
IqI

AUTOMATED TESTING OF INTERACTIVE

SYSTEMS

THESIS

Presented to the Graduate Council of the

North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Stephen C. Cartwright, B. S.

Denton, Texas

May, 1977

Cartwright, Stephen C., Automated Testing of Interactive

Systems, Master. of Science (Computer Science), May, 1977,

86 pp., 2 illustrations, bibliography, 28 titles.

Computer systems which interact with human users to

collect, update or provide information are growing more

complex. Additionally, users are demanding more thorough

testing of all computer systems. Because of the complexity

and thoroughness required, automation of interactive systems

testing is desirable, especially for functional testing.

Many currently available testing tools, like program

proving, are impractical for testing large systems. The

solution presented here is the development of an automated

test system which simulates human users. This system

incorporates a high-level programming language, ATLIS. ATLIS

programs are compiled and interpretively executed. Programs

are selected for execution by operator command, and failures

are reported to the operator's console. An audit trail of

all activity is provided. This solution provides improved

efficiency and effectiveness over conventional testing

methods.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS,. iv

Chapter

I. THE PROBLEM: RAPID DEVELOPMENT AND INCREASED
COMPLEXITY OF INTERACTIVE SYSTEMS PRESENT
NEW TESTING PROBLEMS FOR IMPLEMENTORS1

II. DESCRIPTIONS OF SEVERAL TYPES OF TESTING 8

Module, System, Alpha and Beta Testing
Functional Testing
Regression Testing
Performance Testing
Summary of Types of Testing

III. DESCRIPTIONS OF SEVERAL TEST TOOLS AND TECHNIQUES
CURRENTLY AVAILABLE OR CURRENTLY BEING
DEVELOPED..................................20

Synthesis Techniques
Symbolic Execution and Program Proving
Simulation
Automated Test Case Data Generation
Automated Verification Systems
Automated Testing Using a Test Language
Summary of Current Test Tools and Techniques

IV. A SOLUTION: AN AUTOMATED TESTING CAPABILITY FOR
INTERACTIVE SYSTEMS................-............34

The Programming Language ATLIS
The ATLIS Compiler and Linkage Editor
The Automated Interactives Test System (AIT System)
Conclusions

APPENDIX I..................... 76

APPENDIX II............................... 82

BIBLIOGRAPHY*............ 84

iii

LIST OF ILLUSTRATIONS

Figure Page

I. An overview of the Automated Interactive
Test System... ...0.0.. 41

2. An Example of the Data Area Mapping for Several
Levels of Procedure Calls.............. 63

iv

CHAPTER I

THE PROBLEM: RAPID DEVELOPMENT AND INCREASED

COMPLEXITY OF INTERACTIVE SYSTEMS PRESENT

NEW TESTING PROBLEMS FOR

IMPLEMENTORS

The computer provides man with a tool which can be used

to solve a variety of problems which would be impossible to

solve or would require a great deal more time and effort to

solve without the computer. On the one hand, computers

provide man the ability to perform complex scientific calcu-

lations which have enabled space travel, and on the other

handcomputers allow large volumes of information to be

maintained, referenced, sorted, printed, etc. The first

application would be impossible without computersand the

second would require enormous amounts of time and manpower.

The second type of computer application described

above, saving time, effort and money, is the major objective

of many computer system applications. A general area where

this applies is the collection of information, in particular

information provided by humans as opposed to hardware moni-

toring devices. If a computer is to use information, the

faster the information can be placed into a form usable by

the computer, the faster the information can be acted upon.

1

2

As an example, suppose information is received which

must be read into a computer system. If this requires

writing the information on a special form by one person,

having the information punched onto a data card by a second

individual, having the information read into the computer by

a third individual and having the results returned by a

fourth individual then the system is not efficient and is

prone to errors. If the person receiving the information

could sit at a keyboard and enter the information directly

into the computer system, it would be a great deal faster,

more efficient and less prone to errors.

An interactive system will therefore be defined as a

computer system which interacts directly with a human user

to collect information and provide results. Airline reser-

vation systems are an example of interactive systems which

are quite familiar to most people. The reservationist can

determine what flights are available, the status of flights

and make reservations for the customers by simply entering

a series of commands on a keyboard and waiting for the

responses. It is fast, efficient and reliable.

The use of computers for interactive systems has in-

creased dramatically with the widespread use of minicomputers

in the 1960's and early 1970's. The introduction of micro-

processors and microcomputers in the mid-1970's broadened

the use of computers even further. One applications area

for mini/microcomputers has been in data collection. A

3

specific area of data collection involves entry of data by

human operators through keyboards.

Prior to the late 1960's, the most widespread method of

entering data was to have someone punch the information on

cards, read the cards into a computer, perhaps save the infor-

mation on disk or tape and throw the cards away. Cards

served only as an intermediate storage medium which provided

a method of transferring information from a form people could

use to a form computers could use. In the late 1960's, the

idea of transferring the information from the operator to tape

was developed. This was followed by data being transferred to

disk or flexible diskettes in the early 1970's. The infor-

mation could then be read by or transmitted to a large main-

frame. This eliminated the intermediate storage medium which

could not be reused and replaced it with a medium that could

be reused. The early systems were merely keypunch replacement

devices. In other words, their capabilities were the same as

those of a keypunch. Today the market and equipment are more

sophisticated. The terms "source data entry" or "data entry"

are now applied. The difference is in who uses the equipment

and at what point in the information cycle it is used. Data

entry systems allow the person generating the information to

enter it into the system rather than rely on a specialist

(keypunch operator) to enter the information. This means

that the new systems must provide more flexibility and

capability than previous systems.

14

New capabilities include the ability to detect errors

as they are entered by requiring certain information to be

alphabetic, numeric, of a fixed length, of a minimum or maxi-

mum length. The information can be automatically right-

justified, left-justified, blank-filled or zero-filled.

The use of these systems is not restricted to just data

entry. Systems now provide the capability to update infor-

mation kept in a data base accessed by the minicomputer

system. In addition, inquiries of a data base are also

allowed.

The idea did not originate with minicomputer systems.

Large computer systems also support interactive capabilities,

and mainframe vendors as well as service bureaus provide this

capability. However, the usage would not be as widespread

as it now is because of the high cost per terminal. The

minis allowed the processing to be moved into the environ-

ment of the data being entered. Collect the data at its

source, eliminate as many errors as possible as soon as

possible and require only the minimum time and effort to

enter the information.

This is a principle of the distributed processing

theory. Move the processing, or part of the processing, of

information to the point in the cycle where it is most

effective. Spread a little grease along the entire track

rather than have a large dose right at the end.

5

The interactive systems, although a great benefit for

the user, provide the systems developer a unique set of

problems which are not found in the traditional batch mode

environment. An interactive system relies on relatively

slow human input rather than a high speed card reader, tape

drive or disk drive. In addition, the more sophistication

which is programmed into these systems the greater the

combinations of input that can occur. For example, assume

that a data field can be the following:

a. maximum 6 characters

b. valid characters are + - , . Blank 0-9

c. blanks may only appear to the left of the left-

most non-blank character or to the right of the

right-most non-blank character

d. The + or -, if present, must be the left-most non-

blank character.

e. The "." if present, may be only followed by zero or

two digits or blanks, and it may only appear once.

f. The ", if present, may appear only to the left of

"." and there must be three digits between itself

and the next t," or "." to the right.

Testing the valid and invalid combinations of this feature

alone would be quite time-consuming.

The problem which arises with this type of system is

how to approach the testing of the system so that a high

degree of reliability can be guaranteed and at the same time

6

not expend great amounts of money and manpower in doing so.

Not only should the product be reliable on its initial

release but on subsequent releases. This means retesting

the system as new versions are prepared.

The type of testing which must be performed is functional

testing. Functional testing is the practice of testing a

product against its specifications. Does the product meet

its specifications? Does it do what it is supposed to do?

The important thing is that the user interface function as

designed and as documented. As new functions are added, new

functional testing must be added; however, the existing

features must continue to be tested to be sure they still

work properly.

Testing of interactive systems can prove to be a time-

consuming, expensive operation. Because of this, there is

often a tendency on the part of the development organization

to sacrifice testing in order to meet schedules or use the

manpower on other activities.

Thus the problem is that of effectively testing the

functional capabilities of interactive systems. How can this

be accomplished? There are many ideas on testing techniques,

testing aids and approaches to total systems design. These

are discussed in Chapter II and Chapter III. However, it

will be shown that these ideas do not apply to interactive

systems, are too theoretical in nature or only approach part

of the problem.

7

The real solution to the problem of effectively testing

an interactive system is to automate the testing procedure

so that the functional correctness of a system can be deter-

mined quickly and easily. Chapter IV presents an approach

to automated testing which involves the development of an

automated interactive test system incorporating a high level

interpretive language for writing test programs. This is an

approach which is common in the testing of hardware systems

but has received little attention as a method of testing

interactive systems,. The advantages of such an approach are

many. It provides greater flexibility, requires less time,

tests can be repeated, testing can be modular and test pro-

cedures can be easily generated. These ideas are presented

in detail in Chapter IV.

CHAPTER II

DESCRIPTIONS OF SEVERAL TYPES OF

TESTING

Two terms are often used for the process of determining

if a computer system works correctly: debugging and testing.

Gruenberger states that until 1957 there was little to

distinguish between debugging and testing (4, p. 11). Even

today the words are often used interchangeably. The dis-

tinction to be made here is that testing is the process of

determining if errors exist, and debugging involves isolating

and correcting those errors. In the initial stages of

systems development, there is generally a little testing and

a great deal of debugging. As a system progresses, there is

more and more testing and less debugging, implying that the

further a project progresses, the fewer the number of prob-

lems that will be encountered. It is also generally true

that this trend will tend to flatten out at the endand that

the problems discovered by testing will become more and more

difficult to debug.

For the purpose of discussion, it is assumed that

testing works in parallel with debugging, and when testing is

referred to, it implies that debugging is also included.

Finding problems is not an end in itself; they must be

corrected.

8

9

Testing has always been a part of the development of

computer programs and computer systems. However, in the

past there was very little if anything in the way of test

methodology, either in theory or practice. Vander Noot

stated in 1971 that "Out of the millions of words written

over the past few years about EDP, only one article could be

found that was devoted to testing ... " (8, p. 60). In the

past, a programmer would develop his code, execute it, go

through some sequence of tests that satisfied him that the

program worked and put it into use.

In recent years the attitude toward testing has changed.

More and more emphasis is being placed on software reli-

ability and testing methodologies. As software systems be

come larger and more complex, the need for better testing

becomes essential. Huang states that 50 per cent of the man

hours used in today's software industry are spent in program

testing (5, p. 127). When the cost of software exceeds ten

billion dollars annually (1, p. 48), any efforts to provide

better efficiency in software testing could result in sub-

stantial dollar savings.

There is currently a great deal of information available

about types of testing and testing tools. Are these ideas

practical, and can they be applied to testing of interactive

systems? Do they improve the quality of the software, and do

they save time over manual testing techniques? This chapter

examines the types of testing which can be performed. These

10

include module testing, system testing, alpha testing, beta

testing, functional testing, regression testing and perfor-

mance testing. The purpose and advantage of each is discussed,

and in some cases these types of testing are virtually the

same and others overlap.

Module, System, Alpha and Beta Testing

As testing of a software system moves from its initial

stages toward completion, its characteristics change.

Initially there are a large number of problems to be corrected,

and at the end, all problems are believed to be solved. The

concept of module, system, alpha and beta testing reflect this

transition. These are a series of tests used to establish the

correctness of a computer system.

Module test is the first stage. Components, or modules,

of a software system are tested by the individual programmer

to determine if they operate correctly. This may involve

writing test drivers to test the modules. The next step,

system testing, is sometimes called integration testing. It

involves testing the combination of modules developed by

different programmers or groups of programmers which together

form a computer system. The implementors go through this

phase of testing by running their own tests to determine if

the system functions correctly.

Alpha testing is conducted when the system designers

and implementors feel the product is ready to go into prot' -

duction. At this time formal tests are run against the

11

system. These tests can be developed by the developers or,

more preferably, by an independent test group. The testing

is designed to test all capabilities of the system in a

formal, step by step procedure.

If the system passes its alpha test, it is considered

ready to go into a customer or production environment. Beta

testing is the first production system and represents the

system's introduction into the real world. The product is

used, rather than tested, but it is observed closely in order

to evaluate its performance.

Module and system testing have always existed and are

what was considered debugging in the past. Alpha testing

represents a formal testing step to determine a system's

correctness. Alpha testing and beta testing are also given

the terms verifications and validation (6, p. 9). Verifi-

cation means the logical correctness of a system based on

execution in a test environment, and validation means the

logical correctness in an external (or real) environment.

All these stages apply to the testing of an interactive

system. Automation is not really necessary in the first

stage (module testing) and in the early part of the second

stage (system testing) since the system is not yet in a

stable state. However, whatever automated test tools are

available can be useful in the later stages of system test

and alpha test. This is where exhaustive testing is

necessary,and automation can save valuable time since this

12

is where projects often begin to run late or else it is

noticed that they are late. Beta testing, since it is pro-

duction testing, is not appropriate for automated testing.

Thus automated testing can be a valuable tool during

the later part of systems test and during alpha test for

interactive systems.

Functional Testing

This term is often used interchangeably with alpha

testing, however, there are some differences. Functional

testing means testing the system to determine if it does

what the design specifications say it is to do. Alpha

testing should include functional testing and may in effect

be functional testing. Alpha tests may include other tests

which are not functional tests. These may include tests

designed to determine if the method of implementation is

correct rather than if the end result is correct.

Functional tests are based on the product specifications

and do not take into consideration the method or techniques

of the implementation. It is not concerned as much with how

it works as with whether it does what is is supposed to do.

Preparation of functional tests involve the following

(2, p. 359):

* Identify test conditions, including unique cases.

* Develop test cases, i.e. each test case is a single

condition.

13

* Prepare test script which state how the test is to

be performed. A test may be one or more cases.

* Prepare test data base if necessary.

* Prepare test driver(s) if necessary.

The idea of functional testing is receiving more

attention as the discipline of software engineering develops.

More emphasis is being placed on determing if a product does

what the specifications say it is supposed to do rather than

does it work.

Numerous papers presented at the Second International

Conference on Software Engineering deal with the problem of

systems which do not do what the customer expects them to

do (7). Between the time the specifications are written and

the implementation is completed, the product may get off

target and as a result, it may not perform the functions the

specifications say it is to perform. Although functional

testing cannot solve this problem in and of itself, it can

be a great aid in determining if this has happened especially

if the tests accurately reflect the specifications. This

assumes that the specifications are not ambiguous and are

complete and that the test cases adequately cover the speci-

fications. If this is true, the implementors have a valuable

tool for determining if their implementation is correct, i.e.

meets the specifications.

The ideas of functional testing apply to interactive

systems development. Like any other system, if they do not

perform their intended function, they are not successful.

In addition, automation of the functional testing is very

desirable. Functional testing is meant to be complete and

exhaustive. As a result, it may be extremely time-consuming

to execute the functional tests unless steps are taken to

automate them. Therefore the automation of functional

testing for interactive systems is a desirable objective,

and these tests can be used during the later stages of

system testing and during alpha testing.

Regression Testing

Suppose a computer system supports only printed output.

Changes are made to the program so that it also supports

punched card output. The implementor of the punch code tests

his code very carefully and is confident it works correctly.

All testing performed against the punch code is successful.

Then tests are run against the print capability and problems

are found. When the programmer is asked if he tested the

print code, he responds "Test it ... why should I test it ...

I didn't make any changes to it?" Perhaps not, but something

he did adversely affected the existing code.

Regression testing is testing which insures that what

used to work still works. It means making sure that new

features have no adverse affect on existing code and the

current test results match previous test results (2, p. 355).

15

Customarily, regression testing is simply the alpha

tests or functional tests re-executed for a new version or

release. Ideally, a test procedure allows new tests to be

added for new features and the entire test procedure is

rerun for each release or version of a system. Thus,

regression testing is the insurance that a product maintains

its correctness from version to version.

This type of testing applies to all types of systems

including interactive systems. The advantages of automation

which apply to functional testing and alpha testing are even

more important for regression testing. As stated before,

regression testing insures that a system maintains its

correctness. After the first few releases of a system, quite

often the original implementors and designers are no longer

associated with the system. As a result, those testing sub-

sequent releases of a system are not as familiar with it.

For this reason automated testing is beneficial because

investigation into the system is only necessary when a

problem occurs. Those tests which execute correctly do so

without requiring detailed knowledge on the part of the

tester.

Performance Testing

Performance testing answers the types of questions: how

many, how fast and how long. For example, how many communi-

cations lines will a system support, how fast will it support

16

them (at what point will it degrade) and how long will it

support them before failure? Specifications often state how

many of this device or that device a system will support.

How many concurrent jobs, how many concurrent input/output

activities or how many data entry terminals will the system

support? Specifications may also state how fast a job is

to be executed, how fast a device is to be responded to or

how fast information is to be transferred to a device.

Specifications may also state how long a system must run

between problems (mean time between failure). Performance

testing can be used to determine what the performance limits

of a system are. Does a system meet its performance speci-

fications? Does it exceed the specifications and, if so,

by how much?

How does performance testing differ from functional

testing? Elmendorf states that performance testing involves

space and time measurements of system utilization, and

functional testing involves the measurement of system quality

(3, p. 137). This separation may be too strong. The speci-

fications for a system may state functional and performance

objectives, but it may be difficult to distinguish one from

the other. If a system is to support concurrent input and

output, that is a functional capability. If the system is

to sustain a certain rate of input and output, that is a

performance capability. They are closely related.

17

Part of alpha testing may involve performance testing,

just as it involves functional testing. Performance testing

may also be included in regression testing. Depending on

the design specifications, performance testing may be required

for an interactive system. If so, the advantages of automation

are the same for performance testing as for functional

testing.

Summary of Types of Testing

Functional testing relates to the quality of a system,

and performance testing involves the space and time measure-

ments of system utilization. Both are used in determining

or validating that a system meets the design specifications.

These two types of testing are formalized into test proce-

dures and executed during the later stages of system testing,

during alpha testing and during regression testing. Alpha

testing is generally associated with the development of new

systems or new features,, while regression testing is concerned

with the continued correctness of existing features.

All of the above apply to the development and implemen-

tation of interactive systems. Automation of these testing

techniques is a desirable objective because of the greater

efficiency and thoroughness which can be realized during the

testing process. The next two chapters seek to find a

method of automating the functional testing of an interactive

system during system testing, alpha testing and regression

18

testing. Performance testing is not given direct

consideration.

CHAPTER BIBLIOGRAPHY

1. Boehm, Barry W., "Software and Its Impact: A Quanti-
tative Assessment,"' DATAMATION, May,1973, 48-59.

2. Duke, M. 0., "Testing In a Complex Systems Environment,"
IBM Systems Journal, Volume 14, Number 4, 1975,
353-365.

3. Elmendorf, W. R., "Disciplined Software Testing,"
Debuggin Techniques In Large Systems , edited by Randall
Rustin, Englewood Cliffs, New Jersey, Prentice Hall, Inc.,
1971, 137-140.

4. Gruenberger, F., "Program Testing: The Historical
Perspective," Program Test Methods, edited by William
C. Hetzel, Englewood Cliffs, New Jersey, Prentice Hall,
Inc., 1973, 11-14.

5. Huang, J. C., "An Approach to Program Testing," ACM

Computi Surveys, Volume 7, Number 3, September,1973,
113-12.

6. Montgomery, George Wynn, System Test Methodology,
NTIS AD/A-012 461, June,1975.

7. Proceedings Second International Conference on Software
Engineering, IEEE Catalog Number 76CH1125-~C,
October,1976.

8. Vander Noot, T. J., "System Testing....A Taboo Subject,"
DATAMATION, November 15, 1971, 60-64.

19

CHAPTER III

DESCRIPTIONS OF SEVERAL TEST TOOLS AND

TECHNIQUES CURRENTLY AVAILABLE

OR CURRENTLY BEING

DEVELOPED

As computer systems have become more complex and as the

importance of testing has been given more emphasis, numerous

techniques and approaches have been developed and are being

developed. Some are techniques and methodologies while

others are specific tools. This chapter evaluates the

advantages, disadvantages and applicability to interactive

system testing of these techniques and tools. Each one is

evaluated to determine if it can aid in the automation of

interactive system testing.

Synthesis Techniques

Miller uses the term "synthesis techniques" to summarize

the various ideas for improving program development so that

bugs cannot get into the system initially (11, p. 2). Syn-

thesis techniques include the generally accepted ideas of

structured programming which require the programmer to orga-

nize his program into logical blocks which are executed

through the use of control structures. The ability to branch

or execute a "GOTO" type instruction is not provided for his

20

21

use. The ideas of top down design (12) and the chief pro-

grammer team concept (1) are examples of other synthesis

techniques.

Although this is not truly a testing technique, the

ideas of synthesis techniques and testing are so closely

related that they are discussed here. The argument is that

no matter how comprehensive the testing procedure, code which

is poorly designed, poorly structured or poorly coordinated

may never complete (pass) testing. Elmendorf states the

relationship between design, development and testing very

well (2, p. 138):

If either the design or implementation is sloppy,
then the testing bogs down in a morass of problems,
difficult to identify, expensive to fix, and impossible
to schedule.

If the testing is sloppy, then there is little
motivation to practice quality in the design and imple-
mentation phases. Managers favor the criteria of
excellence against which they're being measured. Testing
is quality measurement and thus, indirectly, quality
motivation.

Synthesis techniques prevent errors from getting into

a system. These ideas are applicable to all types of soft-

ware systems including interactive systems. Although their

use is important, they can not aid directly in the automation

of interactive systems testing.

Symbolic Execution and Program Proving

Program proving is a fascinating idea and one that

appeals to any programmer. The security of knowing that a

program or system has been proven to be correct would be very

22

reassuring. King has written several articles (5, 9) which

deal with symbolic execution as a method for proving correct-

ness. This involves breaking down a program into a symbolic

execution tree which represents all the branches within a

program and symbolically executing each branch to prove its

correctness. However, most programs do not have a finite

number of branches so King proposes the trees be traversed

inductively rather than explicitly. Other papers by Elpas (3)

and Good (4) also approach program testing through formal

proofs.

Although this technique is very desirable, how practical

is it for interactive systems at this time? Huang (6, p. 113),

Miller (10, p. 51), and Ramamoorthy (14, p. 383) all state

that program proving is currently only useful for small

programs and is still many years away from being useful for

large software systems. Ramamoorthy states several reasons

why this is soincluding: 1) it is too costly, 2) it is not

useful for systems with parallel processing, and 3) most

programmers do not have adequate mathematical background to

use it (14, p. 384). Program proving, therefore, does not

appear to be a technique that can aid in the testing of inter-

active systems at the current time.

Simulation

Simulation has application to testing as well as to

other areas. Simulation is useful in modeling a real world

23

situation. Simulation can be used to model a proposed system

in order to evaluate it. Simulation can be used to simulate

part of a system, and this is where it is useful in inter-

active system testing. To test an interactive system, simu-

lation of the human interface to the system can be used.

Therefore, in discussing the automation of testing, simulation

comes into play, i.e., the simulation of the human interface

to the system.

The entire interactive system could be simulated and

there are benefits in doing so, but these benefits are in

the area of debuggings as discussed by Supnik (17). In the

final analysis, however, the real system itself must be tested

and not a model of it. Thus simulating the entire system does

not aid in the final testing. However, if the human inter-

face to testing the system can be simulated then simulation

is valuable.

In this way, simulation will be part of the solution of

automating the testing of interactive systems. In this case

it is an approach and not the tool itself. The tool to

implement the simulation must be found.

Automated Test Case Data Generation

Given a program which accepts input, how does one go

about selecting the input to be used to comprehensively test

the program? For example, assume that a data field can be

the following:

24

a. Maximum 6 characters.

b. Valid characters are + - , . blank 0-9.

c. Blanks may only appear to the left of the left-

most non-blank character or to the right of the

right-most non-blank character.

d. The + or -, if present, must be the left-most

non-blank character.

e. The "." if present, may be only followed by zero or

It 1two digits or blanks. There may be only one .

f. The "," if present, may appear only to the left of

"." and there must be three digits between itself

and the next '," or "." to the right.

The possible valid and invalid combinations are too

numerous to test. How then does one select a valid set of

test data? In 1971, Vander Noot suggested criteria which

would be taken for granted today such as testing upper and

lower limit values, placing alphabetics in numeric fields,

division by zero, etc. (18).

Today there are more sophisticated approaches to test

case data generation. These approaches include the analysis

of program paths and selection of data to test these paths.

This analysis can be performed by a program designed to

analyze other programs and select test data. Miller (10)

and Ramamoorthy (13) both present approaches to accomplishing

this.

25

As with program proving, it would be desirable to be

able to let a program specify the types and amount of test

case data to be used and know that all the unique paths would

be executed using that data. However, as with program proving,

the state of the art is not to that point yet. There is

little of practical value as far as automated generation of

test cases for systems programming applications is concerned.

The work which has been done deals with high level languages

such as FORTRAN.

A deficiency with this type of test case data generation

is that the test case data is based on the structure of the

program and not the function of the program. This is all

right as long as the data generated actually tests all the

functional capabilities, but there is no guarantee that it

will do so. Determining that a program executes correctly

is only part of the job. The program must also perform the

function it was designed for.

Automated Verification Systems

In his article, "Testing Large Software with Automated

Software Evaluation System," (14) C. V. Ramamoorthy describes

tools which are currently available including automated

verification techniques. There are two approaches to veri-

fication: static and dynamic. Static systems analyze code

and detect logic errors, poor construction, etc. They point

out problem areas which should be corrected. Dynamic systems

26

involve the insertion of probes into the system which are

then monitored to determine if the correct paths are taken

and that correct values occur at a given point. A great

deal of this can be done interactively so that a program can

be "watched" as it executes. This is testing interactively

rather than testing automatically.

Again these tools are complex. They do provide analysis

of code and can point out logic problems, but it is questionable

if they can be executed effectively by a novice programmer or

someone not familiar with the code. They are perhaps best

suited as a design or debug technique and not as a formal

functional test.

In addition, as described by Miller (11), these systems

are based on looking at the actual code rather than the

specifications. There is a danger in this approach that

correct programs will be produced which do not meet the design

specifications.

Automated Testing Using a Test Language

Testing of hardware systems through the use of test

equipment which is programmable is an idea which seems

reasonable and is done quite often. Can the same idea be

applied to a software system? If so, should there be a

language developed to accomplish this task?

The "Roster of Programming Languages for 1974-75" pub-

lished in the December, 1976,edition of Communications of

27

the ACM (16) includes a list of 167 known programming

languages. To be listed, a language has to (a) have been

developed or reported in the United States, (b) have been

implemented on at least one general purpose computer, (c) be

in use by someone other than the developer (16, p. 655).

Five languages are listed as dealing with equipment checkout:

ATLAS, DETOL, DMAD, RATEL and SVDSS. Two are listed as

dealing with real-time process control: COMTRAN and RTPL.

SVDSS stands for Space Vehicle Data System Synthesize, and

its description as "a very simple language for modeling

discrete or analog systems" (16, p. 668) implies it is highly

specialized and has little application to automated testing.

It is not discussed here. RTPL stands for Real Time Pro-

cedural Language and is described as a "language to provide

real-time control of software models written in SVDSS.. "

(16, p. 667). In other words it is used with SVDSS and

therefore has the same limited scope.

Of those remaining, no information could be obtained

concerning DMAD and COMTRAN. DMAD is described as "An

engineering user oriented test language for functional

testing of digital devices. Allows device description in

terms of registers and signal names and functional operators,

such as logical and Boolean operations" (16, p. 660). COMTRAN

is described as "A language containing statements to permit

easy programming of on-line, real-time communications hard-

ware tests. Heavily column oriented with assembly language

style" (16, p. 659).

28

This leaves ATLAS, DETOL and RATEL. It is not anti-

cipated that these languages can be used for interactive

system testing, but there is the possibility they contain

ideas or techniques which can be useful.

ATLAS.--ATLAS (Abbreviated Test Language for All Systems)

was developed originally by Aeronautical Radio, Inc. It is

a standardized test language for expressing test specifi-

cations and procedures independent of the test equipment it

is to be used with. It was initially developed under the

direction of the Airlines Electronic Engineering Committee

in 1968 but since then has found uses with airlines, industry

and government. As its acceptance expanded, the Department

of Defense approved it as an interim standard language for

automatic test equipment.

In September of 1976, authorization for the distribution

and maintenance of ATLAS was turned over to the Institute

of Electrical and Electronics Engineers (IEEE). This resulted

in the publication of IEEE/ARINC Standard ATLAS Test

Language (7) which describes the language.

ATLAS is a high level, English-like language with many

structured programming characteristics such as IF-THEN-ELSE,

WHILE-THEN, FOR-THEN and BEGIN-END statements. However, it

also allows an unconditional and conditional GOTO statement

although the manual advises against their use. It has input/

output, data and arithmetic operations comparable to PL/I.

In addition it has 150 - 200 specialized instruction such

29

as DOPPLER, STEP SIGNAL, WAVEFORM and others which are

hardware test oriented.

Aside from the structured statements, there is very

little about ATLAS which is directly applicable to the

development of a test language for interactive systems.

DETOL.--DETOL (Directly Executable Test Oriented

Language) is a much more basic, lower level language than

ATLAS although both are designed to function in an automated

test equipment environment. "Improved DETOL Programming"

describes the language (8). It does not offer the structured

control instructions that ATLAS provides and allows only a

"jump" instruction for transfer of control. It is FORTRAN-

like in its arithmetic capabilities and has bit manipulation

capabilities. It has a number of hardware oriented in-

structions such as the set, apply and release stimuli

instructions but not nearly as many as ATLAS.

There is little if anything in DETOL that can be applied

to interactive system testing.

RATEL.--RATEL stands for Raytheon Automatic Test

Equipment Language which was developed by the Raytheon Cor-

poration for use in testing component systems of the PATRIOT

missile system. It is a FORTRAN-like test language which

includes nearly all capabilities of Raytheon 704 FORTRAN IV

and SYM II assembly language (15).

30

RATEL is an interpretive language. This means that the

RATEL compiler does not generate executable code but instead

generates interpretable code. There is a run time system

interpreter which executes the code generated by the compiler.

RATEL allows program segmentation with up to fifteen

segments. The segments need not be executed in a certain

order. Global and local variables are allowed. Global

variables may be accessed by any segment and must reside in

the first segment. Local variables can be referenced only

by the segment in which they appear.

Like ATLAS and DETOL, RATEL contains many instructions

which are hardware oriented. Transfer of control statements

and control structure statements were not obvious from

reading the available documentation (15).

The characteristics of RATEL which could be applied to

an interactive system include the idea of an interpretive

language, segmentation and the global/local variable capability.

The run time system also allows the operator monitoring the

system to cancel tests (programs) and select others. This,

too, is viewed as desirable.

Summary of Current Test Tools and Techniques

Of the currently available test tools and techniques,

few of them can be applied directly to the automated testing

of interactive systems. Program proving and automatic test

case data generation, although desirable, have not been

31

developed to the stage where they are applicable to testing

of large systems. Automated verification systems have the

limitation that they determine if the program works but do

not determine if the program meets its specifications.

Synthesis techniques can be of indirect help in testing

because they aid in preventing errors from getting into the

system. Currently available test languages cannot be applied

directly to interactive systems, however there are several

characteristics of RATEL which are applicable. Simulation

offers an approach to interactive system testing but is not

a solution itself.

The next chapter presents the idea of simulating the

user interface to an interactive system by means of an auto-

mated interactive test system. This system includes a

specialized programming language.

CHAPTER BIBLIOGRAPHY

1. Baker, F. T., "Chief Programmer Team Management of
Production Programming," IBM Systems Journal,
Volume 11, Number 1, 1972.

2. Elmendorf, W. R., "Disciplined Software Testing,"
Debugging Techniques In Large Systems, edited by
Randall Rustin, Englewood Cliffs, New Jersey,
Prentice Hall, Inc., 1971, 137-140.

3. Elspas, Bernard, Karl N. Levitt, Richard J. Waldinger,
and Abraham Waksman, "An Assessment of Techniques for
Proving Program Correctness," ACM Computing Surveys,
Volume 4, Number 2, Juneb1972, 97-147.

4. Good, Donald I., Ralph L. London, and W. W. Bledsoe,
"An Interactive Program Verification System,"

Proceedings International Conference on Reliable
Software, June 1975, 482-492.

5. Hantler, Sidney L., James C. King, "An Introduction to
Proving the Correctness of Programs," ACM Computing
Surveys , Volume 8, Number 3, September,1976.

6. Huang, J. C.,"An Approach to Program Testing,"
ACM Computing Siarveys, Volume 7, Number 3, September,

1973, 113-128.

7. IEEE/ARINC Standard ATLAS Test Language, The Institute
of Electrical and Electronic Engineers, Inc.,
IEEE std 416-1976, New York, New York, 1976.

8. Improved DETOL Programming for the 5500/5510 Automatic

Test System (ATS), Report Number ER-8964,AAI
Corporation, Cockeysville, Maryland, March,1977.

9. King, James C., "A New Approach to Program Testing,"
Proceedings International Conference on Reliable
Software, June,1975, 228-233.

10. Miller, E. F. and R. A. Melton, "Automated Generation
of Testcase Datasets," Proceedings International
Conference on Reliable Software, June,1975, 51-58.

32

33

11. , Methodology for Comprehensive Software
Testing, NTIS AD/A013 111, June, 1975.

12. Mills, Harlen, "Top Down Programming in Large Systems,"
Debugging Techniques In Large Systems, edited by Randall
Rustin, Englewood Cliffs, New Jersey, Prentice Hall, Inc.,

1971, 41-56.

13. Ramamoorthy, C. V. and S. F. Ho, "On the Automated
Generation of Program Test Data," Proceedings Second
International Conference on Software Engineering,
October,1976, 636.

14. , "Testing Large Software
With Automated Software Evaluation System," Proceedings
International Conference on Reliable Software, June,
1975, 382-394.

15. Ring, Steven J.., "A Distributed Intelligence Automatic
Test System for PATRIOT Electronic Assemblies," for
publication in IEEE Transactions on Aerospace and
Electronic Systems, 1977.

16. Sammet, Jean E., "Roster of Programming Languages for

1974-75," Communications of the ACM, Volume 19,
Number 12, December, 1976,~'55-69.

17. Supnik, Robert M., "Debugging Under Simulation," Debugging
Techniques In Large Systems , edited by Randall Rustin,

Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1971,
117-136.

18. Vander Noot, T. J., "System Testing.... A Taboo Subject,"
DATAMATION, November 15, 1971, 60-64.

CHAPTER IV

A SOLUTION: AN AUTOMATED TESTING CAPABILITY

FOR INTERACTIVE SYSTEMS

As discussed in Chapter III, the current state of

system programming technology does not offer much in the

way of sophisticated tools for testing software. Several

new ideas are in the developmental stages such as program

proving and automated test case data generation, however

these are not currently practical. What is needed is some

method of automating the testing, in particular the

functional testing, of interactive systems.

The practical fact of the matter is that functional

testing determines if the product meets the design specifi-

cations. This is the ultimate purpose of any system. In

addition, if the test procedure is repeated for each release

of the system then regression can be prevented. The net

result is a reliable system which meets the specifications

and will continue to do so as the product is improved.

Automatic or automated testing is an idea which is rela-

tively common in testing of hardware systems, as discussed

in the previous chapter. Although the application of these

techniques to software testing seems quite reasonable, the

current literature would indicate that it is not widely used.

34

35

Although Scherr indicates something of this type may have

been done for the OS/360 time sharing system, few details

are given (2). Even though test drivers and stimulators are

common practices, the development of a programming language

and system specifically for testing interactive systems

appears to be an area which has not been adequately developed.

Automating the functional test procedures for an inter-

active system is not a cure all for interactive system

development. The expression "the chain is only as strong as

its weakest link" applies to system development. Functional

testing is only a link in the chain made up of system analysis,

system design, programming practices and many others. If the

specifications are ambiguous or the programming technqiues

are sloppy, testing may prove of little value. Thus

functional testing is only as good as:

o the clarity, completeness and detailedness of the

specifications

* the adherance to sound programming practices during

development.

If these qualities are present, then automated functional

testing can be meaningful.

If an automated test method is to be developed for an

interactive system, what features are desirable? The

following features are considered important:

36

1. It should require fewer man hours to perform the tests

than manual testing.

Manual testing of interactive systems can require a

great deal of time. The number of possible combinations and

sequences of events for an interactive system can be so

large that manual testing may require many man days. If

this time can be reduced significantly by an automated test

system then substantial dollar savings can be realized as

well as freeing manpower to perform other functions.

Another advantage is that the shorter the period

required to perform the tests, the more likely they are to

be run on a regular basis. It can often be observed that

subsequent releases of software systems receive less and

less testing. One major reason is that the time required

to perform the testing is not allocated. The net result can

be regression. The shorter the time required for testing,

the more likely it is to be done, the less likely regression

will occur and the more reliable the final product.

2. It should be flexible.

Very few software systems are static. No sooner is the

initial release complete than work begins on modifications

and new features. Any method of automated testing must be

easily modified and must allow additions of new tests easily.

If this is not true, those features in the initial release

37

are the only ones which are ever tested,because adding new

tests for new features takes too long or is too difficult.

In addition, manpower must be devoted to updating the tests

which could be used in more productive areas. Thus flexi-

bility helps to insure that new features will be tested and

that only minimum manpower will be required to maintain the

tests.

3. The tests and test sequences should be repeatable.

In general, software problems which can be recreated by

following a certain sequence of steps are more easily solved

than those which cannot. How often is the programmer

confronted with a memory dump of a failure and no one knows

the sequence of events which led to the failure? These

problems often prove difficult to solve. However, if the

failure occurred as a result of running a specific sequence

of tests which can be easily reproduced, not only are the

chances of solving the problem improved but the time required

to do so is likely to be shortened. This means that if a

random sequence of events or inputs are to be used, this

same random sequence must be reproducible in case a failure

occurs.

4. The tests should be modular and separately executable.

If a problem is discovered with part of the system as a

result of performing the automated test procedure, it is very

38

desirable to rerun only the test that failed rather than the

entire test sequence in order to recreate the problem or to

determine that a successful correction has been implemented.

The ability to execute a particular test or a particular sub-

set of the tests is a feature which can save considerable

time when isolating, correcting and retesting a problem.

5. The tests should be easy to execute.

If the knowledge and experience required to execute the

test procedure is considerable then valuable manpower resources

must be devoted to this task. This too can be a contributing

factor to less thorough testing of subsequent releases

because the personnel capable of running the tests are on a

critical project, have moved to a different department or

have quit. If, on the other hand, the tests can be performed

by less experienced personnel, there are more options available

as to who can execute them, it will require less manpower to

execute them and as a result they are more likely to be done.

In addition, the testing can serve as a training tool for new

personnel.

6. The tests themselves should be easy to generate.

The greater the time or effort required to develop the

tests, the greater the chances that short cuts may be taken,

that tests will not be comprehensive or that new tests will

not be added. However, if the system allows tests to be

39

generated easily, the above problems can be avoided. For

example, if a thousand random input values of certain char-

acteristics can be generated using only a few directives to

a test language then addition of a new test is more likely

than if all thousand values had to be specified individually.

If an automated test system incorporates the above ideas,

there is a greater likelihood that it will be used, that it

will be maintained, that it will be functionally effective

and that it will be cost effective.

This chapter states the specifications for an automated

testing capability for an interactive system. This speci-

fication has been separated into three components: a program-

ming language syntax specification, a specification for a

compiler and linkage editor for the language and a specifi-

cation for the run time system which will execute the code

generated by the compiler.

The major component of the automated test system is a

programming language specifically designed for that purpose.

The language is called ATLIS, standing for Automated Test

Language for Interactive Systems. It can be characterized

as a high level, block structured language with instructions

tailored for interactive system testing. A compiler is

required for compilation of the ATLIS language statements.

The compiler will accept ATLIS source language statements

as input and produce interpretable code as output. The

reasons for producing interpretable code are:

40

* provide machine independence for ATLIS compiler.

* allow multiple, concurrent execution of more than one

device using the same or different programs.

* allow paging of code so that large programs can be

executed in a small memory space.

In order to allow parts of a program to be compiled

separately, the program can be divided into procedures. Each

procedure can be compiled separately to produce object code

output. A linkage editor is then required to combine the

separate object modules, resolve external references and

produce an interpretable load module.

The execution time portion of the system interprets the

code generated by the ATLIS compiler and performs the appro-

priate action. This portion of the system has the following

features:

* provides multipleconcurrent testing of several

interactive devices.

* if deisred, provides an audit trail of functions

performed.

* provides indication of errors and allows the test

supervisor to select course of action.

* allows a test, a group of tests or all tests to be

executed through operator specifications.

Figure 1 gives an overview of the entire system.

ATLLS SOURoE STATEMENTS

CARDS

DIS K]

TAP)

L IST ING(4

ATLISNQ

COMPTLER

OBJECT

M0OfLES

ATLIS

I inkae
editor

REFERECE

INTER-
PPETA.Bl E
load
module

Systern(s)undr test

UnitL und e Autoiated
test

Cont.roi nteractve

conls ole U-t 2 1
s system under

Unit nLI1))
u nd er2

test

listing r s

AUID' T T A I L

l8g- 1- -; Overviw o< h&E automated Irter at v t t ystem.

42

The Programming Language ATLIS

The programming language ATLIS is designed for use as a

test language for interactive systems. However, the concepts

and characteristics reflect current ideas in the field of

program language development. ATLIS is a high level language

meaning it is machine (computer) independent as far as its

implementation is concerned. It is a structured language, and

program execution is based on the successive execution of

blocks of code or alternate blocks of code. A block of code

can be a single statement or a group of statements contained

within a DO, BEGIN or CASE block. ATLIS does not contain a

GOTO statement as part of its syntax.

Floating point arithmetic is not provided for in ATLIS.

Only character and integer variables are allowed. All

variables must be explicitly defined prior to the first

executable statement.

Procedures

An ATLIS program is made up of one or more procedures.

Each program must have one and only one main procedure and

can have multiple procedures which are not main procedures.

The main procedure receives control when a program starts

execution. It can issue the CALL statement to transfer

control to other procedures. Any procedure can call any

other procedure except the main procedure, and the RETURN

statement returns control from the called procedure to the

43

to the calling procedure or the operating system in the

case of the main procedure.

Variables

Variables defined within the main procedure can be

referenced by any procedure. Variables defined in a procedure

other than the main procedure can be referenced only by that

procedure. Two types of variables are supported by ATLIS,

character and integer variables. One-dimensional arrays are

supported for both numeric or character variables.

Identifiers

An identifier is a string of characters used to identify

a variable or control structures such as a BEGIN/END block.

Identifiers may be from one to sixteen characters, the first

of which must be alphabetic. The remaining characters may be

alphabetic, numeric or the underscore character. Identifiers

must begin in column one and must be separated from the rest

of a statement by at least one blank. Embedded blanks are

not permitted. For Example:

ALPHASET DCL 26AIABCDEFGHIJKLMNOPQRSTUVWXYZI

SETSTATUS BEGIN

END SET STATUS

44

Constants

Constants may be numeric or character constants.

Numeric constants may be positive or negative. Character

constants must begin and end with a quote. Whenever a quote

is to be used in a literal, it should be replaced with two

quotes.

Example: -9972 +143

'ENTER NAME'

'THIS IS A QUOTE '' MARK'

Spaces, Comments and Continuations

Spaces may not be embedded in identifiers (including

subscripts), operators or numeric constants. A blank must

follow all identifiers, precede and follow all operators.

Comments must have an "*" in column one and must be

entered as a separate card (i.e., input record).

A statement may be continued on the next input record

by placing an "X" in column 71 of the record to be continued.

Comments may not be continued.

Arithmetic, Relational and
Concatenation Operators

The following are the allowed arithmetic operators:

addition +

subtraction

division /

multiplication *

45

The following are the relational operators which are

supported:

equal .EQ.

not equal .NE.

less than .LT.

less than or equal .LE.

greater than .GT.

greater than or equal .GE.

Two character strings may be concatenated to form one

string using the concatenation operation:

For example:

SET NEWSTRING = STRINGONE I| STRINGTWO

ATLIS Instructions

The following are the ATLIS instructions in alphabetic

order. Key words are shown as all capital letters. If the

key word is optional, it and its associated parameters are

enclosed in brackets [I. Parameters which are required but

are variable are shown as lower case and underlined. Those

not required are shown as lower case and not underlined.

BEGIN statement.--The BEGIN statement is used in combi-

nation with the END statement to enclose a group of

instructions as a block. It is generally used with the IF

statement or CASE statement.

identifier BEGIN

46

The following example shows the BEGIN statement used with

the IF statement:

IF (I .EQ. 1) THEN

TRUE BEGIN

SET IVALUE = INVALUE+3

SET ICASE = 1

END TRUE

ELSE

FALSE BEGIN

SET IVALUE = 0

SET ICASE = 1

END FALSE

CALL statement.--The CALL statement allows the current

procedure to transfer control to a different procedure. When

the called procedure completes its function, control returns

to the instruction following the CALL statement.

CALL procedure name(parameter string)

where: procedure name = the identifier of the

procedure to be called

(parameter string) = up to ten variables or

constants separated by

commas

The following are several examplesof valid CALL statements,

some with and some without parameters:

CALL INITIATE

47

CALL PROCESS(1,37,VALUE,ICASE)

CALL FINISH(RETCODE)

CASE statement.--The CASE statement determines which of

the blocks of code which follows it are to be executed based

on the value in the specified variable. The ELSE statement

must be used in conjunction with the CASE statement and serves

to terminate the CASE statement. The block following the

CASE is executed if the index equals the number of blocks

between the CASE and ELSE statement.

CASE op1

where: opl = numeric variable which contains

case index

example:

CASE IVALUE

CASE_1 BEGIN

END CASE_1

CASE_2 DO WHILE (I .EQ. 0)

END CASE_2

* FOLLOWING IS CASE 3

SET I = I +1

ELSE

ELSECASE BEGIN

48

END ELSECASE

Although the ELSE statement is required, it can be

specified as ELSE NULL in which case no action is taken.

CLOSE statement.--The CLOSE statement is used to close

a previously opened data file.

CLOSE opl,op2

where: opl = name of the FILE statement corres-

ponding to the file to be closed

op2 = numeric variable in which completion

code is to be stored. Must be

numeric variable,

Example: CLOSE INPUTFILE

CLOSE INPUTFILERETCODE

Data Declaration (DCL) statement.--The data declaration

statements describes all variables used in a procedure. All

variables used must be declared, and all declarations must

precede any executable statements.

identifier DCL length type(subscript),initial

value(s)

where: length = the number of positions

in a numeric variable

or the number of char-

acters in a character

variable (default = 1)

type = N for numeric

49

C for character

subscript = if this variable is to

be an array, this value

specifies the dimension

initial value(s) = initial value(s) separated

by commas. Character

values must be enclosed

in quotes

Examples:

CHAR

CHAR_1

CHAR11

CHARABC

CHAR_AB C

BLANKS

STRING

THREESTR

V33

VALUE_0

NOTINIT

NUMARRAY

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

C

C, 'A

2C, AAt

3C, 'ABC'

C(3),IA','fBt tC'

6C,

26C, tABCDEFGHIJKLMNOPQRSTUVWXYZ?

3C(3),ABC,DEF,GHI

2N,33

8N,o

6N

1N(3),0,1,2

DO statement.--The DO statement allows a block of code,

terminated by an END statement, to be executed repeatedly

until a specified condition is true. There are two forms

of the DO statement.

50

identifier DO WHILE (opi opr op2)

where: opl = variable or constant

opr = .EQ..NE...LT..LE..GT..GE.

op2 = variable or constant

or

identifier DO opi = op2 TO op3 [BY op4]

where: opi = numeric variable

op2, op3, op4 = numeric variable or numeric

constant. op4 is valid only

if BY is specified.

Examples: SET J = 1

LOOP DO WHILE (J .NE. 6)

CALL RETRY

SET J = J + 1

END LOOP

LOOP DO J = 1 TOl10BY 2

CALL RETRY

SET I = I + J

END LOOP

ELSE statement.--The ELSE statement is valid only with

the CASE and IF statements. See the description of these

instructions for an explanation of the ELSE instruction.

END statement.--The END statement is used to terminate

the control instructions BEGIN, DO and PROCEDURE. Its format

is:

51

END identifier

where: identifier = the identifier on the BEGIN,

DO or PROCEDURE instruction

See the BEGIN, DO and PROCEDURE instructions
for more details

and examples.

EXIT statement.--This instruction allows program
control

to be transferred to the end of any block it is a part of.

A block is defined by a BEGIN, DO or PROCEDURE statement.

EXITopl

where: opl = identifier of the block to be exited

Example: TEST MAINPROCEDURE

LOOP DO J = 1 TO 100

IF (K .EQ. 7) THEN

EXIT,LOOP

END LOOP

IF (STRING .EQ. 'STOP') THEN

EXIT ,TEST

END TEST

52

FILE statement.--The FILE statement is used to declare

what files the PROCEDURE will use. Two types of files may

be referenced, data files or the system console. The file

specification can be for either input or output.

identifier FILE DATA

or

identifier FILE CONSOLE

Example: DATAIN FILE DATA

DATAOUT FILE DATA

MSGOUT FILE CONSOLE

CMD_IN FILE CONSOLE

IF statement.--The IF statement allows the selection
of

two alternate paths of execution based on a test.
The second

path may be null. The IF statement may be used in conjunction

with the ELSE instruction. The ELSE instruction identifies

the alternate path of execution but is not required or can be

specified as ELSE NULL.

IF (opl opc op2) THEN

where: opl = a variable or constant

opc = .EQ. .NE. LT. .LE. .GT. .GE.

op2 = a variable or constant

Examples: IF (X .EQ. 2) THEN

SET Y = 1

ELSE

SET Y = 2

53

* EXAMPLE 2

IF (ANSWER .EQ. 'YES') THEN

YES BEGIN

SET Y = 2

CALL RETRY(Y)

END YES

ELSE

NO BEGIN

SET X = 5

CALL FINISH

END NO

* EXAMPLE 3

IF (TEST .EQ. VALUE) THEN

SET TEST = 1

ELSE NULL

or

IF (TEST .EQ. VALUE) THEN

SET TEST = 1

PROCEDURE statements.--There are two procedure statements.

The MAIN-PROCEDURE statement can be used only once in a

program, and it receives control when the program is started.

There may be multiple non-main procedures. The main procedure

may reference any non-main procedureand the non-main

procedures may reference any other non-main procedure.

identifier MAINPROCEDURE

54

identifier PROCEDURE(parameter string)

where: parameter string = a list of variable names

separated by commas

Variables may be passed from one procedure to another

via the parameter string. Each procedure is terminated with

an end statement.

Examples: TESTPGM MAINPROCEDURE

END TESTPGM

FILEIO PROCEDURE (VALUE., X)

END FILEIO

OPEN statement.--The OPEN statement is used to notify

the system that input or output is anticipated by the program

for a particular file.

OPEN opl,op2,op3

where: opl = identifier for a FILE statement

op2 = IN or OUT

op3 = numeric variable in which the return

code for the OPEN is to be saved

Examples: OPEN DATA_ININ

OPEN DATAOUT,OUT,RETURNCODE

READ statement.--The READ statement is used to read a

record or message from a data file or the system console.

The data or message is read into the variable until the

55

length of the variable is satisfied or the record is

completed.

READ opl,op2,op3,op4

where: opl = identifier of a FILE statement

op2 = name of variable where input is to

be placed

op3 = length of actual input

op4 = procedure name to receive control if

an end of file encountered

Examples: READ DATA_IN,BUFFERLEN,ENDOFIP

READ MSGIN,BUFFER

READ DATAFIL,BUFFER,,ENDOFFILE

RECEIVE statement.--The RECEIVE statement results in

data being accepted from an interactive device. The data

which is received is compared to the data specified in the

RECEIVE statement. If they compare, the next statement is

executed. If they do not compare, the system issues messages

to the system console giving the last data sent to the device,

the data received and the data expected. The operator has

the option to accept the data in which case the program will

begin execution at the next statement, or the operator can

abort the program. Concatenation operations are valid.

RECEIVE opl

where: opl = a variable or a constant

Examples: RECEIVE 'ID = LX,PSW = X7'

56

RECEIVE BUFFER

RECEIVE 'TERMINATE'

RECEIVE FIRSTNAM | LASTNAME

RECEIVE 'CITY=' |I CITYNAME

RETURN statement.--The RETURN statement allows a

procedure to return control to the procedure
which called it.

If the RETURN statement is executed in the main procedure,

control is returned to the operating system.

RETURN

SEND statement.--The SEND statement results in data

being transferred to an interactive device. Concatenation

operations are allowed. If error conditions are being

tested and an error indication is expected then the
ERROR

parameter should be set to YES.

SEND opl,[ERROR=op2]

where: opl = variable or constant

op2 = NO if no error expected (default).

= YES if error expected

op2 is valid only if ERROR= is

specified

Examples: SEND 'ENTER LAST NAME'

SEND 'CITY= ' I I CITYNAM

SEND 'CITY= |1 CITY 1I 'STATE='II STATE

SEND 'A' ,ERROR=YES

57

SET statement.--The SET statement allows the value of a

variable to be changed. All variables used in the statement

must be of the same type (i.e., character or numeric).

Multiple arithmetic or concatenation operations may be

performed, however, arithmetic functions are valid only for

numeric variables and constants. Concatenation functions are

valid only for character variables and constants.

SET opl = op2 opr op3

where: opl = variable to be altered

op2 = variable or constant

opr = +-/* if numeric variables involved

= 11 if character variables involved

op3 = variable or constant

Examples: SET ADR = CITY 11 STATE

SET NAME = 'JOHN' 'D' | 'DOE'

SET COUNT = 0

SET COUNT = X + Y - 1

STOP statement.--The STOP statement can be issued at

any point in the program and results in immediate termination

of the program.

STOP

WRITE statement.--The WRITE statement is used to write

a record or message to a data file or to the system console.

The data written may be contained in a variable, or it may

be a character constant.

58

WRITE oplp2

where: opl = identifier of a FILE statement

op2 = name of variable to be outputted or

character constant

Examples: WRITE DATAOUTMESSAGE

WRITE MSGOUT,'TEST COMPLETE'

Standard Functions Provided in ATLIS

Five functions are provided for in ATLIS: LENGTH, MOD,

RAND, SELECT, and SUBSTR. The LENGTH, MOD and RAND functions

are valid any place a numeric variable is valid. The SELECT

and SUBSTR functions are valid any place a character variable

is valid.

LENGTH function.--The LENGTH statement provides the

number of characters currently in a character variable and

treats the length as a numeric variable.

LENGTH(opl)

where: opl = identifier for a character variable

Examples: SET A = LENGTH (ADDRFIELD)

IF (LENGTH(ADDRFIELD) .GT. 0) THEN

MOD function.-- The MOD function provides the remainder

of the first operand divided by the second operand.

MOD(opl,op2)

where: opl and op2 = numeric variable or numeric

constant

Examples: SET X = 6 + MOD(ll,5)

SET VALUE = SUM / MOD(X,10)

RAND function.--The RAND function provides a numeric

value between 0 and 9. The probability of the value being

any of the values is equal.

RAND(opl)

where: opi = numeric variable which serves as a

seed

Examples: DO I = 1 TO RAND(X) * 10

CASE RAND(X)

SELECT function.--The SELECT function provides a char-

acter string of a specified length which is selected randomly

from a character variable. If the character variable is

length one then the new string is made up of the same char-

acter.

SELECT(oplop2)

where: opl = numeric variable or numeric constant

which specifies the length of char-

acter string to be generated

op2 = character variable or character

constant from which the new string

is to be randomly selected

Examples: SET STR = SELECT(6,ALPHABET)

SET NEWSTR = SELECT(RAND(X),NUMERIC)

SEND SELECT(10 ,ALPHANUMERIC)

59

60

SUBSTR function.--The substring function selects a part

of another character variable, starting with a specified

position and with the specified length.

SUBSTR(opl ,op2,op3)

where: opl = numeric variable or constant specifying

the starting position in op3 to

select string-

op2 = numeric variable or constant specifying

the length of the string to be selected

op3 = character variable from which new

string is to be selected

Examples: SET CHRSTR = SUBSTR(1,10,NAME)

SEND SUBSTR(RAND(X) ,4,ALPHA)

The ATLIS Compiler and Linkage Editor

The ATLIS compiler is to be written in a high level,

machine independent language such as PL/I. The compiler can

be a cross compiler, that is, it executes on a machine

different than the one on which the generated code is used,

or it can be a resident compiler on the machine on which the

code is used. The compiler produces "pseudo code," that is,

code which in itself is not executable but must be interpre-

tively executed by the AIT System (Automated Interactive

Test System). Since the ATLIS procedures may be compiled

separately, references to other procedures (CALL statements)

and data references to the main procedure by other procedures

61

are marked as external references which are resolved at

linkage edit time.

Because the generated code is executed interpretively

and because it is desirable to execute multiple programs

concurrently, main memory requirements might be a problem

if the system is implemented on a mini-computer. For that

reason, the compiler produces "paged" pseudo code. This

means that each procedure is divided into pieces, or pages,

which have a maximum size. The smaller the size selected

for the page, the more pages which are required and there-

fore the more page fetches from disk. The larger the page

size the more memory that is required. Each program in

execution has one page areaand it contains the page

currently being executed.

Since the pseudo code is paged then the compiler

determines where the page breaks occur and provides a pseudo

instruction to so indicate. The compiler also satisfies

addressing references between pages for any branches generated

by the control statements. All address references within a

procedure dealing with the transfer of control are expressed

internally as relative offsets within pages, and the page

numbers are relative to a procedure.

The data for a procedure presents a somewhat different

problem. If data was treated similar to the pseudo code

then as each page or procedure was executed or called, the

previous data would be destroyed. Therefore the data must

62

be kept separately. The data for the main procedure always

remains in memory since it can be referenced by any procedure.

The data for all other procedures is present from the time it

receives control until the time a RETURN statement is

encountered or until the END statement for the procedure

is encountered. This means that if there are nested procedure

calls, the data for each procedure which has not executed a

return is in memory. For an example, see Figure 2.

The compiler therefore separates the data from executable

code when producing the object module so that at execution

time the AIT System can retrieve the data and the pseudo code

separately. This is discussed in more detail when the AIT

System is discussed.

The function of the ATLIS linkage editor is to take the

object modules produced by the ATLIS Compiler and combine them

to form an executable load module. This module is then

executed by the AIT System. This involves assigning relative

procedure numbers to each procedure, the main procedure being

procedure number one, and supplying the relative offset within

the main procedure data space for references to data items in

the main procedure by other procedures.

The input to the linkage editor is a group of object

modules, and its output is an executable load module if no

errors were encountered. In addition, the linkage editor

provides printed output which contains a list of each procedure

and which procedures call it. Also, a cross reference of

Procedure calls

1 main procedure
calls

PROCEDURE A

2 PROCEDURE A
calls

PROCEDURE B

3 PROCEDURE B
returns

PROCEDURE A
calls

PROCEDURE C

to

4 PROCEDURE C
calls

PROCEDURE D

5 PROCEDURE D
return to

PROCEDURE C
return to

PROCEDURE A
return to

MAINPROCEDURE

Data mapping

DATA-
MAINPROCEDURE
Data
PROCEDURE A

Data
MAINPROCEDURE
Data
PROCEDURE A
Data
PROCEDURE B

Data
MAINPROCEDURE
Data
PROCEDURE A
Data
PROCEDURE C

Data
MAINPROCEDURE
Data
PROCEDURE A
Data
PROCEDURE C
Data
PROCEDURE D

Data
MAINPROCEDURE

Fig. 2--An example of the data area mapping for several
levels of procedure calls.

63

64

data variables in the main procedure and which procedures

reference each item is provided. All references are

indicated by relative procedure number and statement number

within the procedure. The listing also indicates unresolved

references.

The Automated Interactive Test
System (AIT System)

The function of the Automated Interactive Test System,

to be referred to as the AIT System, is to interpretively

execute the load modules produced by the ATLIS compiler and

linkage editor. The AIT System would be best implemented on

a 16 or 32 bit general purpose mini-computer with at least

65K of memory. The system should also support card input,

print output, magnetic tape (800 or 1600 BPI) and mass

storage device or devices of at least 3 million 8 bit bytes

of storage.

The system can be implemented as a system within itself

or as a subsystem under an operating system. If implemented

as a system itself then it must include device drivers to

control each of the devices described above. The more

desirable choice, and the one to be assumed for the purposes

of this discussion, is for the AIT System to execute as a

subsystem under an operating system. The operating system

would be responsible for device management, memory management

and job management if it is a multijob operating system.

65

It is recommended that the AIT System be a multitask

system which is capable of supporting multiple interactive

devices, each as a separate task. These tasks are able to

be started and stopped independent of each other. In

addition, there is a main task that coordinates the starting

and stopping of the other tasks and provides for the operator

interface through the system console.

The AIT System is coded in the assembly language of the

computer it is being implemented on or in a high level systems

programming language if one is supported. Depending on memory

constraints and operating system capabilities, it may be

necessary to overlay parts of the AIT System but only those

functions which are not of a time critical nature. Candidates

for being overlayed include the system console interface,

system initialization and task initialization.

The system supports at least two types of disk file

organization. These organizations are logical sequential

files and partitioned files. A logical sequential file is

a file whose records may only be accessed in sequence from

start to finish. A partitioned file is effectively one or

more logical sequential files, called members, which are

grouped together under one name. Each member of the parti-

tioned file has its own unique member name and can be accessed

separately, or the entire partitioned file can be treated

as one large sequential file.

66

The partitioned file organization is necessary for the

object modules produced by the ATLIS compiler. Each procedure

of a program has its own unique name, and the object code

produced by the ATLIS compiler for that procedure is placed

in a member with the same name. The name of the partitioned

file is the same as the name of the ATLIS program. Thus,

just as a program is made up of a group of procedures, the

partitioned file for a program is made up of a group of

members, each of which represents one procedure. The output

of the linkage editor is also maintained in a partitioned

file. As a procedure is referenced, the pseudo code and

data for that procedure is loaded from the appropriate member.

The logical sequential file organization is needed for

ATLIS source files, the AIT System log file and other data

files.

The AIT System is controlled through the system console

interface. The operator at the console specifies which

interactive devices are to be tested, assigns each device a

relative priority, specifies what tests are to be executed

and starts the appropriate group of tests. Each program

name is made up of three parts, the group name followed by

the sub group name followed by the sequence number. The

format of the program name is:

(group name/subgroup name.group sequence number).

Since a program is maintained as a file, the program name is

also the file name. The purpose of having three parts to a

program name is to allow programs to be executed by group

name, subgroup name or by sequence number. For example,

assume there were the programs with the following names:

(INPUT/TEST1.1)

(INPUT/TESTl.2)

(INPUT/TEST1.4)

(INPUT/TEST2)

(INPUT/TEST3)

(INPUT/TEST6)

(OUTPUT/TEST1)

(OUTPUT/TEST2.1)

(OUTPUT/TEST2.2)

(OUTPUT/TEST2.3)

(OUTPUT/TEST3)

(OUTPUT/TEST4)

When a group of tests are executed, they are executed in

alphanumeric order (i.e., A-Z, 0-9). The control operator

can specify execution of a specific program such as

(INPUT/TEST1.4). The operator can also specify execution of

a subgroup of tests such as (INPUT/TEST1) in which case

(INPUT/TEST1.1), (INPUT/TEST1.2) and (INPUT/TEST1.4) are

executed sequentially. The operator can also execute a group

of tests such as (OUTPUT) in which all programs with the

group name of (OUTPUT) are executed sequentially. If all

programs are to be executed, the operator can specify "ALL"

in which case all programs are executed sequentially based

on alphanumeric order of their group name.

68

Grouping tests in this manner is an adaptation of the

idea of organizing tests into a testing structure presented

by Cicu (1, pp. 44-50). The advantage of this capability is

that the operator can execute all tests if confidence testing

of the entire system is necessary, or specific programs can

be executed if problems exist or are suspected with a certain

area. In addition, a repeat count can be specified, allowing

a program or group of programs to be executed repeatedly.

This flexibility is provided for each interactive device

to be tested, so each device can be tested concurrently with

the same program or group of programs.

When the control operator indicates that execution is

to begin, the AIT System obtains from the operating system

sufficient memory to contain a page of ATLIS pseudo code and

the data for the main procedure of the program. The first

page of pseudo code for the main procedure is loaded into

memory from the program file and interpretive execution begins.

When a page boundary is reached, the next page is read in

from the program file.

If another procedure is called, its code is located in

the partitioned file, and the first page of its pseudo code

is read into memory. In addition, sufficient memory is

requested from the system to contain the data area of the new

procedure. If sufficient memory is not available, the AIT

System continues to request the needed memory for a period of

time. If still unsuccessful, the control operator is notified

69

via the system console that insufficient memory is available

to continue. The control operator then tells the system to

wait, continue to retry or terminate the program.

When a procedure has completed execution and. is ready

to return to the calling procedure, the data space for the

procedure is released back to the system, the page of pseudo

code in the calling procedure is reloaded and execution resumes

at that point. When a program completes execution, the AIT

System checks if there are additional programs to be executed,

and if so, the next one in the group is located and the

process begins again.

Part of the AIT System is the ATLIS interpreter which

acts upon the pseudo code produced by the ATLIS compiler.

After a predetermined number of pseudo instructions have been

executed for a program testing a certain device, the inter-

preter determines if there are other tasks (programs) awaiting

execution. If there are, they begin execution based on

priority and aging count. Execution of most of the instructions

is straight forward. The exceptions to this are the CALL

statement, which was described previously, SEND statement

and RECEIVE statement.

The SEND and RECEIVE statements are the heart of the AIT

System. When a SEND instruction is encountered, the data

which forms the argument for the SEND instruction is moved

into a holding buffer and also written to the log file. The

data is then transmitted a character at a time. Assuming

70

that the device operates in echo-plex mode (i.e., the

receiving device echos the characters back to the sending

device), the AIT System compares the characters sent to be

sure that echoed characters match those transmitted. Any

discrepancy is noted in the log. Should an error indication

be received from the receiving device, it is so noted in the

log. An error indication can result from data being altered

erroneously during transmission or as a result of intentionally

sending bad data to test error detection logic. In order to

determine which case has occurred, the interpreter, upon

receiving an error indication, retransmits data from the

holding buffer beginning with the character following the

last character echoed by the receiving device. This is

repeated a set number of times. If the error condition still

exists then the data must be in error. The interpreter then

checks if the SEND statement specified ERROR=YES, meaning an

error is expected. If it did, the next instruction is

executed. If the SEND statement had ERROR=NO then an unex-

pected error has occurred, and a message is issued to the

control console to alert the operator. This message gives

the program name, the procedure name, the statement number,

what was sent and what was echoed. The console operator can

override the error and go on, change the data being sent or

cancel the program. If all data sent is echoed correctly,

the interpreter checks to be sure that the SEND statement did

not specify ERROR=YES. If it did then an error was expected,

71

but it was not received. A message is issued to the system

console to notify the operator.

The RECEIVE instruction is treated as follows. Data

from the interactive device being tested is received into a

holding buffer. As it is received, it is compared to the

data given as an argument on the RECEIVE instruction. If any

variations are encountered, a message is issued to the

control console. The console message indicates the program

name, procedure name, statement number, last data sent, data

expected and actual data received. The operator has the

option to accept the data, override the data or abort the

program. The same type of message is issued if the inter-

preter stops receiving data prior to completing input. Once

the correct number of characters has been received, the

next instruction is executed.

The basic premise of this type of testing is that the

response of the system under test should always be anticipated

based on what is sent. The purpose of the testing is to

insure that the system responds as expected to predefined sets

of input. The SEND and RECEIVE statements are the corner-

stone of this testing procedure.

Conclusions

As described in Chapter I, testing of interactive systems

can be very time consuming. Therefore, it is desirable to

automate this procedure if possible. The techniques and

72

tools which are discussed in Chapter III offer little in the

way of solutions to this problem. On the other hand, the

ATLIS language and the AIT System provide a solution to the

problem of interactive system testing.

The ATLIS language and AIT System have the necessary

features to allow the automation of interactive system

testing. Because the testing is done through programs written

in the high level language ATLIS, new features of the inter-

active system can be tested by changing existing programs or

by writing new programs. Thus, flexibility is a feature of

this solution. New features can be easily tested.

Another advantage to this solution is repeatability. If

problems are found with part of the interactive system, the

appropriate test program can be executed to reproduce the

problems. Since the system offers an execution trace, it is

possible to review the trace to determine where the errors

occur and what events preceded them.

This system is also modular. Because of the way programs

can be named using the format (group name/subgroup name.group

sequence number), a group of programs or a single program can

be executed. Thus, a specific area can be tested or the

entire system can be tested. The test programs are also easy

to execute. The control operator must only specify the name

of the group, subgroup or program desired. If no errors are

encountered, no further operator intervention is required.

73

Since the test programs are easy to execute, there is

less time required to execute them. The tests can be conducted

faster by the system than by human testers, because there is

no reaction time on the part of the system as there is with

human testers. The input can be generated at the speed of

the communications link between the system being tested and

the AIT System.

The features of the ATLIS language also facilitate the

development of test programs. For example, the SELECT and

SUBTR functions allow generation of character strings, and

when combined with the DO statement, they allow various

combinations of character strings to be easily generated as

input data.

The features described above enable the ATLIS language

and AIT System to aid in the automation of the testing

involved in interactive systems. In particular, they aid in

the testing associated with system testing, alpha testing,

functional testing and regression testing as described in

Chapter II.

Although performance testing is not specifically

discussed in this chapter, it is quite possible that the AIT

System can be expanded to include performance testing. The

code produced by the ATLIS Compiler is interpretable and

paged, and since the AIT System is designed as a multi-task

system, expansion of the system to include performance

testing should not be too difficult. If timing constraints

are to be considered then new statements may be required in

the ATLIS language such as START_TIMER and STOPTIMER which

provide a time delta for a sequence of tests. This time

delta can then be compared to what is acceptable in order to

determine if the system meets predefined timing constraints.

The ATLIS language and the AIT System, as described

here, provide a tool for automating the testing of inter-

active systems. Use of such a system should significantly

reduce the time required to test interactive systems and

should aid in the development of thorough test procedures

for these systems.

CHAPTER BIBLIOGRAPHY

1. Cicu, A., "Organizing Tests During Software Evaluation,"
Proceedings International Conference on Reliable
Software, June, 1975, 43-50.

2. Scherr, A. L., "Developing and Testing a Large Programming
System, OS/360 Time Sharing Option," Program Test
Methods, edited by William C. Hetzel, Englewood Cliffs,
New Jersey, Prentice Hall, Inc., 1973, 165-180.

75

APPENDIX I

Backus-Naur Form (BNF) of

ATLIS Language

<program>::= <main procedure>

<main procedure><sub procedures>

<main procedure> <main procedure statement><end statement>

L<main procedure statement>

<procedure body><end statement>

<subprocedures> <procedure>

I(procedure><subprocedures>

<procedure> ::=<procedure statement><end statement>

I<procedure statement>

<procedure body><end statement>

<main procedure statement> ::= <procedure name>MAINPROCEDURE

<end statement> ::= END <statement identifier>

<procedure statement> <procedure name> PROCEDURE <argument
list>

i<procedure name> PROCEDURE

<procedure name> <statement identifier>

<argument list> (<arguments>)

<arguments> <data identifier>

I<data identifier>,,<arguments>

<procedure body> <executable block>

I<data declarations><executable block>

76

77

<data declarations> ::=.<data group>

File group>

L<data group><file group>

<data group> <data statement>

I<data statement><data group>

<data statement> ::= <data identifier> DCL<data description>

<data description> <type>

I<length><type>

I<type><sub-init>

I<length><type><sub-init>

<sub-init> (<numeric constant>)

|<numeric constant>),<init-string>

I,<init-string>

<init-string>::= <constant>

I <constant>,<init-string>

<length> <numeric constant>

<type> ::= N IC

<file group> <file statement>

I<file statement><file group>

(file statement> <file identifier> FILE DATA

I<file identifier> FILE CONSOLE

<executable block> <control block>

control block><executable block>

(control block> <simple statement>

I<if block>

I<statement identifier><do block>

78

<end statement>

I<case block><end statement>

<begin block><end statement>

<simple statement ::=,<set statement>

I<call statement>

I<exit statement>

(I/O statement>

RETURN

STOP

<set statement> SET <variable><expression>

<expression> <arithmetic exp>

I<concat exp>

<arithmetic exp> <term>

I<arithmetic exp><add/sub operator><term>

<term> <signed operand>

I<term><multiply/divide operand><signed operand>

<signed operand> <add/sub operator><signed operand>

I<operand>

<operand> <constant>

I<variable>

I <function reference>

I(<arithmetic exp>)

<variable> <simple variable>

I<subscripted variable>

<simple variable> <numeric identifier>

<subscripted variable> <numeric identifier>(<arithmetic exp>)

79

<function reference> <function name>

<function name>(<arithmetic exp>)

<function name> <identifier>

<numeric identifier> <data identifier>

<concat exp> <concat operand>

I<concat operand> J I-<CONCAT exp>

<concat operand> <constant>

I<variable>

I<function reference>

<call statement> CALL <procedure name>

I CALL <procedure name><argument list>

<exit statement> EXIT,<statement identifier>

<I/O statement> <send statement>

I<receive statement>

I<open statement>

I<close statement>

I<read statement>

I<write statement>

<send statement> SEND <concat exp>

<receive statement> ::= RECEIVE <concat exp>

<open statement> <file identifier><disp><return>

W(file identifier><disp>

<disp> IN I OUT

<return> <variable>

<close statement> <file identifier>

I<file identifier><completion>

80

<completion> <variable>

<read statement> <file identifier><variable>

I<file identifier><variable>,<variable>

I<file identifier><variable>,<variable>,

<variable>

W <file identifier><variable>, ,<variable>

<write statement> <file identifier><variable>

<if block> <if header><executable block>

I<if header><executable block><else block>

<if header> IF <condition> THEN

<condition> (<expression><relational operator><expression>)

<else block> ELSE <control block>

<do block> <do while><executable block>

j<do range><executable block>

<ao while> DO WHILE <condition>

<do range> DO <variable> = <operand> TO

<operand> BY <operand>

<case block> <case statement><executable block>

I<case statement><executable block><else block>

<case statement>::= CASE <variable>

<begin block> ::= <begin statement><executable block>

<begin statement> <statement identifier> BEGIN

<file identifier> <identifier>

<data identifier> ::= <identifier>

<statement identifier> ::= <identifier>

<identifier> <alpha>

I <alpha> <alpha-num-st ring>

<alpha-num-st ring> :=<alphanumeric>

| <alphanumeric> <alpha-num-string>

<alphanumeric> <alpha>

I <numeric>

<constant> : <numeric constant>

I<character constant>

<numeric constant> <numeric>

I <numeric><numeric constant>

<character constant> ::='<character>'

I I<character><character constant>

<character> <alpha>

I<numeric>

I<special>

<add/sub operator> + I -

<multiply divide operator> * I /

<relational operator> : EQ. I .NE. I .LT.

| .LE. I .GT. I .GE.

<numeric> 011...I9

<alpha> AIBI...Z

<special> := l.I<I...I"

81

APPENDIX II

ATLIS Language Summary

STATEMENTS:

identifier

identifier

identifier

identifier

identifier

identifier

identifier

identifier

BEGIN

CALL procedure name(opl,op2...opn)

CASE opi

CLOSE opl,op2

DCL lengthtype(subscript),initial values

DO WHILE (op op op)

DO opl= op2 TO op3[BY op4]

ELSE

END identifier

EXIT,op

FILE DATA

FILE CONSOLE

IF (opi o pr op) THEN

MAINPROCEDURE

OPEN op1,2_,op3

PROCEDURE (opl,op2,.. .opn)

READ oplop2,op3,op4

RECEIVE opi

RETURN

SEND op, [ERROR=op2_]

82

83

SET oi = op opr op3

STOP

WRITE op, op2

FUNCTIONS:

LENGTH(opi)

MOD(,op)

RAND(opl)

SELECT (op, op)

SUBSTR(op, ,op)

BIBLIOGRAPHY

Books

Hetzel, William C., editor, Program Test Methods, Englewood
Cliffs, New Jersey, Prentice Hall, Inc., 1973.

IEEE/ARINC Standard ATLAS Test Language, IEEE std 416-1976,
The Institute of Electrical and Electronic Engineers, Inc.,
445 Hoes Lane, Piscataway, New Jersey 08854, 1976.

Proceedings International Conference on Reliable Software,
SIGPLAN NOTICES (a monthly publication of the ACM special
interest group on programming languages), Volume 10,
Number 6, ACM SIGPLAN, 1133 Avenue of the Americas,
New York, New York 10036, June, 1975.

Proceedings Second International Conference on Software

Engineering, IEEE Catalog Number 76CHll25-4 C, IEEE
Computer Society, 5855 Naples Plaza, Long Beach,
California 90803, October, 1976.

Rustin, Randall, editor, Debugging Techniques in Large Systems,
Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1971.

Articles

Baker, F. T., "Chief Programmer Team Management of Production
Programming," IBM Systems Journal, Volume 11, Number 1, 1972.

Boehm, Barry W., "Software and Its Impact: A Quantitative
Assessment," DATAMATION, May, 1973, 48-59.

Cicu, A., "Organizing Tests During Software Evaluation,"
Proceedings International Conferences on Reliable
Software, June, 1975, 43-50.

Duke, M. 0., "Testing In a Complex Systems Environment, "
IBM Systems Journal, Volume 14, Number 4, 1975, 353-365.

Elmendorf, W. R., "Disciplined Software Testing," Debugging
Techniques In Large Systems., edited by Randall Rustin,
Englewood Cliffs, New Jersey, Prentice Hall, Inc.,
1971, 137-140.

84

85

Elspas, Bernard, Karl N. Levitt, Richard J. Waldinger and
Abraham Waksman, "An Assessment of Techniques for Proving
Program Correctness," ACM mputin Surveys, Volume 4,Number 2, June, 1972, 97-147.

Good, Donald I., Ralph L. London and W. W. Bledsoe, "An
Interactive Program Verification System," Proceedings
International Conference on Reliable Software, June, 1975,
482-492.

Gruenberger, F., "Program Testing: The Historical Perspective,"
Program Test Methods, edited by William C. Hetzel,
Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1973,
11-14.

Hantler, Sidney L. and James C. King, "An Introduction to
Proving the Correctness of Programs," ACM Computing
Surveys, Volume 8, Number 3, September976

Huang, J. C., "An Approach to Program Testing," ACM Computing
Surveys, Volume 7, Number 3, September, 1973, 113-128.

King, James C., "A New Approach to Program Testing,"
Proceedings International Conference on Reliable Soft-
ware, June, 1975, 228-233.

Miller, E. F. and R. A. Melton, "Automated Generation of
Testcase Datasets," Proceedings International Conference
on Reliable Software, June, 1975, 51-58.

Mills, Harlen, "Top Down Programming in Large Systems,"
Debugging Techniques In Large Systems, edited by
Randall Rustin, Englewood Cliffs, New Jersey, Prentice
Hall, Inc., 1971, 41-56.

Ramamoorthy, C. V. and S. F. Ho, "On the Automated Generation
of Program Test Data," Proceedings Second International
Conference on Software Engineering, October, 1976, 636.

"Testing Large Software With
Automated Software Evaluation System," Proceedings
International Conference on Reliable Software, June, 1975,
382-394.

Sammet, Jean E., "Roster of Programming Languages for 1974-75,"
Communications of the ACM, Volume 19, Number 12, December,
1976, 655-669.

86

Scherr, A. L., "Developing and Testing a Large Programming
System, OS/360 Time Sharing Option," Program Test Methods,
edited by William C. Hetzel, Englewood Cliffs, New Jersey,
Prentice Hall, Inc., 1973, 165-180.

Supnik, Robert M., "Debugging Under Simulation," Debugging
Techniques In Large Systems, edited by Randal Rustin,
Englewood Cliffs, New Jersey, Prentice Hall, Inc., 1971,
117-136.

Vander Noot, T. J., "System Testing A Taboo Subject,"
DATAMATION, November 15, 1971, 60-64.

Reports

Improved DETOL Programming for the 5500/5510 Automatic Test
System (ATS), Report Number ER-8964, AAI Corporation,
Cockeysville, Maryland, March, 1977.

Public Documents

Miller, E. F., Methodology for Comprehensive Software Testing,
National Technical Information Service (NTIS) AD/A013 111,
June, 1975.

Montgomery, George Wynn, System Test Methodology, National
Technical Information Service (NTIS AD/A-012 461,
June, 1975.

Unpublished Materials

Ring, Steven J., "A Distributed Intelligence Automatic Test
System for PATRIOT Electronic Assemblies," for
publication in IEEE Transactions on Aerospace and
Electronic Systems, Raytheon Company, Hartwell.Road,
Bedford, Mass. 01730, 1977.

