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This paper is a study of continue and related metric

spaces, Chapter I is ai introductory chapter. Irreducible

continua and noncut points are the main topics in Chapter II.

The third chapter begins with a few results on locally con-

nected spaces. These results are then used to prove results

in locally connected continua. Decomposable and indecom-

posable continua are dealt with in Chapter IV. Totally dis

connected metric spaces are studied in the beginning of

Chapter V. Then we see that every compact metric space is a

continuous image of the Cantor set. A continuous map from the

Cantor set onto [0,1] is constructed. Also, a continuous map

from [0,1] onto [0,1]x[0,1] is built, Then an order preserve

ing homeomorphism is constructed from a metric arc onto [0,1],
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CHAPTER I

PRELIMINARIES

Introduction

Irreducible continua and noncut points are the main

topics in Chapter II. The Vietoris Topology is introduced

to prove that in a compact Hausdorff space a net of nonempty

closed sets has a convergent subnet. Chapter III begins with

some results on locally connected spaces. Several of these

results are then used to prove results in locally connected

continua. Indecomposable and decomposable continua are dealt

with in Chapter IV. Totally disconnected metric spaces are

explored in the beginning of Chapter V. Then we see that

every compact metric space is a continuous image of the Cantor

set. A few examples of maps between continua are also ex-

hibited in Chapter V.

Notation

The theorems presented in this paper can be found in the

books listed in the bibliography. Only the proofs, examples

and remarks given in this paper are original. It is assumed

that the reader is familiar with the material presented in a

beginning graduate topology course,

There is however some notation which needs clarification.

We will let RI denote the real numbers and R2 denote R1 x R.

I
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Let (X,T) be a topological space and A,B nonempty subsets of

X. Let 11A11 stand for the number of elements in A if A is

a finite set and let diam A denote the diameter of A. If

{a } aD is a net in X then a+ a means that the net clusters
00

to a. Similarly, if {a = is a sequence in X which clustersn n~ i

cto a s X we will write an n+ a. Let b(A) denote the boundary of

A. If A CB then let bB(A) denote the boundary of A with re-

spect to the relative topology on B. Similarly, A will de-

note the closure of A with respect to the relative topology on

B. The sets A and B are separated sets if An =B=B A = (} If

A and B are separated sets such that their union is all of X

then we will write X= A B.

DEFINITION 1.1. Let.(X,T)bea topological space and {A I
a acD

a net of sets in X, Then the limit superior of {A. I is

{x X j if U PT and xe U then for every a , D there exists a

> a, F D, such that UfA } . Let lim sup A denote the

limit superior of'{A I

DEFINITION 1.2. Let (XT) be a topological space and

{AID a net of sets in X. Then the limit inferior of

{A}a isI{xPX if U e T and x rU then there exists an ao D

such that if qc D and a o >_ then An flU # + }. Let lim inf A

denote the limit inferior of {A } Iw gED

DEFINITION 1.3. Let (XT) be a topological space and

{A D a net of sets in X. Then A is said to be the limit of

{A I if and only if lim inf A = lim sup A = A.
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DEFINITION I.4. Let (XT) be a topological space. A

connected subset of X that is not properly contained in any

other connected subset of X is a coMponent of X,



CHAPTER II

CONTINUA

Irreducible Continua

DEFINITION 2.1. A continuum is a compact connected

Hausdorff space.

EXAMPLE 2.2. Let X be the subspace of R2 shown in

Figure 1; then X is a continuum.

Figure 1 Continuum

LEMMA 2.3. Let X be a compact Hausdorff space and let

F be a family of nonempty closed subsets of X with the property

that if A, BeF then there exists a CsE:F such thatCCAflB.

Then the following two properties hold:

i) If U is an open set containingflF, then there is some

FeF such that FCU.

ii) If in addition, each F a F is connected then niF is

nonempty, compact and connected.

4
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PRQOF, First indeX F, say F { F} Pick an element

in F, say, FO. Let P;= {asAI Fa C-Fl and. direct D as follows:

FC Fa

Let U be an open subset of X such that O F U, Suppose FQ4 U

for all asA; then for each asD there exists a fas Fa such that

fJ U. Now we have a net {fi in F with F compact.a sD a1  a1
Hence fa y YSFa , for some ys-F,1 '

Suppose y F , for some a in A; then ys(X Fa) which is

open in X. Now, there exists F C F OnF with a2 eD and there
a2 - a a1

exists a3 >a2such that f c(X - F_). Thus, F CF C F and so
U ach a3 a2 a

f E3FX - F U ; but this contradicts f a3 eFa3. Hence yen( F_ and

therefore y cl U. Thus., for each aF D there exists a >a, E D,

such that f E-U. This contradicts f a U for all acD. Hence,fl

F and there exists F e F such that F C U.

To prove part two we will use part one. Now assume each

F E F is connected. From the proof of part one we have that

OF / . Since X is compact anflF is closed we have that OF

is compact.

SupposeflF is not connected. Then letf F= KQ H. Since

X is compact and Hausdorff there exist open disjoint sets U and

V such that KCU and H CV, By part one there exists F I E:F such

that F1 C U U V. Since F1 is connected, either F1 cU or F1i, V.

Without loss of generality suppose F1 9U; then( FCU and

therefore H = ). This contradicts H / and therefore 0 F is

connected. #
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DEFINITION 2.4. Let (XT) be a topological space and A

a nonempty subset of X. A subcontinuum K of X is irreducible

about A if A CK and no proper subcontinuum of K contains A.

EXAMPLE 2,5. Let Xf{(x,y) e6R21x2 + y2 <16}and

A= (x,y)EX 1X2 + y2  } Then Ki{(x,y) eXj x 2 +y2 <1} is

subcontinuum of X which is irreducible about A.

THEOREM 2.6. Let X be a continuum and A a nonempty subset

of X, Then X contains a subcontinuum which is irreducible about

A.

PROOF. Let K= {K 9X I K is a subcontinuum of X and A K}.

K / 0 since X EKr Partial order K as follows:

K < K ++ K qK

Let C be a chain in K; then C1 = f C is an element of K. Thus
C eC

C has an upper bound and therefore K has a maximal element, say

KI. Clearly KI is irreducible about A. #

DEFINITION 2.7. Let A and B be nonempty disjoint subsets

of a space X. A subcontinuum K of X is irreducible from A to B

if K intersects both A and B and if no proper subcontinuum of K

intersects both A and B.

EXAMPLE 2.8. Let X be R1, A= {xsX j 0<x<11},

B= {xsX[I 5<x<25} and K= {xEX I l<x< 5}. Then K is continuum

which is irreducible from A to B.

THEOREM 2.9. Let X be a continuum and A,B be nonempty

disjoint closed subsets of X. Then X contains a subcontinuum

which is irreducible from A to B.
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PROOF, Let K; :{KCX I K is a continuum, KfA$ and

KflB /}, K$4 since XEK, Partial order K as follows:

K <K ++K CK

Let C be a chain in K then C fln C is a continuum. Suppose
CeC

C1fA =, Then there exists C2 sC such that C 2 CX - A; but this

contradicts C2 fA/ $, Thus, C1fA and similarly C1 flB $.
Hence, by Zorns' lemma, there exists a maximal element K, in

K. Clearly K, is irreducible from A to B. #

Let X be a compact Hausdorff space and A, B nonempty dis-

joint closed subsets of X. If there does not exist a sub-

continuum of X which intersects both A and B then, due to

Theorem 2.9, X is not connected. Moreover, we can find two

separated sets in X such that their union is all of X, A is

contained in one of these sets and B is contained in the other.

The next three lemmas are needed to prove this.

LEMMA 2.10. Let X be a compact Hausdorff space, x and y

elements of X such that xt y, and {H } a collection of
a czsA

closed sets each containing x and y such that each H is not

the union of two separated sets one containing x and the other

y. If {Ha}aeA is totally ordered by set containment, then

fl H is not the union of two separated sets one containing
a E A

x and the other y.
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PROOF. Suppose ni H =MLIN, whero xeM and y e:N. M =M
gA

and N= N since n H is closed. Let U and V be open dis-
acA

joint sets such that M gU and NC-V. From Lemma 2.3 we know

that there exists H such that H C UU V. Thus,
41 al

Ha = (H flU)14J(H flV) with xeH fU and ysF-H fV, This

contradicts H not being the union of two separated sets one

containing x and the other y. Hence, n H is not the union
acA a

of two separated sets one containing x and the other y. #

LEMMA 2.11. Let X be a compact Hausdorff space and x,y

elements of X such that xt y. If X is not. the union of two

separated sets one containing x and the other y, then X has a

subcontinuum joining x to y.

PROOF. Let H={HCX x,yeH, H=Hf and H is not the union

of two separated sets one containing x and the other y}. H t

since Xe H. Partial order H as follows:

H < H H C H .

Let C be a chain in H. Then, from Lemma 2.10, fCEH and
CC

therefore H has a maximal element, say H1 . If H is connected

we are done; so suppose Hi =MQN with x,yeM. H, 6 H implies

that H,= H1s and therefore M= M. Thus, if M is connected we

are done. Suppose M=Q 9)R. If xsQ and y E R, then H=Qq)(RUN)

with x 6 Q and y E RU N. This contradicts H1 s H. Thus without

loss of generality say x,y eQ. x,ysF-Q andHijcsH imply that

Q is in H. Then Q C H1 and QsF- H contradict H, being maximal inH.
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Hence, M is connected and therefore M is a subcontinuum con-

taining x and y. #

LEMMA 2.12. Let X be a compact Hausdorff space and let

A and B be closed disjoint subsets of X. If for each pair a,b,

with a eA and b EB, there exist sets H, K such that X =H $K

with asE:H and bcK, then X=OM4N where ACM and BON.

PROOF. Let a E A. For each b E B there exist sets Hb and

Kb suhthat X=HbK with a P-Hb and b EsKb. Let K =K b b B).

Then K is an open cover for B and therefore K has a finite

subcover, say Kbl, Kb2,.. .,K Kb . Do the above for each aseA.

na a
Thus for each aeA, BCU Kb. and a Hb, i=1,2,...,n. By

1=1 1 1
na na

construction ( U Kb.f .f Hb)=( for each asEA. Also,
1=1 1 i=1 1

na
A C U (tH Hb). Since A is compact there exists a finite set

asA = 1
n

F = {ai,...,am}CA such that AC U ( Hb ). Let
aeF_ i=1 i

n na

a= aF . Hb) and N= fl (U Kb). Clearly ACM and BEN.
- i=1 1 aeF 1i= 1

na na
Let ascF; then ( U Kb )n (fl Hb) = $ and therefore mn N=(.

=1 i i=1i

Let xsc X. For each asc F X=HbPKb for i= 1,2 ,...,na; thus

n nab1 1
xe A Hb. or xs U Kb . Hence xsc M or xe N and therefore

j=1 1 i=1 i

X MN. #
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TH4QREM 2,131 Let X be a compact Hausdorff space and lot

A,B be closed disjoint subsets of X such that no subcontinuum

of X intersects both A and B. Then there exist closed disjoint

sets MN such that X=MUN with ACM and BCN.

PROOF. Suppose there do not exist closed disjoint sets

M,N such that X=MU N with ACGM and BGN; then there exist

a s A and b a B such that X is not the union of two separated

sets one containing a and the other containing b. Then, from

Lemma 2.11, there exists a subcontinuum joining a to b. This

contradicts there not being a subcontinuum of X intersecting

both A and B. Hence there exist closed disjoint sets M,N such

that X=MUN with ACM and BCN. #

Theorem 2.14 also comes from Lemma 2.11 and Lemma 2.12.

THEOREM 2.14. Let X be a Hausdorff space and let A,B be

disjoint closed subsets of X. Let K be a subcontinuum of X

which is irreducible from A to B. Then the sets K- (AU B),

K - A and K - B are connected.

PROOF. First we will show that K- (AUB) is connected.

Suupose K - (AU B) is not connected; then let R and S be subsets

of X such that K - (AU B) = RY1S. Then R U (KflA) U (KflB) and

S U (KfA)U (KflB) are closed subsets of K. Let a e KfA and

b E Kf B; then K irreducible from A to B and Lemma 2.11 imply

that RU(KflA) U (Kfl B) is the union of two separated sets one

containing a and the other containing b. A similar result fol-

lows for SU (KflA)U(KlB). Hence, from Lemma 2.12, there

exist sets MN,P and Q such that RU(KflA)U (KflB) =MQN,
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KOAgM, KflBCN, SU(KfA) U KfB)>;PQ KfAC=P and

KflB CQ, Thu&sK(MUP) U (NUMQ), MUP 77MuPand NUQNuQ.

bet z e M, then zIN since MfN:;$. If z eR then z { Q and if

z c KflA then z eP, Hence zI NUQ, Let p eP; then p { Q since

Pf Q= , If p e S then pIN and if peKflA then peM. Hence

p tNUQ, Thus (MUP)fl(NU Q)= . This contradicts K being

connected, Hence K- (AU B) is connected.

Now suppose there exist subsets of X C and D such that

K - A = CQD. Let U and V be K- open sets such that uflv=$,

KfA C U and KflB V. Without loss of generality let

K- (AU B)g C. C and D are open in K since they are open in

K-A. Hence CUU and DflV are open in K. Uflv=$ and

CD = 0 imply that (CUU) fl (DflV) =@ . Hence

K = (CU U)U(DlV); contradicting the connectedness of K.

Thus K - A is connected. One can show that K - B is connected

using a similar argument. #

DEFINITION 2.15. Let X be a space, xsX and Q ={yEX

there do not exist open disjoint sets U,V such that X= UU V

with xEU and y eFV}. Then Q is called the quasi-component

of X determined by x.

REMARK 2.16. Let X be a compact Hausdorff space and x eX,

Then, due to Lemma 2,11, for each yQx, xf y, there exists a

subcontinuum1K, in X which joins x to y.



12

THEOREM 2,17. Let X be a space and xs6 X. Then

q =:RU q X I U is both open and closed and xe U},

PROOF. Let zseQ and U C X such that U is both open and

closed and such that x a U. U both open and closed implies

that X=: (X - U) U (U), where both U and X - U are open and where

(X - U) n(U) ., z Q and x e U imply that z csU. Hence,

QCO{UgC X I U is both open and closed and xac U}.

Let wEaf{U CX I U is both open and closed and xsc U}. Suppose

I Q ; then there exist open disjoint sets V, W such that

X=VU W, x e V and o a W. Then V is both open and closed and

therefore woE V. Hence V0Wt$. This contradicts VflW= .

Thus o E Qx and therefore f{UCX U is both open and closed and

xa U}gQ . #

THEOREM 2.18. Let X be a space and xa-X. Let C, be the

component of X containing x; then CC Q .

PROOF. Let z E Cx and suppose z Qx. Then there exist

open disjoint sets U,V such that X=UUV, xe U and zaE:V. C

being connected implies that C CU or CxCV. xac U and zaEV

contradict C xCU or C xCV. Hence zaE:Q and therefore Cx qQx .#

EXAMPLE 2.19. Consider the subspace X of R2 shown below.

Figure 2 Supspace X of V.
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Consider the two vertical line segments farthest to the right

in X. They are of equal length and shorter than the reamin-

ing line segments. Let A be the upper one and B the lower.

Choose x X as shown,

A

Figure 3 Clarification
of A,B and x.

C =A but Q,=AU B. Hence C CQ . Notice that X is not com-

pact.

THEOREM 2.20. Let X be compact and T2. Let xeX; then

Q = C .

PROOF. Due to Theorem 2.18 it is sufficient to show

that Q g C. Let qsc Q,. Then, due to Lemma 2.11, there exists

a subcontinuum K joining x to q. KU C is connected since

xs-K and x eC . Thus K C and therefore qsCE . Hence

Qx gCx. #

Noncut Points

THEOREM 2.21. If X is a continuum such that X has more

than one point then X has at least two noncut points.

PROOF. Let X be a continuum such that X has more than

one point. If every x E X is a noncut point then we are done.
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So suppose X has a cut point. Let x e X be a cut point and

let Ux,Vx be subsets of X such that X -'{xI L= UxV. Suppose

each ySUx is a cut point. For each y e U, let U ,V be sub-

sets of X such that x c Vy and such that X,{y} = Uy OVY. Then

for each y E U ,U U {y} is a continuum such that

U U {y}9X{x}. Hence U U{y} cU for each y e U . Sety y- x
U {U>U fy} |jyF , U} and then partially order U with set con-

tainment. Let C be a chain in U; then K= f(Uu{y}) is a non-

empty continuum with K C U .

Let keK; then UkUfkICK. To see this we will consider

two cases. First suppose kcP U for every U U {y}eC. Let
y y-

y C Ux be such that U U {y} P C. If ye Uk then VkU {k}CX 2{y} =

u v kU n X-kf iml ky
Uy 0 VY. k FUy and x e Vk y imply That (VU{k})fl nu + and

(Vk u {k})flVy 4 This contradicts the connectedness of

VkU {k}. Hence y{Uk and therefore Uk Uf{k}YCU y. Thus

Uk U {k} C K when k EcU: for every UJU fy} eC. Now suppose therek y y
exists a yo eX such that U U{yol s C but k { U . Since

k E K fl (U U {yi) we have that k= y0 and therefore Uk = U
C k YO,

Let w E X be such that o e U , k and U LJ{w}eC. Then k eU

and therefore Uku{k}9U . Hence UkulkicK if there exists a

yo e X such that UyU{yo}eCbut kjUy.

Thus Uk {k} is an element of U such that UkUlki C K.

Therefore, by Zorns' lemma, U has a minimal element. Let S

be the minimal element in U; then S is a continuum such that
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SC (U Uf{y}). Let ses4 Then, since U U{y}cU for each
ysU Y y~X

y stx s,.e>U . Thus X -{s} =UYV5 , seU and x eV . Then

Uuj{s} connected, U5 U{s}CX-ix} and set Uimply that

U u{s} cU ,Let z eUs; then zeUx and therefore X {z} =

Uz Vz. Again Uz U< Now, s e S and s E X - {z} imply that

seUz. Thus sU{s})fUH $and,since xeVzflVs,

(V uL{s})lV fl. zeU implies that Vs uf{s}CX{z}=Uzqv
5 z s5 z5

Thus V U{s}cU or VSUTs} V . This contradicts

(Vs u {s})f fu I and (V s U {s})frV $.t Hence there exists a

noncut point in U . Similarly there exists a noncut point in

V and therefore X has at least two noncut points. #

Vietoris Topology

THEOREM 2.22. Let (X,T) be a topological space and

S(X) = {F CX j F = F and F4 }. For each Ge T set S(G)

{FeS(X) FCG} and I(G) ={FlKeS(X) I FCIGfl0}. Let

Sj {S(G)IG eT}, S2 ={I (G)IG eT} and let E be the topology on

S(X) with S= SJU S2 as a subbase. Let Uj,U2,...,Un be open

sets in X and set <U 1 ,U2 ,...,Un> ={F e S(X) I FC U and
i=1

Fn Uit 0 for all i}. Then B= {<U 1 ,U2 ,..,Un>l U. eT for all i

and n is a positive integeri is a base for E.

PROOF, Let n be a positive integer, Ul,U2,.,,,Un be

nn
open sets in X and Fe (UI ,U2,.,pun>, Set

n n
V = [S( U UJ rfl I(UJ]. Then VCE E and FCEVC<Ui,U2,, ,,UX

1 =1n
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Thus KU IU 2 ,.-U >P E and therefore BgE.

Let F cS (X). If Fsc S(G) for some G eFT then

F c<G>CS(G). If F e I(G) for some G e T then let V eT be such

that F CV. Then Fe<G,V> CI(G). Hence B is a base for E. #

The topology E on S(X), given in Theorem 2.22., is some-

times called the Vietoris Topology on S(X). The Vietoris

Topology will enable us to prove that a net of closed nonempty

sets in a compact T2 space has a convergent subnet. This re-

sult will beusedthoughoutthe rest of the paper.

THEOREM 2.23. Let (X,T) be a T, space. Then S(X) is T1 .

PROOF. Choose two distinct points FI,F2cS(X). Without

loss of generality let x2 eF2 - F1. For each x eF1 let Ux be

an open set in X such that x e U X but x 2 4U. Set

U1 = xFUX; then Fie<U1> but F2 4<UI>. If F1 $F2 , a similar

argument shows that there exists a U2 e T such that F2 e U2 Xbwt

F1 <U2>. If F1 CF2 then F2 e<U1 ,X - F1 >, but F1 } <U1,X - F1>.

Hence S(X) is T1 . #

THEOREM 2.24. Let (X,T) be a compact space; then (S(X),E)

is also a compact space.

PROOF. Let C be a cover of S(X) by subbase elements.

Set S= {G c T 5(G) e C} and I = {G e T I(G) e C } . If I = $ then

X e S(GO) for some Go e S. Then S(X) S S(GO) and therefore S(X)

is compact.

If I 1) and X U GIG then I is an open cover for X. Thus
Gel n

there exist sets G1,G2,**Gn EI such that X U G.,
i=.I
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n n
Xg U G. implies that S(X) U I(Gi) and therefore S(X) is

i=1 i= I

compact.

Finally suppose It and XS U C Q Then X - U G
GeI GeI

S(X) Therefore there exists a Gof: S such that X - U G e S(GO).
GeI

Hence X= [YG]U G,. X compact implies that there exist sets

Gl.,G2,..,,GneI such that X Gi U Go. Let FsES(X).
i=1

n

X= UGi U Go implies that if F 5Go then F 6 I(G.) for some

i, i=l,2,3,...,n. Hence S(X)CLUI(Gi)IU S(GO) and therefore

S(X) is compact. #

THEOREM 2.25. Let (X,T) be a T, space and let (S(X),E)

be a compact space. Then (X,T) is a compact space.

PROOF. Let C be an open cover for X. Say C={C oa eA}

for some index set A. Set CE = {I(C )ICaeC}; then E is a cover

of S(X) by subbase elements. Hence there exist

I(Cai), I(CC(),...,I(Ca.), members of CE, such that

S(X)C U I(Ci). Choose x eX. {x} is a closed subset of X

since X is T1 . Hence {x}sI(C ) for some id, l < io < n.

Thus x ECa,. and therefore XC C. Thus C has a finite10I-1 :1 1

subcover and therefore X is compact. #

THEOREM 2.26. Let (X,T) be a T, space. Then (S(X),E) is

a connected space if and only if (X,T) is a connected space.

PROOF. Let S(X) be connected and suppose X= RqJS, for

some sets R and S. Let A={FS(X)IFC'R},B =FeS(X)IFCS} and

C= {FsS(X)|FflR# and FnlS + }. RCeA, SEB and XEC. Hence
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A + $j, B + ( and C t $.

Let FEAW and choose a net {F} D in A which converges,

in S(X), toF. For all acD, F :KS> and Fj<R,S>. Hence Fe:A

and therefore A is closed in S(X). Similarly B and C are closed

in S(X). Hence S(X) ;A iBQ C, which contradicts S(X) connected.

Thus X is connected.

Next let (X,T) be a connected space. For each positive

integer n let F {FcS(X) IF has less than or equal to n
n

elements} and define a function g from H X. into F , where
n - M-

Xi = X for all i, by g n((XIX 2 , --- Xn))= x1 ,X2 ,. -. . ,Xn}

Let no be a positive integer and (x1 ,x2 ,.--,x ) X.,
no I

where X.= X for all i. Choose open sets U1,U2 .-. ,Uk in X

such that g > For each

each , j =1,2,3,...,no, let V iUIxeU., i = 1,2,3,...,k}.

Then for each , j,=1,=...,no, set W.=fvl.. Now,
no3 - no

(X1,X2 ,. .,Xn )e f 1 .which is open in n X. and
0 1O j=13i1

n0

n 9if W );U1,U2-.. ,Uk> . Hence g11  is continuous andno3=1 229'kn
therefore F is connected. Thus for each positive integer n,

F is connected.

Let FI={F S(X)[F e Fn for some positive integer ni; then
F is connected in S(X). Let U1 ,U2 ,- ..,,U be open subsets of XM
and for each i, i= l,2,...,m, let xi e U . Then F =-{x1,x2 ,.,,,
xM} e F and Fe<U2 ,U2 ,...,Um> . Hence F is a dense connected

subset of S(X) and therefore S(X) is connected. #
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Let CXT) be a topological space and'{A } a net in S(X).a D
Aa 1 A means that the net of sets converges to A with respect

to the topology T and A A means that the net converges to A

in S(X).

THEOREM 2.27. Let (X,T) be a compact T2 space and

{AI I a net in S(X). If there exists an A S(X) such that

E TA + A, then A -*A.

PROOF. Let {A aIcD be a net in S(X) and AS(X) such that

EA + A. Choose x0 c A and let U be an open subset of 1 such

that x0  U. For each x s A let V, be a T-open neighborhood of

x; then V= {V xEA} is an open cover for A. Hence there exist

sets V1,V2,- -Vn such that V. V for i=1,2,...,n and such
n

that A C U V . Let W=<U,VIV2 ,...,Vn>; then A cW and there-
1=1

fore there exists an aQSD such that if a > ao, acD, then A W.

Hence, if a '.D and. a >a 0 then A aU t $. Thus A glim inf A C

lim sup A in X.

Let z c X be such that z c lim sup A . Suppose z 4 A; then

there exist disjoint T-open sets U and V such that' {z} CU and

EACV. A + A and AsE<V> imply that there exists an aieD such

that if asD and a>a1 then A a<V>. Thus for a> a,, A :c V.
a

z lim sup A, and z E U imply that there exists an a2cD, a2 >_ a1 ,

such that A flUt $. This contradicts UflV= . Hence zsEA and

Ttherefore A .1lim inf A a 1im sup A C A. Thus A + A. #
a a a

REMARK 2.28. Let X be a compact T2 space and'{A I a
a aD

net in X such that At+ for all acD. Then Theorem 2.24 and
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Theorem 2.27 imply that'I{A } has a convergent subnet. If
a atsb

X is a compact metric space and' An1 V a sequence of closedn n;:; l
nonempty sets in X then, similarly,' {An}I has a convergent

subsequence.

THEOREM 2.29. Let (XT) be a compact T2 space and

C(X) ={FeS(X)IF is a continuum}. Then C(X) is closed in S(X).

PROOF. Let x e X. Then' {xI&C(X) and therefore C(X) (

BLet FsC(X) and{ IF }D a net in C(X) such that F + F. Then

TFa + F and therefore F is connected. Hence F is a continuum

and therefore F E C(X). Thus C(X') is closed in S(X). #

EXAMPLE 2.30. Let A={l(x,y)ER2 Ix2 +y2 =}, D =

{(y) sR2 x2 + y2<1} and Y = {(x,y) c R2  x2 + y2 < 1 + 2111. Set

X =Y - DO. Recall that S(A) =IFCA IF=F and Ft 9} and C(A)=

{Fs S(A)j F is a continuum}. Let X* be the onepoint compacti-

fication of X. Thus X*= X U{p}. Let (x1,y1 ) sA and choose

(x2 >Y2 ) csA such that (x1 ,yl) t (x 2 ,y2); then let K((x1 ,yl),

(x2 ,y2)) be the arc joining (x1 ,y1 ) to (x2 ,y2), moving in the

clockwise direction, in A. Then C(A) =1(xI,yI)(xI,y1 )sA}U

{AIU{K((x1 ,yi), (x2 ,y2) I(x1 ,Y1)sA, (x2,y2) 6 A and (x1 ,yl)t

(x1 ,y )}.

Let g be a function from C(A) into X* such that

g((x1 ,y1)) = (x1,y1),. g(A)= p and such that g(K((x1,y1),

(x2 ,y2))) is the point (xo,yo) sX such that (xo,yO) is on the

line y = (/x1) x and such that d((x1,yl),(xo,y0 )) equals the

length of K((xJY1 ),(X 2 ,y2)). Then g is a one to one and con-

tinuous map of C(A) onto X*.



CHAPTER III

LOCALLY CONNECTED CONTINUA

DEFINITION 3.1. Let (X,T) be a topological space and

x c X. X is locally connected at x if X has a neighborhood

base at x of open connected sets. X is said to be locally

connected if X is locally connected at each x e X.

THEOREM 3.2. Let (X,T) be a topological space. Then X

is locally connected if and only if each component of each

open set is open.

PROOF. Suppose X is locally connected. Let Y be an

open subset of X, C a component of Y and ye C. Since X is

locally connected there exists an open connected set B such

that yF- BCY. Thus BU C is connected and therefore BU C CC.

Hence B.CC and therefore C is open.

Next, suppose each component of each open set is open.

Let x E X and for each open set U containing x let CUx be the

component ofE U that contains x. Let Bx= {CIUxU is open and

x U}; then B is a neighborhood base at x of open connected

sets. Hence X is locally connected at x and therefore X is

locally connected. #

REMARK 3.3. Let X be a locally connected compact space.

Then C= { C C is a component of X} is an open cover for X of

pairwise disjoint sets. Since X is compact C has only

21
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finitely many elements, Thus a compact locally connected

space has only a finite number of components.

THEOREM 3.4. Let (X,T) be a topological space, Y a s

set of X and f:X+Y a function from X onto Y. The set Tf
{G QY f (G) e TI is the quotient topology on Y. If (X,T)

locally connected then (Y,Tf) is locally connected.

PROOF. Assume (X,T) is locally connected. Let G e Tf
consider some component CG of G. For each z f~'(CG) let

Cf-J(G) be the component of f 1 (G) which contains z. Sin

X is locally connected and fis continuous Cf-1(G) zGeT for

z sf~1 (CG). Hence U Cf-1(G) T. If we can show that
zef-1 (CG) z

ub-

is

and

ce

each

-1(CG) =U Cf-1(G) z then, due to Theorem 3.2, we will be done.

Clearly f 1(C6)gcU C~ '(6)z . Let wsf~'(CG); then f(w)cC

zsfI (CG)
and f(w)f(Cr'(G)). Since f is continuous and

CG f(Cf-1(G)) # # we have that f(C -(G) ) CG. Hence

WECf-C() f'(f(Cf-l(G) )) f'EC9. Therefore f

U C f-(G) and so (YTf) is locally connected. #
z

zsf 1(CG)

DEFINITION 3.5. A space X is connected im kenlen at a

point x if each open neighborhood U of x contains an open

neighborhood V of x such that any pair of points of V lie in

some connected subset of U.
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Clearly if X Is locally connected at x then X is connected

ii kleinen at x, Example 3,6 shows that the converse is not

true.

EXAMPLE 6. The following subspace of R2 is connected

im kleinen at y but not locally connected at y.

Figure ,4 Subspace of R2

THEOREM 3.7. Let (X,T) be a space such that X is con-

nected im kiLeinen at x for all x e X. Then X is locally con-

nected.

PROOF. Let G be an open subset of X and C a component

of G. From Theorem 3.2 it is sufficient to show that C is

open. For each x rC let VX be an open set such that

x C Vx ;=G and such that if u,v e V, then there exists a con-

nected set W such that u,vcEWCG. Fix xeC and for each

V E V let W1% be a connected set such that x,v e Wv CG, Then

U Wv is connected and contains x. Hence U W CC,
Ie, FV EyN

Since V c q WV, we have that Vx CC. Thus for each x e:C,
vev 

X
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V C. Hence C U V CC. Thus C is open and therefore X is
xEC

locally connected., #

THEOREM 3.8. Let X be a metric continuum. Then X is

locally connected if and only if for each E >0, X is the union

of finitely many connected sets each of diameter less than c.

PROOF. Let X be locally connected and E > 0. For each

x eX let Vx be an open connected set containing x with dia,

meter less than s. Then V={V i xEX} is an open cover for X

and hence has a finite subcover. Let {V, . . .,V } be the

n
finite subcover from V; then X= U V. Hence X is the union

i=1 li

of finitely many connected sets each of diameter less than s.

Next, let X be such that for each s > 0 X is the union of

finitely many connected sets each of diameter less than E.

Suppose X is not locally connected. Then, from Theorem 3.7,

there exists a p F X such that X is not connected im kleinen at

p. Choose a neighborhood U of p such that if V is an open set

with pEVC U then there exists a zsFV such that p and z do not

lie together in any connected subset of U. Choose s > 0 such

that S(p,) :U and then let Cj.,C 2,,...,Cn be connected sets of

ndiameter less than c/4 such that XF: U C., Without loss of

generality suppose p eC Let oqC . Then d(p,o).i e/4 and

therefore wS(p,s). Hence C g S(p,e), Choose a positive in-

teger n1 such that S(p,l/n)CS(pe). Let x4 e S(p,l/ni) be such

that x, does not lie together with p in any connected subset of
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U. Then x1 4(C- . For each positive integer n, n >2, let
)0'

X E:S(p,1/n1 + n 1) be such that does not lie together with

p in any connected subset of U. Hence xn 4 C. for all n> 1.

For some kt+jo, l<k<n, Ck contains infinitely many of the

x s. This and the fact that x+ p imply that p eC-k Hence

Ck U. Thus let q e Uk be such that q jS(p,E) . Then

d(p,q) >c and therefore diam Ck> E. This contradicts diam

Ck < c/4. Hence X is locally connected. #

For Theorem 3.14 we need to know that if X is a continuum

and U is a proper open subset of X then every component of U

intersects the boundary of U. Since every component of U is

closed it is sufficient to show that the closure of every com-

ponent of U intersects the boundary of U. Lemmas 3.9 and 3.10

show this.

LEMMA 3.9. Let C be a component of a compact Hausdorff

space X and U an open set containing C. Then there exists an

open set V such that C CV Q9U and b(V)=9.

PROOF. Let x c C; then the component of X containing x is

C. Since X is compact and Hausdorff C= Qx Recall that Q is

the quasicomponent of x. Thus C = C) {V V is open, V is closed

and xe VI. Hence, from Lemma 2.3, there exists a set Vo such

that C CVO7 x e Vo,V0 CU, Vo is open and V0 is closed. Since V0

is both open and closed b(Vo) = Q. Hence Vo is an open set con-

taining C such that b(Vo) = $. #
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LEMMA 3.10. Let U be a nonempty proper open subset of a

continuum X and C a component of U. Then Cab(U) t
PROOF. Suppose cflb(U) =$; then C=C. cflb(U)=$

implies that C is a component of U. To see this suppose that

C is not a component of U. Then the component of U containing

C is a continuum which intersects b(U). From the proof of

Theorem 2.9 we have that there exists a continuum K such that

K CU and K is irreducible from C to b(U). Thus, from Theorem

2.14, K - b(U) is connected and therefore K - b(U) C C.

Henc K CSC Q b(U). This contradicts K being connected. Hence

C is a component of U if cflb(U) =

Since C is a component of U there exists a U-open set V

such that CCVCU with bU(V) = . Hence V is closed in X. V

open in U implies that there exists a set W such that W is open

in X and V=vWfU. Thus V0 = Won o=(U)0 =WfaU. VCU and V=WfU

imply that V=WflU. Hence V= WOU and therefore V is both

open and closed. This contradicts X being connected. Hence

cfb(U)4$. #

DEFINITION 3.11. A subcontinuum K of a continuum X is a

continuum of convergence if there exists a sequence {K }
n1n=1

of pairwise disjoint continua such that the limit of {Kn }1nn n=1

is K and KCIK =$ for all n.
n

THEOREM 3.12. Let X be a continuum. Then X is not the

union of a countable ( >1) family of pairwise disjoint, non-

empty closed sets.
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PROOF, X is not the union of a finite (> 1) family of

pairwise disjoint. nonempty closed sets because X is con-
00

nected. Suppose X= U F where each F is closed and non-n=1 n n

empty and where Fnfl F = if n in. Let U, be an open subset

of X such that F G U, and UflnF 2 = . Let U2 be an open sub-

set of X such that F2 gU2 , U2flF 1 = and u2 flu 1  $ (For ex-

ample, take U2 = (U1)c), Assume that U has been constructed
n n-1

such that U is an open subset of X, F C Un, U fn(.U F.)=$
n n n - n n 3=1 3

and n: U4  $. Let W be an open subset of X such that
j=1 J n+1

nn

F CW and W fl ( U F.) = $. Let ze .f U. and let V 1n+1 -n+ n+ j=1 3 3=1 3 n

be an open subset of X such that z c V and V n( U F) =$
n+1 n+1 . n

3=1
n

Now let Un WnUV ; then.U 2FnU+f( U F
n+1L n+1 n+1 n+1- n+1' n+1

j=1
n+j

and aU .LetF_={un3 n = 2,3, ... } . Since X is com-
4 =1n

pact and any finite subset of F has a nonempty intersection
DO 00

ve have that Ui $ Let qE f l u; then, since XU= U F
n=1 n n=1 n n=1 n

there exists a positive integer n, such that q s F . This

contradicts q E U+ since U fl F Hence X+ U F.#
n1 +1 n Hn XtUn

1nn=ln

REMARK 3.13. Let X be a continuum and K a subcontinuum

of X. If K is a continuum of convergence then there is a se-
00

quence{Kn =1 of pairwise disjoint continua such that Kn +-K

and KnfKn=$ for all n. Theorem 3.12 implies that
00

Xt (U K ) UK.
n=1 n
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THEOREM 3.14. Let X be a metric continuum such that X

is not locally connected. Then there exists a p e X such that

p is in some nondegenerate ontinuum of convergence.

PROOF. X is a metric continuum that is not locally con-

nected. Hence, by Theorem 3.7, there exists a pe X such that

X is not connected im kleinen at p. Let U be an open set such

that p sU and such that if V is an open subset of U containing

p then there exists a y e V such that y does not lie together

with p in any connected subset of U. Let Vo be an open sub-

set of U such that p E Vo and T 0 fl b (U) = $. Choose a positive

integer N1 such that S(p,l/Nf)lgVo and then choose yES(p,l/N1 )

such that the component of X0 containing y1  CYi is such that

C fl{p}=$. Now let W1,VI be open sets such that psF Wj,

SC VI and such that WinfV = . Choose a positive integer

N such that S(p,1/N)C VoflW 1 and then let N2 = max {N,Ni+1}.

Let Ya be such that y 2 sS(p,l/N2 ) and such that the component

of Vo containing y2 C is such that C O ' {p} = $- y2 EW 1 ,

r C VI and Wi0Vi = imply that C flC = $. Assume y71 y1  y2 n-

has been chosen such that y-cS(p,/N- the component of

V0 containing y Cy does not contain p and

n-2 n-i

C n ( U C ) =$. Then let Wn,~Vn-I be open disjoint setsmh nIe t n-
1 mV -n-i

such that p 6 W and.U C CV . Choose a positive integern-i Wi -- J -a-
M such that S(p,l/M)g VoaW and let N nmax{M,N +1},

Rein n i



29

Let yn be such that yn S(pl/Nn) and such that the component

of %o containing yn C is such that C )'{p} =$

n-1 n

7. (CWniC N 0y Vn and Wn fVni = imply that

n-1
C n) (U C ) = . Hence we have a sequence' {C } with

n m=1 M Yn n=1

each C a continuum. Cn C) b(Vo) + $ for all n is a conse-

quence of Lemma 3.10. Recalling Remark 2.28 we have that

V }" has a convergent subsequence'{c }V . Let AX
n n=i Ynk k=

be such that C -A. Then A is a continuum. peA since

n

Yn + p and A CU since Cn VO for all nk. Hence for each

nk

nk Cn C A= $. A is a nondegenerate continuum since C nb(Vk nk nCb(0.)
k nk

f for each nk. Hence p is in a nondegenerate continuum of

convergence. #

DEFINITION 3.15. A metric continuum X is semi-locally

connected at a point x E X if for each open set U containing

x, there is an open set V such that x e VC U and X -V has only

a finite number of components. X is said to be semi-locally

if X is semi-locally connected at each xe X.

DEFINITION 3.16. A metric continuum X is regular at x s X

if for each open set U containing x there is an open set V

such that xSF V;U and b(V) is finite. X is said to be regular

if X is regular at each x & X.
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REMARK 3.17. Recall the continuum X given in Example 2.2.

X is both semi-locally connected and regular.

THEOREM 3.18. Let X be a metric continuum and psEX such

that X is regular at p. Then X is locally connected at p and

semi-locally connected at p.

PROOF. First suppose X is not locally connected at p.

Then, from Theorem 3.14, p is in some nondegenerate continuum

of convergence. Let K be a nondegenerate continuum of con-

vergence containing p and' {Kn }c a sequence of pairwise dis-n n=i eune1fpiwieds
joint continua such that Kn K with K flK=$ for all n. Pickn n
ze K different than p and let Ps= d(z,p). Choose a positive

integer N such that 1/1N< /2. Let V be an open set containing

p such that VC S (p,l/1N) and b(V) is finite. p e K implies that

there exists a positive integer NI such that for n>_NI,

V fKnfl$ K. fKS$ for it j and b(V) finite imply thatn 13

there is a N2 > N such that for n>N2  Kn ( b(V) =4. Hence

for n>_N2 , K C V. This contradicts z s K. Hence X is locally

connected at p.

Nov we will show that X is semi-locally connected at p.

Let U be an open set containing p and let V be an open set

such that psF V gU and b(V) is finite. We will show that X- V

has only a finite number of components. Let C be a component

of X - V; then C=U. If Cflb(V) =$ then C is a component of

X - V and therefore, due to Lemma 3.10, CO b(V) t 0. This con-

tradicts C =C7. Hence Cflb(V) { $. Since b(V) is finite, the
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number of components of X - V is finite. Thus X is semi-locally

connected at p. #

EXAMPLE 3.19. The subspace X shown in Figure 5 is locally

connected at p but not semi-docally connected at p or regular

at p.

/x

Figure 5. Subspace of R2

Notice that X is not locally connected.

EXAMPLE 3.20. Let X={(x,y) sR2 x 2 +y 2 <1} and p= (0,0).

Then X is locally connected and semi-locally connected. X

is not regular at p. See Figure 6.

Figure 6 Subspace of R2
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THEOREM 3.21, Let X be a metric continuum, If X is

locally connected then X is scmidjocally connected.

PROOF. Let X be locally connected. Suppose there exists

a p s X such that X is not semi-locally connected at p. Then

there is an open set U containing p such that if W is an open

set contained in U and containing p then X- W has infintely

many components. Choose s>0 such that S(p, 6) U. Let

V = S(p, s) and V2= S(pS/2). Then both X- V, and X- V2 have

infinitely many components.

We need to show that there exist infinitely many com-

ponents of X -V 2 which intersect X - VI. Let C=I{C C X IC is a

component of X - V2 and C f (X - V,) t). Suppose C has only

finitely many elements. Then there is a positive integer n
n

such that C={C,,..Cn }. Let xX-V; then xs u C.. The

n
set U C4 is closed since each C. is a component of the closed

i=1 n
set X- V 2 . Then (X- .U C.)OU is an open set containing p

1=11 n
and contained in U. Hence X-[(X - -U C.)flU] has infinitely

1=1 1
n n

many components. However, X-[(X- U C.)aU] = U CU
n 1 i=1 1 n

CX- U), X - Vi.U C and X - U C X - VI imply that X- [ (X- U C )U]
n n '=L

=.U C. This contradicts XK(X-U C)flU] having infinitely

many components. Thus C has infinitely many elements.

Let {C I1 be a sequence of components of X - V2 such

that Cnfl (X- V1) + s for all n and Cnfl C=m if nt m. For each
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we have that C'. fb(V 1)4 0 since cn (X -V) 4 and Cn is

connected. Let {C } be a subsequence of'{Cn}I and KCX
nk k=1

such that Cn +K. Then there is a z FKflb(VI) since

C nk nb(V1 ) t $ for all k. Let V be an open set containing z

such that VIV'2 = $. Choose an open connected set V3 contain-

ing z and contained in V. We can do this because X is locally

connected. Then V3 flCn $ for all but finitely many k since

zcV 3 and zsK. The fact V 3 flV2 =$ implies that V 3 C X - V2.

Now we have that V3C for all but finitely many k since

V3 is connected, V 3 c. X - V2 , Cnk is a component of X - V2 for

all k and v lnk$ for infinitely many k. This contradicts

Cn A Cm= $ for n i m. Hence X is semi-locally connected at p

and therefore X is semi-locally connected. #

EXAMPLE 3.22. The converse of Theorem 3.21 is not true.

The subspace X of R2 shown in Figure 7 is semi-locally con-

nected but not locally connected at x.

Figure 7 A Semi-locally
Connected Subspace R2 .
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DEFINITION 3.23. Let (X,T) be a topological space and

choose two distinct points a,b in X. Let K be a subset of X.

Then K is an arc joining a to b if K is a continuum contain-

ing a and b, K {a} is connected, K* {b} is connected and if

c is an element of K different from a and b then K - {c} = UQv

with a e U and b F V.

DEFINITION 3.24. Let (X,T) be a topological space, U a

family of subsets of X and a,b c X. A simple chain from U

joining a to b is a finite sequence U1 ,...*,Un of members of U

such that asc U1 ,bs6 Un and U. flU.f$ if and only if li-jJ <I,

THEOREM 3.25. Let X be a locally connected metric con-

tinuum and choose two distinct points a,b in X. Then there

is an arc K joining a to b.

PROOF. For each x c X let U3  be an open connected set

containing x such that Uig CS(xl). Then X= U U> and
xsX

therefore there exist x1 ,x 2 , . . ,x in X such that

U1 = {UI 1 ,...,U }is a simple chain joining a to b. Let

U, =U1 ifor each il= 1,2,... ,n1 ; then K1 = {U,U1,.. ,Uin }

Set U1 = U U 1 i.
i=1

For each i = 1,2,3,.,nl and for each xsc U i let U2X be

an open connected set containing x such that U2S(x,l/2)flU4.

Then for each i, i= 1,2,3,...,n1 , U U2 =U .. Choose

xi E U,i-lf1 ,1 for i=2,3,4,...,n1 . Let U 2 'i be a simple
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chain from{U2jx U,} joining x. to x. where x+=
xi 1+1 n 1+1

and xi= a, for i=l,2,3,...,n2 . Now construct a simple chain
ni

U2 from U U joining a to b. If UsU2 then U CU for at
-21 2i;

most two i. Relabeling let U2 ={U2 ,1 ,U2 ,2 ,.. .,U2 , } with
n2.

a e U2 ;1 , b. U and U2.iflU2 J + if and only if i-I <I.
n2  2.,n 2 21

Let U2= UU2 I; thenJ2 CU1 .i 2,1%

Suppose that for m < k a simple chain UM ={UMU ...

U }, of open connected sets, from a to b has been formed

such that a U , b e U U and U .finU 4 $ if and only ifsuh ha aUm, m, nm m,i m, j

i-jI <I. Also assume U ,CUm, where Um =UUm and if U e Um+1-mM -m

then UC Um-Ii for at most two i. For each i= 1,2,3,. . . ,nk

and for each x cUk 1let U k+Ixbe an open connected con-

taining x such thatU k+i,xC S(x,L/k)fnlUki-. Then U ~~

U Uk+,x for i = 1,2,3,...,n. Choose x. Uki-flUki for

i = 2,3,....,n and let x 1 = a and xn -=b. Let Uk . be a
k nk +1 -:k+ 1 , 1

simple chain from {Uk+ix C Uki} joining a to b for i= 1,2,
nk

3,...,n. Now construct a simple chain k from U U-
,= 1_+ i

joining a to b and let Uk+1 U k+. Relabeling, let

-k+1 =' {Uk+ 1 1 ,...,Uk+1 ,n with a e Uk+19,12, b Uk+1 , nk+

and Uk+l . fU'+j- if and only if li-j <1. Then

Uk CUk and if U 17Uk+1 then U CU IUk for at most two i
k+I k =ki
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Thus,'{U }V is a sequence of open connected sets con-n n=i scn

training a and b such that U ;)Un for all n. Let K= fl U-
n- n+1 n 'n=1

then, due to Lemma 2.3, K is a continuum containing a and b.

We will show that K is an arc joining a to b.

Choose an element z in K different from a and b. For

i=l,2,3,... let P. ={U.4U. z{U. . and if ZU. for
1 ij - 1,3 bik

some k then j <ki and let F. = {U. E U.jz U. . and if z s U
1 1,J3 - 1,J3,

00 
i

for some k then j >k}. Set W= U [(UPi)rnK] and

00 
L

V= U [(U Fj)flK]; then W and W are open in K and WflV =
1=1

Clearly, WU V K -{z}. We will show that K -'f{z} CWUV. Let

we K-'{z} and set 6= d(o,z). Choose a positive integer io

such that 4/io < 6. Consider U. and suppose ze U. . for
10 1,J

some j. U 0 QS(x,l/i0) for some xsWcU 1- 1. Thus d(x,z) <

1/io. Suppose o s U1 0; then 6 = d(o,z) <d(Ox)+d(x, z) < 1/io +

1/io < 6. This is a contradiction. Hence o U. .. Thus
103,3

wEWUV and therefore X-'{z} 4W-. Let eq =d(z,a),

a2 = d(zb) and choose a positive integer n1 such that 2/n1 < a

and 2/n1 <a2 . Then for all i > n1 ascP. and b eF. Hence a s W

and b V.

Vt still need to show that K '{a} and K - {b} are con-

nected. If K is irreducible from a to b then, by Theorem 2.14,

K f~h and K {b} are connected. Suppose K is not irreducible

from a to b. Let K1 be a continuum containing a and b such

that Ki C K. Choose q K - K ; then K K-{q}=Rs for some
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sets R and S such that a R and b E S, K, connected implies

that KICR or KICS. This contradicts a e R and b e S. Hence

K is irreducible from a to b and therefore K - {a} and K -'{b}

are connected. Thus K is an arc joining a to b, #

Thus if X is a locally connected metric continuum and x,y

two distinct points of X then there exists an arc joining x to

y. Let c > 0. Can we join x to y with an arc of diameter less

than e? Theorem 3.28 answers this question; but first we need

two lemmas.

LEMMA 3.26. Let X be a compact metric space and let

UU2,...,U n be a finite open cover of X. Then there is a

6 > 0 such that if A CX and the diameter of A is less than 6

then AgU for some i= 1,2,3,...,n.

PROOF. Suppose that for all 6 > 0 there is a set A

such that the diameter of A6 is less than 6, but A |U for

i= 1,2,3,...,n. In particular for each positive integer n

let An be a subset of X such that the diameter of A is less

than I/n and such that An ;Ui for all i. For each positive

integer n let an E A ; then there exists a z X such that

an Z. Without loss of generality suppose z a Uk. Choose

E > 0 such that S(z,E) gUk and let no be a positive integer

such that I/no < 6/2. Since an.c z we can choose a positive

integer m greater than no such that a S(zF/2). Choose
m (2

acAm; then d(z,a) d(z,a ) + d(+
Sm (ma) a2, /2

Am Uko . This contradicts A nt;Ui for all i and n. Thus

there is a 6 > 0 such that if A CX and the diameter of A is
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less than 6 then ACU for some i= 1,2,3,,..,n. #

LEMMA 3.27. Let X be a compact locally connected metric

space. Then for each e > 0, there is some 6 > 0 such that if

x,ys X and d(x,y)< 6, then there is an open connected set C

such that the diameter of C is less than c and x,y e C.

PROOF. Let e> 0 and for each x eX let SK be an open con-

nected set such that x eS S(x,'/4). Then the diameter of

Sx < /2 for all xe X. '{SJ x eX} is an open cover for X and
n

therefore there exist x1 ,x2 ,...,x in X such that X= U S .
' 2nX

By Lemma 3.26 we can choose a 6 > 0 such that if ACX and the

diameter of A is less than 6 then ACSX for some i= 1,2,...,
1

n. Let x,y eX be such that d(x,y)< 6; then'{x,y}9S, for
i0

for some i0 . Hence if d(x,y)< 6, there is an open connected

set C= S such that ,the diameter of C is less than c and
10

x,y eC. #

THEOREM 3.28. Let X be a locally connected metric con-

tinuum. Then for each e> 0 there exists a 6 > 0 such that if

x,y are in X with d(x,y) < 6, then x can be joined to y by

an arc of diameter less than e.

PROOF. Let F > 0 and choose 6 > 0 such that if x,y are in

X and d(x,y) < 6 then there is an open connected set C such

that the diameter of C is less than e and x,y e C. Choose

x,y X such that d(x,y) < 6. Let C be an open connected set,

containing x and y, of diameter less than s. Hence C is an

open locally connected subset of X containing x and y of
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diameter less than c. To construct an arc K joining x to y

and contained in C follow the construction given in the proof

of Theorem 3.25. Hence there exists an arc K of diameter less

than e joining x to y. #

REMARK 3.29. In the proof of Theorem 3.28 we can not

simply apply Theorem 3.25 to the continuum C to get the arc

K, since C may not be locally connected. Below is an example

of a locally connected metric continuum X and an open connect-

ed subset of X whose closure is not locally connected.

Figure 8 A Subcontinuum X of R2 .

Construct an open connected subset of X as shown in Figures

9, 10 and 11.

Figure 9 Construction of U,.

I-

I
oh
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Figure 10 Construction of U2 .

Figure 11 Construction of U3.
00

Continue in this manner and lot U = .Un Then U is an open

connected subset of X whose closure is not locally connected.

..J.........7...

-Iz



CHAPTER IV

DECOMPOSABLE CONTINUE

DEFINITION 4.1. A nondegenerate continuum is decomposable

if it is the union of two proper subcontinua. A nondegenerate

continuum that is not decomposable is said to be indecomposable.

THEOREM 4.2. A continuum X is decomposable if and only

if X contains a proper subcontinuum with interior points.

PROOF. Let X be a decomposable continuum and let K ,K2

be nonempty proper subcontinua such that ."= K1 U K2 , Suppose

0 ---.---- - -0
K0 = then X- KI X - K, = X. Choose z cKj-K2 ; then zeX-Ki.

Let' {x}deD be a net in X-K1 such that xd+Z. Since K2 is com-

pact, there is a wcK 2 such that xd j . We have that z + W

since wEK2 and z e KI-K2 ,. Let U,V be open sets such that weV,

zsEU and uflv= . Since xd+ z there exists a doe D such that

if dc D and d?_do then xde U. However, xd >.W implies that

there exists a d d0 su'ch that xd e V. This contradicts

Uf V= $. Hence Ki # and therefore X contains a proper sub-

continuum with interior points.

Now suppose X contains a proper subcontinuum K, such that
00 0K t . Then we have that X K1 = X -K1 X since K , (, Hence

if X-K, is connected then X= K*U K with X-K7 and K, proper

subcontinua. Thus if X-K, is connected X is decomposable,

Suppose X-K, is not connected. Let X-K = AY B for some sets

41



42

A,E, Then KU~A and KXiuB are connected sets and X

Kiu A U KiUEB# The fact AfB= =B A implies that K1U A

and KiuB are proper subcontinua, Hence X is decomposable. #

REMARK 4,3, From Theorem 4, 2 we have that a continuum

X is indecomposable if and only if every proper subcontinuum

of X has an empty interior,

DEFINITION 4.4. Let X be a continuum and p e X. Then

C P={x e X there exists a proper closed connected subset of

X containing both p and x} is the composant ofp in X,

THEOREM 4.5. Every decomposable continuum is a composant

of some one of its points.

PROOF. Let X be a decomposable continuum, Choose proper

subcontinua Kj,K2 such that X= KiU K2, Since X is connected

KiOK2 4 ti Let p EK1 0K 2; then the composant of p is X. #

THEOREM 4.6. Let X be a decomposable continuum and a eX;

then the composant of a is open in X.

PROOF. Let Ca be the composant of a, If Ca= X we are

done. Hence, suppose Ca X, Choose proper subcontinua M and

N such that X =MU.N. If as-MflN then Ca X and we are done.

Thus, without loss .of generality,suppose asW.M-N, Let K

{x C X1I X is irreducible from a to x}. K j 0 since C, X,

K lM U KflN. MCC because acF-M. Therefore MflK

Hence KCN. Now, suppose that for each open set U containing a

UflK 4 , Then a cK and therefore acF-N, This contradicts

a e M-N. Thus there exists an open set U such that aEUc Cat

Therefore C, is open, #
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THEOREM 4,7, Let X be a continuum; then every composant

of X is connected,

PROOF. Let X be a continuum and p E X. Suppose the com-

posant of p CT is such that CP= AYB for some sets A,B in X.

Without loss of generality let p c A, Choose x e B, There exists

a proper subcontinuum K such that p,xe K since x c C . Thus
p

K C CP and therefore K CA or K CB, This contradicts p 6CA and

x s B. Hence CP is connected and therefore every composant

of X is connected. #

THEOREM 4.8. Let X be a continuum. Then every composant

of the continuum X is dense in X.

PROOF. Let X be a continuum and suppose there exists

a p EX such that the composant of p C is not dense in X.
p

The fact C X implies that Cq C. Hence C =C . Choose
p pop p

x EX-CP and then let W,V be open disjoint sets such that

Cp C W, x EV and WflV= (. Let D be the component of W con-

taining p. Then iDfb(W) 4 4 and therefore C flb(W) 4, This
p

contradicts C CW. Hence C X and therefore every composant
p p

of X is dense in X. #

THEOREM 4,9. If X is a metric continuum, then every com-

posant of X is the union of countably many proper subcontinua

of X

PROOF, Let X be a metric continuum and p c X, Let B B

{B1,B2 ,B3,..I }be a base for X-{p} such that for each i,

1F1,2, 3,,9, ., B.CXX{p}, and B. =S(x.,c.) with x, 6cX and E >
1 1~ 12 1 3
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For each i, , let n. be a positive integer such

that Icx +/n. 7X,),X{p}, Then for each i, i 1,2,3, .. ,

and j, j let C be the component of X

100 00

( , + ) which contains p, Let C= U( U C,.);
i=1 j=0 2

then C is the union of countably many proper subcontinua which

contain p. Let C be the composant of p; then clearly C CC
p p

Choose an element x of Cp different than p and let K be a

proper subcontinuum containing p and x. Then choose B. c B

such that R. C.X-K. If KCX-S(x ,E. +n. +j ) for some j
10 ~-~~0 10 10

then x eC and hence C= C. Thus suppose

K {X-S(X. i c.+n. +j ) for every j. Then

Kflb(S(x, ,s. +n.+j)) 4 ( for every j. For each j, j =0,1,2,
1Q 10 10

... , let z. E KEb(S(x. ,s. +n. +3)). Then there exists a
J 10 10 10

z B. such that z- c z. Hence KflB. (n. This contradicts

10 10 10

x PC and C = C Hence C is the union of countably many pror
p p

per subcontinua. #

THEOREM 4.10, (Baire Category Theorem), If X is a cowI

pact T2 space, then X is not the union of countably many closed

sets each having empty interior,
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THEOREM 4 1, Let X be an indecomposable continuum and

ppq 0X, Let C be the composant of p and Ca the composant of

q, Then ( C Cor C flo C (,c
p c p q

PROOF, Suppose CJflC0 & b, Choose z c f Cand let

KiK2 be proper subcontinua such that z,p c Ki and z,q e K2 , X

indecomposable implies that K1 U K2 is a proper subcontinuum

of X. Let weCP and K3 a proper subcontinuum such that pwsEKs,

Then K, U K2 U K3 is a proper subcontinuum containing w and q,

Hence C C C . Similarly Cq C C P Thus if C flC q+ then C pp-qAq p cq p
C .#
q

REMARK 4.12. Let X be an indecomposable metric continuum,

Then Theorem 4.2, Theorem 4.9, Theorem 4.10 and Theorem 4.11.

imply that X has uncountably many pairwise disjoint composants,

Thus every indecomposable metric continuum is irreducible bet-

ween each two points of some uncountable set,

THEOREM 4.13. Let X be a metric continuum. Then X is

indecomposable if and only if there exist three distinct points

a,b,c such that X is irreducible between any two of these three

points.

PROOF. Let X be an indecomposable metric continuum. Let

C be an uncountable subset of X such that X is irreducible bet-

ween any two points of C. Choose three distinct points ab,c

from C; then X is irreducible between any two of these three

chosen points.

Now let X be a metric continuum containing three distinct

points a,b,c such that X is irreducible between any two of
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these three points, Suppose X is decomposable, Choose proper

subcontinua K1 ,K2 such that X= KIUK2 . Without loss of gen-

erality let asc KI; then b,c { K, Hence b,csc K2 ; but this

contradicts X irreducible between b and c, Thus X is indecom-

posable. #

EXAMPLE 4.14. We will construct an indecomposable metric

continuum. Let X_= { (x,y) csR 2  2 +y 2 <lO}. X is a locally con-

nected metric continuum. Let X0={(xy) ER2 ix2 +y 2 < 10} and

choose three distinct points a,b,c in X0 . For i=l,2,3,...,nl

let C . be an open connected subset of X with diameter less

than 1/2 such that C>= {C ,C ,...,C1  } is a chain joining
1,1 h,2 n

a to c with a EC1 1 , c CE and be C , 1<j <ni, for ex-
i, ,n1  1,3

actly one j. We will call C1 a chain joining a to c throughb.

For i= 1,2,3,...,n2 let C . be an open connected set with

diameter less than 1/4 such that C2 ={C ,...,C is a chain
-2 2,1 2,n2

joining a to b with a s C , b E C , c s C ., 1 < j <n2 ,2,1 2,n2 2,3

for exactly one j. We will call C2 a chain joining a to b

through c. Each C , i=1,2,...,n 2 , also has the property

that C i C for some k. Let C3 ={C ,...,C } be a2,i 1,k3 3,1 3,n3
chain joining c to b such that C is an open connected set

3,1

of diameter less than 1/8, c eC , bEC and aEC . ,
3,1 3,n3  3,3

l< j<n3 , for exactly one j. We will call C3 a chain joining

c to b through a, Each C , is also such that C . CC for
3, 3,1 2,k

some k. For each i= l,2,3 ,...,nq let C4 , be an open connected

set of diameter less than 1/16 such that C = {C 4 ,C ,...,
~~44,14,P2



47

C is a chain joining a to c with a CF-, , c C and

b c C 1 j n, for exactly one , Again each C is

such that C C for some k, For each positive integer

n > 5 let C be a chain connecting a,b and c witb the following-n

properties:

i) If C .sC then diam *C<1/2nn,i -nni
ii) Each Cn+ii C is such that.C C kfor somek.n+i-n1+ 1 n+1,1 -Cn,k

iii) If n El mod 3 then C, is a chain joining a to c

through b.

iv) If n ::2 mod 3 then Cn is a chain joining a to b

through c.

v) If n 2 0 mod 3 then Cnis a chain joining c to b

through a.
nm 

-

Let K = U C for each positive integer m. Then K= n K
M i=1 M,1 M=1 m

is a continuum containing a,b and c. See figure 12,

Figure 12 Clarification of K



48

Let B be a proper subcontinuum of K such that a,b e B.

Suppose c B. Set 6=; d(B,c) and choose a positive integer no

such that 1 / 2 'm< < /2, Let m1 > m0 be such that CMI is a chain

joining a to b, Choose Cmi e C such that c sC The
ml , -mlI

diameter of C is less than 1/2m and hence is less than

6/2. Thus C .fB= $. This contradicts the connectedness

of B. Hence c a B. Therefore if B is a proper subcontinuum of

K containing any two of a,b,c then B contains the third,

Now, let A be a subcontinuum of K containing a,b and c.

We will show that A= K. Suppose ACK; then let xEK- A. Let

61= d(Ax) and choose a positive integer m3 such that

1/2m3< 1/2. Choose C .jeC such that xEC .. C .fA=$m3,j -M3  m3 J M3
since the diameter of C is less than 61/2. This contra-

M 3 ,J

dicts a,b,csc A. Hence A= K.

We now have that K is irreducible between any two points

of the set {a,b,c}. Hence, by Theorem 4.13, K is an indecom-

posable metric continuum.

THBORBM 4.15. Let X be a metric continuum. Then X has

only one, only three or uncountably many composants.

PROOF. Let X be an indecomposable metric continuum.

Then, due to Remark 4.12, X has uncountably many composants.

Now let X be a decomposable metric continuum and choose

proper subcontinua K, and K2 such that X = K1 U K2 . Let zF K1

and let CZ be the composant of zu Suppose Cz X and sup-,

pose there exists a z2 E K, such that z , z2 and the composant

of z2 Cz2 is a proper subset of X. Let to C and let.K be
2
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a proper subcontinuum containing o and z2 . Then K . C Z

K C Cz2,z2 cKI and K CC tmply that KIU K is a proper

subcontinuum of X. Hence to s C and therefore C C C .
ZN Za- Z1

Similarly C C C . Hence X has less than or equal to three
Z1 -' Z2

composants.

We are still assuming that X is decomposable. If for all

x e X the composant of x Cx is all of X then X has exactly one

composant. There exists a po eX, from Theorem 4.4, such that

the composant of p0 CP is all of X. Recall that X= K, U K2 -

Suppose there exists a p1  K1 such that the composant of p1

C is not all of X. Then if y E K1 is such that the composant

of y C is not all of x, from the above, C = C . Choose
y y pi

P2 e X - C ; then p1  C and therefore C i C . Hence if
piP2 Pi P2

there is a pi such that CPi X, then X has exactly three

composants. #

THEOREM 4.16. Let X be an indecomposable metric continuum

and A CX such that A is the union of countably many proper sub-

continua of X. Then X - A is connected.

PROOF. Let A= U K where for each n K is a proper sub-
n=u n n

continuum. Since X is indecomposable K0 = $ for all n. Hence
n

A{-LX and therefore X - A . For each n, n=l1,2,3,..., choose

k ne Kn and let Ck be the composant of kn. Then fo each n,
n

K g C and therefore ACnUC . Thus X- U C X -A. Since
n k - n=11k n=-I kn n n

X has uncountably many pairwise disjoint composants,
00 00

X - U Ck t$. Let to X- U kand let C be the composant
n=i n n=1 n
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of w. Then C CJX -A. Suppose X " A=RQS for rome sets R and

S. Then,without loss of generality, let CR Since every

composant is dense in.X we have that C X, This contradicts

S . Hence X -A is connected, #

THEOREM 4,17, Let X be an indecomposable continuum,

a e X and K ={xSC X I X is irreducible from a to x}. If Kfl,

then K=X.

PROOF. Let x E K, Cx be the composant of x and Ca be the

composant of a. Then C flC = and therefore C C K. We now
X a X

have that K=X since CxC K and C = X. #x - x
THEOREM 4.18. Let X be a metric continuum. Then X is

decomposable if and only if some composant of X is open.

PROOF. First suppose X is a decomposable metric con-

tinuum. Then, from Theorem 4.6, every composant is open.

Hence there exists an open composant.

Now we will show that if X is an indecomposable metric

continuum then no composant of X is open. Let X be an inde-

composable metric continuum. Suppose there exists a p X such

that the composant of p C is open, Theorem 4.9 and Theorem
p

4.16 imply that X - CP is connected. Hence X - CP is a proper

subcontinuum. Let a,b and c be distinct points of X such that

X is irreducible between any two. Since X - C is a proper
p

subcontinuum no two of ab,c are in X - C . Hence, without
p

loss of generality, let a,b SC . Let Ca be the composant of

a and Cb be the composant of b; then, from Theorem 4.11,



51

C C C This contradicts X irreducible between a and b.a b p
Hence C is not open and therefore no conposant of X is open.#

p



CHAPTER V

CONTINUOUS MAPPINGS

DEFINITION 5.1. Let (X,T) be a topological space and

A cX. A is said to be perfect if and only if each point of A

is a limit point of A.

DEFINITION 5.2. Let (X,T) be a topological space. X

is said to be totally disconnected if and only if the com-

ponents in X are single points in X.

To show that any two totally disconnected perfect com7

pact metric spaces are homeomorphic we need the following two

lemmas.

LEMMA 5.3. Let X be a perfect compact totally discon-

nected T2 space and U an open subset of X. Let n be any

positive integer; then U= U1 UU2 U ... UUn for some choice of

nonempty disjoint open sets U,,U,,...,Un

PROOF. Clearly the result holds when n=1. It is suf-

ficient to prove the result for n= 2 since for n > 2 simply re-

apply case n= 2 until the desired number of open nonempty

disjoint sets is obtained. Let psc U; then U {p} since X is

perfect. Choose qeU such that q fp. Then, due to Theorem

2.20, the quasicomponent of p is simply,{p}, Hence, there

exist open disjoint sets R, S such that q s R, p e S and

X=RUS. Let U 1 =RU and U 2 = SOU. Then U= UlUU 2 and

52
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UtU2 are nonempty disjoint open sets, #

LEMMA 5.4, Let X be a totally disconnected compact metric

space. Choose x E X and let U be an open set that contains x.

Then there exists an open set V such that x \V CU and b(V) =

PROOF. The component of X that contains x is {x} since

X is totally disconnected. Theorem 2.17, X compact and Theorem

2.20 imply that' {x}=f{V [ V is open, V is closed and x eFV}.

Lemma 2.3 implies that there exists a set Vo such that Vo is

open, Vo is closed and xEVogU. Hence Vo is an open set con-

taining x such that b(Vo) = $ and Vo QU. #

THEOREM 5.5. Any two totally disconnected perfect com-

pact metric spaces are homeomorphic.

PROOF. Let (X,T) and (Y,S) be totally disconnected per-

fect compact metric spaces. For each xscX let S, be such

that x E S, diam Sx < 1 and such that Sx is both open and closed.

We can do this because of Lemma 5.4. Then {Sy xs X} is an

open cover for X and therefore has a finite subcover. Let

5 MS '6 . n, be a finite subcover and then let U1 1= S <

ni-1

U = -Sx ,...,US - U S . We are assuming that
1 ,2 X2  X1  in xn i=i i

x Li Sx for all i tj. Set UiJ{U ,U ,...,U }. Thus
1 ~ 1,1 1,2 2n

U,'is an open-closed cover for X made up of nonempty pairwise

disjoint sets of diameter less than one.
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Construct an openrclosed covet V1 for Y made up of non-

empty pairwise disjoint sets of diameter less than one in a

manner similar to the above construction. We can assume that

U, Ui1= II VI|I because of Lemma 5,3. Let V1 ={V1 ,V

V1 1,nI}

For each j, j = 1,2,...,n1 , and for each xs_U .let W

be an open-closed set containing x such that diam W < 1/2 and

K GU .. Then'{W t x s X} is an open cover for X and hence
x , X6

has a finite subcover. Let W ,W ,...,W be a finite
X1  X2  Xn 2

subcover and set UI= W ,U2 = W -W1,...,U =

n2-1

Wk - u W # . Again, we are assuming W (JW for all i tj.
n2  i= 11 ii

Now, for each j, j1,2,3,...,n1 , let B .={U. K cU
1,1 ,

i=l,2,3,...,n21. Relabeling let B ='{U ,U ,...,U },
1,1 2,1 2,22,

B ={U .. ,U ,...,B{U
1,2 2 ,m1 +i' 2 ,m2  1,nI 2,mn +1 ,.,U }

n1- 1 2,mn2mni

Let U ={U . T U U U
-2 2, 1 2 ,m 1' ,1 +i ' ' 2 ,m2' 2Pm2 1' 2

,U2,m i .. ,U I, Then U2 is an open-closed cover

for X made up of nonempty pairwise disjoint sets with diameter

less than 1/2. Construct an open-closed cover V2 for Y made

up of nonempty pairwise disjoint sets with diameter less than

1/2 in a manner similar to the construction of U2 , We can assume

that 1MV211 = 1 U211 because of Lemma 5.3. Moreover, we can as-

sume that for j=1,2,. . . ,nI lB -I = 1 D -11 where D

{V V.V , i=l,2,,..,n2 }. We will label V in amanner
i - ,1 i=11-2n l
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similar to U2 Let 2 ,.,,V Vm ,4t9 Vmz,
2,'1j2P t 21+1*2,2

VV V }

21 2+1"""V'2,M3P-"2,M M1''' pn
00

Continuing in this manner we then have sequences{Uk-k 1

and'{yk k=0 of open-closed covers for X and Y respectively.

For each k we have that IlUkil IiVk Ii. Each Uk and V is made

up of nonempty pairwise disjoint sets of diameter less than

1/2 . Also, for each k if Uk . CU for some i,j then

V .CV .
k,y - k-1 ,j

Let xeX; then for each k= 1,2,3,..., there is a unique

U k such that xEUkj with U .EU Moreover,
k k kik -k

U . U . U .2..., Uxand V . DV -
1,31 2,J2 3,33 k=1kJk1,i 2,J2

00

V . ... . Define g(x) niV . Do the above for eachxs X;
3,J3 k=1 k,jk'

then g is a function from X into Y. Clearly g is onto and

one to one.

Choose xscX and suppose'{an }1 is a sequence in X suchn ni

that a -x. For each k let U . contain x; thenx= flUn k,3k k=1 k,ik
CO

and g(x) kVL k Let E >0 and choose a positive integer k

such that Uk . CS(x,c) and Vk ; S(g(x),E). The fact a +x
JkOa 0ko n

implies that there exists a positive integer N such that if

n > N then ansUkoko. Thus for n > N,g(an ) kOjk S(g(x),c).

Hence g(an)-*g(x) and therefore g is continuous. Since X isn

compact Gand Y is Hausdorff g is a homeomorphism.,if
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THEOREM 5,6, Every compact metric space is a continuous

image of the Cantor set,

PROOF, Let X be a compact metric space and lot C be the

Cantor set. Construct a finite open-closed cover U1 for C

made up of nonempty pairwise disjoint sets of diameter less

than one. See the proof of Theorem 5.5 for the construction

of U1 . Let Vi be a finite open cover of X, made up of non-

empty sets with diameter less than one. By repeating elements

in V1 and using Lemma 5.3 we can assume that 1Ull=lI VIM. Let

lI={U ,...,U }and V, ='{V , }

For each j, j= l,2,3,...,n1 , let B be a finite open-

closed cover of U . such that if B eP. then Bt$, B CU .

and diam B < 1/2. Also, for each j, j =1,2,3,...,nl, let D

be a finite open cover of V1 . such that if DeD . then D ,

DC V . and diam D <1/2. We can do this since V is com-
~ 193 1,1

pact for all j. By repeating elements in D and using Lemma
51,3

5.3 we can assume that IIB .fl=IID . for each j. Let U2

{B CC I B EsB . for some j} and V2 = {D CX ID eD . for some j}.
- -1, - -- 1,3

Label the elements of U2 and V2 such that U2 = {U 2 ,1 ,U2 ,2 , .- ,

U , } V2 ={V2 ,1 ,V2 ,2 ,.-.,V land such that if U ..CU
222 2 = V ,~ . ,, ,V2,n2 2,1- ,

thenV .CV
2,1 1,3

Continue in this manner to construct finite covers for X

and C. We have sequences'{U t  and' {y =with the follow-

ing properties:
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i) | kI IkII[ for all k.

ii) For each k, U ts an openr-closed cover of C made up

of nonempty pairwise disjoint sets of diameter less

than 1/2,.

iii) For each k, Vx is an open cover of X made up of non-

empty sets of diameter less than 1/2k

iv) For each k letU = { U ,U....,U } andY- k,1 'k, 2  k,nk -k

LVk,:%' k nk}. If U WkUk-1 ,j for some k,i and

j then V.iCV k.

Let cFC; then for each k, k = 1,2,3,..., there is a uni-

que Uk E Uk containing c. Furthermore, U .U . D

U c= klu k .k andV eV .2V .2 ... . let3-ijJ 1,3 2,j 3,

CO

g(c) = k V . Do the above for each c s C; then g is ahi k.,ik

function from C into X. Clearly g is onto. However, g may

not be one to one.

Let' {cnlnG be a sequence in C and c e C such that cn* c.

Chooses6> 0 and suppose c c 0 Uk where U k E U for all k.
k- kJ ,J -

Then, by Lemma 2.3, there exists a positive integer ko such

that ce U(0 oik S(c,c) and g(c) sVCko, k g S(g (c),e). The fact
xkQ o i

cn*c implies that there exists a positive integer m such

that if n>m2 then cr Uk k Thus, for n> 2 (cp) Vkojk

and therefore g(c) +g(c), Hence g is a continuous map of Conto

X.#
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EXAMPLE 5.7, We will. construct a continuous function

from the Cantor set onto I where I [0,1] c RI.

Let Co = [0,13 and construct C2 by removing the interval

(1/3,2/3) from Co. Hence, C2  [0,1/3] U [2/3,1]. For each

positive integer n, n 2, construct Cn from C by removing

the open middle third of each of the intervals in C from

Then C = Cn is the Cantor. set.
n=0

nnFor each n, n= 0,1,2,..., let Dn ~m/2n1 0<n<2 2n

Let BO ='{0,1} and define a function go from BO onto Do as

follows:

0, if x = 0
(x) = , if x = 1.

Recall that C1 = [0,1/3]U[ 2/3,1] and then let B1 =

{0,1/3,2/3,1}. Define a function g1 from B1 onto D, as follows:

0, if x= 0

g (x)= 1/2, if x= 1/3, 2/3

if x = 1

Thus, ,glIB = g0 and if x,ys B, are such that Ix-y<1/3 then

g1 (x) -g 1 (y)I <1/2. Recall that C2= [0,1/9] U [2/9,1/31u

[2/3,7/9]U [8/9,1] and then let B2 ='{0,1/9,2/9,1/3,2/3,7/9,8/9,

1}. Define a function. 2 from B2 onto D2 as follows:
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0 if x 0

1/4, if x=1/9,2/9

g2(W) 1/2, if x 1/3,2/3

3/4, if x= 7/9,8/9

Then g21 B g, and if x,ysB2 are such that Ix-yj <1/32 then

1g2jx) -g 2 (Y)I<l1/22 . For each n>0, Cn is the union of 2'n

disjoint closed intervals. For n>3 let Bn = {xs CI x is an

endpoint of one of the closed intervals contained in C ;
n

then IBnII = 2n+lfor all n. Assume that for each n, 3<_n<k,

a function gn from Bn onto Dn has been constructed such that

gn = n-1 g 9n-1. Also, let C = [a ,b ] U [a2,b2 3U

U [a % ,b ] with a. <b. for all i and b. <a. for all
2 1 2nI-1 1 1 1 1+1

i < 2n-- 1 and Dni= {di=0/2n-i,d2=1/2n-1,...,d, -
n-i 1n-i+

2 n 1/2n }then g (a. + 1/3(b. - a.)) = g (a. + 2/3(b.-a.)) =n 1 1 1 n 1 1 1

(d + di+)/2 for i= 1 ,2 ,3,.2n-i

Let Ck = [a,b 1] U [a2 ,b2 ]u.. U[a-kb k] with a. <b.
k 2k 1 1

for all i and b. <a for all i <2k-1 and Dk = {d1 =

d9 = 1/2k,...,d +k 2k/2 k} Define a function from Bk+i
2 k1i9k1 +

onto DL+1 such that gk+1[ B 9kand gk+1 (ai+1/3(bg-a ))

8k+1 (ai + 2/3(bi aj)) = (di + di+)/2 for I ;;1,2,3,., ,2 k. Thus

if xy e Bk+1 and |X- t k hen kgi (x) -gk+I 1 (y) < 1/2k+
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00

For each xv U there is an integer n such thatn=:;0 11n
00

x E B and xtU B.. Let g(x) gn (x) for each xe Y0Bn
x x x

Then g is a function from U B onto U D such that if
n= nn=o n

xye U B and lx-yl. _1/3, for some k, then lg(x)-g(y)I <1/2
n=00n

Let B= U Bn; then B is dense in C. Choose x eC - B andn=Q0n

let {bnV be a sequence in B such that b -*x and b < bn n=1 n n - n+1

for all n. Let f(x) = lim g(b ). Do the above for each x e C-B
n- n

and if xc B let f(x)=g(x). Thus, f is a function from C into

I.

We need to show that f is well defined on C-B. Let

x1 C-B and let{c andI{d I be sequences in B such that

cn < x for all x,dn< x for all x, cn+X, dn nX c<_ cn+i for

all n and dn < dn+1 for all n. Suppose c= lim g(cn)f lim g(dn)=d.
n-*o n->-o

Without loss of generality let c < d. Set c = d-c and choose a

positive integer N such that 1/2N< E/2. Let [0,1] = [a1=0,

b= 1/2N]U[a 2 = 1/2Nb2 = 2/2N]U . . .U[a = 1-1/2 ,a =-]; then
2N+ I2N+1 

;te

b -a = 11 2N for all j. Say c s[a ,b ] and de[ak, bI]; then

ji k and ti-k! >1. Let el and F2 be as follows:

b, iftc b d-ak, tdtak

and e2 'F

1/2N+t if c =b L it F ak
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Choose a positive integer N such that for n N,

x scj < 1/(2) (1) Ix dn1< 1/(2) (3 ) If(cn)-cl < e and

If (d) dI <2. Recall that Cp is the union of 2N disjointn N

closed subintervals of [0,1], Let CN [at,b] U[a2 ,b2IIU-..

U[a2Nb2 N] and choose n >N 1 . Without loss of generality sup-

pose x a [a2 ,b2]; then cndn F [a2,b2 ] since Ix - cn < 1/2(3

and Ix - dnl 1/(2)(3N) Hence If(cn) - f(d)l <1/2 N

However, If(cn) - cl < s and If(dn) d 2 imply that

If (cn) - f(dn) > 1/2N This is a contradiction. Hence c = d

and therefore f is well defined on C- B.

Let x F C and e > 0. Choose a positive integer N such

that 1/2N < s and 6 > 0 such that 6 < 1/3N. Let y s C be such

that Jx-yj c 6; then If(x)- f(y)j < 1/2N< . Hence f is con-

tinuous.
00

The function f takes B onto U Dn since g takes B onto
00 CO n=o

U Dn. Let xe [0,1] - U Dn. Choose a sequence {dnI n=1in
n=0 n=0

0 Dn such that dn < x for all n and dn+X. For each n let
n=0

cn s B be such that f(cn) = dn; then {cnln=1 is a bounded se-

quence. Hence there exists a c E C and a subsequence {c I
nk k=i

of' {c such that c +C, We now have that f(c ) +f(c)n n=1 nk nk

since f is continuous. Hence f(c) = x. Thus f is a continuous

map from C onto I.
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EXAMPLE 5,8. In example 5,7 we mapped C onto I contin-

uously. Now let's map I onto I x X continuously. Let I denote

[0,1] in R1 . We will construct a continuous map

h from I onto I x I. In the construction of h we will use

Theorem 5.6.

Let g be a continuous map from the Cantor set onto I x I.

Theorem 5.6 tells us that such a g exists. Let C be the

Cantor set. The function g is uniformly continuous since C

is compact. Recall the construction of C. Let Co= [0,I],

C1 = [0,1/3] U [2/3,1] and C2 = [0,1/9] U [2/9,1/3] U [2/3, 7/9]

U[8/9,1]. In general, for each positive integer n construct

C from C by removing the open middle third of each of the
n n-00

intervals in Cn-i from C .n-1 Then C = fC . Let R, = [1/3,2/3],
n=0

R2= [1/9,2/9], R3 = [7/9,8/9], R = [1/27,2/271, R5 = [7/27,8/27],

R6= [19/27,20/27]1, R7 = [25/27,26/27], ... .Define h(x) = g(x)

for all x s C. For each positive integer n say [an,bn] =Rn

So, for example, a,= 1/3,b1 = 2/3, a2 = 1/9,b2 = 2/9, a3 = 7/9,

b3 = 8/9, and a4 = 1/27. Let x c I - C. Then x s Rno = [ano,bno

for exactly one positive integer no. If g(ano) = g(bno) then

let h(x) =g(an). If g(a ) +g(bn) let h(x) be as follows:

g(a )-g(b g) g(a )g(bn)

X- +g(b )-ba b no no [ a -bno no no no
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0 X 6n,

Figure 13 Clarification of h(x)

Do the above for each x cI - C. Then h is a function from I

onto I x I such that h lC= g. The function h is onto I x I

since g is onto I x I.

We now must show that h is continuous. Let x E[0,11

and e > 0. If x e RO for some n then clearly h is continuousn

at x. Hence, suppose x e C. Since g is uniformly continuous

we can choose 6 > 0 such that if c1 , c2 eC and j - c2  S

then jg(c1 )-g(c2)j < /2. There exist only finitely many n

such that diam Rn > 6. We need to consider two cases. First

suppose that for all n diam Rn Let y F I be such that

|x-yI<6. If yeC then Ih(x)-h(y)j = jg(x)-g(y)j <c/2. as desired.

If y e I - C then ye [akbk] = Rk for exactly one ko. The

diameter of Rk less than 6 implies that jg(ak0 ).g(b ) <2,

Without loss of generality suppose x < y., Then
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IhWx)hWy)_ihx)h(ar )I+ h(akmh(Y) < /2 + 72
A0 k.

Hence h is continuous at x if diam n < 6 for all n,

Now, suppose diam Rn - 6 for n= 1,2,3, ,m,,k RV{RnIRnl

(x,x + 6) t $ and diam Rn - } and Rp I {RnIRn (x= ,X) and

diam Rn > 6 }, Set a = min'{an|lRnCERp} if RFtB and b= max'{bn

Rn e R } if R fl. Define a as follows:
p p

min {a -x, x - b}, if RFfl and R t0

min {6,x - b}, if RF= and R +
a , p

min {6,a-x}, if R = andF

6 , if R = and RF =

Notice that a< 6. Recall that x s C. Let y E I be such that

ix - Yi < a. I[f y s C then Ih(x) - h(y)j = jg(x) - g(y) j < '/2 as

desired. If y {C then yeRk = [ak bk] for exactly one k1 .

We have that [akbk]fl(x- 6, x+ 6) +4$ since Ix- y < a < 6.

The facts [aki~bkJ fi (x - 6,x + 6) + and jx yl < a imply that

diam R <6. Without loss of generality suppose x <y. Then

lh(x) - h(y) I<_lh(x) Kh(al tih(ak) h(y) < /2 + 8/2 =E.

Hence h is a continuous map from I onto I x I.

Let X be a metric space, Choose two distinct points in X

and let K be an arc joining a to b. We will define a linear

order on K and define a function from K onto [0,1] that is one

to one, onto, continuous and order preserving.
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LEMMA 5,9. Let X be a metric space and a,b be two dis-

tinct points in X. Let K be an arc joining a to b in X. Define

<on K as follows:,

i) Let x y e K, Then x <y if and only if K{x}=UaQ b
with as-Ua and both y and b in Vbo

ii) a<x for all x a.

iii) x<b for all x + b.
iv) x = y if x and y are the same elements.

Then < is a linear order on K.

PROOF. First we need to show that < is well defined. We

must show that if xEK and K{xi= U lVb =Uvb
,a 1,b 2-a 29b

with a eU lU and bc fVl\ then U =U andV =
1,a 2,a Ib 2,b 1,a 2,a 5,b

v2,b. Both U &,aU{x} and V2,bu{x} are connected sets since

K is connected. Then K= U U1, u {X}, since K is irre-
i,a 2bU{}

ducible between a and b. Similarly, K= U2 2 U ,b0{x}. Hence

U 2aUV1b u{x}=Ui aLU V2 bU{x}. ThenU = Ua and

Xblb =XT2 b since Ula .a v = $J and U2a av b = . Thus < is

well defined:

Clearly x < x for all x e K. Suppose x,y e K with x < y.

Then y is not less than x. We need only consider x,y different

than a,b. Suppose y <x; then K{x} U qJVb and K,{y} =
ax 0Vx

d c e b The set U { x} 1k connected

and does not contain y; hence U Uf(-X}CVb The fact a VUn

Ua contradicts Ua f = Thus y4x, Hence if x < y and y x
a y baydy

then x= y.
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Let x,y, zK and suppose x ey and y< z. te need

to show that x z, We need only consider x,y,z different than

a,b with x < y andy < z, The other cases are clear. The fact

x < y implies that K {x} U 4 vV with y Vb. K'{y} =
x xx x

a by
with z Vb since y < z. Suppose zsFUa ; then a fUa

y

U a andU a b j h. This contradicts the connectedness of
x x y

uU f x}. Hence z 11V and theref ore x < z.
ax vx

Let x,yE:K.

only consider x,y

cases are clear.

We need to show that x <_y or y < x, We need

different than a,b and x t y. The other

K-' {xI = Uax 48b and K ?fy} = Ua Yb . f

x xy y

ye V then x< y and we are done, So, suppose y s U Then

VbU {x} ; Vy. Thus x E Vb and therefore y < x. Now we have
bx by by

that < is a linear order on K. #

LEMMA 5.10. Let K be a metric arc joining a to b and T

be the metric topology on K. Let T, be the order topology on

K. A base for T< is B ={[a,x) x K and x 4bl U'{(y,b] y eK

and y t a}O{(x,y) x,y e K}. Then T=T.

PROOF. First we will show that T C T. Choose xcFK dif-

ferent from a or b. Then K-{xI= U a Vb with a eU and
ax bx Cax

b cVb. Let z e [ax) ; then z x. K<{z}FUa z ith

asUa and beVb . The fact z 4 x implies that) ; T b
z z b
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Thus U & {z} cUa a.
and therefore zSUa Hence [a,x) C U

a L - a

Choose w e U different than a. K {o}= Ua 4a V with aeUa

and beVb . Suppose xs Ua . Then Vb lVb $ and Vb n

U f $. This contradicts Vb U{wi being connected. Hence
x tb

xsV and therefore w<x. Thus U c[a,x). Now, U = [a,x) for
- b Wax ax

all x t a,b. Similarly (y,b] =Vb for all y, a,b. If x$y

and x,y are different than a,b then (x,y) =Ua fyb . The sets

xy

U and Vb are open for all x,y in K. Hence T g T.

Let U e T. Suppose a e U. If there exists a z s K such

that [a, z) C U then U s T<. Suppose for all z e K we have that

[a, z) U. Then [a,z) n (K- U) + $ for all z s K. Let

H= n [ [a,z]f(K- U)]; then Hfl0 since K is compact. However,
zcK
zta

H c f [a,z] =a and H C K - U. This contradicts asU. Hence
zFK

zta

there exists a z eK such that [a,z)C U. Thus Us T<. Similarly

if b EU then there exists a z eK such that (z,b] C.U and if

a,b j U then there exist x,ysE K such that (x,y) CU, Thus T C T<.

Now, we have that T= T.#

LEMMA 5.11. Let K be a metric arc joining a to b. Choose

two distinct points x,y in K. Without loss of generality sup-

pose x < y; then there exists a z r K such that x < z < y.
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PROOF, First suppose x ta,b and ytf a,b. Suppose there

does not exist a ze K such that x < z< y. K;{x}=Ua Yb and
x x

K {y}=U Vb with a Ua u a , b sVb Vb and y E Vb
y y x y x y x

Then UaxU{x} G9Ua .Thus xEU and so UVb0{y}; Vb . Let
aaa Uy x

xy yyx

H = Ua U{x} and M = Vb Uf{yl; then H= [a,x], M= [y,b] and
ax y

HO m=() K= HQM since there does not exist a z eK such that

x < z Ky. This contradicts K being connected. Hence there is

a z e K such that x < z < y.

Now suppose x= a and yta,b. Suppose there does not

exist a z E K such that a < z < y. Then K-'T {y} = UaLPVb

{a}Y Vb . Thus'{a} is both open and closed. This is a con-

y
tradiction. Hence there exists a z e K such that a< z < y.

Similarly if y = b and x f a,b then there exists a z s K such

that x < z <b. If x = a and y = b then there exists a z a K such

that x < z < y since'{a,b} K. #

THEOREM 5.12. If K is a metric arc joining a to b then

there is an order preserving homeomorphism from K onto I.

PROOF. Let K be a metric arc joining a to b and let

Di={x1 ,x2 ,x3 ,...} be a countable dense subset of K such that

x t x for iti and xi fta,b for all i. Set x0 = a and x, = b.

Let g (a) = 0, g(b) = 1 and g(x) =1/2. Let g(x2 ) be as follows:
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3/4 i'x2 >X I
g(x2 )

1/4, if x2 <X1

Assume that g(xp) has been defined for all k< n-. Let

x = max' {x J. xX<nx, j = 0,,2,, .. ,nI- 1}and xf = mi
pn J n n

{x x .>x, j = ,,2, ..,n - 1,o>}. Then let g(x )=(gL ) +
jJ n n pn

g(kf ))/2. Let g(y) = g I t{g(xn) 1 > y} for each y E K - D.
n

We will show that g is a one to one, onto4 continuous and order

preserving map from K into I= [0,1].

Now, let's show that g preserves order. We will first

use induction on the positive integers to show that g pre-

serves order on D. We will show the following by induction:

Let n be a positive integer. Then

(i) If j is such that l<j<n- 1 and x < xn

then g(x.) < g(x ).
3 n

(ii) If j is such that 1<j<n - l and x.> X

then g(x4) > g(x ).
n

Clearly the result holds for n= 1 and n= 2. Assume the result

holds for all n < k. By definition, g(x 1k+) =(pg( k+) +

g (tf ))/2 with a<x X+< Xf b. Using the induc-
k+Pik+1kk+k+i ".+I k

tion hypothesis we have that g (xk+ + f ). Hence
Vkk~i

g(x <g(xyi 1) g1xfk ). Applying the induction hypothes is

and transitivity to X k+1 and xfk+1 we have the desired result.
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Hence g preserves order on D,

Let x,ys, K be such that xy 4 D, Without loss of gen-

crality suppose x < y, Recall that g (x) glb'T {g(xn) I Xn> x

and g(y) = glb {g(x) I x> y}, There exists an x e D such

that x < x < y since D is dense in K. Thus g(x) <g(xn

Suppose g(y) g(xn); then there exists a x c D such that

y < xn and g(x ) n<g(x). However, g(x )g n(x ) implies

that x < x . Thus x < x <y<x . This is a contradic-
n n0  n1  n0  R

tion. Hence g(x) < g(x)no )<g(y) and therefore g(x) < g(y).

Thus, g preserves order on K.

Let Bo= {0,1} and for each positive integer let
00

Bn { 0 / 2 n, 1/ 2 n,2/ 2 n,..., 2 n/ 2 n}. Set B U Bn. We will
n=o

show that g takes D onto B. Clearly, for each be BO UB 1 there

exists a db D such that g(db) =b. Consider B2 =l{O,1/4,1/2,

3/4,l}. Let H2 ={n e D xn> x1 } and let k, be the smallest

positive integer such that xk e H2 . Then x1 = xk and

b = X Thus g(xk)=3/4. Let Ra={In eDxn <x,}. Let

k be the smallest positive integer such that xk R 2 . Then

X, = xf and 0 =& X' Thus, g(xy )=1/4. Hence if b8BOUB2
f k2 k2  I 2

U B then there exists a db ED such that g(db) = b. Assume
n

that if be U B. then there exists a db eD such that g(db) b.
1=1 n

n n I, 2n'2n / n
Consider Bn+1 Bn ={0/2nl/2n,3/2n,.. ,2 4 1 2 n,2 r 1 } and

n+
Bn+ ={ 0 /2 n+1 , 1 2n+ 1 2 n+,. 2 1 1 n+1 2 n+11 2n+1
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We have that' {0/2n+1,2/2n+1,4/2n , ...,2n+,/2"UC=Bn; hence

if b ({0/2n 2/2n+,,..,2n+1/ 2 q1 } then there is a dbsD

such that g(db) = b. Let k3 be such that g(xk) 2/2n+i and

let R3 ={x < jn x> Xk n > 31}. Clearly k3  0 and R3 + $. Let

k4 be the smallest positive integer such that c sR3 . Then
.K4

k X and X = a. Thus g(X ) = 1/2n+i. Using a similar
k3 k X k:4

argument one can show that there is a d e D such that g(d) =

n+i
2 -1/2n+i Consider 4/2n" K We have that g(0) =a and

n+1n +1
g(xk)= 2/2 Let kk eD be such that g(xk) = 4/2 . Set

R = { e DI k1Q <Xn<k and n>k3 ,k5 }. Clearly R $.

Let k6 be the smallest positive integer such that Xk- s R4.

Then x = x and X, k Henceg(x = 3/2n+ Sim
Pk6 3 k6

ilarly there exist elements in D which map onto 5/ 2n+1,7/ 2 n+5

.. 2.,(2 +/1. Thusfor each bPBn+1  there is a dbeD such

that g(db) = b. Therefore, g takes D onto B.

We can now show that g takes K onto [0,1]. Let zs [0,1]-

B and let tb.}- be a sequence in B such that b. > b. for1 1=1 1 1+1

all i and b+-z. For each i let d. eD be such that g (d.)=b..
1 1 1 1

Then, because g preserves order, d. > d. for all i. There
1 1+1

cexists a w e K such that d w since K is compact. We have

that g(w) = glb{g(xn) In> } whether w e D or w s K-D. Suppose

g(w) < z; then there is a x e D such that xm and g (w) <

g(xm) < z. Then x < d. for all i since g(x ) < z. So,

L < Xm <d for all i. Thus, K{x } =Ua Y, with
ax Vb wit
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c U and d,. e V for all i. This contradicts d cax MOb xM scnrai i.

Hence g(w) >_ z, Suppose g(w) > z; then g(co) > g(d. ) for some10

i0. This contradicts w < d. for all i. Hence g(w) = z and so
1

g takes K onto [0,1].

The function g is one to one since g is onto [0,1] and g

preserves order. Let cd be two distinct points in [0,1].

-1-1 -1 -1 -1Then g1 ((c,d)) = (g (c),g (d)g ((0,d)) = (a,g (d)) and

g ((c,l)) = (g(c),b). However, (g (c),g1 (d)), (a,g (d))

and (g (c),b) are open in K. Hence g is a continuous map.

We now have that g is a continuous, onto, one to one and

order preserving map from K to [0,1]. The function g is a

homeomorphism since K is compact and [0,1] is T2 -#
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