271
nNg |
N, S 319

AUTOMATED TESTING OF INTERACTIVE

SYSTEMS

THESIS

Presented to the Graduate Council of the
North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Stephen C. Cartwright, B. S.

Denton, Texas

May, 1977

o

ﬁmﬂ%ﬁﬁ

Cartwrlght, Stephen C., Automated Testing of Interactive

Systems, Master. of Scilence (Computer Sclence}, May, 1977,
86 pp., 2 illustrations, bibliography, 28 titles.

Computer systems Which interact with human users to
collect, update or provide information are growlng more
complex. Additionally, users are demanding more thorough
testing of all computer systems. Because of the complexlty
and thorocughness required, automation of interactive systems
testing is desirable, especially for functional testing.

Many currently available testing tools, like program
proving, are impractical for festling large systems. The
sclution presented here 1s the development of an sutomated
test system which simulates human users. This system
incorporates a high-level programming language, ATLIS. ATLIS
programs are compiled and interpretively executed. Programs
are selected for executlion by operator command, and failures
are reported to the operator's console. An audit trail of
all activity is provided. This solution provides improved
efficiency and effectlveness over conventional testing

methods.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS. .+ & v v v v o v o v v o o o o o « iv

Chapter

I. THE PROBLEM: RAPID DEVELOPMENT AND INCREASED
COMPLEXITY OF INTERACTIVE SYSTEMS PRESENT
NEW TESTING PROBLEMS FOR IMPLEMENTORS 1

II. DESCRIPTIONS OF SEVERAL TYPES OF TESTING 8

Module, System, Alpha and Beta Testing
Functional Testing

Regression Testing

Performance Testing

Summary of Types of Testing

ITI. DESCRIPTIONS OF SEVERAL TEST TOOLS AND TECHNIQUES
CURRENTLY AVAILABLE OR CURRENTLY BEING
DEVELOPED . - . - . L] L] . L] - . . . L] L] 20

Synthesis Techniques

Symbollc Execution and Program Proving
Simulation

Automated Test Case Data Generation
Automated Verification Systems

Automated Testing Using a Test Language
Summary of Current Test Tools and Techniques

IV. A SOLUTION: AN AUTOMATED TESTING CAPABILITY FOR
INTERACTIVE SYSTEMS ¢« ¢ v v v v v o & o 34

The Programming Language ATLIS
The ATLIS Compiler and Linkage Editor
The Automated Interactives Test System (AIT System)

Concluslonsg
APPENDIX I . 76
APPENDIX IT. . 82
BIBLIOGRAPHY , o

iii

LIST OF ILLUSTRATIONS

Figure Page
1. An overview of the Automated Interactive
Test System. . . . + « v v ¢ ¢ v v v 4 4 ... 1
2. An Example of the Data Area Mapping for Several
Levels of Procedure Calls. . . . « « « « + B3

iv

CHAPTER I

THE PROBLEM: RAPID DEVELOPMENT AND INCREASED
COMPLEXITY OF INTERACTIVE SYSTEMS PRESENT
NEW TESTING PROBLEMS FOR

IMPLEMENTORS

The computer provides man with a tool which can be used
to solve a variety of problems which would be impossible to
solve or would require a great deal more time and effort to
solve without the computer. On the one hand, computers
provide man the ability to perform complex scientifle calcu-
lations which have enabled space travel, and on the other
hand, computers allow large volumes of informatiocn to be
maintained, referenced, sorted, printed, etc. The first
application would be impossible without computers, and the
second would reguire enormous amounts of time and manpower.

The second type of computer application described
above, saving time, effort and money, 1s the major cbjective
of many computer system applications. A general area where
this applles is the collectlon of information, in particular
information provided by humans as opposed to hardware monl-
toring devices. If a computer is to use information, the
faster the information can be placed into a form usable by

the computer, the faster the information can be acted upon.

As an example, suppcse information is received which
must be read intc a computer system. If this requires
writing the information on a special form by one person,
having the Information punched onto a data card by a second
individual, having the information read into the computer by
a third individual and having the results returned by a
fourth individual then the system is not efficient and is
prone to errors. If the person receiving the information
could sit at a keyboard and enter the information directly
into the computer system, it would be a great deal faster,
more efficient and less prone to errors.

An interactive system will therefore be defined as a
computer system which interacts directly with & human user
to collect information and provide results. Alrline reser-
vation systems are an example of interactive systems which
are quite familiar to most people. The reservationist can
determine what flights are available, the status of flights
and make reservations for the customers by simply entering
a series of commands on a keyboard and walting for the
responses. It 1s fast, efficlent and reliable,

The use of computers for interactive systems has in-
creased dramatically with the widespread use of minicomputers
in the 1960's and early 1970's. The introduction of micro-
procesgors and microcomputers in the mid-=1970's broadened
the use of computers even further. One applications area

for mini/microcomputers has been 1in data collection. A

specific area of data collection involves entry of data by
human operators through keyboards.

Prior to the late 1960's, the most widespread method of
entering data was to have someone punch the information on
cards, read the cards into a computer, perhaps save the infor-
mation on disk or tape and throw the cards away. Cards
served only as an intermediate storage medium which provided
a method of transferring information from a form pecople could
use to a form computers could use. In the late 1960's, the
idea of transferring the information from the operator to tape
was developed. This was followed by data being transferred to
disk or flexible diskettes in the early 1970's. The infor-
mation could then be read by or transmitted to a large main-
frame. This eliminated the intermediate storage medium which
could not be reused and replaced it with a medium that could
be reused. The early systems were merely keypunch replacement
devices. In other words, their capabllities were the same as
those of a keypunch. Today the market and equlpment are more
sophisticated. The terms "source data entry" or "data entry"
are now applied. The difference is in who uses the eguipment
and at what point in the information cyecle it is used. Data
entry systems allow the person generating the information to
enter it into the system rather than rely on a specialist
(keypunch operator) to enter the information. This means
that the new systems must provide more flexibility and

capabllity than previous systems.

New capabilities include the ability to detect errors
as they are entered by requiring certain information to be
alphabetic, numeric, of a fixed length, of a minimum or maxi-
mum length. The information can be automatically right-
justified, left-justified, blank-filled or zero-filled.

The use of these systems is not restricted to just data
entry. Systems now provide the capability to update infor-
mation kept in a data base accessed by the minicomputer
system. In addition, inquiries of a data base are also
allowed.

The idea did not originate with minicomputer systems.
Large computer systems also support interactive capabilities,
and mainframe vendors as well as service bureaus provide this
capability. However, the usage would not be as widespread
as it now is because of the high cost per terminal. The
minis allowed the processing to be moved into the environ-
ment of the data being entered. Collect the data at its
source, eliminate as many errors as possible as soon as
possible and require only the minimum time and effort to
enter the information.

This is a principle of the dlstributed processing
theory. Move the processing, or part of the processing, of
information to the point in the cycle where 1t is most
effective, Spread a little grease along the entire track

rather than have a large dose right at the end.

The Interactive systems, although a great henefit for
the user, provide the systems developer a unigue set of
problems which are not found in the traditional batch mode
environment. An interactive system relies on relatively
slow human input rather than a high speed card reader, tape
drive or disk drive. In addition, the more sophistication
which 1s programmed into these systems the greater the
| comblnations of input that can oceur. For example, assume
that a data field can be the following:

a. maximum 6 characters

b. wvalid characters are + - , . Blank 0-9

¢. blanks may only appear to the left of the left-

most non-blank character or to the right of the
right-~most non-blank character

d. The + or -, if present, must be the left-most non-

blank character.

e. The "." if present, may be only followed by zero or

two diglts or blanks, and it may only appear once.

f. The "," if present, may appear only to the left of

"." and there must be three digits between itgelf
and the next "," or "." to the right.
Testing the valid and invalid combinations of this feature
alone would be quilte time-consuming.

The prohklem which arises with this type of system is

how to approach the testing of the system so that a high

degree of reliability can be guaranteed and at the same time

not expend great amounts of money and manpower in doing so,.
Net only should the product be reliable on its initial
release but on subsequent releases. This means retesting
the system as new versions are prepared.

The type of testing which must be performed is functional
testing. Functional testing 1s the practice of testing a
product against 1ts specifications. Does the product meet
its speciflcations? Does it do what it is supposed to do?
The important thing is that the user interface function as
designed and as documented. As new functions are added, new
functional tesftlng must be added; however, the existing
features must continue to be tested toc be sure they still
work properly.

Testing of interactive systems can prove to be a time-
consuming, expensive operatiocn. Because of this, there is
often a tendency on the part of the development organization
to sacrifice testing in order to meet schedules or use the
manpower on other activities.

Thus the problem is that of effectively testing the
functicnal capabilifties of interactive systems. How can this
be accomplished? There are many 1deas on testing techniques,
testing aids and approaches to total systems design. These
are discussed in Chapter II and Chapter ITII. EHowever, it
will be shown that these ideas do not apply to interactive
systems, are too theoretical in nature or onliy approach part

cf the problem.

The real solution to the problem of effectively testing
an interactlive system is to automate the testing procedure
so that the functional correctness of a system can be deter-
mined quickly and easily. Chapter IV presents an approach
to automated testing which involves the development of an
automated interactive test system incorpeorating a high level
interpretive language for writing test programs. This is an
approach which is common in the testing of hardware systems
but has received little attention as a method of testing
interactive systems. The advantages of such an approach are
many. It provides greater flexibility, requires less time,
tests can be repeated, testing can be mcodular and test pro-
cedures can be easily generated. These ldeas are presented

in detail in Chapter IV,

CHAPTER II

DESCRIPTIONS OF SEVERAL TYPES OF

TESTING

Two terms are often used for the process of determining
if a computer system works correctly: debugging and testing.
Gruenberger states that until 1957 there was little to
distinguish between debugging and testing (4, p. 11). Even
today the words are often used interchangeably. The dis-
tinction to be made here is that testing is the process of
determining if errors exist, and debugging involves isolating
and correcting those errors. In the initial stages of
systems development, there is generally a little testing and
a great deal of debugging. As a system progresses, there is
more and more testing and less debugglng, implying that the
further a project progresses, the fewer the number of prob-
lems that will be encountered. It is also generally true
that this trend will tend to flatten out at the end, and that
the problems discovered by testing will become more and more
difficult to debug.

For the purpose of discussion, it is assumed that
testing works in parallel with debugglng, and when testing is
referred tc, it implies that debugging is also included.
Finding problems is not an end in itself; they must be

corrected.

Testing has always been a part of the development of
computer programs and computer systems. However, in tThe
past there was very little if anything in the way of test
methodology, elther in theory or practice. Vander Noot
stated in 1971 that "Cut of the millions of words written
over the past few years about EDP, only one article could be
found that was devoted to testing ..." (8, p. 60). In the
past, a programmer would develop his code, execute it, go
through some sequence of tests that satisfied him that the
program worked and put it into use.

In recent years the attitude toward testing has changed.
More and more emphasis is being pliaced on software reli-
ability and testing methodologles. As software systems be=
come larger and more complex, the need for better testing
becomes essential. Huang states that 50 per cent of the man
hours used 1n today's software Industry are spent in program
testing (5, p. 127). When the cost of software exceeds ten
billion dollars annually (1, p. 48), any efforts to provide
better efficiency in software testing could result in sub-
gtantial dollar savings.

There is currently a great deal of information available
about types of testing and testing tools. Are these ldeas
practical, and can they be applied to testing of interactive
systems? Do they improve the quality of the software, and do
they save time over manual testing technigues? This chapter

examines the types of testing which can be performed. These

10

inciude module testing, system testing, alpha testing, beta
testing, functicnal testing, regression testing and perfor-
mance testing. The purpose and advantage of each is discussed,
and in some cases these types of testlng are virtually the

same and others cverlap.

Module, System, Alpha and Beta Testing

As testing of a software system moves from i1ts initial
stages toward completion, its characterlstics change.
Initially there are a large number of problems to be corrected,
and at the end, all problems are belleved to be soived. The
concept of module, system, alpha and beta testing reflect this
transition. These are a series of tests used to establish the
correctness of a computer system.

Module %est 1s the first stage. Components, or modules,
of a software system are tested by the individual programmer
to determine 1f they operate correctly. This may involve
writing test drivers to test the modules. ‘The next step,
system testing, 1s sometimes called integration testing. It
involves testing the combination of modules developed by
different programmers or groups of programmers which together
form a computer system. The implementors go through this
phase of testing by running their own tests to determine if
the system functions correctly.

Alpha testing is conducted when the system designers
and implementors feel the prcduct is ready to go into proe-

duction. At this time formal tests are run against the

11

system, These tests can be developed by the developers or,
more preferably, by an independent test group. The testing
is designed to test all capabilities of the system in a
formal, step by step procedure.

If the system passes 1ts alpha test, it 1s considered
ready to go into a customer or production environment. Beta
testing is the first production system and represents the
system's introduction into the real world. The product is
used, rather than tested, but it is observed closely 1n order
to evaluate its performance.

Module and system testing have always existed and are
what was consldered debugging in the past. Alpha testing
represents a formal testing step to determine a system's
correctness. Alpha testing and beta testing are also given
the terms verifications and validation (6, p. 9). Verifi-
caticn means the loglcal correctness of a system based on
execution in a test environment, and validation means the
loglcal correctness in an external (or real) environment.

All these stages apply to the testing of an interactive
system. Automation is not really necessary in the first
stage (module testing) and in the early part of the second
stage (system testing) since the system is not yet in a
stable state. However, whatever automated test tools are
available can be useful in the later stages cof system test
and alpha test. This 1s where exhaustive testing 1is

necegsary, and automation can save valuable time since this

12

is where projects often begin to run late or else 1t is
noticed that they are late. Beta testing, since 1t is pro-
duction testing, is not appropriate for automated testing.
Thus automated testing can be a valuable tool during
the later part of systems fest and during alpha test for

interactive systems.

Functional Testing

This term is often used interchangeably with alpha
testing, however, there are some differences. Functlonal
testing means testing the system to determlne if it does
what the design specificatlons say 1t 1s to do. Alpha
testing should include functional testing and may in effect
be functlonal testing. Alpha tests may include other tests
which are not functional tests. These may include tests
designed to determine if the method of Iimplementation is
correct rather than if the end result is correct.

Functional tests are based on the product specifications
and do not take into consideration the method or techniques
of the implementation. It is not concerned as much with how
it works as with whether 1t does what is is supposed to do.
Preparation of functional tests involve the following
(2, p. 359):

e Identify test conditions, including unique cases.

e Develop test cases, 1.e. each test case 1s a single

condition.

13

e Prepare test script which state how the test is to

be performed. A test may be one or more cases.

e Prepare test data base if necessary.

e Prepare test driver(s) if necessary.

The idea of functional testing i1s receiving more
attention as the discipline of software engineering develops.
More emphasis is being placed on determing if a product does
what the specifications say it is supposed to do rather than
does 1t work.

Numerous papers presented at the Second International
Conference on Software Engineering deal with the problem of
systems which do not do what the customer expects them to
do (7). Between the time the specifications are written and
the implementation is completed, the product may get off
target and as a result, it may not perform the functions the
specifications say it is to perform. Although functional
testing cannot solve this problem in and of itself, it can
be a great ald in determining if this has happened especially
if the tests accurately reflect the specifications. This
assumes that the specifications are not ambiguous and are
complete and that the test cases adequately cover the speci-
fications. If this is true, the implementors have a valuable
tool for determining if their implementatlon is correct, i.e.
meets the specifications.

The 1ldeas of functional testling apply to interactive

systems development. Like any other system, 1f they do not

14

perform their intended function, they are not successful,

In addition, automation of the functional testling is very
desirable, Functional testing is meant to be complete and
exhaustive. As a result, 1t may be extremely time-consuming
to execute the functional tests unless steps are taken to
automate them, Therefore the automation of functional
testing for interactlve systems is a desirable objective,
and these tests can be used during the later stages of

system testing and during alpha testing.

Regression Testing

Suppose a computer system supports only printed output.
Changes are made to the program so that it also supportis
punched card output. The implementor of the punch code tests
his code very carefully and is confident it works correctly.
All testing performed against the punch code 1s successful.
Then tests are run against the print capability and problems
are found. When the programmer is asked if he tested the
print code, he responds "Test it ... why should I test it
I didn't make any changes to 1t?" Perhaps not, but something
he did adversely affected the existing code.

Regression testing is testing which insures that what
used to work still works. It means making sure that new
features have no adverse affect on existing code and the

current test results match previous test results (2, p. 355).

15

Customarlily, regression testing is simply the alpha
tests or functional tests re-executed for a new version or
release., Ideally, a test procedure allows new tegts to be
added for new featurés and the entire test procedure 1is
rerun for each release or version of a system. Thus,
regression testing is the insurance that a product maintains
its ccrrectness from version to version.

Thigs type of testing applies to all types of systems
inciuding interactive systems. The advantages of automation
which apply to functiconal testing and alpha testing are even
more important for regression testing. As stated before,
regression testing insures that a system maintains ifs
correctness. After the first few releases of a system, quite
often the original implementors and designers are no longer
assoclated with the system. As a result, those testing sub-
sequent releases of a system are not as familiar with it.
For this reason automated testing is beneficial because
investigation into the system 1s only necessary when a
problem occurs. Those tests which execute correctly do so
without requiring detalled knowledge on the part of the

tester.

Performance Testing
Performance testing answers the types of questions: how
many, how fast and how long. For example, how many communi-

cations lines will a system support, how fast will it support

16

them (at what point will it degrade) and how long will it
support them before fallure? Specifications often state how
many of this device or that device & system will support.
How many ceoncurrent jobs, how many concurrent input/output
activities or how many data entry terminals will the systenm
support? Specifications may also state how fast a job 1s

to be executed, how fast a device is to be responded to or
how fast information is to be transferred to a device.
Specifications may also state how long a system must run
between problems (mean time between failure). Performance
testing can be used to determine what the performance limits
of a system are. Does a system meet its performance speci-
fications? Does it exceed the specifications and, if so,

by how much?

How does performance testing differ from functional
testing? Elmendorf states that performance testing involves
space and time measurements of system utilization, and
functional testing involves the measurement of system gquality
(3, p. 137). This separatlion may be too strong. The specl-
fications for a system may state functilonal and performance
objectives, but it may be difficult to distinguish one from
the other. If a system 1s to support concurrent input and
output, that is a functional capabllity. If the system is
to sustaln a certain rate of Input and output, that is a

performance capability. They are closely related.

17

Part of alpha testing may involve performance testing,
just as it involves functional testing. Performance testing
may also be included in regression testing. Depending on
the design specifications, performance testing may be requlred
for an interactive system. If so, the advantages of automatlon
are the same for performance testing as for functional

testling.

Summary of Types of Testing

Functional testing relates to the quality of a sysfem,
and performance testing involves the space and tlme measure-
ments of system utilization. Both are used in determining
or validating that a system meets the design specifications.
These two types of testing are formalized into test proce-
dures and executed during the later stages of system testing,
during alpha testing and during regression testing. Alpha
testing is generally assoclated with the development of new
systems or new features, while regression testing 1s concerned
with the continued correctness of existing features.

411 of the above apply to the development and implemen-
tatlon of interactive systems. Automation of these testing
techniques 1s a desirable objective because of the greater
efficlency and thoroughness which can be realized during the
testing process. The next two chapters seek to find a
method of automating the functional testing of an interactive

system during system testing, alpha testing and regression

testing. Performance testing is not given direct

consideration.

18

CHAPTER BIBLIOGRAPHY

Boehm, Barry W., "Software and Its Impact: A Quanti-
tative Assessment,'" DATAMATION, May,6 1973, 48-59,

Duke, M. 0., "Testing In a Complex Systems Environment,"”
IBM Systems Journal, Volume 14, Number 4, 1975,
353-365.

Elmendorf, W, R., "Disciplined Software Testing,"

Debugging Techniques In Large Systems, edited by Randall
Rustin, Englewood Cliffs, New Jersey, Prentice Hall, Inc.,

1971, 137-1k40.

Gruenberger, F., "Program Testing: The Historical
Perspective," Program Test Methods, edited by William
C. Hetzel, Englewood Cliffs, New Jersey, Prentice Hall,
Inc., 1973, 11-14.

Huang, J. C., "An Approach to Program Testing," ACM
Computing Surveys, Volume 7, Number 3, September,1973,
113-1205.

Montgomery, George Wynn, System Test Methodology,
NTIS AD/A-012 461, June,1975.

Proceedlings Second Internatlonal Conference on Software
Engineering, LEEE Catalog Number (6CHL125-K C,
October,1976.

Vander Noot, T. J., "System Testing....A Taboo Subject,"
DATAMATION, November 15, 1971, 60-6.4.

19

CHAPTER IIT

DESCRIPTICONS OF SEVERAL TEST TOOLS AND
TECHNIQUES CURRENTLY AVATILABLE
OR CURRENTLY BEING

DEVELQOPED

As computer systems have become more complex and as the
importance of testing has been given more emphasis, numerous
technlques and approaches have been developed and are belng
developed. Some are technigues and methodologles while
others are specific tools. This chapfer evaluates the
advantages, disadvantages and applicability to interactive
system testing of these techniques and tools. FHach one is
evaluated to determine if 1t can ald In the automation of

Interactive system testing.

Synthesls Techniques

Miller uses the term "synthesis techniques" to summarize
the various ideas for improving program development so that
bugs cannot get into the system initially (11, p. 2). Syn-
thesls techniques include the generally accepted ideas of
structured programming which require the programmer to orga-
nize his program into logical blocks which are executed
through the use of control structures. The ability to branch

or execute a "GOTO" type instruction is not provided for his

20

21

use. The ideas of top down design (12) and the chief pro-
grammer team concept (1) are examples of other synthesis
techniques.

Although this is not truly a testing technique, the
ideas of synthesis techniques and testing are so closely
related that they are discﬁssed here., The argument 1is that
no matter how comprehensive thé testing procedure, code which
is poorly designed, poorly structured or poorly coordlnated
may never complete (pass) testing. Elmendorf states the
relationship between design, development and testing very
well (2, p. 138):

If either the design or implementation is sloppy,
then the testing bogs down in a morass of problems,
difficult to identify, expensive to fix, and impossible
to schedule.

If the testing is sloppy, then there is little
motivation to practice gquality 1in the design and imple~
mentation phases. Managers favor the criteria of
excellence agalnst which they're being measured. Testing
is quality measurement and thus, indirectly, quality
motivation.

Synthesis techniques prevent errors from getting into
a system. These ideas are applicable to all types of soft-
ware systems includlng interactive systems. Although their

use is important, they can not aid directly in the automation

of interactive systems testing.

Symbolic Execution and Program Proving
Program proving 1s a fascinating lidea and one that
appeals to any programmer. The security of knowing that a

program or system has been proven to be correct would be very

22

reassuring. Xing has written several articles (5, 9) which
deal wilth symbolic execution as a method for proving correct-
ness. This involves breaking down a program into a symbolic
execution tree whilch represents all the branches within a
program and symbolically executling each branch to prove its
correctness. However, most programs do not have a finite
number of branches so King proposes the trees be traversed
inductively rather than explicitly. Other papers by Elpas (3)
and Good (4) also approach program testing through formal
proofs.

Although this technique 1s very desirable, how practical
ig it for interactive systems at this time? Huang (6, p. 113),
Miller (10, p. 51), and Ramamoorthy (14, p. 383) all state
that program proving is currently only useful for small
pregrams and is still many years away from beilng useful for
large software systems. Ramamoorthy states several reasons
why this 1s so,including: 1) it is too cestly, 2) it is not
useful for systems with parallel processing, and 3) most
programmers do not have adequate mathematical background to
use it (14, p. 384). Program proving, therefore, does not
appear to be a technique that can aid in the testing of inter-

active systems at the current time.

Simulation
Simulation has application to testing as well as to

other areas. Simulaticn is useful in modeling a real world

23

situation. Simulation can be used to model g proposed system
in order to evaluate it. Simulation can be used to simulate
part of a system, and thils is where 1t is useful in intep-—
active system testing. To test an interactive system, sinmu-
lation of the human interface to the system can be used.
Therefore, in discussing the automation of testing, simulation
comes into play, i.e., the simulation of the human interface
to the system,

The entire interactive system could be simulated and
there are beneflts in doing so, but these benefits are in
the area of debugglngs as discussed by Supnik (17). 1In the
final analysis, however, the real system itself must be tested
and not a model of it. Thus simulating the entire system doesg
not aid in the final testing. However, if the human inter-
face to testing the system can be simulated then simulation
1s valuable.

In this way, simulation will be part of the solution of
automating the testing of interactive systems. In this case
it 1s an approach and not the tool itself. The tool to

implement the simulation must be found.

Automated Test Case Data Generation
Given a program which accepts input, how does one go
about selecting the input to be used to comprehensively test
the program? For example, assume that a data field can be

the following:

24

a, Maximum 6 characters.

b. Valid characters are + - , . blank 0-9,.

¢. Blanks may only appear to the left of the left-
most non-blank character or to the right of the
right-most non-blank character.

d., The + or -, if present, must be the left-most
non-blank character. _

e. The "." if present, may be only followed by zero or
two digits or blanks. There may be only one ".",

f. The "," if present, may appear only to the left of
"." and there must be three digits between itself

and the next "," or "." to the right.

The possible valid and 1nvalid combinations are too
numerous to test. How then does one select a valid set of
test data? In 1971, Vander Noot suggested criteria which
would be taken for granted today such as testing upper and
lower limit values, placing alphabetics in numeric fields,
division by zero, ete. {18).

Today there are more sophisticated approaches to test
case data generation. These approaches include the analysis
of program paths and selectlon of data to test these paths.
This analysis can be performed by a program designed to
analyze other programs and select test data. Miller (10)
and Ramamoorthy (13) both present approaches to accomplishing

thisg.

25

As with program proving, it would be desirable to be
able to let a program specify the types and amount of test
case data to be used and know that all the unique paths would
be executed using that data. However, as with program proving,
the state of the art is not to that point yet. There is
little of practical value as far as automated generation of
fest cases for systems programming applications is concerned.
The work which has been done deals with high level languages
such as FORTRAN.

A deficiency with this type of test case data generation
is that the test case data is based on the structure of the
program and not the function of the program. This 1s all
right as long as the data generated actually tests all the
functional capabilities, but there is no guarantee that it
will do so., Deftermining that a program executes correctly
is only part of the job. The program must also perform the

function it was designed for.

Automated Verificaticn Systems
In his article, "Testing Large Software with Automated
Software Evaluation System," (14) C. V. Ramamoorthy describes
tools which are currently available including automated
verification techniques. There are two approaches to veri-
fication: static and dynamiec. Static systems analyze code
and detect logle errors, poor construction, etc. They point

out problem areas which should be corrected. Dynamic systems

26

involve the insertion of probes into the system which are
then monitored to determine 1f the correct paths are taken
and that correct values occur at a given peint. A grest
deal of this can be done interactively so that a program can
be "watched" as it executes. Thig is testing interactively
rather than testing automatically.

Again these tools are complex. They do provide analysis
of code and can point out logic problems, but it is questionable
1f they can be executed effectively by a novice programmer or
someone not familiar with the code. They are perhaps best
sulted as a design or debug technique and not as a formal
functional test.

In addition, as described by Miller (11), these systems
are based on loocking at the actual code rather than the
specifications. There 1s a danger in this approach that
correct programs will be produced which do not meet the design

specifications.

Automated Testing Using a Test Language
Testing of hardware systems through the use of test
equipment which 1s programmable is an idea which seems
reasonable and is done quite often. Can the same idea be
applied to a software system? If 80, should there bhe a
language developed to accomplish this task?
The "Roster of Programming Languages for 197L-75" pub-

lished in the December, 1976, edition of Communications of

27

the ACM (16) includes a list of 167 known programming
languages. To be listed, a language has to (a) have been
developed or reported in the United States, (b) have been
implemented on at least one general purpose computer, (c) be
in use by someone other than the developer (16, p. 655).
Five languages are listed as dealing with equipment checkout:
ATLAS, DETOL, DMAD, RATEL and SVDSS. Two are listed as
dealing with real-time process contrel: COMTRAN and RTPL.
SVDSS stands for Space Vehicle Data System Synthesize, and
its description as "a very simple language for modeling
discrete or analog systems" (16, p. 668) implies it is highly
speclalized and has little application to automated testing.
It 1s not discussed here. RTPL stands for Real Time Pro-
cedural Language and 1s described as a "language to provide
real-time control of software models written in SVD3SS.. "
(16, p. 667). In other words it 1s used with SVDSS and
therefore has the same limited scope.

0f those remaining, no infermation could be obtained
concerning DMAD and COMTRAN. DMAD is described as "An
engineering user oriented test language for functional
testing of digital devices. Allcws device description in
terms of registers and signal names and functional operators,
such as logical and Boolean operations" (16, p. 660). COMTRAN
is described as "A language containing statements to permit
easy programming of on-liine, real-time communications hard-
ware tests. Heavily column oriented with assembly language

style"™ (16, p. 659).

28

This Ieaves ATLAS, DETOL and RATEL. It is not anti-
cipated that these languages can be used for interactive
system testing, but there iz the possibility they contaln

ideas or techniques which can be useful.

ATLAS.--ATLAS (Abbreviated Test Language for All Systems)
wag developed originally by Aeronautical Radio, Inc. It is
a standardized test language for expressing fest specifi-
cationg and procedures independent of the test equipment it
is to be used with. It was initially developed under the
direction of the Airlines Electronic Engineering Committee
in 1968 but since then has found uses with airlines, industry
and government. As 1ts acceptance expanded, the Department
of Defense approved it as an interim standard language for
automatic test equipment.

In September of 1976, authorization for the distribution
and malintenance of ATLAS was turned over to the Institute
of Electrical and Electronics Engineers (IEEE). This resulted

in the publication of IEEE/ARINC Standard ATLAS Test

Language (7) which describes the language.

ATLAS 1s a high level, English-like language with many
structured programming characteristics such as IF-THEN-ELSE,
WHILE~THEN, FOR-THEN and BEGIN-END statements. However, it
also allows an unconditional and conditional GOTO statement
although the manual advises against their use. It has input/
output, data and arithmetic operations comparable to PL/IL.

In addition it has 150 - 200 speclalized instruction such

29

as DOPPLER, STEP SIGNAL, WAVEFORM and others which are
hardware test oriented.

Aglde from the structured statements, there is very
1ittle about ATLAS which is directly applicable to the

development of a test language for interactive systems.

DETOL.~-DETOL (Directly Executable Test Oriented
Language) is a much more basic, lower level language than
ATLAS although both are designed to function in an automated
test equipment environment. "Improved DETOL Programming"
describes the language (8). It does not offer the structured
control instructions that ATLAS provides and allows only a
"jump™ instruction for transfer of control. It is FORTRAN-
like in its arithmetic capabllities and has bit manipulation
capabilities, It has a number of hardware oriented in-
structions such as the set, apply and release stimulil
instructions but not nearly as many as ATLAS.

There 1s 1little if anything in DETOL that can be applied

to interactive system testing.

RATEL.--RATEL stands for Raytheon Automatic Test
Equipment Language which was developed by the Raytheon Cor-
poration for use In testing component systems of the PATRIOT
missile system, It is a FORTRAN-like test language which
includes nearly all capabilities of Raytheon 704 FORTRAN IV

and SYM II assembly language (15).

30

RATEL is an Interpretive language. This means that the
RATEL compiler does not generate executable code but instead
generates Interpretable code. There is a run time system
interpreter which executes the code generated by the compller.

RATEL allows program segmentation with up to fifteen
segments. The segments need not be executed in a certain
order. Global and local variables are allowed. Global
variables may be accessed by any segment and must reside in
the Tirst segment. Local variables can be referenced only
by the segment in which they appear.

Like ATLAS and DETOL, RATEL contalns many instructions
which are hardware oriented. Transfer of control statements
and control structure statements were not obvious from
reading the available documentation (15).

The characteristlcs of RATEL which could be applied to
an interactive system include the idea of an interpretive
language, segmentation and the global/local variable capability.
The run time system alsc allows the operator monitoring the
system to cancel tests (programs) and select others. This,

too, is viewed as desirable.

Summary cof Current Test Tools and Technigues
Of the currently available test tools and techniques,
few of them can be applled directly to the automated testing
of interactive systems. Program proving and autcmatic test

case data generatlon, although desirable, have not been

31

developed to the stage where they are applicable to testing
of large systems. Automated verification systems have the
limitation that they determine if the program works but do
not determine if the program meets its specifications.

Synthesis techniques can be.of indirect help in testing
because they aid in preventing errors from getting into the
system. Currently available test languages cannot be applled
directly to interactive systems, however there are several
characteristics of RATEL which are applicable. Simulation
offers an approach to ilnteractive system testing but 1s not
a solution itself.

The next chapter presents the idea of simulating the
user interface to an interactive system by means of an auto-
mated interactive test system. This system includes a

specialized programming language.

10.

CHAPTER BIBLIOGRAPHY

Baker, F. T., "Chief Programmer Team Management of
Production Programming,” IBM Systems Journal,
Volume 11, Number 1, 1972.

Elmendorf, W. R., "Disciplined Software Testing,"
Debugging Techniques In Large Systems, edited by
Randall Rustin, Englewood Cliffs, New Jersey,
Prentice Hall, Inc., 1971, 137-140.

Elspas, Bernard, XKarl N. Levitt, Richard J. Waldinger,
and Abraham Waksman, "An Assessment of Techniques for
Proving Program Correctness,” ACM Computing Surveys,
Volume 4, Number 2, June, 1972, 97-147.

Good, Donalid I., Ralph L. London, and W. W. Bledsoe,
"An Interactive Program Verification System,”
Proceedings International Conference on Rellable
Software, June 1975, 482-492.

Hantler, Sidney L., James C. King, "An Introduction to
Proving the Correctness of Programs,” ACM Computing
Surveys, Volume 8, Number 3, September,1976.

Husng, J. C.,"An Approach to Program Testing,"
ACM Computing Surveys, Volume 7, Number 3, September,
1973, 113-128.

IEEE/ARINC Standard ATLAS Test Language, The Institute
of Klectrical and Electronic Engineers, Inc.,
IFEE std 416-1976, New York, New York, 1976.

Improved DETOL Programming for the 5500/5510 Automatic
Test System (ATS), Report Number ER-5964, AAL
Corporation, Cockeysville, Maryland, March,1977.

King, James C., "A New Approach to Program Testing,"
Proceedings International Conference on Reliable
Software, June, 1975, 228-233.

Miller, E. P, and R. A. Melton, "Automated Generation
of Testcase Datasets," Proceedings International
Conference on Reliable Software, June, 1975, 51-58.

32

11.

12.

i3.

14,

15,

16.

17.

18.

33

, Methodology for Comprehensive Software
Testing, NTIS AD/AQL13 111, June, 1975.

Mills, Harlen, "Top Down Programming in Large Systems,"
Debugging Technigues In Large Systems, edited by Randall
Rustin, Englewood Cliffs, New Jersey, Prentice Hall, Inc.,
1971, L1-56.

Ramamoorthy, C. V. and S. ¥. Ho, "On the Automated
Generation of Program Test Data," Proceedlngs Second

International Conference on Software Engineering,
October, 1976, 636.

, "Testing Large Software
Witnh Automated Scoftware Evaluation System," Proceedings
International Conference on Reliable Software, June,
1975, 382-394.

Ring, Steven J., "A Distributed Intelligence Automatic
Test System for PATRIOT Electronic Assemblies," for
publication in IEEE Transactions on Aerospace and
Electronic Systems, 1977.

Sammet, Jean E., "Roster of Programming Languages for
1974~75," Communications of the ACM, Volume 19,
Number 12, December, 1975, 655-669.

Supnik, Robert M., "Debugging Under Simulation," Debugging
Techniques In Large Systems, edlted by Randall Rustin,
Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1971,
117-136.

Vander Noot, T, J., "System Testing.... A Taboo Subject,"
DATAMATION, November 15, 1971, 60-64.

CHAPTER IV

A SOLUTION: AN AUTOMATED TESTING CAPABILITY

FOR INTERACTIVE SYSTEMS

As discussed in Chapter III, the current state of
system programming technology deoes not offer much in the
way of sophisticated tools for testing software. Several
new ideas are in the developmental stages such as program
proving and automated test case data generation, however
these are not currently practical. What is needed 1s some
method of automating the testing, in particular the
functional testing, of interactive systems.

The practical fact of the matter is that functional
testing determines 1f the product meets the design specifi-~
cations. This is the ultimate purpose of any system., In
addition, if the test procedure 1s repeated for each release
of the system then regression can be prevented. The net
result is a reliable system which meets the specifications
and will continue to do so as the product is improved.

Automatic or asutomated testing is an idea which is rela-
tively common in testing of hardware systems, as dlscussed
in the previous chapter. Although the applicatlon of these
techniques to software testing seems quite reasonable, the

current literature would indicate that it is not wildely used.

34

35

Although Scherr indicates something of this type may have
been done for the 0S/360 time sharing system, few details
are given (2). Even though test drivers and stimulators are
common practlces, the development of a programming language
and system specifically for testing interactive systems
apprears to be an area which has not been adequately developed.
Automating the functional test procedures for an inter-
active system 1s not a cure all for interactive system
development. The expression "the chain is only as strong as
its weakest 1link" applies to system development., Functional
testing 1s only a link in the chain made up of system analysis,
system design, programming practices and many others. If the
specifications are ambiguous or the programming technglues
are sloppy, testing may prove of little value. Thus

functional testing 1s only as goocd as:

e the clarity, completeness and detailedness of the
specifications
e the adherance to sound programming practices during
development.
If these qualities are present then automated functional
testing can be meaningful.
If an automated test method is to be developed for an
interactive system, what features are desirable? The

following features are considered important:

36

1. It should require fewer man hours to perform the tests

than manual testing.

Manual testing of interactive systems can require a
great deal of time. The number of possible comblnations and
sequences of events for an interactive system can be so
large that manual testing may require many men days. If
this time can be reduced significantly by an automated test
system then substantial dollar savings can be reallzed as
well as freeing manpower to perform other functlons.

Another advantage 1s that the shorter the period
required to perform the tests, the more likely they are to
be run on a regular basls. It can often be observed that
subsequent releases of software systems recelve less and
less testing. One major reason is that the time required
to perform the testing is not allocated. The net result can
be regression. The shorter the time required for testing,
the more likely 1t 1s to be done, the less likely regression

will occur and the more reliable the final product.

2. It should be flexible.

Very few software systems are static. No sooner is the
initial release complete than work begins on modifications
and new features. Any method of automated testing must be
easily modified and must allow additions of new tests easlly.

If this is not true, those features in the initial release

37

are the only ones which are ever tested,because adding new
tests for new features takes too long or is too difficult.
In addition, manpower nust be devoted to updating the tests
which could be used in more productive areas. Thus flexi-
bility helps to insure that new features will be tested and
that only minimum manpower will be required to maintain the

tests.
3. The tests and test sequences should be repeatable.

In general, software problems which can be recreated by
following a certain sequence of steps are more easlily solved
than those which cannot. How offen is the programmer
confronted with a memory dump of a failure and no one knows
the sequence of events which led to the fallure? These
problems often prove difficult to solve. However, if the
failure occurred as a result of running a specific sequence
of tests which can be easily reproduced, not only are the
chances of solving the problem improved but the time required
to do so is likely to be shortened. This means that if a
random sequence of events or inputs are to be used, this
same random sequerice must be reproducible in case a fallure

occurs.
Y, The tests should be modular and separately executable.

If a problem is discovered with part of the system as a

result of performing the automated test procedure, it 1s very

38

desirable to rerun only the test that failed rather than the
entire test sequence in order to recreate the problem or to
determine that a successful correction has been implemented.
The ability to execute a particular test or a particular sub-
set of the tests 1s a feature which can save considerable

time when isolating, correcting and retesting a problem,

5. The tests should be easy to execute.

If the knowledge and experience required to execute the
test procedure is considerable then valuable manpower resources
must be devoted to this task. This too can be a contributing
factor to less thorough testing of subsequent releases
because the personnel capable: of running the tests are on a
critical project, have moved to a different department or
have guit. If, on the other hand, the tests can be performed
by less experienced personnel, there are more options available
as to who can execute them, it will require less manpower to
execute them and as a result they are more likely to be done.
In addition, the testing can serve as a training tool for new

personnel.

6. The tests themselves should be easy to generafbe.

The greater the time or effort required to develop the
tests, the greater the chances that short cuts may be taken,
that tests will not be comprehensive or that new tests will

not be added. However, 1f the system allows tests to be

39

generated easily, the above problems can be avoided. For
example, if a thousand random input values of certain char-
acteristics can be generatéd using only a few directives to
a test language then addition of a new test is more likely
than if all thousand values had tc be specified individually.

If an automated test system incorporates the above ideas,
there is a greater likelihood that it will be used, that it
will be maintained, that it will be functionally effective
and that it will be cost effective.

This chapter states the specifications for an automated
testing capability for an interactive system. This specl-
fication has been separated into three components: a program-
ming language syntax specification, a specification for a
compller and linkage editor for the language. and a specifi-
cation for the run time system which will execute the code
generated by the compiller.

The major component of the automated test system is a
programming language specifically designed for that purpose.
The language is called ATLIS, standing for Automated Test
Language for Interactlve Systems. It can be characterized
as a high level, block structured language with 1nstructions
tailored for interactive system testing. A compiler is
required for compilation of the ATLIS language statements.
The compller will accept ATLIS source language statements
as input and produce interpretable ccde as output. The

reagonsg for producing interpretable code are:

ho

e provide machine independence for ATLIS compiler.

e allow multiple, concurrent execution of more than one

device using the same or different programs.

e allow paging of code so that large programs can be

executed in a small memory space.

In order to allow parts of a program to be compilled
separately, the program can be divided into procedures. Each
procedure can be compiled separately to produce object code
output. A linkage editor is then reguired to combine the
separate object modules, resolve external references and
produce an interpretable lcad medule,

The executlion time portion of the system interprets the
code generated by the ATLIS compller and performs the appro-
priate action., This portion of the system has the following
features:

¢ provides multiple, cecncurrent testing of several

Interactive devices.

e If deisred, provides an audit trall of functilons

performed.

¢ provides indication of errors and allows the test

supervisor to select course of action,

e =zllows a test, a group of tests or all tests to be

executed through operator specifications.

Figure 1 gives an overview of the entire system.

ATLLS SOURGE SUATEMENTS

Y

CARDS

T

COMPILER

M
TAPF

Ty

LISDING

ORFLCT !

MODULES

R -
Iy —
CROSS/
LT REFERENCE
ATLIS et FETERENCE |
fasias !‘ - "a_,aw-
iinkage el
editor
e
—
J

PRETABIE
load
modile

System{s) undsr test

[it e g

Unit under

futomateq s

Control Interactive
congole

est System

] S Uniit g

it

test

under
test
s e st et s
it n
under
test

- , L
Frinteq Magnet}c , HERTY
listing Téﬂﬁ/} le

e . !
e S

AUDLT TRATL

Flg, le-fn overvlow of 1]

i

e rutoniated dnters

ebive tent sfﬁtem.

41

ko

The Programming Language ATLIS

The programming language ATLIS is designed for use as a
test language for interactive systems. However, the concepts
and characteristics reflect current ideas in the fleld of
program language development. ATLIS is a high level language
meaning it is machine (computer) independent as far as its
implementation 1s concerned, It is a structured language, and
program executlon is based on the successive execution of
blocks of code or alternate blocks of code. A block of code
can be a single statement or a group of stateﬁents contained
within a DO, BEGIN or CASE block. ATLIS does not contain a
GOTO statement as part of its syntax.

Floating point arithmetic is not provided for in ATLIS.
Only character and integer variables are allowed. All
variables must be explicitly defined prior to the first

executable statement.

Procedures

An ATLIS program is made up of one or more procedures,
Each program must have one and only one main procedure and
can have multiple procedures which are not main procedures.
The main procedure receives control when a program starts
execution. It can issue the CALL statement to transfer
control to other procedures. Any procedure can call any
other procedure except the main procedure, and the RETUERN

statement returns control from the called procedure Lo the

43

to the calling procedure or the cperating system in the

cagse of the main procedure.

- Variables
Varlables defined within the main procedure can be
referenced by any procedure. Variables defined in a procedure
other than the main prccedure can be referenced only by that
procedure. Two types of variables are supported by ATLIS,
character and integer variables. One-dimensional arrays are

supported for both numeric or character wvariables.

Identifiers

An identifier is a string of characters used to identify
a variable or control structures such as & BEGIN/END block.
Identifiers may be from one to sixteen characters, the first
of which must be alphabetic. The remalning characters may be
alphabetic, numeric or the underscore character. Identifilers
must begin in column one and must be separated from the rest
of a statement by at least one blank. Embedded blanks are
nct rpermitted. For Example:

ALPHA SET DCL 26A, " ABCDEFGHIJKLMNOPQRSTUVWXYZ'

SET STATUS BEGIN

.

END SET_STATUS

by

Constants

Constants may be numeric or character constants,
Numeric constants may be positive or negative., Character
constants must begin and end with a quote, Whenever a quote
is to be used in a literal, 1t should be replaced with two
quotes.

Example: -9972 +143

'"ENTER NAME'!

'THIS IS A QUOTE '' MARK!

Spaces, Comments and Continuations

Spaces may not be embedded in identifiers (including
subscripts), operators or numeric constants. A blank must
follow gll identifiers, precede and follow all operators.

Comments must have an "¥" in column one and must be
entered as a separate card (i.e., input record).

A statement may be continued on the next input record
by placing an "X" in column 71 of the record to be continued.
Comments may not be continued.

Arithmetic, Relational and
Concatenation Operators

The following are the allowed arithmetic operators:

addition +
subtraction -
division /

multiplication ¥

b5

The following are the relational operators which are

supporied:
equal .EQ.
not equal .NE,
less than LT,
less than or equal 1E.
greater than LGT.

greater than or egual .GE.
Two character strings may be concatenated to form one
string using the concatenation operation:
For example:

SET NEW_STRING = STRING_ONE |l STRING TWO

ATLIS Instructions

The following are the ATLIS instructions in alphabetlc
order. Key words are shown as all capital letters. If the
key word is optional, it and its associated parameters are
enclosed in brackets []. Parameters which are required but
are variable are shown as lower case and underlined. Those

not required are shown as lower case and not underlined.

BEGIN statement.--The BEGIN statement is used in combi-

nation with the END statement to enclose a group of
instructions as a block. It is generally used wilth the IF
statement or CASE statement.

identifier BEGIN

46

The following example shows the BEGIN statement used with
the IF statement:
IF (I .EQ. 1) THEN
TRUE BEGIN
SET IVALUE = INVALUE+3
SET ICASE = 1
END TRUE
ELSE
FALSE BEGIN
SET IVALUE = 0
SET ICASE = 1

END FALSE

CALL statement.--~The CALL statement allows the current

procedure to transfer control to a different procedure. When
the called procedure completes 1ts function, control returns
to the instruction following the CALL statement.

CALL procedure name(parameter string)

where: procedure name = the ldentifier of the

procedure to be called
(parameter string) = up to ten variables or
constants separated by
commas
The following are several examplesof valid CALL statements,
some with and some without parameters:

CALL INITIATE

47

CALL PROCESS(1,37,VALUE,ICASE)

CALL FINISH(RET CODE)

CASE statement.--The CASE statement determines which of

the blocks of code which follows 1t are toc be executed based
on the value in the specified variable. The ELSE statement
must be used in conjunction with the CASE statement and serves
to terminate the CASE statement. The block following the
CASE 1s executed if the index equals the number of blocks
between the CASE and ELSE statement.

CASE opl

where: opl = numerlc variable which contains

case index
example:
CASE IVALUE

CASE_1 BEGIN

END CASE 1

CASE 2 DO WHILE (I .EQ. 0)

END CASE 2

* FOLLOWING IS CASE 3
SET I = I 41
ELSE

ELSE CASE BEGIN

48

END ELSE_CASE
Although the ELSE statement is required, 1t can be

specified as ELSE NULL in which case no action is taken.

CLOSE statement.--The CLOSE statement is used to close

a previously cpened data file.
CLOSE opl,op2

where: opl = name of the FILE statement corres-

ponding to the file to be closed.
op2 = numeric varlable in which completion
code 1s to be stored., Must be
numeric variable.
Example: CLOSE INPUT FILE

CLOSE INPUT_FILE,RET CODE

Data Declaration (DCL) statement.--The data declaration

statements describes all variables used in a procedure., All
variables used must be declared, and all declarations must
precede any executable statements.

identifier DCL length type(subscript),initial

value(s)

where: length the number of positions
in a numerle variable
or the number of char-
acters in a character

variable (default = 1)

N for numeric

;

49

C for character

subscript = 1f this variable is to
be an array, this value

specifles the dimension

initial value(s) initial value(s) separated
by commas. Characster

values must be enclosed

in quotes
Examples:
CHAR DCL C
CHAR 1 DCL C, Al
CHAR 11 DCL 2C, "AA?
CHAR ABC DCL 3C,'ABC!

CHAR A B C DCL C(3),'A','Bt, tC*
BLANKS DCL 6C,! '
STRING DCL 26C,'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

THREE STR BCL 3C(3),ABC,DEF,GHI

V33 DCL 2N,33
VALUE_0 DCL 8N,0
NOT _INIT DCL 6N

NUM_ARRAY DCL 1N(3),0,1,2

DO statement.--The DO statement allows a block of code,

terminated by an END statement, to be executed repeatedly
until a specified condition is true. There are two forms

of' the DO statement.

identifier DO

50

WHILE (opl opr op?2)

where: opl = variable or constant
opr = .EQ. .NE. .LT. .LE. .GT. .GE.
op2 = varlable or constant
or
identifier DO opl = op2 TO op3 [BY opi]
where: opl = numeri¢ variable
op2, op3, opl4 = numeric variable or numeric
constant. opl is valid only
if BY is specified.
Examples: SET J =1
LOOP DO WHILE (J .NE. 6)
CALL RETRY
SET J =J + 1
END LOOP
Locp DO J 1 TO 10 BY 2
CALL RETRY
SET I I +4J
ENE LOQOP

ELSE statement.--The ELSE statement is valid only with

the CASE and IF statements.

See the description of these

lnstructions for an explanation of the ELSE instruction.

END statement.--The END statement is used to terminate

the control instructions BEGIN, DO and PROCEDURE.

is:

Its format

51

END identifier

where: identifier = the identifier on the BEGIN,

DO or PROCEDURE instruction

See the BEGIN, DO and PROCEDURE instructions for more detalls

and examples.

EXIT statement.--This instruction allows program control

to be transferred to the end of any block it is a part of.
A bloek is defined by a BEGIN, DO or PROCEDURE statement.
EXIT,opl

where: opl = identifier of the block to be exited

Example: TEST MAIN_PROCEDURE

LOOP DO J = 1 TO 1006

IF (K .EQ. T) THEN

EXIT,LOOP

END LOOP

IF (STRING .EQ. 'STOP') THEN
EXIT,TEST

-

END TEST

52

FILE statement.--The FILE statement is used to declare

what files the PROCEDURE will use. Two types of files may
pe referenced, data flles or the system console. The file
specification can be for either input or output.

identifier TFILE DATA

or

identifier FILE CONSOLE

Example: DATA IN FILE DATA
DATA OUT FILE DATA
M3G_OUT TFILE CONSOLE

CMD_IN FILE CCNSOLE

IF statement.--The IF statement allows the selection of

two alternate paths of execution based on a test. The second
path may be null. The IF statement may be used in conjJunctilon
with the ELSE instruction. The ELSE instruction ildentifiles
the alternate path of execution but 1is not required or can be
specified as ELSE NULL.

IF (opl opc op2) THEN

a variable or constant

where: opl

e .EQ. .NE. LT. .LE. .GT. .GE.

:

op e a variable or constant

Examples: IF (X .EQ. 2) THEN

SET Y =1
ELSE
SET Y = 2

53

* EXAMPLE 2
IF (ANSWER .EQ. 'YES') THEN
YES BEGIN
SET Y = 2
CALL RETRY(Y)
END YES
ELSE
NO BEGIN
SET X = 5
CALL FINISH
END NO
EXAMPLE 3
IF (TEST .EQ. VALUE) THEN
SET TEST = 1
ELSE NULL
or
IF (TEST .EQ. VALUE) THEN

SET TEST = 1

PROCEDURE statements.--There are two procedure statements.

The MAIN PROCEDURE statement can be used only once 1n a
program, and it receives control when the program is started.
There may be multiple non-main procedures. The main procedure
may reference any non-mailn procedure, and the non-maln
procedures may reference any other non-main procedure.

identifier MAIN PROCEDURE

54

1dentifier PROCEDURE(parameter string)

where: parameter string = a list of variable names
separated by commas
Variables may be passed from one procedure to another
via the parameter string. Each procedure 1is terminated with
an end statement.
Examples: TEST_PGM MAIN_PROCEDURE
END TEST PGM

FILE_I0O PROCEDURE (VALUE , X)

)

.

END FILE_IO

OPEN statement.--The OPEN statement 1s used to notify

the system that input or output is anticipated by the program

for a particular file.

OPEN 031,092,op3

where: opl = identifier for a FILE statement
op2 = IN or ouUT
op3 = numeric variable in which the return

code for the OPEN is to be saved
Examples: OPEN DATA_IN,IN

OPEN DATA OUT,OUT,RETURN_CODE

READ statement.--The READ statement is used to read a

record or message from a data file or the system conscle.

The data or message i1s read into the variable untlil the

55

length of the variable is satisfied or the record is

completed.,

READ opl,op2,0p3,o0pl

where: opl = identifier of a FILE statement
op2 = name of variable where input is to
be placed
op3 = length of actual input

op4 = procedure name to receive control if
an end of file encountered
Examples: READ DATA_IN,BUFFER,LEN,END OF IP
READ MSG IN,BUFFER

READ DATA_FIL,BUFFER,,END_QF;FILE

RECEIVE statement.--The RECEIVE statement results in

data being accepted from an interactive device. The data
which 1s received is compared to the data specifled in the
RECEIVE statement. If they compare, the next statement is
executed, If they do not compére, the system lssues messages
to the system console giving the last data sent to the device,
the data received and the data expected. The operator has
the option to accept the data in which case the program will
begin execution at the next statement, or the operator can
abort the program. Concatenation operations are valid.

RECEIVE opl

where: opl = a variable or a constant

Examples: RECEIVE 'ID = LX,PSW = XT7!

56

RECEIVE BUFFER
RECEIVE 'TERMINATE'
RECEIVE FIRST NAM || LAST NAME

RECEIVE 'CITY=' || CITY_NAME

RETURN statement.--The RETURN statement allows a

procedure to return control to the procedure which called it.
Tf the RETURN statement is executed in the maln procedure,
control is returned to the operating system.

RETURN

9END statement.--The SEND statement regults in data

being transferred to an interactive device. Concatenatlon
operations are allowed. If error conditions are belng
tested and an error indication is expected then the ERROR
parameter should be set to YES.

SEND opl,[ERROR=op2]

variable or constant

1l

where: opl

NO 1f no error expected (default).

o]

£®]
3]

]

il

YES if error expected
op2 is valid only if ERROR= is
specified
Examples: SEND 'ENTER LAST NAME'
SEND 'CITY= ' || CITY NAM
SEND 'CITY= ' || CITY || *STATE='|| STATE

SEND ‘'A',ERROR=YES

57

SET statement.--The SET statement allows the value of 3

variable to be changed. All variables used in the statement
must be of the same type (i.e., character or numeric).
Multiple arithmetic or concatenation operations may be
performed, however, arithmetic functions are valid only for
numerle variables and constants. Concatenation functions are
vallid only for character variables and constants.

SET opl = op2 opr op3

where: opl = variable to be altered

op2 = varlable or constant

opr = +-/% if numeric variables involved
= || if character variables involved

op3 = varilable or constant

Examples: SET ADR = CITY || STATE

SET NAME = ‘'JOHN' |} 'D' || 'DOE!
SET COUNT = 0
SET COUNT = X + Y - 1

STOP statement.--The STOP statement can be issued at

any point in the program and results in immediate termination
of the program.

STOP

WRITE statement.--The WRITE statement 1s used to write

a record or message to a data file or to the system console.
The data written may be contained in a variable, or it may

be & character constant.

58

WRITE opl,ope
identifier of a FILE statement

where: opl

op2l name of variable to be outputted or
character constant
Examples: WRITE DATA OUT,MESSAGE

WRITE MSG_OUT,'TEST COMPLETE'

Standard Functions Provided in ATLIS

FTive functions are provided for in ATLIS: LENGTH, MOD,
RAND, SELECT, and SUBSTR. The LENGTH, MOD and RAND functions
are valid any place a numeric variable is valid. The SELECT
and SUBSTR functions are valid any place a character variable

is walid.

LENGTH function.--The LENGTH statement provides the

number of characters currently 1n a character variable and
treats the length as a numeric variable.
LENGTE (opl)

where: opl = identifler for a character variable

Examples: SET A = LENGTH (ADDR_FIELD)

IF (LENGTH(ADDR_FIELD) .GT. O) THEN

MOD functlon.-- The MOD functicn provides the remainder

of the first operand divided by the second operand.

MOD(opl,0p2)

where: opl and op2 = numeric variable or numeric

constant

59

Examples: SET X = 6 + MOD(11,5)

SET VALUE = SUM / MOD(X,10)

RAND function.--The RAND function provides a numerlc

value between 0 and 9. The probability of the value belng

any of the values 1is equal.
RAND(opl)

where: opl = numeric variable which serveg as a

seed

Examples: DO I =1 TO RAND(X) * 10

CASE RAND(X)

SELECT function.--The SELECT function provides a char-

scter string of a specified length which is selected randomly
from a character variable. If the character variable 1is
length cone then the new string is made up of the same char-
acter.

SELECT (opl,op2)

where: opl

numeric variable or numeric constant
which specifies the length of char-
acter string to be generated
op2 = character variable or character

constant from which the new string

igs to be randomly selected
Examples: SET STR = SELECT {6 ,ALPHABET)

SET NEW_STR = SELECT (RAND(X) ,NUMERIC)

SEND SELECT(IO,ALPHA”NUMERIC)

60

SUBSTR functlon.--The substring function selects a part

of another character variable, starting with a specified

pesition and with the specified length.

SUBSTR(opl,op2,0p3)
where: opl = numeric variable or constant specifying

the starting position in op3 to

select string

Q

e}
no

il

numeric variable or constant specifying
the length of the string to be selected
op3 = character variable from which new
string 1s to be selected
Examples: SET CHR_STR = SUBSTR(1,10,NAME)

SEND = SUBSTR(RAND(X),4,ALPHA)

The ATLIS Compiler and Linkage Editor

The ATLIS compiler is to be written in a high level,
machine 1ndependent language such as PL/I. The ccmpililer can
be a cross compiler, that Ils, it executes on a machine
different than the one on which the generated code is used,
or 1t can be a resident compiler on the machine on which the
code is used. The compiler produces "pseudo code," that is,
code which in itself 1s not executable but must be interpre-
tively executed by the AIT System {(Automated Interactive
Test System). Since the ATLIS procedures may be compiled
separately, references to other procedures (CALL statements)

and data references to the main procedure by cother procedures

61

are marked as external references which are resolved at
linkage edit time,

Because the generated code is executed interpretively
and because it is desirable to execute multiple programs
concurrently, main memory requirements might be a problem
if the system is implemented on a mini-computer. For that
reascn, the compiler procduces "paged" pseudo code. This
means that each procedure is divided into pleces, or pages,
which have a maximum size., The smaller the size selected
for the page, the more pages which are required and there-
fore the more page fetches from disk. The larger the page
size the more memory that is reguired. Each program in
execution has one page area,and it contains the page
currently being executed.

Since the pseudo code is paged then the compller
determines where the page breaks occur and provides a pseudo
instruction to so indicate. The compller also satisfies
addressing references between pages for any branches generated
by the control statements. All address references within a
procedure dealing with the transfer of control are expressed
internally as relative offsets within pages, and the page
numbers are relative fo a procedure,

The data for a procedure presents a somewhat different
problem. If data was treated similar to the pseudo code
then as each page or procedure was exécuted or called, the

previous data would be destroyed. Therefore the data must

62

be kept separately. The data for the main procedure always
remains in memory since it can be referenced by any procedure.
The data for all other procedures is present from the time it
receives control until the time a RETURN statement 1s
encountered or until the END statement for the procedure

is encountered. This means that 1if there are nested procedure
calls, the data for each procedure which has not executed a
return is 1n memory. For an example, see Figure 2.

The compiler therefore geparates the data from executable
code when producing the object module so that at execution
time the AIT System can retrieve the data and the pseudo code
separately. This is discussed in more detail when the AIT
System is discussed.

The function of the ATLIS linkage editor is to take the
object modules produced by the ATLIS Compiler and combine them
to form an executable load module. This module 1s then
executed by the AIT System. This involves assigning relative
procedure numbers to each procedure, the main procedure belng
procedure number one, and supplying the relative offset within
the main procedure data space for references to data items in
the main procedure by other procedures.

The input to the linkage editor is a group of object
modules, and 1ts output is an executable load module if no
errors were encountered. In addition, the linkage editor
provides printed output which containg a list of each procedure

and which procedures call it. Also, a cross reférence of

Procedure calls

Fig.

main procedure
calls
PROCEDURE A

PROCEDURE A
calls
PROCEDURE B

PROCCEDURE B
returns to

PROCEDURE A
calls

PROCEDURE C

PROCEDURE C
calls
PRCCEDURE D

PROCEDURE D
return to
PROCEDURE C
return to
PROCEDURE A
return to
MAIN PROCEDURE

Data mapping

DATA-
MATN_PROCEDURE

Data
PROCEDURE A

Data
MAIN_ PRGCEDURE

Data
PROCEDURE A

Data
PROCEDURE B

Data

MAIN_PROCEDURE

Data
PROCEDURE A

| PROCEDURE C

Data

Data
MAIN_PROCEDURE

Data
PROCEDURE A

Data
FROCEDURE C

Data
PRCCEDURE D

Data

MAIN_ PROCEDURE |

63

2-—~An example of the data area mapping for several

levels of preocedure calls.

64

data variables in the maln procedure and which procedures
reference each item is provided. All references are
indlicated by relative procedure number and statement number
within the procedure. The listing also indicates unresolved
references.
The Automated Interactive Test
System (AIT System)

The function of the Automated Interactive Test System,
to be referred to as the AIT System, is to interpretively
execute the load modules produced by the ATLIS compiler and
linkage editor. The AIT System would be best implemented on
a 16 or 32 bit general purpose minl-computer with at least
65X of memory. The system should also support card input,
print output, magnetic tape (800 or 1600 BPI) and mass
storage device or devices of at least 3 million & bit bytes
of storage.

The system can be implemented as a system within itself
or as a subsystem under an operating system. If Implemented
as a system itself then 1t must include device drivers to
control each of the devices described above. The more
desirable cholce, and the one to be assumed for the purposes
of this discussion, 1s for the AIT System to execute as a
subsystem under an coperating system. The operating system
would be responsible for device management, memory management

and job management if 1t 1s a multijob operating system.

€5

It is recommended that the AIT System be a multlifask
system which is capable of supporting multiple interactive
devices, each as a separaté task. These tasks are able to
be started and stopped independent of each other. In
addition, there is a main task that coordinates the starting
and stopping of the other tasks and provides for the operator
interface through the system console.

The AIT System is coded in the assembly language of the
computer it is belng implemented on or in a high level systems
programming language if one 1s supported. Depending on memory
constraints and operating system capabllities, 1t may be
necessary to overlay parts of the AIT System but only those
functions which are not of a time critical nature. Candldates
for being overlayed include the system consocle interface,
system initialization and task initialization.

The system supports at least two types of disk file
organization. These organizations are logical sequential
files and partitioned files. A logical sequential file 1s
a file whose records may only be accessed in sequence from
start to finish. A partitioned fille is effectively one or
more logical sequential files, called members, which are
grouped together under one name. Each member of the parti-
tioned file has its own unigue member name and can be accessed
separately, or the entire partitioned file can be tréated

as one large sequential file.

66

The partitioned file organizatlon i1s necessary for the
object modules produced by the ATLIS compiler., Each procedure
of a program has 1fts own unigue name, and the object code
produced by the ATLIS compiler for that procedure is placed
in a member with the same name. The name of the partitioned
file 1s the same as the name of the ATLIS program. Thus,
Just as a program i1s made up of a group of procedures, the
partitioned file for a program is made up of a group of
members, each of which represents one procedure. The ocutput
of the linkage editor is also maintained in a partitioned
file. As a procedure is referenced, the pseudo code and
data for that procedure is lcaded from the appropriate member.

The logical sequential file crganization is needed for
ATLIS source files, the AIT System log file and other data
files.

The AIT System is controlled through the system console
interface. The operator at the console specifies which
interactive devices are to be tested, assigns each device a
relative priority, specifies what tests are to be executed
and starts the appropriate group of tests. FEach program
name 1s made up of three parts, the group name followed by
the sub group name followed by the sequence number. The
format of the program name is:

{group name/subgroup name.group sequence number).

Since a program is maintained as a file, the program name 1is

also the file name. The purpose of having three parts to a

67

program name is to allow programs to be executed by group
name, subgroup name or by sequence number., For example,
assume there were the programs with the following names:

(INPUT/TEST1.1)

(INPUT/TEST1.2)

(INPUT/TEST1. 4)

(INPUT/TEST2)

(INPUT/TEST3)

(INPUT/TESTE)

(OUTPUT/TESTL)

(OUTPUT/TEST2.1)

(OUTPUT/TEST2,2)

(QUTPUT/TEST2.3)

(QUTPUT/TEST3)

(QUTPUT/TESTY)

When a group of tests are executed, they are executed in
alphanumeric order (i.e., A-Z, 0-9). The control operator
can speclfy execution of a specific program such as
(INPUT/TEST1.4). The operator can also specify execution of
a subgroup of tests such as (INPUT/TESTL1) in which case
(INPUT/TEST1.1), (INPUT/TEST1.2) and (INPUT/TEST1.4) are
executed sequentially. The operator can also execute a group
of tests such as (OUTPUT) in which all programs with the
group name of (OUTPUT) are executed sequentially. If all
programs are to be executed, the operator can specify "ALL"
in which case all programs are executed sequentially based

on alphanumeric order of theilr group name.

68

Grouplng tests in this manner 1s an adaptation of the
idea of organizing tests into a testing structure presented
by Cicu (1, pp. L4~50). The advantage of this capabllity is
that the operator can execute all tests if confldence testing
of the entire system is necessary, or specific programs can
be executed 1f problems exist or are suspected with a certain
area. In addition, a repeat count can be specified, allowing
a program or group of programs to be executed repeatedly.

This flexibility is provided for each interactive device
to be tested, so each device can be tested concurrently with
the same program or group of programs.

When the control operator indicates that execution is
to begin, the AIT System obtains from the operating system
sufficient memory to contain a page of ATLIS pseudo code and
the data for the main procedure of the program., The first
page of pseudo code for the main procedure is loaded into
memory from the program file and interpretive execution begins.
When a page boundary i1s reached, the next page is read in
from the program file.

If another procedure is called, its code 1s located in
the partitioned file, and the first page of its pseudo code
is read into memory. In addition, sufficlient memory 1s
requested from the system to contaln the data area of the new
procedure, If sufficient memory is not available, the AIT
System continues to request the needed memory for a period of

time. If still unsuccessful, the control operator is notified

69

via the system console that insufficient memory 1is avallable
to continue. The control operator then tells the system to
wait, continue to retry or terminate the program.

When a procedure has completed execution and is ready
to return to the calling procedure, the data space for the
procedure is released back to the system, the page of pseudo
code in the calling procedure 1s reloaded and execution resumes
at that point. When a program completes executlon, the AIT
System checks if there are additional programs to be executed,
and if so, the next one in the group is located and the
process begins again.

Part of the AIT System i1s the ATLIS interpreter which
acts upon the pseudo code produced by the ATLIS compiler.
After a predetermined number of pseudo instructions have been
executed for a program testing a certaln device, the inter-
preter determines if there are other tasks {programs) awalting
execution. If there are, they begln executlon based on
priority and aging count. Execution of most of the instructions
is straight forward. The exceptions to this are the CALL
statement, which wasg described previously, SEND statement
and RECEIVE statement.

The SEND and RECEIVE statements are the heart of the AIT
System. When a SEND instruction is encountered, the data
which forms the argument for the SEND instruction is moved
into a holding buffer and also written to the log file. The

data is then transmitted a character at a time. Assuming

70

that the device operates in echo-plex mode (i.e., the
recelving device echos the characters back to the sending
device), the AIT System compares thé characters sent to be
sure that echoed characters match those transmitted. Any
discrepancy is noted in the log. Should an error indlcation
be received from the receiving device, it is so noted in the
log. An error indication can result from data being altered
erroneously during transmission or as a result of intentionally
sending bad data to test error detection logiec. In order to
determine which case has occurred, the interpreter, upon
recelving an error indication, retransmits data from the
holding buffer beginning with the character following the
last character echoed by the recelving device. This is
repeated a set number of times. If the error condition still
exists then the data must be in error., The interpreter then
checks 1f the SEND statement specified ERRCR=YES, meaning an
error is expected. If it did, the next instruction is
executed. If the SEND statement had ERROR=NO then an unex-
pected error has occurred, and a message is issued to the
control console to alert the operator. This message gives
the program name, the procedure name, the statement number,
what was sent and what was echoed. The console operator can
override the error and go on, change the data being sent or
cancel the program. If all data sent is echoed correctly,
the infterpreter checks to be sure that the SEND statement did

not specify ERROR=YES. If 1t did then an error was expected,

71

but it was not received. A message 1s issued to the systenm
console to notify the operator.

The RECEIVE instruction is treated as follows. Data
from the interactive device being tested is received into a
holding buffer, As 1t 1s received, 1t 1ls compared to the
data glven as an argument on the RECEIVE instruction. If any
variations are encountered, a message 1s issued to the
control console. The console message indicates the program
name, procedure name, statement number, last data sent, data
expected and actual data received., The operator has the
option to accept the data, override the data or abort the
program, The same type of message 1s issued if the inter-
preter stops receiving data prior to completing input. Once
the correct number of characters has been received, the
next Instruction 1s executed.

The basglc premise of this type of testing is that the
response of the system under test should always be anticipated
based on what is sent. The purpcse of the testing is to
insure that the system responds as expected to predefined sets
of input. The SEND and RECEIVE gstatements are the corner-

stone of this testing procedure.

Conclusions
As described in Chapter I, testing of interactive systems
can be very time consuming. Therefore, it 1is desirable to

automate this procedure if possible. The techniques and

72

tools which are discussed in Chapter III offer little in the
way of solutions to this problem. On the other hand, the
ATIIS language and the AIT System provide a soclution to the
problem of interactive system testing.

The ATLIS language and AIT System have the necessary
features to allow the automation of interactive system
testing. Because the testing i1s done through programs written
in the high level language ATLIS, new features of the inter-
active system can be tested by changing existing programs or
by writling new programs. Thus, flexibility 1s a feature of
fhis solution. New features can be easily tested.

Another advantage to this solution is repeatability. If
problems are found with part of the interactive system, the
appropriate test program can be executed to reproduce the
problems. Since the system offers an execution trace, it is
possible to review the trace to determine where the errors
occur and what events preceded them.

This system is also modular. Because of the way progranms
can be named using the format (group name/subgroup name.group
sequence number), a group of programs or a single program can
be executed. Thus, a specific area can be tested or the
entire system can be tested. The test programs are also easy
to execute. The control operator must only specify the name
of the group, subgroup or program desired., If no errors are

encountered, no further operator intervention 1s required.

73

Since the test programs are easy to execute, there is
less time required to execute them. The tests can be condueted
faster by the system than by human testers, because there is
no reaction time on the part of the system as there is with
human testers. The input can be generated at the spéed of
the communications link between the system being tested and
the AIT System.

The features of the ATLIS language also facilitate the
development of test programs. For example, the SELECT and
SUBTR functions allow generation of character strings, and
when combined with the DO statement, they allow various
combinations of character strings to be easily generated as
input data.

The features described above enable the ATLIS language
and ALT System to aild in the automation of the testing
involved in interactive systems. In particular, they aid in
the testing associated with system testing, alpha testing,
functional testing and regression testing as described in
Chapter II.

Although performance testing is not specifically
discussed in this chapter, it is quite possible that the AIT
System can be expanded to include performance testing. The
code produced by the ATLIS Compiler is interpretable and
paged, and since the AIT System is designed as a multi-task
system, expansion of the system to include performance

testing should not be too difficult. If timing constraints

are to be
the ATLIS
provide a
delta can

determine

74

consldered then new statements may be required in
language such as START TIMER and STOP_TIMER which
time delta for a seqUenCé of tests. This time

then be compared to what 1s acceptable in order to

1f the system meets predefined timing constralnts.

The ATLIS language and the AIT System, as described

here, provide a tool for automating the testing of inter-

active systems. Use of such a system should significantly

reduce the time required to test interactive systems and

should aid in the development ¢f thorough test procedures

for these

systems.

l'

2.

CHAPTER BIBLIOGRAPHY

Cicu, A., "Organizing Tests During Software Evaluation,"
Proceedings International Conference on Reliable
Software, June, 1975, 43-50.

Scherr, A, L., "Developing and Testing a Large Programming
System, 0S/360 Time Sharing Option," Program Test
Methods, edited by William C. Hetzel, Englewood Cliffs,
New Jersey, Prentice Hall, Inc., 1973, 165-180,

75

APPENDIX I

Backus-Naur Form (BNF) of

ATLIS Language

{program?::= <main procedure?
1<main procedure><sub procedures>

<main procedure) ::= <(main procedure statementy¢end statementy

| <main procedure statement)

procedure bodyy>c¢end statement>
(subprocedures) ::= (procedure)

| <procedurey(subprocedures>
{procedure) ::=<{procedure statement><end statement>
| <procedure statement>

{procedure body><end statement>

<{main procedure statement> :!:= <{procedure name>MAIN PROCEDURE

{end statement> ::= END <{statement identifier>

{procedure statement?> ::= <{procedure name> PRCCEDURE <argument
list>

| <procedure name> PROCEDURE

{procedure name> ::= <{statement identifier>
<argument 1list> ::= (<arguments>)
Carguments> ::= <{data identifier>

|<data identifier>,<arguments>
{procedure body> ::= <executable block>

|<data declarations><{executable block>

76

77

{data declarations> ::= <(data group)

[<file group>

|<data.group§<file groups
{data group) ::= (data statementy

| <data statément}<data group>

{data statement> ::= <data identifier> DCL<data description)
{data description> ::= <{type>

I<léngth><type>

| <type><{sub-init)>

[<length><type><sub-init)
<sub-init> ::= (Knumeric constant>)

| {numeric constant>),{init-string>
I<init-stringd
{init-string>::= <{constant>
| Ceconstantd ,<init-stringd
{length> ::= {numeric constant>
{type> :1:= N |C
{file group> ::= {f'lle statement>
|<file statement><{file group>
{file statement> ::= {(file identifier) FILE DATA
|<{file identifierd> FILE CONSOLE

{executable block> ::= {control block>

| <control block><{executable block>
{control block> ::= <{simple statement>

|<if block

|<statement identifierd)<{de blockd

78

{end statement>
|<case block><end statement>
i(bégin block><end statement>:
{simple statement> ::= <{set statement>
| <call statement>
| <exit statement>

| <I/0 statement>

| RETURN

| STOP
¢{set statement> ::= SET <variable><expression>
(expressiond ::= <(arithmetic exp>

| {concat exp>
{arithmetilc exp> ::= <{term>
| <arithmetic exp><add/sub operator><{term>
{termd ::= <{slgned operand>

| <term><multiply/divide operand><signed operand>

{signed operand> ::= <add/sub operator><{signed operand>
| Coperand>
{operand> ::= <{constant>
| <{variable>

| {function reference>
| (Karithmetic exp>)
{varlable> ::= <simple variable>
| <subscripted variable>
{simple variable> ::= <{numeric identifier>

{subscripted variable> ::= <{numeric identifier) (<arithmetic expd)

{function reference>

{function name> ::=

{numeric identifier>

;1= (function name>
1 <function name>(<arithmetic exp>)
{identifier>

1:= {data identifier>

¢concat exp>» ::= <concat operand>

| <concat operand> || <CONCAT exp>

" {concat operand> ::=

{call statement> ::=

<exlt statement> ::=
¢I/0 statement> ::=
I
I
|
I
|

{send statement>
{receive statement>

{open statement> :i:=

<disp> ::= 1IN | OUT
{returny ::= <{varisab

{close statement>

{constant>
| {variable>
| {function reference>
CALL <procedure name>
| CALL <procedure name><argument list>
EXIT,<{statement identifier>
{send statement>
{recelve statement>
(open statement>
{close statement’)
{read statement>
<write statement>
SEND <concat exp>
:= RECEIVE <concat exp>
(file identifier><disp><{return>

]<file i1dentifier><{disp>

le>

= (file 1dentifier>

[¢<file identifier>{completion>

79

80

{completion> ::= <variable>
{read statement} 1:= (file identifier><variable>
|<f1le identifier><variable>,<variable>
| <file identifier><variable>,<{variable>,
{variable>
[<file 1dentifier><variabled>,,{variable>
{write statement> ::= (file identifier><{variable>
<if block) ::= <if header><executabie block>

[<if header><executable blockr<else block>

(if header> ::= IF <{condition> THEN

{condition» = (<expression><relational operator>{expression>)
¢else block> ::= ELSE <control block>

{do block> ::= <(do while><executable block>

| <do range><executable block>

{d¢ while> = DO WHILE <condition>
{do range> = DO <variable> = <{operand> TO
<operand> BY <operand>
<case block> ::= <{case statement><{executable block>
| <case statement><executable block><else block>
{cagze statement> ::= CASE <variable>
<begin block> ::= <begin statement>{executable block>

I

<(begin statement> {statement identifier> BEGIN

<file identifier> = {identifier>
{data identifier> = {identifier>
{statement identifier> ::= <{identifier>

" identifiler> ::= <alpha>

81

| <alpha><alpha-num-string>
{alpha-num-string?> ::=j<alphanﬁmeric>
| <alphanumeric><alpha-num-string>
{alphanumeric> ::= <alpha>
| <numeried

{econstant> ::= <numeric constant>

| {character constant>
{numeric constant> ::= <{numeric>

| <numeric><numeric constant>
{character constant> ::= '{character>!
| *<{character>{character constant>'

{character> ::= <alpha>

| <numeric>

| <special>
<add/sub operator> ::= + | -
{multiply divide operator> ::= ¥ | /
{relational operator> ::= ,EQ. | .NE. | .LT.

{ .LE. | .aT. | .GE.

{numeric> ::= 0]1...]9
{alpha> ::= A|B|...|Z

<{speciald> ::= ¢l .[<l. 0"

STATEMENTS :

ldentifier

identifier

Ildentifier

l1dentifiler

identifier

ddentifier

ldentifier

identifier

APPENDIX II

ATLIS Language Summary

BEGIN

CALL procedure name(opl,op2...opn)

CASE opl

CLOSE _opl,op2

DCL lengthtype(subscript),initial values
DO WHILE (opl opR op2)

DO opl = op2 TO op3[BY op4]

ELSE

END identifier

EXIT,opl
FILE DATA

FILE CONSOLE

IF (opl opr op2) THEN
MAIN PROCEDURE

OPEN opl,op2,0p3
PROCEDURE (opl,op2,...o0pn)
READ opl,op2,op3,oph
RECEIVE opl

RETURN

SEND 091,[ERROR=092]

82

FUNCTIONS:

SET opl = op2 opr op3
STOP

WRITE opl,op?2

LENGTH(opl)
MOD(opl,op2)
RAND(opl)

SELECT (opl,op2)
SUBSTR({opl,op2,0p3)

83

BIBLIOGRAPHY

Books

Hetzel, William C., editor, Program Test Methods, Englewood
Cliffs, New Jersey, Prentice Hall, Inc., 1973.

IEEE/ARINC Standard ATLAS Test Language, IEEE std 416-1976,
The Institute of Electrical and Electronic Engineers, Inc.,
445 Hoes Lane, Piscataway, New Jersey 08854, 1976.

Proceedings International Conference on Reliable Software,
STGPLAN NOTICES (a monthly publication of the ACM specilal
interest group on programming languages), Volume 10,
Number 6, ACM SIGPLAN, 1133 Avenue of the Americas,

New York, New York 10036, June, 1975.

Proceedings Second International Conference on Software
Engineering, IEEE Catalog Number 76CH1125-4 C, IEEE
Computer sSociety, 5855 Naples Plaza, Long Beach,
California 90803, October, 1976.

Rustin, Randall, editor, Debugging Techniques in Large Systems,
Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1971.

Articles

Baker, F. T., "Chief Programmer Team Management of Production
Programming," IBM Systems Journal, Volume 11, Number 1, 1972.

Boehm, Barry W., "Software and Its Impact: A Quantitative
Assessment ," DATAMATION, May, 1973, 48-59.

Cicu, A., "Organizing Tests During Software Evaluation,"
Proceedings International Conferences on Reliable
Software, June, 1975, 43-50.

Duke, M, 0., "Testing In a Complex Systems Environment,"
IBM Systems Journal, Volume 14, Number 4, 1975, 353-365.

Elmendorf, W. R., "Disciplined Software Testing," Debugging
Techniques In Large Systems, edited by Randall Rustin,
Englewocod Cliffs, New Jersey, Prentice Hall, Inc.,
1971, 137-140.

84

85

Elspas, Bernard, Karl N. Levitt, Richard J. Waldinger and
Abraham Waksman, "An Assessment of Techniques for Proving
Program Correctness," ACM Computing Surveys, Volume b,
Number 2, June, 1972, 97-147,

Good, Donald I., Ralph L. London and W. W. Bledsoe, "An
Interactive Program Verification System," Proceedings
International Conference on Reliable Software, June, 1975,
§82-092, o

Gruenberger, F., "Program Testing: The Historical Perspective,"
Program Test Methods, edited by William C. Hetzel,
Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1973,
ll_lu L]

Hantler, Sidney L. and James C. King, "An Introduction to
Proving the Correctness of Programs," ACM Computing
surveys, Volume 8, Number 3, September, 1976.

Huang, J4. C., "An Approach to Program Testing," ACM Computing
Surveys, Volume 7, Number 3, September, 1973, 113-1248.

King, James C., "A New Approach to Program Testing,"
Proceedings International Conference on Rellable Soft- .
ware, June, 1975, 228-233,

Miller, E. F. and R. A, Melton, "Automated Generation of
Testcase Datasets," Proceedings International Conference
on Reliable Scftware, June, 1975, 51-58.

Mills, Harlen, "Top Down Programming in Large Systems,"
Debugging Techniques In Large Systems, edited by
Randall Rustin, Englewood Cliffs, New Jersey, Prentice
Hall, Inec., 1971, 41-56.

Ramamoorthy, C. V. and S. F. Ho, "On the Automated Generation
of Program Test Data," Proceedings Second International
Conference on Software Engineering, October, 1976, 636.

» "Testing Large Software With
Automated Software Evaluation System," Proceedings
international Conference on Reliable Scftware, June, 1975,

Sammet, Jean E., "Roster of Programming Languages for 1974-75,"
Communications of the ACM, Volume 19, Number 12, December,
1976, 655-669.

86

Scherr, A. L., "Developing and Testing a Large Programming
System, 08/360 Time Sharing Option," Program Test Methods,
edited by William C. Hetzel, Englewood Cliffs, New Jersey,
Prentice Hall, Inc., 1973, 165-180.

Supnik, Robert M., "Debugging Under Simulation," Debugging
Techniques In Large Systems, edited by Randal Rustin,
Englewood Cliffs, New Jersey, Prentice Hall, Inec., 1971,
117-136.

Vander Noot, T. J., "System Testing A Taboo Subject,"
DATAMATION, November 15, 1971, 60-64.

Reports

Improved DETOL Programming for the 5500/5510 Automatic Test
System (ATS), Report Number ER-8964, AAI Corporation,
Cockeysville, Maryland, March, 1977.

Public Documents

Miller, E. F., Methodology for Comprehensive Software Testing,
National Technical Information Service (NTIS) AD/AC13 111,
June, 1975,

Montgomery, George Wynn, System Test Methodology, National
Technical Information Service (NTIS) AD/A-012 461,
June, 1975.

Unpublished Materials

Ring, Steven J., "A Distributed Intelligence Automatic Test
System for PATRIOT Electronilc Assemblies," for
publication in IEEE Transactions on Aerospace and
Electronic Systems, Raytheon Company, Hartwell Road,
Bedford, Mass. 0173C, 1977.

