EFFECTS OF WATER SOURCE, SUSPENDED SOLIDS, AND ACCLIMATION ON BIOTRANSFORMATION OF 2,4-DICHLOROPHENOXY ACETIC ACID IN AQUATIC SYSTEMS

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Christopher K. Moses Denton, Texas August, 1985

TABLE OF CONTENTS

	Page
LIST OF	TABLES
LIST OF	ILLUSTRATIONS
Chapter	
I.	INTRODUCTION 1
II.	MATERIALS AND METHODS
III.	RESULTS AND DISCUSSION
IV.	CONCLUSIONS
APPENDIX	I 136
BIBLIOGR	АРНҮ 170

.

LIST OF TABLES

Table

Page	
------	--

5		Toxicity of 2,4-D Acid Formulation to Organisms.	I.
13	•	Chemical Structure and Physical Parameters of 2,4-D	II.
18	•	Analytical Methods for Water Quality Parameters.	III.
19	•	Analytical Methods for Sediment Parameters	IV.
35	•	Percent Recoveries of 2,4-D from the Mississippi Red, and Trinity River Waters	V.
37	•	Results of Water Chemistry Analysis for Mississippi, Red, and Trinity River Waters	VI.
39	•	Sediment Characteristics of Mississippi, Red, and Trinity Rivers	VII.
44	•	Results of the Biotransformation Studies of 2,4-D in the Red River	VIII.
58	٠	Significance of the Lines of Best Fit for Biotransformation Studies of the Red River	IX.
60	•	Statistical Comparisons of Biotransformation Rates of Sterile Control Systems and Non-Sterile Test Systems	х.
62	•	Statistical Comparisons of Biotransformation Rates of 2,4-D in Red River Systems Con- taining Non-Sterile Water with and without Solids	XI.
		Biotransformation Rates of 2,4-D in Systems Con- taining Non-Sterile Water and Sterile Solids, and in Systems Containing Sterile Water and	XII.
64	•	Experiments	

LIST OF TABLES--Continued

Table

XIII.	<pre>Statistical Comparisons of Biotransformation Rates of 2,4-D in Red River Systems Contain- ing Non-Sterile Solids and/or Non-Sterile Water with the Systems Containing Sterile Water or Sterile Solids</pre>		65
XIV.	Results of Biotransformation Studies of 2,4-D in the Trinity River	,	69
XV.	Significance of Lines of Best Fit for Bio- transformation Studies of the Trinity River	•	79
XVI.	Statistical Comparisons of Biotransformation Rates of Sterile Control Systems and Non- Sterile Test Systems in the Trinity River	•	80
XVII.	Statistical Comparisons of Biotransformation Rates of 2,4-D in Trinity River Systems Containing Non-Sterile Water with and without Solids	•	82
XVIII.	Biotransformation Rates of 2,4-D in Systems Con- taining Non-Sterile Water and Sterile Solids, and in Systems Containing Sterile Water and Non-Sterile Solids of the Trinity River Experiments	•	83
XIX.	Statistical Comparisons of Biotransformation Rates of 2,4-D in Trinity River Systems Con- taining Non-Sterile Solids and/or Non-Sterile Water with Systems Containing Either Sterile Water or Sterile Solids	•	89
XX.	Results of Biotransformation Studies of 2,4-D in the Mississippi River	•	91
XXI.	Significance of Lines of Best Fit for Biotrans- formation Studies of the Mississippi River	•	96
XXII.	Statistical Comparisons of Biotransformation Rates of Sterile Control Systems and Non- Sterile Test Systems in the Mississippi River		98

LIST OF TABLES--Continued

Table

			Page
XXIII.	Statistical Comparisons of Biotransformation Rates of 2,4-D in Mississippi River Systems Containing Non-Sterile Solids and/or Non- Sterile Water with Systems Containing Either Sterile Water or Sterile Solids	•	. 100
XXIV.	Statistical Comparisons of Biotransformation Rates of 2,4-D in Systems Containing Non- Sterile Water Only, Between Mississippi, Red, and Trinity Rivers	•	106
XXV.	Statistical Comparisons of Biotransformation Rates of 2,4-D in Systems Containing Non- Sterile Water and Non-Sterile Solids, Between Mississippi, Red, and Trinity Rivers.		107
XXVI.	Results of Biotransformation Studies Dealing with Acclimation	•	109
XXVII.	Statistical Comparisons of Biotransformation Rates Before and After Acclimation	•	120
XXVIII.	Statistical Comparisons of Biotransformation Rates of 2,4-D in Mississippi, Red, and Trinity River Acclimated Systems	•	121
XXIX.	Results from Preliminary Algal Bioassay Without Solids	•	130
XXX.	Results from Preliminary Algal Bioassay With Solids		131

vi

LIST OF ILLUSTRATIONS

Figure		Pa	ge
1.	Experimental Matrix of the Biotransformation Studies	•	21
2.	Experimental Maxtrix of the Preliminary Algay Bioassay	•	29
3.	Loss of 2,4-D Through Time in the Systems Con- taining Non-Sterile Red River Water Only in the First Red River Experiment	•	46
4.	Loss of 2,4-D Through Time in the Systems Con- taining Non-Sterile Red River Water Only in the Third Red River Experiment	•	48
5.	Loss of 2,4-D Through Time in the Systems Con- taining Non-Sterile Red River Water Only in the Fourth Red River Experiment	•	50
б.	Loss of 2,4-D Through Time in the Systems Con- taining Non-Sterile Red River Water and Non- Sterile Solids in the First Red River Experiment.	•	52
7.	Loss of 2,4-D Through Time in the Systems Con- taining Non-Sterile Red River Water and Non- Sterile Solids in the Third Red River Experiment.	•	54
8.	Loss of 2,4-D Through Time in the Systems Contain- ing Non-Sterile Red River Water and Non-Sterile Solids in the Fourth Red River Experiment	•	5ę
9.	Loss of 2,4-D Through Time in the Systems Contain- ing Non-Sterile Trinity River Water Only in the First Trinity River Experiment	•	70
10.	Loss of 2,4-D Through Time in the Systems Contain- ing Non-Sterile Trinity River Water Only in the Second Trinity River Experiment	•	72
11.	Loss of 2,4-D Through Time in the Systems Contain- ing Non-Sterile Trinity River Water and Non- Sterile Solids in the First Trinity River Experiment	•	74

LIST OF ILLUSTRATIONS--Continued

Figure		E	age
12.	Loss of 2,4-D Through Time in the Systems Containing Non-Sterile Trinity River Water and Non-Sterile Solids in the Second Trinity River Experiment	•	76
13.	Loss of 2,4-D Through Time in the Trinity River Systems Which Initially Contained Non-Sterile Water and Sterile Solids	•	84
14.	Loss of 2,4-D Through Time in the Trinity River Systems Which Initially Contained Sterile Water and Non-Sterile Solids		86
15.	Loss of 2,4-D Through Time in the Mississippi River Systems Containing Non-Sterile Water Only	•	92
16.	Loss of 2,4-D Through Time in the Mississippi River Systems Containing Non-Sterile Water and Solids	•	94
17.	Loss of 2,4-D Through Time in the Mississippi River Systems Initially Containing Sterile Water and Non-Sterile Solids	•	101
18.	Loss of 2,4-D Through Time in the Mississippi River Systems Initially Containing Non-Sterile Water and Sterile Solids.	_	103
19.	Loss of 2,4-D Through Time in the Acclimated Red River Systems Containing Water Only	•	110
20.	Loss of 2,4-D Through Time in the Acclimated Red River Systems Containing Water and Solids	•	112
21.	Loss of 2,4-D Through Time in the Acclimated Trinity River Systems Containing Water Only	•	114
22.	Loss of 2,4-D Through Time in the Acclimated Trinity River Systems Containing Water and Solids	•	116

CHAPTER I

INTRODUCTION

In recent years there has been a great deal of scientific interest in processes that affect the fate of organic chemicals in the environment. One main reason for this increased interest is due to greater environmental concern over accidental or purposeful release of these chemicals into the environment by man. A major environmental concern is the increased use of pesticides over the last few years. In the thirty years prior to 1978 the use of pesticides has increased by a factor of forty (Ridgeway et al., 1978). Recently the use of herbicides has been increasing, but that of insecticides has stabilized (Willis, 1983). Detectable amounts of organic pesticides can be found in many areas of the biosphere. For toxic organic chemicals to be used safely, researchers must have a clear understanding of the fate and persistence of these chemicals when they are released into the environment. This understanding will also allow the development of new products that, when properly used, will not produce adverse effects to man or the environment (Weber, 1972). According to the Toxic Substance Control Act (TSCA) any new or expanded-use chemical that might be released into the

environment must be tested for environmental hazard.

Environmental hazard, according to Lee and Jones (1980), consists of two factors: the environmental toxicology of a chemical and the chemistry-fate of the chemical. The toxicity of a chemical is a function of its dose (concentration and duration of an exposure to an organism), whereas fate relates to the transport and disposition of the chemical in compartments of the environment (Staples et al., 1983). The fate processes therefore control the dose of the chemical acting on organisms in the environment. My research dealt principally with fate. Some of the fate processes acting on a chemical could be sorption, volatilization, hydrolysis, biodegradation, biotransformation, and photolysis.

My research focused on one aspect of the fate of one of the world's most widely used herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) (Watson, 1977). The fate process investigated was biotransformation and how biotransformation of 2,4-D in aquatic systems is affected by suspended solids, source of water, and acclimation.

The reasons 2,4-D was chosen for this work are

- 2,4-D is widely used in agriculture (Schwartz, 1967).
- 2. A great deal of literature exists regarding the fate of 2,4-D in soils (Altom and Stritzke, 1973; Watson et al., 1973; Norris and Greiner, 1967;

Audus, 1949, 1951, 1952, 1964);

- 3. There is relatively little information on the fate of the compound in aquatic systems (Nesbitt and Watson, 1980a,b; Steen et al., 1980; C.A.S.T., 1975);
- 2,4-D belongs to a widely used class of pesticides, the chlorinated hydrocarbons;
- 5. 2,4-D has been found as a contaminant of water supplies (Schwartz, 1967);
- Microbial degradation is the primary pathway for the degradation of 2,4-D in the environment (C.A.S.T., 1975);
- Sorption to solids may affect the bioavailability of 2,4-D (Scott and Weber, 1967);
- 2,4-D is a registered aquatic herbicide (Weed Science Society of America Herbicide Handbook, 1983);
- 9. 2,4-D is used in and around aquatic systems to control noxious weeds.

The U.S. Department of Agriculture has used 2,4-D to control weeds along river banks (Nesbitt and Watson, 1980a). Some uses of 2,4-D in aquatic systems have been to control water hyacinth, pond weed, and cattails (C.A.S.T., 1975). The main reasons for such widespread usage of 2,4-D are that it does not concentrate in the food chain, it does not persist from year to year, and it is much less toxic to

animals than it is to plants (C.A.S.T., 1975) (Table I).

Even though 2,4-D has been widely studied, its mode of action is not wholly understood. It is known that this systemic herbicide causes plants to undergo abnormal growth response; 2,4-D also affects respiration, food reserves and cell division in the plant (Weed Science Society of America Herbicide Handbook, 1983).

If a compound, in an aquatic system, is associated with a solid, then it is no longer in solution. Staples et al. (1983) hypothesized that for a compound to exert toxicity (to be bioavailable) to water column organisms, it must be in the dissolved fraction of the system. Other researchers have presented data to support this hypothesis. Lee and Mariani (1977) showed that toxic chemicals in sediments are not available to act on aquatic organisms. It is suggested that these chemicals, while associated with the sediments, are not available because they are bound to the particulate matter of the sediments.

The potential of a chemical to sorb can be expressed by the adsorption coefficient (Kp) which is the ratio of chemical sorbed to chemical in solution. The Kp is generally a function of the properties of a chemical and the sorbing material (Lyman, 1982). Therefore, depending on the chemical structure, sorption may be one of the most important fate processes acting on a chemical (Baughman and Lassiter, 1978). The volatilization, photolysis, hydrolysis,

TABLE	I
-------	---

TOXICITY OF 2,4-D ACID FORMULATION TO ORGANISMS

Organism	LD ₅₀ (mg/kg)	LC ₅₀ (mg/l)
Rat	375	
Dog	100	
Guinea Pig	469	
Chicken	541	
Pigeon	668	
Mule Deer	400-800	
Bluegill		1000 (7 days)
Catfish		2000 (7 days)
Rainbow Trout		21.9 (48 hr)
Fathead Minnow		14-75 (48 hr)

biotransformation, and biodegradation of a chemical can be influenced by sorption of the chemical (Lyman, 1982). Bioavailability of a chemical may also be reduced by the interactions of the chemical with the abiotic and biotic solids in an aquatic system (Staples et al., 1983).

In aquatic systems, sources of sediments are diverse and include wastes from municipal, industrial, and agricultural sources, soil erosion, and decomposition of plants and animals within a water body (Weber, 1972). Suspended solids from municipal wastes are primarily organic substances and minerals. The input to aquatic systems from municipal waste is over 3.6 billion kilograms of suspended solids yearly (Weber, 1972). Manufacturing waste comes from four primary industries, paper, organic chemicals, petroleum and steel, and amount to over 8.1 billion kilograms of suspended solids added yearly to our waterways (Weber, 1972). However, the greatest volume of suspended solids comes from soil erosion. Soil erosion accounts for over 700 times the suspended solids introduced into aquatic systems as does sewage disposal (Weber, 1972). Suspended solids normally consist of sand, silt, and clays with thin films of organics and inorganics as well as metallic oxides attached to these particles. Microbial growth is often associated with these solids (Weber, 1972).

Suspended solids may affect the rate of biotransformation of a compound. As stated earlier, sorption of a

compound to solids can affect the rate of biotransformation (Staples et al., 1983). Evans et al. (1973) showed that biodegradation of urea in river water increased under periods of high sediment loading. Nesbitt and Watson (1980a,b) correlated increased rates of degradation of 2,4-D with increased sediment loading in two Australian rivers. Simsiman and Chesters (1975) showed that the rate of biodegradation of endothall increased with suspended solids. Lee and Ryan (1979) investigated the effects of sediments on first-order biodegradation kinetics of p-chlorophenol, trichlorophenol, chlorobenzene, and trichlorophenoxy acetic acid. For these compounds the addition of 50 gm/l of sediments to estuary water enhanced the disappearance of the compounds. The first-order half-life of p-chlorophenol without sediments was reported as 20 days, with sediments the half-life was found to be 3 The half-lives of the other compounds were days. decreased, by addition of sediments, as follows: trichorophenol 90 days to 23 days; chlorobenzene 150 days to 75 days; and trichlorophenoxy acetic acid 1400 days to 95 days. Steen et al. (1980) showed that the degradation rate of chloropropham and di-n-butyl could be reduced by an increase in the amount of suspended solids. It was suggested that sorption to the solids rendered these compounds biologically unavailable (Steen et al., 1980). Adsorption of some herbicides, such as diquat and CIPC, by

soil particles may also reduce their phytotoxicity because the herbicide is held near the surface of a soil particle rendering the herbicide less available to plants (Harris and Warren, 1963).

As the literature suggests, suspended solids can either increase, decrease, or not affect the rate of degradation or transformation of an organic compound in aquatic systems. Due to sorption, the bioavailability of a compound may be reduced. Adsorption is due to the interaction of the absorbent and the absorbate (Bailey and White, 1964).

The rate of degradation may increase for particular chemicals as a result of increased nutrients being released from the suspended solids to the water, increased microbial numbers contributed to the system from the suspended solids, or due to the suspended solids providing an interface for microbial-chemical interactions. The susceptibility of an organic compound to be biotransformed is controlled by the structure of the chemical and by environmental factors (Boethling and Alexander, 1979). For a herbicide to be biodegraded and/or biotransformed certain criteria must be met (Kearney et al., 1966).

- The environment must be suitable for the microbes capable of transforming and/or degrading the compound.
- 2. The chemical must exist in the environment in a useable form for the microbes.

- 3. The compound must be available to the organisms.
- The chemical must be capable of inducing the organisms to produce the necessary enzymes to breakdown the compound.
- 5. The environment must be suitable for the microbial population to grow and for the enzymes produced to function.

The inactivation/transformation of 2,4-D by soil microbes is well documented in the literature (Altom and Stritzke, 1973; Watson et al., 1973; Norris and Greiner, 1967; Schwartz, 1967; Aly and Faust, 1964; Audus, 1949, 1951, 1952, 1964; Klingman, 1964; Bollen, 1961; Bell, 1957; Rogoff and Reid, 1956; Walker and Newman, 1956; Evans and Smith, 1954; Jensen and Petersen, 1952; Newman and Walker, 1952; Akamine, 1951; Newman and Thomas, 1949; Brown and Mitchell, 1948; Derose and Newman, 1948). The inactivation/transformation of 2,4-D by microbes in aquatic systems has also been reported (Nesbitt and Watson, 1980a,b; Steen et al., 1980; Watson, 1977; C.A.S.T., 1975; Schultz, 1973; Hemmet and Faust, 1968; Demarco et al., 1967; Schwartz, 1967; Aly and Faust, 1964). The inactivation of 2,4-D has been attributed primarily to microbes (Nesbitt and Watson, 1980a,b; Watson et al., 1973; C.A.S.T., 1975; Jensen and Petersen 1952; Audus, 1949, 1951). Schultz (1973) found that there are at least eleven species of bacteria and two actinomycetes capable of

degrading 2,4-D. Torstensson et al. (1975) also isolated species of bacteria and fungi capable of degrading 2,4-D as a sole carbon source.

There exist in the literature some controversy over the uptake of 2,4-D by bacteria. Wedemeyer (1966) suggests that there is a two step process in the uptake of the compound. The first step is sorption of 2,4-D to the cell wall of the bacteria followed by passive diffusion of the herbicide into the cytoplasm of the cell. Schwartz (1967), on the other hand, reported no sorption of 2,4-D to the cells of bacteria. If 2,4-D does sorb to the cell walls of microbes, then one would expect to find the compound sorbed to the microbes attached to suspended solids in an aquatic system. This could mean that the rate of transformation of 2,4-D might increase with the addition of suspended solids. The suspended solids may act as centers for microbial transformation of the compound.

The pathway of biodegradation of 2,4-D has also been studied extensively. Audus (1952) proposed the first step in this breakdown to be hydrolysis of the acetic acid side chain yielding a glycollic acid and a phenol. Evans and Smith (1954), Evans and Moss (1957), and Evans et al. (1961) proposed the first step in the breakdown of 2,4-D to be 6-hydroxy-2,4-dichlorophenoxyacetate followed by 3,5-dichlorocatechol and chloromuconic acid. Bell (1960) proposed 2,4-dichlorophenol as a metabolite of 2,4-D.

Tiedje et al. (1969) showed the degradation of 2,4-D, using <u>Arthrobacter</u> sp., to be characterized by cleavage of the ether linkage yielding 2,4-dichlorophenol and most likely glycollic acid. The glycollic acid is then converted to alpha-alanine. The 2,4-dichlorophenol is then oxidized forming 3,5-dichlorocatechol. The 3,5-dichlorocatechol is then further broken-down by oxidation.

One factor that may affect biotransformation rate of a compound is acclimation. In aquatic systems where the microbes have not recently been exposed to 2,4-D, the transformation rate of the compound may be less than in a system in which the microbes have recently been exposed to the compound. The literature contains references to lag phases in the degradation of 2,4-D (Nesbitt and Watson, 1980a; Norris and Greiner, 1967; Robson, 1966). During the lag phase the loss of compound is not significantly different from zero, the concentration of compound is relatively constant. This lag phase usually occurs when the organisms are initially exposed to a compound. The presence of lag phases may be an indicator of acclimation taking place prior to the compound actually being broken down. Other researchers have shown higher rates of microbial degradation of 2,4-D using acclimated cultures or in situations of redose than were shown in situations where the microbes have not previously been exposed to the compound (Nesbitt and Watson, 1980b; Watson, 1977; Newman

and Walker, 1952; Audus, 1949, 1951; Newman and Thomas, Spain and Van Veld (1983) found that preexposure to 1949). 2,4-D enhanced the disappearance of the herbicide. In biodegradation experiments using water previously exposed to 2,4-D from the Escambia River, they reported less than 5% of the initial 2,4-D remaining after 40 hours. In non-preexposed river water over 80% of the herbicide remained after 100 hours. Spain and Van Veld (1983) also reported similar results for p-nitrophenol (PNP). non-preexposed systems 70% of the compound remained after 120 hours. In preexposed systems about 10% of the PNP remained after 70 hours. The adaption of organisms to PNP reportly lasted seven weeks after initial exposure. Robson (1966) reported a lag phase when 2,4-D was introduced in low concentrations (0.5 mg/l) but not when the chemical was added in higher concentrations (5.0 mg/l) to water. Nesbitt and Watson (1980a) reported a lag phase of 6 to 12 days for the degradation of 2,4-D, in river water systems. The length of the lag phase was said to depend on environmental conditions.

Chemical Parameters and Reported Half-Lives

The structure and some of the physical properties of 2,4-dichlorophenoxyacetic acid are shown in Table II. The values in this table came from literature sources including the Weed Science Society of America Herbicide Handbook

CHEMICAL STRUCTURE AND PHYSICAL PARAMETERS OF 2,4-D

Chemical Structure

*Unl	es	s	ot	.he	erw	vis	se	nc	te	eđ	Va	alu	ies	are from the Weed Science
Kow	•	•	•	•	•	•	•	•	•	•	•	•	•	.645 (Chiou et al. 1977) 11000 (Neely and Mackay 1981)
Koc	•	•	•	•	•	•	•	•	•	•	•	•	•	.330 (Neely and Mackay 1981)
рКа	•	•	•	•	•	٠	•	•	•	•	•	•	•	.2.73 (Nelson and Faust 1969)
Solu	bi.	.11	Ĺŧŗ	Į V	√at	er	•	•	•	•	•	•	•	.900 mg/l at 25 ⁰ C 600 mg/l (Audus 1976)
Vapc	r	۲ı	ces	ssı	ire	€.	٠	•	•	•	•	•	•	.0.4 mm Hg at 160 ⁰ C
Melt	ir	ıg	Pc	oir	nt	•	•	•	•	•	•	•	•	.135 to 138° C (Technical), 140 to 141° C (Pure)
Mole	σu	118	ar	Ŵē	eiç	Jht		•	•	•	•	•	•	.221.0
Mole	CU	1±č	ar	F.C	orn	nul	.a	•	•	•	•	•	•	· ^C 8 ^H 6 ^{C1} 2 ^O 3 [*]

Society of American Herbicide Handbook (1983).

(1983).

The reported half-life, or persistence, of 2,4-D in the literature varies greatly. Aly and Faust (1964) reported that 2,4-D remained in lake muds for up to 65 days, 35 days if the lake had previously been treated with the herbicide. They also reported 2,4-D persistance in the water column to be 120 days. C.A.S.T. (1975) reported the half-life of 2,4-D in soil to be 1-2 weeks. Schwartz (1967) reported that very little biodegradation of 2,4-D occurred in a non-sterile dilute salts media. He found that after 175 days only 11-23 % of the compound had been biodegraded. Klingman (1964) reported the persistance of 2,4-D in soils to be only 7 days, while Akamine (1951) reported the persistance of the compound in soils to be 98 days. Nesbitt and Watson (1980a) found the half-life of 2,4-D, in river waters to range from 10 to 50 days.

The goals of this research were as follows:

- Determine some of the possible effects suspended solids have on the biotransformation rate of the herbicide 2,4-D;
- 2. Generate environmentally realistic biotransformation rate coefficients for 2,4-D. This involves using realistic concentrations of the chemical and also using realistic concentrations of suspended solids from the same source as the river water;

- 3. Determine if acclimation has an effect on the apparent biotransformation rate of 2,4-D;
- Determine the effect that suspended solids have on the toxicity of the herbicide to <u>Selenastrum</u> capricornutum.

The following hypotheses were investigated in this work.

H1:Addition of suspended solids of 500 mg/l above background suspended solids concentration have no effect on the apparent biotransformation rate of 2,4-D in river waters.

H2: The source of water and suspended solids has no effect on the apparent biotransformation rate of 2,4-D.

H3: The apparent biotransformation rate coefficient of 2,4-D is best described by first-order kinetics.

H4: The organisms introduced from the suspended solids do not affect the apparent biotransformation rate of 2,4-D.

H5: The rate of biotransformation of 2,4-D is not affected by whether or not the system has previously been exposed to the herbicide.

H6: The toxicity of 2,4-D to <u>Selenastrum</u> <u>capricornutum</u> is not affected by the source or amount of suspended solids in the system.

CHAPTER II

MATERIALS AND METHODS

All biotransformation studies of 2,4-D that were conducted for this thesis used natural occurring waters and sediments. The waters and sediments are from three sources. The first source is the Trinity River in Dallas county, Texas. The second source of water and sediments is the Red River in Grayson county, Texas. The third source is the Mississippi River in Shelby county, Tennessee. The three rivers were chosen because of their proximity to industries and their importance as receiving systems of municipal, industrial, and agricultural wastes. The Mississippi River receives all of these wastes on a daily basis. The Red River, at the site chosen, does not have a great deal of industrial waste added to the upstream waters. The Trinity River, on the other hand, does have extensive agricultural runoff and a little industrial wastes added to its upstream waters.

From these three sites, water was collected in acidwashed 20-liter nalgene containers and transported to the laboratory. Sediments, from the three sites, were removed from the upper 2 cm of the river beds and placed in 1-liter nalgene containers. The sediments, prior to use, were

sieved through a 277-um sieve to promote uniformity. Sediments and water that were not to be used immediatly were stored at 4° C.

To help account for variations in the biotransformation studies between the river systems, water quality and sediment chemistry parameters were quantified. Analytical methods for water quality can be found in Table III and methods for the sediment properties are in Table IV. Some of the water quality data for the Mississippi River were obtained from the STORET (USEPA, 1984) data base.

The biotransformation rates for 2,4-D were found using a shake-flask design with an initial concentration of approximately 2 mg/l of 2,4-D. This concentration is an environmentally realistic concentration since it is well within the concentration recommended on the labels of the aquatic licensed formulation. The disappearance of 2,4-D was followed for at least two half-lives. The vessels used were 250-ml screw-top Erlenmeyer flasks. Screw-top flasks were used to aid in maintaining sterility of the controls. Each flask initially contained 200 ml of one of the river waters with the appropriate amount of solids added, either 0 mg/l or 500 mg/l. The biotransformation tests were performed in the dark to prevent any photodegradation of the herbicide. Significant photodegradation of 2,4-D ester has been reported in the literature under laboratory conditions (Hansen and Buchholt, 1952; Crosby and Tutass, 1966; Bell,

TABLE III

ANALYTICAL METHODS FOR WATER QUALITY PARAMETERS

Parameter	Method	Reference*
Ammonia	Specific Ion Probe	417E
Calcium	Flame Atomia Absorption	303A
Dissolved Oxygen	YSI Model 54A Meter	208A.2.C
Iron	Flame Atomic Absorption	303A
Nitrate	Specific Ion Probe	418B
Orthophosphate	Ascorbic Acid	424F
рН	Markson pH Meter	423.2
Sodium	Flame Atomic Absorption	303A
Temperature	YSI Model 54A Meter	212
Total Phosphate	Persulfate Digestion/ Ascorbic Acid	424C&F

*All references from Standard Methods (1980).

TABLE IV

ANALYTICAL METHODS FOR SEDIMENT PARAMETERS

Parameter	Method	Reference			
Ammonia	Specific Ion Probe	Standard Methods 417E, 1980			
Loss on Ignition	Heating to 550 ⁰ C	Standard Methods 209G, 1980			
Nitrate	Specific Ion Probe	Standard Methods 418B, 1980			
Particle Size	Hydrometric Analysis	Black et al., 1965			

1956; Aly and Faust, 1964). Aly and Faust (1964) reported 2,4-D acid as the breakdown product of the ester and that the acid did not undergo any further breakdown. Performing these experiments in the dark is probably not necessary since the acid and not an ester is being used. The shake flasks were maintained at room temperature and shaken on a rotary shaker at 100 revolutions per minute (RPM). One hundred RPM was sufficient agitation to keep most of the solids in suspension and to maintain dissolved oxygen concentrations in the flasks above 4 mg/l. There were four replicates of each treatment.

To account for any losses of the compound by other than biological means, autoclaved controls, also in replicates of four, were maintained with the test flasks. The complete experimental matrix is shown in Figure 1. For each river system, the matrix consisted of the following:

Four flasks containing river water with no additional solids(T1-T4).

Four flasks containing river water and 500 mg/l additional solids (T5001-T5004).

Four flasks containing sterile river water and 500 mg/l non-sterile solids (NSS1-NSS4).

Four flasks containing non-sterile river water and 500 mg/l sterile solids (SS1-SS4).

Fig. 1--Experimental matrix of the biotransformation studies.

Four flasks containing sterile river water only (C1-C4).

Four flasks containing sterile river water and 500 mg/l sterile solids (C5001-C5004).

On day zero and then periodically throughout each experiment, samples were removed from each of the flasks for 2,4-D analysis. Samples were also removed from each flask on day zero and periodically throughout the experiments for estimates of bacteria in the systems.

The effects of the suspended solids concentration on the rate of biotransformation of 2,4-D were determined by comparing the biotransformation rates of the herbicide in the presence of 0 mg/l (T) and 500 mg/l (T500) additional solids for each of the three sources of sediments and water. A concentration of 500 mg of solids per liter of river water was chosen because the suspended solids in natural waters typically range from 10 mg/l to 10,000 mg/l (Wetzel, 1975). The suspended solids concentration was chosen closer to the lower end of the typical suspended solids concentration range to represent more closely the majority of river systems. Also, if significant differences are shown with 500 mg/l of additional suspended solids, then that would indicate that small changes in the suspended solids loading of a river will alter the

biotransformation rates of hazardous chemical significantly.

The effect of the sediment microbes on biotransformation rates of 2,4-D was analyzed by comparing rates of biotransformation in shake-flasks containing non-sterile water and non-sterile solids (T500) with rates found in flasks containing non-sterile water and sterile solids (SS). A comparison of biotransformation rates in the flasks that contain non-sterile water and sterile solids (SS) with rates of flasks containing sterile water and non-sterile solids (NSS) may indicate the fraction of transformation of the compound that the water or sediment microbes contribute to the total biotransformation of the herbicide.

Nesbitt and Watson (1980a,b) reported a correlation between the nutrients of suspended solids and the rate of degradation of 2,4-D in river water. They also showed a correlation between organic matter in the system and biotransformation of the compound. Keeping this in mind, correlations between organic matter, nutrients, and the rate of biotransformation of 2,4-D were analyzed using the Statistical Analysis System (SAS) release 82.4.

To investigate the possibility of higher biotransformation rates in situations of acclimation redosing experiments were performed using Red and Trinity river waters and solids. Redosing was not performed on the

Mississippi River samples because the rate of biotransformation in the Mississippi was initially fast, very little lag was seen and according to STORET (1984), the Mississippi, at the sampling site, has a background level of the herbicide present. Due to lack of sensitivity, of the analytical method used to quantify the herbicide, these background concentrations were not seen. The redosing procedure consisted of decanting the liquid from a test flask into four sterile 50-ml centrifuge tubes. The liquid was then centrifuged for 15 minutes in a International model HN (International Equipment Company) centrifuge on high (1600 RPM). The pellet was then resuspended in 200 ml of sterile river water that had been dosed with approximately 2 mg/l of 2,4-D. The resuspension was accomplished by adding approximatly 20 ml of the water to each of the centrifuge tubes and vortexing each tube for 1 minute on a Thermolyne Maxi-Mix. The liquid was then decanted back into the original Erlenmeyer flask and 20 ml of fresh, dosed sterile water was again added to each centrifuge tube and vortexed. After this liquid was added to the original flask, additional sterile dosed water was added to make a total volume of 200 ml.

The number of bacteria in the flasks of the before mentioned experiments were estimated by standard pour plates using 0.1% plate count agar (Difco) and 1% agar (Difco). The pour plates were incubated for 120 hours at

20°C and then counted using a Quebec Colony counter. Plate counts were performed on all flasks including the autoclaved controls. The presence of microbes in the controls indicated contamination and voided any data collected from that control since the last plate count where no contamination was observed.

Analytical Protocol for 2,4-D

Analytical procedures for 2,4-D were modified from methods described by Nesbitt and Watson (1980a,b) and Hammarstrand (1979). On the day of analysis, 3 ml of water were removed from each flask. To this aliquot, 4 ml of reagent-grade methanol and 1 ml of concentrated hydrochloric acid were added. The mixtures were then incubated at $60^{\circ}C$ (+2°C) in a water bath for 18 hours. This procedure resulted in the formation of the methyl ester of the 2,4-D acid (Hammarstrand, 1979). The methyl ester was then extracted from the aliquot into 3 ml of pesticide-grade n-hexane, by vortexing the sample vial containing the derived 2,4-D for 5 minutes on a Thermolyne Maxi-Mix. The concentration of the methyl ester in the hexane was then analyzed via gas liquid chromatography (GLC) using a 50-cm, 2-mm i.d. column containing GP 5% DEGS-PS on 100/120 Supelcorport. The carrier gas was a mixture of argon with 10% methane. The gas chromatograph used was a Tracor 560 equipped with an electron capture detector (ECD). Α

Hewlett-Packard integrater was used to quantify the methyl ester of the 2,4-D. External standards were used during analysis to insure accuracy of results.

The reagents used in this analysis were obtained from several sources. 2,4-D acid (99.68%) was obtained from the Quality Assurance section of USEPA, Research Triangle Park, North Carolina. From Union Carbide, 99% or purer 2,4-D methyl ester was obtained. Reagent-grade methanol, pesticide-grade n-hexane and reagent-grade concentrated hydrochloric acid were purchased from the Fisher Scientific Company.

The following quality control procedures were followed during analyses of the herbicide concentration: (a) extraction efficiencies were determined at the same concentration level as the samples; (b) at five or six sample intervals, standards of known concentration were injected; and (c) procedure blanks were injected for each analysis.

Preliminary Algal Bioassay Test

To test the effect of suspended solids on toxicity and bioavailability of 2,4-D to <u>Selenastrum capricornutum</u>, a modified algal assay bottle test was performed. The test used was a modification of the test as described by Miller et al. (1978). This experiment consisted of inoculating sterile 1-liter Erlenmeyer flasks containing 200 ml of sterile Trinity River and varying concentrations of 2,4-D

with Selenastrum capricornutum yielding an initial algal concentration of approximatly 1000 cells per ml of river The concentrations of 2,4-D used were 0 mg/l, 4 water. mg/l, 7 mg/l, 12 mg/l, and 20 mg/l. Six flasks contained each of the above concentrations. Sterile Trinity River solids were added to three of each of the before mentioned six flasks. Enough sediment was added to yield a final concentration of 500 mg/1. These are the same sediments and the same concentration as used in the biotransformation The complete experimental design can be seen in test. Figure 2. The flasks were incubated at room temperature and illuminated at 300 foot-candles. The flasks were shaken at least once a day for 8 days. On the eighth day the number of algal cells per milliliter were determined by microscopic examination using a hemacytometer. Concentrations of algal cells in the flasks with sediment were compared with concentrations of cells in the flask containing sediments using an analysis of covariance procedure (SAS 82.4).

Analysis of Data

The reaction order (zero, first or second) was determined by plotting the percent of the 2,4-D remaining, the natural log of the percent remaining, and the reciprocal of the percent remaining versus time. If the reaction order is zero-order, then the plot of the percent of 2,4-D

Fig. 2--Experimental matrix of the preliminary algal bioassay.

remaining versus time will result in a linear plot. If the reaction order is first-order, then the plot of the natural log of the percent remaining versus time will be linear, and if the reaction rate is second-order, then the plot of the reciprocal of the percent remaining versus time will be linear (Williams et al., 1978). The regression coefficients for each of these plots was determined using the regression procedure of SAS (82.4).

If the reaction order is determined to be zero-order then the rate coefficient (k_0) is equal to the slope of the line of best fit of the percent of the compound remaining versus time multiplied by negative one. If the reaction order is determined to be first-order, then the rate coefficient (k_1) is equal to the slope of the line of best fit of the log of the percent of compound remaining versus time multiplied by negative one. If the rate is determined to be second-order, then the rate coefficient (k_2) is determined by the equation $k_2 = \frac{k_1}{[B]}$ where k_1 is the first-order rate coefficient and [B] is the biomass of microbes as estimated by plate counts (CFU/ml) (Paris et al., 1981).

If the rate of loss of the compound in the sterile controls is significantly different than zero, it is necessary to subtract the rate of loss in the sterile control flasks (C or C500) from the test flasks (T or T500) to account for losses of the chemical as a result of photolysis, volatilization, sorption, and/or other physical

and chemical processes that may be occurring. A comparison of slopes was used to determine if any of the various experimental systems significantly differ from each other in their apparent biotransformation rate coefficients (Zar, 1974). These comparisons were accomplished using the analysis of covariance procedure of SAS (82.4).

CHAPTER III

RESULTS AND DISCUSSION

The results found during this research are presented under seven major topic areas:

- Results of the analytical method used to quantify the herbicide 2,4-dichlorophenoxyacetic acid;
- Characterization of the waters and sediments used in this research;
- 3. Results of the biotransformation tests for the Red River, the Trinity River, and the Mississippi River waters and waters plus solids;
- 4. Results of the biotransformation tests designed to determine the effect of acclimation on the rate of biotransformation of the herbicide in the three river systems;
- 5. Comparison of experimentally determined biotransformation rates with biotransformation rates found in the literature;
- Development of predictive models to predict the biotransformation rate of 2,4-D in aquatic systems;
- 7. Results of the preliminary algal bioassay test used to determine both the toxicity of the 2,4-D

to <u>Selenastrum</u> capricornutum and to determine if the addition of solids reduces the toxicity of the herbicide to the alga.

Analytical Method to Determine the Concentration of 2,4-D

The method used to determine the concentration of the 2,4-D for this research is not the most sensitive available. This method is, however, more than adequate for the concentrations used in this study. Percent recovery experiments yielded an overall recovery efficiency of 76% for the three river systems. The actual percent recoveries for the various waters can be seen in Table V. As can be easily recognized from this table, the method yielded consistent percent recoveries for the three river waters.

This method yielded minimum detectable levels for 2,4-D of 0.1 mg/1. Below this concentration, the resulting 2,4-D peak could not be reliably resolved from the base line of the GLC. Since the initial dose of the herbicide into the test systems was approximatly 2 mg/1, this minimum detectable limit was more than acceptable since this sensitivity allowed for the biotransformation of the compound to be followed for over two half-lives.

This method, even though it requires 18-20 hours between sampling and analysis for derivativation to be

TABLE V

PERCENT RECOVERIES OF 2,4-D FROM THE MISSISSIPPI RED, AND TRINITY RIVER WATERS

River	Perc	ent Rec	overed	Mean	Standard Deviation
Mississippi	71	78	77	75.3	3.8
Red	80	75	73	76	3.7
Trinity	84	72	77	77.7	6.0

accomplished, takes less than 10 minutes of personnel time for complete analysis. This time estimate includes sampling, derivatizing, extraction, and quantification. The low labor intensiveness of this method allows for a great number of samples to be analyzed by a single technician.

Water and Sediment Chemistry

The water chemistry for the Red River, the Trinity River, and the Mississippi River can be found in Table VI. As can be seen from this water chemistry data, the three rivers are by no means identical. The pH of the three waters is similar with that of the Red being slightly more basic than the pH of the other two waters. The alkalinity of the Red and the Mississippi river waters is almost identical and the alkalinity of the Trinity River water is somewhat lower. The hardness of the Red River water is very low, yet the hardness in the other two river waters is moderate to hard. In examining the data collected concerning phosphates, nitrates, and ammonia for the three waters, a ranking of nutrient concentrations in the waters is suggested. This ranking would place the Red River with lowest nutrient concentration and the Trinity with the highest nutrients. The nutrient concentration of the Mississippi falls between the other two waters and could be considered as moderate. Suspended solids content in the

TABLE VI

RESULTS OF WATER CHEMISTRY ANALYSIS FOR MISSISSIPPI, RED, AND TRINITY RIVER WATERS

Parameter	Mississippi River	Red River	Trinity River
μ	7.3	7_8 + 0	
Alkalinity (mg CaCO ₃ /1)	102.1 + 16.5*	126.7 + 5.8	20.0 ± 2.1 76 7 ± 2 0
Hardness (mg $CaCO_3/1$)	150 + 20.9*	8.5 + 0	
Orthophosphates (mg PO $\frac{1}{4}$ P/1)	0.23 + 0.07*	$6.9 \times 10^{-4} + 9 \times 10^{-5}$	7 - 1 NA**
Total phosphates	0.7 + 0.3*	$2.7 \times 10^{-3} + 4 \times 10^{-4}$	NA
Ammonia (mg NH ₃ N/1)	0.075 + 0.07*	BDL***	C (+) C
Nitrate (mg NH ₃ N/1)	0.025 + 0.02*	0.03 + 0.04	
Total Suspended Solids (mg/1)	170.8 + 131.1	33.3 + 16	50 + 03
Chlorides (mg/1)	16.9 + 4.1	312 + 56	
Total Carbon (mg/1)	29.6	20	(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
Inorganic Carbon (mg/1)	21.0	31 + 0.49	
Organic Carbon (mg/1)	8.6 + 4.2		0.0 + + .0.0 7 - 7 - 7 - 7
Calcium (mg/1)	33.0 + 0.1		
Sodium (mg/l)	11.2 + 1.3	126 + 1 8	
Iron (mg/l)	0.49 ± 0.02	0.03 + 0.02	1.2 ± 0.02

Values from STORET (1971).

**NA = Not available.

*******BDL = Below Detectable Limit for Ammonia BDL = .03 mg NH₃ N/1.

Red and the Trinity river waters is shown to be similar, with the background suspended solids in the Mississippi River to be three to five times greater. Carbon analysis of the three waters shows similarities in the concentration of total carbon and a higher concentration of organic carbon for the Mississippi River water. These water quality data may suggest a possibility of higher rates of biotransformation in the Trinity River waters than in the other two systems because of increased nutrients of the Trinity. This possibility is in agreement with the correlations shown by Nesbitt and Watson (1980a,b).

In viewing the sediment characteristics (Table VII) of the three systems, the particle size data, nutrient data, and the percent volatile matter should be noted. The particle size data show that the Red River has the most sand, over 86%, followed by the Mississippi, with over 62%, and then the Trinity with only 42% sand. Sand is inert and should not affect the bicavailability of the compound. The clay and silt fractions of the sediments may affect the bioavailability of a compound as a result of sorption. The Trinity River sediments contain almost 40% clay and over 20% silt. The Mississippi sediments contain less then 18% clay and 20% silt. The silt and clay content of the Red River sediments are 0 and 14%, respectively. This particle

TABLE VII

Parameter	Mississippi River	Red River	Trinity River
pH	7.0	7.3	6.7
% Sand	62.4	86.4	41.8
% Silt	19.8	0	21.2
% Clay	17.8	13.6	37.0
CFU/gr	5.2x10 ⁶	1.9x10 ⁷	1.6x10 ⁷
Cation Exchange (meq/100 gr)	NA	41	427.2
Nitrog <u>e</u> n (mg NH ₃ N/gr wet wt)	0.0632	0.0529	0.198
Total Phosphate (PO $_{4}$ P/gr wet wt)	3.7	0.88	6.01
Volatile Matter (mg/kg)	60533 <u>+</u> 932	5456 <u>+</u> 196	5429 <u>+</u> 191

SEDIMENT CHARACTERISTICS OF THE MISSISSIPPI, RED, AND TRINITY RIVERS

NA = Not available.

size data indicates that if any of the sediments are going to affect the bioavailability of the 2,4-D, it should be the sediments of the Trinity River.

In considering the nutrient content of the sediments, as indicated by nitrate and total phosphate concentrations, the Trinity River has greater than an order of magnitude higher concentration than the Red River sediments. The sediments of the Mississippi River fall between the sediments of the Red and the Trinity in nutrient concentration. This ranking of the nutrient concentrations of the sediments is of the same order as the ranking of the nutrient concentration of the waters. This similarity in the rankings of the nutrients in the water and sediment compartments of the three river systems is expected since the nutrient content of the sediments is in most cases dictated by the nutrients in the overlying water. Sediments act as a sink for nutrients.

The volatile matter data of the three sediments indicate that the Trinity and the Red river sediments have almost the same volatile matter (5,400 mg/kg), and the Mississippi River has over an order of magnitude greater volatile matter (60,000 mg/kg). The volatile matter can be used as an indicator of the carbon content of the sediments. These data would suggest that the Mississippi River

sediments contain more carbon than the other two sediments. This increased carbon content may increase the amount of 2,4-D that is sorbed to the sediments, therefore affecting the biotransformation rate of the compound.

Biotransformation Tests

Results of selected biotransformation tests are discussed below. The following results will indicate the effects that the source of water (Red River, Trinity River, or Mississippi River) has on the biotransformation firstorder rate coefficient. Also included in this section are effects that the presence or absence of additional solids has on biotransformation of 2,4-D. The zero-order and the second-order rate coefficient are also included in this section and are discused below. The regression coefficients for the various rate coefficients and the calculated first-order half-lives are also presented. For the twenty-six non-sterile studies conducted, the first-order rate coefficients showed a better regression coefficient than the second-order rate coefficient fourteen times. A rate coefficient is termed "better" if its regression coefficient is 0.01 units greater than the regression coefficient of the the other rate coefficients. The second-order rate coefficients are better than the firstorder coefficients only one time. Surprising is the fact

that in twelve cases the zero-order rate coefficients have a better regression coefficient than the first-order coefficients. The first-order coefficients are better than the zero-order coefficients seven times. To aid in deciding whether zero, first, or second order kinetics should be used to describe the disappearance of the herbicide a comparisons of the coefficients of variation of the experimental rate coefficients was performed. The rate coefficients (zero, first, and second) for each of the non-sterile experiment were used to determine a coefficient of variation for the biotransformation rate of 2,4-D for each of the three kinetic orders. These 24 experiments included all three river systems, experiments with and without additional solids, and experiments using both acclimated an non-acclimated organisms. The order which yields the lowest coefficient of variation should best describe the disappearance of the compound since its rate coefficients had the least variation over all of the experiments conducted. This analysis resulted in similar results between zero and first order kinetics with secondorder kinetics a distant third. The coefficients of variation for the various reaction orders are 80.1, 82, and 97 for zero-order, first-order and second-order respectively. From these comparison of regression

coefficients, it can be seen that the biotransformation of 2,4-D in the conditions described is either zero or first order. In all of the biotransformation studies, the first-order rate coefficient adequately described the disappearance of the compound. In none of the non-sterile test was the zero-order regression coefficient 0.1 units greater then the first-order regression coefficients. Therefore, the discussions that follow will deal mainly with the first-order rate coefficients.

The results from the biotransformation test incorporating sterile river waters and additional non-sterile solids (NSS), and the biotransformation test containing non-sterile river waters and additional sterile solids (SS) are also presented and discussed below. These latter two experimental matrix are designed to indicate the contribution that sediment or water column associated microbes have on the biotransformation of the compound.

Biotransformation of 2,4-D in the Red River System

The results of the biotransformation studies on the disappearance of 2,4-D in the Red River can be found in Table VIII. These results are a culmination of four independent biotransformation experiments. Selected graphical depictions of the disappearance of the compound TABLE VIII

RESULTS OF THE BIOTRANSFORMATION STUDIES OF 2,4-D IN THE RED RIVER

			and a second and a s		R R	ate Coeffi	cients			
Exper- iment	Water	Solids	Biomass (cfu/ml)	Zero- Order*	й	First- Order**	ц	Second- Order***	r	First-Order Half-Life (days)
Г	Sterile	None Added	0	0.35	0.407	0.004	0.422	0	0.437	173.3
IJ	Sterile	Sterile	0	0.095	0.173	0.001	0.173	0	0.173	693
r-4	Non-Sterile	None Added	19500	0.22	0.492	0.002	0.506	1×10^{-7}	0.519	301.3
-1	Non-Sterile	Non-Sterile	44750	3.38	0.734	0.11	0.738	2x10 ⁻⁶	0.739	6.3
2	Non-Sterile	None Added	46250	1.59	0.76	0.06	0.745	1×10 ⁻⁶	0.729	11.94
73	Non-Sterile	Non-Sterile	78000	2.01	0.899	0.07	0.847	9x10 ⁻⁶	0.802	9.62
ო	Sterile	None Added	0	0.19	0.416	0.002	0.415	0	0.414	364.7
ŝ	Sterile	Sterile	0	0.07	0.092	0.0007	0.07	0	0.036	949.3
m	Non-Sterile	None Added	26750	1.70	0.601	0.05	0.567	2x10 ⁻⁶	0.522	14.15
ε	Non-Sterile	Non-Sterile	42250	3.12	0.795	0.09	0.719	2x10 ⁻⁶	0.617	7.87
4	Sterile	None Added	0	0.008	0.315	0.002	0.316	0	0.293	364.7
4	Sterile	Sterile	0	-0.20	0.414	-0.002	0.409	0	0.404	-330
4	Non-Sterile	None Added	42750	4.464	0.789	0.15	0.788	3x10 ⁻⁶	0.792	4.78
4	Non-Sterile	Non-Sterile	57750	3,005	0.731	0.10	0.734	2x10 ⁻⁶	0.727	7.02
*Unit ex	xpressed as % d	lay-1.								

**Unit expressed as day⁻¹.
***Unit expressed as %(cfu/ml)⁻¹day⁻¹.

can be found in Figures 3-8. These figures indicate the disappearance of the compound in tests flask (T or T500) as compared to the disappearance of the herbicide in the pertinent sterile control flasks (C or C500). The points depict the mean percent remaining in four replicate flask versus time. Also included in these figures are points depicting a range of one standard deviation on both sides of the reported means. It should be noted that five out of the six slopes of the line of best fit for the disappearance of the compound in the sterile controls (C or C500) are not significantly different from zero (P=0.05). All of the lines of best fit for the disappearance of the herbicide in the non-sterile flasks (T or T500) have slopes that are significantly different (P=0.05) or highly significantly different (P=0.01) from zero (Table IX).

With the exception of one set of replicates (RRAT), the derived first-order rate coefficients for the biotransformation of 2,4-D in the Red River water ranged from 0.05 day⁻¹ to 0.14 day⁻¹. These coefficients relate to half-lives from just over 14 days to just under 5 days. The firstorder rate coefficient for test flasks RRAT is 0.002 day⁻¹, which would yield a half-life of over 300 days. The abnormality of this test (RRAT) might be explained by the low numbers of microbes present in these systems. The

Fig. 3--Loss of 2,4-D through time in the systems containing non-sterile Red River water only in the first Red River experiment.

Fig. 4--Loss of 2,4-D through time in the systems containing non-sterile Red River water only in the third Red River experiment.

48

.

.

\$=2,4-D Concentration in Sterile Controls. \$=2,4-D Concentration in Non-Sterile Tests.

Points depict Mean + One Standard Deviation.

Fig. 5--Loss of 2,4-D through time in the systems containing non-sterile Red River water only in the fourth Red River experiment.

•

Fig. 6--Loss of 2,4-D through time in the systems containing non-sterile Red River water and non-sterile solids in the first Red River experiment.

Points depict Mean + One Standard Deviation.

Fig. 7--Loss of 2,4-D through time in the systems containing non-sterile Red River water and non-sterile solids in the third Red River River experiment.

Fig. 8--Loss of 2,4-D through time in the systems containing non-sterile Red River water and non-sterile solids in the fourth Red River experiment.

.

.

.

N.

Points depict Mean + One Standard Deviation.

57

ļ

TABLE IX

SIGNIFICANCE OF THE LINES OF BEST FIT FOR BIOTRANSFORMATION STUDIES OF THE RED RIVER

Exper- iment	Water	Sediment	Slope Significantly Different From Zero	Р
1	Sterile	None Added	No	0.0513
1	Sterile	Sterile	No	0.5031
1	Non-Sterile	None Added	Highly	0.0068
1	Non-Sterile	Non-Sterile	Highly	0.0001
2	Non-Sterile	None Added	Highly	0.001
2	Non-Sterile	Non-Sterile	Highly	0.001
3	Sterile	None	Yes	0.016
3	Sterile	Sterile	No	0.3607
3	Non-Sterile	None Added	Highly	0.0001
3	Non-Sterile	Non-Sterile	Highly	0.0001
4	Sterile	None Added	No	0.9836
4	Sterile	Sterile	No	0.1029
4	Non-Sterile	None	Highly	0.0001
4	Non-Sterile	Non-Sterile	Highly	0.0001

microbes in these four replicate flask averaged 20,000 CFU/ml, which is the lowest estimate of microbes in any of the non-acclimated test systems. However, no correlation between the microbial population and the rate of biotransformation of the herbicide was observed. A R-square of 0.12 was found when the microbial plate counts were correlated with the first-order biotransformation half-lives of the compound in the Red River test flask that contained non-sterile sediments and/or non-sterile water (T or T500).

Analysis of covariance showed that in all cases but one (RRAT), the biotransformation rate of 2,4-D in the flasks that contained non-sterile solids and/or non-sterile Red River water (T or T500) are either significantly different (P=0.05) or highly significantly different (P=0.01) from the rate of disappearance of the compound in the sterile control flasks (C or C500) (Table X). Statistical analysis also showed that there are no significant differences in the disappearance of the compound in the flasks containing sterile Red River water only (C) and the disappearance in the flask containing both sterile Red River water and sterile Red River solids (C500). These findings indicate that the disappearance of the herbicide in the non-sterile flasks (T and T500) is due to biological rather physical or chemical means such as volatilization, photolysis, and

×	
LE	
ΓAB	

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF STERILE CONTROL SYSTEMS AND NON-STERILE TEST SYSTEMS

	First	Conditions	Second Co	onditions		
Exper- iment	Water	Solids	Water	Solids	Direction of Significance*	с,
	Sterile	None Added	Non-Sterile	None Added	1	0.9246
Г	Sterile	Sterile	Non-Sterile	Non-Sterile	٧	0.0001
e	Sterile	None Added	Non-Sterile	None Added	v	0.0005
e	Sterile	Sterile	Non-Sterile	Non-Sterile	v	0.0001
4	Sterile	None Added	Non-Sterile	None Added	v	0.003
4	Sterile	Sterile	Non-Sterile	Non-Sterile	v	0.0297
*A < si the se	gn indicates cond condition	that the biotran on.	sformation in t	the first condi	tion is slower t	han in
A > si the se	gn indicates cond condition	that the biotran on.	sformation in t	che first condi	tion is faster t	han in

60

difference in the two biotransformation rates.

A = sign indicates that there is no

hydrolysis.

The addition of solids (T500) to the Red River water caused varied effects on the first-order biotransformation rate of 2,4-D. In three out of four Red River, experiments the addition of solids increased the biotransformation rate of the herbicide (Table XI). Two of these three increased rates are significantly (P=0.05) different from the biotransformation rate in the experiments containing Red River water only (T). Out of these two significantly greater biotransformation rates, one is an abnormality. This abnormality results from comparing the biotransformation rate in the flasks containing water and solids (RRAT500) with the flasks containing water only (RRAT). 2,4-D in the flasks labeled RRAT was found to have a half-life of over 300 days. Therefore, there is only one set of flasks those containing water and solids (T500) that has a truly significantly greater biotransformation rate than flasks that contain only Red River water (T). In one experiment, the biotransformation rate in the flasks containing Red River water only (T) is significantly greater (P=0.05) than the biotransformation rate in the flasks containing water and solids (T500) from the Red River (Table XI). From these four experiments, it does not appear that the addition of solids consistently affects the

			TABLE XI			
ν. Υ	TATISTICAL COMPAI CON5	RISONS OF BIOTR FAINING NON-STE	ANSFORMATION R ² RILE WATER WITH	ATES OF 2,4-D I I AND WITHOUT S	N RED RIVER SYSTE OLIDS	SW
	First Cor	nditions	Second Co	onditions		
Txper- iment	Water	Solids	Water	Solids	Direction of Significance*	പ
1	Non-Sterile	None Added	Non-Sterile	Non-Sterile	v	0.0001
7	Non-Sterile	None Added	Non-Sterile	Non-Sterile	Ħ	0.2777
n	Non-Sterile	None Added	Non-Sterile	Non-Sterile	v	0.0034
4	Non-Sterile	None Added	Non-Sterile	Non-Sterile	٨	0.0456
*A <	sign indicates tl	hat the biotran	sformation in t	the first condi	tion is slower th	an in
the A < the the state of the st	second condition sign indicates tl second condition	hat the biotran	sformation in t	the first condi	tion is faster th	an in
A 	sign indicates tl	hat there is no	difference in	the two biotra	insformation rates	•

biotransformation of 2,4-D in the Red River experiments. If the data found using the test RRAT are omitted from consideration because of the low biotransformation rate, then the mean plus and minus one standard deviation first-order half-life for the flasks containing Red River water only (T) is 10.29 days ± 4.9 days. The mean plus and minus one standard deviation for the systems containing Red River water plus 500 mg/l additional solids (T500) is 7.7 days ± 1.4 days. A non-parametric Man-Whittney U test showed that at the P=0.05 level there is no significant difference in these biotransformation rates.

The results of the biotransformation test using Red River water and sterile Red River solids (SS) yielded a mean first-order half-life of 6.3 days. In all of the Red River studies, the test systems with additional sterile solids (SS) has as high or higher biotransformation rates as the test systems containing non-sterile water only (T) or the system containing non-sterile water and non-sterile solids (T500) (Table XII). Analysis of covariance showed that the test systems with sterile solids (SS) produced significantly higher rates of biotransformation than the other test systems (Table XIII). In one of the four comparisons, the biotransformation rate of the systems containing sterile solids and non-sterile Red River water

щ	IOTRANSFORMA SOLIDE	TION RATES OF , AND IN SYS	2,4-D II STEMS CON IN THI	N SYSTEI TAINING E RED R	MS CONT STERII IVER EN	FAINING LE WATER KPERIMEN'	NON-STE AND NC TS	RILE WATF M-STERILI	ER AND E SOLID	STERILE S
					R	ate Coeffi	cients			
xper- ment	Water	Solids	Biomass (cfu/ml)	Zero- Order*	ы	First . Order**	ы	Second- Order***	ц	First-Order Half-Life (days)
П	Sterile	Non-Sterile	160000	0.38	0.655	0.004	0.663	0	0.67	173.3
m	Non-Sterile	Sterile	49000	2.61	0.699	0.08	0.712	2x10 ⁻⁶	0.703	8.28
4	Non-Sterile	Sterile	64750	4.60	0.752	0.16	0.775	2x10 ⁻⁶	0.783	4.35
*Unit **Unit	expressed as %	day-1. -1								

Unit expressed as day .

***Unit expressed as %(cfu/ml)⁻¹day⁻¹.

TABLE XII

TABLE XIII

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF 2,4-D IN RED RIVER SYSTEMS CONTAINING NON-STERILE SOLIDS AND/OR NON-STERILE WATER WITH THE SYSTEMS CONTAINING EITHER STERILE WATER OR STERILE SOLIDS

Fxne	First Cc	nditions	Second C	onditions		
imer	it Water	Solids	Water	Solids	Direction of Significance*	<u>م</u>
r			والمحافظة	و و ماند و از ماند و ماند و از ماند و از م		
	Sterile	Non-Sterile	Non-Sterile	Non-Sterile	v	
m	Non-Sterile	Sterile	NOn-Sterilo			T000.0
ć			DTTTDD HAN	NULLE ADDED	۸	0.0024
'n	Non-Sterile	Sterile	Non-Sterile	Non-Sterile	H	0 7500
4	Non-Sterile	0+021 J	:		-	2007-0
		D T T T C	Non-Sterile	None Added		0.0267
4	Non-Sterile	Sterile	Non-Sterile	Non-Sterile	۸	0.0456
*A < the	sign indicates tl second condition.	nat the biotran.	sformation in t	he first condit	tion is slower tha	in in
A > the	sign indicates the second condition.	lat the biotran	sformation in t	he first condit	tion is faster tha	in in

A = sign indicates that there is no difference in the two biotransformation rates.
(SS) is highly significantly different (P=0.01), then the rate of biotransformation in the flask containing Red River water only (T). In one experiment, the rate of biotransformation in the systems containing non-sterile Red River water and sterile solids (SS) is significantly (P=0.05) different from the systems containing non-sterile Red River water only (T). The biotransformation rate of 2,4-D in the systems containing non-sterile Red River water and sterile solids (SS) is in one experiment significantly different (P=0.05) and in another experiment not significantly different from the rate of biotransformation in systems containing non-sterile Red River water and non-sterile Red River solids (T500) (Table XIII).

As can be seen from Table XII the biotransformation rate of 2,4-D in the system containing sterile Red River water and non-sterile solids (NSS) is quite low. The first-order half-life for this experiment is over 170 days. The biotransformation of 2,4-D in these systems (NSS) is highly significantly different (P=0.01) from the biotransformation of the herbicide in the systems containing non-sterile Red River water and solids (T500 or SS). The biotransformation rate in these systems with only microbes from the solids most closly resembles the disappearance of the compound in the sterile controls (C and C500). Whereas the biotransformation rates of most of the experimental systems that contain non-sterile water with or without solids (even sterile solids) are one to three orders of magnitude greater than the rate of the sterile controls, the biotransformation rate of the test system with sterile water and non-sterile solids (NSS) only vary from the sterile controls by a factor of 1 to 3. The data just presented indicate that the water column-associated microbes are principally responsible for biotransformation of 2,4-D in the Red River experiments.

It is very interesting to note the high count of microbes in the systems that initially contained sterile water and non-sterile solids (NSS). The estimated microbial number in these systems is an order of magnitude higher then the counts estimated in most of the other test systems. Even with these unusually high microbial counts, a very low rate of biotransformation is seen. Since these flasks start with only the microbes associated with the solids, the initial counts are lower then the systems containing non-sterile water. Steady-state microbial estimates were seen in the flask that contained non-sterile solids and sterile water (NSS) on the same day as steadystate in the systems with non-sterile water. This would indicate that more microbial growth and activity is taking

place in the systems containing non-sterile solids and sterile water.

The types of microbes present in the various systems were not identified during this study, but there did not appear to be differences in the types of colonies growing on the plate count agar in any of the systems. Additional research with a focus on the identification of the microbes actively transforming the compound is needed. This additional research may help explain the role of water column and sediment associated microbes in the transformation of 2,4-D. The quantification of active transformers may also help to explain the variation in the observed biotransformation rates of the herbicide.

Biotransformation of 2,4-D in the Trinity River System

The results of the biotransformation studies of the disappearance of 2,4-D in the Trinity River systems can be found in Table XIV. Graphical depictions of the disappearance of the herbicide in the various Trinity River experiments can be found in Figures 9-12. These figures plot the mean percent remaining of the compound versus time. To indicate the precision of this data, one standard deviation on either side of each mean is shown. Also included on these figures is the percent remaining of 2,4-D

TABLE XIV

RESULTS OF BIOTRANSFORMATION STUDIES OF 2,4-D IN THE TRINITY RIVER

					R	ate Coeffi	cients			
Exper- iment	Water	Solids	Biomass (cfu/ml)	Zero- Order*	К	First- Oder**	ы	Second- Order***	ч	First-Order Half-Life (days)
m	Sterile	None Added	0	0.14	0.26	0.0014	0.273	c	100 0	- U - U - U - U - U - U - U - U - U - U
T	Sterile	Sterile	0	0.10	0.185	0.0011	0_033	, c	T 77.0	4 A O
r-4	Non-Sterile	None Added	245000	14.06	0.905	0.49		9-01-0	177-0	613.3
-1	Non-Sterile	Non-Sterile	GROOD	87 8 L			n	01.32	0.937	1.42
ç				14.04	U.93I	0.48	0.938	5x10 ⁻⁰	0.939	1.44
N	Non-Sterile	None Added	100500	13.31	0.872	0.45	0.802	4x10 ⁻⁶	0.763	រប រ
2	Non-Sterile	Non-Sterile	91250	13.99	0.914	0.47	0.815	5×10 ⁻⁶	0.74	φ
*Unit ex	tpressed as % de	ay-1.								
**Unit ex	tpressed as day	i.								
***Unit ex	pressed as %(cf	[u/m1) ⁻¹ day ⁻¹ .								

Fig. 9--Loss of 2,4-D through time in the systems containing non-sterile Trinity River water only in the first Trinity River experiment.

71

.

Fig. 10--Loss of 2,4-D through time in the systems containing non-sterile Trinity River water only in the second Trinity River experiment.

Points depict Mean + One Standard Deviation.

Fig. ll--Loss of 2,4-D through time in the systems containing non-sterile Trinity River water and non-sterile solids in the first Trinity River experiment.

74

Fig. 12--Loss of 2,4-D through time in the systems containing non-sterile Trinity River water and non-sterile solids in the second Trinity River experiment.

in the sterile controls (C or C500). The percent remaining in the controls is shown for visual comparisons of the amount of the compound lost by other than biological means to the amount lost by biotransformation.

The slope of the lines of best fit for the percent of the compound remaining in the sterile controls (C or C500) is not significantly different from zero. The lines of best fit of the percent of the herbicide remaining in the systems containing non-sterile solid and/or non-sterile water (T or T500) are all shown to be highly significantly different from zero (Table XV).

The first-order biotransformation rate coefficient for disappearance of 2,4-D in the Trinity River systems containing non-sterile water only (T) or non-sterile water and non-sterile solids (T500) ranged from 0.45 day⁻¹ to 0.49 day⁻¹.

These rate coefficients yield a calculated half-life of 1.55 to 1.42 days, respectively. The experimental rate coefficients for the systems with and without non-sterile solids are very similar.

Analysis of covariance indicated in all cases the biotransformation rate coefficients of the control (sterile) systems are highly significantly different (P=0.01) from the experimental flask with non-sterile solids and/or non-sterile water (T or T500) (Table XVI). Analysis of

TABLE XV

SIGNIFICANCE OF LINES OF BEST FIT FOR BIOTRANSFORMATION STUDIES OF THE TRINITY RIVER

Exper- iment	Water	Sediment	Slope Significantly Different From Zero	Р
1	Sterile	None Added	No	0.1879
1	Sterile	Sterile	No	0.2191
l	Non-Sterile	None Added	Highly	0.0001
1	Non-Sterile	Non-Sterile	Highly	0.0001
2	Non-Sterile	None Added	Highly	0.0001
2	Non-Sterile	Non-Sterile	Highly	0.0001

TABLE XVI

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF STERILE CONTROL SYSTEMS AND NON-STERILE TEST SYSTEMS IN THE TRINITY RIVER

	. of nce* P	0.0001	0.0001	1000.0	0.0001	wer than in
	Direction Significa	~	v	~	۷	dition is slov
Conditions	Solids	None Added	Non-Sterile	None Added	Non-Sterile	the first con
Second (Water	Non-Sterile	Non-Sterile	Non-Sterile	Non-Sterile	nsformation in
Conditions	Solids	None Added	Sterile	None Added	Sterile	that the biotra
First	Water	Sterile	Sterile	Sterile	Sterile	sign indicates second condition
5 5 5 5	iment	П		7	7	*A < the

A > sign indicates that the biotransformation in the first condition is faster than in the second condition.

covariance also showed that there is no difference between the biotransformation rate coefficient of the flasks that contain non-sterile Trinity River water only (T) and the flasks that contain non-sterile Trinity River water and additional non-sterile solids (T500) (Table XVII). The mean first-order biotransformation rate coefficient for the systems that contained non-sterile Trinity River water (T) is 0.48 day^{-1} , with a half-life of 1.45 days. The mean first-order biotransformation rate coefficient for the systems that contain non-sterile Trinity River water and non-sterile additional solids (T500) is 0.47 day⁻¹ with a corresponding half-life of 1.47 days. These data indicate that the addition of 500 mg/l of non-sterile Trinity River solids does not effect the biotransformation rate of 2,4-D in Trinity River waters.

The results of the Trinity River biotransformation test involving non-sterile river water with sterile solids added (SS) and sterile water with non-sterile solids added (NSS) can be found in Table XVIII. Figures 13 and 14 depict the percent of 2,4-D remaining versus time for these systems. These figures also include the lines of best fit for the percent of 2,4-D remaining in the pertinent sterile control (C500) and for the flasks with non-sterile Trinity River water and non-sterile solids (T500). As can be seen from

	STEMS		сı	0.8154	0.8635					5
	TRINITY RIVER SYS SOLIDS		Direction of Significance*		11	sformation rates.				
	TES OF 2,4-D IN TH AND WITHOUT 3	onditions	Solids	Non-Sterile	Non-Sterile	the two biotrar				
TABLE XVII	ANSFORMATION RA' TERILE WATER WI'	Second Co	Water	Non-Sterile	Non-Sterile	o difference in				
	ISONS OF BIOTR NTAINING NON-S	nditions	Solids	None Added	None Added	hat there is no				
	'ISTICAL COMPAR CO	First Co	Water	Non-Sterile	Non-Sterile	gn indicates t				•
	STAI		Exper- iment	П	2	*A = si				

£

.

	STERILE	remain and a growth of the second	First-Order Half-Life (days)	169	1.3					
	R AND SOLIDS		ч	0.37	0.952					
	RILE WATE -STERILE		Second- Order***	-1×10 ⁻⁷	6×10 ⁻⁶					
	NON-STE	cients	ч	0.414	0.963					
	AINING N WATER 7 XPERIMEN	ite Coeffi	First- Order**	-0.004	0.53					
E XVIIJ	MS CONJ STERILE RIVER E	Re	ы	0.449	0.977					
TABL	I SYSTEL		Zero- Order*	-0.38	16.0					
	2,4-D IN EMS CONTA OF THE TR		Biomass (cfu/ml)	502500	84750					
	ION RATES OF AND IN SYST		Solids	Non-Sterile	Sterile	lay -1.	:fu/ml) ⁻¹ day ⁻¹ .	·		
	OTRANSFORMAT SOLIDS,		Water	Sterile	Non-Sterile	xpressed as % d	:xpressed as %(c			
	BI		Exper- iment	-1	1	*Unit e **Unit e	***Unit e			

Fig. 13--Loss of 2,4-D through time in the Trinity River systems which initially contained non-sterile water and sterile solids.

Fig. 14--Loss of 2,4-D through time in the Trinity River systems which initially contained sterile water and non-sterile solids.

Points depict Mean + One Standard Deviation.

Table XVIII and Figure 13, the biotransformation rate of the 2,4-D in the flasks containing non-sterile Trinity River water and sterile solids (SS) is greater than the biotransformation rate in the systems that contain Trinity River water only (T). The biotransformation is also faster in the systems containing non-sterile water and sterile solids (SS) than in the systems containing non-sterile water and non-sterile solids (T500). Analysis of covariance demonstrates that there is no difference in the biotransformation rate of the system containing non-sterile water and sterile solids (SS) and the systems that contain non-sterile solids and/or non-sterile Trinity River water (T and T500) (Table XIX). Tables XVIII and XIX, and Figure 14 indicate the recalcitrant nature of 2,4-D in the system that initially contained sterile Trinity River water and non-sterile solids (NSS). Biotransformation of 2,4-D in the systems containing sterile Trinity River water and non-sterile solids (NSS) is not significantly different from the disappearance of the compound in the sterile controls (C and C500). In these systems with solids as the only source of microbes, very little, if any, biotransformation is taking place. It is interesting to note, that similar to the Red River study, these systems that initially contained sterile water and non-sterile solids

TABLE XIX

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF 2,4-D IN TRINITY RIVER SYSTEMS CONTAINING NON-STERILE SOLIDS AND/OR NON-STERILE WATER WITH SYSTEMS CONTAINING EITHER STERILE WATER OR STERILE SOLIDS

			۰			
ſ	First Co	nditions	Second Co	onditions		
Exper iment	- Water	Solids	Water	Solids	Direction of Significance*	A
7	Non-Sterile	Sterile	Non-Sterile	None Added		0.2945
7	Non-Sterile	Sterile	Non-Sterile	Non-Sterile	11	0.2111
7	Non-Sterile	Sterile	Sterile	Sterile	^	0.0001
7	Sterile	Non-Sterile	Sterile	Sterile	11	0.6887
7	Sterile	Non-Sterile	Non-Sterile	None Added		0.0001
7	Sterile	Non-Sterile	Non-Sterile	Non-Sterile	٧	0.0001
*A < 5 the s	sign indicates t	hat the biotran.	sformation in t	he first condit	cion is slower tha	an in
2 2 2	indication in					

A > sign indicates that the biotransformation in the first condition is faster than in the second condition.

sign indicates that there is no difference in the two biotransformation rates. = V

(NSS) have the highest microbial counts of any of the systems. This again indicates that the biotransformation of the compound is principally due to the microbes initially found in the water column.

Biotransformation of 2,4-D in the Mississippi River System

The results of the biotransformation studies of 2,4-D in the Mississippi River can be found in Table XX. Graphical representation of the biotransformation in these systems can be seen in Figures 15 and 16.

The systems containing sterile Mississippi water only (C) indicated some disappearance of the compound. These control systems had a first-order half-life of just under 35 days. Analysis of covariance indicated that the line of best fit for the disappearance of the compound in these systems versus time had a slope significantly different from zero (Table XXI). However the systems containing sterile Mississippi River water and sterile solids (C500) have a similar first-order half-life, just under 35 days, and the slope of the line of best fit is not significantly different from zero. The disappearance of the compound in the systems containing non-sterile water only (T) and the systems containing non-sterile water and solids (T500) is over an order of magnitude greater then the disappearance TABLE XX

RESULTS OF BIOTRANSFORMATION STUDIES OF 2,4-D IN THE MISSISSIPPI RIVER

		میں برج برجوں ہوتا اور اور اور اور اور اور اور اور اور او								
		·			Ra	te Coeffi	cients			
Exper- iment	Water	Solids	Biomass (cfu/ml)	Zero- Order*	ч	First- Order**	ч	Second- Order***	۲	First-Order Half-Life (days)
ret .	Sterile	None Added	0	1.5	0.748	0.02	0.748	0	0.747	34.65
Ч	Sterile	Sterile	0	1.86	0.586	0.02	0.595	0	0.602	34.65
Н	Non-Sterile	None Added	82500	12.5	0.77	0.35	0.757	4×10 ⁻⁶	0.727	1.98
r-1	Non-Sterile	Non-Sterile	48250	17.4	0,906	0.57	0.921	1x10 ⁻⁶	0.926	1.21
Т	Sterile	Non-Sterile	86750	19.2	0.909	0.51	0.909	6x10 ⁻⁶	606.0	1.35
~1	Non-Sterile	Sterile	35000	13.2	0.883	0.40	0.856	1x10 ⁻⁵	0.829	1.73
*Unit e	xpressed as %	dav ⁻¹ .								

**Unit expressed as day -1.

*******Unit expressed as %(cfu/m1)⁻¹day⁻¹.

Fig. 15--Loss of 2,4-D through time in the Mississippi River systems containing non-sterile water only.

.

× .

.

1

Fig. 16--Loss of 2,4-D through time in the Mississippi River systems containing non-sterile water and solids.

· · ·

. . . .

TABLE XXI

SIGNIFICANCE OF LINES OF BEST FIT FOR BIOTRANSFORMATION STUDIES OF THE MISSISSIPPI RIVER

Exper- iment	Water	Sediment	Slope Significantly Different From Zero	P
1	Sterile	None Added	Yes	0.0197
1	Sterile	Sterile	No	0.0739
1	Non-Sterile	None Added	Highly	0.0003
1	Non-Sterile	Non-Sterile	Highly	0.0001

of the compound in the sterile controls (C and 500). Analysis of covariance indicated that these non-sterile systems (T and T500) have a first-order biotransformation coefficient significantly different from zero. Statistical analysis also showed these biotransformation rate coefficients are significantly different from the rate coefficients of the disappearance of the compound in the sterile controls (C and C500) (Table XXII). Statistical analysis indicates that the systems containing non-sterile Mississippi River water and non-sterile solids (T500) have a slightly higher biotransformation rate coefficient then the systems containing non-sterile water only (T). The first-order biotransformation rate coefficient for systems containing Mississippi River water and solids is 0.57 day^{-1} with a half-life of 1.21 days. The first-order biotransformation rate coefficient for the test systems containing non-sterile Mississippi River water only (T) is 0.35 day⁻¹, which calculates to a half-life of 1.98 days. The increase in rate coefficients in systems containing non-sterile water and solids (T500) may indicate that the solids in the Mississippi River contribute to the biotransformation of 2,4-D.

Another indicator that the solids contribute to the biotransformation of the compound in the Mississippi system

				TABLE XXII			
	STATISTICAL	COMPAR. NON-	ISONS OF BIO -STERILE TESI	RANSFORMATION SYSTEMS IN TH	RATES OF STERI HE MISSISSIPPI	LE CONTROL SYSTEM RIVER	S AND
	Firs	t Condi1	tions	Second Co	onditions		
Expei iment			Solids	Water	Solids	Direction of Significance*	Ъ
	Sterile	Nc	one Added	Non-Sterile	None Added	V	0.0001
Ч	Sterile	St	terile	Non-Sterile	Non-Sterile	٧	0.0001
Ч	Non-Ster.	ile Nc	one Added	Non-Sterile	Non-Sterile	v	0.0185
*A < the	sign indicat second condi	es that tion.	the biotrans	formation in t	che first condi	tion is slower th	an in
A > the	sign indicate second condit	es that tion.	the biotrans	iformation in t	the first condi-	tion is faster th	an in
A A	sign indicat	es that	there is no	difference in	the two biotra	nsformation rates	•

. .

is the high rate coefficient (0.51 day⁻¹) found in the systems that initially contained sterile Mississippi River water and non-sterile solids (NSS). In both the Red River systems and Trinity River systems, similarly designed experiments yielded biotransformation rate coefficients approaching that of the sterile controls. In the Mississippi River experiments, the systems that containing sterile water and non-sterile solids (NSS) have biotransformation rate coefficients that are not significantly different from the other non-sterile test systems (Table Table XXIII also shows that the biotransformation XXIII). of the compound in the systems that initially contained non-sterile water and sterile solids (SS) is not significantly different from the biotransformation of the herbicide in the systems containing non-sterile water only (T), but is significantly different from the biotransformation in the systems containing non-sterile water and non-sterile solids (T500). These experiments suggest that in the Mississippi River systems the solids play an important role in the biotransformation of the herbicide 2,4-D.

The results of these biotransformation tests in the Mississippi River systems can be found in Table XX. Graphical representation of the actual disappearance of the herbicide can be found in Figures 17 and 18. These figures TABLE XXIII

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF 2,4-D IN MISSISSIPPI RIVER SYSTEMS CONTAINING NON-STERILE SOLIDS AND/OR NON-STERILE WATER WITH SYSTEMS CONTAINING EITHER STERILE WATER OR STERILE SOLIDS

	First Con	ditions	Second Cc	uditions		
Exper- iment	Water	Solids	Water	Solids	Direction of Significance*	Д
1	Sterile	Non-Sterile	Non-Sterile	Sterile	IJ	0.2455
-1	Sterile	Non-Sterile	Non-Sterile	None Added	II	0.1238
rređ	Sterile	Non-Sterile	Non-Sterile	Non-Sterile	1	0.5636
-1	Non-Sterile	Sterile	Non-Sterile	None Added	11	0.5547
-	Non-Sterile	Sterile	Non-Sterile	Non-Sterile	v	0.0458
*A < sid the sed	jn indicates the	at the biotrans	formation in t	the first condit	ion is slower the	an in
A > sic the sec	yn indicates thi sond condition.	at the biotrans	formation in t	the first condit	ion is faster the	an in
A = sic	yn indicates tha	at there is no	difference in	the two biotran	sformation rates.	

.

.

Fig. 17--Loss of 2,4-D through time in the Mississippi River systems initially containing sterile water and non-sterile solids.

Points depict Mean + One Standard Deviation.

Fig. 18--Loss of 2,4-D through time in the Mississippi River systems initially containing non-sterile water and sterile solids.

Points depict Mean + One Standard Deviation.

depict the percent of the compound remaining versus time.

Comparisons of the Biotransformation of 2,4-D in the Three River Systems

The data from the biotransformation studies previously presented demonstrate that in all three river systems biotransformation is a major fate process for 2,4-D. Biotransformation rate coefficients for the herbicide in the Mississippi and the Trinity river systems are similar. Biotransformation in the Red River systems is less than biotransformation in the other two river systems. Analysis of covariance comparisons of the disappearance of the herbicide in the systems containing non-sterile water only (T) in the three river systems can be found in Table XXIV. Table XXV includes the statistical comparisons for the systems that contained both non-sterile water and solids These tables show that in every comparison of (T500). biotransformation of 2,4-D between the Red River systems and either of the other two rivers systems, highly significant differences exist. In comparisons between the Trinity and the Mississippi river systems, no significant differences are seen. The reason for increased rates of biotransformation in the Mississippi and the Trinity river systems is not totally understood but one possibility that will be discused later is the higher nutrient levels in

TABLE XXIV

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF 2,4-D IN SYSTEMS CONTAINING NON-STERILE WATER ONLY, BETWEEN MISSISSIPPI, RED, AND TRINITY RIVERS

Comparison*	Significantly Different	Direction of Significance	P
MR vs. RR	Highly	MR > RR	
MR vs. RR	Highly	MR > RR	0.0001
MR vs. RR	Highly	MR > RR	0.0001
MR vs. RR	Highly	MR > RR	0.0043
MR vs. TR	No	MR = TR	0.3421
MR vs. TR	No	MR = TR	0.2088
TR vs. RR	Highly	TR > RR	0.0001
FR vs. RR	Highly	TR > RR	0.0001
FR vs. RR	Highly	TR > RR	0.0001
TR vs. RR	Highly	TR > RR	0.0001
R vs. RR	Highly	TR > RR	0.0001
'R vs. RR	Highly	TR > RR	0.0001
'R vs. RR	Highly	TR > RR	0.0001
'R vs. RR	Highly	TR > RR	0.0001

ppi River.

RR = Red River.

TR = Trinity River.

TABLE XXV

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF 2,4-D IN SYSTEMS CONTAINING NON-STERILE WATER AND NON-STERILE SOLIDS, BETWEEN MISSISSIPPI, RED, AND TRINITY RIVERS

Compa	arison*	Significantly Different	Direction of Significance	P
MR Vs	S. RR	Highly	MR > RR	0.0001
MR vs	RR RR	Highly	MR > RR	0.0001
MR vs	RR	Highly	MR > RR	0.0001
MR vs	. RR	Highly	MR > RR	0.0001
MR vs	. RR	Highly	MR > RR	0.0001
MR vs	. TR	No .	MR = TR	0.3448
MR VS	. TR	No	MR = TR	0.4053
TR vs	. RR	Highly	TR > RR	0.0001
TR vs	. RR	Highly	TR > RR	0.0001
TR VS	. RR	Highly	TR > RR	0.0001
TR vs.	. RR	Highly	TR > RR	0.0001
TR Vs.	RR	Highly	TR > RR	0.0001
TR Vs.	RR	Highly	TR > RR	0.0001
TR vs.	RR	Highly	TR > RR	0.0001
FR vs.	RR	Highly	TR > RR	0.0001

· ~ ~ -

RR = Red River.

TR = Trinity River.

these two rivers. Another possibility is that in both of these river systems, Trinity and Mississippi, the microbes have previously been exposed to the herbicide. The data from STORET (1984) indicate low levels of the herbicide in the Mississippi River water. Since the minimum detectable limit of the analytical method used to analyze 2,4-D is 0.1 mg/l concentrations, less than this may be present in Trinity River water, or sometime in the last month water containing the herbicide may have flowed through the sample area.

It is interesting that the solids in the Mississippi River systems seem to be important in biotransformation of the herbicide but did not apparently contribute to the biotransformation of the herbicide in the other two rivers.

Acclimation Studies

Results of the biotransformation studies in which the microbes had previously been exposed to 2,4-D can be found in Table XXVI. Disappearance of the herbicide in these experiments is graphically depicted in Figures 19-22. These figures include disappearance of the compound in flasks that have previously been exposed to the herbicide, the flasks that contain non-sterile water that has received only one dose of the herbicide, and also the sterile controls. Since the data from STORET (1984) indicated a TABLE XXVI

RESULTS OF BIOTRANSFORMATION STUDIES DEALING WITH ACCLIMATION

First-Order Half-Life 3.0I 2.27 2.78 301.3 11.94 1.01 1.55 6.3 9.62 1.48 (days) 0.61 1.98 0.61 1.21 0.729 0.739 0.519 0.729 0.794 0.644 0.802 0.942 0.763 0.942 0.926 0.727 ч 0.74 Second_d 2x10⁻⁵ 1×10⁻⁷ 2x10⁻⁶ 3x10⁻⁵ lx10⁻⁶ 6x10⁻⁶ 2x10⁻⁵ 9x10⁻⁷ 4x10⁻⁶ 9x10⁻⁶ Order 5x10⁻⁶ 9×10⁻⁶ 4x10⁻⁶ lxl0⁻⁵ Rate Coefficients 0.506 0.722 0.738 0.745 0.696 0.856 0.802 0.9550.847 0.815 0.961 0.757 0.921 ч First-Order^C 0.002 0.23 1.125 0.11 0.30 0.06 0.25 0.68 0.07 0.45 1.12 0.47 0.35 0.57 0.702 0.734 0.999 0.492 0.709 0.863 0.899 0.975 0.872 0.914 0.76 0.985 0.906 Я 0.77 ^aRR = Red River; TR = Trinity River; MR = Mississippi River. Zero-_b Order' 0.22 6.84 3.38 9.56 **1.5**9 6.62 18.13 2.0I 13.31 33.02 13.99 32.67 12.5 17.4 Biomass (cfu/ml) 19500 11500 44750 11525 46250 38250 78000 42500 91250 100500 126750 82500 132250 48250 Non-Sterile Non-Sterile None Added None Added Non-Sterile Non-Sterile Acclimated None Added None Added Acclimated None Added None Added Acclimated None Added Solids Non-Sterile Non-Sterile Non-Sterile Non-Sterije Non-Sterile Acclimated Non-Sterile Non-Sterile Non-Sterile Acclimated Acclimated Acclimated Acclimated Acclimated Water System^a $\mathbb{R}\mathbb{R}$ RR RR RR RR RR RR RR TR \mathbf{TR} \mathbf{TR} IR MR MR

109

dunit expressed as <code>%(cfu/ml)⁻¹day⁻¹</code>

b Unit expressed as % day⁻¹

c^{unit} expressed as day⁻¹

Fig. 19--Loss of 2,4-D through time in the acclimated Red River systems containing water only.

Points depict Mean + One Standard Deviation.

Fig. 20--Loss of 2,4-D through time in the acclimated Red River systems containing water and solids.

Points depict Mean + One Standard Deviation.

Fig. 21--Loss of 2,4-D through time in the acclimated Trinity River systems containing water only.

Fig. 22--Loss of 2,4-D through time in the acclimated Trinity River systems containing water and solids.

Points depict Mean + One Standard Deviation.

background level of 2,4-D in the Mississippi River water and little lag phase was seen in Mississippi River experiments, no redosing was performed on the Mississippi River experiments. The biotransformation study previously presented incorporating Mississippi water and solids will be used for comparisons with the redosed systems of the other two rivers.

As can be seen from these figures (19-22) as well as the figures previously presented the disappearance of the herbicide in the Red and Trinity river systems are characterized by an initial lag phase. The lag phase in the Red River systems ranged from 6 to 15 days. The lag phase in the Trinity River system was shorter than the lag phase of the Red. In the Trinity the longest lag phase seen was 4 days. The significance of the long lag phase seen in the Red River system can be best realized if it is remembered that in 15 days over 12 half-lives of biotransformation of 2,4-D can take place in the Mississippi River systems.

In the Red River system, use of acclimated organisms increased the biotransformation rate coefficient by factors ranging from 2 to 10. In the Trinity River systems, the use of acclimated organisms increased the biotransformation rate coefficient by a factor slightly greater than 2. These increased rates of biotransformation occured even though the initial biomass of the acclimated flask were less then the biomass of the initial test systems. On day 0 the number of microbes in the acclimated systems is anywhere from 10% to 50% of the number of microbes in the test systems. After 3 or 4 days there does not appear to be a difference in the biomass of the test and acclimated systems. Table XXVII includes statistical comparisons of biotransformation rate coefficients in the non-acclimated systems with the acclimated systems' rate coefficients. The biotransformation rate coefficients in all cases of redosing are highly significantly different from the biotransformation rate coefficients in the non-redosed system.

Table XXVIII shows comparisons of the acclimated rate coefficients between the three river systems. In three out of four experiments, acclimation in the Red River systems increased the rate of biotransformation to a degree that no significant difference could be shown between biotransformation coefficients of 2,4-D in the Mississippi River and the Red River.

This increase in the biotransformation rates after acclimation may have far reaching implications in both herbicidal treatments of aquatic vegetation and in hazard assessment. If redosing of a body of water to eliminate

TABLE XXVII

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES BEFORE AND AFTER ACCLIMATION

System*	Solids	Significantly Different	Р		
RR	None	Highly	0 0001		
RR	None	Highly	0.0001		
RR	Ves	yy	0.0001		
DD		Highly	0.0001		
M	Yes	Highly	0.0001		
TR	None	Highly			
TR	Vec	<u>-</u>	0.0001		
	- 03	Highly	0.0001		

*RR = Red River, TR = Trinity River.

TABLE XXVIII

STATISTICAL COMPARISONS OF BIOTRANSFORMATION RATES OF 2,4-D IN MISSISSIPPI, RED, AND TRINITY RIVER ACCLIMATED SYSTEMS

Comparison*	Significantly Different	Direction of Significance	Р
MR vs. RR	No	MR = RR	0.1672
MR vs. RR	No	MR = RR	0.1949
MR vs. TR	Highly	MR < TR	0.0001
TR vs. RR	Highly	TR > RR	0.0001
TR vs. RR	Highly	TR > RR	0,0001
MRS vs. RRS	Highly	MRS > RRS	0.0001
MRS vs. RRS	No	MRS = RRS	0 1040
MRS vs. TRS	Highly	MRS < TRS	0.0041
TRS vs. RRS	Yes	TRS > RRS	0.0041
TRS vs. RRS	Highly	TRS > RRS	0.0001

MRS = Mississippi River water and solids. RRS = Red River water and solids.

TRS = Trinity River water and solids.

nuisance vegetation is performed, then this dose may need to be increased to yield the same degree of "kill" as the initial dose. In deciding upon the dose the effects on non-target species must be taken into account. This consideration of non-target species needs to be considered for both initial doses and for any redosing that occurs. In deciding on the concentration of the herbicide to use the laws and regulations (FIFRA) also need to be considered. In the case of time-released formulation of herbicides, this increased biotransformation should be accounted for to assure the desired results. In hazard assessment, the potential hazard of a spill of a compound may be decreased if the microbes have previously been exposed to the com-This may be particularly important for industries pound. whose effluents contain 2,4-D or similar compounds. The affects of the effluents, to the environment, may be reduced, due to increased rates of biotransformation, if the wastes contains continuous levels of the compound rather than intermittent releases of the toxicant.

Comparison of Experimentally Found Rates with Literature Values

The literature values for the biotransformation and/or degradation of 2,4-D vary greatly. The persistance of 2,4-D in nature or laboratory studies were reported to

range from a few days to months. The half-lives for 2,4-D in the Red River studies were similar to the half-lives reported by Nesbitt and Watson (1980a) and C.A.S.T. (1975). The half-lives of the herbicide in the Red River experiments ranged from 5 days to 14 days. The half-lives reported by Nesbitt and Watson (1980a) for 2,4-D in river waters ranged from 10 days to 50 days. C.A.S.T (1975) reported the half-life of 2,4-D in soils to range from 1 to 2 weeks. The biotransformation rates observed in the Trinity and Mississippi rivers are greater than those reported by Nesbitt and Watson (1980a) or C.A.S.T. (1975). The half-life of 2,4-D in the Trinity and Mississippi river experiments ranged from one to two days. Biotransformation rates this great have also been reported by Klingman (1964). Klingman reported the persistance of 2,4-D in soils to be 7 days. Results of the acclimation experiments conducted for this thesis agree with the results of Spain and Van Veld (1983). Spain and Van Veld reported less than 5% of the initial herbicide remaining after 40 hours in pre-exposed systems. After 40 hours in acclimated Trinity River water almost 3 half-lives have occured leaving only 15% of the herbicide not transformed. In Red River acclimated systems, after 40 hours only 25% to 50% of 2,4-D remains untransformed.

Use of Rate Constants in Predicting Fate of 2,4-D in Aquatic Systems

The first-order rate constants found in this research for the disappearance of 2,4-D indicate that biotransformation is the major fate process of the herbicide. Other processes such as hydrolysis, photolysis, and volatilization if occurring do so at a much lower rate than biotransformation. If biotransformation is the major fate process of a compound and the half-life of that compound can be measured in days or weeks then to predict the fate of that compound, accurate biotransformation rate constants must be known. If the rate constants are not accurate and are used to predict the overall fate of a compound large errors in these predictions would occur. If biotransformation is not a major fate process, or the half-life is measured in years, then the errors introduced by inaccurate biotransformation rate constants would be insignificant. Since biotransformation is the major fate process for 2,4-D, accurate rate constants are needed. First-order rate constants found in this study, for the non-acclimated systems range from 0.05 day⁻¹ to 0.57 day⁻¹. This range of biotransformation rate constants includes all three river systems with and without additional solids added. The range of rate constants for each individual river system is

smaller. The range of rate constants for the Trinity River is 0.45 day⁻¹ to 0.49 day⁻¹. The first-order biotransformation rate constants for the Mississippi River systems range from 0.35 day⁻¹ to 0.57 day⁻¹ and the range for the Red River systems is 0.049 day⁻¹ to 0.14 day⁻¹. From these results it is apparent that the rate of biotransformation of a compound in one aquatic system may be different than in another aquatic system. The range of first-order rate coefficients for the acclimated experiments is 0.23 day⁻¹ to 1.12 day⁻¹. As can be seen from these data acclimation reduces some of the variation in the observed rate coefficients.

The use of models to predict the first-order biotransformation rate constant may help account for the variation in the rate constants between various aquatic systems. These models should incorporate the water chemistry and sediment properties of the aquatic system. These models should also include if the system has previously been exposed to the compound since acclimation as already been shown to increase the biotransformation in an system. The following section will introduce and discuss two possible models.

Predictive Models of the Biotransformation Rate of 2,4-D

The results of the biotransformation experiments were incorporated into statistical models. These models are designed to yield first-order biotransformation rate coefficients for 2,4-D. The usefulness of these models is facilitated because they only require the user to know simple water quality parameters and a little history about the water body.

Two statistical models were developed, with the aid of SAS (Stepwise procedure), to predict these rate coefficients. The first model is designed to predict the firstorder rate coefficient in waters with low suspended solid (less then 100 mg/l). The second model is designed to predict the rate coefficient in waters with a wider range of suspended solids (less then 600 mg/l).

In the development of the first model, the following parameters were evaluated: the origin or source of the water, the concentration of ammonia, the concentration of nitrate, the amount of organic carbon present, and whether the system had previously been exposed to the compound. Phosphates were not considered for these models since data for phosphates in the Trinity River were lacking. The resulting model did not incorporate the origin of the water or nitrate concentration. Addition of the either of these parameters to the model did not improve the R-square value sufficiently (0.15) to warrant its inclusion. The model for low suspended concentrations is as follows:

Kl=(0.189*ammonia)+(0.043*organic

carbon)+(0.333*acclimation)-0.363

Where Kl is the first-order rate coefficient for 2,4-D ammonia is measured in mg/l as NH_2 N

organic carbon is measured in mg/l

and acclimation is equal to one if the system has not previously been exposed to the compound and two if previously exposed.

In developing the second model, the following parameters were evaluated: the origin of the water, ammonia concentration, nitrate concentration, the concentration of organic carbon, acclimation, volatile matter of the suspended solids and the percent of sand, silt, and clay of the suspended solids. The resulting model is as follows:

Kl=(0.375*acclimation)+(5.56*ammonia)-(1.66*nitrate)-0.290

Where Kl is the first-order biotransformation rate coefficient

acclimation is equal to one if the system has not been previously exposed to the herbicide and two if previously exposed

ammonia is in mg/l as NH₃ N

nitrate is in mg/l as NH₂ N

The other variables evaluated did not meet the 0.15 significance level for entry into the model.

Both of these generated models are significant. The first model has a probability of a greater F value of 0.012 and an R-Square of 0.869. The second model has an R-square value of 0.809 with a probability of a greater F value of 0.0001.

The usefulness of these models is facilitated by not requiring elaborate characterization of the water or suspended solids of the system being studied. In a matter of hours, a researcher can have an approximate first-order rate coefficient specific for a water body. This firstorder rate coefficient can be found without first conducting a month-long biotransformation study. These models also demonstrate relationships between biotransformation rates and acclimation, and nutrients. In both models the affect of acclimation is an increase in the first-order rate coefficient of over 0.3 day⁻¹. This increase is significant when you consider that the non-acclimated rates in the Red River experiments range from 0.05 day⁻¹ to 0.16 day⁻¹. These models also indicate that as nutrients are increased so is biotransformation.

Preliminary Algal Bioassay

The results of the preliminary algal bioassay to determine the effects of suspended solids on the bioavailability of 2,4-D to Selenastrum capricornutum can be found in Table XXIX. Analysis of variance and Duncans multiple range test were performed on these data to determine if the herbicide was toxic to the algae. These statistical tests indicated that there is no difference in the concentration of algal cells in the various concentrations of the herbicide used. The concentration of the herbicide ranged from 0 mg/l to 20 mg/1. The experimental matrix for this experiment was Trinity River water without additional suspended solids. Statistical analysis of the data from the bioassay experiment conducted using Trinity River water with the addition of 500 mg/l of suspended solids indicated that difference in the concentration of algal cells existed over the concentrations used (Table XXX). The concentration of 2,4-D in this experiment also ranged from 0 to 20 mg/1.

TABLE XXIX

RESULTS FROM PRELIMINARY ALGAL BIOASSAY WITHOUT SOLIDS

Concentration of 2,4-D (mg/l)	Cell Count (10 ⁷ cell/l)*	Significantly Different From Controls
0	2.65 <u>+</u> 1.8	No
4	3.88 + 3.8	No
7	2.44 + 1.04	No
12	1.68 <u>+</u> 0.71	No
20	0.68 + 0.50	No

 $*\overline{X} +$ Standard Deviation.

TABLE XXX

RESULTS FROM PRELIMINARY ALGAL BIOASSAY WITH SOLIDS

Concentration of 2,4-D (mg/1)	Cell Count (10 ⁷ cell/1)*	Significantly Different From Controls
0	1.64 <u>+</u> 0.63	No
4	1.90 <u>+</u> 0.09	No
7	1.5 <u>+</u> 0.4	No
12	1.11 ± 0.3	Yes
20	0.72 ± 0.06	Yes

 $*\overline{X}$ + Standard Deviation.

To test the hypothesis of no difference in the bioavailability of 2,4-D to <u>Selenastrum capricornutum</u> to the presence and absence of 500 mg/l additional suspended solids, analysis of covariance was performed on the results from the preliminary algal bioassay. This statistical test failed to reject the null hypothesis of no difference at the P=0.05 level.

Since differences in the bioavailability of the herbicide were not detected and the dose required to show toxicity is far greater then environmentally realistic concentrations, further algal bioassay experiments were not performed.

CHAPTER FOUR

CONCLUSIONS

The objectives and hypotheses of this research address the role of acclimation, suspended solids, and the source of water in biotransformation of the chlorinated hydrocarbon, 2,4-dichlorophenoxy acetic acid. Goals of this work also included generating realistic biotransformation rate coefficients, evaluating the reaction order of biotransformation and to determine if suspended solids altered the bioavailability of the herbicide. The objectives of this research were accomplished and all hypotheses were evaluated with varying degrees of success. The conclusions which can be drawn from this work are as follows:

1. Addition of 500 mg/l of suspended solids may affect the biotransformation rate of 2,4-D. The biotransformation rate in the Mississippi River systems was increased by the addition of solids $(T_{\frac{1}{2}}=2.0 \text{ days versus } T_{\frac{1}{2}}=1.2 \text{ days})$. The biotransformation rate in the Trinity River systems was not altered significantly by the addition of the solids. In the Red River the addition of suspended solids (500 mg/l) caused mixed results. In two experiments the addition of solids increased

biotransformation ($T_{1_2}=12$ days versus $T_{1_2}=9.6$ days and $T_{1_2}=14.2$ days versus $T_{1_2}=7.9$ days). In one experiment the addition of solids decreased biotransformation of 2,4-D ($T_{1_2}=4.8$ days versus $T_{1_2}=7.02$ days).

- 2. The source of water and suspended solids affects the biotransformation of the herbicide 2,4-D. The first-order biotransformation rate of the herbicide was shown to be less in the Red River systems than in the other two systems. In the Red River systems the highest first-order biotransformation rate was 0.14 day⁻¹ in the Trinity and Mississippi the smallest rate coefficients were 0.45 day⁻¹ and 0.35 day⁻¹ respectively.
- 3. The apparent biotransformation rate coefficient was adequately described by first-order kinetics although zero-order kinetics may also describe the disappearance of the compound. Zero and first order kinetics better described the disappearance of the herbicide than second-order kinetics. Second-order rate coefficients were more variable than zero or first order rate coefficients.
- 4. The results of experiments using non-sterile solids and sterile water indicate that the microbes associated with the suspended solids of the Trinity and Red rivers did not contribute to

biotransformation of the compound. The microbes associated with the suspended solids of the Mississippi River did contribute to the biotransformation of 2,4-D.

- 5. Acclimation or redose increased the rate of biotransformation of the herbicide as much as an order of magnitude. Acclimation increased the rate of biotransformation in one of the Red River experiments from 0.07 day⁻¹ to 0.68 day⁻¹.
- 6. Based on three sources of water and solids, and an initial concentration of 2,4-D of approximately 2 mg/l environmentally realistic first-order bio-transformation rate coefficients range from 1.12 day⁻¹ to 0.05 day⁻¹ depending on environmental conditions.
- 7. The toxicity of the herbicide to <u>Selenastrum</u> <u>capricornutum</u> was not reduced by addition of suspended solids to Trinity River water. Little toxicity of 2,4-D to the algae was demonstrated even at 2,4-D concentrations of 20 mg/1.

APPENDIX I

RAW DATA OF BIOTRANSFORMATION EXPERIMENTS

			VAR=MRC	T = 0		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	l	MRC	0	1 88	1 04	
	2	MRC	õ	1 85	1.04	•
	3	MRC	õ	1 70	1.04	•
	4	MRC	Õ	1.70	1.84	•
	-		v	1.92	1.84	•
		1	VAR=MRC	T =7		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	5	MRC	7	1.75	1 84	
	6	MRC	7	1 61	1 04	•
	7	MRC	7	1 56	1 04	•
	8	MRC	7	1 64	1 04	•
				1.04	1.04	•
		VAR	R=MRC500) T=0		
(OBS	VAR	Т	CONC	INIT	BIOMASS
	9	MRC500	0	2.01	1.88	
	10	MRC500	0	1.73	1.88	•
	11	MRC500	. 0	1.77	1 88	•
	12	MRC500	0	1.99	1 88	•
					1.00	•
~~~~~~~		VAR	=MRC500	T=7		
C	BS	VAR	Т	CONC	INIT	BIOMASS
1	.3	MRC500	7	1.61	1.88	
1	4	MRC500	7	1.49	1 88	•
1	.5	MRC500	7	1 54	1 00	•
1	.6	MRC500	7	2 1/	1 00	•
			· ·	~ •	T+00	•
*********		VAI	R=MRNSS	T=0		
0	BS	VAR	Т	CONC	INIT	BIOMASS
1	7	MRNSS	0	1.12	1.12	18000
1	8 .	MRNSS	0	1.12	1 1 2	40000
1	9	MRNSS	0	1 12	1 1 7	100000
2	0	MRNSS	õ	1.12	1 1 2	180000
			•	·····	4.42	38000
VAR=MRNSS T=2						
01	BS	VAR	T	CONC	INIT	BIOMASS
. 21	1 !	MRNSS	2	1.48	1 1 2	10000
22	21	MRNSS	2	1.53	エ・エム 1 1つ	40000
23	3 1	MRNSS	2	1.62	1 1 2	100000
24	1 1	MRNSS	2	1.84	+·+4 ] 10	T00000
						30000
 	V2	AR=MRN:	SS T=	5		
------	----------------	---------	-------	----------------	---------	
OBS	VAR	T	CONC	INIT	BIOMASS	
25	MRNSS	5	0.1	ר ו	10000	
26	MRNSS	5	0.1	±•±2	48000	
27	MRNSS	5		1.12	81000	
28	MDNCC	5	0.1	1.12	180000	
20	CONTEL	c	0.1	1.12	38000	
 	VA	R=MRSS	5 T=0			
OBS	VAR	Т	CONC	INIT	BIOMASS	
29	MRSS	0	1.55	1.74	77000	
30	MRSS	0	1,92	1 74	77000	
31	MRSS	Ő	1 55	1 74	77000	
32	MRSS	ñ	1 02	1 74	35000	
33	MRSS	ň	1 55	1,14	35000	
34	MPCC	~	1.00	1./4	17000	
25	MDCC	Ų	1.92	1.74	17000	
30	CCAM MD 7 7	0	⊥.55	1.74	11000	
30	MRSS	0	1.92	1.74	11000	
 	VA	R=MRSS	T=2			
OBS	VAR	T	CONC	INIT	BIOMASS	
37	MRSS	2	1.91	1.74	77000	
38	MRSS	2	1,99	1 74	77000	
39	MRSS	2	234	1 74	33000	
40	MRSS	2	2.54	1.74	T/000	
_		2	2.00	1.74	11000	
 	VAF	R=MRSS	T=5			
OBS	VAR	Т	CONC	INIT	BIOMASS	
41	MRSS	5	0.94	1 74	77000	
42	MRSS	5	0.10		77000	
43	MRSS	5	1 25	エ・/ tt 1 ウォ	35000	
44	MRSS	5	A 10	エ・/4 ユーマイ	T/000	
		J	0.10	1.14	11000	
 	VAR	=MRSS	T=7 -			
OBS	VAR	Т	CONC	INIT	BIOMASS	
45	MRSS	7	0.1	1.74	77000	
46	MRSS	7	0.1	1 74	35000	
47	MRSS	7	01		33000	
48	MRSS	, 7	0.1	1	17000	
		,	0.1	1./4	11000	
 	VA	R=MRT	T=0 -			
OBS	VAR	т	CONC	INIT	BIOMASS	

	<b>49</b> 50 51 52	MRT MRT MRT MRT	0 0 0	1.55 1.55 1.55 1.55	1.55 1.55 1.55	200000 35000 78000
			VAR=MR	[ ]]=2		17000
	OBS	VAR	т	CONC	INIT	BIOMASS
	53 54 55	MRT MRT MRT	2 2 2	2.13 2.03 1.87	1.55 1.55 1.55	200000 35000 78000
	56	MRT	2	1.73	1.55	17000
		1	/AR=MRI	T=5		
	OBS	VAR	T	CONC	INIT	BIOMASS
	57 58 59	MRT MRT MRT	5 5 5	1.58 0.10	1.55 1.55	200000 35000
	60	MRT	5	1.19	1.55 1.55	78000 17000
		V	AR=MRT	T=7		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	61 62 63	MRT MRT MRT	7 7 7	0.10 0.10 0.17	1.55 1.55 1.55	200000 35000
	64	MRT	7	0.10	1.55	17000
********		VAR	=MRT50(	) T=0		
	OBS	VAR	T	CONC	INIT	BIOMASS
	65 66	MRT500 MRT500	0	2.22	2	61000
	67 69	MRT500	0	2.22	2	68000
	60 69	MRT500	0	1.78	2	68000
	70	MRTSOO	0	2.22	2	31000
	71	MRT500	0	1.78	2	31000
. ·	72	MRT500	0	1.78	2	33000 33000
*		VAR=	MRT500	<b>T=</b> 2		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	73	MRT500	2	2.60	2	61000
	74	MRT500	2	1.99	2	68000
	/5	MRT500	2	1.91	2	33000
		VAR=	MRT500	T=5 -		

	OBS	VAR	Т	CONC	INIT	BIOMASS
	76	MRT500	5	0 1	2	<b>63 6 4 4</b>
	77	MRT500	5	0.1	2	61000
	78	MRT500	ंह	0.1	2	68000
	79	MRT500	5	0.1	2	31000
			5	0.1	2	33000
		VAI	R=RRAC	T=0		
	OBS	VAR	т	CONC	INIT	BIOMASS
	80	PDAC	0		_	
	81	RRAC	0	2.22	2.29	
	82	RRAC	0	2.01	2.29	
	83	RRAC	0	2.63	2.29	•
	00	MAC	0	2.29	2.29	•
		VAR	=RRAC	T=15		
	OBS	VAR	etti	0010		
	~ <b>2</b> .0	• ATV	+	CONC	INIT	BIOMASS
	84	RRAC	15	1 06	2 20	
	85	RRAC	15	2 15	2.29	•
	86	RRAC	15	2.10	2.29	•
	87	RRAC	15	2.40	2.29	•
	88	RRAC	15	2.40	2.29	•
	•••	IGUIC	10	4.38	2.29	•
		VAR	=RRAC	T=21		
	OBS	VAR	т	CONC	INIT	BIOMASS
	0.0					
	89	RRAC	21	2.17	2.29	
	90	RRAC	21	2.00	2.29	•
1	91	RRAC	21	2.06	2.29	•
	92	RRAC	21	2.14	2.29	•
						•
		VAR=	=RRAC	T=29		
(	DBS	VAR	т	CONC	INIT	BIOMASS
ç	3.	RRAC	29	1 0 2	2 22	
ç	)4	RRAC	29	1.74 7 04	2.29	•
c c	95	RRAC	29 20	2.04	2.29	•
	6	RRAC	47 20	1.94	2.29	•
		IUNAC	29	1.98	2.29	•
		VAR=R	RAC500	T=0		
OB	S	VAR	T	CONC	INIT	BIOMASS
9	א 7 א	RAC500	Ο	2 26	<b>.</b>	
9	8 7	RAC500	0	2.20	2 14	•
, a	- IX 9 72	RAC500	0	2.20	2.14	•
ر ۱۰	ע	RACSOO	0	2.02	2.14	•
±0	- t	1000	U	2.02	2.14	•

	VAR=1	RRAC500	T=15		
OBS	VAR	Ţ	CONC	7.17 m	
		*	CONC	TNTT	BIOMASS
101	RRAC500	15	2.21	2 14	
102	RRAC500	15	2 45	214	•
103	RRAC500	15	2, 10	2.14	٠
104	RRACSOO	15	2.30	2.14	•
	MAC JUU	7.2	2.17	2.14	•
	VAR=F	RAC500	፹=21		
			- 41		
OBS	VAR	т	CONC	INIT	BTOMASS
105					DIONNOS
105	RRAC500	21	2.22	2.14	
106	RRAC500	21	2.17	2.14	•
107	RRAC500	21	2 1 3	$2 \cdot 1 = 2 \cdot 1 = 1$	•
108	RRAC500	21	2.13	2.14	•
		21	2.39	2.14	•
	VAR=R	RAC500	T=29		
OBS	VAR	ጥ	CONO		
	V MAX	Ŧ	CONC	INIT	BIOMASS
109	RRAC500	20	2 06		
110	RRACE00	29	2.06	2.14	•
	DDAGE00	29	2.30	2.14	•
	RRAC500	29	1.80	2.14	•
112	RRAC500	29	2.10	2.14	•
	VAR-I	DDANCC			
	VAI(-1	CCNWN22	T = 0 - 0		
OBS	VAR	т	CONC	INIT	BTOMASS
110					
113	RRANSS	0	2.23	2.24	50000
114	RRANSS	0	2.25	2.24	50000
115	RRANSS	0	2 23	2.24	50000
116	RRANSS	õ	2.20	2 2 4	500000
117	RRANSS	ŏ	2.20	2.24	500000
110	TAVENSS	0	2.23	2.24	30000
110	RRANSS	0	2.25	2.24	30000
119	RRANSS	0	2.23	2.24	60000
120	RRANSS	0	2.25	2.24	60000
	VAR=R	RANSS	T=10 ~		
OBS	VAR	ф.	0010		
		_ <b>L</b>	CONC	INIT	BIOMASS
121	RRANSS	10	2.44	5 .7 A	Fooo
122	RRANSS	10	4.111 0.071	2.24	50000
123	RRANCC	10	2.3/	2.24	500000
124	BBANCO	10	2.23	2.24	30000
127	rran22	10	2.02	2.24	60000
	VAR=RI	RANSS	ጥຼገፍ		
	****/_7/		- CT-T		~~~~~
OBS	VAR	т	CONC	INIT	BTOMASS
3.05					DIOUROO
125	RRANSS	15	2.15	2.24	50000

	126 127	RRANSS RRANSS	15 15	2.28 2.11	2.24	500000 30000
	128	RRANSS	12	2.09	2.24	60000
		VAR=	RRANSS	T=21		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	129 130 131 132	RRANSS RRANSS RRANSS RRANSS	21 21 21 21	2.12 2.13 2.06 2.08	2.24 2.24 2.24 2.24	50000 500000 30000 60000
		VAR:	RRANSS	T=29		
	OBS	VAR	T	CONC	INIT	BIOMASS
	133 134 135 136	RRANSS RRANSS RRANSS RRANSS	29 29 29 29	1.97 2.19 1.93 1.85	2.24 2.24 2.24 2.24 2.24	50000 500000 30000 60000
		VAI	R=RRAT	T=0		
	OBS	VAR	т	CONC	INIT	BIOMASS
	137 138 139 140	RRAT RRAT RRAT RRAT	0 0 0	2.08 2.02 2.08 2.02	2.05 2.05 2.05 2.05 2.05	15000 15000 14000 14000
	141 142 143 144	RRAT RRAT RRAT RRAT	0 0 0 0	2.08 2.02 2.08 2.02	2.05 2.05 2.05 2.05	20000 20000 29000 29000
		VA	R=RRAT	T=10 -		
	OBS	VAR	т	CONC	INIT	BIOMASS
	145 146 147 148	RRAT RRAT RRAT RRAT	10 10 10 10	2.35 2.15 2.55 2.36	2.05 2.05 2.05 2.05	15000 14000 20000 29000
		VA	R=RRAT	T=15 -		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	149 150 151 152	RRAT RRAT RRAT RRAT	15 15 15 15	2.00 2.27 2.15 2.18	2.05 2.05 2.05 2.05 2.05	15000 14000 20000 29000
		VA	R=RRAT	T=21		~~~~~

		OBS	VAR	т	CONC	INIT	BIOMASS
		153 154 155 156	RRAT RRAT RRAT RRAT	21 21 21 21	2.06 2.01 2.12 2.07	2.05 2.05 2.05 2.05 2.05	15000 14000 20000 29000
			VAR	=RRAT	T=29 -		
		OBS	VAR	Т	CONC	INIT	BIOMASS
		157 158 159 160	RRAT RRAT RRAT RRAT	29 29 29 29	1.85 1.86 1.89 1.82	2.05 2.05 2.05 2.05 2.05	15000 14000 20000 29000
			VAR	=RRATA	T=0 -		
		OBS	VAR	т	CONC	INIT	BIOMASS
		161 162 163 164	RRATA RRATA RRATA RRATA	0 0 0 0	2.04 2.50 2.25 2.23	2.26 2.26 2.26 2.26	7000 11000 14000 14000
			VAR=	RRATA	T=10 -		
		OBS	VAR	T	CONC	INIT	BIOMASS
		165 166 167 168	RRATA RRATA RRATA RRATA	10 10 10 10	0.1 2.3 0.1 0.1	2.26 2.26 2.26 2.26	7000 11000 14000 14000
	<b></b>		VAR=	RRAT50	0=T C		
		OBS	VAR	T	CONC	INIT	BIOMASS
• .		169 170 171 172	RRAT500 RRAT500 RRAT500 RRAT500	0 0 0 0	2.46 2.46 2.46 2.46	2.46 2.46 2.46 2.46	34000 65000 46000 34000
			VAR=R	RAT500	T=10		
		OBS	VAR	Т	CONC	INIT	BIOMASS
		173 174 175 176	RRAT500 RRAT500 RRAT500 RRAT500	10 10 10 10	3.23 2.76 2.92 3.20	2.46 2.46 2.46 2.46	$34000 \\ 65000 \\ 46000 \\ 34000$
			VAR=R	RAT500	T=15		

OBS	VAR	т	CONC	INIT	BIOMASS		
177 178 179 180	RRAT500 RRAT500 RRAT500 RRAT500	15 15 15 15	3.20 2.73 2.76 2.54	2.46 2.46 2.46 2.46	34000 65000 46000 34000		
	VAR=RRA	AT500	T=21 -				
OBS	VAR	T	CONC	INIT	BIOMASS		
181 182 183 184	RRAT500 RRAT500 RRAT500 RRAT500	21 21 21 21	0.10 2.86 0.10 2.51	2.46 2.46 2.46 2.46	34000 65000 46000 34000		
	VAR=RRA	<b>T</b> 500	T=29				
OBS	VAR	T	CONC	INIT	BIOMASS		
185 186 187 188	RRAT500 RRAT500 RRAT500 RRAT500	29 29 29 29	0.1 0.1 0.1 0.1	2.46 2.46 2.46 2.46	34000 65000 46000 34000		
	VAR=RRA	AT500A	T=0 -				
OBS	VAR	T	CONC	INIT	BIOMASS		
189 190 191 192	RRAT500A RRAT500A RRAT500A RRAT500A	0 0 0	2.12 2.31 2.12 2.06	2.09 2.09 2.09 2.09	14000 9100 9000 14000		
	VAR=RRA	AT500A	T=10				
OBS	VAR	T	CONC	INIT	BIOMASS		
193 194 195	RRAT500A RRAT500A RRAT500A	10 10 10	0.1 0.1 0.1	2.09 2.09 2.09	14000 9100 9000		

0.1

CONC

2.80

3.09

2.80

3.09

2.80

3.09

10

т

0

0

0

0

0

0

2.09

T=0 -----

INIT

2.95

2.95

2.95

2.95

2.95

2.95

14000

BIOMASS

84000

84000

32000

32000

16000

16000

RRAT500A

VAR

RRA2T

RRA2T

RRA2T

RRA2T

RRA2T

RRA2T

----- VAR=RRA2T

196

OBS

197

198

199

200

201

202

	203	RRA2T	0	2.80	2.95	53000
	204	RRA2T	0	3.09	2.95	53000
	`~	VAR:	=RRA2T	T=1 -		
						5701100
	OBS	VAR	T	CONC	INIT	BIOMASS
	205	RRA2T	1	2.65	2.95	84000
	206	RRA2T	1	2.78	2.95	32000
	207	RRA2T	1	2.57	2.95	16000
	208	RRA2T	1	2.68	2.95	53000
		VAR	=RRA2T	T=2		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	209	RRA2T	2	2.12	2.95	84000
	210	RRA2T	2	2.10	2.95	32000
	211	RRA2T	2	1.98	2.95	16000
	212	RRA2T	2	2.53	2.95	53000
		VAR	=RRA2T	T=4		
	OBS	VAR	T	CONC	INIT	BIOMASS
	213	RRA2T	4	2.23	2.95	84000
	214	RRA2T	4	2.10	2.95	32000
	215	RRA2T	4	2.43	2.95	16000
	216	RRA2T	4	2.00	2.95	53000
		VAF	R=RRA21	r T=5		
	OBS	VAR	т	CONC	INIT	BIOMASS
			_			84000
	217	RRA2T	5	2.31	2.95	22000
	218	RRAZT	5	2.49	2.95	16000
	219	RRA2T	5	2.48	2.90	70000
~ ~ ~		VAR=	=RRA2T	T=12		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	220	RRA2T	12	2.51	2.95	84000
	221	RRA2T	12	2.16	2.95	32000
	222	RRA2T	12	2.26	2.95	16000
	223	RRA2T	12	2.14	2.95	53000
		VAR	=RRA2T	T=20		
	OBS	VAR	T	CONC	INIT	BIOMASS
	224	RRA2T	20	2.30	2.95	84000
	225	RRA2T	20	2.06	2.95	32000
	226	RRA2T	20	2.27	2.95	16000

		227	RRA2T	20	2.42	2.95	53000
e.			VAR=1	RRA2T	T=33 -		
		OBS	VAR	T	CONC	INIT	BIOMASS
		228	88 <b>8</b> 27	33	0.1	2 05	84000
		220		55	0.1	2.95	84000
		229	RRAZT	33	2.6	2.95	32000
		230	RRA2T	33	2.4	2.95	16000
		231	RRA2T	33	2.4	2.95	53000
			VAR=I	RRA2T	T=40 -	·	
		OBS	VAR	Т	CONC	INIT	BIOMASS
		222	<b>DD</b> 3 0 m	4.0	0.1		
		232	KKAZT	40	0.1	2.95	84000
		233	RRA2T	40	0.1	2.95	32000
		234	RRA2T	40	0.1	2.95	16000
		235	RRA2T	40	0.1	2.95	53000
			VAR=F	RRA2TA	T=0 -	~~	
		OBS	VAR	т	CONC	INIT	BIOMASS
		226		0	0.61	0.05	
		236	RRAZIA	0	2.61	2.85	31000
		237	RRA2TA	0	2.84	2.85	59000
		238	RRA2TA	0	2.73	2.85	43000
		239	RRA2TA	0	3.21	2.85	37000
			VAR=F	RRA2TA	T=1 -		
		OBS	VAR	ሞ	CONC	ተለተሞ	BTOMASS
		020	• • • • • •	*	CONC	T 14 T T	DIOMASS
		240	RRA2TA	1	1.55	2.85	31000
		241	RRA2TA	1	2.52	2.85	59000
		242	RRA2TA	1	2 21	7 25	42000
		712	1007 JUN	1	2·21	2.00	43000
		440	<b>ARAZTA</b>	Ŧ	2.34	2.85	37000
	~~~~~~~~		VAR=F	RA2TA	T=2 -		~~~~~~~~~~
		OBS	VAR	Т	CONC	INIT	BIOMASS
		244	RRA2TA	2	0.10	2.85	31000
. · ·	-	245	RRA2TA	2	1.95	2.85	59000
		246	RRA2TA	2	1.27	2.85	43000
_		247	RRA2TA	2	1.54	2.85	37000
-			VAR=R	RA2TA	T=4 -		
		OBS	VAR	η	CONC	<u> </u>	BTOMACC
		~10	A 1777	Ŧ	C014C	T 14 T.T.	BIOMA55
		248	RRA2TA	4	0.10	2.85	31000
		249	RRA2TA	4	2.21	2.85	59000
		250	RRA2TA	4	1.04	2.85	43000

	251	RRA2TA	4	1.84	2.85	37000
		VAR=H	RRA2TA	T=5 -		·
	OBS	VAR	Т	CONC	INIT	BIOMASS
	252 253 254	RRA2TA RRA2TA RRA2TA	5 5 5	0.10 2.40 0.75	2.85 2.85 2.85	31000 59000 37000
		VAR=F	RRA2TA	T=7 -		
	OBS	VAR	T	CONC	INIT	BIOMASS
	255 256 257 258	RRA2TA RRA2TA RRA2TA RRA2TA	7 7 7 7	0.10 2.14 0.94 0.75	2.85 2.85 2.85 2.85	31000 59000 43000 37000
·		VAR=F	RRA2TA	T=12		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	259 260 261 262	RRA2TA RRA2TA RRA2TA RRA2TA	12 12 12 12	0.1 0.1 0.1 0.1	2.85 2.85 2.85 2.85	31000 59000 43000 37000
		VAR=R	RA2T5A	T= 0		
	OBS	VAR	т	CONC	INIT	BIOMASS
	263 264 265	RRA2T5A RRA2T5A RRA2T5A	0 0 0	2.88 2.58 2.58	2.68 2.68 2.68	15000 39000 37000
		VAR=R	RA2T5A	T=1		
	OBS	VAR	Т	CONC	INIT	BIOMASS
. ^{с.} е	266 267 268 269	RRA2T5A RRA2T5A RRA2T5A RRA2T5A	1 1 1 1	2.03 1.47 2.23 1.61	2.68 2.68 2.68 2.68	62000 15000 39000 37000
		VAR=R	RA2T5A	1 =2		
	OBS	VAR	т	CONC	INIT	BIOMASS
	270 271 272 273	RRA2T5A RRA2T5A RRA2T5A RRA2T5A	2 2 2 2	0.58 0.10 1.22 0.10	2.68 2,68 2.68 2.68 2.68	62000 15000 39000 37000

	VAR=H	RRA2T5A	T=4		
0.00		_			
OB:	o VAR	T	CONC	INIT	BIOMASS
274	RRA2T5A	4	0.10	2.68	62000
275	5 RRA2T5A	4	0.10	2.68	15000
276	RRA2T5A	4	0.44	2.68	39000
277	RRA2T5A	4	0.10	2.68	37000
	*** -				
	VAR=F	RA2T5A	T=5		
OBS	S VAR	т	CONC	INIT	BIOMASS
0.70	-				
278	RRA2T5A	5	0.1	2.68	62000
279	RRA2T5A	5	0.1	2.68	15000
280	RRA2T5A	5	0.1	2.68	39000
281	RRA2T5A	5	0.1	2.68	37000
	VAR=RR	A2T500	Т=0		
0 D 0	· · · · ·				
OBS	VAR	Т	CONC	INIT	BIOMASS
282	RRA2T500	0	3 16	3 1 3	27000
283	RRA2T500	õ	3 09	2.12	37000
284	RRA2T500	õ	3 16	2 1 2	37000
285	RRA 27500	õ	3.10	2,12	21000
286	RRA2000	ŏ	2.09	3.13	21000
200	DDX 2mEOO	0	3.10	3.13	94000
207	RRAZISUU RRAZISUU	0	3.09	3.13	94000
200	RRAZT500	0	3.16	3.13	160000
209	RRAZT500	0	3.09	3.13	160000
	VAR=RR	A2T500	T=1		
0.7.6	*** -	_			
OBS	VAR	т	CONC	INIT	BIOMASS
290	RRA2T500	1	2.79	3.13	37000
291	RRA2T500	1	2.66	3,13	21000
292	RRA2T500	1	2 65	3 1 3	21000
293	RRA2T500	î.	2.84	3 1 3	160000
		*	2.04	2.13	100000
~~~~~~~~~~~	VAR=RR	A2T500	<b>T=</b> 2	~	
OBS	VAR	т	CONC	INTT	BTOMASS
294	RRA2T500	2	1.98	3.13	37000
295	RRA2T500	2	2.08	3.13	21000
296	RRA2T500	2	2.45	3.13	94000
297	RRA2T500	2	2.56	3.13	160000
	VAR=RRA	A2T500	T=4		
OBC	<b>5 / 3 3</b>	~		<b></b>	
OBS	VAR	Т	CONC	INIT	BIOMASS
298	RRA2T500	4	2.17	3.13	37000

299 300	<b>RRA</b> 2T500 RRA2T500	4	2.29 2.27	3.13 3.13	21000 160000
 	VAR=R	RA2T50	00 T=5		
OBS	VAR	Т	CONC	INIT	BIOMASS
301 302	RRA2T500 RRA2T500	5	2.45	3.13	37000
303	RRA2T500	5	2.51	3.13	21000
304	RRA2T500	5	2.55	3.13	160000
 	VAR=RI	RA2T50	0 T=12	2	
OBS	VAR	T	CONC	INIT	BIOMASS
305	RRA2T500	12	2.40	3.13	37000
306	RRA2T500	12	2.38	3.13	21000
307	RRA2T500	12	2.30	3.13	94000
308	RRA2T500	, 12	2.44	3.13	160000
 	VAR=RF	RA2T50	0 T=20	)	
OBS	VAR	т	CONC	INIT	BIOMASS
309	RRA2T500	20	1.78	3.13	37000
310	RRA2T500	20	2.13	3.13	21000
311	RRA2T500	20	2.34	3.13	94000
 	VAR=RR	RA2T50	) T=33		
OBS	VAR	Т	CONC	INIT	BIOMASS
312	RRA2T500	33	1.78	3.13	37000
313	RRA2T500	33	1.80	3.13	21000
314	RRA2T500	33	0.10	3.13	94000
315	RRA2T500	33	0.10	3.13	160000
 	VAR=RR	A2T500	T=40		********
OBS	VAR	Т	CONC	INIT	BIOMASS
316	RRA2T500	40	0.1	3.13	37000
317	RRA2T500	40	0.1	3.13	21000
318	RRA2T500	40	0.1	3.13	94000
319	RRA2T500	40	0.1	3.13	160000
 	VAR=1	RR1C	T=0		~ <b>-</b>
OBS	VAR	т	CONC	INIT	BIOMASS
320	RR1C	0	2.63	2.61	•
321	RRLC	0	2.57	2.61	•
342	RKTC	U	2.48	2.61	

	323 324 325 326 327	RR1C RR1C RR1C RR1C RR1C RR1C	0 0 0 0	2.41 2.61 2.81 2.52 2.82	2.61 2.61 2.61 2.61 2.61	
		VA	R=RR1C	T=8		
	OBS	VAR	T	CONC	INIT	BIOMASS
	328 329 330 331	RR1C RR1C RR1C RR1C	8 8 8	2.73 2.66 2.64 2.73	2.61 2.61 2.61 2.61	• • •
	332 333 334 335 336 337	RRIC RRIC RRIC RRIC RRIC RRIC	8 8 8 8 8	2.67 2.73 2.67 2.65 2.48	2.61 2.61 2.61 2.61 2.61	• • • •
		VAI	סופס-כ	2,40	2.61	•
		AL	X=RRIC	T=24		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	338 339 340 341 342	RR1C RR1C RR1C RR1C RR1C RR1C	24 24 24 24 24 24	2.47 2.58 2.49 2.44 2.35	2.61 2.61 2.61 2.61 2.61	
	343	RR1C	24	2.42	2.61	•
~~~~~		VAR	R=RR1C	T=31		
	OBS	VAR	T	CONC	INIT	BIOMASS
	344 345 346 347	RR1C RR1C RR1C RR1C	31 31 31 31 31	2.55 2.64 2.45 2.46	2.61 2.61 2.61 2.61	• • •
		VAL.	KKTC20(J T≡Q		
	OBS	VAR	T	CONC	INIT	BIOMASS
	348 349 350 351 352 353 354	RR1C500 RR1C500 RR1C500 RR1C500 RR1C500 RR1C500 RR1C500	0 0 0 0 0 0	2.65 2.48 2.48 2.13 2.33 2.11 2.40	2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35	•
	355	RR1C500	0	2.14	2.35	•

----- VAR=RR1C500 T=8 ------OBS T CONC INIT VAR BIOMASS 356 RR1C500 8 2.59 2.35 357 2.53 RR1C500 8 2.35 358 RR1C500 8 2.62 2.35 8 8 8 359 RR1C500 2.66 2.35 360 RR1C500 2.60 2.35 361 RR1C500 2.56 2.35 362 RR1C500 8 2.64 2.35 363 RR1C500 8 2.68 2.35 364 RR1C500 8 2.73 2.35 ----- VAR=RR1C500 T=24 -----OBS VAR т CONC INIT BIOMASS 365RR1C50024366RR1C50024367RR1C50024368RR1C50024369RR1C50024 2.28 2.35 2.27 2.35 2.33 2.35 2.46 2.35 2.24 2.35 370 RR1C500 24 2.57 2.35 ----- VAR=RR1C500 T=31 -----OBS VAR T CONC INIT BIOMASS RR1C500 RR1C500 RR1C500 RR1C500 RR1C500 371 312.662.35312.452.35 372 373 31 2.35 2.38 374 31 2.38 2.35 375 31 2.60 2.35 ----- VAR=RR1SS T=0 -----OBS VAR T CONC INIT BIOMASS RRISS 376 0 2.40 2.49 2.49 2.49 2.49 2.49 19000 RRISS 377 0 2.58 19000 378 RR1SS 0 RKL RRIS~ RRISS RRISS `1SS 2.40 10000 379 0 2.58 10000 380 0 2.40 2.49 17000 381 2.49 0 2.58 17000 382 0 2.40 2.49 150000 383 0 2.58 2.49 150000 ----- VAR=RR1SS T=4 -----OBS VAR T CONC INIT BIOMASS

384RR1SS42.372.4919000385RR1SS42.362.4919000

 386 387 388 389 390 391	RR1SS RR1SS RR1SS RR1SS RR1SS RR1SS	4 4 4 4 4 8 R=RR1S	2.35 2.21 2.48 2.52 2.75 2.46 55 T=8	2.49 2.49 2.49 2.49 2.49 2.49 2.49	10000 10000 17000 17000 150000 150000
OBS	VAR	ιħ	CONG	****	
300		4	CONC	INIT	BIOMASS
392	RRISS	8	2.38	2.49	19000
304	RRISS	8	2.31	2.49	19000
394	RRISS	8	2.52	2.49	10000
395	RRISS	8	2.56	2.49	10000
396	RRISS	8	2.39	2.49	17000
397	RRISS	8	2.33	2.49	17000
398	RRISS	8	2.57	2.49	150000
399	RR1SS	8	2.51	2.49	150000
 	VAR=	RRISS	T=11		
ODC					
063	VAR	T	CONC	INIT	BIOMASS
400	RRISS	רו	2 40	2 4 2	
401	RRISS		2.48	2.49	19000
402	RRISS	11	2,38	2.49	19000
403	RRISS		2.3/	2.49	10000
404	RRISS		2.44	2.49	10000
405	RRISS	11	2.55	2.49	17000
406	RRISS	-1-1- 1-1	2.58	2.49	17000
407	RRISS	- <u>L-L</u> 7 1	2.34	2.49	150000
	11(100	<u>_</u>	2.46	2.49	150000
 	VAR=1	RR1SS	T=15 -		
OBS	VAR	Т	CONC	INIT	BIOMASS
408	RRISS	15	2.54	2 10	10005
409	RRISS	15	2.43	2.47	10000
410	RRISS	15	1 81	2.49	19000
411	RRISS	15	1 57	2.49	10000
412	RR1SS	15	2 41	2.49	10000
413	RR1SS	15	2 20	2.49	17000
 414	RRISS	15	2.39	2.49	17000
415	RRISS	15	2.45	2.49	150000
 				2,39	120000
	VAR=R	RISS	T=18		
OBS	VAR	Т	CONC	INIT	BIOMASS
416	RR1SS	18	2 71	2 40	
417	RRISS	18	2 81	2.49	T0000
418	RRISS	18	0 28	2.49	19000
419	RRISS	18	0.31	2 4 4 7	10000
		-		ん・セフ	T0000

420 421 422 423	RR1SS RR1SS RR1SS RR1SS	18 18 18 18	2.69 2.73 0.51 0.49	2.49 2.49 2.49 2.49 2.49	17000 17000 150000 150000
 	VAR	=RR1S	5 T=24		
OBS	VAR	Т	CONC	INIT	BIOMASS
424 425 426 427	RR1SS RR1SS RR1SS RR1SS	24 24 24 24	2.32 0.10 0.10 0.10	2.49 2.49 2.49 2.49	19000 10000 17000 150000
 	VAR	=RR1SS	T=31		
OBS	VAR	Т	CONC	INIT	BIOMASS
428 429 430 431	RR1SS RR1SS RR1SS RR1SS	31 31 31 31	2.31 0.10 0.10 0.10	2.49 2.49 2.49 2.49	19000 10000 17000 150000
 	VAR=	RRISS	T=35		
OBS	VAR	T	CONC	INIT	BIOMASS
432 433 434 435	RR1SS RR1SS RR1SS RR1SS	35 35 35 35	2.0 0.1 0.1 0.1	2.49 2.49 2.49 2.49	19000 10000 17000 150000
 	VAR	=RR1T	T=0		
OBS	VAR	т	CONC	INIT	BIOMASS
436 437 438 439 440 441 442	RRIT RRIT RRIT RRIT RRIT RRIT RRIT		2.57 2.61 3.05 2.57 2.61 3.05	2.74 2.74 2.74 2.74 2.74 2.74 2.74	24000 24000 35000 35000 35000 35000
442 443 444 445	RRIT RRIT RRIT RRIT	0 0 0 0	2.57 2.61 3.05 2.57	2.74 2.74 2.74 2.74	29000 29000 29000 19000
 ~ ~ ~ ~ ~ ~ ~ ~	VAR=	RRIT	T=0		
OBS	VAR	T	CONC	INIT	BIOMASS
446 447	RR1T RR1T	0 0	2.61 3.05	2.74	19000

		V.	AR=RR11	T=4		
	OBS	VAR	т	CONC	INIT	BIOMASS
	448	RRIT	4	3.00	2 71	24000
	449	RRIT	4	2.93	2 · 74	24000
	450	RRIT	4	2.55	2.74	24000
	451	RRIT	4	2,40	2.74	35000
	452	RRIT		2.50	2.74	35000
	453	RRIT	7	2.94	2.74	29000
	454		4	2.90	2.74	29000
	455		4	2.36	2.74	19000
			4	2.48	2.74	19000
		VA	R=RR1T	T=8		
	OBS	VAD	m	.		
	CTO.	VAR	Т	CONC	INIT	BIOMASS
	456	RR1T	8	2.54	2.74	24000
	457	RRLT	8	2.64	2.74	24000
	458	RRLT	8	2.70	2.74	35000
	459	RRLT	8	2.72	2.74	35000
	460	RR1T	8	2.73	2.74	29000
	461	RRIT	8	2.72	2.74	29000
	462	RR1T	8	2.37	2.74	2,9000
	463	RR1T	8	2.40	2.74	19000
			_			19000
		VA	R=RR1T	T=11		
	OBS	VAR	т	CONC	INIT	BIOMASS
	464	RRLT	11	2.32	2 74	24000
	465	RR1T	11	2.40	2.74	24000
	466	RRIT	11	2.50	2 7 4	24000
	467	RRIT	11	2 / 8	2.74	35000
	468	RRIT	11	2.40	2.74	35000
	469	RRIT	11	2.30	2.74	29000
	470	RRIT	11	2.33	2.74	29000
	471	RRIT	11	2 4 4	2.74	19000
				2.10	2.74	19000
		VAR	=RR1T	T=15		
	OBS	VAR	т	CONC	INIT	BIOMASS
•	472	RRIT	15	2,65	2.74	24000
	473	RR1T	15	2.60	2 . 7 4	24000
	474	RR1T	15	2.33	2 • 7 *	24000
	475	RR1T	15	2.28	2 . / 4	35000
	476	RRLT	15	2.36	2 74	32000
	477	RRIT	15	2.41	~ • / 4) 7/	29000
	478	RRIT	15	2.44	2 · / 4	29000
	479	RRIT	15	2.45	2.74	10000 TAOOO
	_			~ -		T 2000
		VAR	=RR1T	T=18 -		

OI	3S VAR	Т	CONC	INIT	BIOMASS	
45	יתותים הא	1.0				
	DO KRIT	T8	2.90	2.74	24000	
40	A RELT	18	2.90	2.74	24000	
48	32 RRIT	18	2 9 7	2 7 4	24000	
48	3 RR1m	18	2.55	2.74	35000	
4.8		10	2.89	2./4	35000	
10		18	2.77	2.74	29000	
40	S RRIT	18	2.59	2.74	29000	
48	6 RR1T	18	0.60	2 7 4	20000	
48	7 RRIT	18	0 50	2.74	TA000	
		÷0	0.53	2.74	19000	
	V2	AR=RR11	T=24			
OB	S VAR	Т	CONC	INIT	BIOMASS	
48	8 RRIT	24	2 1 2	2 7 4	.	
48	9 RR1m	<u> </u>	2·13	2.14	24000	
19		24	2.39	2.74	24000	
4.2	V KKIT	24	2.28	2.74	35000	
49.	L RR1T	24	2.22	2.74	35000	
493	Z RRIT	24	1.18	2 71	30000	
49.	3 RRIT	24	1 16	2 . 7 4	29000	
494	ייוקק 1	24	1.10	2.14	29000	
101		24	0.21	2.74	19000	
490	D RRIT	24	0.21	2.74	19000	
					_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	VA	R=RR1T	T=31			
			~ ~ ~			
OBS	S VAR	άh	CONG	.		
	••••••	*	CONC	INIT	BIOMASS	
100						
490	N KRTL	31	2.44	2.74	24000	
497	' RR1T	31	2.49	2 71	22000	
498	RRIT	31	0 10	2.74	35000	
499	RRIT	31	0.10	2.74	29000	
		<u>эт</u>	0.10	2.74	19000	
	VAI	R=RR1T	T=35			•
ORC	UND	m	00			
010	VAR	т	CONC	INIT	BIOMASS	
				•		
500	RRLT	35	2.15	2.74	24000	
501	RRlT	35	2.23	~·/=) 7/	44000	
502	RRIT	25	~·~J	2.14	35000	
503	1010100	35	0.10	2.74	29000	
505	, KKTT	35	0.10	2.74	19000	
	VAR=	RR1T50	0 Т=0			
ORC	17 h m		-			
, OD O	VAR	т	CONC	INIT	BIOMASS	
504	RR1T500	0	3.14	2 05	10000	
505	RR1T500	ñ	2 62	2,30	12000	
506	RR17500	Ă	2.03	2.95	12000	
507		v A	3.26	2.95	12000	
507	00CTT77	0	3.01	2.95	12000	
208	KRIT500	0	2.63	2,95	12000	
509	RR1T500	0	3.14	2 95	12000	
510	RR1T500	ñ	2 6 2 3	2,30	52000	
511	RRITEOO	Å	2.03	2.95	52000	
		U	3.26	2,95	52000	

512 513 514 515 516 517 518 519 520 521 522 523	RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500		3.01 2.63 3.14 2.63 3.26 3.01 2.63 3.14 2.63 3.26 3.01 2.63	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	52000 52000 77000 77000 77000 77000 28000 28000 28000 28000 28000 28000 28000
	VAR=B	RR1T50)0 T=4		
OBS	VAR	Т	CONC	INIT	BIOMASS
524 525 526 527 528 529 530 531	RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500	4 4 4 4 4 4 4 4	2.67 2.62 2.80 2.62 2.85 2.85 2.82 2.77 2.68	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	12000 12000 52000 77000 77000 28000 28000
	A-AA	KIT20	U T=8 -		*******
OBS	VAR	T	CONC	INIT	BIOMASS
532 533 534 535 536 537 538 538 539	RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500	8 8 8 8 8 8 8 8 8	2.40 2.41 2.25 2.27 2.36 2.32 2.46 2.48	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	12000 12000 52000 77000 77000 28000 28000
	VAR=RR	1T500	T=11 -		****
OBS	VAR	т	CONC	INIT	BIOMASS
540 541 542 543 544 545 546 547	RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500 RR1T500	11 11 11 11 11 11 11 11	2.48 2.52 2.48 2.47 2.46 2.52 2.49 2.48	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	12000 12000 52000 77000 77000 28000 28000
	VAR=RR]	LT500	T=15 -		

Ċ

OBS	VAR	т	CONC	INII	BIOMASS
548 549	RR1T50(RR1T50() 15) 15	2.54 2.57	2.95 2.95	12000
550	RR1T500) 15	2.42	2.95	52000
551	RR1T500) 15	2.43	2.95	52000
552	RR1T500) 15	2.44	2.95	77000
553	RR1T500) 15	2.48	2.95	77000
554	RR1T500) 15	1.08	2.95	28000
555	RR1T500	15	1.16	2.95	28000
	VAR=	RR1T50	0 T=18		
OBS	VAR	T	CONC	INIT	BIOMASS
556	RR1T500	18	2.78	2.95	12000
557	RR1T500	18	2.42	2.95	12000
558	RR1T500	18	0.39	2.95	52000
559	RR1T500	18	0.30	2.95	52000
560	RR1T500	18	1.53	2.95	77000
561 562	RR1T500	18	1.50	2.95	77000
562	RR1T500	18	0.28	2.95	28000
563	RRIT500	18	0.31	2.95	28000
	VAR=1	RR1T500) T=24		
ODC					
OBS	VAR	Т	CONC	INIT	BIOMASS
564	RR1T500	24	0.1	2.95	12000
565	RR1T500	24	0.1	2.95	52000
566	RR1T500	24	0.1	2.95	77000
567	RR1T500	24	0.1	2.95	28000
	VAF	R=RR2C	T=0		
OBS	VAR	T	CONC	INIT	BIOMASS
568	RR2C	0	2.19	2.2	•
569	RR2C	0	2.40	2.2	
570	RR2C	0	2.04	2.2	
571	. RR2C	0	2.18	2.2	•
	VAR	=RR2C	T=7		
		· -	- • .		
OBS	VAR	T	CONC	INIT	BIOMASS
572	RR2C	7	2.61	2.2	
573	RR2C	7	3.18	2.2	•
574	RR2C	7	2.74	2.2	•
575	RR2C	7	2.56	2.2	•
					-
	VAR	=RR2C	T=14		
OBS	VAR	Т	CONC	INIT	BIOMASS

_	576 577 578 579	RR2C RR2C RR2C RR2C	14 14 14 14	3.05 2.44 2.72 2.75	2.2 2.2 2.2 2.2 2.2	•
	 	VAR=	RR2C5	00 T=0		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	580 581 582 583	RR2C500 RR2C500 RR2C500 RR2C500	0 0 0 0	2.66 2.34 2.19 2.37	2.39 2.39 2.39	•
-	 	VAR=I	RR2C5()0 T=7		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	584 585 586 587	RR2C500 RR2C500 RR2C500 RR2C500	7 7 7 7	2.65 3.06 2.65 2.82	2.39 2.39 2.39 2.39	• • •
	 · ··· · · · · · · · · · · · · · · · ·	VAR=RF	20500) T=14		
	OBS	VAR	т	CONC	INIT	BIOMASS
	588 589 590 591	RR2C500 RR2C500 RR2C500 RR2C500	14 14 14 14	2.70 3.12 2.88 2.94	2.39 2.39 2.39 2.39	
	 	VAR=	RR2SS	T=0 -		
	OBS	VAR	т	CONC	INIT	BIOMASS
	 592 593 594 595 596 597 598 599	RR2SS RR2SS RR2SS RR2SS RR2SS RR2SS RR2SS RR2SS	0 0 0 0 0 0	2.24 2.23 2.24 2.23 2.24 2.23 2.24 2.23 2.24	2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34	62000 62000 130000 130000 44000 44000 23000
	 	VAR=1	RR2SS	τ=4 -	2.34	23000
	OBS	VAR	T	CONC	INIT	BIOMASS
	600 601 602 603	RR2SS RR2SS RR2SS RR2SS	4 4 4 4	2.18 2.27 2.14 2.06	2.34 2.34 2.34 2.34 2.34	62000 130000 44000 23000

· . ..

158

-

OBS	VAR	Т	CONC	INIT	BIOMASS
604	RR2SS	7	2.68	2 34	62000
605	RR2SS	, 7	2.64	2.34	120000
606	RR2SS	7	2.04	2.34	14000
607	RR2SS	, 7	2.01	2.34	44000
007	14(2,00	1	2.09	2.34	23000
 	VAR=RR2SS		T=11		
OBS	VAR	Т	CONC	INIT	BIOMASS
608	RR2SS	רר	2 62	2 24	62000
609	RR2SS	11	0 10	2.54	02000
610	RR2SS	11	2 00	2.34	130000
611	RR2SS	11	2.00	2.34	44000
~	111200	**	3.10	2.34	23000
 	VAR=	RR2SS	T=16		
OBS	VAR	T	CONC	INIT	BIOMASS
612	RR2SS	16	0 10	2 14	
613	RR2SS	10	0.10	2.34	62000
614	PPree	10	0.10	2.34	T30000
615	NAZ SS	10	0.10	2.34	44000
010	RRZ55	T0	2.43	2.34	23000
 	VAR=	RR2SS	m-10		
	• • • • • •	111200	1-19		
OBS	VAR	T	CONC	INIT	BIOMASS
616	RR2SS	19	۲.0	2 34	62000
617	RR2SS	19	0.1	2.34	130000
618	RR2SS	19	0.1	2,.34	130000
619	RR2SS	10	0.1	2.34	44000
	14(200	ТЭ	0.1	2.34	23000
 	VAR	≈RR2T	T=0		
OBS	VAR	Т	CONC	INIT	BIOMASS
620	RR2T	0	2.25	2 25	26000
621	RR2T	ō	2.25	2,20	26000
 622	RR2T	Ň	2.20	2.25	20000
623	RR2T	õ	2.20	2.20	75000
624	BB2T	õ	4·20 2 25	2.20	/5000
625	14121 BB2m	0	2.20	2.25	32000
626	1010 0 m	0	2.20	2.25	32000
627	NKZI DD0m	0	2.25	2.25	38000
041	RR2T	U	2.25	2.25	38000
 	VAR=	RR2T	T=4		
		~ 1# 1 & A	*		
OBS	VAR	T	CONC	TNTT	BTOMASS

628 629 630	RR2T RR2T RR2T	4 4 4	1.95 2.27 2.26	2.25 2.25 2.25	26000 75000 32000
	RR2T	4 \R=RR2m	2.07	2.25	38000
	••	**/1/1/2 1	1=/		
OBS	VAR	Т	CONC	INIT	BIOMASS
632	RR2T	7	2 44	2 25	-
633	RR2T	7	2.44	2.25	26000
634	RR2m	7	2.95	2.25	75000
635	RR2T	7	2.53	2.25	32000
000	1/1/21	/	2.52	2.25	38000
	VA	R=RR2T	T=11		
OBS	VAR	Т	CONC	INIT	BIOMASS
636	RR2T	11	3.15	2 25	26000
637	RR2T	11	2 94	2.25	26000
638	RR2T	11	0 1 6	4.40	/5000
639	RR2m		0.10	2.25	32000
		**	0.10	2.25	38000
	VAI	R=RR2T	T=16		
OBS	VAR	ŗ	CONC	INIT	BIOMASS
640	RR2T	16	0 1	2 25	
641	RR2T	16	2.5	2.25	26000
642	8824	10	3.0	2.25	75000
643	DD0m	10	0.T	2.25	32000
045	IXIX 1	10	0.1	2.25	38000
	1778				
	VAN	-RRZT	T=19		~~~~~~~~~~
OBS	VAR	Т	CONC	INIT	BIOMASS
644	RR2T	19	0 10	0 0F	0.000
645	RR2T	19	1 01	4.25	26000
646	RR2T	10	1.91	2.25	75000
647	8821	10	0.10	2.25	32000
	2012 1	T 2	0.10	2.25	38000
	VAR	=RR2T	T=23		
OBS	VAR	T	CONC	INIT	BIOMASS
648	RR2m	22	A 7		
649	RR2m	20	0.1	2.25	26000
650	1010 J m	23	0.1	2.25	75000
000 6 E 1	KKZT DDOT	23	0.1	2.25	32000
001	KKZT	23	0.1	2.25	38000
**					
	VAR=F	R2T500	T=0		
OBS	VAR	т	CONC	INIT	BTOMASS

652 653 654 655 656 657 658 659	RR2T500 RR2T500 RR2T500 RR2T500 RR2T500 RR2T500 RR2T500 RR2T500	0 0 0 0 0 0 0	2.27 2.40 2.27 2.40 2.27 2.40 2.27 2.40 2.27 2.40	2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34	$\begin{array}{r} 23000\\ 23000\\ 45000\\ 45000\\ 38000\\ 38000\\ 125000\\ 125000\end{array}$
 	VAR=R	R2T50	0 T=4		*****
OBS	VAR	T	CONC	INIT	BIOMASS
660 661 662 663	RR2T500 RR2T500 RR2T500 RR2T500	4 4 4 4	2.03 2.25 2.17 2.15	2.34 2.34 2.34 2.34	23000 45000 38000 125000
 	VAR=R	R2T50) T=7		
OBS	VAR	Т	CONC	INIT	BIOMASS
664 665 666 667	RR2T500 RR2T500 RR2T500 RR2T500	7 7 7 7	3.03 2.95 2.79 2.63	2.34 2.34 2.34 2.34	23000 45000 38000 125000
 	VAR=RR	2 1 500	T=11 -		
OBS	VAR	т	CONC	INIT	BIOMASS
668 669 670 671	RR2T500 RR2T500 RR2T500 RR2T500	11 11 11 11	3.07 0.10 3.22 0.12	2.34 2.34 2.34 2.34	23000 45000 38000 125000
 	VAR=RR	2T500	T=16 -		
OBS	VAR	T	CONC	INIT	BIOMASS
672 673 674 675	RR2T500 RR2T500 RR2T500 RR2T500	16 16 16 16	3.26 0.10 3.34 0.10	2.34 2.34 2.34 2.34	23000 45000 38000 125000
 ·	VAR=RR2	2 T 500	T=19 -		
OBS	VAR	Т	CONC	INIT	BIOMASS
676 677 678 679	RR2T500 RR2T500 RR2T500 RR2T500 RR2T500	19 19 19 19	3.13 0.10 3.30 0.10	2.34 2.34 2.34 2.34	23000 45000 38000 125000

£

161

VAR=RR2T500				00	T=23		
	690	VAR	Д,		CONC	INIT	BIOMASS
	680	RR2T500	23	3	0.31	2.34	23000
	681	RR2T500	2.	3	0.10	2.34	45000
	682	RR2T500	23	3	0.10	2.34	38000
	683	RR2T500	23	3	0.10	2.34	125000
				-	••••••	2,01	12,5000
		VAR=R	R2T5(00	T=33		
	OBS	VAR	T		CONC	INIT	BIOMÀSS
	691				<u> </u>		
	004 205	RR2T500	33	5	0.1	2.34	23000
	000	RR21500	33	\$	0.1	2.34	45000
		VAR=R	R2T50	0	T=39		
(OBS	VAR	ሞ		CONC	ቸእናተም	PTOMAGE
			•		conc	T 14 T T	BIOMASS
:	686	RR2T500	39	ŧ	0.1	2.34	38000
1	687	RR2T500	39	1	0.1	2.34	125000
		VAR	=TRAT	T T	=0		
	OBS	VAR	ηn.	CON	c	Τλιται	DIONA CO
	020	• • • •	Ŧ	CON		TNTT	BIOMASS
	688	TRAT	0	2.8	5	2.875	70000
	689	TRAT	0	2.9	Ó	2.875	70000
	690	TRAT	0	2.8	5	2.875	270000
	691	TRAT	0	2.9	n N	2 875	270000
	692	TRAT	ō	2.8	Š	2.075	270000
	693	TRAT	õ	2 9	ñ	2.075	35000
	694	ጥፍልጥ	ň	2.90	5	2.075	35000
	695	ጥፑልጥ	0	2.0	5	2.075	27000
	0,0	11/21	0	2.90	J .	2.8/5	27000
~~~~~~		VAR=	TRAT=	T=	=1		
	OBS	VAR	т	CONC	C	INIT	BIOMASS
			_				une est ar a se a bai a bai bai
	696 .	TRAT	1	2.30	)	2.875	70000
	697	TRAT	l	2.07	7	2.875	270000
	698	TRAT	1	2.04	1	2.875	35000
	699	TRAT	1	2.67	7	2.875	27000
	~ ~	VAR-	- ጥ ፍ ጥ	ጥ~	- 2		
		* A1/-	- * 1 / 142 1	<b>T</b>	-,		
	OBS	VAR	т	CONC	2	INIT	BIOMASS
	700	TRAT	3	2.62		2.875	70000
	701	TRAT	3	2.08		2.875	270000
	702	TRAT	3	2.53		2 875	270000
	703	TRAT	ž	2.00	•	2,075 2,975	33000

	VA	AR=TRAT	T=4					
OI	BS VAR	т	CONC	INIT	BIOMASS			
70	)4 TRAT	4	2.00	2.875	70000			
7(	)5 TRAT	4	2.18	2.875	35000			
70	)6 TRAT	4	2.21	2.875	27000			
	VA	R=TRAT	T=6					
OF	BS VAR	Т	CONC	INIT	BIOMASS			
	_							
70	)7 TRAT	6	0.1	2.875	70000			
70	)8 TRAT	6	0.1	2.875	270000			
70	9 TRAT	6	0.1	2.875	35000			
71	0 TRAT	6	0.1	2.875	27000			
	VA	R=TRAT	A T=0					
OE	S VAR	Т	CONC	INIT	BIOMASS			
	-							
71	1 TRATA	0	2.39	2.385	110000			
71	.2 TRATA	0	2.35	2.385	110000			
71	.3 TRATA	0	2.36	2.385	190000			
71	4 TRATA	0	2.44	2.385	97000			
***	VA	R=TRAT	A T=1					
OB	S VAR	Т	CONC	INIT	BIOMASS			
	_							
71	5 TRATA	1	1.70	2.385	110000			
71	6 TRATA	1	2.05	2.385	110000			
. 71	7 TRATA	1	2.30	2.385	190000			
71	8 TRATA	1	1.89	2.385	97000			
*********	VA	R=TRAT.	A T=3					
OB	S VAR	T	CONC	INIT	BIOMASS			
	_							
71	9 TRATA	3	0.1	2.385	110000			
72	0 TRATA	3	0.1	2.385	110000			
72	l TRATA	3	0.1	2.385	190000			
72	2 TRATA	3	0.1	2.385	97000			
VAR=TRAT500 T=0								
OBS	VAR	т	CONC	INIT	BIOMASS			
<b>-</b>	=							
723	TRAT500	0	3.72	3.48	100000			
724	TRAT500	0	3.24	3.48	100000			
725	TRAT500	0	3.72	3.48	140000			
726	TRAT500	0	3.24	3.48	140000			
727	TRAT500	0	3.72	3.48	43000			
728	TRAT500	0	3.24	3.48	43000			

	729 730	TRAT500 TRAT500	0 0	3.72 3.24	3.48 3.48	82000 82000
		VAR=1	RAT500	) T=1		
	OBS	VAR	T	CONC	INIT	BIOMASS
	731 732 733 734	TRAT500 TRAT500 TRAT500 TRAT500	1 1 1 1	2.30 2.47 2.51 3.54	3.48 3.48 3.48 3.48	$   \begin{array}{r}     100000 \\     140000 \\     43000 \\     82000   \end{array} $
		VAR=T	RAT500	) T=3		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	735 736 737 738	TRAT500 TRAT500 TRAT500 TRAT500	3 3 3 3	2.26 2.38 2.11 2.39	3.48 3.48 3.48 3.48	$100000 \\ 140000 \\ 43000 \\ 82000$
		VAR=T	RAT500	T = 4		
	OBS	VAR	T	CONC	INIT	BIOMASS
	739 740 741 742	TRAT500 TRAT500 TRAT500 TRAT500	4 4 4 4	2.47 1.71 2.11 2.54	3.48 3.48 3.48 3.48	100000 140000 43000 82000
		VAR=T	<b>RAT</b> 500	T=6		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	743 744 745 746	TRAT500 TRAT500 TRAT500 TRAT500	6 6 6	0.1 0.1 0.1 0.1	3.48 3.48 3.48 3.48 3.48	100000 140000 43000 82000
		VAR=TRA	AT500A	<b>T</b> =0		
	OBS	VAR	т	CONC	INIT	BIOMASS
·	747 748 749 750	TRAT500A TRAT500A TRAT500A TRAT500A	0 0 0 0	2.33 2.26 2.70 2.55	2.46 2.46 2.46 2.46	180000 150000 180000 190000
		VAR=TRA	AT500A	T=1 -		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	751 752	TRAT500A TRAT500A	1 1	1.83 2.00	2.46 2.46	180000 150000

	753	TRAT500A	1	1.78	2 46	180000		
	754	TRAT500A	l	2.04	2.40	190000		
					2.10	190000		
VAR=TRAT500A T=3								
	<u>ABG</u>	113.0	_	· _				
	063	VAR	т	CONC	INIT	BIOMASS		
	755	TRAT500A	2	0 1	2 40	100000		
	756	TRAT500A	. उ	0.1	2.40	180000		
	757	TRAT500A		0.1	2.40	190000		
	758	TRAT500A	3	0.1	2.40	100000		
			•	0.7	2.30	190000		
*******		VA	R=TRC	T=0				
	OBS	VAR	Т	CONC	INIT	BIOMASS		
	759	TRC	0	2.56	2.18			
	760	TRC	0	2.08	2.18	•		
	761	TRC	0	1.96	2.18	•		
	762	TRC	0	2.13	2.18	•		
		VAI	R=TRC	T=9				
	OBS	VAR	т	CONC	INIT	BIOMASS		
	763	TRC	9	2 76	2 10			
	764	TRC	9	2.62	2.10	•		
	765	TRC	9	2.42	2.18	•		
					2.20	•		
		VAR=	=TRC	T=16				
	OBS	VAR	T	CONC	INIT	BIOMASS		
	766	TRC	16	2.12	2 1 8			
	767	TRC	16	2.39	2.18	•		
	768	TRC	16	2.66	2.18	•		
	769	TRC	16	2.52	2.18	•		
		VAR=	TRC	ጥ=35				
	OBS .	VAR	Т	CONC	INIT	BIOMASS		
	770	TRC	35	3.28	2.18			
	771	TRC	35	2.79	2.18	•		
		VAR=T	RC500	T=0 -		~		
	<b></b>							
	OBS	VAR	Т	CONC	INIT	BIOMASS		
	772	TRC500	0	1.64	1.86	_		
	773	TRC500	0	1.96	1.86			
	774	TRC500	0	1.64	1.86	•		
	775	TRC500	0	2.20	1.86	-		

		VAR=1	RC50	) T=9 -		
	OBS	VAR	Т	CONC	INIT	BIOMASS
	776	TRC500	9	2.15	1 86	
	777	TRC500	ġ.	2.13	1.00	•
	778	TRC500	ģ	2.10	1.00	•
	779	TRC500	ģ	2,19	1 00	•
				2.00	T.00	•
		VAR=T	RC500	T=16		
C	OBS	VAR	т	CONC	INIT	BIOMASS
	780	TRC500	16	2.66	1 86	
-	781	TRC500	16	2.17	1 86	•
-	782	TRC500	16	2 05	1 86	•
-	783	TRC500	16	2.00	1 96	•
			±0	2	1,00	•
********		VAR=T	RC500	T=35		
C	DBS	VAR	T	CONC	INIT	BIOMASS
7	784	TRC500	35	2.83	1 86	
7	785	TRC500	35	2.00	1 96	•
	786	TRC500	35	2.01	1.00	•
	87	TRC500	35	2.00	1.00	*
	• •	110000	55.	2.00	1.00	•
		VAR=	rnss	T=0 -		
	OBG	17 <b>7</b> T 1	m	00110		
	0D5	VAR	Т.	CONC	INIT	BIOMASS
	788	TRNSS	0	1 97	2 20	400000
	789	TRNSS	õ	2 06	2.29	400000
	790	TRNGG	õ	2.00	2.29	400000
	701	TIMAA	0	1.97	2.29	290000
	702	TINNOG	0	2.06	2.29	290000
	702	TRNSS	0	1.9/	2.29	850000
	793	TRNSS	0	2.06	2.29	850000
	794	TRNSS	0	1.97	2.29	470000
	795	TRNSS	0	2.06	2.29	470000
~~~~~~~~		VAR=1	RNSS	T=2		· ·· ··
· · ·	OPC	173 5	-			
	כפט	VAR	т	CONC	INIT	BIOMASS
	796	TRNSS	2	2.35	2 20	400000
	797	TRNSS	2	2 04	2.23	200000
	798	TRNSS	2	2.29	2.29	470000
********					ه بيم ه ه	
		VAR=1	CCNN	T=0		
(OBS	VAR	Т	CONC	INIT	BIOMASS
	799	TRNSS	6	2.07	2.29	400000
5	800	TRNSS	6	1.93	2.29	290000

	801 802	TRNSS TRNSS	6 6	1.40 1.94	2.29 2.29	850000 470000
	*****	VAF	R=TRNS	S T=9		
	OBS	VAR	Ť	CONC	INIT	BIOMASS
	803	TRNSS	9	2.35	2 29	400000
	804	TRNSS	9	2.90	2 2 9	200000
	805	TRNSS	9	2.47	2.29	290000
			2	2.1.17	4.29	00000
~~~~~		VAR=	TRNSS	T=13		
	OBS	VAR	т	CONC	INIT	BIOMASS
	806	TRNSS	13	2.38	2.29	400000
	807	TRNSS	13	2.64	2.29	200000
	808	TRNSS	13	2.55	2.29	250000
			~~	2	L • L J	850000
		VAR=	TRNSS	T=21		
	OBS	VAR	т	CONC	INIT	BIOMASS
	809	TRNSS	21	2.81	2 29	400000
	810	TRNSS	21	2 62	2.29	300000
	811	TRNSS	21	2.02	2 . 2 9	290000
	812	TRNSS	21	2.90	2.29	850000
	***	111100	<u> </u>	2.94	2.29	470000
		VAR=	TRNSS	T=35		
	OBS	VAR	T	CONC	INIT	BIOMASS
						· ·-
	813	TRNSS	35	2.80	2.29	400000
	814	TRNSS	35	2.90	2.29	290000
	815	TRNSS	35	2.74	2.29	850000
	816	TRNSS	35	2.90	2.29	470000
		VAR=	TRSS	T=0		
	OBS	VAR	т	CONC	INIT	BIOMASS
	817	TRSS	0	2.24	2.43	110000
	818	TRSS	Ō	2.62	2 42	110000
	819	TRSS	ŏ	2.02	2.43	110000
	820	TRSS	ñ	2.67	2.43 7 / 7	03000
	821	TRSS	ñ	2.02	2.43	00020
	822	TTOO TTOO	0	4.24	2.43	94000
	822	TDCC	0	2.02	2.43	94000
	821	TVOO	0	2.24	2.43	72000
	024	CCNT	U	2.62	2.43	72000
		VAR=	TRSS	T=2		
	<u> </u>	<b></b>				
	OBS	VAR	т	CONC	INIT	BIOMASS

	825 826 827	TRSS TRSS TRSS	2 2 2	2.09	2.43 2.43	110000 63000
	027	11100	Z	2.04	2.43	72000
		VA	R=TRSS	5 <b>T</b> =6		******
	OBS	VAR	Т	CONC	INIT	BIOMASS
	828 829	TRSS TRSS	6 6	$0.1 \\ 0.1$	2.43	110000
	830	TRSS	6	0.1	2.43	94000
	831	TRSS	6	0.1	2.43	72000
		V2	AR=TRI	T=0		
	OBS	VAR	т	CONC	INIT	BIOMASS
	832	TRT	0	1.66	2.08	260000
	833	TRT	0	2.05	2.08	260000
	835	TKT	0	1.66	2.08	380000
	836		0	2.05	2.08	380000
	837	TRT	ñ	2 05	2.08	150000
	838	TRT	õ	1 66	2.08	100000
	839	TRT	õ	2.05	2.08	190000
~~		V2	₽=₽₽₽	m-0		
		¥ 7		1-2 -	*******	
	OBS	VAR	т	CONC	INIT	BIOMASS
	840	TRT	2	1.87	2.08	260000
	841	TRT	2	1.91	2.08	380000
	842	TRT	2	2.05	2.08	150000
	843	TRT	2	1.93	2.08	190000
	*****	VA	R=TRT	T=6 -		
	OBS	VAR	T	CONC	INIT	BIOMASS
	844	TRT	6	0.1	2.08	260000
	845	TRT	6	0.1	2.08	380000
	846	TRT	6	0.1	2.08	150000
	847	TRT	6	0.1	2.08	190000
~~		VAR=	TRT500	) T=0		
	OBS	VAR	т	CONC	INIT	BIOMASS
	848	TRT500	0	2.35	2.02	44000
	849	TRT500	0	1.87	2.02	44000
	850	TRT500	0	1.90	2.02	44000
	851	TRT500	0	2.35	2.02	48000
	852	TRT500	0	1.87	2.02	48000
	000	TRT500	Ø	1.90	2.02	48000

~

854 855 856 857 858 859	TRT500 TRT500 TRT500 TRT500 TRT500 TRT500		2.35 1.87 1.90 2.35 1.87 1.90	2.02 2.02 2.02 2.02 2.02 2.02 2.02	80000 80000 220000 220000 220000
 	VAR=T	RT500	T=2 -		
OBS	VAR	Т	CONC	INIT	BIOMASS
860	TRT500	2	2.09	2.02	44000
861	TRT500	2	2.01	2.02	48000
862	TRT500	2	1.88	2.02	80000
863	TRT500	2	1.82	2.02	220000
 	VAR=TI	RT500	T=6 -		
OBS	VAR	Т	CONC	INIT	BIOMASS
864	TRT500	6	0.1	2.02	44000
865	TRT500	6	0.1	2.02	48000
866	TRT500	6	0.1	2.02	80000
867	TRT500	6	0.1	2.02	220000
					~~~~~~

.

LITERATURE CITED

- Akamine, E.K. 1951. Persistence of 2,4-D in Hawaiian soils. Bot. Gaz. 112:312.
- Altom, J.D. and J.F. Stritzke. 1973. Degradation of dicamba, picloram, and four phenoxy herbicides in soil. <u>Weed Sci</u>. 21(6):556.
- Aly, O.M. and S.D. Faust. 1964. Studies of the fate of 2,4-D and ester derivatives in natural surface waters. J. Agr. Food Chem. 12:541.
- American Public Health Association. 1980. Standard methods for the examination of water and wastewater. American Public Health Association, Inc., Washington, D.C. 1193 p.
- Audus, L.J. 1949. Biological detoxication of 2,4dichlorophenoxy acetic acid. <u>Plant Soil</u> 2:31.
- Audus, L.J. 1951. The biological detoxication of hormone herbicides in soil. <u>Plant Soil</u> 3:170.
- Audus, L.J. 1952. Decomposition of 2,4-dichlorophenoxy acetic acid and 2-methyl-4-chlorophenoxy acetic acid in the soil. J. Sci. Food Agr. 3:268.
- Audus, L.J. 1964. Herbicide behavior in the soil. In L.J. Audus, ed., <u>The Physiology and Biochemistry of</u> <u>Herbicides</u>. Academic Press, New York, pp. 163-206.
- Audus, L.J. 1976. ed. Herbicide physiology, biochemistry, ecology second edition. Academic Press, New York. Vol. 1 and 2, 1172 pp.
- Bailey, G.W. and J.L. White. 1964. Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity. <u>Agr. Food Chem</u>. 12(4):324.
- Baughman, G.L. and R.R. Lassiter. 1978. Prediction of environmental pollutant concentration. In: J. Cairns, K.L. Dickson and A.W. Maki, eds., <u>Estimating the</u> <u>Hazard of Chemical Substances to Aquatic Life.</u> ASTM STP 657, American Society for Testing and Materials, pp. 35.

- Bell, G.R. 1956. On the photochemical degradation of 2,4-dichlorophenoxy acetic acid and structurally related compounds in the presence and absence of riboflavin. Bot. Gaz. 18:133.
- Bell, G.R. 1957. Some morphological and biochemical characteristics of a soil bacterium which decomposes 2,4-dichlorophenoxy acetic acid. <u>Can</u>. J. <u>Microbiol</u>. 3:821.
- Bell, G.R. 1960. Studies on a soil achromobacter species which degrades 2,4-dichlorophenoxy acetic acid. <u>Can</u>. J. <u>Microbiol</u> 6:1325.
- Boethling, R.S. and M. Alexander. 1979. Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. <u>Appl. Environ. Microbiol.</u> 35(6):1211.
- Bollen, W.B. 1961. Interactions between pesticides and soil microorganisms. <u>Rev. Microbiol</u>. 15:69.
- Black, C.A., D.D. Evans, J.L. White, L.E. Snsmigler and F.E. Clark, eds. 1965. Methods of Soil Analysis: Parts 1 and 2. American Society of Agronomy. Madison, WI. 1572 pp.
- Brown, J.W. and J.W. Mitchell. 1948. Inactivation of 2,4-dichlorophenoxy acetic acid in soil as affected by soil moisture, temperature, the addition of manure, and autoclaving. <u>Bot. Gaz.</u> 109:314.
- Chiou, C.T., V.H. Freed, D.L. Schmedding and R.L. Kochnert. 1977. Partitioning coefficient and bioaccumulation of selected organic chemicals. <u>J. Agr. Food Chem</u>. 11(5):475.
- Council of Agricultural Science and Technology (CAST). 1975. The phenoxy herbicides. <u>Weed Science</u> 23(3):253.
- Crosby, D.G. and H.O. Tutass. 1966. Photodecomposition of 2,4-dichlorophenoxy acetic acid. <u>J. Agr. Food Chem</u>. 14:596.
- Demarco, J., J.M. symons and G.G. RoBeck. 1967. Behavior of synthetic organics in stratified impoundments. J. <u>Amer. Water Works Assoc</u>. 59:965.
- Derose, H.J. and A.S. Newman. 1948. The comparison of the persistence of certain plant growth-regulators when

applied to soil. <u>Soil Sci. Soc. Amer. Proc</u>. 12:222.

- Evans, W.H., E.J. David and E.J. Patterson. 1973. Biodegradation of urea in river water under controlled laboratory conditions. <u>Water Res</u>. 7:975.
- Evans, W.H and B.S.W. Smith. 1954. The photochemical inactivation and microbial metabolism of the chlorophenoxy acetic acid herbicides. <u>Proc. Biochem</u>. <u>Soc</u>. 57:30.
- Evans, W.H., J.K. Gaunt and J.I. Davies. 1961. The metabolism of chlorophenoxy acetic acid herbicides by soil micro-organisms. J. congr. Internat. Biochem. 57:306.
- Evans, W.H. and P. Moss. 1957. The metabolism of the herbicide P-chlorophenoxy acetic acid by a soil micro-organism. J. Biochem. 65:8.
- Hammarstrand, K. 1979. Derivatives in gas chromatography. Varian Associates, Inc. 9 pp.
- Hansen, J.R. and K.P. Buchhoitz. 1952. Inactivation of 2,4-D by riboflavin in light. <u>Weeds</u> 1(3):237.
- Harris, C.I. and G.F. Warren. 1964. Adsorption and desorption of herbicides by soil. <u>Weeds</u> 12:120.
- Hemmett, R.B. and S.D. Faust. 1968. Biodegradation kinetics of 2,4-dichlorphenoxy acetic acid by aquatic microorganisms. Paper of the Journal Series, New Jersey Agricultural Experiment Station, Rutgers, Department of Environmental Sciences, New Brunswick, NJ. pp. 191.
- Jensen, H.L. and H.I. Peterson. 1952. Detoxication of hormone herbicides by soil bacteria. <u>Nature</u> 170:39.
- Kearney, P.C., R.N. Roberts and M. Alexander. 1966. Biochemistry of herbicides decomposition in soil. Symp. Organic Pesticides in the Environment. <u>Amer.</u> <u>Chem. Soc. 21.</u>
- Klingman, G.C. 1964. Weed Control: As a Science. John Wiley and Sons. New York, 421 pp.
- Lee, F. and R.A. Jones. 1980. Role of biotransformation in environmental hazard assessment. In: A. Maki, K.L. Dickson and J. Cairns, Jr., eds., <u>Biotransformation and Fate of Chemicals in the Aquatic</u>

Environment. American Society for Microbiology, Washington, D.C., pp. 8.

- Lee, G.F. and G.M. Mariani. 1977. Evaluation of the significance of waterway sediment-associated contaminants on water quality at the dredge material disposal site. In: F.L. Mayer and J. L. Hamelink, eds., <u>Aquatic Toxicology and Hazard Evaluation</u>. ASTM STP 634, American Society for Testing and Materials, pp. 196.
- Lee, R.F. and C. Ryan. 1979. Microbial degradation of organochlorine compounds in estuarine waters and sediments. In: A.W. Bourguin and P.H. Pritchard, eds., <u>Microbial Degradation of Pollutants in the</u> <u>Marine Environment</u>. U.S. Environmental Protection Agency, EPA-600/9-79-012, pp. 443.
- Lyman, W.J. 1982. Adsorption coefficient for soils and sediment. In: W.J. Lyman, W.F. Reekl and D.H. Rosenblantt, eds., <u>Handbook of Chemical Property</u> <u>Estimation Methods: Environmental Methods:</u> <u>Environmental behavior of organic compounds</u>. <u>McGraw-Hill Book Co.</u>, pp. 4.
- Miller, W.E., J.C. Greene and T. Shiroyama. 1978. The <u>Selenastrum</u> capricornutum prinz algal assay bottle test. U.S. EPA Corvallis Environmental Research Lab, Corvallis, OR, 126 pp.
- Miller, R.W. and S.D. Faust. 1972. Sorption from aqueous solution by organo-clays: II. Thermodynamics of 2,4-D sorption by various organo-clays. <u>Environmental</u> <u>Letters</u> 2(4):183.
- Neely, W.B. and D. Mackay. 1982. An evaluative model for estimating environmental fate. In: K.L. Dickson, A.W. Maki and J. Cairns, Jr., eds., <u>Modeling the Fate</u> of <u>Chemicals in the Aquatic Environment</u>. Ann Arbor Science, Ann Arbor, MI, pp. 127.
- Nesbitt, H.J. and J.R. Watson. 1980a. Degradation of the herbicide 2,4-D in river water - I. Description of study area and survey of rate determining factors. Water Res. 14:1683.
- Nesbitt, H.J. and J.R. Watson. 1980b. Degradation of the herbicide 2,4-D in river water - II. The role of suspended sediment, nutrients and water temperature. <u>Water Res.</u> 14:1689.
- Newman, A.S. and J.R. Thomas. 1949. Decomposition of 2,4-dichlorophenoxy acetic acid in soil and liquid media. <u>Proc. Soil Sci. Soc. Am. 6:21.</u>
- Newman, A.S., J.R. Thomas and R.L. Walker. 1952. Disappearance of 2,4-dichlorophenoxy acetic acid from soil. <u>Proc. Soil Sci. Soc. Am.</u> 6:21.
- Norris, L.A. and D. Greiner. 1967. The degradation of 2,4-D in forest litter. <u>Bull</u>. <u>Environ</u>. <u>Contam</u>. Toxicol. 2:65.
- Paris, D.F., W.C. Steen, G.L. Baughman and J.T. Barnett, Jr. 1981. Second-order model to predict microbial degradation of organic compounds in natural waters. <u>Appl. Environ. Microbiol.</u> 41:603-609.
- Ridgeway, R.L., J.C. Tinney, J.T. MacGregor and N.J. Starler. 1978. Pesticides use in agriculture. <u>Environ. Health Perspective</u> 27:103.
- Robson, T.O. 1966. Some studies of the persistence of 2,4-D in natural surface waters in Britian. <u>Proc. 8th</u> <u>Brit. Weed Control Conf.</u> pp. 594.
- Rogoff, M.N. and J.J. Reid. 1956. Bacterial decomposition of 2,4-dichlorophenoxy acetic acid. <u>J. Bacteriol</u>. 71:303.
- Schultz, D.P. 1973. Dynamics of a salt of (2,4dichlorophenoxy) acetic acid in fish, water, and hydrosol. J. Agr. Food Chem. 21(2):186.
- Schwartz, H.G., Jr. 1967. Microbial degradation of pesticides in aqueous solutions. J. WPCF 39(2):1701.
- Scott, D.C. and J.B. Weber. 1967. Herbicide phytotoxicity as influenced by adsorption. <u>Soil Sci</u>. 104:151.
- Simsiman, G.V. and G. Chesters. 1975. Persistence of endothall in the aquatic environment. <u>Water</u>, <u>Air</u>, Soil Poll. 4:399.
- Spain, J.C. and P.A. Van Veld. 1983. Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure time, inoculum, and chemical structure. <u>Appl. Environ. Microbiol.</u> 45(2):428.
- Staples, C.A., K.L. Dickson, J.H. Rodgers, Jr. and F.Y. Saleh. A model for predicting the influence of

suspended sediments on bioavailability of neutral organic chemicals in the water compartment. In R.D. Cardwell, R.C. Bohner and R.F. Purdy, eds., <u>Aquatic</u> Toxicology.

- Steen, W.C., D.F. Paris and G.L. Baughman. 1980. Effects of sediment sorption on microbial degradation of toxic substances. In: R.A. Baker, ed., <u>Contaminants and</u> Sediment, Vol. 1, Ann Arbor Science, Ann Arbor, MI,
- (STORET) Systems for Technical Data. 1984. Water Programs Office, U.S. EPA, Washington, DC. pp. 477.
- Tiedje, J.M. J.M. Duxbury, M. Alexander and J.E. Dawson. 1969. 2,4-D Metabolism: Pathway of degradation of chlorocatechols by <u>Arthrobacter</u> sp. J. Agr. Food Chem. 17(5):1021.
- Torstensson, N.T.L., J. Stark and B. Goransson. 1975. The effect of repeated application of 2,4-D and MCPA on their breakdown in soil. Weed Res. 15:159.
- Walker, R.L. and A.S. Newman. 1956. Microbial decomposition of 2,4-dichlorophenoxy acetic acid. Appl. Microbiol. 4:201.
- Watson, J.R. 1977. Seasonal variation in the biodegradation of 2,4-D in river water. <u>Water Res</u>. 11:153.
- Watson, J.R., A.M. Posner and J.P. Quirk. 1973. Adsorption of the herbicide 2,4-D on goethite. J. Soil Sci. 24(4):503.
- Way, J.M. 1969. Toxicity and hazards to man, domestic animals, and wildlife from some commonly used Auxin herbicides. Residue Reviews 26:37.
- Weber, J.B. 1972. Interaction of organic pesticides with particulate matter in aquatic and soil systems. In: R.F. Gould, ed., Fate of Organic Pesticides in the Aquatic Environment. American Chemical Society, Washington, D.C., pp. 56.
- Wedemeyer, G. 1966. Uptake of 2,4-dichlorophenoxy acetic acid by <u>Pseudomonas</u> <u>fluorescens</u>. <u>Appl</u>. <u>Microbiol</u>. 14:486.
- Weed Science Society of America. 1983. Herbicide Handbook. Weed Science Society of America, Illinois, pp. 515.

- Wetzel, R.G. 1975. Limnology. Holt, Rinehart and Wilson, Philadelphia, PA, 742 pp.
- Williams, V.R., W.L. Mattice and H.B. Williams. 1978. Basic physical chemistry for the life sciences. W.H. Freeman and Company, San Francisco, CA. 553 pp.
- Willis, G.H. 1983. Pesticides in agricultural runoff and their effects on downstream water quality. <u>Environ</u>. <u>Toxicol</u>. <u>Chem</u>. 1:267.
- Zar, J.H. 1974. Biostatistical analysis. Prentice Hall, Inc., NJ, 620 pp.