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MODELBASED INTERNAL WAVE PROCESSING 

J .  V. Candy D. H. Chambers 
Lawrence Livermore National Laboratory 

A model-based approach is proposed to solve the oceanic internal wave sipal processing 
problem that is based on state-space representations of the normal-mode vertical ve ocity and plane 
wave horizontal velocity propagation models. It is shown that these representations can be utilized 
to spatially propagate the modal (depth) vertical velocity functions given the basic parameters 
(wave numbers, Brunt-Vaisala frecluency profile etc.) developed from the solution of the associated 
boundary value problem as well as the horizontal ve1ocity.components. Based on this framework 
investigations are made of model-based solutions to the signal enhancement problem for internd 
waves. 

I. INTRODUCTION 

When operating in a stratified environment like the upper ocean with relatively sharp density 
gradients, then any excitation that disturbs the pycnocliie (density profile) will generate i n t d  
waues that propagate away from this region (Apel,[l]). Internal waves are volume gravity waves 
having maximum vertical displacement typically at a plane where the density gradient are largest 
and are detectable far above and below this interface (Clay,[2]). They can be generated from tidal 
flow against islands, sea mounts and continental shelf edges or surface/internal wave interactions 
created displacements in the pyncocline. For instance, a ship traveling along the surface of a 
stratified ocean creates various visible wakes: the turbulent or centerline wake, the Kelvin wake 
and, of most interest in this work, the surface generated internal waves. Internal waves have been 
measured experimentally both in controlled environments as well as the open ocean (Garrett,[3]) and 
observed using synthetic aperture radar processing techniques from satellite imagery (Alpers,[4]; 
Thomprson,[5]). From the scientific viewpoint, it is of high interest to understand the &e& of 
internal waves on acoustic propagation in the ocean [2] as well as the ability to measure their effect 
directly using current sensor technology. Military applications are obvious, since a submerged 
body moving through the ocean environment disturbing the pynmline generates internal wave 
signatures. 

The inclusion of a propagation model in any oceanic signal processing scheme provides a 
means of introducing environmental information in a self-consistent manner. Recent work in ocean 
acoustics (Candy and SuUivan,[S]) has shown that a propagation model can be imbedded into a 
signal processing scheme to solve various enhancement, localization and detection problems. In 
this paper, we propose a model-based approach to the internal wave signal processing problem 
founded on a statespace representation of the normal mode and plane wave models of propagation. 
Specifically, using the normal mode model of the wave velocity field, the vertical velocity modal 
functions and the horizontal velocity can be estimated from noisy sensor array measurements in 
the following way. First, the propagation model is cast into state-space form. It is shown that this 
representation can be used to propagate the modal functions, given the basic parameters (wave 
numben etc.) developed from the solution of the associated boundary value problem. There tire 
basically two sets of equations in this representation: the state equation and the measurement 
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equation. The state equation describes the evolution in space of the vertical velocity modal and 
horizontal velocity functions, whereas the measurement equation relates the states to the actual 
array measurements. In the stochastic case, an approximate Gauss-Markov representation evolves. 
Once this framework is established, as will be shown in what follows, we investigate model-based 
solutions to the signal enhancement. We characterize a realizable, recursive processor as shown in 
Figure 1 (Candy,[q; Jazwinski,[8]). 

In the next section the state space representation of the internal wave propagation model 
is developxi for both vertical and horizontal propagation. In the vertical, the so-called "forward 
propagator" is defined, while in the horizontal, plane wave propagators adequately characterize 
the propagation. Next the measurement equations are developed for both a vertical and then 
horizontal 8ensor array. The state-space model is then explicitly formulated for the case of all 
model parameters known where estimates of the velocity field and the modal functions are made 
and various noise models can be exercised in order to simulate different sources of modal and 
measurement noise. Next a dispersive internal wave model-based processor is designed which uses 
a horizontal array of sensors modeling the configuration employed in the Loch Linnhe experiments 
performed in Scotland during the summer of 1994. It is shown that the internal wave can be 
successfully estimated from noisy measurements. The final section summarizes the results. 

I I Measurement Estimate 

State (Wave) Estimate E 
Processor ResidualAnnovation Estimate I 

Figure 1. Basic Internal Wave Model-Based Processor. 

11. INTERNAL WAVE STATESPACE PROPAGATION MODELS 

In this section we investigate the feasibility of developing state-space propagation models 
from the corresponding internal wave dynamics. The development of the wave equation associated 
with internal wave propagation evolves from the small perturbation momentum equations under 
the assumptions of linearity, incompressibility, zero mean shear, a Bowinesq fluid, fiat or slowly 
varying ocean bottom, and a horizontally homogeneous or slowly varying density field. Under these 
assumptions, the small perturbation component momentum equations governing the propagation 
of the vector velocity field defined are by x(z, y, z, t )  := [u(q y, z, t)v(z,  y, x ,  t)w(z, y, z, t)]' where u, 
v ,  w represent the respective on-tmck udocity, cross-tmck velocity, and uertiml velocity components 
of the vector velocity field. 

. 
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Tb solution to the homageneous wave equation is accomplished by using the separation of 
variables approach (see Apel,[l]) with velocity function given by w(z,y, z, t) = p(z)u(y)q5(z)r(t). 

where plane wave propagation in the respective horizontial dimensions, p and u are identical, 4 
is the vertical distribution and r is the corresponding temporal function. Substituting, collecting 
terms, etc., it is possible to show that the function associated with each independent variable can be 
separated yielding a set of coupled ordinary differential equations with the corresponding separation 
constants shown as 

= O  

= O  

where tcZ and + are the horizontal wave numbers with I E ~  = K ~ + I E ; ,  and w2 the temporal frequency 
(a function of ~ h ) .  These relations describe the dynamics of the vertical velocity component of an 
internal wave in a constant depth ocean. It is clear that the first two and last equations above admit 
harmonic solutions, that is, p(z) = eiSZ v(y) = ei+v ~ ( t )  = e-’wt while the depth relation is 
an eigen-equation in z with 

whose eigen-solutions { &( z)} are the smxdled modal functions associated with the vertical velocity 
component, ~h is the horizontal wavenumber, N ( z )  is the Brunt-Vuisalafi.equencyprofile (BVP) and 

is the corresponding eigenvalue associated wtih the m*-modal function. State-space models 
will eventually be employed as “forward” propagators in model-based signal processing schemes 
(Candy,[7]). Note that this approach does not offer a new solution to the resulting boundary 
value problem, but, in fact, it requires that solution be available a-priori in order to propagate the 
normal-modes rnursively in an initial value scheme. 

Since Q. 2 is a linear, space-varying cuefficient (for each layer) differential equation, it can 
easily be placed in state-space form where the state-vector for each mode is defined as x, := 
[&(z) $&42)]‘. Examining mode propagation in more detail, we see that each mode is charac- 
terized by a set of ordinary differential equations which can be written as 
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where u(z) = % is the source driving function (a scalar in our problem). With the parameters 
 KC^}, N ( z ) ,  {urn}] known, we see that we have constructed a fonuar& prvpagutor for this problem 
driven by the murce and initial condition vector, &(a) for each mode. nom linear systems 
theory (see Chen,[S]), it is well-known that the general solution to this equation is governed by the 
statetransition matrix, @(z, a), where the state equation is solved by 

and the state transition matrix satisfies 

with @,(a, a) = I .  

If we include all of the M-modes in the model, then we obtain 

Ai(%) * e -  0 
d : ] x?&)+ [ :(%) ] U(Z) 

0 - - -  AM(%) BM (4 

or simply 

The general solution to these modal statespace vertical velocity propagation equations are 
given by m. 10 over all the modes as 

: 
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and as before the state transition matrix satisfies 

. 
(9) 

The solutions in the other horizontal dimensions, x, y are also possible in state-space form, if 
desired, and take on the same form for each relation with the separation constants interchanged. 
For instance, the component v(y) satisfies the following state equations with the state vector d&ed 
as x(9) := w %V(Y)l' 

where 

AY:= [ -6; 0 ' 1  
which gives the plane wave solution of Eq. 7 above. We note that in this formulation the s h i n  &e, 
which is an important quantity for radar images, appears as a component of the state vector. Thus, 
we see that using the state-space formalism enables us to char- the propagation (forward) 
of the vertical internal wave velocity component which will prove useful for processing. Next we 
consider characterizing the corresponding measurement system. 

Sensor technology enables us to measure components of internal wave cross-track velocity at 
depth x ,  u(z, y, E, t) as well as on-track velocity u(z, y, E, t). Let us investigate the deployment of 
a horizontal array of current meter s e m m  witioned to measure the cross-track velocity. Actual 
sensors sample the cross-track velocity in time at given spatial positions. To obtain the semr 
output we must specify the functions p(x), v(y), and ~ ( t )  as well as 4&). The measurement at 
the n* horizontal sensor at the location (zn,b,zl) is given by 

where A is a complex amplitude, and w ( 6 h )  is the angular frequency which is a function of the wave 
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number magnitude given by, K h  = \/.2 + IC;. The sensor measures the real part of the velocity 
field so we can write (using the magnitude phase form of A) 

Since we have M-modal velocities, then (as before) 

Incorporating both the vertical and horizontal statespace representations simultaneously leads 
to the set of coupled equations: 

. 

which is the equivalent of a twedimensional measurement taking into account both vertical and 
horizontal velocity measurements. So we see that the state-space representations enables dot of 
flexibility in modeling both the phenomenology (internal wave dynamics) as well as the 8ccompa- 
nying measurement systems. 
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This constitutes a complete deterministic representation of the normal-mode and plane wave 
models in statespace form. However, since propagation in the ocean is effected by inhomogeneities 
in the water, slow variations in the BVP and motion of the surface, the model must be modified in 
order to include these effects. This can be done in a natural way by placing the model into a Gauss- 
Markov representation which includes the second order statistics of the measurement as well as the 
velocity noise. The measurement noise can represent the near-field velocity noise field, flow noise on 
the current meter and electronic noise. The modal noise can represent BVP errors, distant shipping 
noise, errors in the boundary conditions, sea state effects and ocean inhomogeneities. Besides the 
ability to lump the various noise terms into the model, the Gauss-Markov representation provides 
a framework in which the various statistics associated with the model such as the means and their 
associated covariances can be computed. This completes the statespace respresentations of internal 
wave dynamics. Next we investigate horizontal solutions using dispersive plane wave representations 
in the next section, develop the model-based processor, perform various simulations and apply the 
results to a c t d  measurement dsta. 

111. CROSS-TRACK VELOCITY ESTIMATION 

In this section we use a model developed for the nondispersive case [12] and extend it to the 
dispemive by including more sophisticated dispersion mudels based on some empirical results [13] 
and approximating the appropriate temporal derivative. To extend these results (approximately) 
to the dispersive case, that is, the case where the temporal frequency is no longer constant (nar- 
rowband) but varies temporally, we return to the original development of the plane wave processor 
of the previous section. Recall that the states were defined as, x(t)  := [v(t)2v(t)lT and now from 
Eq. 45 with both frequency and wave number temporal functions, we have 

From our definition of the temporal state vector, we have that ~ ( t )  := cosw(t)t and approxi- 
mate its corresponding derivative using 

[ st] sinw(t)t = -w(t> sino(t)t d 
dt --7(t) = -o(t) 14- 

Defining the notation for the dispersive case, we have for the @“-sensor 

therefore, the measurement becomes 
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Next we must develop the relations for the dispersive case. For a plane wave propagating in 
the ydirection, the value of wave number at time t is a function of p u p  speed ~ g ( ~ y ) ,  that is, 

with corresponding temporal frequency w (% (t) , t) . Using the Barber approximation [ 131 for internal 
wave dispersion and group speed, we have 

~ ( Y c ,  t) = ~ ( t )  cosw(t)t - sinw(t)t = CXC(~)TI(~)  - #k(t)w(t)n(t) (21) 

and 

Substituting Eq. 24 for % in Eq. 22 and solving for the wave number at the eth-sensor, we 
obtain 

Substituting this result into Eq. 23, the corresponding temporal frequency is given by 

w&) =No (1 - t > - YC 
c o  

Fhrther assuming a bandlimited pulse with minimum frequency o, and obsexvation time at 
the e'h-sensor given by 
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and defining the time index as t = td  + t k ,  t k  > 0, then we can obtain an expression for the 
temporal frequency as 

It should be denoted that this dispersive model is based on the fact that the onset has been 
detected, that is, the appropriate time delays estimated. In our case we use Eq. 27 to calculate 
the appropriate delays once an onset is established at the specified sensor. When we show the 
measured experimental data, it should be noted that we selected this onset time and then applied 
the processor. A more sophisticated approach would be to find the "optimal" onset based on these 
models, but this is left for future work. Now if we return to the central difference form for the 
equations, we obtain the approximate spatially-constrained, dispersive state-space representation 

and with corresponding discrete cross-track velocity array measurements (in this coordinate system) 

V ( t k )  := 

In this coordinate system the initial condition vector is given by 
1 
0 

--- 

--- 
cos(rc,(l- 1)A) + w(tk)Atsin(rc,(L - 1)A) 

w ( t k )  sin(%(L - 1)A) 
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With this apprmimate dynamic dispersive model, we developed a Gauss-Markov simulation 
with the corresponding frequency and wave numbers varying temporally according to the dispersion 
relation. This presents no particular problem in the Gauss-Markov formulation, since it can support 
nonlinear dynamics as well as nonstationary statistics. We performed the simulation with the same 
basic set of parameters and the results for a -13dB SNR were quite successful indicating an optimal 
design. 

Next we consider the application of the dispersive model-based processor to an internal 
wave field experiment performed in Loch Linnhe, Scotland in September of 1994 (Mantrom,l4]; 
hbey,[lS)). The general objective of this experiment is to examine the relationship between mod- 
ulations observed in radar images and ship generated, internal waves by fusing the data with that 
measured by an array of current meter sensors. Loch Linnhe is a narrow, salt water estuary located 
on the west coast of Scotland which passesses favorable subsurface environmental conditions (strat- 
ification) which are conducive for the generation and propagation of internal waves. The internal 
waves are generated by surface ships with concurrent oceanographic measurements (temperature, 
salinity, BV frequency, meterology, etc.) performed by other vessels in the Loch. Internal waves 
are typically imaged by airborne radar systems employing synthetic aperture radar techniques; 
however, this experiment concentrated on real aperture radar images of the waves from low-grazing 
angle marine radars mitioned on the surrounding hillsides and an array of current meter sensors 
which provide measurements of hydrodynamic currents associated with the internal waves. The 
Lawrence Livermore National Laboratory (LLNL) current meter array (CMA) measurement plat- 
form consists of ten (10) standard S4 current meters uniformly spaced at 3.75m, longitudinally, 
creating a 34n aperture, positioned at a depth of 2m .and sampled at a lOsec rate. The CMA is 
positioned to measure both cross-track and on-track velocities. A typical measurement is shown in 
Figure 3a, where we see the output of each sensor channel typifying the phase front of an internal 
wave and subsequent ambient noise. 

We p r d  the Loch Linnhe expermental data using the dispersive rather than plane wave 
processor and the results are shown in Figure 2. Here we see the differences in using the dispersive 
over the nondispersive approach. First, the processing doesn't really begin until the "onset" has 
begun and then the MBP utilizes the dispersive model, until that time a simple random walk 
model is employed (constant + gaussian noise). Next we note that each internal wave component 
temporal signal is clearly visible especially those which meet the onset criterion established by 
the dispersion relation. Those non-propagating wavefronts are attenuated quite heavily. We see 
the enhand internal wave propagating across the array based on the onset and all other events 
attenuated significantly. We note the overall selectivity of the MBP to events that "match" both 
its dispersive signal model as well as onset. This completes the development of the dispersive MBP 
for internal wave enhancement and its application to experimental data, we summarize our results 
and place them in perspective. 

IV. DISCUSSION 

We have developed the model-based approach to processing internal waves. It was shown 
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how to develop the underlying statespace representations of the internal wave propagation model. 
In the vertical, a normal-mode propagation model resulted, while in the corresponding horizontal 
plane wave propagation models were developed. Since our primary motivation was to process 
measurements from a horizontal array of current meter sensors, we developed the horizontal (plane 
wave) pn>cessors for both the nondispersive and dispersive cases. After using the model to develop 
Gauss-Markov stochastic simulations, the model-based processors were designed using the extended 
KAlmAn filter (EKF) algorithm [7] for signal enhancement. After designing the MBP, the minimum 
variance estimates were shown capable of extracting the desired wavefronts from simulated data 
quite ef€ectively. 

We then applied the various MBP t~ sets of data gathered from experiments performed in 
Loch Linnhe, Scotland during the summer of 1994 [14,15] and the results are quite promising. It 
was shown that the nondispersive plane wave MBP was capable of selecting all wave fronts that 
matched the correct temporal frequency and prescribed onset arrival times while attenuating all 
others. The dispersive MBP design apprcocimated the true dispersive solution for slow changes in 
temporal frequency and appears to be a more effective approach, since it depends heavily on the 
pre-specified wavefront onset arrivals at the array and therefore is more discriminating then the 
nondispemive design. 
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