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ABSTRACT 

Recently, several nearly universal correlations of nuclear observables, spanning nu- 
clei from singly magic to  rotor, have been discovered. The simple global behavior 
revealed by these correlations discloses new signatures of structure that  require a 
knowledge only of the energies of the firsf, two excited states in even-even nuclei 
and the B(E2 : 2; - 0;) value. Since these are the simplest- to-obtain data  in 
new nuclei in unexplored regions, they should be especially valuable in radioactive 
beam studies of nuclei far from stability where the data will necessarily be sparse 
compared to that  with which we are accustomed. This report reviews some of these 
recent developments. 

1. Introduction 

Traditionally, nuclear structure is viewed in a “vertical” sense in terms of the 
excitations in a specific nucleus or in a small region of nuclei. Virtually all models 
and experiments are designed to look at nuclear structure in this way. Yet, the 
present situation in nuclear physics offers an alternative approach. Over the years, 
a tremendous body of nuclear structure data has been built up through countless 
experiments and a number of different types of structure have been identified such 
as nuclei neax closed shells, vibrational nuclei, rotational nuclei, and many varieties 
of intermediate forms. The vast reservoir of data now offers a unique opportunity 
to explore nuclear structure in a horizontal or evolutionary way. 

This can be done by studying correlations of collective observables either with 
external quantities or with other collective observables. n o m  studies of these cor- 
relations a growing realization has emerged in the last decade that the seemingly- 
complex evolution of structure across the nuclear chart can in fact be viewed very 
simply. The compact and simple correlations that are disclosed pose one of the 
greatest challenges today to modern theories of nuclear structure. 

A horizontal perspective can provide new signatures of structure that are based 
on the easiest-to-obtain data. This development has the potential for significant 
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impact in the era of radioactive nuclear beams (RNBs) since experiments with 
RNBs will never yield the quantity and variety of data in particular nuclei that 
we are accustomed to. The recent extension of various correlation schemes from 
regional (neutron, proton half shells) to global (e.g., 2 = 30 - 100) character is 
especially important in this regard. 

2. The NpNn scheme and the P-factor 

As noted, nuclear data is often bewildering in its complexity. This is illustrated 
on the left in Fig. 1 which shows 2; energies in the A = 100 region. The phe- 
nomenology shows a large range of E(2r)  values and a variety of structures but 
certainly does not disclose any simple way to “see” this structural evolution. Of 
course, detailed models can be applied to regions like this so that the details of 
Fig. 1 can be understood: for example, a spherical-deformed transition occurs most 
rapidly in Sr, Zr, less so in Mo and hardly at all in Cd. Yet such detailed calcula- 
tions, though valuable, belie the point of seeking a simple ansatz for the systematics 
and are seldom done in the absence of sufficient pre-existing data for a given region 
that its structural features are already clear. 
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Fig. 1. Normal and NpNn plots for E(2:) values near A = 100. 
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We take a different approach. It is well known that the valence p - n interaction 
is critical to  the development of collectivity.' Hence, one might expect that there 
should be some relatively simple quantity that embodies the principal effects of 
the p - n interaction and that the evolution of nuclear structure might be simple 
if parameterized according to such a variable. If we assume that the integrated 
valence p - n interaction is not sensitive to details of orbit occupation (a rough 
approximat ion which is approximately confirmed empirically) then it should scale 
as the product of the number of valence protons, N p ,  and the number of valence 
neutrons, Nn; that is, by the valence product NpNn. Note that Np and N,, are 
counted, either as particles or holes, to the nearest closed shells. Correlations of 
mean field observables with NpNn are the essence of what is known as the NpNn 
scheme2, illustrated on the right side of Fig. 1. Evidently, there is a profound 
simplification. Similar plots are obtained for other observables such as R4/2 
E(4;')/E(2;), B(E2 : 2; - 0;'). The only caveat is that in constructing such 
plots attention must be paid to the presence, and evolution, of important subshell 
closures which affect the counting of valence nucleons. The A = 100 region provides 
a well known example of this. For nuclei with N < 60 there is a significant proton 
gap at 2 = 40. However, this gap disappears suddenly (another effect of the p - n 
interaction) for N 2 60, leaving behind the traditional 2 = 28 - 50 shell. [A similar 
gap occurs for 2 = 64 in the A = 150 region, which disappears for N 2 90.1 

Many NpNn correlations, covering most regions of nuclei, have been shown in 
the literature and need not be repeated here. Rather, we will turn to some newer 
results. Before doing so, however, it is interesting to consider one modification 
to NpNn. In the NpNn scheme, due to different shell sizes, there is no obvious 
interpretation of a particular numerical value of NpNn. For example, does a value 
NpNn = 120 imply a collective deformed nucleus or not? It would be useful to have 
a quantity whose absolute value conveys some more precise physical idea. This goal 
is the motivation behind the P - factor which is defined as3 

P is a ('normalized" NpNn giving the number of p - n interactions per valence 
nucleon. More significantly, it is the number of valence p - n interactions divided 
by the number of pairing interactions and is therefore proportional to the ratio of 
integrated strengths of these interactions. Since typical p - n matrix elements are 
N 0.2 MeV, and the pairing interaction strength is - 1 MeV, P - 5 corresponds 
to the point at which the p - n interaction strength begins to dominate the pairing 
strength. It is hardly surprising that nuclei become deformed for P values near 5. 

There is an elegant way of demonstrating that P senses the competition between 
p - n and pairing interactions. An empirical measure of this competition, the ratio 
€ / A ,  where E is the usual quadrupole deformation and A is the average pairing gap 
[ A  = (Ap  + A n ) / 2 ] ,  can be empirically extracted from B(E2 : 2;' - O f )  values 
and odd-even mass differences. A nearly global comparison of €/A values with P is 
shown in Fig. 2. The match is excellent, even in fine details. 



The significance of this is worth stressing: it is possible to account for the 
evolution of collectivity and the competition between deformation and spherical- 
driving forces without resorting to complex microscopic calculations or to multi- 
parameter phenomenological schemes. Instead, a very good reproduction of the 
behavior of virtually all nuclei from 2 = 40 - 100 is obtained merely by multiplying 
two numbers and dividing by their sum. 
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Fig. 2. Comparison of empirical €/A and P values. Ref. 4. 

3. Correlations of Collective Observables 

3.1. The Anharmonic Vibrator and a Tripartite Classificution of Nuclear Structure 

Striking as these correlations are, correlations between collective observables 
themselves are even more remarkable. For example, consider yrast energies. Nu- 
clei with a few particles of both kinds outside closed shells are often vibrational in 
character. They have high 2; energies and E(4:) N 2E(2?). At another extreme 
of structure, at very low E(2:) values, rotational nuclei have E(4:) - 3.33E(2:). 
One would therefore expect the relation between E(4:) and E(2:) to evolve from 
one to  the other of these extremes. Although this evolution might be rather simple 
for a given element, it is hardly to be expected that the E(4r) - -E(2:) correlation 
will be regionally or globally simple. However: despite the general perception of 



the complexity of nuclear structural evolution, a remarkably compact correlation 
is 0bse1ved.l~ We show this in Fig. 3 which assembles all data on collective, non- 
rotational nuclei between 2 = 38 and 82. The data fall along a straight line given 
bY 

E(43 = 2.OE(23 + €4 (2) 
where €4 = O.lG(O.Ol)MeV. This particular slope is structurally revealing. Equa-. 
tion 2 is that for an AnHarmonic Vibrator (AHV), where €4 is the anharmonicity 
€4 (deviation of E(4:) from the harmonic value of twice E(2:)). That such a broad 
assemblage of nuclei can be well fit with a single, almost constant, anharmonicity 
is totally unexpected. These nuclei are definitely not similar in structure. They 
include near harmonic vibrators, y-soft nuclei, near rotors, and all varieties of tran- 
sitional nuclei. While an AHV model can indeed describe each of these types of 
structure individually, there is no reason a pciori to expect the anharmonicity €4 

to be constant. The meaning of constant €4 needs to be explored, but it seems to 
imply that despite widely varying internal phonon structure of the 2: level (the 1- 
phonon excitation), the phonon-phonon interaction remains unchanged. How this 
utterly simple phenomenology arises is a major challenge to microscopic theory. A 
clue to this understanding may be provided by the IBA which automatically repro- 
duces the observed behavior, even with rather general Hamiltonians. These IBA 
calculations inherently embody a good phonon structure for the yrast levels7. 
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Fig. 3. Correlation of E(4:) with E(2:) for 38 5 < 82 and 2.05 5 &j2 5 3.15. 



It is possible to extend this kind of analysis to include all kinds of structures, 
including rotors and even “pre- collective” nuclei (R4/2 < 2.0). To see this, consider 
the trajectory in Fig. 3. Of course, the trend line with slope of 2.0 cannot continue 
indefinitely as E(2:) decreases, for otherwise the finite positive value of e4 implies 
that the data would cross the 3.33 rotor limit. Therefore, at some critical 2: energy 
the data begin to “roll over” and to merge with the rotor line. Indeed, as seen in 
Fig. 4, for R4/2 2 3.15, the data again follow a straight line with slope very close to 
the rotor value of 3.33. The fact that the AHV description persists down to  such ’ 
low E(2:) energies (w 0.14 MeV), forces a squeezing of the range of 2; energies 
in which the transition to a rotor occurs. This enforced rapidity in turn implies 
that the structural transition can be described by the equations of critical phase 
transitional behavior of the type observed in magnetic and thermodynamic systems. 
That finite nuclei, whose structure is dominated by just a few valence nucleons, can 
exhibit such phase transitional behavior is yet another challenge to the theory of 
finite-body quantal systems in a nuclear context. 

At the other extreme of structural evolution, that is, nuclei near closed shells, 
with high 2: energies, the correlation also changes but again preserves a simple 
pattern (see Fig. 4). For R4p < 2.0, the data lie on a new straight line with a slope 
of unity. The slope of unity can be interpreted quite simply.’ If successive nuclei, 
with n - 2 and n valence nucleons of one type, differ only in the addition of an 
identical zero-coupled pair of nucleons, then the change in energy of J # 0 yrast 
states will be the same: that is, both E(4:) and E(2:) will change identically. Thus, 
their energy difference remains constant which implies the equation, E(4:) = E(2:) 
+ constant, and hence the slope of E(4:) against E(2T) is unity as observed. 
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Fig. 4. Same as Fig. 3 for Z = 50 - 82 and all R4/2 values. 



To summarize, the evolution of structure follows a tripartite classification into 
rotor, AHV, and “pair addition” regimes, linked by rapid transition regions. 

3.2. Higher Spin Yrast States 

The above results can be extendedgJO to yrast states of much higher spins by 
using a 3-parameter generalization of eq. 2, namely 

n(n - 1) n(n - l)(n - 2) 
€6 6 €4 + 2 

E ( I )  = n E ( 2 9  + (3) 

where €6 is a higher order parameter and n = 1 / 2 .  This is equivalent to the general 
polynomial E(1)  = a1 + p2 + ? I 3  where a , P ,  and y are free parameters. We fit 
the data for all even-even nuclei zncluding good rotors, with 2 > 50 and more than 
two nucleons of each type beyond closed shells up to the backbend or to the spin 
where the derivative of hw reverses direction (s-shaped behavior of I us. Tzu). E(2f) 
in eq. 3 is taken as a fitting parameter. Figure 5 shows a number of completely 
typical examples of the fits (not only the best cases) chosen to span as wide a 
range as possible of structures, mass ranges, and fit qualities. It is clear that in 
virtually every nucleus, regardless of structure, the AHV works at least as well as 
the best alternative approaches. Even in the actinides, where the data extend to 
I - 28, and E = 5 MeV, the discrepancies for the AHV are nearly always < 20 
keV and, percentagewise, well below 1%. These results are particularly significant 
in rotational nuclei where the AHV is far superior to an expansion in powers of 
1(1 + 1) (not shown because it is not even remotely competitive). The AHV is also 
at least as good as the Generalized VMI approach. 

Were these results the full story, they might be dismissed as an interesting cu- 
riosity. However, yrast B( E2) values also support t he AHV approach. Generalizing 
ref. 11, we can write 

t6i2 
1 n(n - 1) n(n - l)(n - 2) 

6 t 4  + 2 B(E2; I + I - 2 )  = - [ n t 2  + n (4) 

where t 2 , t 4  and t6 are parameters. 5 for nuclei 
with a variety of R 4 / 2  values and behavior from linearly increasing, to parabolic, 
to s-shaped patterns. Nevertheless, the AHV expression gives excellent fits in all 
cases. No other geometric model we know has a single analytic expression for such 
a wide range of structures to show even for comparison. (The rotor expression is 
asymptotically flat at high spins and can account neither for a linear or parabolic 
shape, nor a trend reversal.) Of course, the upturn at high spin in the actinide 
B(E2) values could, in principle, reflect a change of intrinsic structure, making the 
excellence of the AHV fit accidental. This may be the case, though we doubt it, 
and feel that the present results cannot be easily dismissed. 

Several fits are shown in Fig. 
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4. Exotic Nuclei 

In exotic, near drip line nuclei, nuclear structure, as we know it, may be radically 
changed. Correlations such as we have been considering may or may not apply 
in such regions. If they do, they provide an evolutionary paradigm that will be 
invaluable. If they do not, the breakdown of these correlations will itself signal the 
radical structural changes anticipated. 

The neutron rich side of stability is especially interesting due to  the longer “lever. 
arm” from the valley of stability and to the exotic phenomena expected. Near the 
neutron drip line, the outer realms of nuclei comprise an extended, diffuse, low- 
density region of nearly-pure neutron matter. As suggested recently12J3, such a 
diffuse density distribution is unlikely to support a shell model potential with sharp 
contours. Hence, even the traditional form of the Shell Model Hamiltonian itself 
may be radically altered. Its Woods-Saxon form may go over into a more rounded 
harmonic oscillator shape. In the language of the Nilsson model, this corresponds 
to the vanishing of the “i2” term. 

The consequences of this are hard to overestimate. Consider the single particle 
levels in such a scenario (Fig. 6, right). The energy of the unique parity orbit 
increases to return to its parent shell. Hence, magic numbers change and high 
spin phenomena and octupole correlations will be dramatically altered since they 
depend in essential ways on the location of these special orbits. But, more profound 
changes occur. The traditional order of the normal parity orbits (see Fig. 6, center), 
namely a monotonical decrease in j with AJ = - 1 is completely upset. Instead, one 
encounters a “nested”pattern of j orbits with the highest j orbits surrounding the 
middle j, which in turn enclose still lower j orbits. Moreover, the j spin sequence 
is now Al = Aj  = -2 throughout. Manifestations of collectivity, and especially its 
evolution with N and 2, could be significantly different than near stability since 
the quadrupole interaction has particularly large matrix elements that couple orbits 
with A1 = A j  = 2. 

In addition, the weak binding of the outermost neutrons and the proximity of 
quasi-bound continuum levels means that coupling to continuum states must be 
considered. Moreover, as the uppermost orbits in a shell merge into the continuum 
(perhaps as quasi-bound levels) the remaining bound levels no longer constitute 
a complete sequence of j values from some j,, down to j = 1/2. The distorted 
single j-shell sequences, and the merging into and coupling with the continuum, 
could easily change symmetries [such as SU(3)  or pseudo- SU(3)] associated with the 
fermionic states. Residual interactions will also be different. The pairing interaction 
connecting weakly bound or continuum states that are greatly extended in space, 
could become significantly stronger’2113. At the same time, the vast neutron excess 
and the difference in proton and neutron orbits will alter the p - n interaction. 

Figure 6 also illustrates an alternate scenario of possible changes in the Shell 
Model in nuclei far from stability, namely the absence of the spin orbit interaction. 
This scenario could characterize some neutron rich nuclei or perhaps only the proton 
orbits inside the diffuse neutron skin. 



We will discuss three applications of horizontal correlations to the structure of 
exotic nuclei: the use of B(E2 : 2: -+ 0;) values (hereafter, "B(E2)" values) to 
identify magic numbers in new regions and to disclose subtle aspects of nuclear 
shapes, and the use of the energy ratio E(4:) /E(2:)  to give clues to  Shell Model 
single-particle level sequences. 
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Fig. 6. Normal (middle) and exotic scenarios for single particle energies (see text). 

4.1. B(E2) values and magic numbers 

The basic idea is that B(E2) values behave simply in NpNn plots. Of course, 
a previso for this is an accurate counting of NpN,. If shell structure is altered 
from that defined by the traditional magic numbers, or is unknown, the use of 
incorrect Np and N,  values can generate large deviations from simple patterns. 
Figure 7 illustrates this for the A - 100 region.14 On the left, the standard magic 
numbers are used, namely 2 = 40,50 for 50 < N < 60,Z = 28,50 for N 2 60. 
A compact, indeed linear, correlation is achieved. If the well known subshell at 
2 = 40 for N < 60 were not assumed, however, the correlation becomes messy (Fig. 
7, middle). Suppose further that 2 = 50 is not taken as a magic number. Then the 
plot on the right of Fig. 7 is obtained. Clearly, the compact correlation for B(E2)  
values against N,N, is destroyed. Even in advance of specific level scheme data on 
lWSn, this certainly suggests that the 2 = 50 proton shell closure is intact, at least 
for nuclei within a few proton or neutron numbers of 50. 
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4.2. Hexadecapole deformations and B(E2) values 

Figure $a shows B(E2) values against NPN, for all even nuclei with 2 > 28. 
Although the correlation is simpler than one against N or 2, it is not as simple as 
others we have considered. This is a manifestation of hexadecapole deformations 
(&). To see this, note the relation for the quadrupole moment 

042 
P 2  

Q(2') - + 0.3604,& + 0.967204 + 0.3277- + ..... ). (5) 

Q depends on /34 and on its sign. Since ,/m2 0: Q, the B(E2) values do also. 
In any major shell p4 deformations havela characteristic systematics. They are 
large and positive early in a shell, cross zero near mid-shell and then turn large and 
negative. Thus, from eq. 5, we see that B(E2) values are increased by the effects 
of hexadecapole deformations early in a shell and decreased later on. This leads to 
the curvatures evident in Fig. 8a. If, however, the effects of p4 deformations are 
removed from the B(E2) values (by moving the p4 terms to the left hand side of eq. 
5), giving the values that would arise if p4 were zero, the resulting B(E2) values are 
nearly straight against NpNn shown in Fig. 8b. 
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The linear trajectory means that if B ( E 2 )  values are measured in new nuclei, 
deviations from such trajectories can be used to estimate unknown p4 values15. 
Figures 8c,d illustrates this by showing B(E2) and B ( E ~ ) Q  values for actinide nuclei. 
Clearly the B ( E ~ ) Q  values lie on a nearly straight line trajectory. We note that, at 
the far right of Fig. 8d, the B(E2) values for 2501252Cf fall well below the trendline. 
One can estimate the required ,B4 to move these two points to the line. We obtain 
p4 - -0.07. Interestingly, theoretical calculations do not give a negative value. 
Thus, not only do we extract a semi-quantitative estimate of 04, but we can address 
possible improvements to calculations of the heaviest elements. 

4.3. Shell structure and E(4:)/E(2:) ratios in  magic nuclei 

Finally, we consider a simple approach to gleaning clues to underlying j-shell 
structure. Consider a shell model configuration 1 j 2  J >. The energies of the levels 
J = 0,2,4 .....( 2j  - 1) under a short range residual interaction have a characteristic 
pattern. The O+ level is greatly lowered, and the higher spin states cluster not far 
below their unperturbed positions. R 4 p  - 1.2 and is nearly independent of j .  (The 
same result applies to multi-j configurations of the type I j;"'J~,j,"'Jz, ..... > (ni 



even).) The reason is that only in the O+ state are the angular momenta of the two 
nucleons co-planar and the spatial wave functions symmetric. Hence the particles 
are in close enough contact to be affected by a short range interaction. From this, 
one would expect such R4/2 values to be characteristic of nuclei with 2 nucleons of 
the same type outside closed shells. However, it is only in heavy nuclei (e.g., 210Pb, 
210Po) that this is approximately realized. In lighter nuclei (e.g., ‘*O), &/2 can be 
as large as 1.7. In fact, the data on R4/2 in singly magic nuclei are quite regular, as 
shown in Fig. 9a. 
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A simple model17 helps us understand both the high R4/2 values in light magic 
nuclei and the use of R4/2 to study the underlying j-shell structure in new mass 
regions. Consider, instead of configurations involving pairs of particles, a situation 
with two nucleons, one in each of two orbits, that is, I j1,j~J > . If I j 1  - j 2  I #  2, 
the pattern of even spin levels that results is similar to the I j n J  > case, with 
R4/2 N 1.2. Now, however, consider the unique case of I j, - j 2  I= 2. Here, the 2+ 
state is formed (semi- classically) by co-planar orbits. Hence the attractive residual 
interaction has large effect, and the 2T level is strongly lowered, raising &/2. Such 
wave function components, with odd numbers of nucleons in each of two orbits 
with I j 1  - j 2  I =  2, help explain the large R4/2 values in light singly magic nuclei 
since in these nuclei the typical j-shell is in fact A j  = 2 [e.g., the s - d shell with 
d5/2 - s1/2 - 4/21. In new neutron-rich mass regions accessible with RNBs, where 
A j  = 2 shell patterns such as in Fig. 6 (right) may appear, the easiest signature 
of such sequences may therefore lie simply in measuring R4/2 values in singly magic 
nuclei. Anomalously large values would signal A j  = 2 sequences. Figure 9b shows 
surface 6 function calculations that illustrate this. The solid line is obtained with 
normal shell structure. Note the larger R4/2 values for lighter nuclei and the falloff as 
A j  = 1 sequences appear in heavier nuclei. Clearly, these shell model calculations, 
though schematic and highly simplified, do mimic the data in Fig. 9a. If we now 



assume the scenario on the right in Fig. 6 for mid-mass nuclei, A j  = 2 amplitudes 
will be larger and anomalously high R4/2 values will result. Re-calculating R412 for 
this case gives the two higher lying points in Fig. 9b. 

5. summary 

Despite the apparent complexity of nuclear phenomenology, extraordinarily sim- 
ple, “horizontal)’, .correlations of data reveal regular evolutionary behavior. Corre- 
lations with secular variables such as NPNn or P ,  or between collective observ- 
ables themselves, are useful. The correlations provide powerful new signatures of 
structure that will be particularly useful in new nuclear regions that will become 
accessible with radioactive nuclear beams. 
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