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ABSTRACT 

Directionally dependent descriptions of the yield behavior of metals as determined by polycrystal Plasticity 
computations are discrete in nature and, in principle, are available for use in largescale application calculations 
employing multi-dimensional continuum mechanics codes. However, the practical side of using such detailed yield 
surfaces in application calculations contains some challenges in terms of algorithm development and computational 
efficiency. Discrete representations of yield as determined from Taylor-Bishop-Hill polycrystal calculations can be 
fitted or tessellated into a multi-dimensional piecewise linear yield surface for subsequent use in constitutive 
algorithms for codes. Such an algorithm that utilizes an associated flow based multisurface plasticity theory has 
been implemented in the three dimensional EPIC code and is described in this effort. 

I. Introduction 
X-ray diffraction techniques can be used to 

measure the distribution of crystallographic 
orientations in a polycrystalline material(1). 
The resultant orientation distribution (OD) 
can then be then used to weight a set of 
discrete orientations to generate a 
representation of the material texture(2). 
This discrete representation of the measured 
texture can be probed in the context of a 
Taylor-Bishop-Hill polycrystal calculation 
with a set of incremental strain probes in 
order to form a set of deviatoric stress points 
that map out the material's yield surface(3). 
These stress points can be fitted or 
tessellated(4) into a multi-dimensional piece- 
wise linear yield surface for subsequent use in 
a continuum code constitutive algorithm. 
Koiter(5) and later Simo(6) developed an 
associated flow based theory (multisurface 
plasticity) that can accept a piece-wise 
linear description of the yield envelope. A 
constitutive algorithm that utilizes this 
theory has been implemented in the three 
dimensional (3D) EPIC code and is described 
and illustrated below. 

11. Tessellation of Polycrystal Information 
In general, yield functions are five 

dimensional (5D) in terms of the deviatoric 
stress components sV, i.e., 

where this tensor has five independent 
components (recall SM = 0). Therefore the 
stress components ( ~ 1 1 ,  s,, sI2, ~ 1 3 ,  s u )  define 
the general 5D space that needs to be spanned 
by some convex yield function, constraining 
the magnitude of the stress state during 
plastic flow. For the sample yield surface 
presented below, a 3D stress space ( SII, s22, $12) 

is assumed, although the algorithm discussed 
in Sec. III is appropriate for the 5D problem. 

Now consider the 3D case where a set of 
stress points are generated by repetitive 
polycrystal probes of a measured material 
OD. This set of points is tessellated (a linear 
fitting complete with associated 
connectivity) into a piece-wise surface in 
three space using a tessellation algorithm(4). 
An example of such a tessellation is shown in 
Fig. 1, which is a tantalum (BCC) yield 
surface corresponding to a rolling texture and 
thus closely approximates an orthotropic 
mechanical response. This surface is basically 
a linear interpolation of 647 stress points with 
m = 1226 linear functions or planes (in 5D say 
hyperplanes), the whole of which can be 
mathematically expressed (using indicia1 
notation) as the set: 



{fP=a~s,-CTP=o,p=l,2 ,... ) m} (2)  

The linear functions appearing in Eq. (2) are 
expressed in normal form that defines the C X ~  
as coefficients of a vector normal to the 
hyperplane and OP as the distance between 
the origin and the p hyperplane. 

Figure 1: Perspective view of a piecewise linear representation of 
a tntitnlunt yield surface constructed from polycrystal 
cnlculntions thnt use experimental measurements of the mnterial 
texture as the initial grain orientation basis. The x, y, z hxes 
shown arestress axes corresponding to ~ 1 1 ,  ~ 2 2 ,  ~ 1 2 .  

The yield function shown in Fig. 1 is 
actually only a normalized yield shape and 
thus needs to be scaled with some flow stress 
function CT (in equivalent stress units) to 
obtain the absolute surface in deviatoric stress 
space, i.e., 

- 1  - 1  
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s, = s, cs= , OP =opts= (3,4) 
where the quantities over scored with a tilde 
represent normalized variables: the results of 
tessellated polycrystal calculations. The 
average Taylor Factor appearing in Eqs. 
(3) and (4) corresponds in direction to that of 
the uniaxial stress data obtained to 
characterize the flow stress function 0; 
normalization of the polycrystal stress Sjj is 
such that the uniaxial stress relationship 
between deviatoric stress and (r can be 
recovered from Eq. (3). 

111. Multisurface Plasticity Algorithm 
If we now assume that the set of 

discontinuous piece-wise linear functions as 
represented by Eq. (2) is given, this yield 
surface can be utilized in an elastoplastic 
constitutive algorithm based on the 
multisurface plasticity theory of Koiter(5) 
and later Simo(6). This algorithm is modified 
here to facilitate its use in the framework of 
an explicit continuum code whose purpose is 
high-rate applications. The approach 
follows classical associated flow theory 
starting with a general anisotropic form of 
Hooke's law written in terms of a deviatoric 
stress rate and strain rate i, (deviatoric 
portion of the symmetrical part of the 
velocity gradient tensor): 

y ykl W 

where Efkl is a symmetric elastic constant 
(stiffness) tensor. Assuming the standard 
practice of partitioning the strain-rate if into 
elastic and plastic parts, we can rewrite Eq. 

(5) i.. =E.. 

(5) as 

with a flow rule for the plastic part expressed 
as a summation of contributions from those 
linear functions which are active: 

(7) 

Here @ is a time dependent proportionality 
scalar. Note that the stress gradients in Eq. 
(7) are just the constants ai since the 
individual fP(sg) functions are linear; thus 
we have for our particular choice of Eq. (2) 

The next step is to enforce yield surface 
consistency by taking the time derivative of 
Eq. (2), assuming that the flow stress is 
constant over the explicit time step At (this is 
good assumption as discussed in (7)), and 
substitute for the stress rate and the plastic 
strain rate via Eqs. (6) and (8): 



Now if the total strain rate iii is assumed to 
be a given (and constant over the time step), 
then yield surface consistency as represented 
by the right-hand portion of Eq. (9) is applied 
to each of the mu, active hyperplanes, 
resulting in a system of mu, equations to be 
solved for the mucr  owns i<. 

Most of the work associated with the use 
of this theory involves idenbfying the active 
hyperplanes out of a total population of 
hyperplanes that can be arbitrarily large. 
From the mathematical concept of linear 
independence, the number of active linear 
functions can't be any larger then the 
dimension of our stress solution domain, i.e., 
ma, Idim(fP(si i )} ,  which is 5D for the 
general case of Eq. (1) and 3D for the simpler 
case illustrated by Fig. 1. For the Fig. 1 case 
the stress state during plastic flow can reside 
on a vertex (intersection of three planes, thus 
three linear functions are active), on an edge 
(intersection of two planes, thus two linear 
functions are active) or anywhere on a single 
plane (one linear function active); the 
analogy for the general 5D case is also valid. 

Therefore the algorithm proceeds by 
identifying the active linear functions with a 
final step to correct for numerical error, as 
discussed in more detail in (8). 

IV. A Simple Rectangular Shear Test Problem 
A useful problem for checking the 

continuum code implementation of any 
constitutive algorithm is simple rectangular 
shear. A 1-cm-square quadrilateral plane- 
strain element was modeled with the EPIC 
code using the Fig. 1 yield surface, a set of Ejkl 
for orthotropic rolled tantalum, and the 
multisurface plasticity algorithm presented 
above. Figure 2 shows stress history results 
from the EPIC simulation of the simple 
rectangular problem over 200% strain or 40 ps 
of time (t) for a shearing velocity of 1000 m/s. 
The non-smooth nature of this stress solution 
as the material flows plastically from a state 

of pure shear to one dominated by the normal 
components is a direct result of the 
discontinuous piece-wise nature of the yield 
surface; in contrast, if the surface were 
represented by single analytic function, then 
the stress solution would be smooth. 
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Figure 2: h4aterial frame deviatoric stress components versus 
equivalent strain 2e.. e.. 3 for the simple rectangular shear 
problem where a constant value for the flow stress G has been 
assumed for convenience. Results using both isotropic and 
orthotropic elasticity are shown. 
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