
International C o d . on Accelerator and Large Experimental Physics
Control Systems, Chicago, IL, 101’29-11/3/95.

CODE GENERATION OF RHIC ACCELERATOR DEVICE
OBJECTS*

R.H. Olsen, L. Hoff, T. Clifford, RHIC Project, Brookhaven National Laboratory, Upton, NY,
11973-5000,USA

Abstract

A RHIC Accelerator Device Object is an abstraction which provides a software view of a collection of collider
control points known as parameters. A grammar has been defined which allows these parameters, along with
code describing methods for acquiring and modifying them, to be specified efficiently in compact definition files.
These definition files are processed to produce C++ source code. This source code is compiled to produce an
object file which can be loaded into a front end computer. Each loaded object serves as an Accelerator Device
Object class definition. The collider will be controlled by applications which set and get the parameters in
instances of these classes using a suite of interface routines. Significant features of the grammar are described
with details about the generated C++ code.

I. INTRODUCTION
The accelerator controls architecture for the Relativistic Heavy Ion Collider (RHIC) being built at Brookhaven Na-

tional Laboratory (BNL) uses the standard model with two conceptually distinct layers [I]: UNIX workstations provide
the platform for the consolelevel computers (CLCs). These are networked with the geographically distributed VME
systems running real-time operating systems that serve as front-end computers (FECs)[2]. The FEC supports an object-
oriented paradigm using C++ object classes called accelerator device objects (ADOs). These ADOs provide a software
abstraction of underlying collider hardware.

Each ADO class comprises control points represented as parameters, and a standard set of operations with a consistent
interface by which applications can examine or manipulate those parameters and the underlying hardware. The fact
that the way the parameters are represented, and the interface to them, are highly consistent acrosa ADOs allows us to
gain considerable leverage through the use of code generation: a few lines of code specifying a parameter’s characteristics
can be used to generate the many lines of code used to implement that parameter and its interface within the larger
context of a C++ class.

A . Adogen and .rad files
The program used to generate the C++ source code is called adogen. It is itself built, in part, using two widely

available code generation utilities. Lex and yacc[3] are used to generate the lexical analysis and parsing code and the
remainder of the program is coded in C++. Adogen gets its input from files which, by convention, have a ”.rad” (for
- RHIC ADO Definition) filename extension. The .rad files are text-only files which are easily administered using any of
the standard source code control packages available - we have been using RCS at RHIC.

B. A D O Hierarchies
ADOs are conceptually divided into concrete and abstract types. A Concrete ADO can be accessed from the console

level computers through libraries of routines which are used to examine or manipulate its constituent parameters. The
Abstract ADOs are not ditectly accessible themselves, rather, they serve as a convenient way of packaging parameters.
Different ADOs can share parameter collections by referencing the same abstract class as a parent. This allows for
hierarchies of ADOs. Hierarchies are implemented in abstract ADOs when a derived ADO class inherits parameters
from its parent, possibly adding new parameters itself. Abstract ADOs define the data, and the Concrete ADOs which
inherit this data from the Abstract parent(s) and can augment the methods that access the data in order to handle the
specifics of the underlying hardware.

Figure 1 shows an example ADO hierarchy. The base ADO class comprises parameters common to all ADOs, for
example the Name and a Description. The ProfileMonitor is an abstract class which inherits those base parameters
and adds NHScanLines and NVScanLines (Number of Horizontal/Vertical Scan Lines). The final abstract class, TwoD-
ProfileMonilor, adds Horizontal and Vertical projections. In this example Flag is the concrete ADO. Applications can
access any of the parameters which the Flag ADO inherits from its parents through an instance of the Flag ADO class,
whose methods define what those accesses actually do.

*Work performed under the auspices of the U.S. Department of

~~B~~~~~~~ OF BMlS ~~~~~~ 6

- 2 - b

r 1

1

Description
NHScanLines
NVScanLines

1 1 1 Profile Monitor
I I ’ 1

HProjection
2D-Profile Montor VProjection / I

I ’ I
GetMethods()
SetMethods()

Figure. 1. Flag ADO hierarchy.

11. ADOGEN GRAMMAR
One of the primary goals of adogen is to allow the code for ADOs and ADO hierarchies to be created and modified

quickly by specifying values for some minimum number of variables. The adogen grammar keeps the simple things simple.
For instance, all of a parameter’s important characteristics are specified in one place in the .rad file. A parameter’s data
type only has to be specified once, and wherever the code that adogen generates is dependent on that type consistency is
guaranteed. Change that type specification and the generated code will be updated accordingly. Another goal of adogen
is to eliminate the need to edit the generated code. (If there is no editing of the C++ code subsequent to its generation
then the more compact rad files can become the source that is maintained in version control.) To this end the grammar
for ADO definition is pretty flexible, and offers a rich set of keywords. Descriptions of some of these follow:

A. Keywords

CONCRETE - the name of the concrete class.
o ABSTRACT - the name of the concrete class’ abstract parent.

PARENT - If an abstract class’ parent is not the base ADO class, the parent name must be specified. (For

PARAMETER - the name of an individual parameter, and a COUNT if it is an array. In addition to this a complete

CATEGORY - Each parameter is assigned a category which determines a set of support properties for the parame
ter. All of the categories have support properties such as a description, and a format string. Continuous Settings
add more information such as high and low limits. Discrete Settings add Legal Values, etc. The recognized
categories are: BASIC, CONTSETTING, CONT-MEAS, DISCSETTING, DISCMEAS, CONFIGDATA, US-
AGEDATA and DIAGDATA.

TYPE - a data type. The recognized types are: CharType, UCharType, ShortType, UShortType, LongType,
ULongType, FloatType, DoubleType, StringType, StructType.

READWRITE - specifies whether the parameter is writable or just readable (R, W).
DESC - text describing the parameter is optional, but console level utilities know how to access this support
property and it can be useful as “help” text.

SETCODE - any specialized set code for the parameter is specified using this keyword. While ADO infrastructure
code provides default set and get codes for each parameter which access memory locations, any special dnvcr or
hardware level requirements for a particular parameter can be met by providing more set code.

hierarchies.)

parameter specification includes:

GETCODE - any specialized code which may be necessary for retrieval of information from the hardware.
MEMBERCODE - This code becomes member code in the ADOs C++ class. Different set or get codes c a n share

INITCODE - This code is executed when the ADO instance is first created.
THRUCODE - This code is passed through ”as-is”.
EVENTCODE - This code is made accessible to an Event Management subsystem. Machine events such as interrupts
and timers can be “connected” to this code, which has access to the ADO’S parameters and particulars about the
underlying hardware, so that it is executed when the event occurs.

the same member code.

B. Syntaz

The syntax for adogen resembles "C++" code. The ADO designers at RHIC are familiar with C++ apd quickly
became comfortable with the requirements of adogen. The same development environment can be used for either C++
or adogen grammar. Since line number information from the .rad file is included in the generated code compiler error
messages can be processed, and debuggers can reference code in the .rad file rather than the generated code. Here is an
example rad file:

//!- device.rad -----------------
// This example rad file shows some adogen
// input that can be used to build A D O s .

ABSTRACT = two d profile;
CONCRETE = flag;
ARGS = int gain, char * string2;
VERSION = $Revision: 0.0 $;
DESCRIPTIOB = A simple. sample ADO;

- // Member data (ADO globals)
MEMBERDATA = long int ,last;

PARAMETER gain <
CATEGORY = COBT-SETTING;
TYPE = ShortType;
READWRITE = Y;
DESC = allows an electronic gain to be set;
SETCODE = {

// set the gain of our device
const int writeVal = write(,fd, (char *) setGain, strlen(setGain));
if (writeVal != strlen(setGain)) return ADO,HW,FAILURE; // hardware error
return OK;

3 // EBDCODE
3

PARAMETER array size <
CATEGORY = BASIC;
TYPE = ShortType;
READURITE = Y;
SETCODE = E

// set the size of our
variableLengthArray temp(p, ,arraysize) ;
-arrayParameter = temp;

rray

3 // ENDCODE

PARAMETER arrayparaaster c 1 <
// Parameter uses a variable length array
CATEGORY = COIT-HEAS;
TYPE = ShortType;
READURITE = R;
DESC = variable length array values;

3

THRUCODE = <
extern "C" void updateBow(char * codes) <
// Tell the device to update
const int writeVal = write(-fd, (char *) codes, strlen(codes1);
if (writeVal != strlen(codes)) return ADO,HU-FAILUBE; // hardware error
return;
3

- 4 -

3 // FYDCODE

EVEBTCODE updatestuf f = {
// update some staff
updateHou(“Oxff0O8 J);

> // ENDCODE

The rather simple ADO described in the above .rad file has three parameters. It also has memberdata, thrucode, and
some eventcode. The A R G S keyword allows the ADO designer to specify arguments to the ADO constructor; values
for these arguments can be listed in configuration files which will be used when a particular ADO instance is loaded.
The VERSION and DESCRIPTION can be useful in CLC utility programs. The arrayPammeter shows how a variable
length array is specified by using empty square brackets; a fixed length array’s length is specified by putting a number
within those brackets. The EVENTCODE provides a routine called “updatestuff where the Event subsystem can
access the updateNow() THRUCODE.

111. ADOGEN OUTPUT
When the above file is used as input adogen generates files for both the abstract and concrete classes. These files

contain all the source code, header information, and Makefile details necessary to compile an ADO class which can be
loaded into a Front End Computer. Simply invoking the UNIX make utility with the concrete class’ make file gets
everything compiled and linked. Then, instances of this class can be dynamically added and removed from the system,
and the parameters can be set and get from applications running at the console level. The interface to an ADO and
its parameters is well known so even generic applications, which are not privy to the specifics of the hardware involved,
can be used to view and adjust values.

IV. CONCLUSIONS
Code generation allows the designer of an Accelerator Device Object class to leverage a concise description of the

ADO’S parameters and the particulars of the hardware interface(s) involved into a full-featured ADO with all of the
attendant infrastructure elements and procedures fully implemented. This is much more efficient and less error-prone
than either individually coding each class from scratch or using a ”boiler-plate” method where one has to fill in the
blanks with parameter information that must be kept consistent through several different representations.

Among the future enhancements being considered is the possibility of using the .rad files as sources for database
information about the ADOs in RHIC. In the same way that Adogen is used to generate C++ code from these files,
another program can be used to generate SQL code for database access and updates. One advantage to having the .rad
files be the “authority” on what the current version of an ADO is that they are text+only files. They can be manipulated
and examined using standard UNIX tools. This allows, for example, using RCS for version control.

Adogen is currently being used at RHIC to define, develop and maintain more than twenty different ADO Classes.
The median size of one of these rad files is about 200 lines; these 200 lines generate more than 1700 lines of C++
code and makefile infoi&a%ion. RHIC benefits from the savings in programer time and effort, and from the improved
concordance between d h n t ADO class implementations.

References
[11 L.T. Hoff and J.F.Skelly, Accelerator Devices at Persistent Software Objects, Nucl. Instr. and Meth. in Phys. Res.

[2] D.S. Barton, Controls for RHIC, a Progress Report, Nucl. Instr. and Meth. in Phys. Res. A 352 (1994), 6-12
[3] J.R. Levine, T.Mason and D.Brown, lex & yacc, (O’Reilly & Associates, Sebastopol, CA 1992).

A*

A 352 (1994), 185188

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor aay agcncy -
themf,.nor any of their empioyees, makes any warranty, express OF impficd, or
assnmes any legai liability or responsibility for the accuracy, cornpletcx!~ or use-
fuiness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privateiy own& rights. Reference h m i n tb any spe-
cific commercia! product, process, or d c e by trade name, tademark, manufac-.
turer, or othemse does not necessarily constitute or impiy i u endorsement, reom-
mendation, of favoring by the United States Government or any agency thereof.
The views and opinions of authors cxprcsid'herein do not Iltccssanf ' y state or
reflect those of the United States Government or any agency thereof.

'

Portions of this document may be iUegible
in electronic image products. Images are
produced frrmm the best avaiiable original
dOr?mnent.

