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This paper is a study of continua and related metric
spaces. Chapter I is an introductory chapter. Irreducible
continua and noncut points are the main topics in Chapter II,
The third chapter begins with a few results oﬁ locally con-
nected spaces. These results are then used to prove results
in locally connected continua, Decomposable.and indecom-
posable continua are dealt with in Chapter IV. Totally dis-
connected metric spaces are studied in the beginning of
Chapter V. Then we see that every compact metric space is a
continuous image of the Cantor set. A continuous map from the
Cantor set onto [0;1] 1s constructed. Also, a continuous map
from [0,1] onto [0,11x[0,1] is built. Then an order preserv-

ing homeomorphism is constructed from a metric arc onto [0,1].
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CHAPTER T
PRELIMINARIES

Introduction

Irreducible continua and noncut points are the main
topics in Chapter II. The Vietoris Topology is introduced
tc prove that in a compact Hausdorff space a net of nonempty
closed sets has a convergent subnet. Chapter III begins with
some results on locally connected spaces. Several of these
results are then used to prove results in locally connected.
continua. Indecomposable and decomposable continua are dealt
with in Chapter IV. Totally disconnected metric spaces are
explored in the beginning of Chapter V. Then we see that
every compact metric space is a continuous image of the Cantor
set. A few examples of maps between continua are also ex-

hibited in Chapter V.

Notation
The theorems presented in this paper can be found in the
books listed in the bibliography. Only. the proofs, examples
and remarks given in this paper are original. It is assumed
that the reader is familiar with the material presented in a
beginning graduate topology course.
There is however some notation which needs clarification,

We will let R! denote the real numbers and R2 denote Rlx R},



Let (X,T) be a topological space and A,B nonempty subsets of
X. Let 11A]! stand for the number of elements in A if A is

a finite set and let diam A denote the diémeter of A, If
l{au}aéD is a net in X thenwaa S a means that the net clusters

to a. Similarly, if'{zstn}n,__1 is a sequence in X which clusters

to ae X we will write a, Sa. Let b(A) denote the boundary of

A. If ACB then let bB(A) denote the boundary qf A with re-
spect to the relative topology on B, Similarly, KB will de-
note the closure of A with respect to the relative topology on
B. The sets A and B are separated sets if ANB=BNEK = §, If
A and B are separated sets such that their union is all of X
then we will write X =AU B,

DEFINITION 1.1. Let (X,T}bea topological space and'{Au}Oﬁ

eD

a net of sets in X, Then the limit superior of {A@}GED is

{xeX | if UeT and xe U then for every « ¢ D there exists a

8> a BeD, such that UFIAS £ 03. Let 1lim sup A, denote the
1imit superior of {Au}asn'
DEFINITION 1.2. Let (X,T) be a topological space and

l{Aﬁ}meD a net of sets in X. Then the limit inferior of

'{A&}QQD is {xeX | if Ue T and xe U then there exists an %p ¢ D

such that if geD and o2 ag then AyNU # 03, Let lim inf Ay

denote the limit inferior of {Aa}aﬁﬁ'

DEFINITION 1.3, Let (X,T) be a topelogical space and

‘{Am}an a net of sets in X. Then A is said to be the limit of

{Aa}meD if and only if lim 1nf.Am= lim sup A=A,



DEFINITION 1.4. Let (X,T) be a topological space. A
connected subset of X that is not properly contained in any

other connected subset of X is a component of X.



CHAPTER I1
CONTINUA
Irreducible Continua
DEFINITION 2.1. A continuum is a compact connected
Hausdorff space,.
EXAMPLE 2.2. Let X be the subspace of R2 shown in

Figure 1; then X is a continuum.

Figure 1 Continuum

X

"y

LEMMA 2.3. Let X be a compact Hausdorff space. and let
F be a family of nonempty closed subsets of X with the property
that if A, BeF then there exists a C e F such that CCANB.
Then the following two properties hold:

i} If U is an open set containing NF, then there is some

Fe F such that FCU.

ii) If in addition, each Fe¢F is connected thenNFE is

nonempty, compact and connected,



PROOF, First index F, say F={F} ., Pick an element
2 g A

in E, say Fy, . Let D={acAlF CF,,tand direct D as follows:

Let U be an open subset of X such that NF cU, Suppose Fadgu
for all aeA; then for each @eD there exists a f4® F, such that
f,F U. Now we have a net'{fa}aen in Pml with Fu1 compact.
Hence f 5 yEF&l’ for some YEIEI

Suppose y ¢ F,» for some o in A; then ye(X - F,) which is
open in X. Now, there exists Fazq;FariFal withaseD and there

exists a3 > o, such that fags{}h F.). Thus, F 3.(:; Fazg Fy and so

[+
Otaaxm-Pag; but this contradicts faseFGB. Hence yeNF and
therefore y e U. Thus, for eachae D there exists a >0, Bel,
such that £, eU. This contradicts fa¢ U for all aeD. Hence,N
F#0 and there exists FeF such that F ¢ U.

To prove part two we will use part one. Now assume each
Fel is connected. From the proof of part one we have that
NE# (. Since X is compact andNF is closed we have that NF
is compact. |

Suppose MF is not connected. Then‘ietf\E=]{¢ H, Since
X is compact and Hausdovrff there exist open disjoint sets U and
V such that KCU and HCV, By part one there exists Fi; ¢F such
that F1 CU U V. Since Fi is connected, either F1CU or F1C V.-
Without loss of generality suppose F,CU; thenrﬂigtland
therefore H={, This contradictsiﬁ# ¢ and therefore NF is

connected. #



DEFINITION 2.4. Let (X,T) be a topological space and A

a nonempty subset of X, A subcontinuum K of X is irreducible

about A if A CK and no proper subcontinuum of K contains A.

EXAMPLE 2,5. Let X={(x,y) & R?|x%+y2 < 16} and
A= ((,y)eX | x24y2¢ 11 . Then K={(x,y) e X| x2+y2 <1} is
subcontinuum of X which is irreducible about A.

THEOREM 2,6. Let X be a continuum and A a nonempty subset
of X. Then X contains a subcontinuum which is irreducible about
A.

PROOF. Let K={KCX| XK is a subcontinuum of X and ACK}.

K# 0 since X eK. Partial order K as follows:
Kag KB++ﬂKB§KG.

Let C be a chain in K; then C;= N C is an element of K. Thus
C eC -

C has an upper bound and therefore K has a maximal element, say
Ky. Clearly K; is irreducible about A. #
DEFINITION 2.7. Let A and B be nonempty disjoint subsets

of a space X. A subcontinuum K of X is irreducible Ffrom A to B

if X intersects both A and B and if no proper subcontinuum of K
intersects bofh A and B.

EXAMPLE 2.8. Let X be R, A= {xeX | 0<x<1},
B={xeX|5<x<25 and K={xeX|1<x<5}). Then K is continuum
which is irreducible from A to B.

THEOREM 2.9, Let X be a continuum and A,B be nonempty
disjoint closed subsets of X. Then X contains a subcontinuum

which is irreducible from A to B.



PROOF, Let K={KCX|K is a continuum, KNA# 0 and

KNB#@§}, K#§ since Xe K. Partial order K as follows:

KQEKB +-*KBQK®L.

Let C be a chain in K; then C; = N C 4is a continuum. Suppose
CeC

CiNA= 0§, Then there exists C,eC such that C,CX - A; but this
contradicts Co,NA# ¢, Thus, CiNA# ¢ and simiiarly CyNB# ¢.
Hence, by Zorns' lemma, there exists a maximal element K; in
K. Clearly K; is irreducible from A to B. #

Let X be a compact Hausdorff space and A, B nonempty dis-
joint closed subsets of X. If there does not exist a sub-
continuum of X which intersects both A and B then, due to
Theorem 2.9, X is not connected, Moreover, we can find two
separated sets in X such that their union is all of X, A is
contained in one of these sets and B is contained in the other.
The next three lemmas are needed to prove this.

LEMMA 2.10. Let X be a compact Hausdorff space, x and y
elements of X such that x#vy, and'{Hu}aeA a collection of
closed sets each containing x and y such that each Ha is not
the union of two separated sets one containing x and the other
Y. If‘{l{m}mgA is totally ordered by set containment, then

N Hm is not the union of two separated sets one containing
ae A

x and the other vy.



PROOF. Suppose N H_ =MYN, where xeM and yeN. M=¥
ael
and N=N since N H, is closed. Let U and V be open dis-
ael

joint sets such that MCU and NCV. From Lemma 2.3 we know
that there exists Hal such that Hmig‘ULJV. Thus,
Hul = (Huan)UJ [Huan) with x ¢ Haan and y ¢ Hulnv. This
contradicts Hm1 not being the union of two separated sets one
containing x and the other y. Hence, @QAHu is not the unidn
of two separated sets one containing x and the other y. #
LEMMA 2.11. Let X be a compact Hausdorff space and x,y
elements of X such that x+y. 1If X is not the union of two
separated sets one containing x and the other y, then X has a
subcontinuum joining x to y.
PROOF. Let H={HCX|x,yeH, H=H and H is not the union
of two se?arated sets one containing x and the other y}. H% ¢

since X e H. Partial order H as follows:

Hug HB -+ HBgHu .

Let C be a chain in H. Then, from Lemma 2.10, N(cH and
CeC

therefore H has a maximal element, say H,. TIf H, is connected
we are done; so suppose H;, =M{N with x,y ¢ M. H, ¢ H implies
that H; =H, and therefore M=M. Thus, if M is connected we
arc done. Suppose M==QLURJ If x¢Q and v ¢ R, then H, = QU(RUN)
with x ¢ Q and y ¢ RUN. This contradicts Hle:ﬂ. Thus without
loss of gemerality say x,y¢Q. x,yeQ andHieH imply that

Q is in H. Then Q$H1 and Qe H contradict H; being maximal in H.



Hence, M is connected and therefore M is a subcontinuum con-
taining x and y. #

LEMMA 2.12. Let X be a compact Hausdorff space and let
A and B be closed disjoint subsets of X. If for each pair a,b,
with aeA and be B, there exist sets H, K such that X=HUYK
with aeH and be K, then X=M{YN where ACM and BCN,

PROOF. Let aeA. For each beB there exist sets Hb and
K and beX

such that X=H, YK, with acH Let K= {K.|be Bl

b b b’
Then K is an open cover for B and therefore X has a finite

subcover, say Kbl’sz . b a. Do the above for each acA.
Thus for each aeA, BC LJ Kb and ag;Hb R i=_1,2,,..,na. By
i=1 1 i

. Ilg . .

construction ( U K )fﬁ(l% Hb } =0 for each acA. Also,
1=1 1 i=1 “i

Nig

AC U (.Q Hy ). Since A is compact there exists a finite set
aeh 1 1
F = {aj,...,a_}CA such that AC U (ﬁHb)
acF i=1

M= F ﬁ ) and N= N (U Ky ). Clearly ACM and BCN.
_— 1= aeF i=1 "1
ng,

Let aeF; then ( U Kb 10 ﬁ H ) =¢§ and therefore MF]N=¢.
i=1 i=1 1
Let xeX. For each acF X=-Hb‘L|J K,{‘)_ for :’L=l,2,...,na; thus
n, 1
£ ﬁ Hb or Xe U Kb . Hence xeM or xe N and therefore
i i i=1 i

= MWN, #
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THEOREM 2.13, Let X be a compact Hausdorff space and let
A,B be closed disjoint subsets of X such that no subcontinuum
of X intersects both A and B. Then there exist closed disjoint
sets M,N such that X=MUN with ACM and BCN.

PROOF. Suppose there do not exist closed disjoint sets
M,N such that X=MUN with ACM and BCN; then there exist
acA and beB such that X is not the union of two separated
sets one containing a and the other containing b, Then, from
Lemma 2.11, there exists a subcontinuum joining a to b. This
contradicts there not being a subcontinuum of X intersecting
both A and B. Hence there exist closed disjoint sets M,N such
that X=MUN with ACM and BCN. #

Theorem 2.14 also comes from Lemma 2,11 énd Lemma 2.12.

THEOREM 2.14. Let X be a Hausdorff space and let A,B be
disjoint closed subsets of X. Let K be a subcontinuum of X
which is irreducible from A to B. Then the sets K- (AUB),
K- A and K- B are connected.

PROOF. First we will show that X- (AUB) is connected.
Suupose K- {AUB) 1s not connected; then let R and S be subsets
of X such that K- (AUB) =RYS. Then RU(KNA) U (KNB) and
SU(KNAYU (KNB) are closed subsets of K. Let ae¢ KNA and
be XKNB; then K irreducible from A to B and Lemma 2.11 imply
that RU(KNAYU (KN B) is the union of two separated sets one
éontaining a and the other containing b. A similar result fol-
lows for Sy (XMA) U (KNB). Hence, from Lemma 2,12, there
exist sets M,N,P and Q such that RU(KNA)yU (KA B) =M{yN,
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KNAGM, KNBCN, SU(RNA) U (KNB)=PYQ, KNACP and
KNBCQ, Thus K= (MUP)U (NUQ), MUP = FUP and NUQrYNUQ,
let zeM; then z ¢ N since MAN=¢. If zeR then z4Q and if
ze KNA then zeP, Hence z i‘NUQ; Let peP; then p¢Q since
PNQ=¢. IfpeS then p¢N and if peKNA then peM. Hence
P¢NUQ, Thus (MUPYN (NUQ) =¢. This contradicts K being
connected, Hence K- (AUB) is connected.

Now suppose there exist subsets of X C and D such that
K-A=C{yYD, Let U and V be K- open sets such that unvs=4g,
KNACU and XNBCV. Without loss of generality let
K-{AUB)CC. C and D are open in K since they are open in
K-A. Hence CUU and DNV are open in K. UNV={ and
CNAD=¢ imply that (CUU) N (DNV) =§, Hence
K= (CyUy{ (hNV); contradicting the connectedness of K,
Thus K- A is connected. One can show that K- B is connected
using a similar argument. #

DEFINITION 2.15. Let X be a space, x e X and Q= {y e X]
there do not exist open disjoint sets U,V such that X=UUYV

with x€U and y e V}. Then Qy is called the quasi-component

of X determined by x.
REMARK 2,16. Let X be a compact Hausdorff space and x e X.
Then, due to Lemma 2.11, for each yeQ., xty, therc exists a

subcontinyum Ky‘ in X which jeins x to y.



THEOREM 2,17. lLet X be a space and xe X. Then
Q=M CX [ U is both open and closed and x e},

PROOF. Let zeQ and UEX such that U is both open and
closed and such that xeU. U both open and closed implies
that X= (X-0)Uy (U), where both U and X~ U are open and where
(X-UNW) =¢. zeQ and xecU imply that zeU, Hence,
Q)g_ﬂ{UgX l'U is both open and closed and x ¢ U}.

Let wefHUCX | U is both open and closed and x e U}. Suppose
w¢QX; then there exist open disjoint sets V, W such that
X=VyUW, xeV and weW. Then V is both open and closed and
therefore we V. Hence VAW$ §. This contradicts VAW= ).
Thus weQ  and therefore{UCX | U is both open and closed and
x e U} QQX. #

THEOREM 2.18. Let X be a space and xe X. Let C}c be the
component of X containing X; then CX(; Qx‘

PROOF. Let zeC_ and suppose z ¢ Q.- Then there exist

open disjoint sets U,V such that X=UUV, xeU and zeV. C_

being connected implies that CX(;U or CXQV. xel and zeV
contradict . CXQU or CXQ;V. Hence z ¢ Qx and therefore ng QX.#

EXAMPLE 2.19. Consider the subspace X of R?> shown below.

‘I

Figure 2 Supspace X of R2?,
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Consider the two vertical line segments farthest to the right
in X. They are of equal length and shorter than the reamin-
ing line segments. Let A be the upper one and B the lower.

Choose x e X as shown,

e ' -B

Figure 3 Clarification
of A,B and x. .

CX=A but QK=AUB. Hence CXEQX. Notice that X is not com-
pact.

THEOREM Z2.20. Let X be compact and T,. Let XE:X; then

PROOF. Due to Theorem 2.18 it is sufficient to show
that(%cgcx. Let qe(%f, Then, due to Lemma 2.11, there exists
a subcontinuum K joining x to q. KUCX is connected since
xeK and x¢ Cy- Thus KQCX and therefore qge CX. Hence

Q CCy- #

Noncut Points
THEOREM 2.21. 1If X is a continuum such that X has more
than one point then X has at least two noncut points. |
PROOF., lLet X be a continuum such that X has more than

one point. If every xeX is a noncut point then we are done.
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So suppose X has a cut peint. Let xeX be a cut point and
let U,V  be subsets of X such that X - {x} = UxL[JVX. Suppose
each vy elU, Is a cut point, For each ye Uy let Uy’vy be sub-
sets of X such that x sVy and such that X - {y} “m*UYLJJVy. Then
for each y eUX,UYU{Y} is a continuum such that

Uyu‘ {y}¢X-{x}. Hence UyU' {y}cU, for each yeU . Set

U= {UYU {y} | yeU,} and then partially order U with set con-

tainment., Let C be a chain in U; then K= ﬂ(U}p{y}) is a non-
C

empty continuum with KgUX.

Let k ¢ X; then UkU{k}gK. To see this we will consider
two cases. First suppose ke Uy for every UyU{y}e_C_. Let
y e U, be such that Uyu {yleC. Ifye U, then VkU {k}QX -{y} =
UYL]JVy.
(Vkak})nvy%d}. This contradicts the connectedness of

keuy and xevknvy imply :that . (Vku{k})ﬁUy+¢ and

ViU {k}. Hence y ¢ U, and therefore U Uiklg U, Thus
UkU {k} € K when k¢ Uy for every Uyu'{y} e C. Now suppose there
exists a yg e X such that UYOU{yO} e C but k¢ Uy . Since

‘ 0

keK= N (U, U{y}) we have that k=y, and therefore U, =10, .
C Yy Yo

Let we X be such that o EUX, m+ k and UwU{m}sg. Then k EUw

and therefore 'Uku'{k}(_:_Uw. Hence UkU{k}C_:_ K if there exists a

X such that U, U{yoleC but k¢U_ .
Yo € y Yol el Uy |
Thus Uij{k} is an element of U such that UkLJ{k} c K.
Therefore, by Zorns' lemma, U has a minimal element. Let S

be the minimal element in U; then § is a continuum such that
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S C

N U_u{y}). Let ses, Then, since U U{y}cU_ for each
voe U Y 4 x

X

yelUes, sel . Thus Xn7{s}=USLlJVS, selU, and xeV_. Then
USLJ{S} connected, U_U{s}CX~ {x} and s eU, imply that
USLJ{S}QI%& Let z eUS; then zelU, and therefore X~ {z} =
UZQJVZ. Again Uzgllx. Now, é eS and s eX~ {2z} imply that
selU,. Thus (V,U{s})NU_%§ and>since xeV, OV,
(V,U{s)NV_40. zeU_ implies that V.U {s}gX-(2}=U YV,
Thus VSU{S}'C UZ or VSU{S}QVZ. Thi.sr contradicts
(V,U{sHNU_+ ¢ and (VSLJ{S}]F1VZ+ §. Hence there exists a
noncut point in_UX. Similarly there exists a noncut point in

Vo and therefore X has at least two noncut points, #

Vietoris Topology
THEOREM 2.22. Let (X,T) be a topological space and
S(X)={FgX|F=F and F${}. For ecach GeT set S(G) =
{FeS(X) | FCGY and I(G) ={FeS(X) | FNGEH}. Let
81=1{S(6G)|GeT}, S, ={I(G)|GeT} and let E be the topology on
S(X) with S§=57U Sy, as a subbase. Let Ul,Uz,...,Un be open

sets in X and set<1h,U2,...,Un> =’{FE:S(X)|]?Q 3 Ui and
. o1

FAU, + 0 for all il. Then.§j¥{<U1,U2,‘..,Un>ﬂ U; T for all i
and n is a positive integer} is a base for E.

PROOF, .Let n bhe a positive integer, Ul,Uz,.,.,Un be
open sets in X and P€'<U1,U2,y.«,Un>', Set

n . on
V=[S(uUJIniNn I(U;)]. Then VEE and F e Ve <U1,Uz,,.,U>.
i=1 i=1 n
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Thus <U;,U,,.. ”‘-‘Un>E E and therefore B GE.

Let FeS(X). If FeS(G) for some GeT then
Fe<G>CS(G), If Fel(G) for some GeT then let Ve T be such
that FCV. Then Fe<G,V>€I(G). Hence B is a base for E. #

The topology E on S(X), given in Theorem 2.2Z, is some-
times called the Vietoris Topology on S{X). The Vietoris
Topoiogy will enable us to prove that a net of closed nonempty
sets in a compact T, space has a convergent subnet. This re-
sult will be used throughout the rest of the paper.

THEQREM 2.23. Lef (X,T) be a Ty space. Then S(X) is T,.

PROOF. Choose two distinct points Fi1,F,e8(X). Without
loss of generality let x, ¢ F, ~ F;. For each xeFy let Uy be
an open set in X such that xE;Ux’but xzf#UX, Set
Uy = st;JE,;lUx; then Fye<U;> but F, ¢<U>. If F; ¢F,, a similar
argument shows that there exists a U, ¢ T such that F, e<U,>but
F1$<U,>. If FiCF, then Fye<U;,X - B>, but Fi} <U;,X- F>.
Hence S$(X) is T;. #

THEOREM 2.24. Let (X,T) be a compact space; then (S(X),E)
is also a compact space.

PROOF. Let C be a cover of S(X) by subbase elements.
Set S={GecT|[8(6)eC) and I={6GeT|I(6)eC}. If I=0 then
XeS5(Gg) for some GyeS. Then S(X) € S(Gy) and therefore S(X)
is compact.

If 140 and XC My G then T is an open cover for X. Thus

n

there exist sets Gl,GZ,..,,Gna I such that XC U-Gi’
i=1
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n n .
X¢ LJCE implies that S(X)C LJI(Gi) and therefore S(X) is
iml j_: 1
compact.
Finally suppose I%¢ and X¢ UG ., Then X- yGe
' Gel Gel
5(X). Therefore there exists a Gy e 8§ such that X~ v GeS(Gy).
Gel

Hence X = [EEIG UGy, X compact implies that there exist sets
el N
G1,Gz,--~,Gn€ I such that X~= [.U Gé]LJGo- Let Fe S(X).
i=1

1t
x=[ u Gi]ucag implies that if FEG, then FeI(G,) for some
is |
i, i=1,2,3,...,n. Hence S(X)C [iﬁ I(Gi) U S(G,) and therefore
im1

S{X) is compact. #
THEOREM 2.25. Let (X,T) be a T; space and let (S(X),B)
be a compact space. Then (X,T) is a compact space.
PROOE. Let C be an open cover for X. Say gji{Ca|q%A}
for some index set A. Set QE=5{I(CQ)|CaeQ}; then Cp is a cover
of S{(X) by subbase elements. Hence there exist
I(Cal)’ I(Caz),...,l(caﬁ), members of QE’ such that

n
S(X}€ U I(C ). Choose xeX. {x} is a closed subset of X

I} ¢ 3
i=1 S
since X is T,. Hence'{x}el(cm_ ) for some iy, 1<i, < n.
0 n
Thus Xely;  and therefore X ¢ U G, - Thus C has a finite
"0 ‘ i=1 i -

subcover and therefore X is compact. #
THEOREM_2,26. Let (X,T) be a Ti space. Then (S{X),E) is

a connected space if and only if (X,T) is a connected space.
PROOF. Let S(X} be commected and suppose X=RY S, for

some sets R gnd §. Let A—'“-{Fa,S(X-)!FgR},‘B%{F&;S(X)]FQS} and

C= {(FeS(X)|FNR+{§ and FNS+ b}, ReA, SeB and X e Q. Hence
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At 0, Bt andcC$ 0.

Let Fe A and choose a net {F } . in A which converges,
in 5(X), to F. TFor all ceD. F {<S>and F_$<R,5>. Hence F e A
and therefore A is closed in S(X). Similarly B and C are closed
in S(X). Hence S(X) =AYBYC, which contradicts S[X)'connected.
Thus X is connected.

Next let (X,T) be 2 connected space. For each positive
integer n let_En='{FgS(X)[F has less than or equal to n

n
elements} and define a function g from 1 Xi into En’ where

i=1
X; =X for all i, by_gn((xl,xz,..",xn))='{xl,xz,...,xn}gl
e . 0
Let n, be a positive integer and [xlgxz,...,xn Jen X.,
i=1

where Xi==X for all i. Choose open sets U1=U2s'~‘=Uk in X

such that'gno([xl,xz,...,xno))a <U1,U2,...,Uk> . For each

each j, 7=1,2,3,...,n,, let Ej:é{UiIXjE:Ui’ is= 1,2,3,.,.,k}.
Then for each j, j =1,...,0p, set W.=NV.. Now,
g . ) Ny

(X1:X0,...,X Je @I W. which is open in n X, and

HO j:l J i=1 1

)

gno(ji[1 Wj)§;<U1,U2,...,Uk> . Hence‘gn0 1s continuous and
therefore Eng is connected. 'Thus for each positive integer n,

I, is connected.

Let Eﬁ5{P=:S(X)]Fs:En for some positive integer n}; then
P is connected in S(X)}. Let UI,UZ,...,Um be open subsets of X

and for each i, i= 1,2,...,m, let x.e:Ui. Then F=5{x1,xz,...

1 »

x,}eE and Fie<Uj,U2,...,Um> . Hence F is a dense connected

subset of S{X) and therefore S(X)} is connected. #
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Let (X,T) be a topolegical space and’{A&}ueD a net in S(X}.
Aa z A means that the net of sets converges to A with respect.
to the topology T and A, A means that the net converges to A
in S(X).

THEOREM 2.27, Let (X,T) be a compact T, space and
(A}

o ael
E A, then Au I A.

a net in S(X). If there exists an Ae¢ S(X) such that
A
o

PROOF. Let’{Ag}aen be a net in S(X) and A¢S{X) such that

[ ezl

A+ A. Choose x5¢eA and let U be an open subset of ¥ such
that xp e U. For each xe A let V, be a Tfopen neighborhood of
X; then V={V_ixeA} is an open cover for A. Hence there exist
sets Vl,Vz,...ﬂvn such that Viz:E for i=1,2,...,n and such

n
that ACy V

_ Let W==<U,V1,Vé,...,Vn>; then A e W and there-
i=]

i
fore there exists an ageD such that if o> ay, aeD, then AGE:W.
Hence, if o ¢ D 'and. o> apthen A NUZ¢. Thus A clinm inf A €
1im sup Am in X.

Let z ¢ X be such that z ¢ lim sup A - Suppose z ¢ A; then
there exist disjoint T-open sets U and V such that {z}CU and
ACV, A 5 A and Ae<V> imply that there exists an o;eD such
that if aeD and o >o; then Aue<v>. Thus for o> oy, A C V.
ze lim sup Ad and z e U imply that there exists an aseDl, dgzwal,
such that Aa2r1Uﬂf$. This contradicts UNV=¢. Hence zeA and
therefore Aclim inf Aaglim sup A € A. Thus Aa 1 A. ¥

REMARK 2.28. Let X be a compact T, space and'{Au}u

a
eD
net in X such that A_+¢ for all acD. Then Theorem 2.24 and
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Theorem 2,27 imply that'{ﬁm}aED has a convergent subnet. If

o0

X is a compact metric space and {A } _, a sequence of closed
nonempty sets in X then, similarly,'{An}§:1 has a convergent
subsequence,

THEOREM 2.29, Let (X,T) be a compact T, space and
C(X) ={FeS(X)|F is a continuum}. Then C(X) is closed in S(X).

PROOF. Let xeX. Then {x}eC(X) and therefore C(X) % ¢.
Let Fe C(X) and'{Fu}aED a net in C(X) such that F E F. Then
Fu X-F and therefore F is connected. Hence F is a continuum
and therefore Fe C(X). Thus C(X) is closed in S(X). #

EXAMPLE 2.30. Let A= {(x,y)eR?|x2 +y2 =1}, D =
A(X5¥)eR?| x2 4+ y221} and Y= {(x,y) e R2 | x2+y2<1+2n}. Set
X=Y0-D0, Recall that S(A) ={F CA|F=F and F#{} and C(A)=
"{FeS8(A)| F is a continuum}. Let X* be the one point compacti-
fication of X. Thus X*=3XU{p}. Let (Xy,¥1) ¢ A and choose
(x,,¥5) ¢ A such that (x;,y;) § (x,,y,); then let K((xq1,Y1),
(xz,fz)) be the arc joining (x;,y;) to (x,,y,), moving in the
clockwise direction, in A. Then CCA) = {(x1,y1) | (x3,y1) A}V
AKX y1) 5 (25 y20) (X570 eh, (Xp,Y2) e A and (x5,y,) #
(X3,¥1)1.

Let g be a function from C(A) inte X* such that
80(xy5y3)) = (x3,71), g(A) =p and such that g(K((xy,y,),
(;z,yz))] is the point (Xq,Yp) e X such that (x,,y,)} is on the
line y==(yy34) x and such that d{(x3,¥1),(Xp,¥p)) equals the
length of KO(Xy5y1) 5 (X0,¥5)). Then g is a one to one and con-

tinuous map of C(A) onto X*,



CHAPTER T1I1I
LOCALLY CONNECTED CONTINUA

DEFINITION 3.1, Let (X,T} be a topological space and

xe X, X is locally connected at x if X has a neighborhood

base at x of open connected sets. X is said to be locally
connected if X is locally connected at each x ¢ X.

THEOREM 3.2. Let (X,T) be a topological space. Then X
is locally connected if and only if each component of each
open set 1is open,

PROOF. Suppose X is locally connected. Let Y be an
open subset of X, C a component of Y and ye C. Since X is
locally connected there exists an open connected set B such
that ye B€Y. Thus BUC is connected and therefore BUC ¢C.
Hence BCC and therefore C is open. ‘

Next, suppose each component of each open set is open.
Let xe X and for each open set U containing x let CUX be the
component of U that contains x. Let §x=¥{CUX|U is open and
x e U}; then B, is a neighborhood base at x of open connected
sets. Hence X 1is locally connected at x and therefore X is
locally connected. #

REMARK 3.3. Let X be a locally connected compact space.
Then C={C|[Cis a component of X} is an open cover for X of

pairwise disjoint sets. Since X is compact C has only
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finitely many elements, Thus a compact locally connected
space has only a finite number of components.

THEOREM 3.4. Let (X,T) be a topological space, Y a sub-
set of X and £:X+Y a function from X onto Y. The set Te =
{6eY | £73(6) e T} is the quotient topology on Y. If (X,T) is
locally connected then (Y,Tf) is locally connécted.

PROOF. Assume (X,T) is locally connected. Let G an and
consider some component C, of G. For each z e f_l(CG) let
Cf-l(G)Z be the component of £ *(G) which contains z. Since
X is locally connected and f is continuous Cf*l(G)z e T for each
Z Ef-l(CG). Hence (J Cf“l[G e T. If we can show that

zsf;l(CG) z

fﬁl(CG]==U Ce-1(G), then, due to Theorem 3.2, we will be done.
ze£71(Cg) | | |

Clearly fpl(CG)gLJ ?f*l(G)z . Let wafal(CG); then £(w)eC,
| zef H(Cy)

and f(w)ef(Cfm1(G)w). Since f is continuous and

CGfo(Cf—I(G)w)+ 0 we have that f(Cf~1(G)w)§(%? Hence

_ - "1 - ! -1

w€Cf 1(G)wgf (f(Cf 1(G)w))§f (CG). Therefore f (CG)_?
§) Cf"l(G]z and so (Y,Tf) is locally connected. #

zef 1 (Cy)

DEFINITION 3.5, A space X is connected im kleinen at a

point X if each open neighborhood U of x contains an open
neighborhood V of x such that any pair of points of V lie in

some connected subset of U.
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Clearly if X is locally connected at x then X is connected
im kleinen at x, Example 5.6 shows that the converse is not
true.

EXAMPLE 3.,6. The following subspace of R? is connected

im kleinen at y but not locally connected at y.

Figure ;4 Subspace .of RZ -

THEOREM 3.7, Let (X,T) be a space such that X is con-
nected im kleinen at x for all xe¢X. Then X is locally con-
nected.

PROOF. lLet G be an open subset of X and C a component
of G. From Theorem 3.2 it is sufficient to show that C is
open. For each xe(C let Ve be an open set such that
xeV, GG and such that if u,veV, then there exists a con-
nected set W such that u,ve WC€G. Fix xeC and for each
veV, let Wv.be a connected set such that x,vawyg G, Then

U W& is connected and contains x. Hence U WVQQC,
Ve VX VEVX

Since V&:g U WV, we have that'ﬁxng Thus for each x¢C,
veV ‘
X
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V.,€C. Hence CC U V,&C. Thus C is open and therefore X is
' xeC

locallf connected. #

THEOREM 3.8. Let X be a metric continuum. Then X is
locally connected if and only if for each e¢»0, X is the union
of finitely many connected sets each of diameter less than .

PROOF. Let X be locally connected and e > 0. For each
xeX let VX be an open connected sect containing x with dia-
meter less than e. Then E}i{E% | xe X} is an open cover for X

and hence has a finite subcover. Let'{VX ,...,VX } be the
1 n

n
finite subcover from V; then X= U Vi . Hence X is the union
i=1 i

of finitely many connected sets each of diameter less than e.
Next, let X be such that for each ¢> 0 X is the union of
finitely many connected sets each of diameter less than e.
Suppose X is not‘locally connected. Then, from Theorem 3.7,
there exists a p e X such that X is not connected im kleinen at
p. Choose a neighborhood U of p such that if V is an open set
with peVCU then there exists a zeV such that p and z do not
lie together in any connmected subset of U, Choose &» 0 such
that S(p,e) €U and then let Cj,Cg,..a,Cn be connected sets of

n
diameter less than e/4 such that X= () Ci‘ Without loss of
i=1

generality suppose p ¢ Cjo, Let uaacjé. Then d(p,w)# =/4 and
therefore weS(p,e). Hence CjOQ-S(p,g)P Choose a positive in-
teger m;, such that S(p,1/n)CS(p,e). Let Xy e S(p,1/n1) be such

that x; does not lie together with p in any connected subset of
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U. Then x; 4 Gjo* For each positive integer n, n» 2, let
xn‘eS(p,l/nlrbnfﬁl) be such that X, does not lie together with
P in any connected subset of U. Hence Xn.icjg for all n»>1.
For some k# j,, 1 <kean, Cy contains infinitely many of the
X,"'s. This and the fact that Xn-+p imply that peC, . Hence
ﬁk¢U. Thus let g effk be such that g4 S(p,e). Then

d(p,q) > ¢ and therefore diam ﬁk3¥e° This contradicts diam
Ck’ge/d' Hence X is locally connected. #

For Theorem 3.14 we need to know that if X is a continuum
and U is a proper open subset of X then every component of T
intersects the boundary of U, Since every component of U is
closed it is sufficient to show that the closure of every com-
ponent of U intersects the boundary of U. Lemmas 3.9 and 3.10
show this.

LEMMA 3.9. Let C be a component of a compact Hausdorff
space X and U an open set cdntaining C. Then there exists an
open set V such that CEVEU and b(V) = §.

PROOF. Let xeC; then the component of X containing X is
C. ©Since X is compact and Hausdorff C==QX, Recall that Qx is
the quasicomponent of x, Thus C==0L{V[ V is open, V is closed
and xe V}. Hence, from Lemma 2.3, there exists a set Vy such
that CEVo,xeV,,VoCU, Vo is open and V, is closed. Since V,
is both open and closed b(Vy) = 0. Henée Vo is an open set con-

taining C such that b(Vy) =0, #
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LEMMA 3.10. Let U be a nonempty proper open subset of a
continuum X and C a component of U. Then TNb(U) $§.

PROOF. Suppose CNB(U) =0; then C=C. CNb(U) =¢
implies that C is a component of U. To see this suppose that
C is not a component of U, Then the component of U containing
C is a continuum which intersects b(U)}. From the proof of
Theorem 2.9 we have that there exists a continuum K such that
KCU and K is irreducible from C to b(U). Thus, from Theorenm
2.14, X-Db(U) is connected and therefore X-b(U)CC.

Hencé X €C Y b(U). This contradicts X being connected. Hence
C is a component of U if CNb(U) = §.

Since € is ‘a component of U there exists a U-open set V
such that CCVCU with bﬁ(V)==¢. Hence V is closed in X. V
open in U implies that there exists a sef W such that W is open
in X and V=WNU. Thus VO=w0n (0 =WNU. VCU and V=WNT
imply that V=WNU. Hence V=WNU and therefore V is both
open and closed. This contradicts X being connected. Hence
CNb(U) 4 §. #

DEFINITION 3.11. A subcontinuum K of a continuum X is a

. o . . el
continuum of convergence if there exists a sequence {Kr}n“
cantinuum orf =

1
of pairwise disjoint continua such that the limit of‘{Kn}zzl
is K and KAX_ =§ for all n. |
THEOREM 3.12. Let X be a continuum. Then X is not the
union of a countable (>1) family of pairwise disjoint. non-

empty closed sets.
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PROOF, X is not the union of a finite (> 1) family of
pairwise disjoint nonempty closed sets because X is con-
nected. Suppose X = Hsi Fn where each FIl is closed and non-
empty and where Fnr]Fm==¢ if n+tm, Let U; be an open subset
of X such that Fy €Uy and UjNF, =§. Let U, be an open sub-
set of X such that Fy€U,, U,NFy =0 and U,NT; # § (For ex-

ample, take U2==(Ui)cj. Assume that U has been constructed

n-1
such that U, is an open subset of X, F, €U, ﬁﬁfW(j:H Fj)=¢
and n U‘=+¢ Let Wy be an open subset of X such that
Fo,  GW, ,, and Wnﬂn (jlﬁle) =0. Let ze jf___}.lUj and 131’. Vo1
be an open subset of X such that zeV_ ., and Vn+lﬂ(]9:Fn)= $.
j=1
n
Now let U ., = n+1LﬁV ; then,Un+121%H1, n+1r1(3ul Fj)=¢
n+j . o
and N U +0. Let F={U  {n=1,2,3,...} . Since X is com-
3 1

pact and any finite subset of F has a nonempty intersection

o

we have that N Uh=k¢. Let qe n U“, then, since X= U F >
n=1 n=1 n=1

there exists a positive integer nj such that ge Fnl . This

o

contradicts qstn1+1 since Un1+1lF\Fn1 = 0. Hence X%';JIF . #

REMARK 3.13. Let X be a continuum and K a subcontinuum
of X. If K is a continuum of convergence then there is a se-
quence {Kn}n 1 of pairwise disjoint continua such that Kn->K

and XNK_ =0 for all n. Theorem 3.12 implies that
X+ (UK)IUK.
n=1
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THEOREM 3,14, Let X be a metric continuum such that X
is not locally connected. Then there exists a p e X such that
p is in some nondegenerate continuum of convergence.

PROOF. X is a metric continuum that is not locally con-
nected. Hence, by Theorem 3,7, there exists a pe X such that
X is not connected im kleinen at p. Let U be an open set such
that peU and such that if V is an open subset of U containing
p then there exists a y eV such that y does not lie together
with p in any connected subset of U. Let Vy be an open sub-
set of U such that peVy and VoNb(U) =6. Choose a positive
integer Ny such that S(p,1/N;) €V, and then choose y;eS(p,1/N;)
such that the component of V; containing v, Cyl is such that

Cylr]{p}= ¢. Now let W,,V; be open sets such that pe Wy, .

Cylng and such that W;NV; = §. Choose a positive integer
N such that S(p,1/N)CVoNW; and then let N, =max {N,N;+1}.
Let y, be such that y,eS{p,1/N,)} and such that the componeﬂt
of V; containing y, Cyz is such that Cy2 N ip} = b. yyeWy,

Cylg'vl and WiNV; = § imply that CYLr\CYz = 0. Assume Yp-1

has been chosen such that yn*1€S(P’1/Nn-1}’ the component of

Vs containing Ya-1 Cy does not contain p and
02 n-1
C N(CUC )=0. Then let W._y»V _; be open disjoint sets
“n-1 m=1 'm ) n
n-1
such that pe:anl and- U C Q\th . Choose a positive integer
i=1 71

M such that S(p,l/M)g’VorTWn and let Nn==maX{MgNnm1¢1}q

=1
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Let Y be such that Y ES(p,l/Nn) and such that the component

of Vy containing ¥, €, 1is such that Cy N {p} = §.
n

v
n-1 n
Yne W1 3 Cyi CV,.,and W NV . =90 imply that
n—‘l r o0
C, N{UY C_J)=¢. Hence we have a sequence {C_ } with
’n m=1 n n=i

each CY a continuum. Cy N b(Vy) +¢ for all n is a conse-
n n :
quence of Lemma 3.10. Recalling Remark 2.28 we have that

L]

"{C. }" has a convergent subsequence {{ _} . Let ACX
yn n=1i nk k=1

be such that Cy +A. Then A is a continuum. pe A since

n,
I

y. =+ p and ACU since C €V, for all n,. Hence for each
ny ynk k

. C NAs 9. A is a nondegenerate continuum since €, Nb(Vy)
k

$ § for each n, . Hence p is in a nondegenerate continuum of

convergence. #

DEFINITION 3.15. A metric continuum X is semi-lecally

connected at a point xe X if for each open set U containing
x, there is an open set V such that xeVCU and X - V has only
a finite number of components. X is said to be semi-iocally
if X is semi-locally connected at each x ¢ X,

DEFINITION 3.16. A metric continuum X is regular at x ¢ X

if for each open set U containing x there is an open set V
such that xe VCU and b(V) is finite. X is said to be regular

if X is regular at each x ¢ X.
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REMARK 3.17. Recall the continuum X given in Example 2.2.
X is both semi-locally connected and regular,

THEOREM 3.18. Let X be a metric continuum and P e X such
that X is regular at p. Then X is locally connected at p and
semi-locally connected at p,

PROOF. First suppose X is not localiy connected at p,
Then, from Theorem 3.14, p is in some nondegenerate continuum
of convergence. Let K be a nondggenerate continuum of con-
vergence containing p and'{Kn}:zl a sequence of pairwise dis-
joint continua such that K,” X with K NK= ¢ for all n. Pick
z ¢ K different than p and let e=d(z,p). Choose a positive
integer N such that 1/N<%/2. Let V be an open set containing
p such that VCS(p,1/N)} and b(V) is finite. pek implies that
there exists a positive intcger N; such that for n>N;,

VNE +9§. K; N Kj%<$ for i %3 and b(V) finite imply that
there is a N, >N, such that for n>N, K, O b(V) = 0. Hence

for n>N,, Kn € V. This contradicts ze K. Hence X is locally
connected at p.

Now we will show that X is semi-locally connected at P.
Let U be an open set containing p and let V be an open set
such that peVEU and b(V) is finite. We will show that X -V
has only a finite number of Components. Let C be a component
of X-V; then C=C. If CNDL(V)= ¢ then C is a component of
X -V and therefore, due to Lemma 3.10, TNDb(V) . This con-

tradicts C=C. Hence CNb(V) $¢. Since b(V) is finite, the
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number of components of X -V is finite, Thus X is semi-locally
connected at p. #
EXAMPLE 3.19. The subspace X shown in Figure 5 is locally

connected at p but not semi-locally connected at p or regular

at p.

Lg | X

Figure 5. Subspace of R2
Notice that X is not locally connected.
EXAMPLE 3.20. Let X< {(x,y) e R2|x2+y2 <13} and p= (0,0).
Then X is locally connected and semi~loca11y connected. X

is not regular at p. See Figure 6.

Figure 6  Subspace of R2
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THEOREM 3,21, Let X be a metric continuum, If X is
locally connected then X is semi-locally connected.

PROOF. Let X be locally comnected. Suppose there exists
a peX such that X is not semi-locally connected at p. Then
there is an open set U containing p such that if W is an open
set contained in U and containing p then X -~ W has infintely
many components., Choosc e>0 such that S(p,e)€U. Let
Vy=8(p,e) and V, =8(p,%/2). Then both X-V, and X -V, have
infinitely many components.

We need to show that there exist infinitely many com-
ponents of X -V, which intersect X-V;. Let C={C¢CX|[C is a
component of X-V, and CN(X-V;) $0). Suppose C has only

finitely many elements. Then there is a positive integer n

. n
such that g=={C1,C2,...,Cn}. Let xeX-V,; then xe U Ci’ The
n i=1
set U C. is closed since each Ci is a component of the closed
i=1 * n
set X-Vy. Then [X-—inCi)F\U is an open set containing p
_ = n
and contained in U. Hence X-{(X- fglci)fTU] has infinitely
- n
many components. However, X-{(X- [J'Ci)rIU] = U Cu
n i=1 i=1
(X-U), X-V1€&0,C; and X-UGX - Vy imply that X- [(X- U C)NU]
n i=1

n
= ;¥,C;. This contradicts X-[{X-U €;)NU] having infinitely

many components. Thus C has infinitely many elements.

Let'{Cn}r=1‘be a sequence of components of X -V, such

that Cnf\(X*~V1)% ¢ for all n and Cnf\Cm==® if n$m. For each
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n we have that Cnr)b(Vl)% 0 since Cnf1{X~ Vi) 4 ¢ and Cn is

connected. Let i¢_ }° be a subsequence of {C_}.__ and KCX

such that C ~~+K. Then there is a ze KNb(V;) since
k

anr1b(vl)+ 0 for all k. Let V be an open set containing z
such that VNV, = 0. Choose an open connected set V3 contain-
ing z and contained in V. We can do this because X is locally
connected. Then Vgr\cnk + ¢ for all but finitely many k since
zeVy and zeX. The fact V3NV, =¢ implies that V3CX-V,.
Now we have that‘fsQan for all but finitely many k since

V3 is connected, Vz3C€X -V, Cn is a component of X -V, for
k

all k and V3NC 4§ for infinitely many k. This contradicts
k
C, rICm==$ for n+m. Hence X is semi-locally connected at p
and therefore X is semi-locally connected. #
EXAMPLE 3.22. The converse of Theorem 3.21 is not true.
The subspace X of R2 shown in Figure 7 is semi-locally con-

nected but not locally connected at x.

X

X

Figure 7 A Semi-locally
Connected Subspace R2.
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DEFINITION 3.23. Let (X,T) be a topological space and
choose two distinct points a,b in X. Let X be a subset of X.

Then K is an arc joining a to b if K is a continuum contain-

ing a and b, K- {a} is connected, K- {b} is connected and if
¢ is an element of K different from a and b then X~ {c}=UYV
with aeU and beV.

DEFINITION 3.24. Let (X,T) be a topological space, Ua

family of subsets of X and a,beX. A simple chain from U

joining a to b is a finite sequence Ui,...,Un of members of U

such that aeU;,belU and U; f\IH 0 if and only if |i-j| <1.
THEOREM 3.25. Let X be a locally connected metric con-
tinuum and choose two distinct points a,b in X. Then there
is an arc K joining a to b.
PROOF. For each xe X let Uy be an open connected set

containing x such that legS(x,l). Then X= U U;, and
XeX

therefore there exist x;,%X,,.. in X such that

. 3 X
,nl

glré{lel,...,le } is a simple chain joining a to b. Let
n, ’

Uiy, = Ui,ifor each i=1,2,...,n;; then §1=5{UQA,UEZ,...,U1QQ}.
i :
ny
1 = : .
Set Jl = . U].”l‘
1=1 '

For each i=1,2,3,...,n; and for each xelyjlet sz be

an open connected set containing x such that ﬁéXS;S{x,l/Z}ﬂlhg“

Then for each i, i= 1,2,3,...,ny, U -U2X==U i Choose
XEUI’i Ls

XiE:Ul,i~1f?U1,i for 1= 2,3,4,...,n;. Let U,,; be a simple
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. - N . - L] ¢ Fa - =

chain from {UZXIXzan,i} joining x; to x,, ., where Xp. 41

and x; =a, for i=1,2,3,...,n;. Now construct a simple chain
ny

U, from Yy U, . joining a to b. If UelU, then UgU, . for at

=2 i:l——z-’l et 1.1

most two i. Relabeling let U, ﬁ{Uzsl,Uzsz,w--»Uz»n;} with
. . 2

g . . e ._F '-b
aely 1, g;'uzing and Uz;i r]UZ;j:+¢ if and only if |i-j] <1.
Let Uy = U:U_..; then U, ¢U;.

5o 2,1 \

Suppose that for m<k a simple chain gm=={um;1,um;2,...,

U }, of open connected sets, from a to b has been formed

i

R,
X

such that ael%ul, b EUm;nm and Um’ifWUm,j% $ if and only if

l|i-j] <1. Also assume Um41g[%V where U =U U , and if UcU_

then UCU for at most two i. For each i=‘l,2,3,...,nk

m-1,1

£ X ., let U b connected con-
and for each EUk,l’ et K+1,x e an open connected con

taining x such that,U

k+1’x:g8(x,1/k)r}Uk,i. Then Uk,i =
T K . 1 = < -
;gh ‘ Lk+1,x Eorfl 1,2,3,...,nk. Choose xie;Uk’i_JWUk,i for
k,1i
i= 2,3,...,nk and let x; =a and xnk+1==b. Let gk+1,i be a

simple chain frem {U _lXE:Uk’i} joining a to b for i=1,2,

k+1,1 Ny
T 5 T 1 | 3 .
3,...,nk. Now construct a simple chain gk+1 from ;ﬁi gk+1,1

joining a to b and let Uk+1 =UUp,;- Relabeling, let

='r - : ,
Uit ~Uk+1,1W""Uk+1,nk¥i} with a ®Ugs1,12 D EUk+1,nk¥i

and U . U

k+1,1 $ 0 if and only if |i-j| <1. Then

k+1, ]

U1 €Uy and if Ue Uy, then UQU, , for at most two i,

1{’4‘
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Thus,'{Un}zz 1s a sequence of open connected sets con-
for all n. Let XK= N T ;
n=1 9

then, due to Lemma 2.3, X is a continuum containing a and b.

1
taining a and b such that Ungﬁn

+1
We will show that K is an arc joining a to b.
Choose an element z in K different from a and b. For

i=1,2,3,... let Pi=={Ui’ e U, | zé‘Ui,j and if z eU; , for

j ,
some k then j <k} and let Fifz{Ui,angi[Z éui,j and if z e U; %
for some k then j >k}. Set W= lf‘[(LlPi)rTK] and

i=1
V= U [(UF,)NK]; then W and V are open in K and WAV = §.
i=1

Clearly, WUVCK- {z}. We will show that K- {z}CWUV. Let

weK-{z} and set 6 =d(w,z). Choose a positive integer i,

"such that 4/ig < 6. Consider Eio and suppose z e U, 3 for
. . ]
some j. Uig,j CS(x,1/i;) for some Xe:UiOwl. Thus d(x,z) <

1/ig. Suppose mszUio,j;

1/ig<&. This is a contradiction. Hence wa&Ui i
0»

weWUV and therefore X - {z} = WYV. Let o;=d(z,a),

then §=d(w,z) < d(w,x)+d(x,z) < 1/ig +

Thus

ap =d(z,b) and choose a positive integer n; such that 2/n;< oy
and 2/ny < a,. Then for all i>mn; ae P. and bg:Fi. Hence ae W
and b eV, -

We still need to show that K - {a1 and K~ {b} are con-
nected. If K is irreducible from a to b then, by Theorem 2.14,
Kiquyand K- {b} are connected. Suppose K is not irreducible
from a to b. Let K1 be a continuum containing a and b such

that K3 K. Choose qeX-Xy; then K1 CK-1{q}=R{S for some
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sets R and 3 such that aeR and be S, K; connected implies

that K; €R or K3 €S. This contradicts aeR and beS. Hence
K is irreducible from a to b and therefore X - {a}! and K- {b}
are connected. Thus K is an arc joining a to b, #

Thus if X}is a locally connected metric continuum and x,y
two distinct points of X then there exists an arc joining x to
y. Let e>0. Can we join x to y with an arc of diameter less
than ¢? Theorem 3.28 answers this question; but first we need
two lemmas.

LEMMA 3.26. Let X be a compact metric.space and let
Ul,Uz,...,Un be a finite open cover of'X. Then there is a
§ » 0 such that if A €X and the diameter of A is less than ¢
then Ag;Ui for some i=1,2,3,...,n.

PROOF. Suppose that for all &> 0 there is a set As
such that the diameter of A, is less than §, but Ag ¢'Ui for
i= 1,2,3,...;n. In particular for each positive integer n
let An be a subset of X such that the diameter of An is less
than 1/n and suchfthatiﬁlgUi for all i. For each positive
integer n let &nerAn; then there exists a z& X such that
ay § 2. Withou? 1033 of generality suppose ze-UkD. Choose
e > 0 such that SFz,e) gt@@ and let ng be a positivé integer
such that 1/n,< */2. Since a, Sz we can chdose-a positive
integer m‘greatgr than n; such that a, e S(Z,E/Z). Choose
gc Am; then d(z,ajgud(z,am)-hd(am&a)<e/2 + €/2, Héncé

A, €U This contradicts Anq;Ui for all i and n. Thus

ko
there is a 6 > 0 such that if ACX and the diameter of A is



less than § then Ag_:Ui for some i=1,2,3,...,n. #
 LEMMA 3.27. Let X be a compact locally connected metric
space. Then for cach e> 0, there is some & > 0 such that if
X,y e X and d(x,y) < &, then there is an open connected set €
such that the diameter of € is less than e and x,yeC.
PROOF. Let e>90 and for each xeX let Sx be an open con-
nected set such that szX c S(X,e/éj, Theh the diameter of

S.<%/2 for all xeX. '{SX| x ¢X} is an open cover for X and

X
n

therefore there exist X15Xp 5000, X in X such that X= SX .
i=1 “j

By Lemma 3.26 we can khoose a § >0 such that if ACX and the
diameter of A isrless than § then AG;SX, for some i=1,2,...,
n. Let x,yeX be such that d(x,y)< §; ihen’{x,y}g;Sx_ for
ig
for some ip. Hence if d(x,y)< §, there is an open connected
set C= Sx. such fﬁat,the diameter of C is less than e and
1g

xX,yeC. ¥

THEOREM 3.28. Let X be a locally connected metric con-
tinuum. Then for each e¢> 0 there exists a & >0 such that if
X,y are in X with d(x,y} < 8, then x can be joined to y by
an arc of diameter less than e.

PROCF. Let ¢>0 and chcose §> 0 such that if X,y are in
X and d(x,y) < ¢ then there is an open conﬁected set C such
that the diameter of C is less than e and X,y e C. <Choose
x,y e X such that d(x,y) <§. Let C be an open connected set,
containing x and y, of diameter less than e. Hence C is an

open locally connected subset of X containing x and y of
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diameter less than e. To construct an arc K joining x to y
and contained in C follow the construction given in the proof
of Theorem 3.25. Hence there exists an arc K of diameter less
than € joining x to y. #
REMARK 3.29, In the proof of Theorem 3.28 we can not

simply apply Theorem 3.25 to the continuum C to get the arc

K, since C may not be locally connected. Below is an example
of a locally connected metric continuum X and an open connect-

ed subset of X whose closure is not locally connected.

e

X

Figure 8 A Subcontinuum X of R2,
Construct an open connected subset of X as shown in Figures

9, 10 and 11.

Figure 9 Construction of Uj.



i ui‘.
et =
A~

X

Figure 10 Construction of U,.
in u
— = ’
T e
X

Figure 11 Construction of Us.
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Continue in this manner and let U~ fglUn. Then U is an open

connected subset of X whose closure is not locally connected.



CHAPTER IV
DECOMPOSABLE CONTINUA

DEFINITION 4.1. A nondegenerate continuum is decomposable

if it is the union of two proper subcontinua. A nondegenerate

continuum that is not decomposable is sald to be indecomposable.

THEOREM 4.2, A continuum X is decomposable if and only
if X contains a proper subcontinuum with interior points.
PROOF. Let X be a decomposable continuum and let K, K,

be nonempty proper subcontinua such that = KyjUK,. Suppose

Kg = ; then X- Ky = X - K2==X. Choose z e Ky-Kp; then z e X-Ki1.
Let'{xd}ng be a net in X-K; such that'xd—+z. Since K2 is com~
pact, there ié a peK, such that X4 S w. We have that z#$w.
since weKy and zeK;-Kp. Let U,V be open sets such that weV,
zelU and UNV=¢. Since Xq> 2 there exists a dye D such that
if deD and d>dy then xs¢ U. However, X4 k% w implies that
there exists a d; » dj such that Xdlg:V. This contradicts
UNV=0. Hence K2+ 0 and therefore X contains a proper sub-
continuum with interior points.

Now suppose X éontains.a proper subcontinuum K; such that
Kg # 0. Then we have that X:K;F=X«Kg X since Kf + 0. Hence
if X-K; is connected then X=X-KjUKi with X-K; and K, proper
subcontinua. Thus if X-K; 1is connected X is decomposable,

Suppose X-K; is not connected. Let X-K; = AYB for some sets

41
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A,B,  Then K,U A and KjuB are conne;fed sets and X =

KiUA U KjUB, The fact ANB={¢=BNE implies that KTUA
and XyUB are proper subcontinua, Hence X is decomposable. #
REMARK 4.3, Prom Theorem 4,2 we have that a continuum
X is indecomposable if and only if every proper subcontinuum
of X has an empty intérior,
DEFINITION 4.4, Let X be a continuum and p €X. Then
Cp=5{x e X | there .egists a proper closed connected subset of

X containing both p and x} 1is the composant of p in X,

THEOREM 4.5. Every decomposable continuum is a composant
of some one of its points.

PROOF. Let X be a decomposable continuum. Choose proper
subcontinua X;3,Ks2 such that X=K;UK,, Since X is connected
Ki1iNKy, 4 §. Let p aKerKg; then the composant of p is X. #

THEOREM 4.6, Let X be a decomposable continuum and a ¢ X;
then the composant of a is open in X.

PROOF, Let C be the composant of a, If Ca==X we are
doene. Hence, suppose C, ¢ X. Choose prbper subcontinua M and
N such that X=MUN. If aeMNN then Ca==X and we are done.

- Thus, without loss of generality, suppose a eM-N, Let K =

{xeX|X is irreducible from a to x}. K % 0 since C,GX.

K=KAM U KNN. McC_ because aeM. Therefore MNK = ¢,
_HenceingL Now, suppose that for each open set U containing a
UNK # ¢, Then aeX and therefore aeN, This contradicts

a ¢ M-N. Thus there exists an open set U such that a eUCC,,

Therefore C, 1s open. #
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THEOREM 4,7. Let X be a continuum; then every composant
- of X 1s connected,

PROOF. Let X be a continuum and pst. Suppose the com-
posant of p (%) 1s such that Cp==AkPB for some sets A,B in X.
Without loss of generality let peA, Choose xe¢B, There exists
a proper subcontinuum X such that p,k.eK since xe Cp' Thus
Kgcp and therefore KCA or KC_.'.l‘B, This contradicts p €A and
b sB; Hence Cp is connected and therefore every composant
of X is connected. #

THEOREM 4.8. Let X be a continuum, Then every composant
of the continuum X is dense in X.

PROOF. Let X be a continuum and suppose there exists
a p eX such that the composant of p Cp is not dense in X.

The fact “C'p ¢ X implies that Cngp. Hence Cp ='CTp. Choose

X eX-Cp and then let W,V be open disjoint sets such that
CPC_JW, x ¢V and WNAV={. Let D be the component of W con~
taining D. Then’ﬁf\b(W) + 0 and therefore Cp(]b(W)# 0. This
contradicts CPQ;W. Hence ﬁ? = X and therefore every composant
of X is dense in X, #

THEOREM 4,9, If X is a metric continuum, then every com-
posant of X is the union of countably many proper subcontinua
of X.

PROOF, " Let X be a metric continuum aﬁd peX, Let B =
{By,B;,B3,... I be a base for X~ {p} such that for each i,

151,2,3,..., ia“igx-"-t{p}, and B; = S(xp€;) with x; € X and & >0,
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. For each i, 1=1,2,3,,.., let n; be a positive integer such

that gf&i,Si*~1/ni)§fX%{p}. Then for each i, 1=1,2,3,...,

and j, 1=0,1.2,3,..., 1etﬁi  be the component of X -
R | P
b(xi,ei + ni+3) which contains p. Let C= U (y Ci’j);

i=1 j=0
then C is the union of countably mény'prdper subcontinua which
. contain p. Let-Cp be the composant of p; then clearly Cg;Cp.
Choose an element x of Cp different than' p and let K be a

proper subcontinuum containing p and x. Then choose Bioe B

. ' 1
such that B. ¢ X-K,. If KCX-S(x. ,t i)
1g 10

. +n, * "for s i
1o+, 1) ome j

then x ¢C and hence C==Cp. Thus suppose

-1
K¢X~b(2c_io, £, "0y, ¥3 ) for every j. Then

1 .
_Kr}b(stxio’aio+nio+3)) + 0 for every.j, For each i, j=0,1,2,

1
., let z. eKNb(S(x. ,e. +n, +3)). Then there exists a
j ig 7 1o o

z Eﬁio such that z, $ z. Hence KF]§104 ¢. This contradicts

— 1 '
Bi € X-K. Thus KCX-S(x, ,e, +n, +j)for some j and therefore
0 - 19" 1o 1o
x €C and C==Cp. Hence Cp is the union of countably many pro-
per subcontinua, #
THEOREM 4,10, (Baire Category Theorem), If X 1s a com~
pact T, space, then X is not the union of countably many closed

sets each having empty interior,
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THEOREM-4,11; Let X be an indecomposable continuum and

p,q X, lLet Cp be the composant of p and Ca the composant of
9, Then GP*:Cq or Lpr1Cq;?¢.

PROOF,  Suppose Cp(]Ca 0, Choose z €CpﬂCq and let
K1,K2 be proper subcontinua such that z,pf K, and z,q¢K,, X
indecomposable implies that KUK, is a proper subcontinuum
of X. Let mst and K3 a proper subcontinuum such that p,wSKé,"
Then K;U KoUKy is a proper subcontinuum containing o and g,
Hence C,cC,. Similarly € cC,. Thus if C N Cq+ b then C_=

P
C. . ¥

q

REMARK 4.12. Let X be an indecomposable metric continuum.
Then Theorem 4.2, Theorem 4,9, Theorem 4.10 and Theorem 4.11
imply that X has uncountably many pairwise disjoint composants.
Thus every indecomposable metric continuum is irreducible bet-
ween each two points of some uncountable set,

THEOREM 4.13. Let X be a metric continuum. Then X is
indecomposable if and only if there exist.three distinct points
a,b,c such that X is irreducible between any two of these three
points.

PROOF. Let X be an indecomposable metric continuum, Let
C be an uncountable subset of X such that X is irreducible bet~
ween any two poinfs of C. Choose three distinct points a,b,c
from C; then X is irreducible between any two of these three
chosen points,

Now let X be a metric continuum containing three distinct

peints a,b,c such that X is irreducible between any two of
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these three points. Suppose X is decomposable., Choosse propér
subcontinua K;,K; such that X=K,UK,, Without loss of gen-
erality let ae Ky; then b,c { Ky, Hence b,ceX,; but this
contradicts X irreducible between b and ¢, Thus X is indecom-
posable. #

EXAMPLE 4.14. We will construct an indecomposable metric
continuum. Let X = {(x,y) € R? | x?+y2 <10}, X is a locally con-
nected metric continuum. Let X% = {(x,y) ¢ R?|x2+y2 <10} and
choose three distinct points a,b,c in X0, For i=1,2,3,...,n,

let C1 i be an open connected subset of X with diameter less

»

than 1/2 such that C; = {C ,C 2+++3C. 1 1s a chain joining
- is»1 122 1,11

a to ¢ with azC czC and beC ., 1<j<n for ex-
1:1, 1,0ty U1:3, L s

actly one j. We will call C; a chain joining a to ¢ throughb.

For 1=1,2,3,...,n, let C be an open connected set with

2,1

diameter less than 1/4 such that §2=5{Cz 1,...,C2 n2}is a chain
i 3

joining a to b with aceC beC ceC ., 1l<i<n
J g 31’ 2:\]12’ 2!3, J 22

for exactly one j. We will call C, a chain joining a to b

through c. Each C2 i i=1,2,...,n,, alsc has the property
, w

that C cC 4 for some k. Let Qgﬁ'{cg

2,1 = 73,

eea,l 1 be a
1’ ’“3,n3

®

chain joining ¢ to b such that C " is an open connected set
x

of diameter less than 1/8, CE:CS , bsaC3 and aeC .,

213 3]
l1<j<nz, for exactly one j. We will call C; a chain joining

51

¢ to b through a, Each € , is also such that C_ . &CC for
' 3s1 ' 3,1 2,k

some k. For each i=1,2,3,...,n, let C4 i be an open connected
»

C se ey

set of diameter less than 1/16 such that C = {C >
4 byl b2



47

C }is & chain joining a to ¢ with aa:Cq

ceC and
By Iy 1

2l 4Ny

beC ., 1<j=<n,, for exactly one j. Again each ¢ . is
kel C st

such that Eu ; €C, y for some k. For each positive integer

3 3!
n>5 let C be a chain connecting a,b and ¢ with the following
properties:

, . n
i)y T£ €, ;eC, then diam C . <1/27,

yi s 1

ii) Each Cn+1,ie:gn+1 is such that Cl_l_'_l,:.lg(]_n,k for some k.

iii) If n=z1 mod 3 theng_‘n is a chain joining a to ¢
through b.

iv) If n=2 mod 3 then C  1is a chain joining a to b

through c.

v) If n=0 mod 3 then C  1is a chain joining c to b

through a.
nmm ‘F‘_‘
Let ij=igi Cm,i for each positive integer m. Then K==m=1Km

is a continuum containing a,b and c. See figure 12,

Figure 12 (larification of K
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Let B be a proper subcontinuum of K such that a,be B,
Suppose ¢ ¢ B, Set §=d{(B,c) and choose a positive integer mg
such that 1/2m0< 5/2, Let my > my be such that gm is a chain

1

L ; R ] . C .. Th
jeining a to b, Choose le,Je;le such that CEIuml’J The

diameter of Chn s is less than 1/2™! and hence is less than

tl1s)
5/2. Thus le,jr\B: 0. This contradicts the connectedness
of B. Hence ceB. Therefore if B is a proper subcontinuum of
K containing any two of a,b,c then B contains the third.

Now, let A be a subcontinuum of K containing a,b and c.
We will show that A=K. Suppose ACK; then let x¢ K- A. Let
§; =d(A,x) and choose a positive integer my such that
1/2"3<%Y2, Choose C_ .cC_ such that xeC_ .. C_ .NA=)

mg,Jj —Mm3 My,J° Mg,
since the diameter of C . 15 less than 61/2. This contra-

M3,]
dicts a,b,ce A. Hence A=K.

We now have that K is irreducible between any two points
of the set {a,b,c}. Hence, by Theorem 4.13, X is an indecom-
poesable metric continuum.

THECREM 4.15. Let X be a metric continuum. Then X has
only one, only three or uncountably many composants.

PROCF. Let X be an indecomposable metric confinuum.
Then, due to Remark 4.12, X has uncountably many composants.

Now let X be a decomposable metric continuum and choose
proper subcontinua Kl and K, such that L=X,UK,. Let Z; e Ky
and let CZ? be the composant of Zy. Suppese czigix and sup-=
pose there exists a z, ¢ K; such that zl+ z, and the composant

of z, C;, is a proper subset of X. Let weC ~and let K, be
2
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a proper subcontinuum containing w and zp. Then K C sz.

Kl("-_‘CZZ’Zl’ZZ e Ky and ngc_zz imply that Kiu K is a proper

subcontinuum of X. Hence ws.CZ and therefore szg C

1 2y’

Similarily Czlg;sz; Hence X has less than or equal to three

composants.

We are still assuming that X is decomposable. If forall
x ¢ X the composant of x CX is all of X then X has ekactly one
composant. There exists a py sX,_from~Théorem 4.4, such that

the composant of po(%] is all of X. Recall that X=K; U K,.
0
Suppose there exists a py ¢ K; such that the composant of p,

Cp is not all of X. Then if ye¢ K; is such that the composant
1

of vy Cy is not all of x, from the above, = Cpl. Choose

C
y
X-C_ ; then C and therefore ¢ C . Hence if
Pz ® Dy P1 Gy, Cp, 1%,

there is a p; such that CPIEQX, then X has exéctly three

composants. #
THEOREM 4.16. Let X be an indecomposable metric continuum

and ACX such that A is the union of countably many proper sub-

continua of X. Then ¥X-A is connected.
o)

PROOF. " Let Aﬁ=ngJKn where for each n Kn is a proper sub-

continuum. Since X is indecomposable K2f=$.£or all n. Hence
A+ X and therefore X-A#$0. For each n, n=1,2,3,..., choose

kne Kn and let CP be the composant of kn. Then fo each n,
n

K € C,_ and therefore ACc U C. .
k n=3 k

0 Thus X - Ilg':t Ck CX-A. Since -

n n n
X has uncountably many pairwise disjoint composants,

X- UGy £0, Let weX- U €, and let C_ be the composant
n=1 m n=1 "n “
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of w. Then C _GX-A. Suppose X~ A=RUS for some sets R and
S. Then,without loss of generality, let Cmglh Since every
composant is dense in X we have that Ew:=X, This contradicts
S+ {. Hence X-A is connected, #

THEOREM 4,17, Let X be an indecomposable cOntinuum;
aeX and K= {xeX|X is irreducible from a to x}. If K#¢{,
then K= X.

PROOF. Let xeX, Cy be the composant of x and Ca be the
composant pf a. Then CX(WCa==$ and therefore CXQIL We now
have that K=X since C €K and fXEX'.' #

THECREM 4.18. Let X be a metric continuum. Then X is
decomposable if and only if some composant of X is open.

PROOF. First suppose X is a decomposable metric con-
tinuum. Then, from Theorem 4.6, every composant is open.
Hence there exists an open composant.

Now we will show that if X is an indecomposable metric
continuum then no composant of X is open. Let X he an inde-
composable metric continuum. Suppose there exists a p ¢ X such
that the composant of p (%) is open, Theorem 4.9 and Theorem
4,16 imply that X-Cp is connected. Hence X-—Cp is a proper
subcontinuum. Let a,b and ¢ be distinct points of X such that
X is irreducible between any two. Since X*~Cp is a proper
subcontinuum no two of a,b,c are in X—?Cp. .Hence, without
loss of generality, let a,b ECP. Let Ca be the composant of

a and Cb be the composant of b; then, from Theorem 4.11,
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Ca=acb;=cp,. This centradicts X irreducible between a and b.

Hence Cp is not open and therefore no composant of X is open. #



CHAPTER V
CONTINUQUS MAPPINGS

DEFINITION 5.1. Let (X,T) be a topological space and
AcX. A is said to be perfect if and only if each point of A
is a limit point of A.

DEFINITION 5.2. Let (X,T) be a topological space. X

is said to be totally disconnected if and only if the com-

ponents in X are single points in X.

To show that any two totally disconnected perfect coms
pact metric spaces are homeomorphic we need the following two
lemmas. |

LEMMA 5.3. Let X be a perfect compact totally discon-
nected T, space and U an open subset of X. Let n be any
positive integer; then U==U1UU2U...UUn for some choice of
nonempty disjoint open sets Ul,Uz,,..,Un.

PROOF. C(Clearly the resulttholds when n=1, It is suf-
ficient to prove the result for n=2 since for n» 2 simply re~
apply case n=2 until the desired number of open nonempty
disjoint sets is obtained. Let peU; then U# {p} since X is
perfect. Choose qeU such that q$p. Then, due to Theorem
2.20, the quasicomponent of p is simply {p}. Hence, there
exist open disjoint sets R, S such that qeR, pe S and

X=RUS. Let U; =RNU and U, =SNU, Then U=U,UU, and

52
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Uy,U, are nonempty disjoint open sets. #

LEMMA 5.4, Let X be a totally disconnected compact metric
space. Choose x=X and let U be an open set that contains x.
Then there exists an open set V such that Xw:Vth and (V) = ¢,

PROOF, The component of X that contains x is {x} since
X 1s totally discomnected. Theorem 2.17, X compact and Theorem
2.20 imply that {x}=N{V]| V is open, V is closed and x ¢ V}.
Lemma 2.3 implies that there exists a set Vy such that V, is
open, Vy 1s closed and x e VyCU. HenceV, is an open set con-
taining x such that b(Vy) =¢ and V,CU. #

THEOREM 5.5. Any two totally disconneccted perfect com-
pact metric spaces are homeomorphic.

PROOF. Let (X,T) and (Y,S) be totally disconnected per-
fect compact metric spaces. For each xe X let Sx be such
that xeS8, , diam S.<1 and such that Sx is both open and closed.
We can do this because of Lemma 5.4. Then {le x e X} is an

open cover for X and therefore has a finite subcover. Let

S, 38, ,...:,8 be a finite subcover and then let U =S,
*1° X2 an 1s1  Xp7
ny-1
U =S -85 cas =5 - e i
Lsa x,” Ox, ? ’U1,ﬂ1 X _! SX We are assuming that

ny, 1=1 i

seseqaU }. Thus

H I,nl

Sy ¢sz for all 1t+j. Set U =ty U ,

U, is an open-closed cover for X made up of nonempty pairwise

disjoint sets of diameter less than one.
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Construct an open~closed cover V; for Y made up of non-
empty pairwise disjoint sets of diameter less tham one in a
manner similar to the above construction, We can assume that

| Uyll= | V1l because of Lemma 5.3. Let’ﬁ1=5{V1’i,VI,2,...,‘

Vi,npl.

For each j, j=1,2,...,n;, and for each stUl 3 let WX
H

be an open-closed set containing x such that diam WX~<1f2 and

V%CGLH. Then"{wX | x e X} is an open cover for X and hence

»

has a finite subcover. Let W_ ,W_ ,...,W be a finite
Xl Xz an
1 y - r = - -
subcover and set U, hxl,Uz sz le""’Unz

We -~ u W, . Again, we are assuming Wx.¢'wx. for all i # j.
n, i=; “i i

. S = = T
Now, for each j, j=1,2,3,...,ny, let Bl;j {bi[ Uig]Jl,j

S{U_SU ..U

1=1,2,3,...,n5}. Relabeling let B },
1 21 292 ' 207

LN |

B ={{J U 1 - U
1.0y 2

o2 2,Mp*1’ TNy mpt Y

+1 ,...,U 1

Il
ny-t

Let U <{U ,...,U.

U, e, U
= 251 0 My 2 Myttt

U sy sl
2,1112’_' Mot ? 7MY s ma?

z,mﬁ1_1+1,...,U2,mnl}. Then 92 is an open-closed cover

for X made up of nonempty pairwise disjoint sets with diameter
less than 1/2. Construct an open-closed cover V, for Y made
up of nonempty pairwise disjoint sets with diameter less than
1/2 inzxmannersimilar'h)tﬁéconstructianxﬁfgz. We can assume

that ||V, = [| Uy || because of Lemma 5.3. Moreover, we can as-

H

sume that for j =IL,2,...,111_I]]3:l jl‘ mHD'1L .|| where D
2 p

P 1)

AV eV, | Vig\ﬁ[j, i=1,2,...,n23. We will label V in amanner

>
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similar to Uy, Let V,={V ces,V v veosV
' =2 =2 2,17 7" a,myt o, myt1? T T my

cee,V )
i n *

. LA

vV . . .
RS PL S 2,M3’

Continuing in this manner we then have sequences"ﬂjk};=1
and'{yk};:___1 of open-closed covers for X and Y respectively.
For each k we have thatllgkflﬂ Hyk [|. Each U, and V; is made
up of nonempty pairwise disjoint sets of diameter less than

1/2¥. Also, for each k if U, . CU, . for some i,j then

k,J 1
V, . €1 ..
k,J‘g Jk*l,J

Let xe X; then for each k=1,2,3,..., there is a unique

U, . such that xeU, . with U, . e U, . Moreofer
kydy K,y Koy 7k ’
U . 22U . 20U . 2..., ‘m U, . =xand ¥V .2>$%Y . ,?2
1:3};_ 2’32 3,73 ?gzl ksjk . 15117 2932,
. 2 ... . Define g{x) ﬁ V., . . Do the above for cachxeX;
3513 k=1 K,Jx

then g is a function from X into Y. Clearly g is onto and
one to one.

s oo . -
Cheose x e X and suppose {a_} is a sequence in X such

n n=1
that a_+x. For each k let U, . contain X; thenx=N7U, .
n ‘ LPNIN k=1 ¥2Jy
and g({x) ﬁ]lvT . - Let €>0 and choose a positive integer Kk,

such that U CS(x,e) and V . CS(g(x),e). The fact a_-»X
k kO,Jko n

03k,
implies that there exists a positive integer N such that if
. Thus for n;iN,g(aﬁ) e Vy ,

5 €8(8(x),e)
0 ka

n>N then a_cU .
— n ko,
G:Jko

Hence g(an)—ag(x) and thereforc g is continuous. Since X is

compact and Y is Hausdorff g is a homeomorphism. #
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THEOREM 5,6. Every compact metric space is a continuous
image of the Cantor set,

PROOF. Let X be a compact metric.space and let C be the
Cantor set. Construct a finite open-~closed cover U; for C
made up of nonempty pairwise disjoint sets of diameter less
than one. See the proof of Théarem 5.5 for the construction
of Uy. Let V; Be a finite open cover of X, made up of non-
empty sets with diameter less than one. By repeating elements
in V; and using Lemma 5.3 we can assume that {JUqf=]] V;]|. Let

U, =1{U RPN § and V, = {V cee, ¥V
=1 1’1, ’ I}nl} —1 {vlsl’ ? 1,0

For each j, j=1,2,3,...,n;, let Eﬁ j be a finite open-
. 3

closed cover of U j such that if Bs;@l j then B% ¢, B QLH
2

1 ,j
and diam B<1/2. Also, for each j, j=1,2,3,...,n7, let D .
. T1aJ

be a finite open cover of V1 j such that if Dsle . then D % 0§,
’ Tlsl

I)g\“_. and diam D<1/2. We can do this since Vl . is com-
> 2

pact for all j. By repeating elements in 21 3 and using Lemma

>

5.3 we can assume that{!§1 jﬂ=][2 | for cach j. Let U, =
¥ .

lsj
for some j} and V, = {DCX ]De:]_}1 j for some j}.

>

WBgc%Be§l

k]

Label the elements of U, and V, such that U, ={Us,;,Us,0,...,

b = : s
Jz’n2} Vo {Vz,l,vz,z,...,vz,nz}and such that if Uz,ig;Ui;j

then V. .CV ..
2537 1]

Continue in this manner to construct finite covers for X
and C. ' z ‘ rygL e 1ty 1% 1 - -
and C We have sequences ggk}k;l and {y_k}k=j with the follow

ing properties:
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[
L —

FU Il = 1Y ]l for all K,

ii)} For each k, gk is an open-closed cover of C made up
of nonempty pairwise disjoint sets of diameter less
than 1/2k,

iii) For each k, Vy is an open cover of X made up of non-
empty sets of diameter less than 1/2k;

iv) For each k let gk = { Uk,l’Uk,z”"’Uk,nk} and Ek =

1 f 7 - 1 < c 3
ka’l’u.t}-\‘k,nk}o If Uk,ig Jk_l’j fOI‘ some k,}_ and

J then Jk,igvkq,j'

Let ce C; then for each k, k=1,2,3,..., there is a uni-

ue U £ U, containing c. Furthermore, U . DU . 2

e P, 5, F 2k ne 1535 2530

U , 2... ,c= 00U . andV .>V .2V .2 ... . 1let
3:33 ? k=1 k,Jk 1:1= 2,) 3,)

[=e]

gc) = kglvk Do the above for each ceC; then g is a

Gy
function from C into X. Clearly_g is onto. However, g may

rnot be one to one.

Let'{cn}z=1 be a sequence in C and c ¢ C such that c,™ .

@
Choose >0 and suppose c e 0 Uy j, where Uy 3
*k 'k

Then, by Lemma 2.3, there exists a positive integer ky such

Egk for all k.

that ce U . €S(c,e) and.g(c]savkoj C€S(g(c),e). The fact
R » kO

kO’JLg

€h+c implies that there exists a positive integer m, such

that if npm, then cn'aUk + Thus, for n > m, g(Cthvk .

oajko Q:Jko

andtherefore_g{cn) > g{c). Hence g is a continuous map of C onto

X, #
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EXAMPLE 5.7, We will construct a continuous function
from the Cantor sect onto I where I=[0,1]¢ R},

Let Cp=1[0,1] and comstruct C; by removing the interval
(1/3,2/3) from Cp. Hence, Cy = [0,1/37U[2/3,1]. For each
positive integer n, n> 2, construct Cn from anl by removing
the open middle third of each of the intervals in et from

C,.q- Then C = HQDCH is the Cantor set.

For each n, n=0,1,2,..., 1et]%1£{m/2n[ 0<m< 2"},
Let By = {0,1} and define a function g, from By onto D, as

follows:

[

0, if x
go(x) = 1, if x
Recall that C; = [0,1/3]U[ 2/3,1] and then let B, =

{0,1/3,2/3,1}. Define a function g; from B; onto D; as follows:

0, if x=0
g, (x)=<1/2, if x=1/3, 2/3
i, if x=1 .
Thus,‘g1|B0==g0 and if x,y e B; are such that |x-y|<1/3 then
fgi(x) - g1 (y)| <1/2. Recall that Co= [0,1/91U1[2/9,1/371U
[2/3,7/91U[8/9,1] and then let B,= {0,1/9,2/9,1/3,2/3,7/9,8/9,

1}. Define a function g, from B, onto D, as follows:
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CAf x =0
if x=1/9,2/9
if x=1/3,2/3
if x=7/9,8/9
if x=1. '

g, (x) =

Then‘gngl = g1 and if X,y e B, are such that |x-y| <1/32then
g, (x) ~ go(y)| <1/22. ¥For each n>0, €, is the union of 2"
disjoint closed intervals. For n>3 let B,={xeC| x is an
endpoint of one of the closed intervals contained in Cﬁ};

then [|B_[| = 2™ *for all n. Assume that for each n, 3<n<k,

a function g from Bn onto Dn has been constructed such that

.gnan“:gn_l. Also, let C _ = [a ,b JUla,,b lU
U[?én“l’bgnﬂil with a; < bi for all i and bi< T for all
. 1’1—1_ ‘ = - n-3 = n-1 =
i<2" -1 and D =(d; =0/2""7,d,=1/2 el

227 Yy then g (a +1/5(b; - ay)) =g (ay ¢ 2/5(bgm23)) =

(d.

l-bdi+1)/2 for i=1,2,3,...,2071,

Let Ck==[al,bl}LJ[az,bz}LJ... U [aék’bék] with ai.:bi
for all i and by <a;,, for all i¢25-1 and D, = (4, = 0/2k,

=zk/2k}, Define a function g, from B,

d,=1/2%,...,4
. +1

2k
onte Dy ., such that‘gk+1[B = By andlgk+1 (ai+1/3(biwai)) =

k
CBgs1 (ap +2/3(bsme3)) = (&5 +d;,,)/2 for 171,2,3,,..,25. Thus

: K+l
if X,y ¢By,, and |x-y| <1/5"  then | 8p1 0D "8y (0| < 172570,



60

[e]

For each xe nl%JOBn there is an integer n _ such that

. Let g{x) =g (x) for each xe nQOBn"

xeB and X ¢ U__ B.
n i»<:nX x

% 1

Then g is a function from nL__{OBn onto nLgnDn such that if
X,Ye ngGBn and |x-y| 31/3k, for some k, then [g(x)-g(y)! _<_1/2k.
Let B = nL;J_GBn; then B is dense in C. Choose x¢C - B and

let {b } _, be a sequence in B such that b_-+x and b < by
for all n. Let £(x)=1lim g(’bn].- Do the above for each xeC-B
n->e
and if xeB let f{x)=g(x). Thus, f is a function from C into
1.
We need to show that f is well defined on C-B. Let

xeC-B and let {c } _ and {d } _  be sequences in B such that

¢, 2 X for all x,d <x for all x, c, > X, dn-wx, c_ < cC for

n n+1
for all n. Suppose ¢ =1im g(c_)¥ lim g{d_)=d.
n n

all n and d_<d
n-— nt+
10 o0

1

Without loss of generality let c<d. Set e =d-c and choose a
positive integer N such that 1/2N <®/2. Let [0,1]= [a;=0,

by = 1/2MUlay = 1/27,b, = 2/28 0 . Ule |, =1-1/2Y,a

2+1

Ny 1 =11, then

- 2N : . .
]bj-ajl = 1/2" for all j. Say c e[aj,bj] and defa, ,b,]; then
itk and |j-k|>1. Let ey and e, be as follows:

ey = - and e, =

1 . n o
1/2N+ , if ¢ = bj 1/2”*1, if d = A
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Choose a positiye integer Nl such that for nE;NI;

Ix~e ] < 1/(2) (M, xed J< 1/(2) (3N, [£(c)mc| <e; and
|den)*-d|<;2, Recall that CN;is the union of N disjoinﬁ
closed subintervals of [0;1]; Let CN: [al,bl][J[az,bz]Ll...
U[aéN,béN] and choose n> N;. Without loss of generality sup-
pose X ¢ [a,,b,]; then cn,dne [a,,b,] since [xﬂwcn|< 1/2(3N)
and |x-d_| <1/(2)(3"). Hence |£(c ) - £(d )| <1/2".

However, [f(cn)- c| <e; and [f(dn)vvd[< e, imply that
[f(cn)-f(dn)[> l/ZN. This is a contradiction. Hence c=4d
and therefore f is well defined on C - B.

Let x¢ C and ¢> 0. Choose a positive integer N such
that 1/2N<_e'and § > 0 such that § < 1/3N. Let ye C be such
that ]x—y]? §; then |f£(x) ~f(y)[5,1/2N< e. Hence f is con-
tinuous.

The function f takes B onto S-Dn since g takes B onto
n=g

;gODn. Let xe [0,1] - ;igﬂn. Choose a sequence {dn}n___i in

G Dn such that dnAgx for all n and dn~*x. For each n let
n=9

cne:B be such that f(cn);=dn; then'{cn};=1 is a bounded se-

o]

quence. Hence there exists a ceC and a subsequence'{cn'}
k k=1

of'{cn};;1 such that cnk-+c, We now have that f(cnk)~+f(c)

since £ is continuous. Hence f(c¢)=x. Thus f is a continuous

map from C onto I.
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EXAMPLE 5,8. In example 5.7 we mapped C onto I contin-
uously. Now let's map I onto I xX continuously, Let I denote
[0,11 in R!. We will construct a continuous map
h from I onto IxI, In the construction of h we will use
Theorem 5.6.

Let g be a continuous map from the Cantor set onto I x1I,
Theorem 5.6 tells us that such a g exists. Let C be the
Cantor set. The function g is uniformly continuocus since C
is compact. Recall the construction of C. Let Cy=[0,1],
Cy=1[0,1/31y [2/3,1] and C,=[0,1/910U[2/9,1/31U[2/3, 7/9]
Ul[8/9,11. 1In general, for each positive integer n construct
Ch from Cooy by removing the open middie third of each of the
intervalsdj1cn

from Cn— Then C= N Cn' Let Ry =[1/3,2/3],

1
n=0

-1
Rp = [1/9,2/9}, Ry =17/9,8/9], Ry =1{1/27,2/27}, Rg=[7/27,8/27]},

Rg = [19/27,20/27], Ry =[25/27,26/27],... . Define h(x) = g(x)
for all xe C. For each positive integer n say [an,bn]==Rn.
So, for example, a;=1/3,b;=2/3, a,=1/9,b,=2/9, a3=17/9,

by =8/9, and a, =1/27. Let xeI-C. Then XeR }

- [an(} ’bno

0
for exactly one positive integer ng. If g(an )==-g(bn ) then
0 o

let h(x) =g(an0). If g(ano)%=g(bn0) let h{x) be as follows:

g(ano)“g(bno)] [g(ano)'g(bnﬁ)]

h(x)= .
p - x+g(_ )-b _
%n, bng J Mo n“[ 'aHOQbﬂo J
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q{b.,)
hoo

1( Qq 0\

Figure 13 Clarification of h(x)
Do the above for each xeI -C, Then h is a function from I
onto I x1I such that h|.=g. The function h is onto IxI
since g is onto I x 1T,

We now must show that h is continuous. Let xe [0,1]
and ¢> 0., If XE:Rg for some n then clearly h is continuous
at x. Hence, supposc xeC. Since g is uniformly continuous
we can chocse & >0 such that if ¢j, cpeC and | ¢y -c, | < &
then |g(cy)-glc,)} < ¥2. There exist only finitely many n
such that diam R,28. We need to comsider two cases. First
suppose that for all n diam R_ < 9. Let yeI be such that
|x-y|<s. If yeC then |h{x)-h(y)| = lg(x)-g(y)| < ¥2. as desired.

If yeI-C then ye;[ako,bk0]==Rk0 for exactly one ky. The
L - L 5 o [
diameter of Rko less than § implies that-[g(akojrg(bkﬁ}[ < &/2,

Without loss of generality suppose x <Yy, Then
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lh(X]"h(Y)li[h(X)"hﬂakO)l*lh(ako)wh(y}l< /2w B2 = e
Hence h is centinuous at x if di&m-Rn< § for all n,

Now, suppose diam R > ¢ for n=1,2,3,...,k. Rpﬁé{RanAW
(x,x+68) $#¢ and diam R,2 ¢} and Rp;é{Rn[Rnf](kvs,x) $+ ¢ and
diam R 6}. Set a==min'{an[Rns:RP} if RF+0 and b= max'{bni

RniiRp} if Rp=%¢. Define o as follows:

min {a - x, x- b}, if Ryt and Rp+ 0

. = min {§,x - b}, if Rg=10 and Rp+ i
min {§,a - x}, if Rp: 0 and RF+ ¢

8 , if Rp==$ and Ry =0

Notice that o < §. Recall that xeC. Let yeI be such that
|x-y|<a. IfyeC then |[h(x)-h(y}|=|g(x)-gy)|<*/2 as

desired. If y ¢ C then ye:Rk1= [akl’bkl] for exactly one k;.

We have that {akl,bkl]r]{x- §, x+68) 0 since |x-y|<a < 8.
The facts [akl,bkl]r](x- S, x+68)F ¢ and |x-vy| <o imply that
diam Rk1'<6. Without loss of generality suppose x<vy. Then
[h(x) - b)) [</h () 2h(ay 2|+ Ihla ) - | <®/2+ % 2=¢.
Hence h is a continuous map from I onto I x T,

Let X be a metric space. Cheose two distinct points inX
and let X be an arc joining a to b. We will define a linear

order on X and define a function from K onto [0,1] that is one

to one, onto, continuous and order preserving,
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LEMMA 5.9. Let X be a metric space and a,b be two dis-
tinct points inm X. Let K be an arc joining a to b in X, Define
<on K as follows:

1) lLet x,yeK. Then x+<y if and only if X-{x}=U_ vV,
with aeU,  and both y and b in Vi

ii) a<x  for all x % a.
iii} x<b for all x # b.
iv) x =y if x and y are the same elements.
Then < is a linear order on K.
PROOF. First we need to show that < is well defined. We
must show that if x e K and K-J{x}==U1’anV1,b ==Uz,anV2,b

with acU Nu and beV nv then U =[J and V .=
1,a 2 1,0 2

» ,b 1,8 2,4 1:b

* »

Vz,b‘ Both Ul’atl{x} and Vz,bLJ{X} are connected sets since

K is connected. Then K=U yv U{x}, since K is irre-
1,8 2;b

ducible between a and b. Similarly, K=U, UV, le{X}. Hence

s &

7 [ = i -
Uz’aLJXI’bLJ{X} Ul,aLJVZ,bL){X}' Then Ul,a Uz,a and

Vl’b=V2’b since Uljaﬂ_v1 b =q1 and U2 an'\,rz b ={. Thus < is

3 2 b

well defined.

Clearly x<x for all xe K, Suppose x,y e K with x < y.
Then y is not less than x. We neced only consider k,y different
than a,b. Suppose y <x; then KvJ{X}:ﬁUaKLDVbX and K-~ {y} =

Uayd}vby with y\eVEX and x¢Vy . The set UaxU{k}iﬁ-cenneated

oY .
d doe t i s h U ) {xtC Vv ¢ Ffact 7 -
and does not contain y; hence aXLJﬁx}Q\QhH The fact B'&Uﬂxn

Uay contradicts Ua

then x=vy.

nvba¢r Thus y ¢x. Hence if x<yandy«<x.

Y Y
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Let x,y,z ¢ K and suppose x<y and y<z. .We need
to show that x<z, We need only consider x,y,z different than
a,b with x<y and y<z, The other cases are clear. The fact

x <y implies that K~ {x}=U_ V, withyeV, . K-{y} =
*x X x

i wi T : = .
Ha QJVb with z eVb since y < z. Suppose z eUa ; then aszUaﬂ
y Y ¥ x y

U, and Ua f%Vb + @. This contradicts the connectedness of
e X y :

U U{x}. Hence zeV, and therefore x<z,
a b
X X
Let x,y e K. We need to show that x<y or y<x. We need
only consider x,y different than a,b and x%+y. The other

cases are clear. K-{x}=U_ YV, and K- {y} = U, levb . If

X p'e y y
y‘eVB then x <y and we are done, So, suppose yel, . Then
X ' X
vy Uix} ¢ Vy, - Thus xeV, and therefore y <x. Now we have
X ¥ y

that < is a linear order on K. #

LEMMA 5.10. Let K be a metric arc joining a to b and T
be the metric topology on K. Let T, be the order topology on
K. A base for T, is B={[a,x) |xeK and x3b} U {(y,bllysK
and y f ayu{(x,y) | x,y ¢ K}. Then T='T<.

PROOF. First we will show that.Tg_g'T. Choose x ¢ K dif-

ferent from a or b. Then K- {x}=U_ YV, with ae¢U_ and
8y " by By

bs:Vb . Let zela,x); then zsx. K-{z}=U tRY with
X 4z bz

ael_  and be’Vb . The fact z <x implies that xeVy o
z z Z
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Thus U, U {2z} ¢ U ' and therefore ze¢U_ , Hence [a,x)CU .
4y Ax ax ax

3 - - = TT 1
Choose eUa different than a. K- {g? Lawgp me with ana

X w

and be me. Suppose X ¢ an. Then meﬂ va + ¢ and wa N

i

U, + §. This contradicts vy U {w} being connected. Hence
X w

XeVb and therefore w<x, Thus Uag[a,x). Now, Ua = [a,x) for
ST X X

all x¢a,b. Similarly (y,bl=V, for all y#4,a,b. If x#+vy

by

and x,y are different than a,b then (x,y) =U, NV, . The sets
_ « ;

Ua and Vb are open for all x,y in K. Hence T, €T.
X y

Let UeT. Suppose aelU. If there exists a z e K such
that [a,z) €U then UeT_. Suppese for all z e K we have that
[a,z) ¢U. Then [a,z)N (K-U)+¢ for all zeX. Let

H= N {[a,z]N{X-U)]; then H$ § since K is compact. However,

L

z
zta

H ¢ ”,- [a,z] =a and HCK-U. This contradicts aeU. Hence
i

there exists a z € K such that {a,z_]g U. Thus Uce T_. Similarly

if beU then there exists a z e K such thaf (z,b]€U and if

a,b $ U then there exist x,y ¢ K such that (x,y)¢U. Thus TCT,.

Now, we have that T-~= T, . #
1

LEMMA 5.11. Let K be a metric arc joining a to b. Choose
two distinct peints x,y in K. Without loss of generality sup-

pose X <Yy; then there exists a z e X such that x<z <y,
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PROOF, First suppose x # a,band y%a,b. Suppose there

does not exist a z ¢ K such that x<z<y, K- {x} =U, LPVb and
X

X
K-{y}=U_ YV, withaeU AU , beV, NV, and yeV
aY by ay ay bX by bx
Then U U{x}cU . Thus xe¢U_ and so V, U{y}gV, . Let
a, ay ay by bX
H=U, U {x} and M=V, U {y}; then H={a,x], M= [y,b] and

X Y
HAM= (. K=HUM since there does not exist a z e K such that
x<z<y. This contradicts K being comnected. Hence there is
a z ¢ K such that x<z<y.

Now suppose x=a and y# a,b. Suppose there does not

exist a z ¢ K such that a<z<y. Then K- {y}=U_ QJVb =

'{a}QJVb-. Thus {a} is both open and closed. This is a con-
y
tradiction. Hence there exists a z e K such that a<z«<y.

Similarly if y=b and x % a,b then there exists a z e K such
that xw<z-;b, If x=2a and y="b then there exists a z ¢ K such
that x <z <y since {a,b} ¢ K. #
THEOREM 5.12. If K is a metric arc joining a to b then
there is an order preserving homeomorphism from K onto I.
PROOF, Let K be a metric arc joiﬁing a to b and let
D= {X],X5,X3,...}+ be a countable dense subset of K such that

Xi:FXj for i+j and xii?a,b for all i. Set xp=a and x_=b.

Let g(a)=10, g(b) =1 and g(x;) =1/2. Let g(xy)} be as follows:



3/4,  if x; > 3
g(x2) =
1/4, if Xo = X3
Assume that g(xk) has becen defined for all k<n-l1. Let

X = max {x. | x, <x
P JI

n J n, j”_“o,-]-;z,u&s,n“l} a.nd Xf =Iﬁi1’1

n

'{xj ; Xy > X j=0,1,2,...,n-~1,=}. Then let g(x )= ‘(g(xﬁpn) +

glxe ))/2. Let g(y)==g].b{g(xn)] xhrky} for each ye K-D.
n

We will show that g is a one to one, onto, continuous and order
preserving map from XK into I ={0,17.

Now, let's show that g preserves order. We will first
use induction on the positive integers to show that g pre-
serves order on D. We will show the following by induction:

Let n be a positive integer. Then

(i) Tf j is such that 1<j<n-1 and xj<cxn
then‘g(xj)<_g[xn).

(i1} If j is such that I1<j<n-1 and Xj:bxn

then‘g(xj] :g(xn).

il

Clearly the result holds for n=1 and n=2. Assume the result
holds for all n<k. By definition, g(xk+ } = (gxX ) o+

g(xf })/2 with a<x < Xypq < Xg <b. Using the induc-
k+1 k+1 k1
tion hypothesis we have that g(x }g.g(xf }. Hence
Pr+q k+1

g{ ) < g(xk+1) < g{xf }. Applying the induction hypothesis

k+1

and transitivity to X and X we have the desired result.
Py k+1

X
pk+1
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Hence g preserves order on D,
Let x,y ¢ K be such that x,y ¢D, Without loss of gen-
crality suppose x <y, Recall that g(x) = glb {g(x,) | X, > X}

and g(y) = glb’ lglx,) | X, >y}. There exists an icno e D such

that X<X, <Y since D is dense in X, Thus g(x) < g(xno).
0

Suppose g(y) < g(xn V3 then there exists a X ¢ D such that
' 0 1

y < an and g(xnl] < g(xno) . However, g(xnl-) < g(xng) implies

that an < xno. Thus an < Xna <y < xnl. This is a contradic-
tion. Hence g(x) < g(xno) < g(y) and therefore g(x) < g(y).
Thus, g preserves order on K,

Let By = {0,1} and for each positive integer let

B, ={0/2",1/2%,2/2"%,...,2"/2"}. Set B = U By. e will
n=

show that g takes D onto B, Clearly, for each be By UB; there
exists a db e D such that g\(db}:b. Consider B, = {0,1/4,1/2,

3/4,1}. Let Hp={X_eD| X_>X;} and let k; be the smallest

positive intege.r such that 'xkl e Hy. Then x; ==x;p and
kg
b==xfk1. Thus g(xk1)= 3/4. Let Rp={X eD|x <x;}. Let
k, be the smallest positive integer such that Xp ¢ R,. Then
‘ 2. .
X = Xg and 0=2C_'p . Thus, g(xk Y =1/4. Hence if beByUBy
k, k, 2
UB, then there exists a db e I} such that g(db) =b, Assume
n
that if be U iBi then there exists a db e D such that g(db) =b.
i=1 n
. _ n n n w140l 40,0
Consider Byq- Bn—-{O/Z L, 1/27,3/27,...,2 /27,27/27} and

n+y | |
B, = (0/2% 172" 22" L0, 2 Ty 20 0y
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n+l,2/2n+1’4/2ﬂ+l ’2n+l/2n+l}:=Bn; hence

LR

We have that {0/2
if b a'{0/211*1,2/2'““,,..,ZIHH/ZHH} then there is a clb e D
such that g(dbj) =b. Let k3 be such that:g(xka) = 2/2.11.]'1 and
let Rg={x_|[X < Kkg’ n> kgt. Clearly k3 #0 and Ry % (. Let
ky be the smallest positive integer such that x.ku ¢ Ry, Then
X.ks =2~kaq and Xipkq =a, Thus g(Xk‘L‘*) =1/20%, Using a similar

argument one can show that there is a d e D such that g(d) =

T+l
2 _1/2114-1., Consider 4/2n+1. We have that g(0) =a and

- n+1 N _omtl
,g(xk3) 2/2 . Let Xy, ® D be such that g(xksj 4/2 . Set
Ry, = {X_ eD | XRB <X < st and n> kg,kg}. Clearly R, # 0.

Let kg be the smallest positive integer such that x, eR,.

kg

Then X = X, and xg¢ = X, Hence g(x 3/2"71. sim-

):
pks k6

ilarly there exist elcments in D which map onto 5/2n+1,7/2n+.1,

n+l. 1 ) .
L (2 ~"S}/2n+ L Thusfor cach b e Bn there is a db e D such

+1
that g(db) =b, Therefore, g takes D onto B.

We can now show that g takes K onto {0,1}. Let ze [0,1]-
B and let {bi};;l be a sequence in B such that b; >b,,, for
all i and bi+z. For each i let di e D be such that g(di):bi..
Then, because g preserves order, di }"dj_-:-l for all i. There
exists a we XK such that di $ o since K is compact. We have
that g(w) = glb{g(xn) | X, > w} whether weD or veK-D. Suppose

~g{w) < z; then there is a x

mg © D such that me >w  and glw) <

- L \ “
mo) < 7. Then xmo < di for all i since g(xmd, <z. So,
b 4N d-. '0 ;' X . = l o i ‘

w o< x o< d for ali i Thus, K {xmo} Uax‘ Y Vb.x. Wlt}.}.
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@ eUa_X and d, eva for all i. This contradicts d, 5 o.
mg Mg

Hence g(w) > z. Suppose g{w) » z; then g(uw) > g(dio) for some

ig. This contradicts w<d, for all i. Hence g(w) =z and so

g takes K onte [0,17.

The function g is one to one since g is onto [0,1] and g
preserves order. Let c,d be two distinct points in [0,17.
Then g™ ' ((c,d)) = (g 1 (c),8 1 (4)),g 1 ((0,d)) = (a,8" " (&) and
27, 1) = (g7 (e),b) . However, (g7'(e),g (d)), (a,g l(d))
and (g—l(c),b) are open in K. Hence g is a continuous map.

We now héve that g is a continuous, onto, one to one and

order preserving map from K to [0,1]. The function g is a

homeomorphism since K is compact and [0,1] is T,. #
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