# 379 <br> N81 <br> NO. 5886 

## CONTINUA AND RELATED TOPICS

THESIS

# Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements 

For the Degree of MASTER OF ARTS

Karen M. Brucks, B. A. Denton, Texas

August, 1982

Brucks, Karen M., Continua and Related Topics. Master of Arts (Mathematics), August, 1982, 73 pp., 13 illustrations, bibliography, 3 tities.

This paper is a study of continua and related metric spaces. Chapter I is an introductory chapter. Irreducible continua and noncut points are the main topics in Chapter II. The third chapter begins with a few results on locally connected spaces. These results are then used to prove results in locally connected continua. Decomposable and indecomposable continua are dealt with in Chapter IV. Totally dis. connected metric spaces are studied in the beginning of Chapter V. Then we see that every compact metric space is a continuous image of the Cantor set. A continuous map from the Cantor set onto $[0,1]$ is constructed. Also, a continuous map from $[0,1]$ onto $[0,1] \times[0,1]$ is built. Then an order preserv. ing homeomorphism is constructed from a metric arc onto $[0,1]$.

## TABLE OF CONTENTS

LIST OF ILLUSTRATIONS PageChapter
I. PRELIMINARIES ..... 1
IntroductionNotation
II. CONTINUA ..... 4
Irreducible Continua
Noncut PointsVietoris Topology
III. LOCALLY CONNECTED CONTINUA ..... 21
IV. DECOMPOSABLE CONTINUA ..... 41
V. CONTINUOUS MAPPINGS ..... 52
BIBLIOGRAPHY ..... 73

## LIST OF ILLUSTRATIONS

Figure Page

1. Continuum ..... 4
2. Subspace $X$ of $R^{2}$ ..... 12
3. Clarification of $A, B$ and $x$ ..... 13
4. Subspace of $\mathrm{R}^{2}$ ..... 23
5. Subspace of $R^{2}$ ..... 31
6. Subspace of $\mathrm{R}^{2}$ ..... 31
7. A semi-locally connected subspace of $\mathrm{R}^{2}$ ..... 33
8. A subcontinuum of $\mathrm{R}^{2}$. ..... 39
9. Construction of $U_{1}$ ..... 39
10. Construction of $\mathrm{U}_{2}$. ..... 40
11. Construction of $\mathrm{U}_{3}$ ..... 40
12. Clarification of K ..... 47
13. Clarification of $h(x)$ ..... 63

## PRELIMINARIES

## Introduction

Irreducible continua and noncut points are the main topics in Chapter II. The Vietoris Topology is introduced to prove that in a compact Hausdorff space a net of nonempty closed sets has a convergent subnet. Chapter III begins with some results on locally connected spaces. Several of these results are then used to prove results in locally connected continua. Indecomposable and decomposable continua are dealt with in Chapter IV. Totally disconnected metric spaces are explored in the beginning of Chapter $V$. Then we see that every compact metric space is a continuous image of the Cantor set. A few examples of maps between continua are also exhibited in Chapter $V$.

## Notation

The theorems presented in this paper can be found in the books listed in the bibliography. Only the proofs, examples and remarks given in this paper are original. It is assumed that the reader is familiar with the material presented in a beginning graduate topology course.

There is however some notation which needs clarification. We will let $R^{1}$ denote the real numbers and $R^{2}$ denote $R^{1} \times R^{1}$.

Let ( $X, T$ ) be a topological space and $A, B$ nonempty subsets of $X$, Let $\|A\|$ stand for the number of elements in $A$ if $A$ is a finite set and let diam $A$ denote the diameter of $A$, If $\left\{a_{\alpha}\right\}_{\alpha \in D}$ is a net in $X$ then $a_{\alpha} \stackrel{C}{f}$ a means that the net clusters to a. Similarly, if $\left\{a_{n}\right\}_{n=1}$ is a sequence in $X$ which clusters to $a \varepsilon X$ we will write $a_{n} \xrightarrow{C} a$. Let $b(A)$ denote the boundary of A. If $A \subseteq B$ then let $b^{B}(A)$ denote the boundary of $A$ with respect to the relative topology on $B$. Similarly, $\bar{A}^{B}$ will de note the closure of $A$ with respect to the relative topology on $B$. The sets $A$ and $B$ are separated sets if $A \cap \bar{B}=B \cap \bar{A}=\phi$. If $A$ and $B$ are separated sets such that their union is all of $X$ then we will write $X=A \psi B$.

DEFINITION 1.1. Let $(x, T)$ be a topological space and $\left\{A_{\alpha}\right\}_{\alpha, E D}$ a net of sets in $X$. Then the limit superior of $\left\{A_{\alpha}\right\}_{\alpha \in D}$ is $\{x \in X \mid$ if $U \varepsilon T$ and $x \varepsilon U$ then for every $\alpha \varepsilon D$ there exists a $\beta \geq \alpha, \beta \in D$, such that $\left.U \cap A_{\beta} \neq \phi\right\}$. Let $\lim \sup A_{\alpha}$ denote the limit superior of $\left\{A_{\alpha}\right\}_{\alpha, \varepsilon D}$.

DEFINITION 1.2. Let ( $\mathrm{X}, \mathrm{T}$ ) be a topological space and $\left\{A_{\alpha}\right\}_{\alpha \varepsilon D}$ a net of sets in $X$. Then the limit inferior of $\left\{A_{\alpha}\right\}_{\alpha \in D}$ is $\left\{x_{\varepsilon} X \mid\right.$ if $U \varepsilon T$ and $x \varepsilon U$ then there exists an $\alpha_{0} \varepsilon D$ such that if $\alpha \in D$ and $\alpha \geq \alpha_{Q}$ then $\left.A_{\alpha} \cap U \neq \emptyset\right\}$. Let $\lim \inf A_{\alpha}$ denote the limit inferior of $\left\{A_{\alpha}\right\}_{\alpha \in D}$.

DEFINITION 1.3. Let ( $\mathrm{X}, \mathrm{T}$ ) be a topological space and $\left\{A_{\alpha}\right\}_{\alpha \varepsilon D}$ a net of sets in $X$. Then $A$ is said to be the limit of $\underline{\left\{\mathrm{A}_{\alpha}\right\}_{\alpha \in \mathrm{D}}}$ if and only if $\lim \inf \mathrm{A}_{\alpha}=\lim \sup \mathrm{A}_{\alpha}=\mathrm{A}$,

DEFINITION 1.4. Let $(X, T)$ be a topological space. A connected subset of $X$ that is not properly contained in any other connected subset of $X$ is a component of $X$.

## CHAPTER II

## CONTINUA

## Irreducible Continua

DEFINITION 2.1. A continuum is a compact connected Hausdorff space.

EXAMPLE 2.2. Let $X$ be the subspace of $R^{2}$ shown in Figure 1 ; then $X$ is a continuum.


Figure 1 Continuum
LEMMA 2.3. Let $X$ be a compact Hausdorff space and let F be a family of nonempty closed subsets of $X$ with the property that if $A, B \in F$ then there exists a $C \in \underset{F}{ }$ such that $C \subseteq A \cap B$.

Then the following two properties hold:
i) If $U$ is an open set containing $\cap \underline{F}$, then there is some $F \in \underline{F}$ such that $F \subseteq U$.
ii) If in addition, each $F \in E$ is connected then $\cap \underline{F}$ is nonempty, compact and connected.

PROOF. First index $E$, say $F=\left\{F_{\alpha}\right\} \alpha_{\alpha A}$. Pick an element in $\underset{F}{ }$, say $F_{0_{1}}$. Let $D=\left\{\alpha \varepsilon A \mid F_{\alpha} \subseteq F_{\alpha_{1}}\right\}$ and direct $D$ as follows:

$$
\alpha<\beta \leftrightarrow F_{\beta} \subseteq F_{\alpha} .
$$

Let $U$ be an open subset of $X$ such that $\cap \underset{F}{\subseteq} U$. Suppose $F_{\alpha} \nsubseteq U$ for all $\alpha \varepsilon A$; then for each $\alpha \varepsilon D$ there exists a $f_{\alpha} \varepsilon F_{\alpha}$ such that $f_{\alpha} \notin U$, Now we have a net $\left\{f_{\alpha_{\alpha}}\right\}_{\alpha, \mathcal{D}}$ in $F_{\alpha_{1}}$ with $F_{\alpha_{1}}$ compact. Hence $f_{\alpha} \xrightarrow{c} y \in F_{\alpha_{1}}$, for some $y \varepsilon F_{\alpha_{1}}$.

Suppose $y \notin F_{\alpha}$, for some $\alpha$ in $A$; then $y \varepsilon\left(X-F_{\alpha}\right)$ which is open in $X$. Now, there exists $F_{\alpha_{2}} \subseteq F_{\alpha} \cap F_{\alpha_{1}}$ with $\alpha_{2} \varepsilon D$ and there exists $\alpha_{3} \geq \alpha_{2}$ such that $f_{\alpha_{3}} \varepsilon\left(X-F_{\alpha}\right)$. Thus, $F_{\alpha_{3}} \subseteq F_{\alpha_{2}} \subseteq F_{\alpha}$ and so $f_{\alpha_{3}} \varepsilon X-F_{\alpha_{3}} ;$ but this contradicts $f_{\alpha_{3}} \varepsilon F_{\alpha_{3}}$. Hence $y \varepsilon \cap \mathrm{~F}$ and therefore $y \varepsilon U$. Thus, for each $\alpha \varepsilon D$ there exists a $\beta \geq \alpha, \beta \varepsilon D$, such that $f_{\beta} \varepsilon U$. This contradicts $f_{\alpha} \notin U$ for all $\alpha \varepsilon D$. Hence, $\cap$ $\underline{F} \neq \phi$ and there exists $F \in \underline{F}$ such that $F \subseteq U$.

To prove part two we will use part one. Now assume each $F \varepsilon E$ is connected. From the proof of part one we have that $\cap \underline{F} \neq \phi$. Since $X$ is compact and $\cap \underline{F}$ is closed we have that $\cap F$ is compact.

Suppose $\cap \underline{F}$ is not connected. Then let $\cap \underline{F}=\mathrm{K} \psi H$. Since $X$ is compact and Hausdorff there exist open disjoint sets $U$ and $V$ such that $K \subseteq U$ and $H \subseteq V$. By part one there exists $F_{I} \varepsilon \underline{F}$ such that $F_{1} \subseteq U \cup V$. Since $F_{1}$ is connected, either $F_{1} \subseteq U$ or $F_{1} \subseteq V$. Without loss of generality suppose $F_{1} \subseteq U$; then $\cap \underset{E}{\subseteq} G$ and therefore $H=\|$. This contradicts $H \neq \phi$ and therefore $\cap \underline{F}$ is connected. \#

DEFINITION 2.4. Let $(X, T)$ be a topological space and $A$ a nonempty subset of $X$. A subcontinuum $K$ of $X$ is irreducible about A if $A \subseteq K$ and no proper subcontinuum of $K$ contains $A$.

EXAMPLE 2.5. Let $X=\left\{(x, y) \in R^{2} \mid x^{2}+y^{2}<16\right\}$ and $A=\left\{(x, y) \varepsilon X \mid x^{2}+y^{2}<1\right\}$. Then $K=\left\{(x, y) \varepsilon X \mid x^{2}+y^{2} \leq 1\right\}$ is subcontinuum of $X$ which is irreducible about $A$.

THEOREM 2.6. Let $X$ be a continuum and $A$ a nonempty subset of $X$. Then $X$ contains a subcontinuum which is irreducible about A.

PROOF. Let $\underline{K}=\{K \subseteq X \mid K$ is a subcontinuum of $X$ and $A \subseteq K\}$. $\underline{K} \neq \emptyset$ since $X \varepsilon \underline{K}$. Partial order $\underline{K}$ as follows:

$$
K_{\alpha} \leq K_{\beta} \leftrightarrow K_{\beta} \subseteq K_{\alpha} .
$$

Let $\underline{C}$ be a chain in $\underline{K}$; then $C_{1}=\bigcap_{C \in \underline{C}}^{\cap} C$ is an element of $\underline{K}$. Thus $\underline{C}$ has an upper bound and therefore $\underline{K}$ has a maximal element, say $K_{1}$. Clearly $K_{1}$ is irreducible about A. \#

DEFINITION 2.7. Let $A$ and $B$ be nonempty disjoint subsets of a space $X$. A subcontinuum $K$ of $X$ is irreducible from $A$ to $B$ if $K$ intersects both $A$ and $B$ and if no proper subcontinuum of $K$ intersects both $A$ and $B$.

EXAMPLE 2.8. Let $X$ be $R^{1}, A=\{X \in X \mid 0 \leq x \leq 1\}$, $B=\left\{x_{\varepsilon} X \mid 5 \leq x \leq 25\right\}$ and $K=\left\{X_{\varepsilon} X \mid 1 \leq x \leq 5\right\}$. Then $K$ is continuum which is irreducible from $A$ to $B$.

THEOREM 2.9. Let $X$ be a continuum and $A, B$ be nonempty disjoint closed subsets of $X$. Then $X$ contains a subcontinuum which is irreducible from $A$ to $B$.

PROOF, Let $K=\{K \subseteq X \mid K$ is a continuum, $K \cap A \neq \phi$ and $K \cap B \neq \phi\}, \quad K \neq \phi$ since $X \varepsilon \underline{K}$. Partial order $K$ as follows:

$$
K_{\alpha} \leq K_{\beta} \leftrightarrow K_{\beta} \subseteq K_{\alpha} .
$$

Let $\underline{C}$ be a chain in $K$; then $C_{1}=\bigcap_{C \varepsilon C}^{C} C$ is a continuum. Suppose $C_{1} \cap A=\phi$. Then there exists $C_{2} \varepsilon \underline{C}$ such that $C_{2} \subseteq X-A$; but this contradicts $C_{2} \cap A \neq \phi$. Thus, $C_{1} \cap A \neq \phi$ and similarly $C_{1} \cap B \neq \phi$. Hence, by Zorns' lemma, there exists a maximal element $K_{l}$ in K. Clearly $K_{1}$ is irreducible from $A$ to $B$. \#

Let $X$ be a compact Hausdorff space and $A, B$ nonempty disjoint closed subsets of $X$. If there does not exist a subcontinuum of $X$ which intersects both $A$ and $B$ then, due to Theorem 2.9, $X$ is not connected. Moreover, we can find two separated sets in $X$ such that their union is all of $X$, $A$ is contained in one of these sets and $B$ is contained in the other. The next three lemmas are needed to prove this.

LEMMA 2.10. Let $X$ be a compact Hausdorff space, $x$ and $y$ elements of $X$ such that $x \neq y$, and $\left\{H_{\alpha}\right\}_{\alpha \in A}$ a collection of closed sets each containing $x$ and $y$ such that each $H_{\alpha}$ is not the union of two separated sets one containing $x$ and the other y. If $\left\{\mathrm{H}_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ is totally ordered by set containment, then $\cap_{\alpha \in A} H^{\alpha}$ is not the union of two separated sets one containing $x$ and the other $y$.

PROOF. Suppose $\cap \cap_{\alpha \in A} H_{\alpha}=M \Psi N$, where $x \in M$ and $y \in N . M=\bar{M}$ and $N=\bar{N}$ since $\cap_{a \in A} H_{\alpha}$ is closed. Let $U$ and $V$ be open disjoint sets such that $M \subseteq U$ and $N \subseteq V$. From Lemma 2.3 we know that there exists $H_{\alpha_{1}}$ such that $H_{\alpha_{1}} \subseteq U U V$. Thus, $H_{\alpha_{1}}=\left(H_{\alpha_{1}} \cap U\right) \Psi\left(H_{\alpha_{1}} \cap V\right)$ with $x \varepsilon H_{\alpha_{1}} \cap U$ and $y \varepsilon H_{\alpha_{1}} \cap V$. This contradicts $H_{\alpha_{1}}$ not being the union of two separated sets one containing $x$ and the other $y$. Hence, $\bigcap_{\alpha \in A} H_{\alpha}$ is not the union of two separated sets one containing $x$ and the other $y$. \#

LEMMA 2.11. Let $X$ be a compact Hausdorff space and $x, y$ elements of $X$ such that $x \neq y$. If $X$ is not the union of two separated sets one containing x and the other y , then X has a subcontinuum joining $x$ to $y$.

PROOF. Let $\underline{H}=\{H \subseteq X \mid X, y \in H, H=\bar{H}$ and $H$ is not the union of two separated sets one containing $x$ and the other $y\}$. $H \neq \emptyset$ since $X \in \underline{H}$. Partial order $\underline{H}$ as follows:

$$
\mathrm{H}_{\alpha} \leq \mathrm{H}_{\beta} \leftrightarrow \mathrm{H}_{\beta} \subseteq \mathrm{H}_{\alpha} .
$$

Let $\underline{\mathrm{C}}$ be a chain in $\underline{H}$. Then, from Lemma 2.10, $\cap \mathcal{C}_{\varepsilon} \underline{H}$ and $\mathrm{C} \varepsilon \underline{\mathrm{C}}$ therefore $\underline{H}$ has a maximal element, say $H_{1}$. If $H_{1}$ is connected we are done; so suppose $H_{1}=M \Psi N$ with $x, y \varepsilon M . H_{1} \varepsilon \underline{H}$ implies that $H_{1}=\bar{H}_{1}$ and therefore $M=\bar{M}$. Thus, if $M$ is connected we are done. Suppose $M=Q \psi R$. If $x \varepsilon Q$ and $y \varepsilon R$, then $H_{1}=Q \psi(R \cup N)$ with $x_{\varepsilon} Q$ and $y_{\varepsilon} \in \cup N$. This contradicts $H_{1} \varepsilon \underline{H}$. Thus without loss of generality say $x, y \varepsilon Q . \quad x, y \varepsilon Q$ and $H \varepsilon \underline{H}$ imply that $Q$ is in $\underline{H}$. Then $Q \underset{Y}{C_{1}} H_{1}$ and $Q \varepsilon \underline{H}$ contradict $H_{1}$ being maximal in $\underline{H}$.

Hence, $M$ is connected and therefore $M$ is a subcontinuum contraining $x$ and $y$. \#

LEMMA 2.12. Let $X$ be a compact Hausdorff space and let $A$ and $B$ be closed disjoint subsets of $X$. If for each pair $a, b$, with a $\varepsilon A$ and $b \varepsilon B$, there exist sets $H, K$ such that $X=H \psi K$ with $a \varepsilon H$ and $b \varepsilon K$, then $X=M \psi N$ where $A \subseteq M$ and $B \subseteq N$.

PROOF. Let $a \varepsilon A$. For each $b \varepsilon B$ there exist sets $H_{b}$ and $K_{b}$ such that $X=H_{b} \psi K_{b}$ with $a \varepsilon H_{b}$ and $b \varepsilon K_{b}$. Let $K=\left\{K_{b} \mid b \varepsilon B\right\}$. Then $K$ is an open cover for $B$ and therefore $K$ has a finite subcover, say $K_{b_{1}}, K_{b_{2}}, \ldots, K_{b_{n_{a}}}$. Do the above for each a $\varepsilon A$. Thus for each $a \varepsilon A, B \subseteq \bigcup_{i=1}^{n_{a}} K_{b_{i}}$ and $a \varepsilon H_{b_{i}}, i=1,2, \ldots, n_{a}$. By construction $\left(\bigcup_{i=1}^{n_{a}} K_{b_{i}}\right) \cap\left(\bigcap_{i=1}^{n_{a}} H_{b}\right)=\phi$ for each a $\varepsilon A$. Also, $A \subseteq \underset{a \in A}{U}\left(\bigcap_{i=1}^{n_{1}} b_{i}\right)$. Since $A$ is compact there exists a finite set $\underline{F}=\left\{a_{1}, \ldots, a_{m}\right\} \subseteq A$ such that $A \subseteq \underset{a \varepsilon F}{\cup}\left(\bigcap_{i=1}^{n_{1}} H_{b}\right)$. Let
 Let $a \in E$; then $\left(\bigcup_{i=1}^{\mathrm{n}_{\mathrm{a}}} \mathrm{K}_{\mathrm{b}_{i}}\right) \cap\left(\bigcap_{i=1}^{n_{a}} \mathrm{H}_{\mathrm{b}}\right)=\emptyset$ and therefore $\mathrm{M} \cap \mathrm{N}=\emptyset$. Let $x \varepsilon X$. For each $a \varepsilon \underline{F} \quad X=H_{b_{i}} \psi K_{b_{i}}$ for $i=1,2, \ldots, n_{a}$; thus $x \varepsilon \bigcap_{i=1}^{n_{b}} H_{i}$ or $x \varepsilon \bigcup_{i=1}^{n_{a}} K_{b_{i}}$. Hence $x \varepsilon M$ or $x \varepsilon N$ and therefore $X=M \psi N, \#$

THEOREM 2.13, Let $X$ be a compact Hausdorff space and let A,B be closed disjoint subsets of $X$ such that no subcontinuum of $X$ intersects both $A$ and $B$. Then there exist closed disjoint sets $M, N$ such that $X=M \cup N$ with $A \subseteq M$ and $B \subseteq N$.

PROOF. Suppose there do not exist closed disjoint sets $M, N$ such that $X=M U N$ with $A \subseteq M$ and $B \subseteq N$; then there exist $\mathrm{a} \varepsilon \mathrm{A}$ and $\mathrm{b} \varepsilon \mathrm{B}$ such that X is not the union of two separated sets one containing a and the other containing $b$. Then, from Lemma 2.11, there exists a subcontinuum joining a to b . This contradicts there not being a subcontinuum of X intersecting both $A$ and $B$. Hence there exist closed disjoint sets $M, N$ such that $X=M U N$ with $A \subseteq M$ and $B \subseteq N$. \#

Theorem 2.14 also comes from Lemma 2.11 and Lemma 2.12. THEOREM 2.14. Let $X$ be a Hausdorff space and let $A, B$ be disjoint closed subsets of $X$. Let $K$ be a subcontinuum of $X$ which is irreducible from $A$ to $B$. Then the sets $K$ - (AUB), $K-A$ and $K-B$ are connected.

PROOF. First we will show that $K-(A \cup B)$ is connected. Suupose K-(AソB) is not connected; then 1et R and S be subsets of $X$ such that $K-(A \cup B)=R \psi S$. Then $R \cup(K \cap A) \cup(K \cap B)$ and $S U(K \cap A) U(K \cap B)$ are closed subsets of $K$. Let $a \varepsilon K \cap A$ and $\mathrm{b} \varepsilon \mathrm{K} \cap \mathrm{B}$; then K irreducible from A to B and Lemma 2.11 imply that $R U(K \cap A) U(K \cap B)$ is the union of two separated sets one containing a and the other containing b. A similar result follows for $S U(K \cap A) U(K \cap B)$. Hence, from Lemma 2.12, there exist sets $M, N, P$ and $Q$ such that $R U(K \cap A) U(K \cap B)=M \Psi N$,
$K \cap A \subseteq M, K \cap B \subseteq N, S \cup(K \cap A) U(K \cap B)=P \Psi Q, K \cap A \subseteq P$ and $K \cap B \subseteq Q$, Thus $K=(M \cup P) \cup(N \cup Q), M \cup P=\overline{M U P}$ and $N \cup Q=\overline{N U Q}$, Let $z \in M$; then $Z \notin N$ since $M \cap N=\phi$. If $z \varepsilon R$ then $z \notin Q$ and if $z \varepsilon K \cap A$ then $z \varepsilon P$. Hence $z \notin N U Q$. Let $p \varepsilon P$; then $p \notin Q$ since $P \cap Q=\phi$. If $p \in S$ then $p \notin N$ and if $p \varepsilon K \cap A$ then $p \in M$. Hence $p \notin N \cup Q$. Thus $(M \cup P) \cap(N \cup Q)=\phi$. This contradicts $K$ being connected. Hence $K-(A \cup B)$ is connected.

Now suppose there exist subsets of $\mathrm{X} C$ and $D$ such that $K-A=C \psi D$. Let $U$ and $V$ be $K$, open sets such that $U \cap V=\varnothing$, $K \cap A \subseteq U$ and $K \cap B \subseteq V$. Without loss of generality let $K-(A \cup B) \subseteq C . C$ and $D$ are open in $K$ since they are open in $K$ - A. Hence $C U U$ and $D \cap V$ are open in $K, U \cap V=\phi$ and $C \cap D=\phi$ imply that $(C U U) \cap(D \cap V)=\phi$. Hence $K=(C U U) \Psi(D \cap V)$; contradicting the connectedness of $K$. Thus $\mathrm{K}-\mathrm{A}$ is connected. One can show that $\mathrm{K}-\mathrm{B}$ is connected using a similar argument. \#

DEFINITION 2.15. Let $X$ be a space, $x \in X$ and $Q_{X}=\{y \varepsilon X \mid$ there do not exist open disjoint sets $U, V$ such that $X=U U V$ with $x \in U$ and $y \in V\}$. Then $Q_{x}$ is called the quasi-component of X determined by x .

REMARK 2.16. Let $X$ be a compact Hausdorff space and $X \in X$. Then, due to Lemma 2.11 , for each $y \varepsilon Q_{x}, x \neq y$, there exists a subcontinuum $K_{y}$ in $X$ which joins $x$ to $y$.

THEOREM 2,17. Let $X$ be a space and $x \in X$. Then $Q_{x}=\cap U \subseteq X \mid U$ is both open and closed and $\left.x \in U\right\}$,

PROOF. Let $z \varepsilon Q_{X}$ and $U \subseteq X$ such that $U$ is both open and closed and such that $x \in U$. $U$ both open and closed implies that $X=(X \rightarrow U) U(U)$, where both $U$ and $X-U$ are open and where $(X=U) \cap(U)=\varnothing, \quad z \varepsilon Q_{X}$ and $X \varepsilon U$ imply that $z \varepsilon U$, Hence, $Q \subset \cap\{U \subseteq X \mid U$ is both open and closed and $x \varepsilon U\}$.

Let $\omega \in \cap \mathbb{I U} \subseteq X \mid U$ is both open and closed and $X \varepsilon U\}$. Suppose $\omega \notin Q_{x}$; then there exist open disjoint sets $V$, $W$ such that $X=V U W, X \varepsilon V$ and $\omega \varepsilon W$. Then $V$ is both open and closed and therefore $\omega \in V$. Hence $V \cap W \neq \phi$. This contradicts $V \cap W=\phi$. Thus $\omega \in Q_{X}$ and therefore $\cap U \subseteq X \mid U$ is both open and closed and $x \in U\} \subseteq Q_{x}$. \#

THEOREM 2.18. Let $X$ be a space and $X \in X$. Let $C_{X}$ be the component of $X$ containing $x$; then $C_{x} \subseteq Q_{X}$.

PROOF. Let $z \in C_{X}$ and suppose $z \notin Q_{X}$. Then there exist open disjoint sets $U, V$ such that $X=U U V, X \in U$ and $z \varepsilon V . C_{X}$ being connected implies that $C_{x} \subseteq U$ or $C_{X} \subseteq V, \quad x \varepsilon U$ and $z \varepsilon V$ contradict $C_{x} \subseteq U$ or $C_{x} \subseteq V$. Hence $z \varepsilon Q_{x}$ and therefore $C_{x} \subseteq Q_{x}$. . EXAMPLE 2.19. Consider the subspace $X$ of $R^{2}$ shown below.


Figure 2 Supspace $X$ of $R^{2}$.

Consider the two vertical line segments farthest to the right in $X$. They are of equal length and shorter than the reamining line segments. Let $A$ be the upper one and $B$ the lower. Choose $\mathrm{X} \varepsilon \mathrm{X}$ as shown.


Figure 3 Clarification
of $A, B$ and $x$.
$C_{x}=A$ but $Q_{X}=A \cup B$. Hence $C_{x} C_{\mp} Q_{x}$. Notice that $X$ is not compact.

THEOREM 2.20. Let $X$ be compact and $T_{2}$. Let $\mathrm{x} \varepsilon \mathrm{X}$; then $Q_{x}=C_{x}$.

PROOF. Due to Theorem 2.18 it is sufficient to show that $Q_{X} \subseteq C_{x}$. Let $q \varepsilon Q_{x}$. Then, due to Lemma 2.11, there exists a subcontinuum $K$ joining $x$ to $q . ~ K U C X i s c o n n e c t e d ~ s i n c e$ $x \in K$ and $x \in C_{X}$. Thus $K \subseteq C_{x}$ and therefore $q \in C_{x}$. Hence $Q_{x} \subseteq C_{x}$. \#

## Noncut Points

THEOREM 2.21. If $X$ is a continuum such that $X$ has more than one point then $X$ has at least two noncut points.

PROOF. Let $X$ be a continuum such that $X$ has more than one point. If every $x \varepsilon X$ is a noncut point then we are done.

So suppose $X$ has a cut point, Let $X \varepsilon X$ be a cut point and let $U_{X}, V_{X}$ be subsets of $X$ such that $X \sim\{x\}=U_{X} \psi V_{X}$. Suppose each $y \in U_{x}$ is a cut point. For each $y \in U_{x}$ let $U_{y}, V_{y}$ be subsets of $X$ such that $x \varepsilon V_{y}$ and such that $X \sim\{y\}=U_{y} \psi V_{y}$. Then for each $y \in U_{x}, U_{y} U\{y\}$ is a continuum such that
$U_{y} \cup\{y\} \subseteq x-\{x\}$. Hence $U_{y} U\{y\} \subseteq U_{x}$ for each $y \varepsilon U_{x}$. Set $\underline{U}=\left\{U_{y} U\{y\} \mid y \in U_{x}\right\}$ and then partially order $\underline{U}$ with set containment. Let $\underline{C}$ be a chain in $\underline{U}$; then $\left.K=\underset{\underline{C}}{\bigcap_{\mathcal{C}}} \mathcal{U}_{y} \mathcal{U}\{ \}\right)$ is a nonempty continuum with $K \subseteq U_{x}$.

Let $k \varepsilon K$; then $U_{k} U\{k\} \subseteq K$. To see this we will consider two cases. First suppose $k \varepsilon U_{y}$ for every $U_{y} U\{y\} \in \mathbb{C}$. Let $y \varepsilon U_{x}$ be such that $U_{y} U\{y\} \in \underline{C}$. If $y \varepsilon U_{k}$ then $V_{k} U\{k\} \subseteq x-\{y\}=$ $U_{y} \psi V_{y} \cdot k \varepsilon U_{y}$ and $x \varepsilon V_{k} \cap V_{y}$ imply that: $\left(V_{k} U\{k\}\right) \cap U_{y} \neq \phi$ and $\left(V_{k} \cup(k)\right) \cap V_{y} \neq \phi$. This contradicts the connectedness of $V_{k} \cup\{k\}$. Hence $y \notin U_{k}$ and therefore $U_{k} U\{k\} \subseteq U_{y}$. Thus $\mathrm{U}_{\mathrm{k}} \cup\{\mathrm{K}\} \subseteq K$ when $k \in \mathrm{U}_{\mathrm{y}}$ for every $\mathrm{U}_{\mathrm{y}} \mathrm{U}\{y\} \varepsilon \underline{C}$. Now suppose there exists a $y_{0} \varepsilon X$ such that $U_{y_{0}} \mathcal{U}\left\{y_{0}\right\} \varepsilon \mathbb{C}$ but $k \notin U_{y_{0}}$. Since $k \varepsilon K=\underset{\underline{C}}{\cap}\left(U_{y} U\{y\}\right)$ we have that $k=y_{0}$ and therefore $U_{k}=U_{y_{0}}$. Let $\omega \varepsilon X$ be such that $\omega \varepsilon U_{X}, \omega \neq k$ and $U_{\omega} U\{\omega\} \varepsilon \underline{C}$. Then $k \varepsilon U_{\mu}$ and therefore $U_{k} U\{k\} \subseteq U_{\omega}$. Hence $U_{k} U\{k\} \subseteq K$ if there exists a $y_{0} \varepsilon X$ such that $U_{y_{0}} \cup\left\{y_{0}\right\} \in \underline{C}$ but $k \notin U_{y_{0}}$.

Thus $U_{k} \cup\{k\}$ is an element of $\underline{U}$ such that $U_{k} \cup\{k\} \subseteq K$. Therefore, by Zorns' lemma, $\underline{U}$ has a minimal element. Let $S$ be the minimal element in $\underline{U}$; then $S$ is a continuum such that
$S \subseteq \cap_{y \in U_{x}}\left(U_{y} U\{y\}\right)$. Let $s \varepsilon S_{\text {, Then, }}$ since $U_{y} U\{y\} U_{x}$ for each
$y \varepsilon U_{x}, s \varepsilon U_{x}$. Thus $X \sim\{s\}=U_{s} \Psi V_{s}$, $s \varepsilon U_{x}$ and $x \varepsilon V_{s}$. Then $U_{s} \cup\{s\}$ connected, $U_{s} \cup\{s\} \subseteq x-\{x\}$ and $s \varepsilon U_{x}$ imply that $U_{S} U\{s\} \subseteq U_{x}$. Let $z \varepsilon U_{S}$; then $z \varepsilon U_{x}$ and therefore $X-\{z\}=$ $U_{z} \psi V_{z}$. Again $U_{z} \subseteq U_{X}$. Now, $s \varepsilon S$ and $s \varepsilon X-\{z\}$ imply that $s \varepsilon U_{z}$. Thus $\left(V_{s} \cup\{s\}\right) \cap U_{z} \neq \phi$ and, since $x \varepsilon V_{z} \cap V_{s}$,
$\left(V_{s} \cup\{s\}\right) \cap V_{z} \neq \emptyset . \quad z \varepsilon U_{S}$ implies that $V_{S} \cup\{s\} \subseteq X-\{z\}=U_{z} \Psi V_{z}$. Thus $V_{s} \cup\{s\} C U_{z}$ or $V_{s} \cup\{s\} \subseteq V_{z}$. This contradicts $\left(V_{S} \cup\{s\}\right) \cap U_{z} \neq \emptyset$ and $\left(V_{S} \cup\{s\}\right) \cap V_{z} \neq \emptyset$. Hence there exists a noncut point in $U_{x}$. Similarly there exists a noncut point in $\mathrm{V}_{\mathrm{X}}$ and therefore X has at least two noncut points. \#

## Vietoris Topology

THEOREM 2.22. Let $(X, T)$ be a topological space and $S(X)=\{F \subseteq X \mid F=\bar{F}$ and $F \neq \emptyset\}$. For each $G \varepsilon T$ set $S(G)=$ $\{F \varepsilon S(X) \mid F \subseteq G\}$ and $I(G)=\{F \varepsilon S(X) \mid F \cap G \neq \phi\}$. Let $\underline{S}_{1}=\{S(G) \mid G \varepsilon T\}, \underline{S}_{2}=\{I(G) \mid G \varepsilon T\}$ and let $E$ be the topology on $S(X)$ with $\underline{S}=\underline{S}_{1} \cup S_{2}$ as a subbase. Let $U_{1}, U_{2}, \ldots, U_{n}$ be open sets in $X$ and $\operatorname{set}\left\langle U_{1}, U_{2}, \ldots, U_{n}\right\rangle=\left\{F \varepsilon S(X) \mid F \subseteq \bigcup_{i=1}^{n} U_{i}\right.$ and $F \cap U_{i} \neq \emptyset$ for all i\}. Then $\underline{B}=\left\{\left\langle U_{1}, U_{2}, \ldots, U_{n}\right\rangle \mid U_{i} \varepsilon T\right.$ for all $i$ and n is a positive integer\} is a base for E .

PROOF, Let $n$ be a positive integer, $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}$ be open sets in $X$ and $F \varepsilon<U_{1}, U_{2}, \ldots, U_{n}>$. Set $V=\left[S\left(\bigcup_{i=1}^{n} U_{i}\right)\right] \cap\left[\bigcap_{i=1}^{n} I\left(U_{i}\right)\right]$. Then $V \varepsilon E$ and $\left.F \varepsilon V \subseteq<U_{1}, U_{2}, \ldots, U_{n}\right\rangle$.

Thus $\left\langle\mathrm{U}_{\mathrm{I}}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}\right\rangle_{\varepsilon} \mathrm{E}$ and therefore $\underline{B} \subseteq \mathrm{E}$.
Let $F \varepsilon S(X)$. If $F \varepsilon S(G)$ for some $G \varepsilon T$ then
$F \varepsilon\langle G\rangle \subseteq S(G)$. If $F \varepsilon I(G)$ for some $G \in T$ then let $V \varepsilon T$ be such that $F \subseteq V$. Then $F \varepsilon<G, V>\subseteq \mathbb{G}(G)$. Hence $\underline{B}$ is a base for $E$. \#

The topology $E$ on $S(X)$, given in Theorem 2.22 , is sometimes called the Vietoris Topology on $S(X)$. The Vietoris Topology will enable us to prove that a net of closed nonempty sets in a compact $T_{2}$ space has a convergent subnet. This result will be used thoughout the rest of the paper.

THEOREM 2.23. Let $(X, T)$ be a $T_{1}$ space. Then $S(X)$ is $T_{1}$.
PROOF. Choose two distinct points $F_{1}, F_{2} \varepsilon S(X)$. Without loss of generality let $x_{2} \in F_{2}-F_{1}$. For each $x_{\varepsilon} F_{1}$ let $U_{x}$ be an open set in $X$ such that $x \varepsilon U_{x}$ but $X_{2} \& U_{X}$. Set $U_{1}=\bigcup_{x \in E_{1}} U_{x}$; then $\left.F_{1} \varepsilon<U_{1}\right\rangle$ but $F_{2} \notin\left\langle U_{1}\right\rangle$. If $F_{1} \nsubseteq F_{2}$, a similar argument shows that there exists a $U_{2} \varepsilon T$ such that $F_{2} \varepsilon<U_{2}>$ but $F_{1} \notin\left\langle U_{2}\right\rangle$. If $F_{1} \subseteq F_{2}$ then $F_{2} \varepsilon\left\langle U_{1}, X-F_{1}\right\rangle$, but $F_{1} \notin\left\langle U_{1}, X-F_{1}\right\rangle$. Hence $S(X)$ is $T_{1}$. \#

THEOREM 2.24. Let ( $X, T$ ) be a compact space; then ( $S(X), E$ ) is also a compact space.

PROOF. Let $C$ be a cover of $S(X)$ by subbase elements. Set $S=\{G \varepsilon T \mid S(G) \varepsilon \underline{C}\}$ and $I=\{G \varepsilon T \mid I(G) \varepsilon \underline{C}\}$. If $I=\phi$ then $X \in S\left(G_{0}\right)$ for some $G_{0} \varepsilon S$. Then $S(X) \subseteq S\left(G_{0}\right)$ and therefore $S(X)$ is compact.

If $I \neq \phi$ and $X \subseteq G_{G} U_{G} G$ then $I$ is an open cover for $X$. Thus there exist sets $G_{1}, G_{2}, \ldots, G_{n} \varepsilon I$ such that $X \subseteq \bigcup_{i=1}^{n} G_{i}$,
$X \subseteq \bigcup_{i=1}^{n} G_{i}$ implies that $S(X) \subseteq \bigcup_{i=1}^{n} I\left(G_{i}\right)$ and therefore $S(X)$ is compact.

Finally suppose $I \neq \phi$ and $X \$ \underset{G \varepsilon I}{\cup} G$. Then $X-\underset{G \varepsilon I}{\cup G \varepsilon}$ $S(X)$. Therefore there exists a $G_{0} \varepsilon S$ such that $X-\underset{G \in I}{U} G \in S\left(G_{0}\right)$. Hence $X=\left[\mathrm{G}_{\mathrm{I}} \mathrm{G}\right] \cup \mathrm{G}_{0}, \quad X$ compact implies that there exist sets $G_{1}, G_{2}, \ldots, G_{n} \varepsilon I$ such that $X=\left[\begin{array}{c}U_{i=1} G_{i}\end{array}\right] \cup G_{0}$. Let $F \varepsilon S(X)$. $X=\left[\begin{array}{c}n \\ i=1\end{array}\right] \cup G_{0}$ implies that if $F \subseteq G_{0}$ then $F \varepsilon I\left(G_{i}\right)$ for some $i, i=1,2,3, \ldots, n$. Hence $S(X) \subseteq\left[\bigcup_{i=1}^{n} I\left(G_{i}\right)\right] \cup S\left(G_{0}\right)$ and therefore $S(X)$ is compact. \#

THEOREM 2.25. Let $(X, T)$ be a $T_{1}$ space and let ( $\left.S(X), E\right)$ be a compact space. Then ( $\mathrm{X}, \mathrm{T}$ ) is a compact space.

PROOF. Let $\underline{C}$ be an open cover for $X$. Say $\underline{C}=\left\{C_{\alpha} \mid \alpha, A\right\}$ for some index set A. Set $\underline{C}_{E}=\left\{I\left(C_{\alpha}\right) \mid C_{\alpha} \varepsilon \underline{C}\right\}$; then $\underline{C}_{E}$ is a cover of $S(X)$ by subbase elements. Hence there exist $I\left(C_{\alpha_{1}}\right), I\left(C_{\alpha_{2}}\right), \ldots, I\left(C_{\alpha_{n}}\right)$, members of $C_{E}$, such that $S(X) \subseteq \bigcup_{i=1}^{n} I\left(C_{\alpha_{i}}\right)$. Choose $x \varepsilon X .\{x\}$ is a closed subset of $X$ since $X$ is $T_{1}$. Hence $\{x\} \in I\left(C_{\alpha_{i}}\right)$ for some $i_{\dot{\theta}}, I \leq i_{0} \leq n$. Thus $x \in C_{\alpha_{i_{0}}}$ and therefore $X \subseteq_{i=1}^{i} \bigcup_{i=1}^{n} C_{\alpha_{i}}$. Thus $\underline{C}$ has a finite subcover and therefore $X$ is compact. \#

THEOREM 2.26. Let $(X, T)$ be a $T_{1}$ space. Then ( $S(X), E$ ) is a connected space if and only if $(X, T)$ is a connected space. PROOF. Let $S(X)$ be connected and suppose $X=R \Psi S$, for some sets $R$ and $S$. Let $A=\{F \varepsilon S(X) \mid F \subseteq R\}, B=\{F \in S(X) \mid F \subseteq S\}$ and $C=\{F \varepsilon S(X) \mid F \cap R \neq \phi \quad$ and $F \cap S \neq \emptyset\}, \quad R \varepsilon A, S \varepsilon B$ and $X \varepsilon C$. Hence
$A \neq \phi, B \neq \phi$ and $C \neq \phi$.
Let $F_{\varepsilon} \bar{A}$ and choose a net $\left\{F_{\alpha}\right\}_{\alpha \varepsilon D}$ in $A$ which converges, in $S(X)$, to $F$. For all $\alpha \varepsilon D, F_{\alpha} \phi\langle S\rangle$ and $\left.F_{\alpha} \neq R, S\right\rangle$. Hence $F \varepsilon A$ and therefore $A$ is closed in $S(X)$. Similarly $B$ and $C$ are closed in $S(X)$. Hence $S(X)=A \Psi B \Psi C$, which contradicts $S(X)$ connected. Thus $X$ is connected.

Next let $(X, T)$ be a connected space. For each positive integer $n$ let ${\underset{\mathrm{F}}{\mathrm{n}}}^{=}=\{\mathrm{F} \varepsilon S(\mathrm{X}) \mid \mathrm{F}$ has less than or equal to n elements $\}$ and define a function $g_{n}$ from $\prod_{i=1}^{n} X_{i}$ into $F_{n}$, where $X_{i}=X$ for all i, by $g_{n}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Let $n_{0}$ be a positive integer and $\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right) \varepsilon \prod_{i=1}^{n_{0}} x_{i}$, where $X_{i}=X$ for all $i$. Choose open sets $U_{1}, U_{2}, \ldots, U_{k}$ in $X$ such that $\left.g_{n_{0}}\left(\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right)\right) \varepsilon<U_{1}, U_{2}, \ldots, U_{k}\right\rangle$. For each each $j, j=1,2,3, \ldots, n_{0}, \operatorname{let} V_{j}=\left\{U_{i} \mid x_{j} \varepsilon U_{i}, i=1,2,3, \ldots, k\right\}$. Then for each $j, j=1, \ldots, n_{0}$, set $W_{j}=\cap V_{j}{ }_{n_{0}}$ Now, $\left(x_{1}, x_{2}, \ldots, x_{n_{0}}\right) \varepsilon \prod_{j=1}^{n_{0}} W_{j}$ which is open in $\prod_{i=1}^{n_{0}} X_{i}$ and $\left.g_{n_{0}}\left(\prod_{j=1}^{n_{0}} W_{j}\right) \subseteq<U_{1}, U_{2}, \ldots, U_{k}\right\rangle$. Hence $g_{n_{0}}$ is continuous and therefore $\mathrm{F}_{\mathrm{n}_{0}}$ is connected. Thus for each positive integer n , $\mathrm{F}_{\mathrm{n}}$ is connected.

Let $E=\{F \in S(X) \mid F \varepsilon \underline{F}$ n for some positive integer $n\}$; then $E$ is connected in $S(X)$. Let $U_{1}, U_{2}, \ldots, U_{m}$ be open subsets of $X$ and for each $i, i=1,2, \ldots, m, \operatorname{let} x_{i} \varepsilon U_{i}$. Then $F=\left\{x_{1}, x_{2}, \ldots\right.$, $\left.x_{m}\right\} \in E$ and $F \varepsilon<U_{1}, U_{2}, \ldots, U_{m}>$. Hence $E$ is a dense connected subset of $S(X)$ and therefore $S(X)$ is connected. \#

Let $(X, T)$ be a topological space and $\left\{A_{\alpha}\right\}_{\alpha \in D}$ a net in $S(X)$. $A_{\alpha} \stackrel{T}{\rightarrow}$ A means that the net of sets converges to $A$ with respect to the topology $T$ and $A_{\alpha} \underset{\rightarrow}{F}$ A means that the net converges to $A$ in $S(X)$.

THEOREM 2.27. Let $(X, T)$ be a compact $T_{2}$ space and $\left\{A_{\alpha}\right\}_{\alpha \in D}$ a net in $S(X)$. If there exists an $A_{\varepsilon} S(X)$ such that $A \xrightarrow[\alpha]{\underset{~ E}{A}} A$, then $A_{\alpha} \xrightarrow{T} A$.

PROOF. Let $\left\{A_{\alpha}\right\}_{\alpha \varepsilon D}$ be a net in $S(X)$ and $A \varepsilon S(X)$ such that $A_{\alpha} \xrightarrow{E} A$. Choose $x_{0} \varepsilon A$ and let $U$ be an open subset of $X$ such that $x_{0} \in U$. For each $x \in A$ let $V_{x}$ be a T-open neighborhood of $x$; then $V=\left\{V_{x} \mid x \varepsilon A\right\}$ is an open cover for $A$. Hence there exist sets $V_{1}, V_{2}, \ldots, V_{n}$ such that $V_{i} \varepsilon \underline{V}$ for $i=1,2, \ldots, n$ and such that $A \subseteq \bigcup_{i=1}^{U} V_{i}$. Let $W=\left\langle U, V_{1}, V_{2}, \ldots, V_{n}\right\rangle$; then $A \varepsilon W$ and therefore there exists an $\alpha_{0} \in D$ such that if $\alpha \geq \alpha_{0}, \alpha \varepsilon D$, then $A_{\alpha} \varepsilon W$. Hence, if $\alpha \in D$ and $\alpha \geq \alpha_{0}$ then $A_{\alpha} \cap U \neq \varnothing$. Thus $A \subseteq 1 i m i n f A_{\alpha} \subseteq$ $\lim \sup A_{\alpha}$ in $X$.

Let $z \varepsilon X$ be such that $z \varepsilon \lim \sup A_{\alpha}$. Suppose $z \notin A$; then there exist disjoint $T$-open sets $U$ and $V$ such that $\{z\} \subseteq U$ and $A \subseteq V . \quad A_{\alpha} \xrightarrow{E} A$ and $\left.A \varepsilon<V\right\rangle$ imply that there exists an $\alpha_{1} \varepsilon D$ such that if $\alpha \in D$ and $\alpha \geq \alpha_{1}$ then $A_{\alpha} \varepsilon\langle V\rangle$. Thus for $\alpha \geq \alpha_{1}, A_{\alpha} \subseteq V$. $z \varepsilon \lim \sup A_{\alpha}$ and $z \in U$ imply that there exists an $\alpha_{2} \varepsilon D, \alpha_{2} \geq \alpha_{1}$, such that $A_{\alpha_{2}} \cap U \neq \phi$. This contradicts $U \cap V=\phi$. Hence $z \varepsilon A$ and therefore $A \subseteq 1 i m \inf A_{\alpha} \subseteq \lim \sup A_{\alpha} \subseteq A$. Thus $A_{\alpha} \xrightarrow{T} A$. \#

REMARK 2.28. Let $X$ be a compact $T_{2}$ space and $\left\{A_{\alpha}\right\}_{\alpha \in D} a$ net in $X$ such that $A_{\alpha} \neq \phi$ for all $\alpha \varepsilon D$. Then Theorem 2.24 and

Theorem 2.27 imply that $\left\{\bar{A}_{\alpha}\right\}_{\alpha \varepsilon D}$ has a convergent subnet. If $X$ is a compact metric space and $\left\{A_{n}\right\}_{n=1}^{\infty}$ a sequence of closed nonempty sets in $X$ then, similarly, $\left\{A_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence.

THEOREM 2.29. Let $(X, T)$ be a compact $T_{2}$ space and $C(X)=\{F \varepsilon S(X) \mid F$ is a continuum $\}$. Then $C(X)$ is closed in $S(X)$.

PROOF. Let $x \in X$. Then $\{x\} \varepsilon C(X)$ and therefore $C(X) \neq \phi$. Let $F \varepsilon \bar{C} \overline{(X)}$ and $\left\{F_{\alpha}\right\}_{\alpha \varepsilon D}$ a net in $C(X)$ such that $F_{\alpha} \underset{\rightarrow}{E}$. Then $F_{\alpha} \xrightarrow{T} F$ and therefore $F$ is connected. Hence $F$ is a continuum and therefore $F \in C(X)$. Thus $C(X)$ is closed in $S(X)$. \#

EXAMPLE 2.30. Let $A=\left\{(x, y) \varepsilon R^{2} \mid x^{2}+y^{2}=1\right\}$, $D=$ $\left\{(x, y) \in R^{2} \mid x^{2}+y^{2} \leq 1\right\}$ and $Y=\left\{(x, y) \in R^{2} \mid x^{2}+y^{2} \leq 1+2 \pi\right\}$. Set $X=Y^{0}-D^{0}$. Recal1 that $S(A)=\{F \subseteq A \mid F=\bar{F}$ and $F \neq \phi\}$ and $C(A)=$ $\left\{F \varepsilon S(A) \mid F\right.$ is a continuum \}. Let $X^{*}$ be the one point compactification of $X$. Thus $X *=X U\{p\}$. Let $\left(x_{1}, y_{1}\right) \& A$ and choose $\left(x_{2}, y_{2}\right) \& A$ such that $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$; then 1 et $K\left(\left(x_{1}, y_{1}\right)\right.$, $\left(x_{2}, y_{2}\right)$ ) be the arc joining $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$, moving in the clockwise direction, in $A$. Then $C(A)=\left\{\left(x_{1}, y_{1}\right) \mid\left(x_{1}, y_{1}\right) \varepsilon A\right\} \cup$ $\{A\} \cup K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mid\left(x_{1}, y_{1}\right) \varepsilon A,\left(x_{2}, y_{2}\right) \varepsilon A$ and $\left(x_{1}, y_{1}\right) \neq$ $\left.\left(x_{1}, y_{1}\right)\right\}$.

Let $g$ be a function from $C(A)$ into $X *$ such that $g\left(\left(x_{1}, y_{1}\right)\right)=\left(x_{1}, y_{1}\right), g(A)=p$ and such that $g\left(K\left(\left(x_{1}, y_{1}\right)\right.\right.$, $\left.\left(x_{2}, y_{2}\right)\right)$ is the point $\left(x_{0}, y_{0}\right) \& X$ such that $\left(x_{0}, y_{0}\right)$ is on the line $y=\left(y_{1} x_{1}\right) x$ and such that $d\left(\left(x_{1}, y_{1}\right),\left(x_{0}, y_{0}\right)\right)$ equals the length of $K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$. Then $g$ is a one to one and continuous map of $C(A)$ onto $X^{*}$.

## CHAPTER III

## LOCALLY CONNECTED CONTINUA

DEFINITION 3.1. Let $(X, T)$ be a topological space and $x \in X . \quad X$ is locally connected at $X$ if $X$ has a neighborhood base at $x$ of open connected sets. $X$ is said to be locally connected if $X$ is locally connected at each $x \in X$.

THEOREM 3.2. Let (X,T) be a topological space. Then $X$ is locally connected if and only if each component of each open set is open.

PROOF. Suppose $X$ is locally connected. Let $Y$ be an open subset of $X, C$ a component of $Y$ and $y \varepsilon C$. Since $X$ is locally connected there exists an open connected set $B$ such that $y \varepsilon B \subseteq Y$. Thus $B \cup C$ is connected and therefore $B \cup C \subseteq C$. Hence $B \subseteq C$ and therefore $C$ is open.

Next, suppose each component of each open set is open. Let $x \varepsilon X$ and for each open set $U$ containing $x$ let $C_{U_{X}}$ be the component of $U$ that contains $x$. Let ${\underset{-}{B}}_{x}=\left\{C_{U_{X}} \mid U\right.$ is open and $x \in U\}$; then ${\underset{-}{B}}_{x}$ is a neighborhood base at $x$ of open connected sets. Hence $X$ is locally connected at $x$ and therefore $X$ is locally connected. \#

REMARK 3.3. Let $X$ be a locally connected compact space. Then $\underline{C}=\{C \mid C$ is a component of $X\}$ is an open cover for $X$ of pairwise disjoint sets. Since $X$ is compact $\underline{C}$ has only
finitely many elements, Thus a compact locally connected space has only a finite number of components.

THEOREM 3.4. Let $(X, T)$ be a topological space, $Y$ a subset of $X$ and $f: X \rightarrow Y$ a function from $X$ onto $Y$. The set $T_{f}=$ $\left\{G \subseteq Y \mid f^{\prime 1}(G) \varepsilon T\right\}$ is the quotient topology on $Y$. If $(X, T)$ is locally connected then $\left(Y, T_{f}\right)$ is locally connected.

PROOF. Assume ( $X, T$ ) is locally connected. Let $G \in T_{f}$ and consider some component $C_{G}$ of $G$. For each $z \varepsilon f^{-1}\left(C_{G}\right)$ let $\mathrm{C}_{\mathrm{f}^{-1}(G)} \mathrm{Z}$ be the component of $\mathrm{f}^{-1}(G)$ which contains $z$. Since $X$ is locally connected and $f$ is continuous $C_{f^{-1}(G)}{ }_{z} \in T$ for each $z \varepsilon f^{-1}\left(C_{G}\right)$. Hence $\underset{z \varepsilon f^{-1}\left(C_{G}\right)^{-1}(G)}{Z^{\varepsilon}}$ T. If we can show that $f^{-1}\left(C_{G}\right)=U C_{f^{-1}}(G) z$ then, due to Theorem 3.2, we will be done. $z \varepsilon f^{-1}\left(C_{G}\right)$
Clearly $f^{-1}\left(C_{G}\right) \subseteq \cup C_{f^{-1}}(G)_{z} \quad$. Let $\omega \in f^{-1}\left(C_{G}\right)$; then $f(\omega) \varepsilon C_{G}$ $z \varepsilon f^{-1}\left(C_{G}\right)$
and $f(\omega) \varepsilon f\left(C_{f} f_{(G)}\right)$. Since $f$ is continuous and $C_{G} \cap f\left(C_{f^{-1}(G)}\right) \neq \emptyset$ we have that $f\left(C_{f^{-1}(G)}^{\omega}\right) \subseteq C_{G}$. Hence ${ }^{\omega \varepsilon C_{f^{-1}}(G)} \underset{\omega}{ } \subseteq f^{-1}\left(f\left(C_{f}^{f}{ }_{(G)}{ }_{\omega}\right)\right) \subseteq f^{-1}\left(C_{G}\right)$. Therefore $f^{-1}\left(C_{G}\right) \supseteq$ $U C_{f}{ }^{-1}(G)_{Z}$ and so ( $Y, T_{f}$ ) is locally connected. \# $z \varepsilon f^{-1}\left(C_{G}\right)$

DEFINITION 3.5. A space $X$ is connected im kleinen at a point $X$ if each open neighborhood $U$ of $x$ contains an open neighborhood $V$ of $x$ such that any pair of points of $V$ lie in some connected subset of $U$.

Clearly if $X$ is locally connected at $X$ then $X$ is connected im kleinen at $x$. Example 3.6 shows that the converse is not true.

EXAMPLE 3.6. The following subspace of $\mathrm{R}^{2}$ is connected im kleinen at $y$ but not locally connected at $y$.


Figure 4 Subspace of $R^{2}$
THEOREM 3.7, Let $(X, T)$ be a space such that $X$ is connected im kleinen at x for all $\mathrm{x}_{\varepsilon} \mathrm{X}$. Then X is locally connected.

PROOF. Let $G$ be an open subset of $X$ and $C$ a component of G. From Theorem 3.2 it is sufficient to show that $C$ is open. For each $x \in C$ let $V_{x}$ be an open set such that $x \varepsilon V_{x} \subseteq G$ and such that if $u, V \varepsilon V_{X}$ then there exists a connected set $W$ such that $u, v \varepsilon W \subseteq G$. Fix $x \in C$ and for each $V_{\varepsilon} V_{x}$ let $W_{V}$ be a connected set such that $x, v \varepsilon W_{y} \subseteq G$, Then $\bigcup_{V \varepsilon V_{X}}^{U} W_{V}$ is connected and contains $x$. Hence $\underset{V \varepsilon V_{x}}{U} W_{V} \subseteq C$, Since $V_{x} \subseteq \underset{V \in V_{x}}{U} W_{V}$, we have that $V_{x} \subseteq C$. Thus for each $x \varepsilon C$,
$V_{x} \subseteq C$. Hence $C \subseteq \bigcup_{X \in C} V_{x} \subseteq C$. Thus $C$ is open and therefore $X$ is locally connected. \#

THEOREM 3.8. Let $X$ be a metric continuum. Then $X$ is locally connected if and only if for each $\varepsilon>0, X$ is the union of finitely many connected sets each of diameter less than $\varepsilon$.

PROOF. Let $X$ be locally connected and $\varepsilon>0$. For each $x \varepsilon X$ let $V_{X}$ be an open connected set containing $x$ with diam meter less than $\varepsilon$. Then $V=\left\{V_{X} \mid x \varepsilon X\right\}$ is an open cover for $X$ and hence has a finite subcover. Let $\left\{V_{x_{1}}, \ldots, V_{x_{n}}\right\}$ be the finite subcover from $V$; then $X=\underset{i=1}{n} V_{x_{i}}$. Hence $X$ is the union of finitely many connected sets each of diameter less than $\varepsilon$.

Next, let $X$ be such that for each $\varepsilon>0 X$ is the union of finitely many connected sets each of diameter less than $\varepsilon$. Suppose $X$ is not locally connected. Then, from Theorem 3.7, there exists a $p \varepsilon X$ such that $X$ is not connected im kleinen at p. Choose a neighborhood $U$ of $p$ such that if $V$ is an open set with $p \varepsilon V \subseteq U$ then there exists a $z \varepsilon V$ such that $p$ and $z$ do not lie together in any connected subset of $U$. Choose $\varepsilon>0$ such that $S(p, \varepsilon) \subseteq U$ and then 1 et $C_{1}, C_{2}, \ldots, C_{n}$ be connected sets of diameter less than $\varepsilon / 4$ such that $X=\bigcup_{i=1}^{n} C_{i}$. Without loss of generality suppose $p \varepsilon C_{j_{0}}$, Let $\omega \in C_{j_{0}}$. Then $d(p, \omega) \& \varepsilon / 4$ and therefore wes $(p, \varepsilon)$. Hence $C_{j_{0}} \subseteq S(p, \varepsilon)$. Choose a positive in teger $n_{1}$ such that $S\left(p, 1 / n_{1}\right) \subseteq S(p, \varepsilon)$. Let $x_{4} \in S\left(p, 1 / n_{1}\right)$ be such that $x_{1}$ does not lie together with $p$ in any connected subset of
U. Then $x_{1} \not \& C_{j 0}$. For each positive integer $n, n \geq 2$, let $x_{n} \varepsilon S\left(p, 1 / n_{1}+n-1\right)$ be such that $x_{n}$ does not lie together with p in any connected subset of U . Hence $\mathrm{x}_{\mathrm{n}} \notin \mathrm{C}_{j_{0}}$ for all $\mathrm{n} \geq 1$. For some $k \neq j_{0}, 1 \leq k \leq n, C_{k}$ contains infinitely many of the $x_{n}$ 's. This and the fact that $x_{n} \rightarrow p$ imply that $p \varepsilon \bar{C}_{k}$. Hence $\bar{C}_{k} \nsubseteq U$. Thus let $q \varepsilon \bar{C}_{k}$ be such that $q \notin S(p, \varepsilon)$. Then $d(p, q) \geq \varepsilon$ and therefore diam $\overline{\mathrm{C}}_{\mathrm{k}} \geq \varepsilon$. This contradicts diam $\mathrm{C}_{\mathrm{k}}<\varepsilon / 4$. Hence X is locally connected. \#

For Theorem 3.14 we need to know that if $X$ is a continuum and $U$ is a proper open subset of $X$ then every component of $\bar{U}$ intersects the boundary of $U$. Since every component of $\bar{U}$ is closed it is sufficient to show that the closure of every component of $U$ intersects the boundary of $U$. Lemmas 3.9 and 3.10 show this.

LEMMA 3.9. Let $C$ be a component of a compact Hausdorff space $X$ and $U$ an open set containing $C$. Then there exists an open set $V$ such that $C \subseteq V \subseteq U$ and $b(V)=\varnothing$.

PROOF. Let $x \in C$; then the component of $X$ containing $x$ is C. Since $X$ is compact and Hausdorff $C=Q_{x}$, Recall that $Q_{x}$ is the quasicomponent of $x$. Thus $C=\cap\{V \mid V$ is open, $V$ is closed and $x \in V$. Hence, from Lemma 2.3, there exists a set $V_{0}$ such that $C \subseteq V_{0}, x \varepsilon V_{0}, V_{0} \subseteq U, V_{0}$ is open and $V_{0}$ is closed. Since $V_{0}$ is both open and closed $b\left(V_{0}\right)=\phi$. Hence $V_{0}$ is an open set containing $C$ such that $b\left(V_{0}\right)=\phi . \#$

LEMMA 3.10. Let $U$ be a nonempty proper open subset of a continuum $X$ and $C$ a component of $U$. Then $\bar{C} \cap b(U) \neq \phi$.

PROOF. Suppose $\bar{C} \cap b(U)=\phi$; then $C=\bar{C} . \quad \bar{C} \cap b(U)=\phi$ implies that $C$ is a component of $\bar{U}$. To see this suppose that $C$ is not a component of $\bar{U}$. Then the component of $\bar{U}$ containing $C$ is a continuum which intersects $b(U)$. From the proof of Theorem 2.9 we have that there exists a continuum $K$ such that $K \subseteq \bar{U}$ and $K$ is irreducible from $C$ to $b(U)$. Thus, from Theorem 2.14, $K-b(U)$ is connected and therefore $K-b(U) \subseteq C$. Hence $K \subseteq C \psi b(U)$. This contradicts $K$ being connected. Hence C is a component of $\overline{\mathrm{U}}$ if $\overline{\mathrm{C}} \cap \mathrm{b}(\mathrm{U})=\phi$.

Since $C$ is a component of $\bar{U}$ there exists a $\bar{U}$-open set $V$ such that $C \subseteq V \subseteq U$ with $b^{\bar{U}}(V)=\phi$. Hence $V$ is closed in $X$. $V$ open in $\bar{U}$ implies that there exists a set $W$ such that $W$ is open in $X$ and $V=W \cap \bar{U}$. Thus $V^{0}=W^{0} \cap(\bar{U})^{0}=W \cap U . \quad V \subseteq U$ and $V=W \cap \bar{U}$ imply that $V=W \cap U$. Hence $V=W \cap U$ and therefore $V$ is both open and closed. This contradicts $X$ being connected. Hence $\overline{\mathrm{C}} \cap \mathrm{b}(\mathrm{U}) \neq \phi . \#$

DEFINITION 3.11. A subcontinuum $K$ of a continuum $X$ is a continuum of convergence if there exists a sequence $\left\{K_{n}\right\}_{n=1}^{\infty}$ of pairwise disjoint continua such that the limit of $\left\{K_{n}\right\}_{n=1}^{\infty}$ is $K$ and $K \cap K_{n}=\phi$ for all $n$.

THEOREM 3.12. Let $X$ be a continuum. Then $X$ is not the union of a countable ( $>1$ ) family of pairwise disjoint, nonempty closed sets.

PROOF, $X$ is not the union of a finite ( $>1$ ) family of pairwise disjoint nonempty closed sets because $X$ is connected. Suppose $X={ }_{n}=1 \quad F_{n}$ where each $F_{n}$ is closed and nonempty and where $F_{n} \cap F_{m}=\emptyset$ if $n \neq m$. Let $U_{1}$ be an open subset of $X$ such that $F_{1} \subseteq U_{1}$ and $\bar{U}_{1} \cap F_{2}=\phi$. Let $U_{2}$ be an open subset of $X$ such that $F_{2} \subseteq U_{2}, \bar{U}_{2} \cap F_{1}=\phi$ and $\bar{U}_{2} \cap \bar{U}_{1} \neq \phi$ (For example, take $\left.U_{2}=\left(\bar{U}_{1}\right)^{C}\right)$. Assume that $U_{n}$ has been constructed such that $U_{n}$ is an open subset of $X, F_{n} \subseteq U_{n}, \bar{U}_{n} \cap\left(U_{j} F_{j}\right)=\phi$ and $\bigcap_{j=1}^{n} \bar{U}_{j} \neq \phi$. Let $W_{n+1}$ be an open subset of $X$ such that $F_{n+1} \subseteq W_{n+1}$ and $W_{n+1} \cap\left(\bigcup_{j=1} F_{j}\right)=\phi$. Let $z \varepsilon \cap_{j=1} \bar{U}_{j}$ and $\operatorname{let}_{n} V_{n+1}$ be an open subset of $X$ such that $z \in V_{n+1}$ and $\bar{V}_{n+1} \cap\left(\underset{j=1}{\mathbf{U}_{n} F_{n}}\right)=\phi$. Now let $U_{n+1}=W_{n+1} \cup V_{n+1}$; then. $U_{n+1} \supseteq F_{n+1}, \bar{U}_{n+1} \cap\left(\bigcup_{j=1} \quad F_{j}\right)=\phi$ and $\cap_{j=1}^{n+1} \bar{U}_{j} \neq \phi . \quad$ Let $E=\left\{\bar{U}_{n} \mid n=1,2,3, \ldots\right\}$. Since $X$ is compact and any finite subset of $E$ has a nonempty intersection we have that $\bigcap_{n=1}^{\infty} \bar{U}_{n} \neq \phi$. Let $q \varepsilon \bigcap_{n=1}^{\infty} \bar{U}_{n}$; then, since $X=\bigcup_{n=1}^{\infty} F_{n}$, there exists a positive integer $n_{1}$ such that $q \in F_{n_{1}} \cdot{ }_{\infty}$ This contradicts $q \varepsilon \bar{U}_{n_{1}+1}$ since $\bar{U}_{n_{1}+1} \cap F_{n_{1}}=\emptyset$. Hence $X \neq \underset{n=1}{\cup} F_{n}$. $\#$

REMARK 3.13. Let $X$ be a continuum and $K$ a subcontinuum of $X$. If $K$ is a continum of convergence then there is a sequence $\left\{K_{n}\right\}_{n=1}^{\infty}$ of pairwise disjoint continua such that $K_{n} \rightarrow K$ and $K \cap K_{n}=\emptyset$ for all n . Theorem 3.12 implies that $X \neq\left(\bigcup_{n=1}^{\infty} K_{n}\right) \cup K$.

THEOREM 3.14, Let $X$ be a metric continuum such that $X$ is not locally connected. Then there exists a $p \varepsilon X$ such that $p$ is in some nondegenerate continuum of convergence.

PROOF. $X$ is a metric continuum that is not locally connected. Hence, by Theorem 3.7, there exists a $p \varepsilon X$ such that $X$ is not connected im kleinen at $p$. Let $U$ be an open set such that $p \varepsilon U$ and such that if $V$ is an open subset of $U$ containing $p$ then there exists a $y \varepsilon V$ such that $y$ does not lie together with $p$ in any connected subset of $U$. Let $V_{0}$ be an open subset of $U$ such that $p \varepsilon V_{0}$ and $\bar{V}_{0} \cap b(U)=\varnothing$. Choose a positive integer $N_{1}$ such that $S\left(p, 1 / N_{1}\right) \subseteq V_{0}$ and then choose $y_{1} \varepsilon S\left(p, 1 / N_{1}\right)$ such that the component of $\bar{V}_{0}$ containing $y_{1} C_{y_{1}}$ is such that $C_{y_{1}} \cap\{p\}=\phi$. Now let $W_{1}, V_{1}$ be open sets such that $p \varepsilon W_{1}$, $C_{y_{1}} \subseteq V_{I}$ and such that $W_{1} \cap V_{1}=\varnothing$. Choose a positive integer $N$ such that $S(p, 1 / N) \subseteq V_{0} \cap W_{1}$ and then let $N_{2}=\max \left\{N, N_{1}+1\right\}$. Let $y_{2}$ be such that $y_{2} \varepsilon S\left(p, 1 / N_{2}\right)$ and such that the component of $\bar{V}_{0}$ containing $y_{2} C_{y_{2}}$ is such that $C_{y_{2}} \cap\{p\}=\phi . y_{2} \varepsilon W_{1}$, $C_{y_{1}} \subseteq V_{1}$ and $W_{1} \cap V_{1}=\phi$ imply that $C_{y_{1}} \cap C_{y_{2}}=\phi$. Assume $y_{n_{-1}}$ has been chosen such that $y_{n-1} \varepsilon S\left(p, 1 / N_{n-1}\right)$, the component of $\bar{V}_{0}$ containing $y_{n-1} C_{y_{n-1}}$ does not contain $p$ and $C_{y_{n-1}} \cap\left(\underset{m=1}{U} C_{y_{m}}\right)=\phi$. Then 1et $W_{n-1}, V_{n-1}$ be open disjoint sets such that $p_{\varepsilon} W_{n-1}$ and $\bigcup_{i=1} C_{y_{i}} \subseteq V_{n_{-1}}$. Choose a positive integer $M$ such that $S(p, 1 / M) \subseteq V_{0} \cap W_{n-1}$ and $\operatorname{let} N_{n}=\max \left\{M, N_{n \cdots 1} \neq 1\right\}$.

Let $y_{n}$ be such that $y_{n} \varepsilon S\left(p, 1 / N_{n}\right)$ and such that the component of $\bar{V}_{0}$ containing $y_{n-1} \quad C_{y_{n}}$ is such that $C_{y_{n}} \cap\{p\}=\phi$. $y_{n} \varepsilon W_{n-1}, \bigcup_{i=1}^{U} C_{y_{i}} \subseteq V_{n-1}$ and $W_{n-1} \cap V_{n-1}=\phi$ imply that $C_{y_{n}} \cap\left(\bigcup_{m=1}^{n-1} C_{y_{m}}\right)=\phi$. Hence we have a sequence $\left\{C_{y_{n}}\right\}_{n=1}^{\infty}$ with each $C_{y_{n}}$ a continuum. $C_{y_{n}} \cap b\left(V_{0}\right) \neq \emptyset$ for all $n$ is a consequence of Lemma 3.10. Recalling Remark 2.28 we have that $\left\{C_{y_{n}}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{C_{y_{n_{k}}}\right\}_{k=1}^{\infty}$. Let $A \subseteq X$ be such that $C_{y_{n_{k}}} \rightarrow A$. Then $A$ is a continuum. $p \in A$ since $y_{n_{k}}+p$ and $A \subseteq U$ since $C_{y_{n_{k}}} \subseteq \bar{V}_{0}$ for all $n_{k}$. Hence for each $n_{k} \quad C_{n_{k}} \cap A=\emptyset . \quad A$ is a nondegenerate continuum since $C_{n_{k}} \cap b\left(V_{0}\right)$ $\neq \phi$ for each $n_{k}$. Hence $p$ is in a nondegenerate continuum of convergence. \#

DEFINITION 3.15. A metric continuum $X$ is semi-locally connected at a point $X \in X$ if for each open set $U$ containing $x$, there is an open set $V$ such that $x \in V \subseteq U$ and $X-V$ has only a finite number of components. $X$ is said to be semi-locally if $X$ is semi"locally connected at each $\mathrm{x} \varepsilon \mathrm{X}$.

DEFINITION 3.16. A metric continum $X$ is regular at $x \in X$ if for each open set $U$ containing $x$ there is an open set $V$ such that $x \in V \subseteq U$ and $b(V)$ is finite. $X$ is said to be regular if $X$ is regular at each $x \varepsilon X$.

REMARK 3.17. Recall the continuum $X$ given in Example 2.2. $X$ is both semi-locally connected and regular.

THEOREM 3.18. Let $X$ be a metric continuum and $p \varepsilon X$ such that $X$ is regular at $p$. Then $X$ is locally connected at $p$ and semi-locally connected at $p$.

PROOF. First suppose $X$ is not locally connected at $p$. Then, from Theorem 3.14, $p$ is in some nondegenerate continuum of convergence. Let $K$ be a nondegenerate continuum of convergence containing $p$ and $\left\{K_{n}\right\}_{n=1}^{\infty}$ a sequence of pairwise disjoint continua such that $K_{n} \rightarrow K$ with $K_{n} \cap K=\phi$ for all $n$. Pick $z \varepsilon K$ different than $p$ and let $\varepsilon=d(z, p)$. Choose a positive integer $N$ such that $1 / N<\varepsilon / 2$. Let $V$ be an open set containing $p$ such that $V \subseteq S(p, 1 / N)$ and $b(V)$ is finite. $p \varepsilon K$ implies that there exists a positive intoger $N_{1}$ such that for $n \geq N_{1}$, $V \cap K_{n} \neq \phi . \quad K_{i} \cap K_{j}=\phi$ for $i \neq j$ and $b(V)$ finite imply that there is a $N_{2} \geq N_{1}$ such that for $n \geq N_{2} \quad K_{n} \cap b(V)=\phi$. Hence for $n \geq N_{2}, \quad K_{n} \subseteq V$. This contradicts $z \varepsilon K$. Hence $X$ is locally connected at $p$.

Now we will show that $X$ is semi-locally connected at $p$. Let $U$ be an open set containing $p$ and let $V$ be an open set such that $p \varepsilon V \subseteq U$ and $b(V)$ is finite. We will show that $X-V$ has only a finite number of components. Let $C$ be a component of $X-V$; then $C=\bar{C}$. If $C \cap b(V)=\phi$ then $C$ is a component of $X-\bar{V}$ and therefore, due to Lemma 3.10, $\bar{C} \cap b(V) \neq \phi$. This contradicts $C=\bar{C}$. Hence $C \cap b(V) \neq \phi$. Since $b(V)$ is finite, the
number of components of $X-V$ is finite. Thus $X$ is semi-locally connected at $p$. \#

EXAMPLE 3.19. The subspace $X$ shown in Figure 5 is Iocally connected at $p$ but not semi-locally connected at $p$ or regular at p .


Figure 5. Subspace of $R^{2}$
Notice that $X$ is not locally connected.
EXAMPLE 3.20. Let $X=\left\{(x, y) \varepsilon R^{2} \mid x^{2}+y^{2} \leq 1\right\}$ and $p=(0,0)$.
Then $X$ is locally connected and semi-locally connected. $X$ is not regular at $p$. See Figure 6.


Figure 6 Subspace of $R^{2}$

THEOREM 3.21. Let $X$ be a metric continuum, If $X$ is locally connected then $X$ is seminlocally connected.

PROOF. Let $X$ be locally connected. Suppose there exists a $p \varepsilon X$ such that $X$ is not semimocally connected at $p$. Then there is an open set $U$ containing $p$ such that if $W$ is an open set contained in $U$ and containing $p$ then $X-W$ has infintely many components. Choosc $\varepsilon>0$ such that $S(p, \varepsilon) \subseteq U$. Let $V_{1}=S(p, \varepsilon)$ and $V_{2}=S(p, \varepsilon / 2)$. Then both $X-V_{1}$ and $X-V_{2}$ have infinitely many components.

We need to show that there exist infinitely many components of $X-V_{2}$ which intersect $X-V_{1}$. Let $\underline{C}=\{C \subseteq X \mid C$ is a component of $X-V_{2}$ and $\left.C \cap\left(X-V_{1}\right) \neq \phi\right)$. Suppose $\underline{C}$ has only finitely many elements. Then there is a positive integer $n$ such that $\underline{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$. Let $x \varepsilon X-V_{1}$; then $x \varepsilon \bigcup_{i=1}^{n} C_{i}$. The n
set $\bigcup_{i=1} C_{i}$ is closed since each $C_{i}$ is a component of the closed set $X-V_{2}$. Then $\left(X-\underset{i=1}{U} C_{i}\right) \cap U$ is an open set containing $p$ and contained in $U$. Hence $X-\left[\left(X-{\underset{i}{i=1}}_{n}^{U_{i}}\right) \cap U\right]$ has infinitely many components. However, $x-\left[\left(X-\bigcup_{i=1}^{n} C_{i}\right) \cap U\right]=\bigcup_{i=1}^{n} C_{i} U$ $\underset{n}{(X-U)}, X-V_{1} \subseteq_{i} \bigcup_{1}^{n} C_{i}$ and $X-U \subseteq X-V_{1}$ imp1y that $X-\left[\left(X-\bigcup_{i=1}^{n} C_{i}\right) \cap U\right]$ $=\bigcup_{i=1}^{n} C_{i}$. This contradicts $X-\left[\left(X-U_{i=1}^{n} C_{i}\right) \cap U\right]$ having infinitely many components. Thus $\underline{C}$ has infinitely many elements.

Let $\left\{C_{n}\right\}_{n=1}^{\infty}$ be a sequence of components of $X-V_{2}$ such that $C_{n} \cap\left(X-V_{1}\right) \neq \emptyset$ for all $n$ and $C_{n} \cap C_{m}=\emptyset$ if $n \neq m$. For each
$n$ we have that $C_{n} \cap b\left(V_{1}\right) \neq 0$ since $C_{n} \cap\left(X-V_{1}\right) \neq \phi$ and $C_{n}$ is connected. Let $\left\{\mathrm{C}_{\mathrm{n}_{k}}\right\}_{k=1}^{\infty}$ be a subsequence of $\left\{\mathrm{C}_{\mathrm{n}}\right\}_{\mathrm{n}=1}^{\infty}$ and $\mathrm{K} \subseteq \mathrm{X}$ such that $C_{n_{k}} \rightarrow K$. Then there is a $z \varepsilon K \cap b\left(V_{1}\right)$ since $C_{n_{k}} \cap b\left(V_{1}\right) \neq \emptyset$ for $a l l k$. Let $V$ be an open set containing $z$ such that $V \cap \bar{V}_{2}=\phi$. Choose an open connected set $V_{3}$ containing $z$ and contained in $V$. We can do this because $X$ is locally connected. Then $V_{3} \cap C_{n_{k}} \neq \phi$ for all but finitely many $k$ since $z \varepsilon V_{3}$ and $z \varepsilon K$. The fact $V_{3} \cap \bar{V}_{2}=\emptyset$ implies that $V_{3} \subseteq X-V_{2}$. Now we have that $V_{3} \subseteq C_{n_{k}}$ for all but finitely many $k$ since $V_{3}$ is connected, $V_{3} \subseteq X-V_{2}, C_{n_{k}}$ is a component of $X-V_{2}$ for all $k$ and $V_{3} \cap C_{n_{k}} \neq \phi$ for infinitely many $k$. This contradicts $C_{n} \cap C_{m}=\emptyset$ for $n \neq m$. Hence $X$ is semi-locally connected at $p$ and therefore X is semi-locally connected. \#

EXAMPLE 3.22. The converse of Theorem 3.21 is not true. The subspace $X$ of $R^{2}$ shown in Figure 7 is semi-locally connected but not locally connected at $x$.


Figure 7 A Semi-locally Connected Subspace $\mathrm{R}^{2}$.

DEFINITION 3.23. Let ( $\mathrm{X}, \mathrm{T}$ ) be a topological space and choose two distinct points $a, b$ in $X$. Let $K$ be a subset of $X$. Then $K$ is an arc joining a to $b$ if $K$ is a continuum containing $a$ and $b, K-\{a\}$ is connected, $K-\{b\}$ is connected and if $c$ is an element of $K$ different from $a$ and $b$ then $K-\{c\}=U \psi V$ with $a \varepsilon U$ and $b \varepsilon V$.

DEFINITION 3.24. Let $(X, T)$ be a topological space, $\underline{U}$ a family of subsets of $X$ and $a, b \in X$. A simple chain from $\underline{U}$ joining a to $b$ is a finite sequence $U_{1}, \ldots, U_{n}$ of members of $\underline{U}$ such that $a \varepsilon U_{1}, b \varepsilon U_{n}$ and $U_{i} \cap U_{j} \neq$ if and only if $|i-j| \leq 1$.

THEOREM 3.25. Let $X$ be a locally connected metric continuum and choose two distinct points $a, b$ in $X$. Then there is an arc $K$ joining $a$ to $b$.

PROOF. For each $x \varepsilon X$ let $U_{I_{X}}$ be an open connected set containing $x$ such that $\bar{U}_{1_{X}} \subseteq S(x, 1)$. Then $X=\underset{X \in X}{U} U_{1_{X}}$ and therefore there exist $x_{1}, x_{2}, \ldots, x_{n_{1}}$ in $X$ such that $\underline{U}_{1}=\left\{U_{1_{x_{1}}}, \ldots, U_{1_{x_{n_{1}}}}\right\}$ is a simple chain joining a to $b$. Let $U_{\mathrm{X}_{\mathrm{i}}}=\mathrm{U}_{1, i}$ for each $\mathrm{i}=1,2, \ldots, \mathrm{n}_{1}$; then $\underline{U}_{1}=\left\{\mathrm{U}_{1,1}, \mathrm{U}_{1,2}, \ldots, \mathrm{U}_{1, n_{1}}\right\}$. Set $U_{1}=\underset{i=1}{\cup} U_{1, i}$.

For each $i=1,2,3, \ldots, n_{1}$ and for each $x \varepsilon U_{1, i}$ let $U_{2 x}$ be an open connected set containing $x$ such that $\bar{U}_{2} \subseteq S(x, 1 / 2) \cap U_{1, i, i}$. Then for each $i, i=1,2,3, \ldots, n_{1}, \underset{x \in U_{1, i}}{U} U_{2 x}=U_{1, i}$. Choose $x_{i} \in U_{1}, i-1 \cap U_{1}$, for $i=2,3,4, \ldots, n_{1}$. Let $\underline{U}_{2}, \dot{i}$ be a simple
chain from $\left\{U_{2} \mid x \in U_{i},{ }_{i}\right\}$ joining $x_{i}$ to $x_{i+1}$ where $x_{n_{1}+1}=b$ and $x_{1}=a$, for $i=1,2,3, \ldots, n_{1}$. Now construct a simple chain $\underline{U}_{2}$ from $\bigcup_{i=1}^{n_{1}} U_{2}$,i joining a to $b$. If $U \in \underline{U}_{2}$ then $U \subseteq U_{1, i}$ for at most two i. Relabeling let $\underline{U}_{2}=\left\{U_{2}, 1, U_{2}, 2, \ldots, U_{2}, n_{2}\right\}$ with $a \varepsilon U_{2 ; 1}, \quad b \in U_{2} ; n_{2}$ and $U_{2} ; i \cap U_{2 ; j} \neq \phi$ if and only if $|i-j| \leq 1$. Let $U_{2}=\bigcup_{i=1}^{n_{2}} U_{2}, i ;$ then $U_{2} \subseteq U_{1}$.

Suppose that for $m \leq k$ a simple chain ${\underset{\sim}{m}}^{U}=\left\{U_{m} ; 1, U_{m}, 2, \ldots\right.$, $\left.\mathrm{U}_{\mathrm{m}, \mathrm{n}_{\mathrm{m}}}\right\}$, of open connected sets, from $a$ to $b$ has been formed such that $a \varepsilon U_{m ; l}, b \varepsilon U_{m ; n_{m}}$ and $U_{m, i} \cap U_{m, j} \neq \phi$ if and only if $|i-j| \leq 1$. Also assume $\bar{U}_{m+1} \subseteq U_{m}$, where $U_{m}=U U_{m}$, and if $U \in \underline{U}_{m}$ then $U \subseteq U_{m-1}, i$ for at most two i. For each $i=1,2,3, \ldots, n_{k}$ and for each $x \in U_{k, i}$, let $U_{k+1, x}$ be an open connected containing $x$ such that, $\bar{U}_{k+1, x} \subseteq S(x, 1 / k) \cap U_{k, i}$. Then $U_{k, i}=$ $\operatorname{UU}_{\operatorname{UU}_{k, i}} U_{k+1, x}$ for $i=1,2,3, \ldots, n_{k}$. Choose $x_{i} \in U_{k, i-1} \cap U_{k, i}$ for $i=2,3, \ldots, n_{k}$ and let $x_{1}=a$ and $x_{n_{k}+1}=b$. Let $U_{k+1}$, $i$ be a simple chain from $\left\{U_{k+1, i} \mid x \varepsilon U_{k, j}\right\}$ joining a to $b$ for $i=1,2$, $3, \ldots, n_{k}$. Now construct a simple chain $U_{k+1}$ from $\bigcup_{i=1}^{n_{k}} \underline{U}_{k+1}, i$ joining a to $b$ and let $U_{k+1}=U{\underset{U}{k+1}}$. Relabcling, let $\underline{U}_{k+1}=\left\{U_{k+1}, 1, \ldots, U_{k+1}, n_{k+1}\right\}$ with a $\varepsilon U_{k+1}, 1, b \varepsilon U_{k+1}, n_{k+1}$ and $U_{k+1, i} \cap U_{k+1, j} \neq \phi$ if and only if $|i-j| \leq 1$. Then $\bar{U}_{\mathrm{k}+1} \subseteq \mathrm{U}_{\mathrm{k}}$ and if $\mathrm{U} \varepsilon \mathrm{U}_{\mathrm{k}+1}$ then $\mathrm{U} \subseteq \mathrm{U}_{\mathrm{k}, 1}$ for at most two i .

Thus, $\left\{U_{n}\right\}_{n=1}^{\infty}$ is a sequence of open connected sets containing $a$ and $b$ such that $U_{n} \supseteq \bar{U}_{n+1}$ for all $n$. Let $K=\bigcap_{n=1}^{\infty} \bar{U}_{n}$; then, due to Lemma $2.3, K$ is a continuum containing a and $b$. We will show that $K$ is an arc joining a to $b$.

Choose an element $z$ in $K$ different from $a$ and $b$. For $i=1,2,3, \ldots \operatorname{let} P_{i}=\left\{U_{i, j} \in \underline{U}_{i} \mid z \notin U_{i, j}\right.$ and if $z \varepsilon U_{i, k}$ for some $k$ then $j<k\}$ and let $F_{i}=\left\{U_{i, j} \varepsilon \underline{U}_{i} \mid z \notin U_{i, j}\right.$ and if $z \varepsilon U_{i, k}$ for some $k$ then $j>k\}$. Set $W=\bigcup_{i=1}^{i}\left[\left(U P_{i}\right) \cap K\right]$ and $V=\bigcup_{i=1}^{\infty}\left[\left(U F_{i}\right) \cap K\right]$; then $W$ and $V$ are open in $K$ and $W \cap V=\phi$. Clearly, WUV $\subseteq K-\{z\}$. We will show that $K-\{z\} \subseteq W \cup V$. Let $\omega \in K-\{z\}$ and set $\delta=\mathrm{d}(\omega, z)$. Choose a positive integer $i_{0}$ such that $4 / i_{0}<\delta$. Consider $\underline{U}_{i_{0}}$ and suppose $z \varepsilon U_{i_{0}}, j$ for some $j . \quad U_{i_{0}, j} \subseteq S\left(x, 1 / i_{0}\right)$ for some $x \in U_{i_{0}-1}$. Thus $d(x, z)<$ 1/io. Suppose $\omega \varepsilon \mathrm{U}_{\mathrm{i}_{0}, \mathrm{j}}$; then $\delta=\mathrm{d}(\omega, z) \leq \mathrm{d}(\omega, x)+\mathrm{d}(\mathrm{x}, \mathrm{z})<1 / \mathrm{i}_{0}+$ $1 / i_{0}<\delta$. This is a contradiction. Hence $\omega \notin U_{i_{0}, j}$. Thus $\omega \varepsilon W \cup V$ and therefore $X-\{z\}=W \psi V$. Let $\alpha_{1}=d(z, a)$, $\alpha_{2}=d(z, b)$ and choose a positive integer $n_{1}$ such that $2 / n_{1}<\alpha_{1}$ and $2 / n_{1}<\alpha_{2}$. Then for $a 11 \quad i \geq n_{1} a \varepsilon P_{i}$ and $b \varepsilon F_{i}$. Hence $a \varepsilon W$ and $b \in V$.

We still need to show that $K-\{a\}$ and $K-\{b\}$ are connected. If $K$ is irreducible from $a$ to $b$ then, by Theorem 2.14 , $K-\{a\}$ and $K-\{b\}$ are connected. Suppose $K$ is not irreducible from a to $b$. Let $K_{1}$ be a continuum containing $a$ and $b$ such that $K_{1} \subsetneq K$. Choose $q \varepsilon K-K_{1}$; then $K_{1} \subseteq K-\{q\}=R \Psi S$ for some
sets $R$ and $S$ such that $a \varepsilon R$ and $b \varepsilon S$, $K_{1}$ connected implies that $K_{1} \subseteq R$ or $K_{1} \subseteq S$. This contradicts $a \varepsilon R$ and $b \varepsilon S$. Hence $K$ is irreducible from $a$ to $b$ and therefore $K-\{a\}$ and $K-\{b\}$ are connected. Thus $K$ is an arc joining a to $b$. \#

Thus if $X^{*}$ is a locally connected metric continuum and $x, y$ two distinct points of $X$ then there exists an arc joining $x$ to $y$. Let $\varepsilon>0$. Can we join $x$ to $y$ with an arc of diameter less than $\varepsilon$ ? Theorem 3.28 answers this question; but first we need two lemmas.

LEMMA 3.26. Let $X$ be a compact metric space and let $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}$ be a finite open cover of X . Then there is a $\delta>0$ such that if $A \subseteq X$ and the diameter of $A$ is less than $\delta$ then $A \subseteq U_{i}$ for some $i=1,2,3, \ldots, n$.

PROOF. Suppose that for all $\delta>0$ there is a set $A_{\delta}$ such that the diameter of $A_{\delta}$ is less than $\delta$, but $A_{\delta} \nsubseteq U_{i}$ for $i=1,2,3, \ldots, n$. In particular for each positive integer $n$ let $A_{n}$ be a subset of $X$ such that the diameter of $A_{n}$ is less than $1 / n$ and such that $A_{n} \$ U_{i}$ for all $i$. For each positive integer $n$ let $a_{n} \varepsilon A_{n}$; then there exists a $z \varepsilon X$ such that $a_{n} \xrightarrow{c} z$. Without loss of generality suppose $z \varepsilon U_{k_{0}}$. Choose $\varepsilon>0$ such that $S(z, \varepsilon) \subseteq U_{k_{0}}$ and let $n_{0}$ be a positive integer such that $1 / n_{0}<\varepsilon / 2$. Since $a_{n} \xrightarrow[\rightarrow]{c} z$ we can choose a positive integer $m$ greater than $n_{0}$ such that $a_{m} \varepsilon S(z, \varepsilon / 2)$. Choose $a_{\varepsilon} A_{m} ;$ then $d(z, a) \leq d\left(z, a_{m}\right)+d\left(a_{m}, a\right)<\varepsilon / 2+\varepsilon / 2$. Hence $A_{m} \subseteq U_{k_{0}}$. This contradicts $A_{n} \nsubseteq U_{i}$ for all $i$ and $n$. Thus there is a $\delta>0$ such that if $A \subseteq X$ and the diameter of $A$ is
less than $\delta$ then $A \subseteq U_{i}$ for some $i=1,2,3, \ldots, n$. \#
LEMMA 3.27. Let $X$ be a compact locally connected metric space. Then for each $\varepsilon>0$, there is some $\delta>0$ such that if $x, y \in X$ and $d(x, y)<\delta$, then there is an open connected set $C$ such that the diameter of $C$ is less than $\varepsilon$ and $x, y \in C$.

PROOF. Let $\varepsilon>0$ and for each $X \varepsilon X$ let $S_{X}$ be an open connected set such that $x \in S_{X} \subseteq S(x, \varepsilon / 4)$. Then the diameter of $S_{X}<\varepsilon / 2$ for all $x \varepsilon X$. ' $\left\{S_{X} \mid x \varepsilon X\right\}$ is an open cover for $X$ and therefore there exist $x_{1}, x_{2}, \ldots, x_{n}$ in $X$ such that $X=\bigcup_{i=1}^{n} S_{x_{i}}$. By Lemma 3.26 we can choose a $\delta>0$ such that if $A \subseteq X$ and the diameter of $A$ is less than $\delta$ then $A \subseteq S_{X_{i}}$ for some $i=1,2, \ldots$, n. Let $x, y \in X$ be such that $d(x, y)<\delta$; then $\{x, y\} \subseteq S_{x_{i_{0}}}$ for for some $i_{0}$. Hence if $d(x, y)<\delta$, there is an open connected set $C=S_{X_{i_{0}}}$ such that, the diameter of $C$ is less than $\varepsilon$ and $x, y \in C . \#$

THEOREM 3.28. Let $X$ be a locally connected metric continuum. Then for each $\varepsilon>0$ there exists a $\delta>0$ such that if $x, y$ are in $X$ with $d(x, y)<\delta$, then $x$ can be joined to $y$ by an arc of diameter less than $\varepsilon$.

PROOF. Let $\varepsilon>0$ and choose $\delta>0$ such that if $x, y$ are in $X$ and $d(x, y)<\delta$ then there is an open connected set $C$ such that the diameter of $C$ is 1 ess than $\varepsilon$ and $x, y \varepsilon C$. Choose $x, y \varepsilon X$ such that $d(x, y)<\delta$. Let $C$ be an open connected set, containing $x$ and $y$, of diameter less than $\varepsilon$. Hence $C$ is an open locally connected subset of $X$ containing $x$ and $y$ of
diameter less than $\varepsilon$. To construct an arc $K$ joining $x$ to $y$ and contained in $C$ follow the construction given in the proof of Theorem 3.25. Hence there exists an arc $K$ of diameter less than $\varepsilon$ joining $x$ to $y$. \#

REMARK 3.29. In the proof of Theorem 3.28 we can not simply apply Theorem 3.25 to the continuum $\overline{\mathrm{C}}$ to get the arc $K$, since $\bar{C}$ may not be locally connected. Below is an example of a locally connected metric continuum $X$ and an open connected subset of $X$ whose closure is not locally connected.


Figure 8 A Subcontinuum $X$ of $R^{2}$.
Construct an open connected subset of $X$ as shown in Figures 9, 10 and 11 .


Figure 9 Construction of $U_{1}$.


Figure 10 Construction of $U_{2}$.


Figure 11 Construction of $U_{3}$. Continue in this manner and let $U=\bigcup_{i=1}^{\infty} U_{n}$. Then $U$ is an open connected subset of $X$ whose closure is not locally connected.

## CHAPTER IV

## DECOMPOSABLE CONTINUA

DEFINITION 4.1. A nondegenerate continum is decomposable if it is the union of two proper subcontinua. A nondegenerate continuum that is not decomposable is said to be indecomposable.

THEOREM 4.2. A continuum $X$ is decomposable if and only if $X$ contains a proper subcontinum with interior points.

PROOF. Let $X$ be a decomposable continuum and let $K_{1}, K_{2}$ be nonempty proper subcontinua such that $X=K_{1} \cup K_{2}$, Suppose $K_{1}^{0}=\varnothing$; then $\bar{X}-\overline{K_{1}}=X-K_{1}^{0}=X$. Choose $z \varepsilon K_{1}-K_{2}$; then $z \varepsilon \overline{X-K_{1}}$. Let $\left\{x_{d}\right\}_{d \varepsilon D}$ be a net in $X-K_{1}$ such that $x_{d} \rightarrow z$. Since $K_{2}$ is compact, there is a $\omega \varepsilon K_{2}$ such that $x_{d} \xrightarrow{c} \omega$. We have that $z \neq \omega$; since $\omega \in K_{2}$ and $z \varepsilon K_{1}-K_{2}$. Let $U, V$ be open sets such that $w \varepsilon V$, $z \varepsilon U$ and $U \cap V=\phi$. Since $x_{d} \rightarrow z$ there exists a $d_{0} \varepsilon D$ such that if $d \varepsilon D$ and $d \geq d_{0}$ then $x_{d} \varepsilon U$. However, $x_{d} \xrightarrow{c} \omega$ implies that there exists a $d_{1} \geq d_{0}$ such that $X_{d_{1}} \varepsilon V$. This contradicts $U \cap V=\varnothing$. Hence $K_{1}^{0} \neq \phi$ and therefore $X$ contains a proper subcontinuum with interior points.

Now suppose $X$ contains a proper subcontinuum $K_{1}$ such that $K_{1}^{0} \neq \phi$. Then we have that $\overline{X-K_{1}}=X-K_{1}^{0} \neq X$ since $K_{1}^{0} \neq \phi$. Hence if $X-K_{1}$ is connected then $X=\overline{X-K_{1}} \cup K_{1}$ with $\overline{X-K_{I}}$ and $K_{1}$ proper subcontinua. Thus if $X-K_{1}$ is connected $X$ is decomposable, Suppose $X-K_{1}$ is not connected. Let $X-K_{I}=A \Psi B$ for some sets
$A, B$. Then $\overline{K_{1} \cup A}$ and $\overline{K_{1} \cup B}$ are connected sets and $X=$ $\overline{K_{1} \cup A} \cup \overline{K_{1} \cup B}$, The fact $\bar{A} \cap B=\emptyset=B \cap \bar{A}$ implies that $\overline{K_{I} \cup A}$ and $\overline{K_{1} \cup B}$ are proper subcontinua. Hence $X$ is decomposable. \# REMARK 4.3, From Theorem 4,2 we have that a continuum $X$ is indecomposable if and only if every proper subcontinuum of $X$ has an empty interior,

DEFINITION 4.4. Let $X$ be a continuum and $p \in X$. Then $C_{p}=\{x \in X \mid$ there exists a proper closed connected subset of $X$ containing both $p$ and $x\}$ is the composant of $p$ in $X$.

THEOREM 4.5. Every decomposable continuum is a composant of some one of its points.

PROOF. Let $X$ be a decomposable continuum, Choose proper subcontinua $K_{1,} K_{2}$ such that $X=K_{1} \cup K_{2}$. Since $X$ is connected $K_{1} \cap K_{2} \neq \emptyset$. Let $p \varepsilon K_{1} \cap K_{2}$; then the composant of $p$ is $X$. \# THEOREM 4.6. Let $X$ be a decomposable continuum and a $\varepsilon X$; then the composant of a is open in $X$.

PROOF. Let $C_{a}$ be the composant of $a$. If $C_{a}=X$ we are done. Hence, suppose $C_{a} \mathcal{X}$. Choose proper subcontinua $M$ and $N$ such that $X=M U N$. If $a \varepsilon M \cap N$ then $C_{a}=X$ and we are done. Thus, without loss of generality, suppose a $\varepsilon M-N$, Let $K=$ $\{x \in X \mid X$ is irreducible from a to $x\} . K \neq 0$ since $C_{a} \subset X$. $\bar{K}=\overline{\mathrm{K} \cap \mathrm{M}} \cup \overline{\mathrm{K} \cap \mathrm{N}} . \quad \mathrm{M} \subseteq C_{a}$ because $a \varepsilon M$. Therefore $\mathrm{M} \cap \mathrm{K}=\phi$. Hence $\bar{K} \subseteq N$. Now, suppose that for each open set $U$ containing a $U \cap K \neq \phi$. Then a $\varepsilon \widetilde{K}$ and therefore $a \varepsilon N$. This contradicts $a \varepsilon M-N$. Thus there exists an open set $U$ such that a $\varepsilon U \subseteq C_{a}$. Therefore $\mathrm{C}_{\mathrm{a}}$ is open. \#

THEOREM 4,7. Let $X$ be a continuum; then every composant of $X$ is connected.

PROOF. Let $X$ be a continuum and $p \varepsilon X$. Suppose the composant of $p C_{p}$ is such that $C_{p}=A \psi B$ for some sets $A, B$ in $X$. Without loss of generality let $p \varepsilon A$. Choose $x \in B$. There exists a proper subcontinuum $K$ such that $p, x \in K$ since $x \in C_{p}$. Thus $K \subseteq C_{p}$ and therefore $K \subseteq A$ or $K \subseteq B$. This contradicts $p \varepsilon A$ and $x \in B$. Hence $C_{p}$ is connected and therefore every composant of $X$ is connected. \#

THEOREM 4.8. Let $X$ be a continuum. Then every composant of the continuum $X$ is dense in $X$.

PROOF. Let $X$ be a continuum and suppose there exists a $p \varepsilon X$ such that the composant of $p C_{p}$ is not dense in $X$. The fact $\bar{C}_{p} £ X$ implies that $\bar{C}_{p} \subseteq C_{p}$. Hence $C_{p}=\bar{C}_{p}$. Choose $x \in X-C_{p}$ and then let $W, V$ be open disjoint sets such that $C_{p} \subseteq W, x \in V$ and $\bar{W} \cap V=\bar{\emptyset}$. Let $D$ be the component of $W$ containing $p$. Then $\bar{D} \cap b(W) \neq \phi$ and therefore $C_{p} \cap b(W) \neq \phi$. This contradicts $C_{p} \subseteq W$. Hence $\bar{C}_{p}=X$ and therefore every composant of $X$ is dense in $X$. \#

THEOREM 4.9. If $X$ is a metric continuum, then every composant of $X$ is the union of countably many proper subcontinua of $X$.

PROOF, Let $X$ be a metric continuum and $p \varepsilon X$, Let $\underline{B}=$ $\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$ be a base for $X-\{p\}$ such that for each $i$, $i=1,2,3, \ldots, \bar{B}_{i} \subseteq X-\{p\}$, and $B_{i}=S\left(x_{i}, \varepsilon_{i}\right)$ with $x_{i} \varepsilon X$ and $\varepsilon_{i}>0$.

For each i, $i=1,2,3, \ldots$, let $n_{i}$ be a positive integer such that $\bar{S}\left(\bar{x}_{i}, \varepsilon_{i}+1 / n_{i}\right) \subseteq X_{n}\{p\}$, Then for each $i, i=1,2,3, \ldots$, and $j, j=0,1,2,3, \ldots, \operatorname{let}_{i}, j$ be the component of $X-$
$S\left(x_{i}, \varepsilon_{i}+\frac{1}{n_{i}+j}\right)$ which contains p. Let $C=\bigcup_{i=1}^{\infty}\left(\bigcup_{j=0}^{\infty} \overline{C_{i}}, j\right) ;$
then $C$ is the union of countably many proper subcontinua which contain $p$. Let $C_{p}$ be the composant of $p$; then clearly $C \subseteq C_{p}$. Choose an element $x$ of $C_{p}$ different than $p$ and let $K$ be a proper subcontinuum containing $p$ and $x$. Then choose $B_{i_{0}} \varepsilon \underline{B}$
such that $\bar{B}_{i_{0}} \subseteq X-K$. If $K \subseteq X-S\left(X_{i_{0}},{ }_{i_{0}}+\frac{1}{\bar{n}_{i_{0}}+j}\right)$ for some $j$ then $x \in C$ and hence $C=C_{p}$. Thus suppose
$K \nsubseteq X-S\left(x_{i_{0}}, \varepsilon_{i_{0}}+\overline{n_{i_{0}}+j}\right)$ for every $j$. Then $K \cap b\left(S\left(x_{i_{0}}, \varepsilon_{i_{0}}+\frac{1}{n_{i_{0}}+j}\right)\right) \neq \phi$ for every $j$. For each $j, j=0,1,2$, ..., let $z_{j} \varepsilon K \cap b\left(S\left(x_{i_{0}}, \varepsilon_{i_{0}}+\frac{1}{n_{i_{0}}+j}\right)\right)$. Then there exists a $z \varepsilon \bar{B}_{\dot{i}_{0}}$ such that $z_{i} \xrightarrow{c} z$. Hence $K \cap \bar{B}_{\dot{i}_{0}} \neq \phi$. This contradicts
$\bar{B}_{i_{0}} \subseteq X-K$. Thus $K \subseteq X-S\left(x_{i_{0}}, \varepsilon_{i_{0}}+\frac{1}{n_{i_{0}}+j}\right)$ for some $j$ and therefore $x \in C$ and $C=C_{p}$. Hence $C_{p}$ is the union of countably many prom per subcontinua. \#

THEOREM 4.10. (Baire Category Theorem). If $X$ is a compact $T_{2}$ space, then $X$ is not the union of countably many closed sets each having empty interior,

THFOREM 4,11, Let $X$ be an indecomposable continuum and $p, q \varepsilon X$ : Let $C_{p}$ be the composant of $p$ and $C_{q}$ the composant of $q$, Then $C_{p}=C_{q}$ or $C_{p} \cap C_{q}=\emptyset$.

PROOF. Suppose $C_{p} \cap C_{q} \neq \phi$. Choose $z \varepsilon C_{p} \cap C_{q}$ and let $K_{1}, K_{2}$ be proper subcontinua such that $z, p \varepsilon K_{1}$ and $z, q \varepsilon K_{2}$. $X$ indecomposable implies that $K_{1} \cup K_{2}$ is a proper subcontinuum of $X$. Let $\omega \in C_{p}$ and $K_{3}$ a proper subcontinuum such that $p, \omega \varepsilon K 3$. Then $K_{1} \cup K_{2} \cup K_{3}$ is a proper subcontinuum containing $\omega$ and $q$. Hence $C_{p} \subseteq C_{q}$. Similarly $C_{q} \subseteq C_{p}$. Thus if $C_{p} \cap C_{q} \neq \emptyset$ then $C_{p}=$ $\mathrm{C}_{\mathrm{q}}$. \#

REMARK 4.12. Let $X$ be an indecomposable metric continuum. Then Theorem 4.2, Theorem 4.9, Theorem 4.10 and Theorem 4.11 imply that $X$ has uncountably many pairwise disjoint composants. Thus every indecomposable metric continuum is irreducible between each two points of some uncountable set.

THEOREM 4.13. Let $X$ be a metric continuum. Then $X$ is indecomposable if and only if there exist three distinct points $a, b, c$ such that $X$ is irreducible between any two of these three points.

PROOF. Let $X$ be an indecomposable metric continuum. Let $C$ be an uncountable subset of $X$ such that $X$ is irreducible betm ween any two points of $\underline{C}$. Choose three distinct points $a, b, c$ from $C$; then $X$ is irreducible between any two of these three chosen points.

Now let $X$ be a metric continuum containing three distinct points $a, b, c$ such that $X$ is irreducible between any two of
these three points. Suppose X is decomposable. Choose proper subcontinua $K_{1}, K_{2}$ such that $X=K_{1} \cup K_{2}$, Without loss of generality let $a \varepsilon K_{1}$; then $b, c \neq K_{1}$, Hence $b, c \varepsilon K_{2}$; but this contradicts X irreducible between b and c . Thus X is indecomposable. \#

EXAMPLE 4.14. We will construct an indecomposable metric continuum. Let $X=\left\{(x, y) \in R^{2} \mid x^{2}+y^{2} \leq 10\right\}, X$ is a locally connected metric continuum. Let $X^{0}=\left\{(x, y) \varepsilon R^{2} \mid x^{2}+y^{2}<10\right\}$ and choose three distinct points $a, b, c$ in $X^{0}$. For $i=1,2,3, \ldots, n_{1}$ let $C_{1, i}$ be an open connected subset of $X$ with diameter less than $1 / 2$ such that $\underline{C}_{1}=\left\{C_{1,1}, C_{1,2}, \ldots, C_{1, n_{1}}\right\}$ is a chain joining a to $c$ with $a \varepsilon C_{1,1}, c \varepsilon C_{1, n_{1}}$ and $b \varepsilon C_{1}, j, 1<j<n_{1}$, for exactly one j . We will call $\underline{\mathrm{C}}_{1}$ a chain joining a to c through b . For $i=1,2,3, \ldots, n_{2}$ let $C_{2, i}$ be an open connected set with diameter less than $1 / 4$ such that $\mathrm{C}_{2}=\left\{\mathrm{C}_{2,1}, \ldots, \mathrm{C}_{2, \mathrm{n}_{2}}\right\}$ is a chain joining a to $b$ with $a \varepsilon C_{2,1}, b \varepsilon C_{2, n_{2}}, c \varepsilon C_{2, j}, 1<j<n_{2}$, for exactly one j . We will call $\underline{\mathrm{C}}_{2}$ a chain joining a to b through $c$. Each $C_{2, i}, i=1,2, \ldots, n_{2}$, also has the property that $\bar{C}_{2, i} \subseteq C_{1, k}$ for some $k$. Let $\underline{C}_{3}=\left\{C_{3,1}, \ldots, C_{3, n_{3}}\right\}$ be a chain joining $c$ to $b$ such that $C_{3, i}$ is an open connected set of diameter less than $1 / 8, c \varepsilon C_{3,1}, b \varepsilon C_{3, n_{3}}$ and $a \varepsilon C_{3, j}$, $1<j<n_{3}$, for exactly one $j$. We will call $\underline{C}_{3}$ a chain joining $c$ to $b$ through $a$. Each $C_{3, i}$ is also such that $\bar{C}_{3, i} \subseteq C_{2, k}$ for some $k$. For each $i=1,2,3, \ldots, n_{4}$ let $C_{4, i}$ be an open connected set of diameter less than $1 / 16$ such that $\mathrm{C}_{4}=\left\{\mathrm{C}_{4,1}, \mathrm{C}_{4,2}, \ldots\right.$,
$\left.\mathrm{C}_{4, \mathrm{n}_{4}}\right\}$ is a chain joining a to c with $\mathrm{a} \in \mathrm{C}_{4,1}, \mathrm{cec}_{4}, \mathrm{n}_{4}$ and $b \varepsilon C_{4, j}, I<j \leqslant n_{4}$, for exactly one $j$. Again each $C_{4, i}$ is such that $\bar{C}_{4, i} \subseteq C_{3, k}$ for some $k$. For each positive integer $n \geq 5$ let $\underline{C}_{n}$ be a chain connecting $a, b$ and $c$ with the following properties:
i) If $C_{n, i} \in \underline{C}_{n}$ then diam $C_{n, i}<1 / 2^{n}$.
ii) Each $C_{n+1, i} \underbrace{}_{-1} \underline{C}_{n+1}$ is such that $\bar{C}_{n+1, i} \subseteq C_{n, k}$ for some $k$.
iii) If $n \equiv 1$ mod 3 then $G_{n}$ is a chain joining a to $c$ through b.
iv) If $n \equiv 2 \bmod 3$ then $\mathbb{C}_{n}$ is a chain joining a to $b$ through c .
v) If $n \equiv 0 \bmod 3$ then $\underline{C}_{n}$ is a chain joining $c$ to $b$ through a.
Let $K_{m}=\bigcup_{i=1}^{n_{m}} \bar{C}_{m, i}$ for each positive integer $m$. Then $K=\bigcap_{m=1}^{\infty} K_{m}$ is a continuum containing $a, b$ and $c$. See figure 12 ,


Figure 12 Clarification of $K$

Let $B$ be a proper subcontinuum of $K$ such that $a, b \in B$, Suppose $c \notin B$. Set $\delta=d(B, c)$ and choose a positive integer $m_{0}$ such that $1 / 2^{m_{0}}<\delta / 2$, Let $m_{1} \geq m_{0}$ be such that $C_{m_{1}}$ is a chain joining a to $b$. Choose $C_{m_{1}, j} \in \underline{C}_{m_{1}}$ such that $c \varepsilon C_{m_{1}, j}$. The diameter of $C_{m_{1}, j}$ is less than $1 / 2^{m_{1}}$ and hence is less than $\delta / 2$. Thus $C_{m_{1}, j} \cap B=\phi$. This contradicts the connectedness of $B$. Hence $c \varepsilon B$. Therefore if $B$ is a proper subcontinuum of $K$ containing any two of $a, b, c$ then $B$ contains the third.

Now, let $A$ be a subcontinuum of $K$ containing $a, b$ and $c$. We will show that $A=K$. Suppose $A \subseteq K$; then let $x \in K-A$. Let $\delta_{1}=d(A, x)$ and choose a positive integer $m_{3}$ such that $1 / 2^{m_{3}}<{ }^{\delta} \sqrt{1} 2$. Choose $C_{m_{3}, j}{ }^{\varepsilon} C_{m_{3}}$ such that $x \in C_{m_{3}, j} \quad C_{m_{3}, j} \cap A=\phi$ since the diameter of $C_{m_{3}, j}$ is less than $\delta_{1} / 2$. This contradicts $a, b, c \in A$. Hence $A=K$.

We now have that $K$ is irreducible between any two points of the set $\{a, b, c\}$. Hence, by Theorem 4.13, $K$ is an indecomposable metric continuum.

THEOREM 4.15. Let $X$ be a metric continuum. Then $X$ has only one, only three or uncountably many composants.

PROOF. Let $X$ be an indecomposable metric continuum. Then, due to Remark 4.12, X has uncountably many composants.

Now let $X$ be a decomposable metric continuum and choose proper subcontinua $K_{1}$ and $K_{2}$ such that $X=K_{1} \cup K_{2}$. Let $z_{1} \varepsilon K_{1}$ and let $C_{z_{1}}$ be the composant of $z_{1}$. Suppose $C_{z_{1}} C_{F} X$ and sup pose there exists a $z_{2} \in K_{1}$ such that $z_{1} \neq z_{2}$ and the composant of $z_{2} C_{Z_{2}}$ is a proper subset of $X$. Let $\omega \in C_{z_{2}}$ and let $K_{\omega}$ be
a proper subcontinum containing $\omega$ and $z_{2}$. Then $K_{\omega} \subseteq C_{z_{2}}$. $K_{1} \subseteq C_{z_{2}}, z_{1}, z_{2} \varepsilon K_{1}$ and $K_{\omega} \subseteq C_{z_{2}}$ imply that $K_{1} \cup K_{\omega}$ is a proper subcontinum of $X$. Hence $\omega \in C_{z_{1}}$ and therefore $C_{z_{2}} \subseteq C_{z_{1}}$. Similarly $C_{z_{1}} \subseteq C_{z_{2}}$. Hence $X$ has less than or equal to three composants.

We are still assuming that $X$ is decomposable. If for all $X \varepsilon X$ the composant of $X C_{X}$ is all of $X$ then $X$ has exactly one composant. There exists a $p_{0} \varepsilon X$, from Theorem 4.4 , such that the composant of $p_{0} C_{p_{0}}$ is all of $X$. Recall that $X=K_{1} \cup K_{2}$. Suppose there exists a $p_{1} \varepsilon K_{1}$ such that the composant of $p_{1}$ $C_{p_{i}}$ is not all of $X$. Then if $y \varepsilon K_{1}$ is such that the composant of $y C_{y}$ is not all of $x$, from the above, $C_{y}=C_{P_{1}}$. Choose $p_{2} \varepsilon X-C_{p_{1}}$; then $p_{1} \notin C_{p_{2}}$ and therefore $C_{p_{1}} \neq C_{p_{2}}$. Hence if there is a $p_{1}$ such that $C_{p_{1}} \subset X$, then $X$ has exactly three composants. \#

THEOREM 4.16. Let $X$ be an indecomposable metric continuum and $A \subseteq X$ such that $A$ is the union of countably many proper subcontinua of $X$. Then $X_{\infty}-A$ is connected.

PROOF. Let $A=\bigcup_{n=1} K_{n}$ where for each $n K_{n}$ is a proper subcontinuum. Since $X$ is indecomposable $K_{n}^{0}=\varnothing$ for all $n$. Hence $A \neq X$ and therefore $X-A \neq \phi$. For each $n, n=1,2,3, \ldots$, choose $k_{n} \varepsilon K_{n}$ and let $C_{k_{n}}$ be the composant of $k_{n}$. Then fo each $n$, $K_{n} \subseteq C_{k_{n}}$ and therefore $A \subseteq \bigcup_{n=1}^{\infty} C_{k_{n}}$. Thus $X-\bigcup_{n=1}^{\infty} C_{k_{n}} \subseteq X$-A. Since $X$ has uncountably many pairwise disjoint composants, $X-\bigcup_{n=1}^{\infty} C_{k_{n}} \neq \phi$, Let $\omega \in X-\bigcup_{n=1}^{\infty} C_{k_{n}}$ and let $C_{\omega}$ be the composant
of $w$. Then $C_{\omega} \subset X-A$. Suppose $X \rightarrow A=R \Psi S$ for some sets $R$ and S. Then, without loss of generality, let $C_{\omega} \subseteq$ R. Since every composant is dense in $X$ we have that $\bar{C}_{\omega}=X$. This contradicts $S \neq \phi$. Hence $X-A$ is connected. \#

THEOREM 4.17. Let $X$ be an indecomposable continuum, a $\varepsilon X$ and $K=\{X \varepsilon X \mid X$ is irreducible from a to $X\}$. If $K \neq \phi$, then $\overline{\mathrm{K}}=\mathrm{X}$.

PROOF. Let $x \varepsilon K, C_{x}$ be the composant of $x$ and $C_{a}$ be the composant of $a$. Then $C_{x} \cap C_{a}=\phi$ and therefore $C_{x} \subseteq K$. We now have that $\bar{K}=X$ since $C_{X} \subseteq K$ and $\bar{C}_{X}=X$. \#

THEOREM 4.18. Let $X$ be a metric continuum. Then $X$ is decomposable if and only if some composant of $X$ is open.

PROOF. First suppose $X$ is a decomposable metric continuum. Then, from Theorem 4.6, every composant is open. Hence there exists an open composant.

Now we will show that if $X$ is an indecomposable metric continuum then no composant of $X$ is open. Let $X$ be an indem composable metric continuum. Suppose there exists a $p \varepsilon X$ such that the composant of $p C_{p}$ is open. Theorem 4.9 and Theorem 4.16 imply that $X-C_{p}$ is connected. Hence $X-C_{p}$ is a proper subcontinuum. Let $a, b$ and $c$ be distinct points of $X$ such that $X$ is irreducible between any two. Since $X-C_{p}$ is a proper subcontinuum no two of $a, b, c$ are in $X-C_{p}$. Hence, without loss of generality, let $a, b \varepsilon C_{p}$. Let $C_{a}$ be the composant of $a$ and $C_{b}$ be the composant of $b ;$ then, from Theorem 4.11,
$C_{a}=C_{b}=C_{p}$. This contradicts $X$ irreducible between $a$ and $b$.
Hence $\mathcal{C}_{p}$ is not open and therefore no composant of $X$ is open. \#

## CHAPTER V

## CONTINUOUS MAPPINGS

DEFINITION 5.1. Let ( $\mathrm{X}, \mathrm{T}$ ) be a topological space and $A \subseteq X$. A is said to be perfect if and only if each point of $A$ is a limit point of A .

DEFINITION 5.2. Let (X,T) be a topological space. $X$ is said to be totally disconnected if and only if the components in $X$ are single points in $X$.

To show that any two totally disconnected perfect coms pact metric spaces are homeomorphic we need the following two 1emmas.

LEMMA 5.3. Let X be a perfect compact totally disconnected $T_{2}$ space and $U$ an open subset of $X$. Let $n$ be any positive integer; then $U=U_{1} \cup U_{2} \cup \ldots U U_{n}$ for some choice of nonempty disjoint open sets $U_{1}, U_{2}, \ldots, U_{n}$.

PROOF. Clearly the result holds when $n=1$. It is sufficient to prove the result for $n=2$ since for $n>2$ simply reapply case $\mathrm{n}=2$ until the desired number of open nonempty disjoint sets is obtained. Let $p e U$; then $U$ f $\{p\}$ since $X$ is perfect. Choose $q \varepsilon U$ such that $q \neq p$. Then, due to Theorem 2.20, the quasicomponent of p is simply \{p\}. Hence, there exist open disjoint sets $R, S$ such that $q \varepsilon R, p \varepsilon S$ and $X=R \cup S$. Let $U_{1}=R \cap U$ and $U_{2}=S \cap U$. Then $U=U_{1} \cup U_{2}$ and
$\mathrm{U}_{1}, \mathrm{U}_{2}$ are nonempty disjoint open sets. \#
LEMMA 5.4. Let $X$ be a totally disconnected compact metric space. Choose $x \varepsilon X$ and let $U$ be an open set that contains $X$. Then there exists an open set $V$ such that $x \varepsilon V \subseteq U$ and $b(V)=\phi$. PROOF. The component of $X$ that contains $x$ is $\{x\}$ since $X$ is totally disconnected. Theorem 2.17, $X$ compact and Theorem 2.20 imply that $\{x\}=\cap\{V \mid V$ is open, $V$ is closed and $x \varepsilon V\}$. Lemma 2.3 implies that there exists a set $V_{0}$ such that $V_{0}$ is open, $V_{0}$ is closed and $x \varepsilon V_{0} \subseteq U$. Hence $V_{0}$ is an open set containing $x$ such that $b\left(V_{0}\right)=\phi$ and $V_{0} \subseteq U$. \#

THEOREM 5.5. Any two totally disconnected perfect compact metric spaces are homeomorphic.

PROOF. Let $(X, T)$ and $(Y, S)$ be totally disconnected perfect compact metric spaces. For each $X \in X$ let $S_{X}$ be such that $x \in S_{x}$, diam $S_{x}<1$ and such that $S_{x}$ is both open and closed. We can do this because of Lemma 5.4. Then $\left\{S_{X} \mid x \in X\right\}$ is an open cover for $X$ and therefore has a finite subcover. Let $S_{x_{1}}, S_{x_{2}}, \ldots, S_{x_{n_{1}}}$ be a finite subcover and then 1 et $U_{1,1}=S_{x_{1}}$, $\mathrm{n}_{1}-1$
$U_{1,2}=S_{x_{2}}-S_{x_{1}}, \ldots, U_{I, n_{1}}=S_{x_{n_{1}}}-\underset{i=1}{U} S_{x_{i}}$. We are assuming that $S_{x_{i}} \nsubseteq S_{x_{j}}$ for all $i \neq j$. Set $\underline{U}_{1}=\left\{U_{1,1}, U_{1,2}, \ldots, U_{1, n_{1}}\right\}$. Thus $\underline{U}_{1}$ is an open-closed cover for $X$ made up of nonempty pairwise disjoint sets of diameter less than one.

Construct an open*closed cover $\underline{V}_{1}$ for $Y$ made up of nonempty pairwise disjoint sets of diameter less than one in a manner similar to the above construction. We can assume that $\left\|\underline{U}_{1}\right\|=\left\|\underline{V}_{1}\right\|$ because of Lemma 5.3. Let $\underline{V}_{1}=\left\{V_{1,2}, V_{1,2}, \ldots\right.$, $\left.V_{1}, n_{1}\right\}$ 。

For each $j, j=1,2, \ldots, n_{1}$, and for each $x \in U_{1, j}$ let $W_{x}$ be an open~closed set containing $x$ such that diam $W_{x}<1 / 2$ and $W_{x} \subseteq U_{1, j}$. Then $\left\{W_{x} \mid x \varepsilon X\right\}$ is an open cover for $X$ and hence has a finite subcover. Let $W_{x_{1}}, W_{x_{2}}, \ldots, W_{x_{n_{2}}}$ be a finite subcover and set $U_{1}=W_{x_{1}}, U_{2}=W_{x_{2}}-W_{x_{1}}, \ldots, U_{n_{2}}=$ $W_{x_{n}}-\bigcup_{i=1}^{n_{2}-1} W_{x_{i}}$. Again, we are assuming $W_{x_{i}} \not 中_{x_{j}}$ for all i $\neq j$. Now, for each $j, j=1,2,3, \ldots, n_{l}$, let $B_{1, j}=\left\{U_{i} \mid U_{i} \subseteq U_{1, j}\right.$, $\left.\mathrm{i}=1,2,3, \ldots, \mathrm{n}_{2}\right\}$. Relabeling $\operatorname{let} \mathrm{B}_{1,1}=\left\{\mathrm{U}_{2,1}, \mathrm{U}_{2,2}, \ldots, \mathrm{U}_{2}, \mathrm{~m}_{1}\right\}$, $B_{1,2}=\left\{U_{2, m_{1}+1}, \ldots, U_{2, m_{2}}\right\}, \ldots, B_{1, n_{1}}=\left\{U_{\left.2, m_{n_{1}-1}+1, \ldots, U_{2}, m_{n_{1}}\right\} .}\right\}$ Let $\underline{U}_{2}=\left\{U_{2,1}, \ldots, U_{2}, m_{1}, U_{2}, m_{1}+1, \ldots, U_{2}, m_{2}, U_{2}, m_{2}+1, \ldots, U_{2}, m_{3}\right.$, $\ldots, U_{2}, m_{n_{1}-1}+1, \ldots, U_{2}, m_{n_{1}}$, Then $U_{2}$ is an open-closed cover for $X$ made up of nonempty pairwise disjoint sets with diameter less than $1 / 2$. Construct an open + losed cover $V_{2}$ for $Y$ made up of nonempty pairwise disjoint sets with diameter less than $1 / 2$ in manner similar to the construction of $\underline{U}_{2}$. We can assume that $\left\|\underline{V}_{2}\right\|=\left\|\underline{U}_{2}\right\|$ because of Lemma 5.3 . Moreover, we can as ${ }^{m}$ sume that for $j=1,2, \ldots, n_{1}\left\|B_{1, j}\right\|=\left\|D_{1, j}\right\|$ where $D_{1, j}=$ $\left\{V_{i} \varepsilon \underline{V}_{2} \mid V_{i} \subseteq^{G} V_{1, j}, i=1,2, \ldots, n_{2}\right\}$. We will label $V_{2}$ in a manner
similar to $\underline{U}_{2}$. Let $\underline{V}_{2}=\left\{V_{2,1}, \ldots, V_{2, m_{1}}, V_{2, m_{1}+1}, \ldots, V_{2, m_{2}}\right.$,
$\left.V_{2, m_{2}+1}, \ldots, V_{2, m_{3}}, \ldots, V_{2, m_{n_{1}-1}+1}, \ldots, V_{2, m_{n_{1}}}\right\}$.
Continuing in this manner we then have sequences $\left\{\underline{U}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ and $\left\{\underline{V}_{\mathrm{K}}\right\}_{\mathrm{k}=1}^{\infty}$ of open-closed covers for X and $Y$ respectively. For each $k$ we have that $\left\|\underline{U}_{k}\right\|=\left\|\underline{V}_{k}\right\|$. Each $\underline{U}_{k}$ and $\underline{V}_{k}$ is made up of nonempty pairwise disjoint sets of diameter less than $1 / 2^{k}$. A1so, for each $k$ if $U_{k, j} \subseteq U_{k-1, i}$ for some $i, j$ then $\mathrm{V}_{\mathrm{k}, \mathrm{j}} \subseteq \mathrm{V}_{\mathrm{k}-\mathrm{l}}, \mathrm{j}$.

Let $x \in X$; then for each $k=1,2,3, \ldots$, there is a unique $\mathrm{U}_{\mathrm{k}, \mathrm{j}_{\mathrm{k}}}$ such that $\mathrm{x} \varepsilon \mathrm{U}_{\mathrm{k}, \mathrm{j}_{\mathrm{k}}}$ with $\mathrm{U}_{\mathrm{k}, \mathrm{j}_{\mathrm{k}}} \varepsilon_{\mathrm{U}_{\mathrm{k}}}$. Moreover, $U_{1}, j_{1} \supseteq U_{2, j_{2}} \supseteq U_{3, j_{3}} \supseteq \ldots, \bigcap_{k=1}^{\infty} U_{k, j_{k}}=x$ and $V_{1, j_{1}} \supseteq V_{2, j_{2}}$, $\supseteq$ $V_{3, j_{3}} \supseteq \ldots$. Define $g(x) \bigcap_{k=1}^{\infty} V_{k, j_{k}}$. Do the above for cach $x \in X$; then $g$ is a function from $X$ into $Y$. Clearly $g$ is onto and one to one.

Choose $x \in X$ and suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence in $X$ such that $a_{n} \rightarrow x$. For each $k$ let $U_{k, j_{k}}$ contain $x$; then $x=\bigcap_{k=1}^{\infty} U_{k, j_{k}}$ and $g(x) \bigcap_{k=1}^{\infty} V_{k, j_{k}}$. Let $\varepsilon>0$ and choose a positive integer $k_{0}$
 implies that there exists a positive integer $N$ such that if $n \geq N$ then $a_{n} \varepsilon U_{k_{0}, j_{k_{0}}}$. Thus for $n \geq N, g\left(a_{n}\right) \varepsilon V_{k_{0}, j_{k_{0}}} \subseteq S(g(x), \varepsilon)$. Hence $g\left(a_{n}\right) \rightarrow g(x)$ and thereforc $g$ is continuous. Since $X$ is compact and $Y$ is Hausdorff $g$ is a homeomorphism. \#

THEOREM 5.6. Every compact metric space is a continuous image of the Cantor set.

PROOF. Let $X$ be a compact metric space and let $C$ be the Cantor set. Construct a finite openmclosed cover $U_{1}$ for $C$ made up of nonempty pairwise disjoint sets of diameter less than one. See the proof of Theorem 5.5 for the construction of $\underline{U}_{1}$. Let $V_{1}$ be a finite open cover of $X$, made up of non , empty sets with diameter less than one. By repeating elements in $\underline{V}_{1}$ and using Lemma 5.3 we can assume that $\left\|\underline{U}_{1}\right\|=\left\|\underline{V}_{1}\right\|$. Let $\underline{U}_{1}=\left\{U_{1,1}, \ldots, U_{1, n_{1}}\right\}$ and $\underline{V}_{1}=\left\{V_{1,1}, \ldots, V_{1, n_{1}}\right\}$.

For each $j, j=1,2,3, \ldots, n_{1}$, let $\underline{B}_{1, j}$ be a finite openclosed cover of $U_{1, j}$ such that if $B \varepsilon \underline{B}_{1}, j$ then $B \neq \varnothing, B \subseteq_{1} U_{1}, j$ and diam $B<1 / 2$. Also, for each $j, j=1,2,3, \ldots, n_{1}$, let ${\underset{I}{D}}, j$ be a finite open cover of $V_{1, j}$ such that if $D \varepsilon \underline{D}_{1}, j$ then $D \neq \phi$, $D \subseteq V_{1, j}$ and diam $D<1 / 2$. We can do this since $\bar{V}_{1, j}$ is compact for all $j$. By repeating elements in $\underline{D}_{1}, j$ and using Lemma 5.3 we can assume that $\|{\underset{B}{1}}, j\|=\left\|\underline{D}_{1}, j\right\|$ for each $j$. Let $\underline{U}_{2}=$ $\left\{B \subseteq C \mid B \varepsilon \underline{B}_{1}, j\right.$ for some $\left.j\right\}$ and $\underline{V}_{2}=\left\{D \subseteq X \mid D \varepsilon \underline{D}_{1}, j\right.$ for some $\left.j\right\}$. Label the elements of $\underline{U}_{2}$ and $\underline{V}_{2}$ such that $\underline{U}_{2}=\left\{U_{2}, 1, U_{2}, 2, \ldots\right.$, $\left.\mathrm{U}_{2}, \mathrm{n}_{2}\right\} \mathrm{V}_{2}=\left\{\mathrm{V}_{2}, 1, \mathrm{~V}_{2}, 2, \ldots, \mathrm{~V}_{2, \mathrm{n}_{2}}\right\}$ and such that if $\mathrm{U}_{2, \mathrm{I}} \subseteq \mathrm{U}_{\mathrm{i}}, \mathrm{j}$ then $V_{2, i} \subseteq V_{I, j}$.

Continue in this manner to construct finite covers for $X$ and $C$. We have sequences $\left\{\underline{U}_{k}\right\}_{k=1}^{\infty}$ and $\left\{\underline{V}_{k}\right\}_{k=1}^{\infty}$ with the follow ing properties:
i) $\left\|\underline{U}_{k}\right\|=\left\|\underline{V}_{k}\right\|$ for al1 $k$.
ii) For each $k, U_{k}$ is an openclosed cover of $C$ made up of nonempty pairwise disjoint sets of diameter less than $1 / 2^{\mathrm{k}}$.
iii) For each $k, \underline{V}_{k}$ is an open cover of $X$ made up of nonempty sets of diameter less than $1 / 2^{\mathrm{k}}$.
iv) For each $k$ let $\underline{U}_{\mathrm{k}}=\left\{\mathrm{U}_{\mathrm{k}, 1}, \mathrm{U}_{\mathrm{k}, 2}, \ldots, \mathrm{U}_{\mathrm{k}, \mathrm{n}_{\mathrm{k}}}\right\}$ and $\underline{\mathrm{V}}_{\mathrm{k}}=$ $\left\{\mathrm{V}_{\mathrm{k}, 1}, \ldots, \mathrm{~V}_{\mathrm{k}, \mathrm{n}_{\mathrm{k}}}\right\}$. If $\mathrm{U}_{\mathrm{k}, \mathrm{i}} \subseteq \mathrm{U}_{\mathrm{k}-1, \mathrm{j}}$ for some $\mathrm{k}, \mathrm{i}$ and $j$ then $V_{k, i} \subseteq V_{k-1, j}$.

Let $c \in C$; then for each $k, k=1,2,3, \ldots$, there is a unique $\mathrm{U}_{\mathrm{k}, \mathrm{j}_{\mathrm{k}}} \varepsilon \underline{U}_{\mathrm{k}}$ containing c . Furthermore, $\mathrm{U}_{\mathrm{l}}, \mathrm{j}_{\mathrm{i}} \supseteq \mathrm{U}_{2}, \mathrm{j}_{2} \supseteq$ $U_{3, j_{3}} \supseteq \ldots, c=\bigcap_{k=1}^{\infty} U_{k, j_{k}}$ and $\bar{V}_{1, j} \supseteq \bar{V}_{2, j} \supseteq \bar{V}_{3, j} \supseteq \ldots$. let $g(c)=\bigcap_{k=1}^{\infty} \bar{V}_{k, j_{k}}$. Do the above for each $c \varepsilon C$; then $g$ is a function from $C$ into $X$. Clearly $g$ is onto. However, $g$ may not be one to one.

Let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a sequence in $C$ and $c \varepsilon C$ such that $c_{n} \rightarrow c$. Choose $\varepsilon>0$ and suppose $c \varepsilon \bigcap_{k}^{\infty}=U_{k, j_{k}}$ where $U_{k, j_{k}} \varepsilon \underline{U}_{k}$ for all $k$. Then, by Lemma 2.3, there exists a positive integer $k_{0}$ such that $\mathrm{c} \varepsilon \mathrm{U}_{\mathrm{k}_{0}, \mathrm{j}_{\mathrm{k}_{0}}} \subseteq \mathrm{~S}(\mathrm{c}, \varepsilon)$ and $\mathrm{g}(\mathrm{c}) \varepsilon \mathrm{V}_{\mathrm{k}_{0}, \mathrm{j}_{\mathrm{k}_{0}}} \subseteq \mathrm{~S}(\mathrm{~g}(\mathrm{c}), \varepsilon)$. The fact $c_{n} \rightarrow c$ implies that there exists a positive integer $m_{2}$ such that if $n \geq m_{2}$ then $c_{n} \varepsilon U_{k_{0}, j_{k_{0}}}$. Thus, for $n \geq m_{2} g\left(c_{n}\right)_{\varepsilon} V_{k_{0}, j_{k_{0}}}$ and therefore $g\left(c_{n}\right) \rightarrow g(c)$. Hence $g$ is a continuous map of $C$ onto X.\#

EXAMPLE 5.7. We will construct a continuous function from the Cantor set onto $I$ where $I=[0,1] \subseteq R^{1}$.

Let $C_{0}=[0,1]$ and construct $C_{1}$ by removing the interval $(1 / 3,2 / 3)$ from $C_{0}$, Hence, $C_{1}=[0,1 / 3] \cup[2 / 3,1]$. For each positive integer $n, n \geq 2$, construct $C_{n}$ from $C_{n-1}$ by removing the open midale third of each of the intervals in $C_{n+1}$ from $C_{n-1}$. Then $C=\bigcap_{n=0} C_{n}$ is the Cantor set.

For each $n, n=0,1,2, \ldots$, let $D_{n}=\left\{^{m} / 2^{n} \mid 0 \leq m \leq 2^{n}\right\}$. Let $B_{0}=\{0,1\}$ and define a function $g_{0}$ from $B_{0}$ onto $D_{0}$ as follows:

$$
g_{0}(x)= \begin{cases}0, & \text { if } x=0 \\ 1, & \text { if } x=1\end{cases}
$$

Recall that $C_{1}=[0,1 / 3] \cup[2 / 3,1]$ and then $I$ et $B_{1}=$ $\{0,1 / 3,2 / 3,1\}$. Define a function $g_{1}$ from $B_{1}$ onto $D_{1}$ as follows:

$$
g_{1}(x)= \begin{cases}0, & \text { if } x=0 \\ 1 / 2, & \text { if } x=1 / 3,2 / 3 \\ 1, & \text { if } x=1\end{cases}
$$

Thus, $\left.g_{1}\right|_{B_{0}}=g_{0}$ and if $x, y \in B_{1}$ are such that $|x-y| \leq 1 / 3$ then $\left|g_{1}(x)-g_{1}(y)\right| \leq 1 / 2 . \quad$ Recall that $C_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup$ $[2 / 3,7 / 9] \cup[8 / 9,1]$ and then let $B_{2}=\{0,1 / 9,2 / 9,1 / 3,2 / 3,7 / 9,8 / 9$, 1\}. Define a function $g_{2}$ from $B_{2}$ onto $D_{2}$ as follows:

$$
g_{2}(x)= \begin{cases}0, & \text { if } x=0 \\ 1 / 4, & \text { if } x=1 / 9,2 / 9 \\ 1 / 2, & \text { if } x=1 / 3,2 / 3 \\ 3 / 4, & \text { if } x=7 / 9,8 / 9 \\ 1 & \text { if } x=1,\end{cases}
$$

Then $\left.g_{2}\right|_{B_{1}}=g_{1}$ and if $x, y \in B_{2}$ are such that $|x-y| \leq 1 / 3^{2}$ then $\left|g_{2}(x)-g_{2}(y)\right| \leq 1 / 2^{2}$. For each $n \geq 0, C_{n}$ is the union of $2^{n}$ disjoint closed intervals. For $n \geq 3$ let $B_{n}=\{x \in C \mid x$ is an endpoint of one of the closed intervals contained in $\mathrm{C}_{\mathrm{n}}$; then $\left\|B_{n}\right\|=2^{n+1}$ for all $n$. Assume that for each $n, 3 \leq n \leq k$, a function $g_{n}$ from $B_{n}$ onto $D_{n}$ has been constructed such that $\left.g_{n}\right|_{B_{n-1}}=g_{n-1}$. A1so, let $C_{n-1}=\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right] \cup \ldots$ $U\left[a_{2 n-1}, b_{2 n-1}\right]$ with $a_{i}<b_{i}$ for all $i$ and $b_{i}<a_{i+1}$ for all $i \leq 2^{2 n-1}-1$ and $D_{n-1}=\left\{d_{1}=0 / 2^{n-1}, d_{2}=1 / 2^{n-1}, \ldots, d_{2^{n-1}+1}=\right.$ $\left.2^{n-1} / 2^{n-1}\right\}$ then $g_{n}\left(a_{i}+1 / 3\left(b_{i}-a_{i}\right)\right)=g_{n}\left(a_{i}+2 / 3\left(b_{i}-a_{i}\right)\right)=$ $\left(d_{i}+d_{i+1}\right) / 2$ for $i=1,2,3, \ldots, 2^{n-1}$.

Let $C_{k}=\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right] \cup \ldots \cup\left[a_{2 k}, b_{2 k}\right]$ with $a_{i}<b_{i}$ for all $i$ and $b_{i}<a_{i * 1}$ for all $i \leq 2^{k}-1$ and $D_{k}={ }_{f} d_{1}=0 / 2^{k}$, $\mathrm{d}_{2}=1 / 2^{\mathrm{k}}, \ldots, \mathrm{d}_{2^{k_{+1}}}=2^{\mathrm{k}} / 2^{\mathrm{k}}$. Define a function $\mathrm{g}_{\mathrm{k}+1}$ from $\mathrm{B}_{\mathrm{k}+1}$ onto $D_{k+1}$ such that $\left.g_{k+1}\right|_{B_{k}}=g_{k}$ and $g_{k+1}\left(a_{i}+1 / 3\left(b_{i}-a_{i}\right)\right)=$ $g_{k+1}\left(a_{i}+2 / 3\left(b_{i}-a_{i}\right)\right)=\left(d_{i}+d_{i+1}\right) / 2$ for $i=1,2,3, \ldots, 2^{k}$. Thus if $x, y \in B_{k+1}$ and $|x-y| \leq 1 / 3^{k+1}$ then $\left|g_{k+1}(x)-g_{k+1} \quad(y)\right| \leq 1 / 2^{k+1}$.

For each $X \varepsilon \bigcup_{n=0}^{\infty} B_{n}$ there is an integer $n_{x}$ such that $x \in B_{n_{X}}$ and $x \notin \underset{i<n_{x}}{U} B_{i}$. Let $g(x)=g_{n_{x}}(x)$ for each $x \varepsilon \bigcup_{n=0}^{\infty} B_{n}$. Then $g$ is a function from $\bigcup_{n=0}^{\infty} B_{n}$ onto $\bigcup_{n=0}^{\infty} D_{n}$ such that if $x, y \varepsilon \bigcup_{n=0}^{\infty} B_{n}$ and $|x-y| \leq 1 / 3^{k}$, for some $k$, then $|g(x)-g(y)| \leq 1 / 2^{k}$.

Let $B=\bigcup_{n=0}^{\infty} B_{n}$; then $B$ is dense in $C$. Choose $x \in C-B$ and let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence in $B$ such that $b_{n} \rightarrow x$ and $b_{n} \leq b_{n+1}$ for all $n$. Let $f(x)=\lim _{n \rightarrow \infty} g\left(b_{n}\right)$. Do the above for each $x \in C-B$ and if $x \in B$ let $f(x)=g(x)$. Thus, $f$ is a function from $C$ into I.

We need to show that $f$ is well defined on $C-B$. Let $x \in C-B$ and let $\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ be sequences in $B$ such that $c_{n} \leq x$ for all $x, d_{n} \leq x$ for all $x, c_{n} \rightarrow x, d_{n}+x, c_{n} \leq c_{n+1}$ for al1 $n$ and $d_{n} \leq d_{n+1}$ for all $n$. Suppose $c=\lim _{n \rightarrow \infty} g\left(c_{n}\right) \neq \lim _{n \rightarrow \infty} g\left(d_{n}\right)=d$. Without loss of generality let $c<d$. Set $\varepsilon=d-c$ and choose a positive integer $N$ such that $1 / 2^{N}<\varepsilon / 2$. Let $[0,1]=\left[a_{1}=0\right.$, $\left.b_{1}=1 / 2^{N}\right] \cup\left[a_{2}=1 / 2^{N}, b_{2}=2 / 2^{N}\right] \cup \ldots \cup\left[a_{2}^{N_{+1}}=1-1 / 2^{N}, a_{2} N_{+1}=1\right]$; then $\left|b_{j}-a_{j}\right|=1 / 2^{N}$ for a11 $j$. Say $c \varepsilon\left[a_{j}, b_{j}\right]$ and $d \varepsilon\left[a_{k}, b_{k}\right]$; then $j \neq k$ and $|j-k|>1$. Let $\varepsilon_{1}$ and $\varepsilon_{2}$ be as follows:

$$
\varepsilon_{1}=\left\{\begin{array}{ll}
b_{j}-c & \text { if } c \neq b_{j} \\
1 / 2^{N+1}, & \text { if } c=b_{j}
\end{array} \text { and } \varepsilon_{2}= \begin{cases}d n a_{k}, & \text { if } d \text { 丰 } a_{k} \\
1 / 2^{N+1}, & \text { if } d=a_{k}\end{cases}\right.
$$

Choose a positive integer $N_{1}$ such that for $n \geq N_{1}$ $\left|x-c_{n}\right|<1 /(2)\left(3^{N}\right),\left|x-d_{n}\right|<1 /(2)\left(3^{N}\right),\left|f\left(c_{n}\right)-c\right|<\varepsilon_{1}$ and $\left|f\left(d_{n}\right)-d\right|<\varepsilon_{2}$. Recall that $C_{N}$ is the union of $2^{N}$ disjoint closed subintervals of $[0,1]$, Let $C_{N}=\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right] \cup \ldots$ $U\left[a_{2} N, b_{2} \mathrm{~N}\right]$ and choose $\mathrm{n} \geq \mathrm{N}_{1}$. Without loss of generality suppose $x_{\varepsilon}\left[\mathrm{a}_{2}, \mathrm{~b}_{2}\right]$; then $\mathrm{c}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}} \varepsilon\left[\mathrm{a}_{2}, \mathrm{~b}_{2}\right]$ since $\left|\mathrm{x}-\mathrm{c}_{\mathrm{n}}\right|<1 / 2\left(3^{N}\right)$ and $\left|x-d_{n}\right|<1 /(2)\left(3^{N}\right)$. Hence $\left|f\left(c_{n}\right)-f\left(d_{n}\right)\right| \leq 1 / 2^{N}$. However, $\left|f\left(c_{n}\right)-c\right|<\varepsilon_{1}$ and $\left|f\left(d_{n}\right)-d\right|<\varepsilon_{2}$ imply that $\left|f\left(c_{n}\right)-f\left(d_{n}\right)\right|>1 / 2^{N}$. This is a contradiction. Hence $c=d$ and therefore $f$ is well defined on $C-B$.

Let $x_{\varepsilon} C$ and $\varepsilon>0$. Choose a positive integer $N$ such that $1 / 2^{N}<\varepsilon$ and $\delta>0$ such that $\delta<1 / 3^{N}$. Let $y \varepsilon C$ be such that $|x-y|<\delta$; then $|f(x)-f(y)| \leq 1 / 2^{N_{<}} \varepsilon$. Hence $f$ is continuous.

The function $f$ takes $B$ onto $\bigcup_{n=0}^{\infty} D_{n}$ since $g$ takes $B$ onto $\bigcup_{n=0}^{\infty} D_{n}$. Let $x \in[0,1]-\bigcup_{n=0}^{\infty} D_{n}$. Choose a sequence $\left\{d_{n}\right\}_{n=1}^{\infty}$ in $\bigcup_{n=0}^{\infty} D_{n}$ such that $d_{n} \leq x$ for all $n$ and $d_{n} \rightarrow x$. For each $n$ let $c_{n} \in B$ be such that $f\left(c_{n}\right)=d_{n}$; then $\left\{c_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence. Hence there exists a $c \varepsilon C$ and a subsequence $\left\{c_{n_{k}}\right\}^{\infty}$ of $\left\{c_{n}\right\}_{n=1}^{\infty}$ such that $c_{n_{k}} \rightarrow c$. We now have that $f\left(c_{n_{k}}\right) \rightarrow f(c)$ since $f$ is continuous. Hence $f(c)=x$. Thus $f$ is a continuous map from $C$ onto $I$.

EXAMPLE 5.8. In example 5.7 we mapped $C$ onto $I$ continuously. Now let's map $I$ onto $I \times X$ continuously. Let $I$ denote $[0,1]$ in $\mathrm{R}^{1}$. We will construct a continuous map.
$h$ from $I$ onto $I \times I$. In the construction of $h$ we will use Theorem 5.6.

Let $g$ be continuous map from the Cantor set onto $I \times I$. Theorem 5.6 tells us that such a $g$ exists. Let $C$ be the Cantor set. The function $g$ is uniformly continuous since $C$ is compact. Recall the construction of $C$. Let $C_{0}=[0,1]$, $C_{1}=[0,1 / 3] \cup[2 / 3,1]$ and $C_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9]$ U[8/9,1]. In general, for each positive integer $n$ construct $C_{n}$ from $C_{n-1}$ by removing the open middle third of each of the intervalsin $C_{n-1}$ from $C_{n-1}$. Then $C=\bigcap_{n=0} C_{n}$. Let $R_{1}=[1 / 3,2 / 3]$, $\mathrm{R}_{2}=[1 / 9,2 / 9], \mathrm{R}_{3}=[7 / 9,8 / 9], \mathrm{R}_{4}=[1 / 27,2 / 27], \mathrm{R}_{5}=[7 / 27,8 / 27]$, $R_{6}=[19 / 27,20 / 27], R_{7}=[25 / 27,26 / 27], \ldots$. Define $h(x)=g(x)$ for $a 11 \mathrm{x} \varepsilon \mathrm{C}$. For each positive integer n say $\left[\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right]=\mathrm{R}_{\mathrm{n}}$. So, for example, $a_{1}=1 / 3, b_{1}=2 / 3, a_{2}=1 / 9, b_{2}=2 / 9, a_{3}=7 / 9$, $\mathrm{b}_{3}=8 / 9$, and $\mathrm{a}_{4}=1 / 27$. Let $\mathrm{x} \varepsilon \mathrm{I}-\mathrm{C}$. Then $\mathrm{x} \varepsilon \mathrm{R}_{\mathrm{n}_{0}}=\left[\mathrm{a}_{\mathrm{n}_{0}}, \mathrm{~b}_{\mathrm{n}_{0}}\right]$ for exactly one positive integer $n_{0}$. If $g\left(a_{n_{0}}\right)=g\left(b_{n_{0}}\right)$ then let $h(x)=g\left(a_{n_{0}}\right)$. If $g\left(a_{n_{0}}\right) \neq g\left(b_{n_{0}}\right)$ let $h(x)$ be as follows:

$$
h(x)=\left[\frac{g\left(a_{n_{0}}\right)-g\left(b_{n_{0}}\right)}{a_{n_{0}}-b_{n_{0}}}\right] x+g\left(b_{n_{0}}\right)-b_{n_{0}}\left[\frac{g\left(a_{n_{0}}\right)-g\left(b_{n_{0}}\right)}{a_{n_{0}}-b_{n_{0}}}\right]
$$



Figure 13 Clarification of $h(x)$
Do the above for each $x \varepsilon I-C$. Then $h$ is a function from $I$ onto $I \times I$ such that $\left.h\right|_{C}=g$. The function $h$ is onto $I \times I$ since $g$ is onto $I \times I$.

We now must show that $h$ is continuous. Let $x \in[0,1]$ and $\varepsilon>0$. If $x \in R_{n}^{0}$ for some $n$ then clearly $h$ is continuous at $x$. Hence, suppose $x \varepsilon C$. Since $g$ is uniformly continuous we can choose $\delta>0$ such that if $c_{1} ; c_{2} \varepsilon C$ and $\left|c_{1}-c_{2}\right|<\delta$ then $\left|g\left(c_{1}\right)-g\left(c_{2}\right)\right|<\varepsilon / 2$. There exist only finitely many $n$ such that diam $R_{n} \geq \delta$. We need to consider two cases. First suppose that for all $n$ diam $R_{n}<\delta$. Let $y \in I$ be such that $|x-y|<\delta$. If $y \in C$ then $|h(x)-h(y)|=|g(x)-g(y)|<\varepsilon / 2$. as desired. If $y \in I-C$ then $y \in\left[a_{k_{0}}, b_{k_{0}}\right]=R_{k_{0}}$ for exactly one $k_{0}$. The diameter of $R_{k_{0}}$ less than $\delta$ implies that $\left|g\left(a_{k_{0}}\right)=g\left(b_{k_{0}}\right)\right|<\varepsilon / 2$, Without loss of generality suppose $x<y$. Then
$|h(x)-h(y)| \leq\left|h(x)-h\left(a_{k_{0}}\right)\right|+\left|h\left(a_{k_{0}}\right)-h(y)\right|<{ }^{\varepsilon} / 2+\varepsilon / 2=\varepsilon$.
Hence $h$ is continuous at $x$ if diam $R_{n}<\delta$ for all $n$.
Now, suppose diam $R_{n} \geq \delta$ for $n=1,2,3, \ldots, k, R_{F}=\left\{R_{n} \mid R_{n} n\right.$ $(x, x+\delta) \neq \phi$ and diam $\left.R_{n} \geq \delta\right\}$ and $R_{p}=\left\{R_{n} \mid R_{n} \cap(x-\delta, x) \neq \phi\right.$ and $\left.\operatorname{diam} R_{n} \geq \delta\right\}$. Set $a=\min \left\{a_{n} \mid R_{n} \varepsilon R_{F}\right\}$ if $R_{F} \neq \emptyset$ and $b=\max \left\{b_{n} \mid\right.$ $\left.R_{n} \varepsilon R_{p}\right\}$ if $R_{p} \neq \phi$. Define $\alpha$ as follows:

$$
\alpha=\left\{\begin{array}{cc}
\min \{a-x, x-b\}, & \text { if } R_{F} \neq \phi \text { and } R_{p} \neq 0 \\
\min \{\delta, x-b\}, & \text { if } R_{F}=\phi \text { and } R_{p} \neq \phi \\
\min \{\delta, a-x\}, & \text { if } R_{p}=\phi \text { and } R_{F} \neq \phi \\
\delta, & \text { if } R_{p}=\phi \text { and } R_{F}=\phi
\end{array}\right.
$$

Notice that $\alpha \leq \delta$. Recall that $x \varepsilon C$. Let $y \in I$ be such that $|x-y|<\alpha$. If $y \varepsilon C$ then $|h(x)-h(y)|=|g(x)-g(y)|<{ }^{\varepsilon} / 2$ as desired. If $y \notin C$ then $y \in R_{k_{1}}=\left[a_{k_{1}}, b_{k_{1}}\right]$ for exactly one $k_{1}$. We have that $\left[a_{k_{1}}, b_{k_{1}}\right] \cap(x-\delta, x+\delta) \neq \emptyset$ since $|x-y|<\alpha \leq \delta$. The facts $\left[{ }_{\mathrm{k}_{1}}, \mathrm{~b}_{\mathrm{k}_{1}}\right] \cap(\mathrm{x}-\delta, \mathrm{x}+\delta) \neq \emptyset$ and $|\mathrm{x}-\mathrm{y}|<\alpha$ imply that diam $R_{k_{1}}<\delta$. Without loss of generality suppose $x<y$. Then $|h(x)-h(y)| \leq\left|h(x)-h\left(a_{k_{1}}\right)\right|+\left|h\left(a_{k_{1}}\right)-h(y)\right|<{ }^{\varepsilon} / 2+\varepsilon / 2=\varepsilon$.
Hence $h$ is a continuous map from $I$ onto $I \times I$.
Let $X$ be a metric space. Choose two distinct points in $X$ and let $K$ be an arc joining a to $b$. We will define a linear order on $K$ and define a function from $K$ onto [ 0,1$]$ that is one to one, onto, continuous and order preserving.

LEMMA 5,9. Let X be a metric space and $\mathrm{a}, \mathrm{b}$ be two distinct points in $X$. Let $K$ be an arc joining a to $b$ in $X$. Define <on K as follows:
i) Let $x, y \in K$. Then $x<y$ if and only if $K^{\prime \prime}\{x\}=U_{a} \psi V_{b}$ with $a \varepsilon U_{a}$ and both $y$ and $b$ in $V_{b}$.
ii) $a<x$ for all $x \neq a$.
iii) $x<b$ for $a l l ~ x \neq b$.
iv) $x=y$ if $x$ and $y$ are the same elements.

Then < is a linear order on $K$.
PROOF. First we need to show that $<$ is well defined. We must show that if $x \in K$ and $K-\{x\}=U_{1, a} \psi V_{1, b}=U_{2, a} \psi V_{2, b}$ with $a \in U_{1, a} \cap U_{2, a}$ and $b \varepsilon V_{1, b} \cap V_{2, b}$ then $U_{1, a}=U_{2, a}$ and $V_{1, b}=$ $V_{2, b}$. Both $U_{1, a} \cup\{x\}$ and $V_{2, b} \cup\{x\}$ are connected sets since $K$ is connected. Then $K=U_{1, a} \cup V_{2, b} \cup\{x\}$, since $K$ is irreducible between $a$ and $b$. Similarly, $K=U_{2, a} \cup V_{1, b} \cup\{x\}$. Hence $U_{2, a} \cup V_{1, b} \cup\{x\}=U_{1, a} \cup V_{2, b} \cup\{x\}$. Then $U_{1, a}=U_{2, a}$ and $V_{1, b}=V_{2, b}$ since $U_{1, a} \cap V_{1, b}=\phi$ and $U_{2, a} \cap V_{2, b}=\phi$. Thus $<$ is we11 defined:

Clearly $\mathrm{x} \leq \mathrm{x}$ for all $\mathrm{x} \varepsilon \mathrm{K}$. Suppose $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{K}$ with $\mathrm{x}<\mathrm{y}$. Then $y$ is not less than $x$. We need only consider $x, y$ different than $a, b$. Suppose $y<x$; then $K-\{x\}=U_{a_{x}} \Psi V_{b_{x}}$ and $K \sim\{y\}=$ $U_{a y} \psi V_{b_{y}}$ with $y \in V_{b_{x}}$ and $x \in V_{b_{y}}$. The set $U_{a_{x}} U\{x\}$ is connected and does not contain $y$; hence $U_{a_{x}} U\{x\} \subseteq V_{b_{y}}$. The fact a $\varepsilon U_{a_{x}} \cap$ $\mathrm{U}_{\mathrm{a}_{\mathrm{y}}}$ contradicts $\mathrm{U}_{\mathrm{a}_{\mathrm{y}}} \cap \mathrm{v}_{\mathrm{b}_{\mathrm{y}}}=\phi$. Thus $\mathrm{y} \nmid x$. Hence if $x \leq y$ and $y \leq x$ then $x=y$.

Let $x, y, z \varepsilon K$ and suppose $x \leq y$ and $y \leq z$. We need to show that $x \leq z$. We need only consider $x, y, z$ different than $a, b$ with $x<y$ and $y<z$. The other cases are clear. The fact $x<y$ implies that $K-\{x\}=U_{a_{x}} \psi V_{b_{x}}$ with $y \varepsilon V_{b_{x}} . \quad K^{\prime \prime}\{y\}=$ $U_{a_{y}} \Psi V_{b_{y}}$ with $z \varepsilon V_{b_{y}}$ since $y<z$. Suppose $z \varepsilon U_{a_{x}}$; then $a \varepsilon U_{a_{y}} \cap$ $\mathrm{U}_{\mathrm{a}_{\mathrm{X}}}$ and $\mathrm{U}_{\mathrm{a}_{\mathrm{x}}} \cap \mathrm{v}_{\mathrm{b}_{\mathrm{y}}} \neq \phi$. This contradicts the connectedness of $U_{a_{x}} \cup\{x\}$. Hence $z \varepsilon V_{b_{x}}$ and therefore $x<z$.

Let $x, y \in K$. We need to show that $x \leq y$ or $y \leq x$. We need only consider $x, y$ different than $a, b$ and $x \neq y$. The other cases are clear. $K-\{x\}=U_{a_{x}} \psi V_{b_{x}}$ and $K-\{y\}=U_{a_{y}} \psi V_{b_{y}} . \quad$ If $y \varepsilon V_{b_{x}}$ then $x<y$ and we are done. So, suppose $y \varepsilon U_{a_{x}}$. Then $V_{b_{x}} U\{x\} \subseteq V_{b_{y}}$. Thus $x \varepsilon V_{b_{y}}$ and therefore $y<x$. Now we have that < is a linear order on K . \#

LEMMA 5.10. Let $K$ be a metric arc joining $a$ to $b$ and $T$ be the metric topology on $K$. Let $T_{s}$ be the order topology on K. A base for $T_{<}$is $\underline{B}=\{[a, x) \mid x \varepsilon K$ and $x \neq b\} \cup\{(y, b] \mid y \in K$ and $y \neq a\} \cup\{(x, y) \mid x, y \in K\}$. Then $T=T_{<}$.

PROOF. First we will show that $T_{\kappa} \subseteq T$. Choose $x \varepsilon K$ different from a or $b$. Then $K-\{x\}=U_{a_{x}} \Psi V_{b_{x}}$ with $a \varepsilon U_{a_{x}}$ and $b \in V_{b_{x}}$. Let $z \varepsilon[a, x)$; then $z \& x, \quad K \dot{f}\{z\}=U_{a_{z}} \psi V_{b_{z}}$ with $\mathrm{a} \varepsilon \mathrm{U}_{\mathrm{a}_{\mathrm{z}}}$ and $\mathrm{b} \varepsilon \mathrm{V}_{\mathrm{b}_{\mathrm{z}}}$. The fact $\mathrm{z}\left\{\mathrm{x}\right.$ implies that $x \varepsilon \mathrm{~V}_{\mathrm{b}_{\mathrm{z}}}$ 。

Thus $U_{a_{z}} \mathcal{U}^{\prime}\{z\} \subseteq U_{a_{x}}$ and therefore $z \varepsilon U_{a_{x}}$. Hence $[a, x) \subseteq U_{a_{x}}$. Choose $\omega \in U_{a_{x}}$ different than $a . K-\{\omega\}=U_{a_{\omega}} \psi V_{b_{\omega}}$ with $a \varepsilon U_{a_{\omega}}$ and $\mathrm{b} \varepsilon \mathrm{V}_{\mathrm{b}_{\omega}}$. Suppose $\mathrm{x} \varepsilon \mathrm{U}_{\mathrm{a}_{\omega}}$. Then $V_{\mathrm{b}_{\omega}} \cap \mathrm{V}_{\mathrm{b}_{\mathrm{x}}} \neq \varnothing$ and $\mathrm{V}_{\mathrm{b}_{\omega}} \cap$ $U_{a_{x}} \neq \phi$. This contradicts $V_{b_{w}} U\{\omega\}$ being connected. Hence ${ }^{X_{\varepsilon} V_{b_{\omega}}}$ and therefore $\omega<x$. Thus $\mathrm{U}_{\mathrm{a}} \frac{c}{}[\mathrm{a}, \mathrm{x})$. Now, $\mathrm{U}_{\mathrm{a}_{\mathrm{x}}}=[\mathrm{a}, \mathrm{x})$ for all $x \neq a, b$. Similarly $(y, b]=V_{b}$ for $a 11 y \neq, a, b$. If $x \neq y$ and $x, y$ are different than $a, b$ then $(x, y)=U_{a_{x}} \cap V_{b_{y}}$. The sets $U_{a_{x}}$ and $V_{b_{y}}$ are open for all $x, y$ in $K$. Hence $T_{<} \subseteq T$.

Let $U \varepsilon T$. Suppose $a \varepsilon U$. If there exists a $z \varepsilon K$ such that $[a, z) \subseteq U$ then $U \varepsilon T_{<}$. Suppose for all $z \varepsilon K$ we have that $[a, z) \nsubseteq U$. Then $[a, z) \cap(K-U) \neq \emptyset$ for all $z \varepsilon K$. Let $H=\bigcap_{\substack{z \in K \\ z \neq a}}[[a, z] \cap(K-U)]$; then $H \neq \phi$ since $K$ is compact. However,
$H \subseteq \bigcap_{\substack{z \in K \\ z \neq a}}[a, z]=a$ and $H \subseteq K-U$. This contradicts $a \varepsilon U$. Hence there exists a $z \varepsilon K$ such that $[a, z) \subseteq U$. Thus $U \varepsilon T_{<}$. Similarly if $b \varepsilon U$ then there exists $a z \varepsilon K$ such that $(z, b] \subseteq U$ and if $a, b \notin U$ then there exist $x, y \in K$ such that $(x, y) \subseteq U$. Thus $T \subseteq T_{<}$. Now, we have that $\mathrm{T}=\mathrm{T}_{<_{1}}$. \#

LEMMA 5.11. Let K be a metric arc joining a to b . Choose two distinct points $x, y$ in $K$. Without loss of generality suppose $x<y$; then there exists a $z \varepsilon K$ such that $x<z \varangle y$.

PROOF. First suppose $x \neq a, b$ and $y \neq a, b$, Suppose there does not exist a $z \varepsilon K$ such that $x<z<y . \quad K-\{x\}=U_{a_{X}} \Psi V_{b_{x}}$ and $K \cdot\{y\}=U_{a} \psi V_{b_{y}}$ with a $\varepsilon U_{a_{x}} \cap U_{a_{y}}, b \varepsilon V_{b_{x}} \cap V_{b_{y}}$ and $y \varepsilon V_{b_{x}}$. Then $U_{a_{x}} U\{x\} \subseteq U_{a_{y}}$. Thus $x \in U_{a_{y}}$ and so $V_{b_{y}} U\{y\} \subseteq V_{b_{x}}$. Let $H=U_{a_{x}} U^{\prime}\{x\}$ and $M=V_{b_{y}} U^{\prime}\{y\}$; then $H=[a, x], M=[y, b]$ and $H \cap M=\phi . K=H \psi M$ since there does not exist a $z \varepsilon K$ such that $x<z<y$. This contradicts $K$ being connected. Hence there is a $z \varepsilon K$ such that $x<z<y$.

Now suppose $x=a$ and $y \neq a, b$. Suppose there does not exist a $z \varepsilon K$ such that $a<z<y$. Then $K-\{y\}=U_{a} \psi V_{b_{y}}=$ $\{a\} \Psi V_{b_{y}}$. Thus $\{a\}$ is both open and closed. This is a contradiction. Hence there exists a $z \varepsilon K$ such that $a<z<y$. Similarly if $y=b$ and $x \neq a, b$ then there exists $a z \in$ such that $x<z<b$. If $x=a$ and $y=b$ then there exists $a z \varepsilon K$ such that $x<z<y$ since $\{a, b\} \quad \subset K . \#$

THEOREM 5.12. If $K$ is a metric arc joining a to $b$ then there is an order preserving homeomorphism from $K$ onto $I$.

PROOF. Let $K$ be a metric arc joining $a$ to $b$ and let $D=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a countable dense subset of $K$ such that $x_{i} \neq x_{j}$ for $i \neq j$ and $x_{i} \neq a, b$ for $a l l i$. Set $x_{0}=a$ and $x_{\infty}=b$. Let $g(a)=0, g(b)=1$ and $g\left(x_{1}\right)=1 / 2$. Let $g\left(x_{2}\right)$ be as follows:

$$
g\left(x_{2}\right)= \begin{cases}3 / 4, & \text { if } x_{2}>x_{1} \\ 1 / 4, & \text { if } x_{2}<x_{1}\end{cases}
$$

Assume that $g\left(x_{k}\right)$ has been defined for all $k \leq n-1$. Let $x_{p_{n}}=\max \left\{x_{j} \mid x_{j}<x_{n}, j=0,1,2, \ldots, n-1\right\}$ and $x_{f_{n}}=\min$ $\left\{x_{j} \mid x_{j}>x_{n}, j=0,1,2, \ldots, n-1, \infty\right\}$. Then 1et $g\left(x_{n}\right)=\left(g\left(x_{p_{n}}\right)+\right.$ $\left.g\left(x_{f_{n}}\right)\right) / 2$. Let $g(y)=g 1 b\left\{g\left(x_{n}\right) \mid x_{n}>y\right\}$ for each $y \varepsilon K-D$.

We will show that $g$ is a one to one, onto, continuous and order preserving map from $K$ into $I=[0,1]$.

Now, let's show that g preserves order. We will first use induction on the positive integers to show that g preserves order on $D$. We will show the following by induction:

Let $n$ be a positive integer. Then
(i) If $j$ is such that $1 \leq j \leq n-1$ and $x_{j}<x_{n}$ then $g\left(x_{j}\right)<g\left(x_{n}\right)$.
(ii) If $j$ is such that $1 \leq j \leq n-1$ and $x_{j}>x_{n}$ then $g\left(x_{j}\right)>g\left(x_{n}\right)$.

Clearly the result holds for $n=1$ and $n=2$. Assume the result holds for all $n \leq k$. By definition, $g\left(x_{k+1}\right)=\left(g\left(x_{p_{k+1}}\right)+\right.$ $\left.g\left(x_{f_{k+1}}\right)\right) / 2$ with $a \leq x_{p_{k+1}}<x_{k+1}<x_{f_{k+1}} \leq b$. Using the induction hypothesis we have that $g\left(x_{p_{k+1}}\right) \leqslant g\left(x_{f_{k+1}}\right)$. Hence $g\left(x_{p_{k+1}}\right)<g\left(x_{k+1}\right)<g\left(x_{f_{k+1}}\right)$. Applying the induction hypothesis and transitivity to ${ }^{x} p_{k+1}$ and $x_{f_{k+1}}$ we have the desired result.

Hence $g$ preserves order on $D$ ．
Let $x, y \varepsilon K$ be such that $x, y ⿻ 三 丨 口 刂$ ．Without loss of gen－ crality suppose $x<y$ ．Recall that $g(x)=g 1 b^{\prime}\left\{g\left(x_{n}\right) \mid x_{n}>x\right\}$ and $g(y)=g 1 b^{\prime}\left\{g\left(x_{n}\right) \mid x_{n}>y\right\}$ ．There exists an $x_{n_{0}} \varepsilon D$ such that $x<x_{n_{0}}<y$ since $D$ is dense in $K$ ．Thus $g(x)<g\left(x_{n_{0}}\right)$ ． Suppose $g(y)<g\left(x_{n_{0}}\right)$ ；then there exists a $x_{n_{1}} \varepsilon D$ such that $\mathrm{y}<\mathrm{x}_{\mathrm{n}_{1}}$ and $\mathrm{g}\left(\mathrm{x}_{\mathrm{n}_{1}}\right)<\mathrm{g}\left(\mathrm{x}_{\mathrm{n}_{0}}\right)$ ．However， $\mathrm{g}\left(\mathrm{x}_{\mathrm{n}_{1}}\right)<\mathrm{g}\left(\mathrm{x}_{\mathrm{n}_{0}}\right)$ implies that $\mathrm{x}_{\mathrm{n}_{1}}<\mathrm{x}_{\mathrm{n}_{0}}$ ．Thus $\mathrm{x}_{\mathrm{n}_{1}}<\mathrm{x}_{\mathrm{n}_{0}}<\mathrm{y}<\mathrm{x}_{\mathrm{n}_{1}}$ ．This is a contradic－ tion．Hence $g(x)<g\left(x_{n_{0}}\right) \leq g(y)$ and therefore $g(x)<g(y)$ ． Thus，$g$ preserves order on $K$ ．

Let $B_{0}=\{0,1\}$ and for each positive integer let $B_{n}=\left\{0 / 2^{n}, 1 / 2^{n}, 2 / 2^{n}, \ldots, 2^{n} / 2^{n}\right\}$ ．Set $B=\bigcup_{n=0}^{\infty} B_{n}$ ．We will show that $g$ takes $D$ onto $B$ ．Clearly，for each $b \in B_{0} \cup B_{1}$ there exists $a d_{b} \varepsilon D$ such that $g\left(d_{b}\right)=b$ ．Consider $B_{2}=\{0,1 / 4,1 / 2$ ， $3 / 4,1\}$ ．Let $H_{2}=\left\{x_{n} \varepsilon D \mid x_{n}>x_{1}\right\}$ and 1 et $k_{1}$ be the smallest positive integer such that $x_{k_{1}} \varepsilon H_{2}$ ．Then $x_{1}=x_{p_{k_{1}}}$ and $b=x_{f_{k_{1}}}$ ．Thus $g\left(x_{k_{1}}\right)=3 / 4$ ．Let $R_{2}=\left\{x_{n} \varepsilon D \mid x_{n}<x_{1}\right\}$ ．Let $k_{2}$ be the smallest positive integer such that $x_{k_{2}} \varepsilon R_{2}$ ．Then $x_{1}=x_{f_{k_{2}}}$ and $0=x_{p_{k_{2}}}$ ．Thus，$g\left(x_{k_{2}}\right)=1 / 4$ ．Hence if $b \in B_{0} \cup B_{1}$ U $B_{2}$ then there exists $a d_{b} \varepsilon$ such that $g\left(d_{b}\right)=b$ ．Assume that if $b \varepsilon \bigcup_{i=1}^{n} B_{i}$ then there exists a $d_{b} \varepsilon{ }_{n}^{D}$ such that $g\left(d_{b}\right)=b$ ． Consider $B_{n+1}^{i=1} . \quad B_{n}=\left\{0 / 2^{n}, 1 / 2^{n}, 3 / 2^{n}, \ldots, 2^{n}-1 / 2^{n}, 2^{n} / 2^{n}\right\}$ and $B_{n+1}=\left\{0 / 2^{n+1}, 1 / 2^{n+1}, 2 / 2^{n+1}, \ldots, 2^{n+1} / 1 / 2^{n+1}, 2^{n+1} / 2^{n+1}\right\}$ ．

We have that $\left\{0 / 2^{n+1}, 2 / 2^{n+1}, 4 / 2^{n+1}, \ldots, 2^{n+1} / 2^{n+1}\right\}=B_{n}$; hence if $b \in\left\{0 / 2^{n+1}, 2 / 2^{n+1}, \ldots, 2^{n+1} / 2^{n+1}\right\}$ then there is a $d_{b} \varepsilon D$ such that $g\left(d_{b}\right)=b$. Let $k_{3}$ be such that $g\left(x_{k_{3}}\right)=2 / 2^{n+1}$ and let $R_{3}=\left\{x_{n} \mid x_{n}<x_{k_{3}}, n>k_{3}\right\}$. Clearly $k_{3} \neq 0$ and $R_{3} \neq \phi$. Let $k_{4}$ be the smallest positive integer such that $X_{k_{4}} \varepsilon R_{3}$. Then ${ }_{x_{k}}={ }^{x} f_{k_{4}}$ and $x_{p_{k_{4}}}=a$. Thus $g\left(x_{k_{4}}\right)=1 / 2^{n+1}$. Using a similar argument one can show that there is a $d \varepsilon D$ such that $g(d)=$ $2^{\mathrm{n}+1}-1 / 2^{\mathrm{n}+1}$. Consider $4 / 2^{\mathrm{n}+1}$. We have that $\mathrm{g}(0)=\mathrm{a}$ and $g\left(x_{k_{3}}\right)=2 / 2^{n+1}$. Let $\bar{x}_{k_{5}} \varepsilon D$ be such that $g\left(x_{k_{5}}\right)=4 / 2^{n+1}$. Set $\mathrm{R}_{4}=\left\{\mathrm{X}_{\mathrm{n}} \varepsilon \mathrm{D} \mid \mathrm{x}_{\mathrm{k}_{3}}<\mathrm{x}_{\mathrm{n}}<\mathrm{X}_{\mathrm{k}_{5}}\right.$ and $\left.\mathrm{n}>\mathrm{k}_{3}, \mathrm{k}_{5}\right\}$. Clearly $\mathrm{R}_{4} \neq \phi$. Let $k_{6}$ be the smallest positive integer such that $\bar{x}_{k_{6}} \varepsilon R_{4}$. Then $\mathrm{x}_{\mathrm{p}_{\mathrm{k}_{6}}}=\mathrm{x}_{\mathrm{k}_{3}}$ and $\mathrm{x}_{\mathrm{f}_{\mathrm{k}_{6}}}=\mathrm{x}_{\mathrm{k}_{5}}$. Hence $\mathrm{g}\left(\mathrm{x}_{\mathrm{k}_{6}}\right)=3 / 2^{\mathrm{n+1}}$. Similarly there exist elements in $D$ which map onto $5 / 2^{\mathrm{n}+1}, 7 / 2^{\mathrm{n}+1}$, $\ldots,\left(2^{\mathrm{n}+1}-5\right) / 2^{\mathrm{n}+1}$. Thus for each $b \varepsilon B_{n+1}$ there is a $d_{b} \varepsilon D$ such that $g\left(d_{b}\right)=b$. Therefore, $g$ takes $D$ onto $B$.

Wo can now show that $g$ takes $K$ onto $[0,1]$. Let $z \varepsilon[0,1]$ $B$ and let $\left\{b_{i}\right\}_{i=1}^{\infty}$ be a sequence in $B$ such that $b_{i}>b_{i+1}$ for a11 $i$ and $b_{i} \rightarrow z$. For each $i$ let $d_{i} \varepsilon D$ be such that $g\left(d_{i}\right)=b_{i}$. Then, because $g$ preserves order, $d_{i}>d_{i+1}$ for all $i$. There exists a $\omega \varepsilon K$ such that $d_{i} \xrightarrow{c} \omega$ since $K$ is compact. We have that $g(\omega)=\operatorname{gib}\left\{g\left(x_{n}\right) \mid x_{n} \geq \omega\right\}$ whether $\omega \in D$ or $\omega \varepsilon K-D$. Suppose $g(\omega)<z$; then there is a $x_{m_{0}} \varepsilon D$ such that $x_{m_{0}}>\omega$ and $g(\omega)<$ $g\left(x_{m_{0}}\right)<z$. Then $x_{m_{0}}<d_{i}$ for all i since $g\left(x_{m_{0}}\right)<z$. So, $\omega<x_{m_{0}}<d_{i}$ for all i. Thus, $K-\left\{x_{m_{0}}\right\}=U_{a_{x_{m_{0}}}} \psi V_{b_{x_{m_{0}}}}$ with
$\omega \in U_{a_{m_{0}}}$ and $d_{i} \varepsilon V_{b_{x_{m_{0}}}}$ for all i. This contradicts $d_{i} \xrightarrow{c} \omega$. Hence $g(\omega) \geq z$. Suppose $g(\omega)>z$; then $g(\omega)>g\left(d_{i_{0}}\right)$ for some $i_{0}$. This contradicts $\omega<d_{i}$ for all i. Hence $g(\omega)=z$ and so $g$ takes $K$ onto $[0,1]$.

The function $g$ is one to one since $g$ is onto $[0,1]$ and $g$ preserves order. Let $c, d$ be two distinct points in $[0,1]$. Then $g^{-1}((c, d))=\left(g^{-1}(c), g^{-1}(d)\right), g^{-1}((0, d))=\left(a, g^{-1}(d)\right)$ and $g^{-1}((c, 1))=\left(g^{-1}(c), b\right)$. However, $\left(g^{-1}(c), g^{-1}(d)\right),\left(a, g^{-1}(d)\right)$ and $\left(g^{-1}(c), b\right)$ are open in $K$. Hence $g$ is a continuous map. We now have that $g$ is a continuous, onto, one to one and order preserving map from $K$ to $[0,1]$. The function $g$ is a homeomorphism since $K$ is compact and $[0,1]$ is $T_{2}$. \#

## BIBLIOGRAPHY

Books
Kuratowski, K., Topologie, Vols. I and II, Academic Press, New York and London, 1968.

Willard, Stephen, General Topology, Addison-Wesley Publishing Co., Reading, Massachusetts, 1968.

## Articles

Whyburn, G. T., Analytic Topology, American Mathematical Society Colloquium Published Vol. 28, American Mathematical Socicty, Providence, Rhode Island, 1963.

