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CHAPTER I

INTRODUCTION

In 1918 the German mathematician Hans Rademacher published

a significant extension of the then-existing criteria needed to

insure the property of total differentiability of a real-valued

function of a complex variable. In the same paper, using two

such functions concurrently, a uniform mapping of their bounded

region of domain onto an area in ]R2 was produced in which the

ratio of magnification of the mapping was identical to the ab-

solute value of the functional determinant almost everywhere.

Making the additional assumption that this mapping be 1-1 and

continuous, the previously known transformation formula for the

double integral of a finite, measurable function was valid.

This thesis is devoted to Part I of that 1918 paper, trans-

lated from the original German. In it, we will extend Rademacher's

results in ]R2 which culminated in total differentiability to 1Rn

Though alluded to by Rademacher himself as being possible, this

extension of the vast body of lemmas and propositions to uRn comes

only after a vigorous substantiation of these claims in the

setting of IRn. We must even modify Rademacher's plan of attack

to accommodate an appeal to induction on the dimension of the

space.

Although set iniR n all terms used in the thesis derive

their meanings from analogous counterparts in real analysis,
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in particular, Lebesgue measure and integration theory. One

term, however, that calls for illumination is the concept of

total differentiability. Its formal definition is as follows:

Definition: Let the function f: G ]R , G a subset of

possess all lst order partial derivatives with respect to

any variable throughout G. f is said to be totally differen-

tiable at the point X = (x1 , x2 ''''xn) c G if there exists a

function R: H -+ ]Rwhere f = IH .]R nx + H e G such that for

any H = (h1 , h2 ,...r,h) EH,

9f ( (XX) f (X)(1) f (X + H) = f (X) + h + h 2 +...+ L h
H 1  h x2  2Dn

+ H R (H)

(2) R(H) + 0 as H-+ 0

Equivalently, f is totally differentiable at the point X

if there exists the linear function L: H +-]R where, again,

H = H ]Rn IX + H c GI such that for any H = (h1 , h2 ,...,hn)

(1) L (H) = X) h + h + + f(X)h
a X 1 1 9x2 2 xn n

(2) for any ,:> 0, there exists a 6 > 0 such that if IHJ< 6

then

I[f(X + H) - f (X)] - L(H) I < e H I

Observe that for dimension n = 1, differentiability of f

is synonymous with total differentiability of the function.



CHAPTER II

UNDERLYING HYPOTHESIS; EXISTENCE OF ALL

1ST ORDER PARTIAL DERIVATIVES

ON A MUTUAL SET

Let f be a real-valued function whose domain is G, a bounded

region iniRn. We take the norm on1Rn to be the familiar: XI =

x + x2 +...+X where X = (x) and assume the1i 2 n(.x, .. 'n

measure P oniRn to be n-dimensional Lebesgue measure. The directed

system CR , ) is established in which 63> a is interpreted $ < a

in the usual ordering of the reals and we summarily form the net

<f (P) >PER+where each w (p): G + R+. is defined by

60f( P)(x)W =sup f(X + H) - f(X)

0<1HI<p,
X + HEG

We pose the question of convergence, the answer of which is af-

firmative.

Proposition1: <wf (P)>pc R+ converges pointwise on G.

Proof

For each Xe G let IrX=IWf(P)(X):PER+ [. As FX is bounded

below by 0, define the mapping Lf: G R+o by

Lf(X) = inf r .

3
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We now demonstrate pointwise convergence of the net to Lf.

Lf (X) = +co implies wOf(p) (X) = +* for all P & c1+, so, surely, we

have convergence for such X. For X such that Lf(X) < +o,

letting >0 there exists a P' > 0 such that

L f(X>,) -<_ (P'I) (X) < L (X) + 6 .

But as p increases in our system, the corresponding functional

values wf (p) (X) are nonincreasing, so we have

Lf (X) < WOf( P) (X) -<_Wf((P')(X) < L f(X ) + 6

for all P>-P'. Hence, <wf(P)> + Lf pointwise on JX:Lf(X) < +001.

As all possibilities for X G have been accounted for, the proof

is complete.

Q.E.D.

Let us make the added restriction that the values of L be

finite. The finiteness of L along with the definition of wgf(p)

and the "squeeze theorem" for limits easily give us f's, contin-

uity on G; however, we may go further and even assert measur-

ability of Lf. But first we need

Lemma 1: Each wf(P) is measurable.

Proof: Let R.} be A dense sequence of B(0;p)C_ Rn;define F.G+ R by

f (X + H.) - f(X)
if X + H. F- G

F.(X) =H.if

0 if X + H.itG
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Claim 1: of(P) (X) = sup F. (X) for all X G.
1

Proof

Obviously, if sup F (X) = + then o ( p) (X) = +o, so let us

restrict our attention to the case where sup F. (X) , (P-) W)< +C,

the proof of the other case being similar in nature. Let us also

suppose to the contrary.

Subcase 1: o (P) (X') > sup F. (X') for some x' 6 G.
f1

Let ( = Io(DP) (X') - sup Fi (X'); by definition of wof(P) (X'),
I

there exists an H' E B(0; P) such that X' + H' E G and

E < f(X' + H') -f(X)
of(P) (X') - H___________f2 H'

Note that H' cannot be a member of the range of our dense sequence,

so H' must be a limit point of RIH.

Lemma 1.1: Given a > 0 and b, d, > 0, there exists a 6 E:R

such that

c IR and a < b < c/d | a <

Proof

If a = 0, choose any positive real for 6; if a > 0, the

necessary 6 is - d.

Q.E.D.

Let a = sup F (X b = wf(P)'),), d =H'I, and 6 be the

one guaranteed to exist in the lemma. As preliminaries, we record:
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(i) f continuous on G implies there exists a 6' > 0 such that if

H- HI < 6',

if(X' + H') - f(X' + H)<I IH'[ 0 c/4

(ii) Letting 6" = min (6, 6' ) and H' a limit

there exists an H , such that

point of R$H. implies

BH' - H., < 6"a

(iii) By the left-hand side of the triangle inequality,

1<

H' | + 6 "

1

Hi I

Now we are ready to rewrite inequality (*) :

wf(P)(X') -/2 <[f(X' + H) - fCX + H,)] + [f(X' + H,) - f(X)]
H'

f(X' + H') - f(X' + H.,) f(X' + H.,) - f(X')
Hl + H'

H I
X' + H.,) -f( )

I by (i) and (ii) ,

which implies that

sup F. (X') < f(P) (X') - 3
If (X' + H.,) - f(X')

I H1
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Notice that we have the antecedent of the conditional in Lemma

1.1 with a, b, d as previously designated and c = f (X' + H.,) -

f (X' ) I . Hence,

sup F . (X' )
i1

If (X' + H.,)

IH'I +

If (X' + H.,)

[H'I +

- f(x')I

(3

- f(x'

(3"

f(x' + H.,)

H.,

- f(X )

= F.,(X')

by (iii) ; but this is absurd. Therefore, Subcase 1 leads to a

contradiction.

Subcase 2: sup F. (X ) > W f(P)(X) for some sXe G.

Again, let E= sup F. (X) - i) ); by definition of
1 0 0

sup F (X ), there exists on i such that
1 1 0 0

0 < sup F. (X ) - /2 < F. (X
i 0 1 0

0

Observe that X + H. must lie in G; recall, also, that H. cB(0;p),
o 19 19

Hence, F.X ) is a member of the set of difference quotients
1 00

over which we took the supremum to form wf(P) (X ); yet F. (X)
0

clearly dominates that supremum. Thus, Subcase 2 leads to a con-

tradiction.

W.4
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We are, therefore, forced to conclude equality between

wf(P) and s p F. on the subset of G for which their functional
1 I

values are finite. This completes the proof.

Q.E.D.

Claim 2: For all i, F. is a measurable function of G.
i

Proof

We establish this claim by considering two restrictions of

F. ,namely,F F. G.and F. G ~-G. where G. = I X GIX + H. E6GC ,

an open, hence, measurable set. By the formulation of F, ,the

latter restriction is simply the constant function 0, so surely

F IG -G is measurable. In regard to the former restriction,

we will show a little more, namely, that F.AIG. is, in fact, con-
1 1

tinuous, therfore, measurable. As was pointed out prior to

Lemma 1, f is continuous throughout G, so it sufficies to demon-

strate continuity of the composite function f. (X) = f(X + H.).

But this becomes a trivial matter due to the fact that G is open,

for then any sequence of points converging to X will have its

corresponding sequence of translates by H. eventually contained

in G. Therefore, the problem reverts back to the continuity of

f at X + H., so we are done.

As both restrictions are measurable, F. takes on measur-

ability on its entire domain G.

G.E.D.

Measurability of Of(P) now follows from Claims 1 and 2.

Q.E.D. (Lemma 1)
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Proposition 2: Lf is a measurable function on G.

Proof

This follows from Lemma 1 and the observation that the

subnet <w (!)> also converges pointwise to L on G.
mirf

Q.E.D.

We now make the final assumption that L is integrable on

all G. It is interesting to note in passing that the class of

functions f for which Lf is finite and integrable encompasses

those functions satisfying a Lipschitz condition on G. In fact,

due to L 's formulation, the Lipschitz constant for such f serves

as a bound for Lf. Thus, L becomes a bounded measurable func-

tion defined on a set of finite measure, hence, integrable.

We would like to make some statements concerning the 4 par-

tial derivatives of f with respect to a given variable x. of X

and the value L f(X). In the ensuing discussion, for any h EIR~ 0

by xG h. we mean the element (x1 , x2 ,...x. + h, x.,...,'x)
1 + n

Let us first consider: D f (X).
x i

As

f (Xh.) - f(X)
0 < h < P and XGh. E G

h

f0(( + H)- f (X) 0< H Pan X HC
C ~ H <|H< an X+H G ,



f (X( )- ff(X ) f (X + H) - f ( X)

h < supH(X
0<1H j<p, H

X+HE G

f(X®i) - f(X)
sup h < inf w (P)(X) = Lf(X)
O<h<p, p>0

f(X~h.) - f(X)
f- xh < L f(X ) .

lim
h+0+*

Lemma 2: Le t g:1-IR + ]R; then

lim g (h). <
h+ 0

lim f g(h)j
h+ 0

By Lemma 2, we have

f (X Dh) - f (x )

h-lim+
h+0-

f (X h ) - f (X)

h

so, combining with our last inequality we finally arrive at

D

We have analogous statements for D f (X), D f (X) and

D f (X) If D f (X) signifies any one of these 4 partial

derivates, then we may express succinctly what we have obtained

by

for all 1,, i n|D

sup
0<h<p

X~h eG

inf
p>O

so,

+
Dx

1
f (x) = lim+

h+0

f (X) Lg X

f() < Lf(X)
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Note the similarity between D f and Lf; the only differ-

ences lie in the set of H values used to generate the difference

quotients and an application of the norm. As a result,D f as
X.
1

well as the other partial derivates acquire measurability from Lf

through proofs analogous to the one establishing that very same

property for L f In light of this new information, the last in-

equality yields the fact that D f is also finite and integrable
xi

on G.

This second occurrenceof finiteness and integrability has

some far-reaching effects. We will presently define a real-

valued function of a real variable, fX, in terms of a restric-

tion of f; integrability of D f will imply integrability of all

derivates offX, for nearly all X. After a long descent we will

work our way back up to arrive at the prized property of differ-

entiability of f, a.e. in its domain. From here we reduce matters

back to our original function f and. obtain the sought-after pro-

perty which closes Chapter II: existence of all lst order partial

derivatives of f on a single setwhose measure matches that of G.

But first for preliminaries. As G is bounded, there exist

reals a., b., 1i <j < n, such that G C TX. where X.= (a.,b).
n j=1 3 3 33

For X = (x1,... ,x.1 , xi+1 '''''x) n TX. and XCX we define the

symbol,

n
X[x] = (x,... _Xi x xx)i+1' ' n)X.

j=1

With this in mind, define the set
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Gn
G. = x C r X.X[x'] 6 G for some x' cx

and for fixed X C G. let

Ex= {x X.IX[x EG.

Define the mapping fx:Ex +R by

f (x) = f(X[x])

Observe that we may write

D fX(x) = D f(X[x]) ,

with analogous identities holding for the remaining three pairs

of derivates. If DfX denotes any one of the 4 derivates of f

then we may condense these into

Df (x) = Df(X[x])xx

where corresponding derivates must match. We are now ready for

the following lemma.

Lemma 3: If D f is integrable on G, then Df is integrable
x i X

on Ex for almost all X C G.
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Proof

By assumption, D f is integrable on G, so we may surely
I n

extend the function to all of ITX., still maintaining its integra-
3J

bility, and, following suit , the derivate Dfx extends from EX
n

to all of X.. Define D f:X. x jT X+]R by
x. J +o
1 J/i

1 f((x,X')) = D f (X'-[x])

n
Integrability of D f on u X. allows us to claim integrability

nXi 1 3A ni 1
of D f on X x X, for, in fact, we have equality of the

Ji1
integrals for nonnegative simple functions related as D f and

A 1
D f are, and, consequently, we may extend this to nonnegative

1

functions so related. After recalling that Lebesgue measure as

well as (n - 1) - dimensional Lebesgue measure are complete
n

measures relative to the spaces X. and i X., respectively, we
1 j i

are in a position to apply the Fubini Theorem, giving us the re-
AA

sult: (Dx f)X:X R+' defined by (Dxf)(x) = D f ((xX) , is

integrable on X for almost all X. However, a simple calcula-

tion shows that

D (x) Dfx) for all x c X.
X1

n
so that DfX becomes integrable on X for almost all X 6 7T X..

j1 i I
Restricting X to G. and observing that EX C X is open, hence,

measurable, the conclusion of the lemma falls out--Df is integrable

on EX for almost all X c G .



14

Let X0 be such a point in Gi for which we have integra-

bility of Dfx on E. Recalling that Ex is open, we may de-
0 0 0

compose it into a countable union of disjoint open intervals
+00

of the form (%, 3g). Noting that (U%,t) = m1[ + 11

and the fact that we have integrability of Dfx on (at,),

surely,

J Df < +o .
a t+1/m 0

Let Pz = a + 1/m = c0 < c1 < ... < cp= -l /m} be a parti-

tion of [I + 1/m,%g - 1/m]. Because of the affinity between

fX and f created in the former's definition, the continuity of
0

f at points X0[x], where x S EX , translates into continuity
0

of fx at all x E Ex , in particular, continuity on [aZ + 1/m,
0 0

- 1/mi. Consider now an arbitrary subinterval generated by

two consecutive points of P : [cq-1 cq]. Our two critical

properties--continuity of fx and integrability of DfX on
0 0

[t z+ 1/m, %3 - 1/mi -- carry over to [c q _cq]. We now intro-

duce the following general theorem concerning continuous, real-

valued functions defined on a closed interval.

Theorem: Let g be a continuous, real-valued function de-

fined on [a,b] and let Dg denote any one of the 4 derivates of g,

which we assume to be measurable, real-valued also. If, in addi-

tion, Dg is integrable on [a,b], then
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b

g(b) - g(a) < _ Dg[I

a

Proof

We carry out the proof for the case where Dg D g; analo-

gous proofs hold for the remaining three derivates. We must

credit Lebesgue for the ensueing construction process leading

1 Wup to Lemma 4. In the following preliminary lemma as well as

Lemmas 4 and 5, we allow the term interval to encompass a

singleton, in which case we call the interval "degenerate" and

denote it by [z,zl, where z is the single point in question.

Lemma: Suppose that to every x E [a,b] there corresponds

an interval [x, x+h] C [a,b], h > 0. Then there exists a count-

able sequence of nonoverlapping interva ls [xi, x. + h. whose
1 1 1

union is [a,b], h. > 0. If, moreover, the singleton {b} occurs

in the sequence, it appears only once. The intervals of the

sequence are said to form a chain from a to b.

Proof

Let W be the set of all countable ordinals; so, 1, o,

etc. are elements of W. Under its natural ordering, W for

uncountable, well-ordered set with initial element 1. To

let us assign an inter val [x1 , x1 + h1 ] C [a,b] where x

whose existence is guaranteed by hypothesis. Relabel x1 +

and to 2 assign an intervale [x2 X2 + h2 ] corresponding b

2
wo,

ms an

1,

= a,

h x21y 32

Thomas Hawkins, "Section 1, Chapter 5," Lebesgues I'heor
of Integration (New York, 1975), pp. 134-135.
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hyp othesis to x2 . Now, for an arbitrary W, S y I, suppose

that we have assigned to each ' < S an interval [x , x + h aI

CI[a,b], degenerate if ever x = b; suppose further that, col-

lectively, the intervals have the property

U [x , x + h ] = [a,c) or [a,c]

Let x = sup Ix + hUlu < c [a,b] and assign to 3:

(1) some non-degenerate if x 3 b

[x5 , x1 + h5 1 (guaranteed by hypothesis)

(2) Ixt if x =b

It is clear that, in either case, we have maintained the pro-

perty

U [x , x + h ] = (a,d) or [a,d]
aC+l a ua

So, the set of all ordinals to which we have assigned sets

displaying the collective property above forms on inductive

subset of W containing initial element 1. Since W satisfies

the transfinite induction principle, we may, therefore, assert

that to every T EW, there exists an interval [x , x + h ]
T. T T

C [a,b], h > 0, such that

U [xe, x + h ] = [a,c) or [a,c]

a<T
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Now, either there exists some y' c W to which we have

assigned { b} or not; if so, there exists a first such ordinal,

Y0 , and, by definition, it must have been the case that

=b
Yo

Then, surely,

U [x ' x' + h ] = [a,b] or [a,b)

If the former occurs, we have established what we wished to

prove since y is a countable ordinal and all of our intervals

are pairwise disjoint except possibly for endpoints. For the

latter occurrence, our countable sequence will simply be

[xc, x + h]}

- o

However, if no such y' exists, we have generated an un-

countable number of nonoverlapping subintervals of [a,b], so

we have produced an uncountable number of rationals--absurd.

Thus, our first supposition must have been the case, thus com-

pleting the proof.

Q.E.D.

Let f l> 0; define p > 0 such that p (b - a) = r/3 and let

P denote any partition of (o, +o): P = ... <L- 2 L_ L0 <

L < L2< .<.-. where we insist that [[IP II p. Let us arrange
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the partition points into a sequence for brevity. Hence,

P =L where IP11< P
n.

Define

e = x [a,b]IL < D+x) < L
n n i n +

+00

and positive sequence a such that I LI a < rV4'. Ob-
n ni n -

serve that the terms of our sequence are chosen so that

+00

ZE IL an< T/3

i=1 1 1

Finally, as en. is measurable, for any i, there exists open

set A D e such that mA -m(e ) < an nn. n n.
We summarily obtain a collection of closed intervals cover-

ing [a,b]. For each x e [a,b), if x 6 e then there exists an
ni

h > 0 such that the following three conditions are met:

(i) h < p

(ii) (x, x + h) C A fn [a,b]

(iii) L < g(x+h)-g(x) < L+ + p
ni h ni +1*

Notice that with statement (ii) we satisfy the hypothesis of the

preceding lemma. So, there exists a chain of subintervals
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[xi, xi +hj1 f rom a tob, and w.1.g. we may take the chain to

be countably infinite. Let [x. , x. + h.} ] denote such a chain
U

and Bn represent xkF en. [Xk' xk + hk].

For xk ke" k b, (iii) implies

L h < g(x + hk) - g(x ) < (L + p) h
n. k k k 'k n. k

(ILn. - p) hk <CIg(xk + hk) -(xk) I < (ILn I + P) hk

Therefore,

j(xk +hk g(Xk) < (ILnI + p) m Bn.

k 
n.

0]0lg(xk + hk) k(x k I L L |m Bn. + P(b - a)
xkSC i1 11= kn n

Lemma 4: Ig(b) - g (a)1<g jg(xk + hk kg(x)I
i k

Proof

Let > 0 be given and consider the left and right endpoints

of an element in the chain: [x., x. + h.II. g continuous at x.
1 1 1

implies there exists 6. > 0 such that

ig(x g(x) I<CL if i - X <C 6i , x [a,b] ;
2 

1

g continuous at x. + h implies there exists CS2 > 0 such that
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g(x. + h.) - g(x) <- if (x. + h.) - x < 6., x sc[a,b] .
2 2

6. 6.
Let 6. = min(6. , 6. ) and I. = (x. x + h +

S1 12 3 2 i i 2

{Ij forms an open cover of [a,b], so there exists finite

subcover I P of [a,b], ordered increasingly w.r.t. left and

right -endpoints. Considering only the non-overlapping elements

of the chain associated with the I. 's, we have:
J i

a < x. < x. + h. < X. < x. +1h. ... <x. < x. + h. < b
- 1 J 1i J~32 3z z~ ~Jp 3p Jp ~

Note: x, - (x, + h. ) < max (6. , 6 . ) for 1 < i < p.

Observe that

p p
[a,x. I u u[(x. +h. ), x. ] UU[x. ,(x. +h. )]U[(x, +h. ),b]

ii 2 il il 1 11 3 i p p

- [a,b]

Therefore,

p
g(b) - g(a) <_ g(x, ) - g(a) + jg(x. +h. ) -g(x. )|

3i 3i ji

p

+ Ig(x. ) - g(x. + h. )I

2 -

+ |g(b) - g(x. - h. )
3p Jp
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p p
< /2 + g(x, +h. ) -g(x. ) + Zax ,6/2

1 i i (i 2 2
p

g(x. +h. )-g(x. ) + 3
1 3i li 3i

+00

< Ig(xk + hk g(k)+ 3c
i=l xen

since we are

convergent.

working with two series, both of which are absolutely

As E > 0 was arbitrary, the lemma follows.

Q.E.D.

Lemma 4 and the inequality preceding it furnishes us with

g(b) - g(a)l

+00

< I nL m Bnn. m Bn.

L m B
1n n

+ o(b - a)

+ T/3

by choice of P .
+=, +00

Lemma 5: 1 |L m B <v L |Im(en ) + /3
1 n n 1- n n

Proof

It suffices to show

|: L|m B' n n1

q

< LL m(e) + /3
1

for anyq q6IN. Recall that B = u [xk, X + hk] and observe
n xk n. k k k

that m B < m A for all i; let q e and define
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D=i< qm(e ) < m B
nn ni

E = j q[m n < m (en.)
:

Note: For all i 6 D, m B
n

Therefore,

m(e )< a
n. n.

q
EI|L 1m B
1 ni n ijD

i ED

L Im B nUn Bni ILE B
j E E n n

Ll [m(e) + a]
SCE

L nim(en)
:3 3

q

IL [m(e ) + a
i= n n n

Lnm (e ) +T/3
1 1 n

by our original
+00

formulation of a,
in

Q.E.D.

With Lemma 5, our bound for Ig(b) - g(a)l may now be stated

in terms of the e 's. Our prior inequality becomesn.

g(b) - g(a) I Im(e ) +2rfl1 ni ni 3

Lemma 6:
fb + +00

L ILn m(en) <
a 1 n n/3
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Proof

By definition,

L D+g
ni - i+l

+p for all< L
nI

which implies

ILl- P<IDt(x)l

[ I P] m(e) <i
nni IDgf<[ L

-Dn+1
+ p] m(e

n.

+00o

- 1m(en-<
n.

IL m(en)

rb

-P (b-a)<

aL

+00

1

+00

Dt L

ni
+ P] m(e

n.

Lnlm(e ) +p(b-a)

+00

- 2ILn m(e )<
1 1

IL nI m(e ) < -n/3
1 1

x se
1

L n.+ P
1

[I L

+ 00

- T/3 <f

a

J b
ID~

T1/3D+

+00

1

b

as < + 00

Q.E.D'.
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With Lemma 6 and our prior inequality, we may safely say

that

b

g(b) - g(a)I < ID+i + n

which, thus, completes the bounding process. For fl > 0 was arbi-

trary! Therefore, the long-awaited and essential result of our

theorem,

b

g(b) - g(a)I f<ID+1 ,

a

is valid.

Q.E.D.

Thus, for our particular function fx and Dfx restricted to
Dfx

[c q 1  c I, the theorem yields the result

c
q

ff0 (cq) - f (cq- 1)) 0<Df

c
q-l

As q was arbitrary,

- I/m

I cq X (cI) IDfxI<+
q- f (c 1- 0q-0 if 0
q=l az+l/m

Therefore, the set of all such sums for finite partitions

$f [a% + 1/m, z-l/ml is bounded, implying that f c BV on
x +

[t+I/n -1/ rn]. Consequently, by a standard theorem-from
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Lebesgue measure theory, f exists a.e. in [a + I/m, - 1/r].
0

But, as the union of countably many sets of measure 0 is again a

set of measure 0, fg exists a.e. in (a, f ) and, likewise, f

exists a.e. in EX. We record this crucial result as
0

Proposition 3: f' exists a.e. in E
Xo X

In terms of our original function f, this translates into
9f(X0[ x])

exists a.e. in E. However, we can go further and
ax. 0

claim a much stronger result, namely,

TheoremI: For each i, exists a.e. in G.

Proof

We analyze this from the position of considering the set of

points for which x does not exist. Since this is the comT

plement of the measurable set on which all 4 partial derivates

do agree,

L = X G does not exist

is measurable. It suffices to show that L has 0-measure.

nLet us transfer discussion to the product space JR. x 7 JR,

ji
with its product measure m x X which we will denote by V; we assume,

of course, each J. = Rfor 1 < j < n and that m, X denote real and

(n - 1) - dimensional Lebesgue measures, respectively. Define the
n

isomorphism 0:R -+JR. x nTIR. by
1 e
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W(X) = (x,X)

when X is expressed as X[x]; accordingly, let.X O(L) be the

characteristic function on P(L). We wish to extract measurability

of D(L), hence, measurability ofXO(L) ' from our knowledge of L.

This will follow by straightforward means if we look at an equiva-

lent formulation of product measure V, that of the restriction of

* nouter measure V to the a-algebra of measurable sets inIR. x .T. IR.
I j i

* * -I
V is simply 1y* o . In light of this, measurability of O(L)

stems from measurability of L. Hence, X(L) is measurable and

*
f nf X (L) dv = v[ (L)] = y L = aL

IR .x ..IR
1 jfl J

n n
As r( X.) = X. x Tr X.

1 3 j i 3

L=f 
X=n(L) dv

X. x R X.

n

jii

Recall that G. = X E7T X [X[x'] F G for some x' 6X.

and define I. = X c G. I DfX is integrable on EA; observe that

both G. and I. are measurable. So,, by the Fubini Theorem,
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= f f x(L) (xX) dx dX

7F X X.X.

(L)(x,X) dxj dX+ dX
nf
IT X.,G.

jfi J

- X (L)(xX) dx(

IX.,

dX+ X (L)(xX) dx

G.~ 1. X1zr lx1/

Considering the 2nd iterated integral, for any given X,

0< J x(L) (x,X) dx < mX.

xi.

Therefore,

0 < f

0L1 t

by Lemma 3.

jX (xX)

X .

Consequently,

dx dx mx.- V(G I.) = 0

the 2nd summand vanishes and we are

left with

L = ((x,X) dx dX .

fI de fine = x E fs(Xtxs)Finally, for X c I dfie cE'I exists?

dX .

then

f X4(L) (x,X) 
dx

X
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L= f fX (L) (xX) dx + f X .(L) (x,X) dx dX

f Xf D(L) (xX) dx + X )(xX) dx dX

1 XX

X 4(L) (x, X) dx dX

from the discussion immediately preceding the theorem. But, now

we have reduced matters to the point where (x,X) is no longer in

P(L). Hence, the final iterated integral vanishes and we are

left with the sufficient result for the theorem.

Q.E.D.

Finally, if K denotes the measure equivalent subset of G on

which D exists, then Theorem I enables us to obtain quite easily
3- 3f

a measurable set on which exists for any i and whose measure
n

still equals that of G--namely, K = K..
i=l



CHAPTER III

THE INDUCTION PROCESS PROPER; EXISTENCE

OF THE APPROPRIATE SUBSET OF WHICH TO

ESTABLISH TOTAL DIFFERENTIABILITY

We formally state the major theorem which this thesis pro-

poses to prove.

Theorem: Let f be a real-valued function defined on a bounded
n

region G of IR , <f ( p) >PI+ be a net of extended real-valued func-

tions where each wo(p) : G +IR is defined by

(~()=fj(-X+ H) -f(XW ( P) ( X) = suI H0<WHj p,

X + HC.G

and Lf be the pointwise limit of < o (p)>cIR+ on G. If Lf is

finite and integrable on G then there exists a measure-equivalent

subset of G on which f is totally differentiable.

Proof

We proceed with the proof of total differentiability of f

a.e. in G by induction on the dimension of the space.

Part I: For n = 1, i = 1 in Chapter II and is simply

f'. Recalling the observation made earlier that total differen-

tiability is equivalent to differentiability in dimension n = 1,

the assertion follows from Theorem I, Chapter II.

29
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Part II: So, we shall assume for all functions g:G +IR, G
k-l

a bounded region in IR , whose corresponding L function, de-
g

fined, as before, to be the pointwise limit of the net < (p)>,

is finite and integrable on G, that the contention of total

differentiability a.e. in G is valid, (k - 1) - dimensional

Lebesgue measure assumed. Note that we have a little bit more

going for us, namely, that the bounded region G may be a subset

of a hyperplane of dimension k - 1 in I since any such hyper-
k-I

plane is isomorphic to IR . Thus, the isomorphic copy of g

would inherit all of the necessary requirements to insure total
k-l

differentiability a.e. in its bounded region of domain in IR

this latter property being passed back up to g defined on G.

Consequently, let n = k and f: G + IR, G a bounded region
k

in IR , be a mapping whose corresponding L function is both

finite and integrable on G. We retain all of the results of

Chapter II (primarily, Theorem I) since n s JN was arbitrary and

we now proceed to strengthen our properties of convergence In

order to do so, however, we must further decompose G and, for

3fthe function 3 , introduce the net concept in its formulation.

In order to accomplish the latter, we must reexamine our natural

ordering of -the reals. Under the directed system (IR {0},S),

a if and only if 6| < Ia1. Note that the restriction of G
toIR is our previous ordering ' for that set. Therefore, by

convention, we will write y for(9 and simply specify whenever

we are working with a restricted subset of IR- {0}. Our directed

system now becomes (IR~ {O },8).
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To begin with, let n > 0 be given such that n < PG3 We
k +3*

introduce a latent result which is used, at present, only for

the set it generates.

Propertyj: There exists a measurable subset H C K possess-

ing the two properties:

(i) PH > PK - f = PG - n

(ii) Lf is bounded on H.

Proof

This follows simply from the integrability and nonnegative-

ness of Lf. Let M be a positive real such that

M T.> J/ L fdu .

G

Consider AT = X6KILf(X) >M ; we have

VA * M <f Lfdp< Lfdp
A TI G

so, PAIA <n and Lf is bounded on H = K -A .

Q.E.D.

Let us return now to the convergence of the net<(i(P)> +
f pFIR

to Lf on G. We have the following theorem.

Theorem II: There exists a measurable subset S0 C H possess-

ing the two properties:

(i) pS > pH - q

(ii) <Wf(P)>psm+ converges uniformly to Lf on S 0

A"W""WIMM
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Proof

Consider the subnet <Wf ()> . By Egoroff's Theorem for]R

there exists subset A C H with vIA <rn such that <wf(j)> +L uni-o a f m f
formly on H - A. Set S =H-A and let > 0. There exists

o 000
m 6cIN such-that for all Xc S0

Lf(X) - Wf (X)I < E

if m > m. But, we have the relation

L (X) W (p) (X) < W (L) (X)

00

for any p _< m, holding for all X s G; so, choose p0  -, and
00

for any X e S

ILf(X) - W f (P)(XW K<

if p > p0 , which is (ii) above. (i) follows readily from the

definition of S
0

Q.E.D.

Recall that for any h ]R { 0}, by X 0 h. we mean the element

(X 1 ,.-.,x 1, xi+h, xi+l,..xk). With this in mind, for such

non-zero h define fh :G + JR by
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f((D Oh.) - f (X ifX h. G
fifh.XXh. h G

0 if Xeh i G

We form the net <fh> and in the process observe that point-
hhEmIR~o

wise convergence of <fh> to the function on a subset of Gh

is equivalent to the more standard interpretation of the existence

of -L-f on that subset. An analogous statement to that of TheoremX.
3fII concerning the convergence of <fh > to may how be put forth.

We assert

Theorem III: For each i, there exists a measurable subset

S C H having the two properties:

(i) PS. > P H - T1

3 f
(ii) <fh> converges uniformly toa on S.

Proof

Define the set

S(m,t) = X H: B(X; 2Ihf )CG and Ifh(X) - fW /t
h- - 1hDX.

Inl

where m6IN, t > 0. Our first goal is to establish its measur-

ability.

Proposition: For each m sIN, t > 0, the set S(m,t) is

measurable.
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Proof

We establish this claim by considering two restrictions of

fh, namely, fhlGh and fh IG -Gh where Gh =X E GfX)h1 c G , an

open, hence, measurable set. By the formulation of fh' the

latter restriction is simply the constant function 0, so, surely,

fh IG Gh is measurable. In regard to the former restriction,

we will show a little bit more, namely, that fhloh is in fact

continuous, therefore, measurable. As was pointed out early in

Chapter II, f is continuous throughout G, so it sufficies to

demonstrate continuity of the composite function g(X) = f(X)h ).

But this becomes a trivial matter due to the fact that G is open,

for then any sequence of points converging to X will have its

corresponding sequence of translates by ()h. eventually contained

in G. Therefore, the problem reverts back to the continuity of

f at X()h., so that we are done.

As both restrictions are measurable, fh takes on measurability

on its entire domain, G.

Q.E.D.

With Claim 1 at our disposal, we now know that the indivi-

dual members of the intersection are, themselves, measurable

3 fsince fh ~ now becomes a measurable function on G. To see

that the uncountable intersection is also measurable, define

S (m,t) nIX CH: B(X; 2jhj) C G and xf(X).x |< 1/t
hwoet ,ria Obv

where, of course, 0 is the set of rationals. Obviously,.

I h-, -- '-'4t"7
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S(m,t) C S (mt)

but, what is more, we actually have the reverse inclusion.

Claim_2: S*(m,t) C S(m,t) for all m E IN, t > 0.

Proof

Let X e : S (m,t). We wish to show that for any irrational

h' 1:.
m

(i) B(X0 ; 21h'I) C G

3P.f (x&
(ii) If ,l (XC)) -, I < l/t

(i) is obvious if one observe that we may always choose a sequence

of rationals convering to Ih'I from below. In regard to (ii),

let n qIbe any sequence of rationals which converge to h' such

1 *
that each term satisfies p -. Since X: e S (m,t), for any

q IN, ifq (X) - 0 < l/t , which implies

X lim
)h' -0  0f, q++o f (Xo) - 0. /t

q' I

after observing the f is continuous at yQh'. since we have

taken the trouble to insure that the point lies in G. Therefore,

Claim 2 is valid.

Q.E.D.

With S(m,t) = S (m,t), our proof of measurability of S(m,t)

comes to a close.

Q.E.D.
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In light of the preceding proposition, for a fixed t > 0,

S(mt) , now becomes a nested, monotonically increasing

sequence of measurable sets; H = U S(m,t) due to pointwise
m=l

convergence of the net <f > to Df/@x. and the fact that G is open.
n1

Consequently, for all t > 0, y (S(m,t)) + pH as m + +o. So, for t =
p

2,-/Tjp E ,N., there exists an N e IN such that if m > N , we have
p-P

p[H ~-S(m,tp)] < l/t = l/2P

In particular, -p[H - S(NP,t )] < r/2g. With this in mind, let

+C0

S. = f S(N ,t )
p=2

+00

By construction, p[H~ S(N ,t )] < nT/2 so that
p=2

+00

p[H- fl S(N ,t )] <
2 pp

which gives us property (i). For property (ii), if E > 0 then,
p0

surely, there exists a p such 1/t = rV20 < c; therefore, for
o p0

the constant 1/N , if X c S(N , t ) then

Ifh(M) - 3f(X)j< E
fh ~ x.

for all h >- 1/N . But S(N , t ) D S., and, so, we have uniform
cto P0  o1

convergence cf the net <f > to 3f/3x. on S.,.
h i 1

Q.E.D.
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We now obtain just one set for which the uniform convergence

stipulation of the last two theorems, property (ii), holds:

k

s = s..

i=0

Observe that

pS > pH - (k + 1)T > pG - (k + 2)-n > 0

Due to the measurability of S, there exists a closed set T CS

such that

pT > pS - T > pG - (k+ 3)-n > 0;

in addition, T is compact since G is bounded. It is this piece

of information that enables us to assert something about the func-

tion - itself, namely,
.

Theorem IV: For each i, '- is uniformly continuous on T.
axi

Proof

k
As T is compact and G is a bounded region inIR , d(T,DG) > 0.

Letting 6 = d(T, 3G), we know that for any X E T, B(X;6) C G. Let

Shj. denote a monotonic sequence of positive reals converging to 0

such that h < 6. Then <f > is a subnet of continuous functions
1~h.

J 9f 3f
on T whose uniform limit is T-B restricted to T. So, -- inherits

1 1
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this continuity on T. In fact, we have a bit more-- -i is uni-

formly continuous on T due to this set's compactness.

Q.E.D.
k

Recall, now, what it means for the point X c IR to be a
k

"point of density" of the measurable subset U of IR -- for any

E > 0 there exists a 6 > 0 such that

p(U n s
r <

r

whenever Sr is a non-degenerate, k-dimensional, open sphere of

radius r with r < 6; less formally,

lim i(U Cn S)
r+ 0,= .
X Sr r

The following proposition is the Lebesgue Density Theorem

k
for IR , the proof of which may be easily adapted from the corre-

sponding proof using non-degenerate, k-dimensional, closed cubes

in the definition.
k

Theorem: Let U be a Lebesgue measurable subset of IR . Then

almost every point of U is a point of density of U.

For our purposes, however, we need only consider open spheres

centered at the point in question. Therefore, using T and this

Donald Cohn, "Section 2, Chapter 6," Measure Theory (Boston,
1980), pp. 177-184.
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weaker version of the Density Theorem for dimension k produces a

subset V of T, Iv = 1T, on which

lim p[TflB(.X;r)]
r +0 pB(X;r)

for any X E V.

As will become more clear in Chapter IV, it behooves us to

delimit V further to arrive at a measure - equivalent subset Z

having the property that on any hyperplanar section of Z orthog-
k

onal to the last coordinate axis of IR , the restriction of f

to that hyperplanar section is totally differentiable throughout

that section. Conceptually, we modify V by retaining only those

points for which our earlier-made induction hypothesis is valid

for each restriction of f to the hyperplanar section of V deter-

minted by the last coordinate of each of those points. We then

delete from each of those hyperplanar sections, and, thus, from

V, the "bad" points of the induction hypothesis; that is, the

exceptional points for which total differentiability of the re-

stricted function fail. We accomplish this through still more

applications of the Fubini Theorem.

k-l
Consider the product space r IR . x IR with its product

j=l 3 k
measure X x in; we assume, of course, each IRIR for 1 <j< k and

that 4k m denote (k - 1) - dimensional and real Lebesgue measures,
k-l

respectively. Define the isomorphism k:]R+7T k by

k '=Mxk)
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where X = (x1 , x2 '&'' xk-l) for X = (xI, x2 'r'' Xk). With this

in mind, define the set

cI -1k-i
Gk ={k RkJ k ((X,xk)) e G for some X' F 7RT }

and for fixed xk E k let

k-l

E = X IT JR. 'k((X,xk)) G .

k
Finally, for arbitrary X C R ', let P denote the (k - 1) - dimen-

k Xk
sional hyperplane of JR determined by the last coordinate, xk' of

X; G denotes the hyperplanar section P fl G.
xk Xk
By assumption, L is integrable on G, so, extend the function

k k
to all of IR by defining it to be 0 on IR G, thus, maintaining

its integrability. Integrability of Lf on allows us to claim
k-I

integrability of the function r = L o on IR.x after
rf k 1

observing that we have, in fact, equality of the integrals for

nonnegative simple functions related at Lf and rf are, allowing

us to make an identical claim for nonnegative functions so related.

After recalling that m as well as X are complete measures, we are

in a position to apply the Fubini Theorem again, giving us the
k-l

result: (r) : IR. +IR, defined by (rf) (X) = f((Xxk)),
f xk 1kk

is integrable on IR for almost all xk e IRk But,

CPf) x) f (Pf k )CX)

where X must come from P k; yet, for such X, (Cf f 
k~ LfIPXk.
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So,

()(X) = (LfIP kxXk k

k-i
for all X E k 7 . X E: P , telling us that L P is integrable

1 3 Xk fxk
on P for almost all xk sJRk Restricting xk to Gk and observing

that G x P is open, hence, measurable in dimension k - 1
kXk

yields the preliminary result we seek -- LfI Gxk is integrable

on G for almost all xk k. Let

I= xk S6Gk:LfIG k is integrable on Gxk

and we have finally arrived at the closing theorem ofthis chapter

which gives rise to the set we wish to work within Chapter IV.

Theorem IV: fIG k is totally differentiable at the point X,

for almost all X E V.

Proof

The method of attack will be quite analogous to that employed

in Theorem I, Chapter II. We will, however, encounter a little

bit more difficulty in demonstrating the measurability of our

primary set under consideration.

Again, we analyze this problem from the position of consi-

dering the set

W = xE V: f1G is not totally differentiable at X4.
xkY
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Lemma 1: The set W is measurable.

Proof

Observe, first, that VC K so that D exists throughout
axi

V for all 1 < i < k. In particular, this holds for 1 < i < k -1,

telling us that for any X E V, all 1st order partial derivatives

of fIG k w.r.t. any variable other than xk exist at X. Conse-

quently,

W = X E V: there exists F > 0 such that for any 6 > 0 there

exists a X' = (x1, x , ... , xk- xk) Gxk with the

property that 0 < I X' - X<6 but

k-I f kG (X)

I[f IGx (X') -f IG (X)] - k (x -Xji.> E -X X
k k

i=l

= X EV: there exists E > 0 such that for any 6 > 0 there

exists a XE' C Gk with the property that 0 < I x' - yl < 6

but

k-x
[f (X X) Df - (X- x >)E XI~X

= U X 6 V: for any >0 there exists a x' 6 Gxk
p=rt-k
property that 0 < |X' - X| < 6 but

k-1
I[f (x')- f (X) -

i=l

with the

(x! - x.) I > Ix' xI
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+00

p=l

i[f(x')

For eac

W (p,q) IX

0 <X' - xl<

c V: there exists a X' S G
Xk

with the property that

0 < IX' - X| <q but
q

f (XI- Df (x! - x.)I> - IX' - X .

i=l

h p, q E N, let

6 V: there exists a X' 6 G with the property

.I
q

xk
that

but |I[f(x' ) - f(x)I3 - k-XI

i=l

and we make the following assertion:

Claim: W(p,q) is open relative to V.

Proof

For brevity, we sketch the outline of the proof. Select

X E W(p,q) with corresponding X' S G . Let
xk

S= l/cj - l x' - X

2 ILJA) - f(X)] - (X1 x)- 1/p IX' -X

i=l

and 3 be such that B (X'; 3 ) CG. We wish to find a ball about33

X relative to V of radius C completely contained in W(p,q). First

of all, we insist that < min (E 3' ' x wethen

appeal to f's continuity at x ,x' S G and D 's continuity at

X S V together with judiciously chosen E's (S2/4k, 1/4k) to

q=1

- - - - -- - - - - I;- - - I.- - - - -L
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ascertain 6 's which further restrict ?. Finally, insist that

2

4 k max(i9x2 , .. , +

Then, for = (X1 , x2f * k)_ B(X;;) relative to V, simply

choose the X' G to be the orthogonal projection of X' onto

G_.

Xk
Q.E.D.

But, with V measurable, the above claim yields what we need,

namely, that W(p,q) is also measurable for all p,q CIN. So, W

is nothing more than a countable union of countable intersections

of measurable sets and the proof is complete.

Q.E.D.

With the measurability of W disposed of it now sufficies to

demonstrate that W has 0 - measure to prove the theorem. Accord-

ingly, let X0k (W) be the characteristic function on k (W) . We

wish to extract measurability of Dk (W), hence, measurability of

X (,W) from our knowledge of W. This will follow by straight-

forward means if we look at an equivalent formulation of the

product measure X x m, which we will denote by pk -- that of

the restriction of outer measure V k to the a-algebra of measur-

n* * -l
able sets in IR. x T IR.; yk is simply P o k .In light of

1 J
this, measurability of 0k(W) stems from measurability of W.

Hence, X.k(W) is measurable and

AAOWN l , ' , z, - ,WXW - .
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'IT

1 j k

0k (W)dk kk(W)] = jW = W

As a result of the Fubini Theorem and Ck' 1k'Is measurability,

IW0
k-1

1 3

f

c k-1
k N m

1 J

k(kR

xk(W) (Xxk) dX dxk

(k (W) 'X xk ) dX dx k

W (x d(W)X
k1
k1 ~ w

4' xk) dX dxk
X k (W)

Ik 'k- 1

+ 1
ck""Ik k-

Tr IR
I J

k, (W) (Xx k ) dX dxk

i

Considering the second iterated integral, as our region G

is bounded, there exist reals a., b., 1 < j < k, such that
k

G C 7 X. where X. = (a.,b. For any given xk,
j=1 3

k

0 f
k-1

1 3

X k 
k-(W 

)l' xk )dX
'T Xk-1

Xi
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k ) dX dxk

k-1

x kk(W ) '.kX 7,
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therefore,

k-1

Xgk(W) (X' xk )dX dx k < I (be -a.) * M (Ck'Ik) 0
0T <_ k-1

k k IRm

Thus, the Second iterated integral vanishes and we are left with

p W =f /
Ikjk-1

1 j

k (W)X,x)d X dxk

Finally, for xk k define XE E : fIG is totally
k kk Xk xk

differentiable at ((x,xk))I. But, Ik has the property that

our induction hypothesis is valid for fIGsk, as G k is always

a bounded region in dimension k - 1. Therefore, for such xk,

fIG k is totally differentiable a.e. in G k, implying that

xk
= XE

xk

So, we may proceed with the iteration:

11W f X k (W) 5' k d +

I E k-Ik xk

1 J

fkJX 

k (W) (Xx) dX +

k kxk xk

X k(W) ' ,k)dX dxk

Xk

Xk (W) (xk )dX dxk
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X-k -(w) I'xjk)dX dxk

k 'x k

But, now we have reduced matters to the point where (X,xk

no longer lies inO k (W). Hence, the final iterated integral

vanishes and we are left with the sufficient result for the

theorem.

Q.E.D.

Let

Z = S V: fjG is totally differentiable at X

We have finally finished with our decomposition of G and arrived

at the appropriate and penultimate set on which to establish

the property of total differentiability of our function f. Toward

this end, let c be an arbitrary positive real number and N be a

positive integer, N # 1. In closing this chapter, let us amass

our results for the set Z and the real numbers 'n, s, and N.

Results

(i) By Property 1 of this chapter, Lf is bounded by M1 on

Z; so, by the uniform convergence property of Theorem II, there

exists a PO(n) > 0 such that for each X cZ,

f(p) (X) f (X) +

< 2Mn

for all P P (I),
0 ,
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(ii) By repeated applications of Theorem III (ktimes ),

for 6 there exists on h0 (N,E), which we may assume to be posi-

tive, such that for each i, 1 < i < k, and for every X FZ,

fh(X)- f<(X)
h 'Tx,

for all h h0 (, ().

(iii) Likewise, by repeated applications of the uniform

continuity property of Theorem IV (k times), for e there exists

a r(,:) > 0 such that for each i, I < i < k,

Df (X) qf (X' )<

.1

if Ix- X'l <6(-r,).

(iv) The pointwise property:

lim p[T -B(Xr)]

r-+O pB(X;r)

on all of Z, implies that for the given N(Nl), if X c Z there

exists an rN(X) > 0 such that

1 - /N(Zk iT (;r)

pB(X;r)

for all 0 < r < rN(X), T(X;r) denoting T O B(X;r). But, since

1Z = PV = PT, then, surely,
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1I1NkpyZ (X; r)
pB (X;r)

for all 0 < r < r (X), Z(X,r) denoting Z r)B(X;r).
AN

As a concluding remark, note also that p iZ > laG - (k + 3) Tj> 0.



CHAPTER IV

THE CONSTRUCTION PROCESS; THE APPROXIMATION

PROCESS CULMINATING IN TOTAL

DIFFERENTIABILITY

Let X E Z have coordinate representation (x, x2'' ... xk

and > 0 be such that B(X0;E) C G. Designate

r=minIh( rNv) '

guaranteed to exist by Results (ii), (iii), and (iv). Form con-

centric spheres B(X0 ;r0 ) and B(X0I) where V0 is defined by

v = min r N 1 ' o (r)(N- l) ,

P (nl) originating from (i) of Results. Let X B(X Q;V) ~{X
01 0 0

with coordinate representation (yl, y2 ' **r 'Yk and the real

number r be defined by

Iv - Nr = IX1 - Xo 1N -1

We summarily form B(Xl;r/N) and in the process observe that, by

construction, we have B(X1 ;r/N) C B(X ;r). Also in the con-

struction process, we have nicely arranged it so that we may

make the following claim concerning volumes.

50
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Lemma 1: P[B(X ;r) ~ Z] < p B(Xi;r/N)

Proof

First, recall that, by convention, Z(X0;r) E Z fl B(X;r)

and that the volume of a k-dimensional sphere of radius g is
k

k p where Ek denotes the volume of the unit ball expressed
k

in terms of the T function.' Therefore, as r0 < rN(xO) , we

have

pI[B(X0 ;r) Z] = pB(X0;r) - pZ (X0;r)

yB(X0;r)

Nk

krk

Nk

=Ak (r/N)k

which is precisely iB(Xl;r/N) .

Q.E.D.

The importance of Lemma 1 is demonstrated by the following
k

existence claim. By k we mean the line in IR determined by

the last coordinate, xk, of X 0 -

Luis Santalo, "Section 5, Chapter 1," integralGeoietry
and Geometric Probability, Vol. I of Eync lo edia of Mathematics
and its App4ications, 2 vols. (Reading, 1976) , p. 9.
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Property 2: [B(X1 ;r/N) - lk Z is nonempty.

Proof

As 1[B(X ;r/N) fl kz = 0, it sufficies to show
.1 x k

vi[B(X 1 ;r/N) fl zj > o

But,

P[B(X 1 ;r/N) ~ Z) ' I[B(X0;r)~ZI

< 1B(X 1 ;r/N)

by Lemma 1, so the result follows from the additivity of the

measure.

Q.E.D.

Let X2 F-[B(X1 ;r/N) Z fln Z and X3 denote the orthogonal
Xk

projection of X2 onto the hyperplane PXk, (z1, z2, ... , zk-l xk)

Note that by choice of r we have insured that both X 1and X3

belong to G. We are now in a position to state the central

equality about which all of Chapter IV hinges:

f --XXo)X X2)((X2)3 3 O

( x1 - xX0 1 x1 x0 1 + xl - X 01Ix - x0 1
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Part A: Approximation of the 1st Summand of Equation t)

Case 1: X:2 X-

In such an event, the quotient vanishes.

Case 2: X:2  Xl-

By construction,

f((X2)
< xwk(r/N) (X2

in which r/N
=1 - X0 I (n)N-i 1 oAs X E:Z, (i) of Results

yields

f (X -) - f (X2)

1 2 2M

so, returning to our first summand, we have

f _(X1 -f__2)I X 1 - X21 <
2M -x <0 -

X - NI-X0 N

Letting 0

as

f (X.L) - f(X 2 )
I= -, we may express the above succinctly
X -Xe

2M

cO T <N '

valid f or both Cases 1 and 2.
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Part B: Approximation of the 2nd Summand of Equation ('v)

Note: zk 34xk

Case 1: yk k x

Since

x 3 - X2  Xk - zkl Izk ~ YkIX2 - X 11 <r/N < p (T)

where x2 c Z, (i) of Results again yields

f (X2) - f(X) <:23I

X2 - X3

thus, returning to our second summand we have

fX XX) - f2~X3<2M
-2X-

x- X0o I,- X1N -1

Letting T =

1X X x X1 fx)

(yk - Xk), we may write

Ix - Xo1

f _2 _ 3_0 0
IX1 -x 019 Xk

214
where <N

Case 2: y xk

k k)
-

Xk)

1 -X.1

We rewrite the second summand as follows:
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f (x2) - fX3) f ( 2 ) - f(X3 ) zk - xk k ~ xk

1x - X2 zk xk k xk 1xi 1

f (X 2) (3 f(X0
Lemma 2: ) - fx)x1

k k k

where In 1 <26.

Proof

By construction, zk - I Ix - X I <r < r where bothk k-- 2 o o

X9, X2 E Z; observe, also, that

f(X2 3) - f(x3  f(x3) - f(X2 )
Zk - x k k -zk hX2)

in which h = xk - zk. Hence, h r , so that by (ii) of Results,

f(x2) - f (X3) ___2

zk xk axk

(iii) of Results yields

3f (X2) _f__X_)Dx2 D x0

xk xk

f(x2 3 
f( _ f(X0)

Setting fl = - 2 x x and combining inequalities
zk Xkk

furnishes the desired conclusion. Q.E.D.

Let us define the quantities:

-

= k k _ 1

2 yk k

so that

zk -x k
y x 1 + TI2 'k k
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and

n3 k -xk

3X, - Xol

Returning now to equation (*) and inserting the values T1,

T2, and 1131 we have

f (X2) f(3)=fxo T1+0((n 1(**) rI3+ l'2 3
IX - X3Xk

where 0(( ?, 13)) 1(113 + 12113) +)n213

Note: n23 N- 1

We now deviate from our usual bounding process and attempt

something more, the thrust of which is embodied in Property 3.

First, let us realize that our choice of X0 at the outset of

Chapter IV in no way depended upon our choice of e and N. Con-

sequently, we may view X0 as being fixed throughout all of the

preceding analysis. As a result, the range of values for n,,1101

112, and r3 vary according to the range of values assumed by the

points X1 and X2; X and X2 are, of course, restricted by the

initial choice of c and N. If we now consider c and N as variables,

free to range throughout IR+and IN ~{1}, respectively, we may define

the function Y of the complex variable (C,N) by
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((FN))= 2c N - + 2 max M- N -I

and note that from the preceding analysis of Part B, T possesses

the two properties:

(i) R1jX1 - X0, x2) < ((C,N))

where R1 (Xl - Xe>, X2) is defined by

RS (Xi - XfX2k
- X0 x2) t2 f ~ X

-T, 1 , T1 2 't T1 3 f k , k

(ii) T( ( c,N)) + 0 as
IN -+ +o

In light of the above discussion, we propose the following

proposition:

Property 3 : Suppose that for every (E,N) E JR x TI {l}

there exists a constant V (s,N) such that if JX - X I < v (sN)o1 0 0

then there exists a point X2 E G such that

R (X - X, X2) I < V'((,N))

Assume, in addition, T has the property that

T(( c,N))+ 0 as

Then R(X 1 - X0, X2 ) +0 as (X o - 0) + 0. (The latter statement

of convergence is to be interpreted as: given a > 0, there exists
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3 > 0 such that if JX- X.1 < then there exists a point

X2 c G such that R1 (X - X0' X291 < a.)

Proof

Let a >0; there exists order pair (E ,N1 ) such that

S( (E:,IN 1)) < a. By assumption, for this. (c1,N1) there exists

the constant v0(c ,N1) such that if X1 - Xl < v0 (,,,N,) then

there exists a point X2 cG such that

1R (X1 - Xo X2 91 <N)) <a.

Letting E v0 (e1 ,N1 ), the proof is complete.

Q.E.D.

In order for us to claim the conclusion of Property 3 at

this point, we only need for the given (e,N) the existence of

such a constant v0(F,N). But such a constant does, in fact,

exist in Part B -- namely, v0 , which was introduced at the very

outset of Chapter IV and for which property (i) of T is valid

whenever I X1 - x01 4 9l and X2 c Z is obtained via Property 2.

Consequently, we have all of the hypotheses of Property 3 holding,

allowing us to claim

R1('Xl- Xo' X 2 ) + 0 as (X X0 ) + 0

Therefore, we may restate equation (**) as:
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f (X2 3 0 k -~' k,+R
IX- -X X -Xk 1 + R1(Xl -Xo, X2)

where R1( - Xo X2) -+ 0 as (x1 - X0 ) + 0, valid for both

Cases 1 and 2 of Part B.

In retrospect, we could have stated a proposition analogous

to Property 3 earlier, in Part A, and obtained a similar result

on convergence since both V0 and X2 were chosen prior to equation

W) and are, therefore, independent of any part following.

Letting R0 -- Xo, X2) E ' , we have

R0(X -Xo, X2 ) 0 as (xi -xo) + 0

true for Part A.

Part C: Approximation of the 3rd Summand of Equation (A.

We rewrite the final summand as

f(3)-ff(0 -fG k(X) - kfG (x

X0X IXi~XoI

By definition of our set Z, fIG k is totally differentiable at

XO. Consequently, the above quotient becomes

k-1 Df G (x)
fk x (z - x)] 1X3 - X R
3=K 1x xoj +IIXlXoI Rxk 3 -Xo) -



f(. ) P(0.- x. j
iDX -X0

+
-X3 - .-

X R (X
X1 -X X. 'xk 3 x

with R having the essential property:
Xk

R (x' - X0 ) +0 as (X' - x0 ) 0, x' 6 G .
kk

Claim 1: Rk X3 - Xo) + 0 as (X - xO) + 0

Proof

If suffices to demonstrate that (X3 - X ) + 0 as (X - X0 )

+ 0; but this is a simple matter as, given c > 0, let = a/2.

We have the following string of implications:

Ix x0 1< 2 <c NII-x

r 1X ~ X , N <a
I oN -l

for all N IN,

for all N IN,

X - Xl <c2 0

then

1X 3 ~ X01 <oa

Q.E.D.

60

then

then
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Claim 2: For any i, 1 < i < k - 1,

xi

(z. - x.)
1 1=

3f(X )
3 x0 i

(y. - x. )
1 1+ c

[X ~x)

a f (X 0
where |cI < - -

1 N-l

x - x I
Claim 3: 3 = 1 + c k whereck 1+i ms2 3we ritk

Hence, by Claims 2 and 3 we ma-y write

f(x 3 ) - f (X

I ~ Xol

k-1

i=N1

0 1 i +

1[Xi xo[ i=l
Sk xk 3 Xo)

k-i

The latter half of Claim 2 allows us to conclude that __ . +0

as (Xl - x0 ) +0; the latter half of Claim 3 along with Claim 1

allow us to assert that (1 + k )R (X - X ) + 0 as (X - X 0 ) + 0.
k-lk xk 3 o

Letting R2+(1 + k)Rx X3 - X ), we may

finally state the third summand succinctly as

( (- (X) k-l3 o

xi X0 .

f ) y - X)

S+- 2c(I + X X 0 -X 2i I X, X,,,

where R2 (Xi - X x 2 ) + 0 as (Xi Xo) 0.

We have fLnally reached the culmination of our approximation

process. Pooling the results of Parts A, B, and C, we may

a
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reformulate equation k) as

X of(x0) f( 0) k -xk) k-1 f(X0 ) - xi)

X,- XOax k TX= -X1 Ix, -X0

+ [R (X -X,X2) +R (X -X,X) +R(X -XX2)]
o11 o2 11 0o2 21 o'2

where each R(X1 - Xo, X2) + 0 as (X - X0) + 0, = O, 1, and

2.
k

Let H={ 1 - X F-IR X = .,I-y-0-0, Cy) 6G}

and define the function R: H+IR by

0 if X' = X
R(X' - xx) = f(XV) - f(X0 ) k Df(X ) (y! - x.)

Exj--31I x. 1if X 3 XQ
Il -X01 X1 -x01

We claim that our preceding work shows that R(X - xo) + 0 as

(xi - xo) + 0. The reason: for X' sufficiently close to x0,

X ~ X, and

R(Xl-X0 ) = RQ0(Xl- XoX2 ) + R1 (x- XOX2 ) + R2 (x 1 - XoX2

if X 74X0 , in which each summand converges to 0 as (X 1 - X 0 ) + 0.

Hence, we have met the two conditions required to insure

total differentiability of f at XO - Z. As X0 was arbitrary, f

achieves total differentiability throughout our set Z, yZ > vG -

(k + 3) n > 0.
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This latter result combined with the relatively arbitrary

nature of 'n now permits a swift coup de grace to the proof of

total differentiability of our function a.e. in G. For, let

N' CIN be such that 1/N' <(+ If we now consider the

sequence { l } of values of ri, then Chapter IV furnishes
Sn:=N' +0

us with a corresponding sequence of sets, {Z sets on
n. n-N'et.o

which f is totally differentiable and for which

(k + 3)
11Z > JJG-

n n

+00

for all n > N'. So, let Q = U Zn and we claim that f is
n=N'

totally differentiable on this measure-equivalent subset of G.

The former property of f is obvious; the latter equivalence of

measure follows readily from the observation that G - Q0CG ~-Zn

for all n > N'.

Hence, Part II of the induction process begun at the outset

of Chapter III is now, at long last, complete. By the principle

of mathematical induction it follows that the theorem which

this thesis proposes to prove is true.

Q.E.D.
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