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CHAPTER I
INTRODUCTION

- In 1918 the German mathematician Hans Rademacher published
a significant extension of the then-existing criteria needed to
insure the property of total differentiability of a real-valued
function of a complex variable. In the same paper, using two
such functions concurrently, a uniform mapping of their bounded
region of domain onto an area inIRZ was produced in which the
ratio of magnification of the mapping was identical to the ab-
solute value of the functional determinant almost everywhere,
Making the additional assumption that this mapping be 1-1 and
continuous, the previously known transformation formula for the
double integral of a finite, measurable function was wvalid.

This thesis is devoted to Part I of that 1918 paper, trans-
lated from the original German. In it, we will extend Rademacher's
results iniRz which culminated in total differentiability to R".
Though alluded to by Rademacher himself as being possible, this
extension of the vast body of lemmas and propositions to R comes
only after a vigorous substantiation of these claims in the
setting of R*', We must even modify Rademacher's plén of attack
to accommodate an appeal to induction on the dimension of the
space.

Although set inlin, all terms used in the thesis derive
their meanings from analogous counterparts in real analysis,
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in particular, Lebesgue measure and integration theory. One
term, however, that calls for illumination is the concept of
total differentiability. Its formal definition is as follows:

Definition: Let the function £f: 6 -+ R , G a subset of

I?, possess all 1st order partial derivatives with respect to
any variable throughout ¢. £ is said to be totally differen-
tiable at the point x = (xl, Xz""’xn) e G if there exists a
function R: H - R where H = {H t"E:n|X + H g G}suoh that for

any H = (hl' th-oophn)_ija Hf

) £+ 8 =200 + Eln ¢ g, v 5
1 ! 2 n
+ lu] rm)

{2) R(H) > 0 as H~+ 0

Equivalently, f is totally differentiable at the point X
if there exists the linear function L: H -+ R where, again,

H = {H EZE{H[X + H ¢ G}such that for any H = (hl, h2""'hn)'eH7

(1) L(H) = %ji-}{iil hy + _Bfé;%d-hz e Qg

(2) for any £> 0, there exists a & > 0 such that if |H|{< ¢

then
[[E(x + H - £(] - L(H)| <e|H]| .

Observe that for dimension n = 1, differentiability of £

is synonymous with total differentiability of the function.



CHAPTER II

UNDERLYING EYPOTHESIS; EXISTENCE OF ALL
1ST ORDER PARTIAL DERIVATIVES

ON A MUTUAL SET

Let £ be a real-valued function whose domain is G, a bounded

region inR". We take the norm on R" to be the familiar: |X| =

2 2 2 _
1 + X + ..t X, where X = (xl, X2,...,Xn) and assume the

measure M on R™ to be n-dimensional Lebesgue measure. The directed

+ ) . . . C o
system (R ,¥) is established in which B » & is interpreted B < a
in the usual ordering of the reals and we summarily form the net
<mf(p)>pemf where each mf(p): G > R, is defined by
£ + H) - X
wp () () = sup l (X 1){ £CO ]

0<|H]|<
¥+ HeG

’

We pose the question of convergence, the answer of which is af-
firmative.

Proposition 1: <wf(pﬁ}m:ﬁ+ converges pointwise on G.

Proof

For each X & G let FX=={wf(p)(X}:p€ﬂ§+}. as Ty is bounded

below by 0, define the mapping Let G 7 R, by

Lf(X) = inf FX .



We now demonstrate pointwise convergence of the net to Lf.
Lf(X) = +» jimplies wf(Q)(X) = +° for all pEII?, so, surely, we
4

have convergence for such X. For X such that Lf(X) < 4

letting € >0 there exists a P' > 0 such that
¢ < ] <
Lf(x)__ wf(p } (X) Lf(X) tE .

But as ¢ increases in our system, the corresponding functional

values wf(p)(x) are nonincreasing, so we have
< < ' <
Lf(x)“_ wf(ﬁﬂ(x) __wf(p ) (X) Lf(X) + €

for all p * P', Hence, <wf(p)> * L pointwise on {X:Lf(x) < 4o}
As all possibilities for X € G have been accounted for, the proof
is complete.

Q.E.D.i

Let us make the added restriction that the values of L. be

£
finite. The finiteness of L. along with the definition of w.(p)
and the "squeeze theorem" for limits easily give us f's contin- :
uity on G; however, we may go further and even assert measur-
ability of Lgo  But first we need

Lemma l1l: Fach w_(p) is measurable.

£ .
Proof: Let {Hi}:;be a dense sequence of B (0;0 )C‘_,I‘Rn: define F.:G >~ R by

£(x + Hi) - £ -

F,(X) = Hy

if X + H, € G
i

0 if X + Hi £ G




Claim 1: wf(p)(x) = sup Fi(x) for all X € G,
i

Proof

Obviocusly, if sup Fi(X) = +© then wf(p)(x) = +», so let us
i
restrict our attention to the case where sup Fi(X), wf(p)(x)< 400,
i
the proof of the other case being similar in nature. Let us also

suppose to the contrary.

Subcase 1: wf(o)(x') > sup Fi(x') for some ¥' ¢ G.

Let € = W (P) (X') - sup Fi(x'); by definition of wg(p) (x'),
there exists an H' € B(0;P) such that x' + H' € G and

' € E(x' + H') - £{x')

Note that H' cannot be a member of the range of our dense sequence,

LT

so H' must be a limit point of R{
, +
Lemma l.1: Given a > 0 and b, d, > 0, there exists a ¢ ¢ R

such that

s -
ceRand a <b <c/d=Da < g3

Proof

If a = 0, choose any positive real for ¢; if a > 0, the

necessary 9 is 9%3 - d.
0.E.D.
Let a = sup F; (X'), b = w(p)(x"), d = |H'|, and § be the
i

one guaranteed to exist in the lemma. As preliminaries, we record:



(i) £ continuous on G implies there exists a &' > 0 such that if

- H| <&,

[E(x' + H') - £(x* + H)| < |BH'] + /4 .

H,

(ii) Letting ¢" = min(§8, ') and H' a limit point of R{
i

} implies

there exists an Hi' such that
| B - Hi,l < & .
(iii) By the left-hand side of the triangle inequality,

1 <1

PIETERN

Now we are ready to rewrite inequality (*):

@ (P) (X') - €/2 < [E(XT + HY) - £(X' + H )] + [£(X' + Hy) - f(x')_]l
H' !
(X' + H') - £&' + H. ) £0X + Hy,) - £0C7)
h ay -t BY
Ta [E0x + Hy) - £0x)]

which implies that

[£(x' + H. ) - £(x" |
|2

oo
!
FaY

sup Fy (X') < welo) (x') =



Notice that we have the antecedent of the conditional in Lemma
1.1 with a, b, d as previously designated and ¢ = |[f(x' + H,,) -

£(x')| . Hence,

[£00t + H,) - £ ]

sup F, (X') <
i 1 lar| + 6

[£(x" + H ) - £(x")]

| A

FIERE

f(X' +Hi1) - f(X')

H

= Fi,

X"
by (iii); but this is absurd. Therefore, Subcase 1 leads to a
contradiction.
. - > I .
Subcase 2: S?p Fi(xo) wf(p)(xo) for some Xo e G
Again, let &€ = sup F, (x ) - wf(p)(x ); by definition of
i i"o 3 o

sup F. (X )}, there exists on i _such that
i i*"o o)

< —
0 sup Fi(xo) /2 < Fio(xo) .

Observe that X + Hi must lie in G; recall, also, that Hi eB(0;p).

o) o)
Hence, Fi (XO) iz a member of the set of difference quotients
o]
over which we took the supremum to form wf(p)(xo); yet F. (Xo)
o

clearly dominates that supremum. Thus, Subcase 2 leads to a con-

tradiction.



We are, therefore, forced to conclude equality between
u%(p) and sgp Fi on the subset of G for which their functional
values are finite. This completes the proof.

Q.E.D.

Claim 2: For all i, Fi is a measurable function of G.
Proof

We establish this claim by considering two restrictions of
F., namely, FiIGi and FiIG ~ G, where G, = {XEZG|X tH; o€ G},
an open, hence, measurable set. By the formulation of Fi' the
latter restriction is simply the constant function 0, so surely
Fi[G ~ Gi is measurable. In regard to the former restriction,
we will show a little more, namely, that Fi]Gi is, in fact, con-
tinuous, therfore, measurable. As was pointed out prior to
Lemma 1, £ is continuous throughout G, so it sufficies to demon-
strate continuity of the composite function fi(X) = £(X + Hi).
But this becomes a trivial matter due to the fact that G is open,
for then any sequence of points converging to X will have its
corresponding sequence of translates by Hi eventually contained
in G. Therefore, the problem reverts back to the continuity of
f at X + Hi' 80 we are done,

As both restrictions are measurable, Fi takes on measur-
ability on its entire domain G.

G.E.D.
Measurability of wf(p) now foliows from Claims 1 and 2.

Q.E.D. (Lemma 1)



Proposition 2: L¢ is a measurable function on G.

Proof

This follows from Lemma 1 and the observation that the

subnet wa(%)? also converges pointwise to Lg on G.
mefy
Q.E.D.

We now make the final assumption that Lf is integrable on
all G. It is interesting to note in passing that the class of
functions £ for which Le is finite and integrable éncompasses
those functions satisfying a Lipschitz condition on G. In fact,
due to Lf's formulation, the Lipschitz constant for such f serves
as a bound for Lf. Thus, Lf becomes a bounded measurable func-
tion defined on a set of finite measure, hence, integrable.

We would like to make some statements concerning the 4 par-
tial derivatives of f with respect to a given variable ﬁi of ¥
and the value L (x). In the ensuing discussion, for any h eR~{0},
by x&® h; we mean the element (x, Xyre.o%; + 1, Xi+l""'xn)' ‘
Let us first consider: D;.f(x).

1
As

f(x@hi) - £(x)
h

0< h<p andx@hiEG

: 0 <l <p and X + H €g¢ ,

c Ef(x + HI)I - £(X)
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E(x@hy) - £00) £ + H) - £(X)

sup < sup Zug(p) (0
0<h<p, h To<|H]|<p, H £
xmhieG X+He G
£{X L) = £(X)
= inf sup C)hlh f < inf wf(p)(X) = LX) '
p>0 0<h<p, 3 I >0
xOh, G
31 &
S0,
£(x®hy) - £(X)
R < L0
lim+
h?0

Lemma 2: Let g: R~>R; then

lim g¢h)
h>0

< lim |g()] .
h+0

By Lemma 2, we have

< 1lim
h-+0

£(x@®h;) - £(x)
h !

1im

D! £() .

X.
1

+

‘——— £(x@hy) - £00)
h

h+0

so, combining with our last inequality we finally arrive at

+
lnxi E00] S L 00 .

We have analogous statements for D; £(x), D, <. E(x),| and

i 'y

D_ fx). If D, f{x) signifies any one of these 4 partial
4 i
derivates, then we may express succinctly what we have obtained

by

IDx. £ (x| i Lf(X) for all 1< i< n .
i




11
Note the similarity between D;' f and Lf; the only differ-
ences lie in the set of H values us;d to generate the difference
quotients and an application of the norm. As a result, D;. f as
well as the other partial derivates acquire measurability ;rom Lf
through proofs analogous to the one establishing that very same

property for L In light of this new information, the last in-

£
equality yields the fact that DXi f is also finite and integrable
on G.

This second occurrence of finiteness and integrability has
some far-reaching effects. We will presently define a real-

valued function of a real variable, f in terms of a restric-

&
tion of f; integrability of DXi f will imply integrability of all
derivates of fX’ for nearly all X. After a long descent we will
work our way back up to arrive at the prized property of differ-
entiability of fX a.e, in its domain. From here we reduce matters
back to our original function f and obtain the sought-after pro-
perty which closes Chapter II: existence of all 1lst order partial

derivatives of f on a single set whose measure matches that of G.

But first for preliminaries. As G is bounded, there exist

reals a., b., 1 £ j < n, such that 6 € I X, where ¥. = (a.,b.).
377 ~ T, J 3
jm
- _n e .
For X = (Xl""'xi"l' Xi+1,...,xn)|;j;ixj and XxeX; we define the
symbol,
n
X[x] = (Xl""'xi-l’ Xy X qreees Xn) g T xj
: =1

With this in mind, define the set



n
G, =X e 7w X-IX[X'] € G for some x' € X,
' [ ] 1
j#i

and for fixed X © Gi let

EX = {\x £ Xi|X[x] € G} .

Define the mapping fX:EX *IR by

fx(x) = £{X[x]} .
Observe that we may write
+ +
D fy(x) = Dxif(X[x]) '

with analogous identities holding for the remaining three pairs
of derivates. If DfX denotes any one of the 4 derivates of f

then we may condense these into

Dfy (x) = D £(X[x])

i
where corresponding derivates must match. We are now ready for
the following lemma,

Lemma 3: If Dx f is integrable on G, then DfX is integrab
i

12

X'

le

on EX for almost all ¥ € Gi'
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Proof

By assumption, DX f is integrable on G, so we may surely
i n
extend the function to all of Exj, still maintaining its integra-

bility, and, following suit., £he derivate Df., extends from E

X X
~ n
to all of X.. Define D_ f:X, X 7 X,»>IR by
1 X. 1 oy +
i j#L
D, £ (X)) =D £x'[x]) .
i i
n
Integrability of Dx fonn Xj allows us to claim integrability
R ni |
of DX f on Xi x m X., for, in fact, we have equality of the
i il
integrals for nonnegative simple functions related as Dx f and

~ i
Dx f are, and, consequently, we may extend this to nonnegative
i
functions so related. After recalling that Lebesgue measure as

well as (n - 1) - dimensional Lebesgue measure are complete

n
measures relative to the spaces Xi and r© X., respectively, we

J#L
are in a position to apply the Fubini Theorem, giving us the re-
sult: (Dxif)x:xi-+ﬂi+m, defined by (Dxif)x(x) = Dxif ﬁx,K» , 18
integrable on Xi for almost all X. However, a simple calcula-

tion shows that

A

(Dxif)X(X) = Dfx(x) for all x ¢ Xs ,
n
so that DfX becomes integrable on Xi for almost all X & Xj.
j#i

Restricting X to Gi and observing that EX{: Xi is open, hence,
measurable, the conclusion of the lemma falls out—-~DfX is integrable

on EX for almost all X € G, .
i g D



14

Let Xo be such a point in Gy for which we have integra-

x on EX . Recalling that EX
o) o o
compose it into a countable union of disjoint open intervals

bility of DEf is open, we may de-

+o0
. 1 1
of the form (GK'BK)' Noting that (QK'BE) = éﬁltaﬂ + H'Bz - ﬁ]
and the fact that we have integrability of DfX on (aﬁ,Bﬁ),
_ _ o)
surely, '
Br-1/m
a£+l/m xo
Let Pﬂ,m::{mﬂ + 1/m = 4 < Sy < ... < cp = B£ - 1/m} be a parti-

tion of [a£ + 1/m,B£ - 1/m]. Because of the affinity between

fX and f created in the former's definition, the continuity of
o

£ at points X_[x], where x ¢ E, , translates into continuity
of fXo at all x € EXO, in partigular, continuity on [aﬂ + 1/m,
Bﬂ -~ 1/m]. Consider now an arbitrary subinterval generated by
two consecutive points of Pﬂ,m : [cq_l,cq]. Our two .critical
properties--continuity of fx and integrability_of DfX on
[az + 1/m, B£ - 1/m]} -- carrg over to [cq_l,cqj. We ngw intro-
duce the following general theorem concerning continuous, real-
valued functions defined on a closed interval.

Theorem: Let g be a continuous, real-valued function de-
fined on [a,b] and let Dg denote any one of the 4 derivates of g,

which we assume to be measurable, real-valued also. If, in addi-

tion, Dg is integrable on [a,b], then
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b

lgb) - gla)] < [ IDg | :

a

Proof

We carry out the proof for the case where Dg = D+g; analo-
gous proofs hold for the remaining three derivates., We must
credit Lebesgue for the ensueing construction process leading

up to Lemma 4.l

In the following preliminary lemma as well as
Lemmas 4 and 5, we allow the term interval to encompass a
singleton, in which case we call the interval "degenerate" and
denote it by [z,2], where z is the single point in question.
Lemma: Suppose that to every x € f[a,b] there corresponds
an interval [x, x+th] C [a,b], h > 0. Then there exists a count-
able sequence of nonoverlapping interva ls [Xi' X + hi] whose
union is [a,b], hi_i'o. Tf, moreover, the singleton {b} occu;s

in the seqguence, it appears only once. The intervals of the

sequence are said to form a chain from a to b.
Proof

Let W be the set of all countable ordinals; so, 1, w., o,
etc. are elements of W. Under its natural ordering, W forms an
uncountable, well-ordered set with initial element 1. To 1,

let us assign an interval [xl, X, + hl] C [a,b] where %, = a,

1 1

whose existence is guaranteed by hypothesis. Relabel xq + hl z %,

and to 2 assign an intervale [xz, x, + hz] corresponding by

3“'I‘homas Hawkins, "Section 1, Chapter 5," Lebesgue's Theory
of Integration (New York, 1975), pp. 134-135,




le6

hypothesis to Xy Now, for an arbitrary B & W, 8 # 1, suppose
that we have assigned to each © < B an interval [Xa’ X, + hu]
Cla,bl, degenerate if ever X, = bi suppose further that, col-

lectively, the intervals have the property

até [xu, X, + ha] = [a,c) or [a,c¢] .

Let x, = sup {x, +h o < g} e la,b] and assign to B

(1) some non-degenerate if xB # b
[XB’ Xg + hB] (guaranteed by hypothesis)
(2) {xg} tf xg = b .

It is clear that, in either case, we have maintained the pro-

perty

a;;H_ [Xm' X, + hq] = (a,d) or [a,dl] .

So, the set of all ordinals to which we have assigned sets
displaying the collective property above forms on inductive
subset of W containing initial element 1. Since W satisfies
the transfinite induction principle, we may, therefore, assert
that to every T € W, there exists an interval [xT, Xf + th

C[a,b],i%_z 0, such that

¥ X X
\J [ g’
a<T

s T bl = ta,c) or la,cl] .
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Now, either there exists some y' ¢ W to which we have
assigned {bl} or not; if so, there exists a first such ordinal,

Yo' and, by defihition, it must have been the case that

Then, surely,

[Xa' x, * h,1 [a,b] or [a,b) .

Q
O‘,Y‘O

If the former occurs, we have established what we wished to
prove since Yo is a countable ordinal and all of our intervals
are pairwise disjoint except possibly for endpoints. For the

latter occurrence, our countable sequence will simply be

However,‘if no such y' exists, we have generated an un-
countable number of nonoverlapping subintervals of [a,b], S0
we have produced an uncountable number of rationals-—absurd.
Thus, our first suppdsition must have been the case, thus com-
pleting the proof.
Q.E.D.
Let n > 0; define p > 0 such that p(b - a) = n/3 and let

P denote any partition of {(-», +»): P = oo %L, <L <L

2 1 0 °

Ly < L,< ...} where we insist that [P | <p. Let us arrange

T 1L T 45K Wbt .- 21— . o i i




the partition points into a sequence for brevity. Hence,
+00
P = (L where [IP [ < o .
1),

Define

4

e = {x € [a,b][Ln < Dg{x) < L

N

i i “i*l}

+m L]
and positive sequence {a } such that |L_ | a < n/4l. Ch~-
tRiT1 i R
serve that the terms of our sequence are chosen so that

+oo
3 [Ln | a < n/3 .

i= 7 *

Finally, as e is measurable, for any i, there exists open

i
set A D e such that mA - mle ) < a .,
n. n. I, n. n.

i 1 i i i

18

We summarily obtain a collection of closed intervals cover-

ing [a,b]. For each x e [a,b), if x ¢ e then there exists an

i
h > 0 such that the following three conditions are met:

(i) h <p

(ii) (x, x +hn)C A N [a,b]
ny

o g{x + h) - g(x) .
(1ii) Ln < Y Lnifl +

i

Notice that with statement (ii) we satisfy the hypothesis of the

preceding lemma. So, there exists a chain of subintervals
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[x,, X, *th.] from a to b, and w.1l.g. we may take the chain to

. +oo .
be countably infinite. Let {[xi, Xs +-hi]} denote such a chain
' 1
. +
and Bni represent x ¢ eni [xk, Xy hk]'
For X, € eni, Xy # b, (1ii) implies

< -
Ln. hk g(xk + hk) g(xk) < (Ln + p) h

. k
1 1

(anil = p) by < lg(xk +h) - glx)]| < (|Lni| +9) hy .
Therefore,
E |g-(xk + hk) - g(x'k)l < (ILnk| + p) m Bni

X £ e

k ni
40 +eo

Z |g(x+h)—gcx)l<2' L Im B + o -a) |
- - k k k! n. n.
1=1 xke eni i=1 i i

Lemma 4: |g(b) - g(a)]| < EE::E:-|9(Xk + hk) - g(xk)| .
i ko

Proof

Ui

Let. € > 0 be given and consider the left and right endpdéint
of an element in the chain: [Xi’ xi + hi]. g continuocus at xi
implies there exists 6i > 0 such that

1

Ig(xi) - g(x)] < ;% if !xi - x| < 6il, x €la,b] :

g continuous at Xy + hi implies there exists Si > 0 such that
' 2




E .
lg(xi + hi) - g(x)| < ;I- if kxi + hi) - x[ < éiz, x egla,bl] .

S. 8
S, = mj = - —
Let i mlntéil, 6i2) and Ij (Xi 5 (xi + hi) + 2) .

400
{Ij}l forms an open cover of [a,b], so there exists finite
] P . .
subcover {Ij }1 of [a,b], ordered increasingly w.r.t. left and
i ' '
right endpoints., Considering only the non-overlapping elements

of the chain associated with the Ij1'5' we have:
i

31 jl jl 32 jZ z Jp jp Jp'“
Note: x, - (x + h ) < max (6. , 8 ) for 1 < i < p.
i i=-1 i-1 i i-1 o
Observe that
& P
la,x, 1 U wI (= +h, Yo x, 1l U lx, ,(x, +h. )IUIT(x,
J1 2 Ji-1 Ji-1 Ji T T S Jp P
= [afb]
Therefore,
P
| go) - glat] < lg(x, ) - g@ | + X lgtx, +h. ) -g(x, ) |
Jq : J; 34 J;
1
P
+3 lgtx, ) - gix, +h, )
5 Ji Ji-1 Ji-1

+ |g) - g(x, = h, }|
Ip Ip

20
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P ]
) ~glx, ) |+ E:Imuc(ii— , £ )+ /2P
Ji 2

[ A

R
/2~ + 2. lgx., +h,

, i R P
i o7l i 1
P
< E: lg(x, +h. ) - g(x. )[+ 3e
1 i34 3i

+co

< ¥ |g(xk+hk) —g(xk)|+3€
i=1 xk;en
i

since we are working with two series, both of which are absolutely
convergent. As € >0 was arbitrary, the lemma follows.
Q‘E.D‘

Lemma 4 and the inequality preceding it furnishes us with

n.

+00
lg®) - gta) < 5] Lnl mB + o - a)
) 1 i 1

+00
= 2]L |mB + w3
1 Ili l’li

by choice of p .

Lemma 5: 3> |L_ [mB_ < | L |m{e. } + n/3

Proof
It suffices to show
q 9
> | L o|m B, < §:1Ln |me_ ) + n/3
‘1 i i1 M R
for any g € W. Recall that B = U [xk, X, + hk] and obserye

*** ©n

that m Bn <m An for all i; let g £ afid define

i i
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Note: For all i € D, m B ~m(e )< a

Therefore,

N
£
)
o
I

5 Iz ImB_ + 2 |n |msB

1 i ™y iep T4 i jee My y

< Xy lme ) +a 1+ X |t Ine )

iep Mg i i jeE By 3
d |
=X L Ime ) +a )
i=1 i i By
g ;
< 2 fL_Im (e ) +n/3
1 Ry i
T
by our original formulation of {a} } .
Rily
! Q.E.D.

With Lemma 5, our bound for Ug(b) - g(a)[ may now be stated

in terms of the e 's. Our prior inequality becomes
i i

+oo |
lgb) - g@) <Y1 Ime ) + 2n

400

|Dg] - |Ln.”m(en I < n/3 .

a 1 i i

A A AT B . Al i 2.7 -t W 1o e ema
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Proof
By definition,
+
L < Dg(x) < Ln < Ln + p for all x ce
Ny : i+l i 0y

which implies

ILn'|- p< D& (x)] < ILn.'+ D
1 1

- +
[aniI - Pl m(eni) 5_[@ Ipgl<lizn_ | + p] me )

n + 1
i
+ 0 +00 + o0
, +
L ”Ln.l - Pl m(.en.)f—z: | Dg |_<_Z [an.| * pl me )
1 1 L 1 en. 1 1 i
1

+o0
Z|L.lm(e ) - p ba)<]|Dgl<Z|L Im(e )+p(ba)

1 i i
-n/3</ Ing | - E[L Im(e )< n/3
b +o
/!n&l- 2o 0L | me )| < w3
A 1 nj Ny
b
asf ]Dgl < 4w,
Q.E.D.

Sa.

P T ATt e oo 2 e
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With Lemma 6 and our prior inequality, we may safely say

that

b
lgb) - g(a)l .i[ Ipgl + n

a

which, thus, completes the bounding process. For 1 > 0 was arbi-

trary! Therefore, the long-awaited and essential result of our

theorem,
b
lg) - gl if!D$| .
a
is wvalid.
Q.E.D.
Thus, for our particular function fX and Dfx restricted to
o] o)
[cq_l, cq}, the theorem vields the result
c
d
]fx (c ) - £, (cq_l)[ < -/. ]DfX [
o] o] o]
c
q-1
Ag g was arbitrary,
PIAES (eg) = £y (eg ) < |pE, | < + o .
o) o o]
q——_l aﬁ""‘l/m

Therefore, the set of all such sums for finite partitions

¢f [ap + 1/m, Bp-1/m] is bounded, implying that f, & BV on

X
o

[aﬂ + 1/m, Bp — 1/m]. Consequently, by a standard theorem. from

AR IR .. S M PR B OISINRG. - . T S X e e At 8t
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Lebesgue measure theory, ff

X
o
But, as the union of countably many sets of measure 0 is again a

exists a.e. in [aﬁ + 1/m, 62 - 1/m].

set of measure 0, fi exists a.e. in (aﬂ, Bﬁ) and, likewise, fé
o) o)
exists a.e. in EX . We record this crucial result as

e

Proposition 3: f! exists a.e. in E .
X5 Xo

In terms of our original function £, this translates intF
of (X _{x1)
——mggwumu exists a.e. in EX . However, we can go further and

X, o)
claim®a much stronger result, namely,

. of . . .
Theorem I: For each i, E%m exists a.e. in G.
i

Proof

We analyze this from the position of considering the set of

Of (x)

Bxi

plement of the measurable set on which all 4 partial derivated

points for which does not exist. Since this is the com

17

do agree,

L = {X £ G| agé ) does not exist}
_ i '

is measurable. It suffices to show that L has O-measure,
n
Let us transfer discussion to the product space]Ri x TR,

T
J#L
with its product measure m X A which we will denote by V: we assume,

of course, each I% =Rfor 1 <j <n and that m, A denote real'and

(n - 1) - dimensional Lebesgue measures, respectively. Define the
' n
isomorphism é: R - IRi x 7 IR, by

i
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oX) = (x,X)

when X is expressed as X[x]; accordingly, let'XQHJ be the
characteristic function on ?(L). We wish to éxtract measurability
of 9¢(L}, hence, measurability of X@(L)’ from our knowledge of L.

This will follow by straightforward means if we look at an equiva-
lent formulation of product measure v, that of the restriction of
outer measure v* to the 0 ~algebra of measurable sets inIRi X jii IRj;
Vi simply o2, 1 light of this, measurability of &(L)

stems from measurability of L. Hence, X@(L) is measurable and

J *
R. X ,,.IR,
i 7 341777

n n .
As O (m X.) =X, x T X, .
1 7 Togg 3
L = f j av .
0 X o)
X.. x 1©m X,
i J
j#1

n
Recall that G, = {X e T X, [X[x?] € G for some x!' EX.}
* i .
and define Ii = {X £ Gi IDfX is integrable on EX}; observe that

both Gi and Ii are measurable. So, by the Fubini Theorem,
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uL = n[ { [ XCD(L) (X. X) dx dax
T X, X.
j#i ) *
= l /‘X@(L) (x,X) dx % ax + n_[ ];(¢ (L) (x,X) dx} ax
el 1 T X‘NGi xi
31
= f ['XQ(L) {x,X) dx ax + ] jx@(L) (x,X) dx dax .
I. X. G,” I, I X. :
i i i i i

Considering the 2nd iterated integral, for any given X,

4] < ../.XQ(L)(X’X) dx < mXi .

X,
h Y
Therefore,
< : X . . ~ =
0 < / fXQ(L) (x,X) dx, 4 S mX, \}(Gi Ii) 0
G, "1, X,
i 1 1

by Lemma 3. Consequently, the 2nd summand vanishes and we are

uL = / fxq)(L) (x,%) ax\ ax .
Lt “x.
€ i

of (X[x])

left with

Finally, for X ¢ Ii define §¥.= {x eE exists} :

then

i RS OIS O T T T D, NP B Dt VT
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L

dx

from the discussion immediately preceding the theorem. But, now
we have reduced matters to the point where (x,X) is no longer in
U(L). Hence, the final iterated integral vanishes and we are
left with the sufficient result for the theorem.
Q0.E.D.

Finally, if Ki denotes the measure equivalent subset of G on
which %%I exists, then Theorem I enables us to obtain quite easily
a measurable set on which %§I exists for any i and whose measure

n
still equals that of G--namely, K = ﬂ_Ki.
i=1




CHAPTER IIX

THE INDUCTION PROCESS PROPER; EXISTENCE
OF THE APPROPRIATE SUBSET OF WHICH TO

ESTABLISH TOTAL DIFFERENTIABILITY

We formally state the major theorem which this thesis pro-
poses to prove.
Theorem: Let f be a real-valued function defined on a bounded
n

region G of IR , <QE(D)>p€Eﬁ'be a net of extended real-valued func-

tions where each mf(p): G IR, _'is defined by

we () (X) = lf(ﬁx tH) - £

i i imi: < > . i
and Lf be the pointwise limit of wf(p)peIR+ on G If Lf is
finite and integrable on G then there exists a measure-equivalent

subset of G on which f is totally differentiable.
Proof

We proceed with the proof of total differentiability of £
a.e. in G by induction on the dimension of the space.
. . of (x) . .
Part I+ For n =1, i = 1 in Chapter II and ~x3 is simply
' 9%y
£'. Recalling the observation made earlier that total differen-
tiability is equivalent to differentiability in dimension n = 1,

the assertion follows from Theorem I, Chapter II.

29




30

Part IT: So, we shall assume for all functions g:G+IR, G
a bounded region in Hf”l, whose corresponding Lg function, de-
fined, as before, to be the pointwise limit of the net <wq(p)>,
is finite and integrable on G, that the contention of total
differentiability a.e. in 6 is valid, (k - 1) - dimensional
Lebesgue measure assumed. Note that we have a little bit more
going for us, namely, that the bounded region G may be a subset
of a hyperplane of dimension k - 1 in Iécsince any such hyper-
plane is isomorphic to Efnl. Thus, the isomorphic copy of g
would inherit all of the necessary requirements to insure tgtal
differentiability a.e. in its bounded region of domain in El-l,
this latter property being passed back up to g defined on G.

Consequently, let n = k and f: G+ IR, G a bounded region
in Ef, be a mapping whose corresponding Lf function is both
finite and integrable on G. We retain all of the results of
Chapter II (primarily, Theorem I) since ne N was arbitrary|and
we now proceed to strengthen our properties of convergence, In
order to do so, however, we must further decompose G and, for
the function %57 r introduce the net concept in its formulation.
In crder to accémplish the latter, we must reexamine our natural
ordering of the reals. Under the directed system (IR {0},(®),
B(P o if and only if 8] < |a

+
toIR is our previous ordering $ for that set. Therefore, by

. Note that the restriction of Q9

convention, we will write }-for‘Q;and.simply specify whenever
we are working with a restricted subset of IR~ {0}. Our directed

system now becomes (IR~{0 },».
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UG
k +3

introduce a latent result which is used, at present, only for

To begin with, let N > 0 be given such that n < We

the set it generates,

Property 1: There exists a measurable subset H C K possess-

ing the two properties:
(1) YUH > MK = N = U@ - n

{ii) Lf is bounded on H.
Proof

This follows simply from the integrability and nonnegative-

ness of L.. Let M, be a positive real such that

>
M, Vn_[ L. dn

G

Consider A :{XEthm)zb%} ; we have

]
YA " M idep<deu ,
n n A O f /o f

n

so, uAn<:n and Lf is bounded on H = K ~An
Q.E.D.
Let us return now to the convergence of the net<wf(p)>paﬂg
to Lf on G. We have the following theorem.

Theorem IX¥: There exists a measurable subset S, € H possess-

ing the two properties:
(1) uS_ > uH - n

(i) <wf(0)>peﬂib converges uniformly to L. on S,
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Proof

k
Consider the subnet <wf(%)> . By Egoroff's Theorem for R

1 .
f(fn")> +Lf uni—

formly on H ~ AO. Set SO = H ~ Ao and let € > 0, There exists

there exists subset AOC: H with uAO <n such that <w
m0 € N guch that for all x ¢ SO
L. (%) - . (2 0] < e
f f'm
ifm > mo. But, we have the relation
Lo (X) < wo(0) (X) < we(=2) (x)
£ - F —  f mO

for any p < M. holding for all ¥ € G; so, choose Py = ﬁL, and
o]
for any X ¢ SO

2,00 - we ()| < e

if p > Py which is (ii) above. (i) follows readily from the
definition of SO,
Q.E.D.
Recall that for any h e R ~{0}, by x C)hi we mean the element
(Xl""’x'-l’ xi:+h4 Xi+l""'xk)' With this in mind, for such

1

non-zero h define f, :G -+ IR by

h
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£ (x ®hi) - £(X)

7 if x@hye €
0 if x@hi¢ G .
We form the net <Eh> and in the process observe that point-
helR~0

wise convergence of “f£,” to the function gﬁ% on a subset of G

is equivalent to the more standard interpretation of the existence
of g?% on that subset. An analogous statement to that of Theorem
IT co;cerning the convergence of <fh>to g%% may now be put forth.
We assert |

Theorem III: For each i, there exists a measurable subset

SiC: H having the two properties:
(i) U8, > UH - 1
i

(ii) <f£ > converges uniformly to f on S, .
h axi i

Preoof
Define the set
sme) = 0, {x efi: B(x; 20 )Cc ana l£, () - iaf—ﬁXllil/t}
h>‘"m' Xi

where meIN, t > 0, Our first goal is to establish its measur-
ability.

Proposition: For each m €¢IN, t > 0, the set S(m,t) is

measurable.,
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Proof

We establish this claim by considering two restrictions of
£, » namely, fh|Gh and fh|G G, where G *{X e(jx()hi_e G }, an
open, hence, measurable set, By the formulation of fh' the
latter restriction is simply the constant function 0, so, surely,

£ 1G ~ Gh is measurable. In regard to the former restriction,

y |
we will show a little bit more, namely, that thGh is in fact
continuous, therefore, measurable. As was pointed out early in
Chapter II, f is continuous throughout G, so it sufficies to
demonstrate contiﬁuity of the composite function g(X) = f(x()hi).
But this becomes a trivial matter due to the fact that G is open,
for then any sequence of points converging to X will have its
corresponding sequende of translates hy()hi eventually contained
in G. Therefore, the problem reverts back to the contihuity of
£ at-XC)hi: so that we are done.

As both restrictions are measurable, fh takes on measurability
on its entire domain, G.

Q.E.D.

With Claim 1 at our disposal, we now know that the indivi-
dual members of the intersection are, themselves, measurable
since fh - ?ﬁ% now becomes a measurable function on G. To see

that the uncountable intersection is also measurable, define

m
heq@Q

where, of course, @ is the set of xationals._ Obviously,.

* _ of (
S (m,t) ==hr:l{x €H: B(x; 2/h|) € G ana |fh(_x) - "“g}f(;f)*lf_ l/t}
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Sm,t) € 8 (m,t)

but, what is more, we actually have the reverse inclusion.

Claim 2: S*(nut) C s{m,t) for all mg I¥, t > 0,
Proof

*
Let X € § (m,t). We wish to show that for any irrational

h' & %:

(1) Bl ; 2lh']) C g

(ii) Ifh' x,) -

(i) is obvious if one observe that we may always choose a sequence
of rationals convering to ]h'] from below. In'regard to (ii},
let {nqi be any sequence of rationals which converge to h' such

*
that each term satisfies n > %. Since Xo € S (m,t), for any

of (x)
ge MW, |[f (X)) - —=——|< 1/t , which implies
nq (o} Bxi -
of (% ) ‘ . of (x )
- - o | _ |lim _ o |«
fh' (Xo) Bxi B g+ T (XO Bxi = 1/t

after observing the f is continuous at xo()]na‘since we have
taken the trouble to insure that the point lies in G. Therefore,
Claim 2 is valid.
Q.E.D.
With S{m,t) = S*(m,t), our proof of measurability of S(m,t)

comes to a close.
0.E.D,.




In light of the preceding proposition, for a fixed t > 0,
{S(m,tﬁ‘+m, now becomes a nested, monotonically increasing
sequencelof measurable sets; H = tT S{m,t) due to pointwiSe
convergence of the net <fn> to mgi/axiand the fact that G is open.
Consequently, for all ¢ % 0, u(S(m,t)) + uH as m ~ +», So, for tp =

z@/n, p € IN, there exists an Np € IN such ﬂxﬁ:ifxnlep,welwwe
WlE v St )] <1/t = n/2P

In particular, WH - SN ,t )] < n/2P. With this in mind, let

[ 3o}
s- = ﬂ S (N Ft ) -
-!-oo
By construction, }E p[H ~ 8(N_,t )] < n/2 so that
p=2 P P -
+ oo

H ~ 3 r r
ul g] S(Np tp)] <n

which gives us property (i). For property (ii), if € > 0 then,
p

surely, there exists a Pg such l/tp = 1/2 ° < g; therefore, for

o)
the constant 1/N_, if ¥ ¢ S(N_ ,t ) then

o)

_ 3f (%)
lfh(x) 3% ; | < ¢

for all h » l/Np . But S(N_ ,t. )D Si’ and, so, we have uniform
o o) o)

convergence of the net <fh> to Bf/axi on Si.

Q.E.D.

36
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We now obtain just one set for which the uniform convergence

stipulation of the last two theorems, property (ii), holds:

Observe that
uS > uH - (k + 1)n > G -~ (k + 2)pn > 0

Due to the measurability of S5, there exists a closed set T CS

such that
MT > 4S8 = n > uG = (k + 3)n > 0 ;

in addition, T is compact since G is bounded. It is this piece
of information that enables us to assert something about the func-

tion E%% itself, namely,
i

Theorem IV: For each i, is uniformly continuous on T.

X.
8Zl_

" Proof

k
As T is compact and G is a bounded region inIR , 4({(T,05G) > 0.

Letting § = d(T, 3G), we know that for any X ¢ T, B{y;8) C G. Let
{hjf denote a monotonic sequence of positive reals converging to 0

such that hl < 8, Then <fh > is a subnet of continuocus functions
j

, P . . .
on T whose uniform limit is ggg restricted to T. So, §%§ inherits
i .

1
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of . .
this continuity on T. In fact, we have a bit more-- - 18 uni-
i

formly continuous on T due to this set's compactness.

Q.E.D.
k
Recall, now, what it means for the point ¥y ¢ IR to be a
k
"point of density" of the measurable subset U ofIR --~ for any

£ > 0 there exists a ¢ > 0 such that

wu N's ) "
e = 1 €

USr
whenever S is a non-degenerate, k-dimensional, open sphere of

radius r with r < §; less formally,

lim wu N s
r> 0, ——g =1
X € Sr H S

The following proposition is the Lebesgue Density Theorem
for Eﬂi the proof of which may be easily adapted from the corre- -
sponding proof using non-degenerate, k~-dimensional, closed cubes
in the definition.l

Theorem: Let U be a Lebesgue measurable subset ofIRk. Then
almost every point of U is a point of density of y.

For our purposes, however, we need only consider open spheres

centered at the point in question. Therefore, using T and this

lDonald Cohn, "Section 2, Chapter 6," Measure Theory (Boston,
1980), pp. 177-184.
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weaker version of the Density Theorem for dimension k produces a

subset V of T, W = UT, on which

lim H[T Y B(X;r)]
r +0 UB{X;r)

for any X € V.

As will become more clear in Chapter IV, it behooves us to
delimit V further to arrive at a measure - equivalent subset Z
having the property that on any hyperplanar section of Z orthog-
onal teo the last coordinate axis ofiﬁﬁ, the restriction of £
to that hyperplanar section is totally differentiable throughout
that section. Conceptually, we modify V by retaining only those
points for which our earlier-made induction hypothesis is valid
for each restriction of £ to the hyperplanar section of V deter-
minted by the last coordinate of each of those pointé. We then
delete from each of those hyperplanar sections, and, thus, frqm
V, the "bad" points of the induction hypothesis; that is, the
exceptional points for which total differentiability of the ref
stricted function fail. We accomplish this through still more
applications of the Fubini Theorem. |

Consider the product space %fiIRj X IRk with its product
measure A X m; we assume, of cougge, eachIR;IR for 1 smj'ink abd
that A, m denote (k - 1) - dimensional and;Leai ?ebesgue measu%es,

respectively. Define the isomorphism @k:§§'+ T IRj~xIRk by
1

8 (0 = (X,x)
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where X = (xl, Xoreser xk_l) for X = (Xl’ Xogreses xk). With this

in mind, define the set

k-1

a1
& ((X',Xk)) e G for some X' ¢ E nzj}

¢ Kl %k

= ﬂxkfzﬂi

and for fixed Xk £ Gk let

k-1 -1
EXk = {x £ g E% [®k ((X,Xk)) e G % .

Finally, for arbitrary X e:mk; let PX denote the (k ~ 1) - dimen-
sional hyperplane offﬁﬁ‘determined bykthe iast coordinate, Xy of
X; Gx denotes the hyperplanar section ka{j G.

%y assumption, Lf is integrable on G, so, extend the function
to allof HRk by defining it to be 0 onIEF'~ G, thus, maintaining
its integrability. Integrability of Lf oniﬂﬁ ai}iws us to claim
integrability‘of the function Pf = Lo @;l on g .H% X IR, after
observing that we have, in fact, equality of the integrals for
nonnegative gimple functions related at Lg and Iy are, allowing
us to make an identical claim for nonnegative'functions so related.

After recalling that m as well as A are complete measures, we are

in a position to apply the Fubini Theorem again, giving us the

k-1
result: (rf)xk: E IRj +~IR, defined by'(rf)xk(X) = pf((x,xk)},
is intedgrable on K;lIR. for almost all ¥ € IRy~ But,
. 3 k
1
(Tf)xk(X) (Ff o k)(X.)
where X must come from ka; yet, for such X, (To 3 ) = Lf!ka’
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So,

(Tg)y () = (mglP, )00

k-1

for ali1 X € 7™ R, ¥ e P, telling us that L
1 J Xy

1 R icti
on PXk for almost all Xy E % Restricting xk K
that Gx C Px is open, hence, measurable in dimension k - 1

k k

yields the preliminary result we seek -= L

IP is integrable
X
k
to G

£
and observing

GX is integrable

|
£z

on GX for almost all x £ G Let

k k*

I = {xk € 6 :L ]G is integrable on G }
, X Xy

and we have finally arrived at the closing theorem of this chapter

which gives rise to the set we wish to work with in Chapter IV.

Theorem IV: f|GX is totally differentiable at the point X,
k
for almost all X £ V.

Proof

The method of attack will be guite analogous to that employed
in Theorem I, Chapter II. We will, however, encounter a little
bit more difficulty in demonstrating the measurability of our
primary set under consideration.

Again, we analyze this problem from the position of consi-
dering the set

W= 1{x¢ev: fig
e

is not totally differentiable at X} .
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Lemma 1l: The set W is measurable.
Proof

Observe, first, that V& K so that 5%?-exists throughout
i
V for all 1 £ i £ k. 1In particular, this holds for 1 <i< k -1,
telling us that for any X € V, all lst order partial derivatives

of fIG w.r.t, any variable other than X exist at X. Conse~

quently,
W= JX€ V: there exists € > 0 such that for any § > 0 there
J | B 1 1 ] P
exists a X' = (xl, Xyr wee 1 Xp_qv Xk) £ GXk with the
property that 0 < | X' - X|%8 but
k-1 Bfleka |
'y - - — (x! - x| > ey ]
[[flexk(.x) flka(X” Z“W e x| > e ]x" -«
o1

={ X €V: there exists € » 0 such that for any & > 0 there

exists a X' € G, with the property that 0 < [x' - x|l <6

k
but
— k=1 &
. 9
LUSRECIRDN —fﬁ%l (xy - x)[> e |y - x|
i=1
400 ‘
= U§ X€ V: for any § » 0 there exists a yx' € G_ with the
p=1 K
property that 0 < | v' - x| <8 but
k-1
ey L _ of () _ 1y
[L£(x") £(x)1 ZZ ”gg;” (Xi Xi)[ > = lx' - x| .

i=1

e,
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0 ofu 0O
= U N {x £ V: there exists a X' € GX with the property that
p=l g=1 k

4 L l
0 < |y' - y| <x b
| x x| 5 but

k-1 |
, d ‘
ey = £001 - D —-§-~}§i-?— (x} - x)|> 2 [x' - xl} :
i=1

For each p, g €N, let

Wip,g) =4 X € V: there exists a X' € GX with the property that
' k
: k=1
1 af (x) 1
| — P vy - | I = vt o
0 <[x* = xl<g but [[£(") - £00] za B AR L - P
i=1

and we make the following assertion:
Claim: W(p,g) is open relative to V.
Proof

For brevity, we sketch the outline of the proof. Select

X € W(p,q) with corresponding X' € Gx . Let

k
e, = /g - [x' -« ,
k-1
. Of(X)
€ = ¥ - - NS T . - | B
, = [IEX") - £00] Z g o)l - I -
i=1 '
and €3 be such that B(X‘;E ) C G. We wish to find a ball about
X relative to V of radius ¢ completely contained in W(p,q). First
€ £
of all, we insist that ¢ < min (63, f%, “%) lﬁl_%;xi_; we then

appeal to f's continuity at x, x' € G and 327 's continuity at
1

X € V together with judiciously chocsen E's (82/4k, 1/4k) to
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ascertain §'s which further restrict . Finally, insist that

€

- 2
z < .
- {18£¢( gf of
4% - max(lax(x) L 12E ,|~§-£X-’-|)+ 1
1 < X
Then, for X = (§l, §2, cee Ek) e B(y;r) relative to V, simply
choose the X' € G, to be the orthogonal projection of X' onto
k
G_ .
*x

Q.E.D.
But, with V measurable, the above c¢laim yvields what we need,
namely, that W(p,g) is also measurable for all p,g eIN, So, W
is'nothing more than a countable union of countable intersections
of measurable sets and the proof is complete.
g.E.D.
With the measurability of W disposed of it now sufficies to
demonstrate that W has 0 - measure to prove the theorem, Accord-
ingly, let X4 tW) be the characteristic function on @k(W). We
wish to extrgct measurability of @k(w), hence, measurability of
Xék(w), from our knowledge of W. This will follow by straight-
forward means if we look at an equivalent formulation of the
product measure A x m, which we will denote by B T that of

#*
the restriction of outer measure e to the o-algebra of measur-

' % * —

able setsin_IRi x IR.; Hye is simply u o @kl. In light of
: A1

this, measurability of @k(W) stems from measurability of W.

Hence, XQk(W) is measurable and
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f f Xo, (W, ~ Mk (@, (] = p*W =yw

k-1

As a result of the Fubini Theorem and Gk, Ik's measurability,

UW x¢k(W)CX,xk)dX dxk

F
S ——e—
I N

Xo L (W) (X,x Yaxp dx

T 1R
1

T k-1
k m IR,
1 J
+f f xtbk(w) (X,xk)dx dxk
Gk”Ik k-1
m IR,
1 J

Considering the second iterated integral, as our region G

is bounded, there exist reals aj, bj, 1 <3 <k, such that

k
G(:j:lxj where Xy = (ajrbj). For any given x,
] k-1
< X - Y = .
k=1 k-1 J
IR T Xj

T
1 ] 1
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therefore,
k-1
< -— . ~ —
0 < Xp k(w)(X,Xk)dX dx, < E (bj aj) m (6, Ik) 0.
€~ 1 k=1
k Tk 7 IR .

1 3

Thus, the second iterated integral vanishes and we are left with

uW'—"-ff gk(w)(x,xk)dx. dx,

Ik" k;l &

1 3
Finally, for e I define €, ;{X eE : flg is totally
SRS % o
differentiable at ®k ((x,xk))}. But, I, has the property that
our induction hypothesis is valid for f]Gx , as G is always
k

a bounded region in dimension k¥ - 1. Therefore, for such Xy r

f!Gx is totally differentiable a.e. in Gx ; implying that
k k

So, we may proceed with the iteration:

Ik B k-1
Xy T R .E
1 3
I € E_~&
k Xk Xk e

N, TR s
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=f f Xg (W) @ x )X ( dxy ¥

But, now we have reduced matters to the point where (X,xk)
no longer lies in @k(W). Hence, the final iterated integral
vanishes and we are left with the sufficient result for the
theorem,

Q.E.D.

Let

2 = {x € V: f[Gx

is totally differentiable at x}.
k X

We have finally finished with our decomposition of G and arrived
at the appropriate and penultimate set on which to establish

the property of total differentiability of our function f. Toward
this end, let £ be an arbitrary positive real number and N be a
positive integer, N # 1. In closing this chapter, let us amass

our results for the set Z and the real numbers n, ¢, and N.

Results
(i) By Property 1 of this chapter, Lf is bounded by Mn on
Z2; so, by the uniform convergence property of Theorem II, there

exists a po(n) > 0 such that for each X & Z,

wf(p)(x) < Lf(x) + Mn

for all p > Do(ﬂ).
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(ii) By repeated applications of Theorem III (k times ) ,
for € there exists on ho(ﬂ,e), which we may assume to be posi-

tive, such that for each i, 1 < i < k, and for every X ¢ 2,
g 00 - EEL o
i

for all h > ho(n,s).
(iii) Likewise, by repeated applications of the uniform
continuity property of Theorem Iv (k times), for e there exists

a §{n,e) > 0 such that for each i, 1 < i < k,

OE(X) _ BE(X')

X, 0%, <€
i i
if [x - x| <8(n,e),
(iv) The pointwise property:
1im T N B(x,r)] 1

>0 ﬁB(x;r)

on all of Z, implies that for the given N(N#1l}, if ¥ e Z there

exists an rN(x) > 0 such that

1 - 1/Nk < pT(x;r)
UB{x;x)

for all 0 < r < rN(x), T{x;r) denoting T N B(};r). But, since

Wz = W = UT, then, surely,
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. k Z(X;r)
1 - 1/N" < %gTK?ET

for all 0 < r < r (X)), Z(Xr) denoting Z N B(X;x).

As a concluding remark, note also that p2 > uG -~ (k +3)n> 0.




CHAPTER IV

THE CONSTRUCTION PROCESS; THE APPROXIMATION
PROCESS CULMINATING IN TOTAL

DIFFERENTIABILITY

Let Xo € Z have coordinate representation (xl, Xpr ses X )

and £ > 0 be such that B(XO:E)C: G. Designate
r, = min {h_(n,€), d(n,e), rN(XO), g '

guaranteed to exist by Results (ii), (iii), and (iv). Form con-

.' - ) ey . »
centric spheres B(xofro) and B(XO, O) where o is defined by

N - 1
o} (o) N

’ po(n)(N— 1) ’

. . . . e S N
po(n) originating from (i) of Results. Let X1 B(XO, O) {Xo}
with coordinate representation (yly Yor eeer yk) and the real

number r be defined by

We summarily form B(Xl;r/N) and in the process observe that, by
construction, we have B(Xl;r/N) S‘: B(Xo;r) . Also in the con-
struction process, we have nicely arranged it so that we may

make the following claim concerning volumes.

50
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Lemma 1: u[B(XO:r) ~ Z] < uB(Xl:r/N) .

Proof

I

First, recall that, by convention, Z(x_:r) z N B(X,it)

and that the volume of a k-dimensional sphere of radius p is
k

kLp where ﬁ£ denotes the volume of the unit ball expressed

in terms of the T function'.1 Therefore, as oy 5»rN(X0)' we

have

=
s
>
H
2
B3
1l
=
[vs)
>
Q
H
H
=
0
-
H

=K, (x/m*

which is precisely uB(xl;r/N).

Q.E.D.
The importance of Lemma 1 is demonstrated by the following
k
existence claim. By ﬁx we mean the line in IR determined by

k
the last coordinate, x, , of Xo*

1Luis Santalo, "Section 5, Chapter 1," Integral Geometry
and Geometric Probability, Vol. I of Encyclopedia of Mathematics

and its Applications, 2 vols. (Reading, 1976}, p. 9.




Property 2: [B(xl;r/N) ~ Exk] M Z is nonempty.

Proof

As U{B(Xl;r/N) N EX ] = 0, it sufficies to show
k
WEB(x :x/N) Nzl > 0 .

But,

U[B(Xl?r/N) Yz} = v[B(XO:r) v Z]

< UB(Xl;r/N)

by Lemma 1, so the result follows from the additivity of the

measure.
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Q.E.D.

Let X, € [B(Xl:r/N) ~ ﬂx 10 2 and X, denote the orthogonal

k

projection of X, onto the hyperplane PX ' (zl, Zor eeer Zy_q4 xk).

k

Note that by choice of r, we have insured that both X1 and X3

belong to G. We are now in a position to state the central

equality about which all of Chapter IV hinges:

@A

Elx,) - £{x.) £ix) - £(x,) flx,) = £(x,} Elx,} - £(x.)
Xy o 1 2" 2 3 3 o

le - xol le - xol X, - xol

lxl - xol

.
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Part A: Approximation of the lst Summand of Equation ﬁk)
Case 1l: Xy E Xy

In such an event, the quotient wvanishes.

Case 2: X9 b4 Xy *

By construction,

£ix)) - £(x,)

< g (z/M) (x,)

1%, - X.|
. . ..l o} .
in which r/N = T < po(n). As Xy € Z, (1) of Results

yields

< ZMﬂ ;o

2

so, returning to our first summand, we have

£{xy) - £(x,) Xy = X5l ) 2M

< oMy -
X1~ %o X7 = Xl

f(Xl) - f(Xz)

Letting Eo = , we may express the above succinctly
| Xy - %1

] o
as

2M
ICOI T '

valid for both Cases 1 and 2.



Part B: Approximation of the 2nd Summand of Equation #%)

Note:

Case 1: Y = %

Since

where Xy €

Zy # X -

k *

= I3 gl =gy - wlsdig - oxgl e/ < )

Z, (i) of Results again yields

f(xz) - f(x3)‘ <om '
| \ n ’

Xz_)(3

thus, returning to our second summand we have

Letting no

where [n [ <

Fly.,) = £{x.,} - M
XZ X3 -~ [Xz X31 < n

Mxp m X N-1

<

Xl - Xo

F0y) - Flxy) o) (v - x)

= - y We may write
X7 = %l 0%, Ixg = %l
X,y = £ Bflx ) (y, - x)
2 3 = -:0 = k + no
%y = %] ax Ixq = X,
2,
N -1

Case 2: Yy # Ky o

We rewrite the second summand as follows:

54
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£(x,) - £xg)  £0G) - £Xg) oz - % vy - X

= . L]

le-le zk—Xk yknxk |X1"XOI

£0x,) - £0x3)  3£(X))
Lemma 2: i —x 3 = P O+ ny
k k 'k

where Iﬂll <2g,
Proof
i - < - <y <
By construction, |zk xkl < |X2 Xol r ro where both
X X2 £ Z; observe, also, that

f(X2) - f{x3) f(X3) - f(xz)

- = — =f {x,)
zk Xk Xk zk h' a2

in which h = X = Zp- Hence, h %~ro, so that by (ii) of Results,

£(X,) - £(x3) ) A (x,) e
2, T X Bxk
(1ii) of Results yields
Of (X,)  9E(x))
x2 - xo <€
k - Tk
£(X,) - £0x3) LX)
Setting n, = - and combining inequalities
x T %k ¥y
furnishes the desired conclusion. _ Q.E.D.
Let us define the guantities:
S S
n, = — = 1
¥x *x
so that
zZ, — X
k k _ 1+ 7 ,
Y T % 2
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and

Returning now to egquation (*) and inserting the values .

n2, and n3, we have

f(xz) - £(x.) 3f(xo)
(*¥*) e = n, + e’((ﬂl, Y T13))
Ix. - x| 3% :
1 e} k
Bf(xo)
where @((”1' Nyr n3)) = nl(n3 + n2n3) + “33-{;-“ UPUR .

Note: [nyng|< ﬁ"%~I .

We now deviate from our usual bounding process and attempt
something more, the thrust of which is embodied in Property 3.
First, let us realize that our choice of Xo at the outset of
Chapter IV in no way depended upon our choice of ¢ and N. Con-
sequently, we may view X, 88 being fixed throughout all of the
preceding analysis. As a result, the range of values for Nyr Nye
Ny and Ny vary according to the range of values assumed by the
points Xy and Xoi Ay and Xo are, of course, restricted by the
initial choice of ¢ and N. If we now consider e and N as variables,
free to range throughout IRt ana W ~{1}, respectively, we may define

the function Y of the complex variable (g,N) by
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¥((e,N)) = 2Z¢e

N -1

and note that from the preceding analysis of Part B, Y possesses

the two properties:

1y IRy {xy = Xgr %) ] < ¥((e,N))

where Rl (X4 = Y.« Xz) is defined by

1 o]
N : -
Ry (3 = Xyr %) = ) T % .
” 8((ﬁl, Ny s n3)) if y, # X
e + 0
{(ii) ¥((egN)) >0 as .
N + 4w

In light of the above discussion, we propose the following
proposition:

.
Property 3: Suppose that for every (gN)e R x W ~ {11}

there exists a constant vO(E,N) such that if |X1 - %ol < vo(E,N)

then there exists a point Xy € G such that

Ry(x = % %) [ < ¥eem) .
Assume, in addition, Y has the property that

e+ 0
Y((eg)) > 0 as

N+

Then Rl(xl = Ko xz) + 0 as (xl ~‘x0) + 0. (The latter statement

of convergence is to be interpreted as: given o > @, there exists




58

8 > 0 such that if le - Xo' <f then there exists a point

Xy € G such that IRl (X7 = Xg Xz)[ < )

" Proof

Let o >0; there exists order pair (el,Nl) such that
T((sl,Nl)) < o, By assumption, for this (slle) there exists
the constant vo(el,Nl) such that if lxl - XO|< vo(el,Nl) then
there exists apoint Xy € G such that

|R1(Xl D Xz)l < lF((Ell'N. )) <0

0 1

Letting B= vo(ﬁl,Nl), the proof is complete.
Q.E.D,
In order for us to claim the cond¢lusion of Property 3 at
this point, we only need for the given (¢,N) the existence of
such a constant vo(e,N). But such a constant does, in fact,
exist in Part B ~-~ namely, vo, which was introduced at the very
outset of Chapter IV and for Which property (i) of ¥ is valid

whenever |y -~ Xol <V, and Xg € Z is obtained wvia Property 2.

1
Consequently, we have all of the hypotheses of Property 3 holding,

allowing us to claim

R1(11 T Ko Xz) > 0 as (Xl - Xo) >0 .

Therefore, we may restate equation (**) as:
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E{x,) - £{x,) sf(x ) ({y, - x )
2 37 (o} k . k FR( = Xer Xo)
Xy = %! 3% G - X1 1717 Yo' %2

where Rl(xl = Xy xz) + 0 as (xl - Xo) + 0, valid for both
Cases 1 and 2 of Part B.

In retrospect, we could have stated a proposition analogous
to Property 3 earlier, in Part A, and thained a similar result
on convergence since both vo and Xy Wwere chosen prior to eguation

ﬁf) and are, therefore, independent of any part following.

Letting Ro(xl - X

o’ xz) = T s wWe have

Ro(xl--xo, xz) + 0 as (xl—xo) > 0

true for Part A.
Part C: Approximation of the 3rd Summand of Equation (#.

We rewrite the final summand as

£(xg) = £(x) flka(X3) - fIka(Xo)

g = %] X1 = Xo!

n

By definition of our set %, f]Gx is totally differentiable at
k
XO. Consegquently, the above guotient becomes

- Y . "
EE% [ka(xo) (zi - xi) . |X3 - XOI . )
_ A I Xq = X
i=1 0%y X1 = %ol 1% = Xol X 3
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Bf(xo) (z; = %) \|X3 - Xol

k-1

+ R, {x, -
Z:L 3% 1% = %o G~ %o | Xk‘(x3 Xo)
l:

with R having the essential property:
k

R (y' - Xo) +0 as (¥ - xo) + 0, ¥' € Gx

%k K

Claim 1: ka(x3 - Xo) 0 as (¥ - XO) +~0 .
Proof

If suffices to demonstrate that (X, - X0 0 as (¥ - XO}

> 0; but this is a simple matter as, given & > 0, let 8 = /2,

We have the following string of implications:

X, = x| < d/zl <ol -1 for all N € IN,
then
r = le" Xy . N‘g i < o for all N € IN,
then
X, = x b <o
then
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Claim 2: For any i, 1 <i< k - 1,

Xy 1)(1_ = XO[ 9X, |X1 - Xo[ 1
of (x )
whexe ICiI < Bx? ) N : 1
l —t
X3 = x4 |

Claim 3: = = 1+¢g, where [z, | < 1 .
Claim 3: P =% k k! 2

Hence, by Claims 2 and 3 we may write

k-1
_ Z Bf(xo) (yi - xi)
Bxi [Xl - Xo[

i=1

£(x5) -£(x,)
IX}_ - Xo[

k-1
LD DR +Ck)ka(X3 "X
i=1

k-1
The latter half of Claim 2 allows us to conclude that E:'gi + 0
i=1
as (xl - Xo) +0; the latter half of Claim 3 along with Claim 1
allow us to assert that (1 tle)RXk(X3 - X)) T 0as Xy - XO) + 0.
{ - = 4 + -
Letting Rz(XL Yo Xp) = oy (1 Ck)ka(XB XO), we may_

1=
finally state the third summand succinctly as

Elxy) - £lx,) v  3Elx) (vy - %)
= =2 = TR T X %)
X 7 %l i:z_ 9%y X1 ™ %ol

where Rz()(:L = Xg xz) +~ 0 as (x; - Xo) - 0.

We have finally reached the culmination of our approximation

process. Pooling the results of Parts A, B, and C, we may
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reformulate equation @) as

"Z“:l A () (s - %)
axi. IXl - XOI

f(xl) - f(xo) af(xol (yk - X
IX; = X! ¥ Ixg ~ X

)
[t
© i=1

+ [RO(Xl —XO’XZ) +R1(Xl —XO,X ) +R2(Xl —XO,XZ)]

where each BE(Xl - XO,-XZ) > 0 as (Xl - XO) >0, £ =0, 1, and

2.
k
Let H={X-i"XO€IR |Xi= (Y:'Lr Yér veoy Y}‘c) € G}

and define the function R: #->IR by

0 if x] = X,
R{x'" - x ) = o .

£(x]) - £(x)) & OE(x,)  (vi - %) PN
| j;zl T P N

%} - x

(&) o]

We claim that our preceding work shows that R(xi - xo) + (0 as

(xi - xo) + 0., The reason: for ¥' sufficiently close to X7

X1 = X1 and
R{Xp = %) = RoXg =Xy X)) + Ry(Xg = Xgr¥y) + Ry {Xg =X rXy) '

if X1 #xo, in which each summand converges to 0 as (xl - xo) + 0.
Hence, we have met the two conditions required to insure

total differentiability of f at X, € 2. As X, Was arbitrary, f

achieves total differentiability throughout our set 2, Y2 > UG -

(k + 3)n > 0.
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This latter result combined with the relatively arbitrary
nature of N now permits a swift coup de grace to the proof of

total differentiability of our function a.e. in G. For, let

N' €IN be such that 1/N' < TﬁﬂgwiT' If we now consider the
-4 00

saquence { %} of values of n, then Chapter IV furnishes
n=N?' 400

us with a corresponding sequence of sets,{Z&-n_N,, sets on

which £ is totally differentiable and for which

' (k + 3)
> - AR T 2
UZn ~ MG n
4o
for all n > N'. So, let 8= {J z, and we claim that f is

totally differentiable on this measure-equivalent sgubset of G.
The former property of £ is obvious; the latter equivalence of
measure follows readily from the observation that G ~QCG ~ Zn
for all n > N', |

Hence, Part II of the induction process begun at the outset
of Chapter III is now, at long last, complete. By the principle
of mathematical induction it follows that the theorem which

this thesis proposes to prove is true.

Q.E.D.
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