time span of interest the

influence of gravity on the matrix flow (but not on the fracture flow) can be neglected.

In applying the solutions covered in this paper one must be careful that the boundary conditions
are such that the resulting flow does not violate the above assumptions. In many cases the asymptotic
solutions can be used io give guidance conceming whether they are satisfied. Future work will have 10
be done w derive these conditions and confirn them through numericat simulations. An example of
when the boundary conditions may be inappropriate is in the case of a constant flux boundary condition
al the fracuwe opening. If this flux is oo low, one may violate the condition of fraciure-dominated
flow, or the front in the fracture may be streiched by gravity and may separale into more than one

piece.



3, The Problem

Matrix Imbibition Flux

We now briefly discuss the form of the imbibition flux into the matrix after passage of the liquid
fracurs front. The reader is referred to Figure 2 for the coordinale sysiem that is used. Suppose that
the matrix has a uniform initial seturation distribution. The equations describing the saturation field in

the matrix are
95 _ o
¢3I- = VK. EVy G.1
SEy.=0) = §
Sx=0,y,1) =10 fory < A(t)

S@=0,y,t) = S§; fory > h()

where
¢ = time
A = normal distance from fracture
y = longitudinal distance along fracture from fracture entrance
§ = liquid saturation
K, = matrix-satuyrated hydraulic condactivity
k., =relaive permeability
v = capillary pressure head
¢ = porosity
§;, = initial saturation

h (1) = penetration distance of liquid front in fracture
At a given point v for y < A(r) the volumetric flux into the matrix along a single face of the

fracture is given by

q = —K,,%‘E at x =0 (3.2)

In general, this flux depends on location, ime, and the past history of the liquid fracwure front A (1)

where T € ¢, that is,

9 = Q.1 A1), 151) (3.3)
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Under the assumptions described in the previous section, the imbibition flux ¢ at a point y on the frac-
wre face will depend only on the time when the front first passes by; that is,

qv.) = 0 { S Q@) (3.4)

qG.0) = @ -Q0@) t > Q@) @3.5)

where Q(y) denotes the time when the fracture front first reaches the point y. Here, g (y,t) is the

malrix imbibition flux into only one fracture wall,

Fracture Flow

The flow of the liquid in the fracture will be treated as being a front except with a constant capil-
lary pressure drop at the leading meniscus. The one-dimensional fracture is assumed at any given point
to be either completely filled with liquid or completely dry. Let n{t) denote the location of the fracture
front with respect to the entrance of the fracture. We assume that the liquid in the fracture and matrix
is incompressible. Let « (y,¢) be the liquid velocity at depth y and time ¢ and let b equal to the con-

stant half-aperture of the fracture, From material balance considerations

% = ‘%"l()‘»f) (3.6)

Now, let p (y.¢) be the liquid phase pressure head in the fractore, Assuming Darcy's law for flow in

the fracture, we have
w0y = -k (- B) a7

where K is the fracture hydraulic conductivity and B is the cosine of the angle of inclination of the
fracture from the vertical. The fracture can be orented either horizomally or inclined downward rela-

tive to its opening. The fracture penetration depth & (¢) most satisfy the equation
—d%‘r@- =u(h()ht) (3.8)

Note that the function Q2 (y) is related 10 & (t) through the relationship
Qa()) = ¢ (3.9
and, hence, is the inverse function of & (t).

‘We will consider two separate types of boundary conditions at the entrance to the fracture: pres-
sure head po(r) and flux uo(r). The pressyre head at the leading edge of the front in the fracture is

assumed to be at zero datum. Since the equations involve only gradients in head, a non-zero constant
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capillary drop - p. across the leading edge of the front can be included by adding p, to po. We must,
however, be carcful that the magnitude of the resulting value of pp is much smaller than the initial suc-
tion pressures in the matrix. Otherwise, significant pressure gradients would occur along the length of
the fracture that would couple with the imbibition flux, in viotation of one of our basic assumptions.
Likewise, the flux boundary condition ug(1) must nat b so large that excessive pressures develop in
the matrix, It also must not be so small that it can not meet the the flow demanded by the suction and
gravity forces in the fracture; otherwise, the front will become discontinuous violating one of our
assumptions. The question of at which critical values of uo will these conditions take place willt be

considered in section 6.4,

Integro-Differential Equations

It can be shown [Nitao, 1989] that the above gaverning flow equations can, for each of the two
types of boundary condition, be reduced to a single integro-differential equation in 4 (1). These equa-
tions are given as
Flux—type boundary condition

dh (1) 1

: dh
== H) - —‘[q,(t-:) A (.10)

>

Pressure—type boundary condition

]
2L = K B+ pol) - ;‘;!m:-:)h(s)%‘,ﬂds G

where the solution must satisfy the initial condition
A0y = 0

Here, the variable 5 is a dummy variable of integration.

Fracture Geomeiry

In this paper we will consider an infinite array of parallel fractures with the same aperture equal
to 2k (see Figure 3). The spacing between these fractures aliemates beiween distances of 2z, and 2a,.
The no-flow symmetry lines in the matrix are therefore a, from one side of the fracturc and a, from
the other. The matrix blocks can also alternate, not only in their size, but also in their material proper-

ties, porosity ¢, and diffusivity o, (k = 1, 2), as well as initial saturation S;,.
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This geometry includes several special cases, such as the case of a single fracture between two
semi-infinite mamrix blocks (a, = a; = o), the case of an infinite array of equally spaced fractures
(@)= uy), and the case of two parallel fractures with a finite matrix block in between
(a, = finite, a3 =),

In the analysis we will assume constant matrix diffusivities. In [Nitao, 1989] we show that for
the case of semi-infinite matrix blocks this assumption is unnecessary and the ¢"“*sivity can be a non-

constant function of saturation.

4, Flow Periods

Depending on whether we have a constant pressure-type or a constant fiux-type boundary condi-
tion, we can show that the flow in the fracture undergoes various flow regimes, or time periods, with
respect to its interaction with the matrix. During each of these periods the function h(¢), which
describes the position of the front, can be shown to tend asymptotically toward approximate solutions,
wiich on a log-log scale ferm a series of line segments giving the general location of the aciual solu-
tion curve, But first we wish to introduce some relevant time constants and dimensionless groups. As a
convention, we will label the wo matrix blocks forming the two sides of the fracture as £ = 1 and
k =2. As mcationed, each matrix block can have its own material properties such as porosity ¢; and
effective diffusivity o;. (In the notation of section 3 the diffusivity function is given by
C = (K, k,/0)dy/dS. Here, we will use the constant "effective diffusivity” defined in Nitao [1989])
The initial saturation §;; can also be different. The fracture spacing @, was defined in the previons
section. From these parameters we 2zfine the following relevant Lime constants

Fracture storativity time consiant, ty;

26/ (1 - Su) s I

by = % 4.1)
Average fracture siorativity time constant, 1,
1 1 1
_‘-’I_I: = ﬁ + ﬁ 4.2)
Fracture interference time corctant 1,
a,z
g = —_— 1 (4.3)

Cx
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A special case of particular interest is when the fracturcs are uniformly spaced (a; = ag) and the
material properties together with the initial saturation of the two matrix blocks are the same. The sub-
scripts in the parameters with respect to the matrix blocks can be dropped. In whis casc we have

26/ (1 -5)91°x

Iyy = 5 (44)
for each block s that from (4.2) one has
bl (1 - 507
L o Bra-Spers @s)
o
and from (4.3),
2
a
wo= S @.6)

We are able to show that the solutions can be characterized entirely by the time cciste.is
together with the conductivity and fracwre orientation. A rigorous derivation is given in [Nitao, 1989],
but in this paper we wish 10 provide some physical motivation behind these time constants. The basis
for our discuscion follows from the fact that the time r required for a diffusive front to travel a distance

L is given approximately by
t = = @7

where @ is the diffusivity constant. Since matrix imbibition is primarily a diffusive process, albeit a
non-linear one, we expect such a relationship to hold, assuming that we are able to define 2 characteris-
tic diffusivity canstant. Returning to the general case where matrix properties can be different, supposc
that imbibition from the fracture is allowed o0 occur into only one of the matrix blocks. Consider a
control volune oriented ortrogonal to the fracture (Figure 4) naving contact area A with the fracture.
Let L be the length of the mauix imbibition front at some given instant of time, and suppose thal the
saturation along the length of this front is approxima-:ly equal to unity. The total volume of the liquid
in the front is given by L A ¢ with the portion due 10 the initial saturation being given by L A ¢5;.
Subtracting these lwo volumes, we obtain that the volume V of liquid absorbed from the frachire by the

control volume is given by
V = LAG(1-5,) 4.8

The portion of the fracture inside the control volume has volume equal 10 26 A. When V is equal 10

this volume we, therefore, have
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LA¢*(1—S.1) = 2bA
L = 28041 = Sip)

From (4.7), the time at which these volumes are equal is given by the expression for f,;, except for the
factor of m that avises from the rigorous mathematical derivation. Thus, fy; may be interpreted as the
approximale tin,e at which the cumulative matrix imbibition from the fracture becomes comparable to
the stored volume of the fracture. Although these arguments are heuristic, it is substantiated by
rigorous analysis, and gives a useful framework in interpreting the mathematical solutions that will be
presented later.

If we now consider imbibition into the two matrix blocks simultancously, f, is the approximate
time at which the sum of the two cumulaive imbibition fluxes leaving the two walls of the fracture is
comparable to the specific fracre volume. Note that i, in (4.5) does not have the factor of two multi-
plying b that is present in f,, since each of the two mauix blocks share one half of the fracture

volume. The other time constants i, are simply the approximate times at which the imbibition front in

matrix & reaches the no-flow symmetry line with the respective neighboring fracture, It is interesting to
note that although the definition of the time constants assumes a constant or almest constant matrix
diffusivity, their physical definitions remain valid even when the diffusivity is a function of saturation,

and are, therefore, applicable even when this assumption does not hold.

We define the following ratios:

Martrix —to—~fracture storaiivity ratio, Ay

_ E _oa(l = St
Ai B Vlbg B 2b @9

Tota!l siorativity ratio, A

A= A+ @.10)

The dimensionless constants A; are the ratios of the inilial unsawrated pore volume of the kth
matrix to the volume of the fracture while A is the ratio of the total initial pore volume in the matrix 10
the fracture. When the fractures are spaced uniformly and the matrix properties are the same, we have

from (4.9) and (4.10} that A reduces to

L= aa - se
A = e @.11)
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In order to simplify the discussion, suppose thai the matrix blocks on bath sides of the fracture
have the same flow properties and that we have a system of parallel fraclures with equal spacing, With
this assumption we have 1, = t,; = #,5. Analyscs presented in Nitao [1989) show that with constant-
time boundary conditions, there will generally be three major time periods for the movement of the
liguid fracture front. These time periods can be shown to arise from the three stages of matrix imbibi-
tion that can occur i« any given point on the fracture face. Let us focus our atiention on a single slice
of infinitesimal thickness that is orthogonal to the fracture (Figure 5). Supposc that the fraciure [ront
kas just reached this slice, and imbibition begins. Stage A for this slice occurs when the cumulative
volume of liquid that has imbibed is less than the fracture volume inside the slice. Stage B is when the
imbibed volume in the matris has increased to an amount greater than the fracture volume, but before
the matrix front rezches the ro-flow symmetry boundary of the matrix block duc to neighboring frac-
tures. Stage C occurs after the front reackes the matrix no-flow boundary. The matrix can, therefore,
be divided into three zones depending on the stage of imbibition (Figures 6 and 7) with zonc T
correspending to those points thag liz on sliczs undergoing stage A, zone I corresponds 10 stage B, and
zone III 1o stage C. These zones propagate with the liquid front as it procecds into the fracture with

zone ] occuring near the tip of the fracture liquid front, follewed by zone 11, and, then, by zone HI.

Which time period is occuring depends on which of the zones is the largest. At carly times,
t <, most or all of the fracture front lics in zone I, and the flow in the fracture is, therefore,
influenced only weakly by matrix imbibition and is, instead, dominated by the fracture boundary condi-
ton and gravity. As the fracture front procezds, a significant part of the matrix is in zcne 11, i,
cumulative imbibition fluxes are comparable 10 the fracture volume, and the front is slows down. Dur-
ing this second flow period, f, < t < ¢y, there is a balance between (I) matrix suction forces and
(2) gravity and, possibly, (3) fracture flow boundary conditions, Finally, as the matrix imbibition front
approaches the no-flow symmetry planes, the imbibition flux begins to decline, and we enter the third

flow period, 1, < 1 when most of the matrix is in zone I11.

We are also able (o treat other cases: when the matrix blocks do not have the same matcerial and
initial properties, and when the fractures are not evenly spaced. In general, we then have ¢, = f,,.
(Ir the rest of the paper we can assume, without loss of penerality, that ¢, > i,;. Otherwise, the
indices 1 and 2 are interchanged in what follaws.) The only difference from the equal fracturc spacing
case is thal the third flow period is spiit into two sub-periods Hla and 111b because matrix & = 1 enters
flow period Il while matrix k =2 is sill in period IL In particular, there is a period

ar £ 1

A

f.2 comesponding to when only mauix block 4 = 1 is in flow period 1. For later

waee, 4,» < f, malrix block k = 2 is also in fiow period Il (Thesc flow periods apply if
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I £ lay S g3, which will be true in most cases. Other less likely orderings of the time constants
will lead to other flow periods.)
To summarize, the flow periods are:

Flow period I (boundary and gravity dominated)
i <€ 5 4.12)
Flow period II. {(balanced)

h < I < g (413

Flow period Illa (reduced matrix suction in a single masrix block)
I gt < fg2 4.14)
Flew period I11b (reduced mairix suction in both mairix blocks)

Ly < ! @.15)

If a flow period has upper and lower time limjts that are comparable or if the upper becomes less
than the lower, that pasticular flow period will not be present. For example, when ¢, is comparable to,
or greater thuan f,,, flow period II is non-existent

In come situations, special degenerate cases can occur depending on how the time constants are
ordered. For example, suppose that one of the matrix blocks bounding the fracture is much targer than
the other but with their diffusivities being equal, That &5, a4 >> ay and 0y = O,. It can then be seen
that #,; << 1,2, Moreover, suppose that the initial unsaturated prre volume of matrix block k = 1is
much smaller than the fracture pore volume, which in turn is much smaller than the nitial unsaturated
pore voium? of matrix block ¥k = 2. We then have the situation where £,, << # << f,;. Whilein
flow period II the total imbibition flux into block & = 1 will start to decling relatively early because of
the small matrix volume of this block and and will then go into flow period III. This transition will
happen before the flux into block & = 2 has become significant enough to go into flow period II. The
flow in the frcture willt revert 1o being boundary— or gravity—dominated, and instead of

Flow period iila we have two periods which we call {f{a. | and Hla.2.

Flow period Illa.l {revert to boundary or gravily dominated)
oy £ 1 £ Ipa (4.16)

Flow period llla.2 (pariially reduced saction)



2 < la2 @.17)

In order for this situation to occur we must have ¢, € {2 < {5 It is cbvious that there are
other orderings of the time constants that can lead 1o special flow periods not covered by those given
here. However, in most situations, such as when bath matrix sides of the fracture have nearly identical
mairix propenics and initial samrations, the three periods we have given in (4.12) 10 {4.15) are the only
major ones. The other subcases can be treated, if desired, by using the techniques in Nitao [1989].

5. Dimensionless Groups

It will be seen later that a convenient defirition of dimensionless lime is obtained by taking time

to be relative to the time constant #,. Therefore, et us denote by 1 the dimensionless time given by
T = 1/ 5.0
It will also be convenient o normalize the other timz constants relative 10 £, :

Tar = f,,‘/lb (52)

Tha typ 1y (5.3)

The index & = 1, 2 refers {0 the mairix blocks bounding the fracture. In terms of normatized ume the

flow periods are given as follows.

Flow period I (fracture flow bouniary and gravity dominated)

Tt <1 (54)
Flow period Il (balanced)
B < T < 1o (5.5)

Flow period llla (reduced marrix suction in a single matrix block)

Tar £ T £ Tag (5.6)

TﬂZ S T (5-7)

The fracture penetration length, , can be made dimensionless & by dividing by Lp, which is

defined to be the distance that would be traveled by the fracture front at time ( = 4, if no imbibition
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into the matrix were presznl. These "imbibition-free” length scales L, can be casily derived for the
various combination of boundary conditions and are given in Table I. For example, in the casc of
Po = 0 with gravity, liguid will travet down the fracture flow at a constant speed equal to K, f. Thus,
at time ¢, it will have traveled a distance equal t0 L, = K, ff,. To understand further the meaning
ol L,, note that the gravity and boundary pressure forces including fracture capillarity will dominate
over matrix imbibition when the fracwure penetration is less than L, since the imbibition into the matrix
is refatively unimportant for ¢ < 1,. In Table I, the last row corresponds to a pressure boundary con-
dition with gravity. There, the value of the length scale L, is computed based on the value computed
due 10 gravity and with the boundary pressure p, set to zero.
Table [ Fracture Penetration Length Scale L},

Boundary Condition L,
flux b.c. ugly
pressure b.c V2K, pols
no gravity
pressure b.c K, Br,
with gravity

In some cases we will alsa need to define a dimensionless boundary pressure head obtained by

normalizing with respect to Ky 24,
Po = polK; B, (5.8)

Note that the normatization of 5o has a factor of B2 instead of the single factor of B that is present in
the normalization of # given above, Without going into a detailed mathematical analysis at this point,
it suffices to say that a natural normatization of the pressure head is with respect to the gravity head B 4
of the liquid column in the fracturc. In order to make # dimensionless, this expression can be rewriten
asPLy ki = Ky B2ty i, which has the factor of B in addition to the other factors, in (5.8). We would
also like to point out, here, that any capillary head drop —p, across the leading edge of the fracture
[ront can be included into pg by adding p, ; thus, the dimensionless pressure includes the dimensionless

fracture capillary pressure.
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6. Asymptotic Behavior

6.1 Penetration Depth

The asympiotic solutions to (3.10) and (3.11} are derived in Nitao [1989] for the cases where the
uo(t) or po boundary conditions are constant in time. The solutions for flow periods I and I holds for
general diffusivity functions, while in the mathematical analysis for flow period I it was necessary to
assume that the matrix diffusivity is approximatcly constant. In developing a solution for the pressure
boundary case, (3.11), it was convenient for the purposes of exposition to split the problem into (1) the
case without gravity (i.e., § =0) and (2) the case with gravity. At early ume for the latter case, one

must also distinguish whether p is zero or non-zero relative to ambient head.

In Table IT we have summarized the leading terms of the asymptotic expansion for the dimension-
less fracture penetration depth & for the different types of boundary conditions and for the different
flow regimes. The dimensionless variables used here are described in the previous section. The higher
order terms are derived and presented in Nitao [1989]. Note that alt expansions are powers of the
dimensionless time t. When the value of the upper limit of a time period is less than the lower, that
particular flow period is not present {(e.g., if T,y < 1, then flow period 11 is not observed, and il

122 S Tay. then IIla is not).

The expansions in column 2 of Table II for the pressure boundary condition casc with no gravity
{i.e.. B = 0) is a spzcial case of the general expansion given in column 4 and corresponds to the casc
of a horizontal fracture. Note that during flow period 11, for this panicular case, the fracture penetration
goes as the one-quarter power in time, which is slower than the one-half power movement of the matrix
saturation front in the direction longitudinal 10 the fracure. Hence, the matrix front will eventually
ovenake the fracture front unless flow period I, with its faster onc-half power behavior begins
suificiently early. In his theoretical study of aggregated soils Philip {1968] derived asymptotic solutions
equivalent 1o those in flow periods I and III (column 2 of Table II) but he did not consider the inter-
mediate flow period 11, probably because this period is not of significant duration for aggregated soils
which, because of their relatively small granules, have corresponding ume constants with 7, comparable

w0,

The fixed pressure boundary condition with g = O given in column 3 of Table IT pertains to the
case when the pressure head at the fracture enwance is held at ambient. I is a special case of the solu-

tion given in column 4, which includes the general boundars condition in pressure. We have included
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Table II, Leading Term of Expansion for Dimensinnless Penetration h

i 2 3 4
flow period flux pressure b.c pressure b.c pressure b.c
(range of high no gravity po= 0, gravity po = 0. gravity
h h h © h
accurac A= F=—2L __ h= k=
» uoty V2poKrty K, Bty K; Py
I T 2 T 1i2f2p,, T<< By
(tecl) %r, T>>hg > 0
T, ﬁo =0 ‘_
u 2 JZon NN
n T T
2pa-1
(l<<Tt<<t,)) 1:"1+-£-(£—°_T). >
=
Iila %(r. 2 ‘\j %(rm)“‘ (a1 2‘\[ %(’faz‘f)“‘. T<<po it
(Tg1 €€ T<< T2 (152‘!)'“+M. 5> 5o N,
n-2)
1 1 . 1 2f0 _n .=
b “_11: m‘: l+7\.1 -_1+A.T . 1< 2 po(l+A)
(To2<<T) 1_}_&[1-'“41“2]. T>>poll+A)
2 MTar+thtr .
A=|=—" =742 A
[3 e Ll

column 3 in the table because of its simplicity relative to the more general case in column 4. The
situation is complicated in column 4 by the interplay between gravity and the pressurc boundary condi-
tion. For each of the flow periods in column 4 there are two possible expansions, one pertaining to the
time period during which the boundary pressure dominales fractare flow and onc for when gravity and
matrix imbibition dominates; the spplicable expansion is determined by the relationship of the dimen-
sionless lransition time T and the limits of the respective flow period. If <" is less than the lower
limit, the second expansion applies over the entire interval. If ©° is greater than the upper limit, the fiest
expansion is applicable, and if T is between the limits, the first expansion applies for 1 < 1" and the
second for t > T . The value of T° depends on the flow period and is a function of the dimensionless
boundary pressure head jg.and the matrix-fracture storativity ratio A. From Table I1 we see that it is
equal to po, ﬁnz, ﬁnzltbg.ﬁnl for flow periods 1, II, Illa, and IIIb, respectively. With one exception,
the value of T° for a given 5, and A can be shown to lie in only ene of the Aow perieds, and, hence,
the wransition occurs only once. The exceplion is if T,2 < pp < Y,27»2 in which case, Lhe transi-

tion tme is in both flow periods Illa and b, Thus, in period Hls there can be a wansition from
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boundary dominated to matric capillary-gravity, and, then, reversion to boundary dominated at .
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beginning of period Illb, and, finally, a return to matric capillary-gravity dominated flow.

©

As we mentioned earlier, if ¢,; << 3 << {3, then flow period [lla is replaced by Iia.! and

lIa2. The expansians for these two subperiods are given in Table I,

Table II1. Leading Term of Expansion for Dimensionless Peietration h (special subcase)

1 2 3 4
flow period pressure b.c.
(range of high 20 # O, gravity
= L]
accurac h=
¥) X, B
1 L w | _ 1 ' _
Ula .+A.1 l+M1 1+1,1 1+ A (e
2 ).l“ i
(Tr<<T<< Ty (11" ERESE + 2501+ 1) |
a2 same as for same as for | same as for same &s for
period Illa period Iila period iIla period Ula
(T4 << T << 1,2) of Table IT of Table II | of Table I1 of Table 11

The special case, ta, = Ta, and Ty, = Ty is of interest because of its relative mathematical
simplicity, and since it includes the equal fracture spacing case with the matrix blocks having the ident-
ical properties. The expression: in column four of Table IT can be reduced to this case by first remov-
ing flow period Hla, changing flow period IIb 10 III, and making the [ollowing substitutions:

M = Ay = A/2, Toy = T4z = T,. Table IV shows the dimensionless fracture penetration for this

case with gravily and non-zero boundary pressure conditition. As will be shown laler, the dimension-

less transition time T° from boundary to matric capillary-gravity dominated flow lies in only onc of the

time periods, and, therefore, the transition occurs only once,
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Table IV, Leading Term of Expansion fer Dimensionless Penetration h

when T, = T, andT, = T,

flow period pressure b.c.
(range of high po * 0, gravity
- h
urac h =
ace Y) KIBH
1 Y2y, Te<fo
(teccl) %1, T>> Py
T, Po=0
I 2‘J%‘11“‘. 1<<ﬁ°2
25— 1} 2
12
(I <ccte<T,, ™+ =2 " T>> P
250 11 s
HnI vy T2 Tecp(l+A)
(1, <<7T) 111[14-141”’"}. T>> pe(l+4)
P aper
31+R

6.2 Elfects of Fracture Capillarity

We saw earlicr that the boundary condition pg can include the capillary pressure across the lead-
ing meniscus of the fraciure front by adding the magnilude of the capillary head p, 1o the entrance
pressure. Let us consider the cats where the fracture entrance is kept at ambient pressure so that py is
equal to p.. For a vertical fracture system (B = 0), we ask the question: When is fractuse capillarity the
dominant driving force ? Let us assume that the fractures have equal spacing and identical matrix pro-
perties so that the resulis of Table IV hold. From that table the transition time ©* from boundary dom-
inated (in this case fracture capillary pressure) 10 matric capillary-gravity dominated Nlow is seen to
occur in ‘ow period 1if p, /L, << 1, flow period 1 if 1 << p. /L, << A, and flow period III if
A << pn/L,. Here, we used the fact that 1, = A2 and Bo = po/Ls. Note that these three condi-
tions on p, are mutually exclusive so that the transition occurs at a single point in time and no rever-
sion {0 fracture capillary dominated flow occurs once it starts. It is also intercsting to note that the
fracture penelration h at lime 1 = 1  can be shown to be approximately equal to p.. Thus, the transi-

tion out of the fraciure capillarity regime occurs when the hydrostatic head of the liquid in the fracture
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becomes comparable to the fracture capillary head.

6.3 Fracture Influx Rate

The specific volumetric influx rate g, is defined to be the flux per fracture flow area inwo the en-
trance to the fracture, and hence, is equal to the liquid velocity into the Fracture, The first-order asymp-
totic expansions for the influx rate are given in Table V for the constant pressure boundary valuc prob-

lem, with and without gravily.

Table V. Leading Term of Expansion for Fracture Inflow Velocity, Pressure B.C.’5

flow period no gravity gravity, pa=0
9 4
\szf PD"'} Kfﬂ
1 —;'f'm' ﬂzﬂ T2 t<<po
1.0, T>> 5,
T(54) 14 1 TQMA) = .2
n ﬁI‘(SM)r 5 l"(3/4)\lp_°r ., T<< g
';'t'- T3> Py
I (5/4) _ = _ -
IIta ﬁ-l"‘-!(iﬁ)L Ty % %\lp_n (2D, T<< pozfi'n
§| T>> f’az"‘az
1 Po
1 B ST \/ “Po_ i rech
2 + (L+A) 2040 T, tacp(l+h)
1.0, T>> po(14A)

These expressions were obtained by applying Laplace transform techniques [Nitao, 1989]. Note
that the flux decays as a power of time for the no-gravity case. The gravily case decays in a similar
fashion until the transition time £ is Teached. For times greater than ¥ the specific influx rate for the
gravity case becomes, 10 the first order, approximaiely a constant in time, varying within the relatively
narrow range of K¢ B o K, p/2. Influx rates determined by the numerical solutions to the integro-
differential equation with no capillarity confirm this fact (see Figurc 8). This observation is also como-

borated by the fact that when we substitute the expression for g, from Table V, column 2, for ug in
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Table 11, column 1, we obiain the same leading order term for A as in Table II, column 3.

Note that the influx ratc for the no-gravity case varics with respect to time as 172 for early and
late times, as in a typical imbibition process for homogeneous media. But, for intermediate times a
higher rate 1~* is seen 10 occur, unlike homogeneous media. Upon integrating these expressions with
respect (0 time, the cumulative imbibition flux into a highly fractured horizontally oriented core with
longitudina!l fractures varies as ¢! at early and late times but has an intermediate period where the
cumulative flux picks up and goes approximately as t¥*. A qualitatively similar effect is expected to
occur for a heterogencous porous media with twe highly separated modal distribution of pore sizes.
Althaugh for early or late times the imbibing fractured medium can be considered 10 behave as a single
effective homogeneous porous medium, we see that during the intermediate flow period this conclusion

is not valid,

6.4 Front Continuity and the Drainage Capacity of Fractures

We now apply the resulis of the previous subsection to the question of front continuity and
drainage capacity for a pond, or pool, of water drained by a fracture. Suppose that the pond is charged
solely by a constant volumetric flux gp of walter (this flux as many of those in this paper are specific
fluxes relative 10 the wransverse width of the fracture). Gravily is present, and we assume that initial
depth of the pond is negligible so that the resulting hydrostatic head at the fracture entrance is approxi-
inalely zero relative to ambicat. We restrict ours .lves here 1o sufficiently laic times when fracture

capillarity is not imporant.

1f the pond is of finite extent, the flux into the pond must equal that which drains into the frac-
tare, i, ¢g¢ = 2b qr, in order that a constant level is maintained. As before, gy is the specific flux
into the fracwere. Obviously, if the flux into the pond exceeds the fracture flux, the pond will rise while
if the flux is less, the pond will sink, and the front of water will no longer be continuous from the frac-
ture entrance to the leading front. Since Figure 8 gives the fracture flux, we can deduce when these
cvents occur, I gp/26 K, B £ 1, we must have g¢ /K, B < 1 in order (o maintain a constant pond
level. But, since ihe fracture flux is scen in Figure 8 1o always lic above this value the pond level will
decrease, and the fracture liquid front will separate. Under these conditions the fracture is able 10 drain
the pond. If gp /26K, P > /2, we have g, /K, b > /2, From Figure 8, the fracture flux always

lies below this value so that the pond level will rise, and the fracture is not able to dra : the pond. In
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between these two fux values, the pond will drain for early and Jate times but will risc at intcrmediate

times.

6.5 Matrix Flow Regions

In section 4 we showed that matrix saturation field can be classified by depth inlo various zones,
or flow regions, based on the flow periods. In general, the division of the two matrix blocks into zones
will be different on each side of the fracture. For simplicity, consider the situation where the matrix
blocks have similar properties so that their zones are the same. Table VI lists asymptotic approxima-
tions of the lengths of zones I and I which were derived for times ¢ >> 2t,, bascd on the asympiotic
expansions of Table II. They are made dimensionless through dividing by L, which would be the frac-
ture penetration distance at time 4, if no matrix imbibition occurred. Noie that for the influx boundary
condition and gravity-driven cases (columns 1 and 3 in Table VI) the dimensionless length of zonc 11
approaches a constant equal to A - 1 at infinitz ime. Hence, in the limit, the matrix imbibition front
lags behind the fracture front by & fixed amount. Scveral theoretical and experimental investigations
have reported this result [Bokserman, et at., 1964; Marle, 1981]. To our knowledge, this paper is the
first to mathematically derive an expression for this length. Recall thai A is the ratio of the initial unsa-
turated pore volume in the matrix to the fracture. In many cases this ratio will be much greater than
one, and therefore, L -~ 1 = A, Hence, in such cases, the dimensionless distance that the matrix lags
the fracture front is equal to the ratio of the initial pore volume in the matrix to the fracture volume,
which is the same value for the lag length as given in the above references.

For the pressure boundary condition with no gravity (column 2), the lengths of zones I and 11
approach zero at infinite time. Hence, in the limit, the matrix front catches up with the fracture front
The disappearance of zones I and 11 is indicative cf equilibrium being attaincd between the fracture and
matrix saturation fields along the entire weitted intcrval of the fracture.

Table VI. Expansions for Flow Region Lengths, 1 >> 21,, A 2]

1 2 3
dimensionless flux b.c. pressure b.c pressure b.c
length no gravity gravity, po=0
T 1
Z'L ! ——
1Ly T {l+a) Tt 17(1 + &)
1 A-1
ZyL - = n L -
2Ly A-1 TS 1 r-1
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7. Asymplotic Fracture Penetration Profiles

It is an intcresting fact that the firsi-order terms of all of the asymptotic cxpansions are powers in

time £ ~ 1™ and, when plotied on a log-log scale, will form a series of straight line segmenis with a
corresponding slope m for each flow period. In Figures 9 to 13 we Lave drawn the generic "penetration
profiles” for the three types of boundary conditions that were considered. The line segments are labeled
with their respective slopes. For simplicity, we have restricted ourselves in these diagrams to the case
when the fracture spacings are equal. Note that in figures 9 and 10 there is a single family of dimen-
sionless curves parameterized with respect 1o A. For figures 11 ic 13 the curves are characterized by A
and Po- Recall that the parameter B, is the ratio of the drop in pressure head across the front (due 10
boundary head at the entrance and the capillary head a1 the meniscus) to PL, (also recall ihat
Ly = K;Bu). Figure 11 comesponds to the case when pg < 1. The first line segment on the lcft
corresponds to the flow period during which the pressure drop is small reiative to the hydrosiatic head.
For the case in Figure 12 when 1 g Py £ A, the pressuse drop is larger than the imbibiuon-free head
so that the the boundary pressuse dominated regime extends past t© = 1 into the time period 11,
1 <t g 1,. Figure 13 cortesponds to the case where A < pp and is boundary pressure dominated

until ©° = pgh in period 111, 1, < T

These plots have the potential o become useful calculational iools, and are particularly helpful in

visualizing the dependence of the asymptotic solutions on the various parameters.

8. Parameter Variation

We now consider the cffect of parameter variation on the fracture penetration for a particular
geometry. Consider a vertical fracturc with the boundary pressure at the ¢ntrance kept at ambient con-
ditions. Such a boundary condition would occur if a shallow pond was present at the cotrance.
Because of the vertical orieniation, gravily is present. The initial saturation and material properties of
the iwo matrix blocks bounding the fracture are assumed to be identical. The expressions for the frac-
ture penetration h are listed in Table VI and are dimensional in order to illustrate the dependence on

the various system paramelers. It is important to note that this table assumes that we stay swithin a
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single flow period as the parameters are varied. In some cases, because of large parameter changes, we
may switch into a different flow period. Although these expressions are based on first-order asymptotic
approximations, comparisons with numerical calculations indicate that they adequatcly rcpresent the
proper parameter sensitivities. We have assumed that the diffusivity ¢ can be approximated as a con-

stant. In order io separaic the dependence of the diffusivity on the porosity and conductivity, we write

6 = K,x/¢

The constant ¥, is defined here 10 be some averaged value of k, dy/dS where &, is the rclative conduc-

tivity and W is the capillary head as a function of sawration. The time constants can be writlen as

47 h? \

=8 8.1

S (S 7 Y 2 @b
- ::a’g

ln = (8-2)
Knx

Table VII. Dependence of Fracture Penetration on Parameters (g = 0, equal matrix propertics)

Flow Period 1. h o~ Kt
Gt gy

. [
Flow Period II. ~ —1—1/w" 12
ow Peri ] -8, QK..x'

Hh 1 g,

Flow Period 1. - — &
T+ad( - 8)/b
K b
i, <t h o~ — i -
< a¢(l—S.-)' if ao(l-58) >> &
B~ Keu ifad(l~S) << &

In Table VII we see that & depends linearly on X, for all times. We also sce that the A versus
K., dependence is significant only during flow period 11. Ho-ever, from (8.1} and (8.2}, we see that the
time constants which define the ranges in the flow periods, ¢, and t, vary as K,, ™. During flow period
1 the fracture penetration h is insensitive to the matrix porosity ¢ while it varics as ¢~ during period
1I. During period IIL, if @ ¢ (1 - §;) >> b, the sensilivity 1o ¢ becomes cven more pronounced, with i
varying as ¢~'. Regarding the initial matrix saturation S;, if we ncglect the dependence of x on S,, w:
have that 4 varies as (1-S;)™ during flow periods II and I while it is inscasitive 1o §; during flow
period 1. As expected, only during flow period 11l is 4 scasitive to the fracture spacing a. However,
the time constant «, is very sensitive 10 a, varying as a>. In order to elucidate the depencence of & on

the fraclure half aperture b, let us suppose that the saturated fracture hydraulic conductivity K, varics
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as b2 in accordance with some form of the widely used "cubiz law" as given by Pouiselle flow theory
(see, for example, Huyacorn and Pinder [1983]). Thus, the fracture penetration # varies as »? during
flow period 1 and as &3 during period IIl. During period HI the fracture penetration b varies as b? if
ad(l-5;) << b and as b if ad(1-5;) >> b. It is, perhaps, not surprising that k is most strongly
affected by the fracture aperture &. Note that the time constant ¢, is also sirongly dependent on frac-
ture aperture, varying as 2. Note that the "hydraulic” aperture used in the cubic law need not be equal
to the parameter & in this report which is the "volumetric" aperture. In practice, on may take the

hydraulic aperture (o be smaller than the volumetric aperiure.

A detailed examination of the firsi order asymptotic approximations of the fracturc penetration h
in column 3 of Table 11 reveals a striclly monotonic relationship between £ and the parameters X, 1,,
and ¢, throughout the various flow periods. During all flow periods & varies linearly with &7, With
respect 1o the time constants ¢, and ¢,, the fracture penetration 4 varies as ¢, ' during flow period I
and as (1,/1,)'? during period 111 if (1, /t,)"® << 1. Based on reasonable estimates of K, 15, and 1, it
is possible to obtain an upper bound appreximation of £ throughout flow periods ! and I1. For later
flow periods, the asymptotic approximations ~f A are not conservative, in the sense of heing an uwpper
bound 10 fracture penctralion, but are seen 10 compare reasonably well with the numerical solutions. In
performing calculations that are to be conservalive with respect to fracture penetration depth, one
should therefore overestimate ¢, and undesestimate 4, Compansons with numerical solutions suggest
that the asympiotic approximation is generally a strict upper bound for ¢ < r,, and a reasonably close
approximation to the solution for r > ¢,,. Of course, these conclusions rely on the assumptions in our
theory.

The dependence of the fraclure peneiration on 7, and i, has a firm physical interpretation.
Increasing 1, or decreasing f, comcsponds to decreasing the matrix imbibition flux. Hence, a greater
fraction of the liquid remains in and continues to flow down the fracture, resulting in an increase in the
fracturc penctration rate. This physical reasoning applics even for siluations with spatial variations in
m. X propertes.

An upper bound to the fracture penetration £ can be estimated by choosing conservative values of
1, and 1,. Tlis approach applies even {or situations in which the matrix propertics vary with respect 1o
longiwdinal pcsition along the fracwre. However, the asymptotic approximations were derived under
the assumption thalt matrix propertics do not spatially vary transverse to the fracture.  Any spatial varia-
tions in matrix properties, such as -cduced permeability in a region near the fracture, would require that

a new imbibition function be derived, cither analytically or numerically, which will conscrvatively
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underbound the Jocal imbibition Aux for all longitudinal locations along the fracture, This new imbibi-
tion function would then be used to rederive the asymptotic approximations through the use of the tech-

niques described in Nitao [1989).

9, Comparison with Numerical Solutions

In this section we give a bricf overvicw of the comparison of the asymplotic solutions with thosc
obtained numerically. The asympiotic expansions were compared with two separate types of numerical
solutions, The first approach involved comparison of the asymplotic solutions with numerical solutions
of the integro-differential equation (3.11). The method of solution is given in Niwo [1989). The first-
order asymplotic solutions along with the numerical solution arc given in Figure 14 for the case of
gravity-driven flow with the fracture entrance kept at ambient pressure. Note that the asymptotic solu-
tions adequately capiurc the behavior of the solution and except for lae times, appear to be conserva-

tive upper bounds to the fracture penetration by the liquid front.

The integro-differential equation upon which the analytical theory is based was derived under the
assumption that the flow in the matrix is orthogonal to the fracture. In actual fracture systcms this
assumption may not be exactly satisfied. Moreover, under cerain conditions, the flow in the fracture
may be belter represented as that in a porous medium rather than a {ront, as we have assumed. It is
desirable then 1o compare our solutions with a two-dimensional simulation not comainirg these a priori
assumptions. Therefore, the second numerical approach used in our comparison invelves the two-
dimensional simulation of fracture/mairix Row using a modified version of the TOUGH integrated finite
difference code [Preuss and Wang, 1985; Nitao, 1988]. The code simultaneously solves threc balance
(continuum) equations for three components: air mass, water mass, and energy. (Although the energy
balance was solved in our simulations, it is extraneous since our simulations were under isothermal con-
ditions.)

The properties of the fracture used in the two-dimensional simulation are the same as those used
by Buscheck and Nitao [1988a]. The model represents one out of an infinite set of fractures that arc
vertical and uniformly spaced. By symmetry, we need only model half the fracture and the matrix that
is on onc side; a lateral no-flow boundary is placed dov n the center of the (racture, and another down .
the center of the matrix block 10 represent the symmeuy line with the neighboring fractere. The frac-

ture is represented by a ventical column of grid blocks with porous media propertics considered to be
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characteristic of variably saturated flow in a fracture with a nominal aperture of 100 pm. The absolute
permeability of the fracture is bascd on the "cubic law" for flow between parallel plates as given by
Pouiselle flow theory. The fraclure rclative permeability curve is estimated by Wang and Narasimhan
[1985) based on a simple concepteal model of fracture flow. The sucuon pressure versus saturation
curve for the {racture was extrapolated, using the Young-Laplace equation [Adamson, 1982), from a
curve which Wang and Narasimhan [1985] estimated on the basis of a simple concepal model of frac-
ure flow. One mun was made with this suction curve while another run was made with suction set
identically to zero in the fracture to see the effect of fracture capillary. In order to facilitate the
imerference between neighboring fractures to occur early in lime a small fracture half-spacing of a =

2.26 cm is assumedq,

As in Buscleck and Niao {1988a), the matrix prcperties, including the characteristic curves
which are non-linear, are based on measurcments made by Peters and others [1984] on sa~-le G4-6 (a
sample of Topopah Spring densely welded tuff cored at a depth of 1158 feet within the repository inter-
val at Yucca Mountain). The matrix porosity and initial saiuration are taken to be 20 and 65 percent,
respectively.

Table VIII is a summary of the fracture and matrix properties used in the two-dimensional model.
The first six properties apply to the two-dimensional model. The last two, o and ¢,, are parameters
required in the comparison with the asymptotic approximation. Recall that ¢, is the approximate ume
a1 which the cumulative matrix imbibition flux is comparable to the specific fracture volume. For early
limes ¢ << (,, it can be shown (Nitao, 1989] that the first-order asymptotic approximation of the

instantaneous specific volumetric imbibition flux, g, is given in terms of ¢, and # by

b
~ 9.1
7~ T 9.1
[ntegrating (9.1) with respect to time, we get the cumulative imbibition Qux, Q,,:
On ~ 2B, 6.2
By selting ¢ = {, in (8.2), we get:
0, ~ 2 5.3

One practical way of determining ¢, is as follows. From a one-dimensional inaltix imbibition
model (where the upstream boundary condition is maintained at 100 percent saturation), the imbibition

penetration depth of the saturation front into the matrix, d;.s is plotted against time. The front position



32-

can be taken to be the point where the saturation is equal to the average of the maximuwn and initial
satrations. The time that corresponds 10 di., = 2b6/(¢(1-S;)) is cqual to f,. The effective matrix
diffusivity, ©, is obtained by applying this value of ¢, 0 equation (4.5). We applicd this procedure o
our example using the plot of log d,,, versus log ¢ found in Buscheck and Nitao [1988al. Another
method would bc to plot the cumulative imbibition flux. The time at which the flux cquals
261 {p(1-5;)) is 4.

In comparing the plots of log & versus iog T obtained from the first-order asymplotic approxima-
tion and the two-dimensional numerical model (Figure 15), we find the two methads agreeing reason-
ably well. The figure shows two numerical solutions, one with fracture capillary, the other withoul.
The asymptotic solutions given for these two cases are different only for carly times + << pg when
fracture capillarity dominates. Since the two-dimensional numerical model models the fracture flow
characteristics as a porcus medium with a saturation-dependent capillary suction curve, it is not
immegdiately obvious which value of capillary pressure drop p, to usc in the expression for the non-
dimensional pressure drop term pg (= p. /K, 1,) needed in the asympiotic expansions. In column 4 of
Table II we see that the lowest-order contribution of the suction during flow period II is a constant term
2 5o/ (—2) so that the difference between a simulation with and without fracture capillarity will enable
us to solve for this quantity. This fact was confirmed in our simulations. The value we obtained from
this procedure, po = 0.3, was used in oblaining the asymplotic expansion for T g P shown in Figure

15.

During Bow period II (T, < T < 1,), the asympiotic approximations and the two-dimensional
model both result in a slope of m = 0.5. The small reduction in fracture penetration predicted by the
two-dimensional model relative to the asympiotic solution is prmarily the result of relative permeability
effects in the fracture. [t appears on the logarithmic plot as an almost constant downward shift in the
two-dimensional model curve. Recall that while the asymptotic solution assumes front flow in the frac-
ture, the two-dimensional model utilizes a relative permeability curve for fracture flow. The 26 percent
reduction in fracture penetration corresponds 10 a fracture relative permeability, k£, = 0.74. Based on
the fracture relative permeability curve, k, = 0.74 corresponds to a fracture saturation of 95 percent.
We found that for much of the wetted interval during flow period II, the fraclure saturation is close (o
95 percent. During ow period III (¢, < 1), the two methods agree very well, with both methods yicld-
ing a slape of m = 1. Because for much of wetted interval of the matrix is fully salurated, capillary
cquilibrium between the matrix and {racturc (in the two-dimensional model) results in the fracture heing
fully saturated (comresponding o &, = 1). Conscquently, saturation conditions in the fracture (in the

two-dimensional model) result in front flow and there is no reduction in fracture penctration (relative to
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the asymptotic solution) as was observed during fow period 11,

This numerical simulation with ils two-dimensional description of matrix flow with gravity and
saturation dependent diffusivity function serves 10 confirm the validity of our basic assumptions under-
lying our simplified goveming equations. Percentage deviation between numerical and approximate
analytical sclutions is greates! in the transition between flow period 1 and /1 and is about 50 percent.
Although using higher-order terms may decrease this figure somewhat, we revall from the previous sec-
tion that the problem is highly scnsilive to various parar “ters such as the fraclure aperture that arc
difficult 10 measure and are found to have high variability in the field. Thus, we feel that for most

applications it is inappropriate and of dubious value to seek more complex solutions of higher accuracy.

Table VIIL Fracture and Matrix Properties Used in the Twg-Dimensional Fracture/Matrix Model

45 wn
2.26 cm
K, 8.17x107 mss
K, 1.86x107"! mis
9 20 percent
) 65 percent
N 419 s
o 3.10x10® m¥s

10. Conclusions

We have analyzed various physical processes involved during one-dimensional fracture-dominated
flow conditions in an unsatrated porous medium. Such a hydrological condition corresponds most
likely to relatively high fluxes such as under ponding conditions at the fracture entrance. For various
constanl boundary conditions, approximate solutions 10 the movement of the liguid fracture front were
derived. They show that the flow undergoes threc major time periods characlerized by physically inter-
pretabic lime constants. The first time constant /4, is the time required for the matrix to imbibe a
volume equal to that of the fracture storativity. The sccond is the lime f, for the imbibition front 10
rcach the no-flow symmetry linc of the neighboring fracture. The first tme period occurs when
1 << . lhe second when ¢, << t << {,, and the third for ¢, << . Transition periods occur

between these main periods. The flow in the matrix can be divided into zones corresponding 1o the
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three major flow periods. In many cases il can be shown that, for sufficicntly large time, the front in
the matrix lags behind the fracture front at a fixed distance. Asymptotic solutions were given which
show that the approximate quantitative behavior of the liquid front can be convenicntly represented by
line scgments when ploted on a log-log scale. The solutions can be used 1o understand the dependence
on various physical parameters. We noted that in the case of constant boundary pressure head at the
fracture entrance, the flux into a downward-inclined fracture under the influence of gravity was shown
10 be nearly constant in value. Thus, the fracture, in this case, acls to a certain extent as a flow rate
regulating system. For a horizontal fracture the cumulative infiltration rate was shown to have an inter-
mediate period during which it has a > time dependence as opposed 1o the 22 cncountered in imbibi-
tion into a homogeneous medium. Therefore, a fraclured medium cannot always bc approximaicd by a
single homogeneous porous medium. We also showed how the theory has implications to the drainage
capacity of a fracwre and to what flux conditions under which the liquid front of water in the fracturc
remains a continuous phase.

Comparison between the asymptotic and numerical solutions confirm the validity of the approach.
Our solutions have the potential for estimating the front movement in many practical applications. In
addition they present a better quantitative and qualitative understanding of the flow in a fracture in
unsaturated porous media. These solutions may be helpful in the verification of numerical models of
fracture fow.

There is still much work left 10 be done. Some of the arecas which we hope to study arc listed as

follows,

1. determine the range of validity of the approximate analytical solutions
2. find what new effects are present in two-dimensional fracture flow

3. extend the analytical model, if possible, to fracture networks

In Pan JI, which is a compznion paper [Nitao, 1989], we give the derivation of the asymptotic
solutions presented in this first part. It includes, in some cases, closed form solutions, and the time
dependent boundary value problem is also considered. Future work will present numerical cimulations
of fracture flow including interpretation of the results using the theory described in this paper. The
transition point between fracture and matrix dominated Nlow will also be described in a futwre work, A
report is also being planned to discuss the implications of our analysis ncluding practical applications in

the context of nuclear waste disposal al the proposed Yucca Meuntain repository site.
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