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ABSTRACT 

This paper describes the use of Fourier techniques to characterize the wavefront of 
optical components, specifically, the use of the power spectral density, (PSD), function. The 
PSDs of several precision optical components will be shown. Many of the optical 
components of interest to us have square, rectangular or irregularly shaped apertures with 
major dimensions up-to 800 mm. The wavefronts of components with non-circular 
apertures cannot be analyzed with Zemicke polynomials since these functions are an 
orthogonal set for circular apertures only. Furthermore, Zemicke analysis is limited to 
treating low frequency wavefront aberrations; mid-spatial scale and high frequency error 
are expressed only as “residuals.” A more complete and powerful representation of the 
optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is 
obtained from the amplitude of frequency components present in the Fourier spectrum. 
The PSD corresponds to the scattered intensity as a function of scattering angle in the 
wavefront and can be used to describe the intensity distribution at focus. The shape of a 
resultant wavefront or the focal spot of a complex multi-component laser system can be 
calculated and optimized using the PSDs of individual optical components which 
comprise it. 
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1. INTRODUCTION 

The Laser Program at Lawrence Livermore National Laboratory is investigating 
aspects of the design of high power solid-state laser systems, including the proposed 
Inertial Confinement Fusion (ICF) National Ignition Facility. In order to meet NIF 
performance and cost goals, the design of th.is laser system will push current laser 
technology to the limits of performance.’ As such, the specification of the optics in the 
system plays a critical role in the design. In high power solid-state laser systems, phase 
modulations in the beam due to imperfections in the optics are transformed into htensity 
modulations. These intensity modulations can undergo non-linear gain when they occur 
at certain spatial frequencies.‘ Surface roughness of the optics also causes scatter and 
divergence in the laser beam. These are critical aspects of the system performance. 
Specification of the optics must include information about the spatial frequency of the 
phase errors present, in addition to more conventional information such as surface 
roughsss and figure error. 
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Optical specifications have been experiencing a revolution over recent years, due 
partially to increased performance requirements and partially by increased measurement 
capability. X-ray optics and other applications requiring control of surface roughness have 
driven the development of analytic techniques specifying, in detail, aspects of -surface 
roughness and scattering beha~ io r .~ -~  Standards now being proposed will not specify 
surface roughness in terms of a single number, but instead use the 2D PSD function! 
These analytic techniques have a broad basis of applicability. Our study to optimize the 
performance versus cost of proposed solid-state laser systems has determined that 
specifications based on the PSD are the most effective for controlling mid-spatial 
wavelength errors. Such errors, commonly generated by cost effective, deterministic 
finishing techniques, can be damaging to the laser, as well as causing energy loss and 
inability to focus the energy on target. We have developed a Fourier technique using the 
PSD function to analyze high spatial resolution, phase-shifting interferometric data from 
prototypic optics. These tools have enabled us to quantify the spatial frequency content of 
the optical surfaces proposed for the NE. 

2. SPATIAL FREOUENCY REGIMES OF INTEREST 

For our application, transmitted wavefront errors can be broken down into three 
spatial frequency regimes: long spatial period errors (figure), mid spatial period errors 
(ripple), and short spatial period errors (roughness). The long spatial frequency regimes 
includes any errors whose gradient results in energy still withii the acceptance angle of the 
laser target. For NIF, this corresponds to errors with spatial periods longer than 33 mm and 
includes the classical Seidel third order aberrations such as coma and astigmatism, as well 
as other higher order functions. Sensitivity to these errors is low, and amplitudes as large 
as sixth wave peak-to-valley can be tolerated. As such, wavefront errors of this type can be 
controlled using conventional optics specifications such as RMS, Peak-to-Valley, and 
wavef ront gradient specifications. 

Short spatial period phase errors, i.e. errors smaller than 120 pm, in general, do not 
create high intensity modulation through non-linear processes in the solid-state laser 
system. Portions of the beam affected by these errors diffract quickly out of the main laser 
beam or are removed at the spatial filter pinhole. These errors are result in a surface and 
bulk scattering loss and can be adequately control€ed through a conventional RMS or 
scattering specification. 

We define a mid spatial wavelength regime as any phase error whose gradient 
results in light scattered into angles which are not accepted by the target, but are subject to 
non-linear growth. For the NIF, this includes any modulation from 33 mm to .120 mm in 
spatial period. Errors in this mid spatial wavelength regime pose a serious threat to the 
high-power laser as a source of damaging intensity and are becoming increasingly 
common as cost considerations drive the industry toward highly deterministic finishing 
processes. Errors of this type are difficult to control using an RMS or Peak-to-Valley 
specificztion, since the non-linear gain which can be experienced by these errors varies by 
orders of magnitude depending on the sptial frequency. Our goal is to develop 
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specifications based on the PSD that can be derived from modeling of the laser 
propagation, which do not overly constrain the manufacturing process used to fabricate 
the materials and surfaces. 

3. APPROACH 

With the advent of phase-shifting interferometry and high resolution solid-state 
cameras, the spatial resolution and information content of phase measurements has 
grown markedly over that available from static fringe analysis. We benefit from this 
growth by utilizing the new measurement techniques. The wavefront measurements 
reported here have been obtained using several phase-shifting interferometers available at 
Lawrence Livermore National Lab.7 These instruments provide two dimensional arrays of 
wavefront information, typically expressed as waves at HeNe (6328 A), over apertures 
from approximately 200 microns square to 300 mm square. We use Fourier techniques to 
analyze wavefront data. There exist in the literature several treatments of Fourier analysis 
and the power spectral density function for this type of application."' However, to insure 
clarity in the following presentation, we will summarize the process by which we go from 
an optical measurement to the analysis of the PSD. 

3.1 Fourier domain 

For our purposes, we want to express the measurement of the phase retardation of a 
transmissive optic ( or, alternately, the phase retardation due to the reflection of a 
reflective optics) in terms of its spatial frequencies. In one dimension, we can writeg the 
phase, $(x), as a function of spatial frequency, v, i.e: 

In two dimensions, we express the phase, @(x,y), as 

For a transmissive optic, @(x) or @(x,y) corresponds to the optical path difference through 
the component, whereas for a reflective optic at normal incidence, the functions 
correspond to twice the magnitude of the surface contour. In reality, we deal with a 
continuous function of finite length and finite spatial frequency content. Specifically, we 
measure a set of N discrete, evenly spaced data points, $(n), along a length, e, or a similar 
array of N, by N, measurements, $(m,n), over an area, e ,  by tY. The frequency content of 
the finite scan length is limited to discrete frequencies less that the Nyquist cutoff 
frequency. Thus, we calculate using standard computational packages the finite Fourier 
Transform," 

Lawson 3 



N-1 

@(VI = l /N C @(n) e -j27cvx/N 
n=O 

(3) 

and 

N r l  Ny-1 

(4) 
-j2rc(vXx/ N, + vyy/Ny) @(vmvy) = U(Nx*Ny) c C Q(m,n) e 

m=O n=O 

The effect of the finite sample is mitigated by the use of a windowing function. Specifically, 
we use a Harming window in both the 1D and 2D analysis. This broadens (or 'blurs' ) the 
resulting width of the spatial frequency structure, but eliminates frequencies generated by 
the discontinuities at the edge of the sample. We also correct for the loss of signal due tG 
the application of the windowing function, ensuring that subsequent calculations of the 
PSD retain information on the surface roughness." 

We can calculate the value of the spatial frequencies as 

v (n) =rill where -(N/Z -1) < n < N/2 +1 

and, in the 2D case, 

v , ( m ) = m l l ,  where -(N,/Z -1) < m < NJZ +1 

(5) 

I vy (n) = n / ty- -(Ny/2 -1) < n < Ny/2 +1 (a) 
Variations in optical thickness of a transmissive optic or the roughness of the reflective 
surface can be calculated from the root mean square of the function, 

N-1 

rmslD = .I ( c ~ ~ ( i )  / N) (7) 
n=O 

or in two dimensions, 
Nrl Ny-1 

rmsZD = .I ( c c Q2(i,j> /(N, NJ). 
m=O n=O 

When the Fourier pair being evaluated correspond to distance and spatial frequency, 
Parseval's theorem becomes a statement of rms distance.** That is, 

N-1 

rmslD = 4 ( c I @(v) I ) 
n=O 

and 
Nrl  Ny-1 

rmszD=d(C c I W V ~ Y ~ )  I '). 
m=O n=O 
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3.2 PSD 

We calculate the PSD using the formula 

PSD(V) = @*(VI @(v) .t 

. or in the 2D case, 

While the PSD has the advantage of being a real quantity which expresses the spectral 
distribution of the surface roughness, it does not possess any relative phase information. 
Thus, specifications based on the PSD do not uniquely specify a given wavefront, but 
instead a family of wavefronts, each possessing similar spatial frequencies without 
necessarily being correlated with one another. Since the PSD in our case is the spectral 
distribution of the surface roughness, we can calculate the rrns surface roughness of any 
spatial frequency band (VI - v2) by integrating the PSD over that band. That is, 

v2 

rmslD (vl - v2) = .I ( PSDW AV 
V=Vl 

where Av = (e)-' and, equivalently, for a 2D frequency range (v,I - vd , vYl - vY2) 
"x2 vy2 

v = v  v = v 1  
X X l Y  Y 

r m ~ 2 ~  ( v ~  - v,. v p  - ~ p )  = .f ( X C PSD(v,v,) Av,*Av, ) (14) 

where Av, = ((,)-'and Avy = (lY)-'. By inspection, Eq- 13 and 14 are equivalent to Eq. 9 and 10. 

3.3 1D vs 2D 

Although the actual calculations are similar in 1D and 2D, certain aspects of the two 
analyses strongly differ. A 1D profile across a surface samples only a small portion of the 
surface and is limited by low signal to noise. 2D calculations improve the signal to noise 
greatly by using all available data to build the Fourier spectrum. The 1D results can be 
improved by taking multiple profiles and averaging the resulting PSDs. In the 1D 
calculations presented below, we are taking ten profiles across the surface, all taken in the 
same orientation. Alternately, we can compute a 1D PSD by integrating over one of the two 
variables in the 2D PSD, i.e., 

or alternately for discrete sums, 

PSD(v,) = C PSD(vwvY) Ay. 
Vy'Vyl 
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This approach only makes sense if the direction over which the integration is done is 
perpendicular to the direction of peak modulation. We accomplish this by calculating the 
2D PSD, determining the orientation of the peak values, and integrating along the 
perpendicular direction. This result can then be compared with the results of the 1D 
analysis when the 1D profiles are taken along the direction of peak modulation. 

While 1D analysis is conceptually easier to understand, actual wavefronts are often 
not uniformly random or modulated only along one direction, i.e. cases which can easily 
characterized by a3D description. Some of the wavefronts of optics which we are 
measuring have highly complex structure. Specifications are best made based on a 2 0  
analysis for these types of optics. Alternately, 1D specifications must be based upon the 
direction suffering the worst modulation. One of the primary drawbacks to making 2D 
specifications appears to be the limitations imposed by existing commercial software 
packages €or the commonly used interferometers. Until 2 0  calculations become more 
prevalent, 2D specifications will require post-processing of the measured data using 
custom software similar to that which we have written. 

3.4 PSD analvsis momam 

The analytic approach outlined above has been incorporated into a computer 
program written in Interactive Data Language@ (IDL). This language is a powerful graphics- 
oriented language developed by Research Systems, Inc. which makes array calculations 
easy to program. Standard image processing tools, such as FFT's and Harming windows, 
are integral to the language. This allows us to write the necessary calculations in only a few 
lines of code. The 1D analysis program has been written separately from the 2D program, 
although the two may be merged at a later date. 

4. RESULTS 

We show sample results from these calculations in Figures 1-4. Figures 1 and 2 are 
the results of an analysis of a 38 mm x 38 mm scan of a piece of laser glass. Weak periodic 
modulations in the phasefront are observable in the scan. These modulations have a Peak- 
to -Valley of about 100 angstroms and result in an nns surface roughness of 17 angstroms, 
calculated over the aperture shown. Figure IC demonstrates the variation in PSD 
calculated from 10 profiles (Fig. lb) chosen approximately in the direction of peak 
modulation. The average of the 10 PSDs results in a peak value of approximately 3 x lo6 
angstrom2 - micron. (Note: units listed here are those used during development of the 
software package. To scale from angstroms2 - microns to nanometers - millimeters, 
multiply the PSD shown by a factor of ) 

By comparison, the 2D analysis of the same data shows the PSD (Fig. 2b) is 

2 

2 maximum at approximately 0.15 mm-* with a peak value of 2 x 
and a width of about 0.1 mm-l. Integration of the 2D PSD over the direction orthogonal to 
the peak modulation results in the 1D PSD shown in Fig. 2d. The shape and magnitude of 
the 1D PSD derived from integrating the 2D PSD is very similar to that obtained from the 

angstrom2 - micron 
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multiple 1D profiles. Notice also that the signal-to-noise is much improved in Fig. 2d from 
that in Fig. Id. 

Examining Fig. 2b and c in more detail, a second source of modulation is observed, 
aligned with the x-axis. A logarithmic plot of the PSD (Fig. 2c) show the wealth of detail 
present in the two dimensions. Accurate modeling of this type of phasefront cannot be 
done with a 1D description. 

Figures 3 and 4 duplicate the figures discussed above, except that they deal with a 38 
mm x 38 mm transmitted wavefront from a potassium di-hydrogen phosphate (KDP) 
crystai. The crystal had been finished using a diamond turning process and has an rms 
surface roughness of 58 angstroms over the wavefront shown. The ID analysis shows a 
very strong peak ( about 8 x 10’ angstroms’ - microns) at a spatial frequency of 0.075 mm-l 
and a second peak ( about 10 angstroms2 - microns) at 0.7 mm-’. These phase 
modulations are attributed to surface modulations induced by the diamond-turning 
process. The 2D analysis shows this structure as well as identifying another modulation 
along a different axis with a spatial frequency of about 0.8 mrn-’. This second modulation at 
a comparable frequency probably corresponds to the turning marks on the second surface. 
Again, the improvement in signal-to-noise is apparent by comparing Fig. 4d to Fig. 3d. 

5. FUTURE DIRECTIONS 

The results discussed above all show the same non-exponential downward trend in 
PSD with increase in frequency. In fact, the PSD of a given optic at a particular frequency 
calculated for two measurements at different magnifications do not give the same 
magnitude. This behavior is typical of data which do not adequately account for the 
frequency response of the instrument making the measurement. Currently, we are 
measuring the optical transfer function (OW) of the instruments which we are using. 
Analytically, we know that the 0°F will primarily contain contributions from the 
interferometer optical system and from the detector. The complex optical system of the 
interferometers, however, makes calculation of the actual optical contribution 
problematic. Thus, we have chosen to determine the OTF experimentally. To do this, we 
measure a test pattern of known amplitude and spatial frequency content (an abrupt 
discontinuity of known height and known transition distance works well15). We then 
compare the Fourier amplitude calculated from the measurement to the Fourier 
amplitude known from calibration of the test pattern. The OTF(v) is the ratio of these two, 
i.e. 

13,14 

Previous investigations have shown that deconvolution of the OTF from the data is 
effective and can be used to join measurements made over different apertures into one 
extended profile3. 
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