

APPROVED:

Ian Parberry, Major Professor
Armin Mikler, Committee Member
Robert Renka, Committee Member
Robert Akl, Committee Member
Paul Tarau, Committee Member
Barrett Bryant, Chair of the Department

of Computer Science and
Engineering

Costas Tsatsoulis, Dean of the College of
Engineering

Mark Wardell, Dean of the Toulouse
Graduate School

REAL-TIME RENDERING OF BURNING OBJECTS

IN VIDEO GAMES

Dhanyu Eshaka Amarasinghe

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY O F NORTH TEXAS

Augu st 2013

http://dhanyu.com

Amarasinghe, Dhanyu Eshaka. Real-Time Rendering of Burning Objects in Video

Games. Doctor of Philosophy (Computer Science), 82 pp., 27 figures, references, 57

titles.

In this research, I focus on fire simulations and its deformation process towards

various virtual objects. In most game engines model loading takes place at the beginning

of the game or when the game is transitioning between levels. Game models are stored

in large data structures. Since changing or adjusting a large data structure while the

game is proceeding may adversely affect the performance of the game. Therefore,

developers may choose to avoid procedural simulations to save resources and avoid

interruptions on performance.

I introduce a process to implement a real-time model deformation while

maintaining performance. It is a challenging task to achieve high quality simulation

while utilizing minimum resources to represent multiple events in timely manner.

Especially in video games, this overwhelming criterion would be robust enough to

sustain the engaging player's willing suspension of disbelief. I have implemented and

tested my method on a relatively modest GPU using CUDA. My experiments conclude

this method gives a believable visual effect while using small fraction of CPU and GPU

resources.

ii

Copyright 2013

by

Dhanyu Eshaka Amarasinghe

ACKNOWLEDGMENTS

I dedicate my dissertation work to my family with a special feeling of gratitude to my

loving parents, late Mr. Somaratne Amarasinghe and Kamala Amarasinghe for their proper

guidance and encouragement to show me the importance of proper education.

I extend my dedication to my sister, Maulie Happawana and her husband Professor

Gemunu Happawana who never left my side and influence me for the higher education.

Including my brothers, Professor Rajee Amarasinghe, Dr. Nuditha Amarasinghe and their

families for the unconditional support and guidance for my success. Not to forget my late

brother Sujai Amarasinghe.

I also dedicate this dissertation to my loving wife Dr. Nishani Amarasinghe and the

baby ’Panda’ to come with full of excitement.

I had a perfect opportunity to work with Professor Ian Parberry, the best adviser

that one could wish for these long years of doing research. His excellent guidance, patience

and support are truly an inspiration to succeed in this challenging task.

I would like to thank Professor Armin Mikler who convince me to proceed with PhD

by clarifying the worth of such achievement. I also like to grasp this opportunity to thank

Professor Robert Renka, who taught me the first graphics class and made me falling love

with the world of graphics programming. I like to thank rest of the committee and their

support to fulfill my achievement.

I would like to thank all my colleagues at Laboratory for Recreational Computing

(LARC) and all the friends and members of the Sri Lankan Students association of University

of North Texas (SLSA).

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1

1.1. Hypothesis . 3

1.2. Contribution . 3

1.3. Overview . 4

CHAPTER 2 GPU PROGRAMMING . 6

2.1. Hardware Performance and Comparison 6

2.2. GPU Memory Architecture . 8

2.3. OpenGL Interoperability with VBO . 10

2.4. GPU Implementation with CUDA . 12

CHAPTER 3 REAL-TIME RENDERING OF BURNING OBJECTS 13

3.1. Overview . 13

3.2. Previous Work . 14

3.3. The Heat Boundary . 15

3.4. Internal Deformation . 17

3.5. Structural Deformation . 20

3.5.1. Model Subdivision . 21

3.5.2. Rotate Around the Midpoint . 22

3.5.3. Vertex Mapping . 24

3.5.4. Surface Removal . 25

iv

3.6. Flame Distribution . 26

3.7. Optimization . 26

3.7.1. Heat Boundary Optimization . 27

3.7.2. Time Division Optimization . 27

3.7.3. Block Division Optimization . 27

3.7.4. Pre Loading Optimization . 28

3.7.5. CUDA Optimization . 28

3.8. Results . 29

CHAPTER 4 REAL-TIME RENDERING OF BURNING LOW-POLYGON OBJECTS 31

4.1. Overview . 31

4.2. Previous Work . 32

4.3. Introduction to GAMeR . 33

4.4. Subdivision Techniques . 34

4.4.1. Refinement Patterns and Properties 34

4.4.2. Barycentric Points and Heat Boundary 36

4.4.3. Deformation . 39

4.5. Level Sets and Distance . 40

4.6. Experiments and Results . 41

CHAPTER 5 REAL-TIME RENDERING OF BURNING SOLID OBJECTS 43

5.1. Overview . 44

5.2. Previous Work . 44

5.3. Internal Deformation . 45

5.3.1. The Heat Boundary . 45

5.3.2. The Deformation Process . 46

5.3.3. Inward Contraction Displacement 47

5.3.4. Vertex Displacement . 49

5.4. Structural Deformation . 50

v

5.5. Results and Optimization . 51

CHAPTER 6 REAL-TIME RENDERING OF MELTING OBJECTS 53

6.1. Overview . 53

6.2. Previous Work . 53

6.3. Internal Deformation . 55

6.3.1. The Heat Boundary . 56

6.3.2. The Deformation Process . 57

6.3.3. Polygonal Melting Properties . 57

6.3.4. Base Point Movement . 60

6.4. Structural Deformation . 61

6.5. Results . 62

CHAPTER 7 CONCLUSION . 63

7.1. Summary . 63

7.2. Hypothesis . 64

APPENDIX A BASIC DATA STRUCTURES . 65

APPENDIX B GPU CODE STRUCTURES . 69

APPENDIX C CUDA GPU IMPLEMENTATION 72

BIBLIOGRAPHY . 77

vi

LIST OF TABLES

Page

Table 3.1. Designer set constants. 18

Table 4.1. Adaptive refinement pattern (ARP) attribute set. 35

Table 4.2. Frame rate of fully subdivided model versus my approach. 41

Table 6.1. Constant attribute set. 60

vii

LIST OF FIGURES

Page

Figure 2.1. Performance of CPUs and GPUs over the last few years. 7

Figure 2.2. Index of multi-dimensional thread IDs and block IDs. 10

Figure 2.3. Representation of OpenGL supported serialized VBO data layout. . . . 11

Figure 3.1. Animation frames for burning the Stanford bunny. 14

Figure 3.2. Approximated heat boundary expansion. 16

Figure 3.3. The division of the heat boundary. 17

Figure 3.4. The deformation coordinates of a single triangle. 19

Figure 3.5. Model subdivided into blocks. 21

Figure 3.6. Object deformation with and without structural deformation. 23

Figure 3.7. Deformation with surface removal. 26

Figure 3.8. Animation frames of burning models. 29

Figure 4.1. The deformation of a low polygonal model. 32

Figure 4.2. The level subdivision of a single triangle. 35

Figure 4.3. Heat boundary areas and barycentric point sets. 37

Figure 4.4. The refinement hierarchy and deformation. 38

Figure 4.5. Real-time computation of LOD for a burning object. 40

Figure 5.1. Shell model deformation (left) vs solid model deformation (right). . . . 43

Figure 5.2. The combustion of a solid model and the spread of procedural fire. . . . 45

Figure 5.3. Heat boundary with different levels of boundary. 46

Figure 5.4. Categorized model triangles. 47

Figure 5.5. The deformation coordinates of a single triangle. 49

Figure 5.6. Level of detail (LOD). 51

Figure 6.1. A wax like solid model (left) and it’s melting effects taken place (right). 54

Figure 6.2. The melting of a solid model and the spread of procedural fire. 55

viii

Figure 6.3. Categorized model vertices. 58

Figure 6.4. The deformation coordinates of a single triangle. 59

Figure 6.5. Melting sequence of a wax form solid model. 62

ix

CHAPTER 1

INTRODUCTION

In recent years there has been growing interest in limitless realism in computer graph-

ics applications. Among those, my foremost concentration falls into the complex physical

simulations and modeling with diverse applications for the gaming industry. The advances

in computing hardware and 3D graphics rendering techniques have driven research and de-

velopment intended at closing the gap between the naturalization and visualization of virtual

spaces. These visual simulations play an increasingly important role as a part of game indus-

tries, modeling of natural systems, applications such as pilot training, war simulations and

medical imaging etc. Simulation is also used to show the eventual real effects of alternative

conditions and it is very useful when the real system cannot be engaged, because it may

not be accessible, or it may be dangerous to engage in real life. Furthermore, most different

simulations have been virtually successful by replicating the details of a physical process. As

a result, some were strong enough to lure the user into believable virtual worlds that could

destroy any sense of attendance.

There are many natural phenomena that most of us encounter in daily life. The

singularities related to water, wind, smoke and fire are the most common among all. With

rapidly developing graphics hardware, there is a cumulative attention for simulation and

visualization of natural phenomena within the computer graphics community. However,

maintaining a believable realism of a simulation which similar to event that everyone is

familiar with is quite a challenging task. Especially, in gaming industry, most of these

require visually compelling but not sternly accurate imitations. Accuracy is demarcated as

how well the simulation matches with the believable realism of such event. Even though,

most of these are not usually addressed in scientific simulations, it has to be capable of

capturing the visual physiognomies of the phenomenon. In the case of visual simulation, we

would like to match what we see in the real world occurrence. Each natural phenomenon

may require different simulation models that are incompatible with each other. Therefore, in

1

this research I have focused on fire simulations and its deformation process towards various

objects specified in gaming environment.

In most game engines model loading takes place at the beginning of the game or when

the game is transitioning between levels. Game models are stored in large data structures.

Since changing or adjusting a large data structure while the game is proceeding may adversely

affect the performance of the game. Therefore, developers may choose to avoid procedural

simulations to save resources and avoid any interruptions on performance. I introduce a

process to implement real-time model deformation while maintaining performance. It is

a challenging task to achieve high quality simulation while utilizing minimum resources

to represent multiple events in timely manner. Unlike many studies that focus on exact

simulation of reality, I have focused on the fundamental physical changes of the simulation

process. This would be adequate to feel the realistic essence of the virtual world. Especially

in video games, this overwhelming criterion would robust enough to sustain the engaging

player’s willing suspension of disbelief.

I have implemented and tested these methods on a relatively modest Graphics Pro-

cessing Unit (GPU) using Compute Unified Device Architecture (CUDA). My experiments

suggest that these methods give believable rendering of the effects of fire while using only a

small fraction of Central Processing Unit(CPU) and GPU resources.

2

1.1. Hypothesis

The hypothesis of this dissertation is as follows:

One can simulate different aspects of deformation and consumption of virtual objects by

procedural fire and achieve visually plausible results at interactive rates on current hardware.

Where the terms describe as;

• Different aspects: Features such as burning solid objects, burning shell objects and

melting objects.

• Deformation and consumption: Most objects experience shape changes when it

burns due to the ingesting process of fire.

• Virtual objects: Objects that create using computer graphics.

• Procedural fire: Fire simulation that take place and behave dynamically upon the

situation and interaction.

• Visually plausible: Looks realistic and direct towards the believable realism.

• Interactive: Maintains sufficient frame rate in current hardware for user to make

changes in parameters and gain immediate results.

1.2. Contribution

Today, the video games and computer graphics have become a part of the main

stream culture of the modern society. The objective of this work is to improve interactive

entertainment and visual effects in video games. This is a substantial contribution to bring

up the gaming environments one step closer to the real world phenomenon. Furthermore, my

aim is to extend this work to benefit the computer graphics community with visual effects

and related fields.

This research mainly covers the simulations related to fire, specifically a decomposi-

tion and deformation of burning shell models and burning solids. In addition this framework

also extends to the low polygonal object deformation and solid object melting. This work

tries to bridge the gap between interactive methods and physically based simulations. Video

games related interactive simulations like deformation of burning object have not being

3

achieved before. My work is strictly aimed at computer graphics and virtual environments.

The techniques presented in this work address the visualization of physically based simu-

lation under general circumstances. Special cases such as combustion under high winds or

burning of a moving object etc. may have to address independently. In addition, this is

not necessarily identical to real world situation where the theoretical or experimental data

and scientific calculations involved. However, my approximated simulations are visually

compelling and much comparable to the real world phenomenon.

This dissertation discusses unified simulation framework addressing the several pro-

ceedings related to deformation of burning objects such as:

• Heat boundary approximation

• Deformation and decomposition of shell based models

• Deformation and decomposition of low polygonal models

• Deformation and decomposition of solid based models

• Structural deformation of burning objects

• Melting objects

• Flame distribution of a burning object

1.3. Overview

The rest of the dissertation is organized as follows. Chapter 2 consists basic intro-

duction to GPU programming. Here, I have briefly addressed the General-Purpose Graphics

Processing Unit (GPGPU) programing with OpenGL. This programming method has been

used in CUDA implementation. In chapter 3, I propose a framework for real-time rendering

of burning objects in video games. Here, it is mainly focused on deformation of general shell

based polygonal models. Real-time rendering of burning low polygon models in video games

is discussed in chapter 4. In this chapter, I have discussed a systematic polygonal refinement

method that suitable for my criteria. In chapter 5, I address real-time rendering of burning

solid objects in video games. Usually, 3D polygonal models loaded as shell based structures

in computer games. However, some objects must behave like natural solids. Here, I am fo-

cusing on how to overcome this issue when deformation takes place. Chapter 6, introduces a

4

method involved in real-time rendering of melting objects in video games. In this chapter, I

am introducing an efficient method to simulate viscoelastic fluid like behavior into polygonal

meshes. Chapter 7, I conclude the findings and justify the hypothesis. Appendix A contains

the data structures and VBO framework that has used in my implementation. Appendix B

shows my implementation of calculating Normals in the GPU. This code structure can be

followed to modify the color changes of the burning model as well as altering texture effects.

Appendix C contains complete GPU side code snippet showing how to apply fluid like be-

havior to the polygon model. This will guide the user to understand the implementation

aspect of my framework.

5

CHAPTER 2

GPU PROGRAMMING

With the evolution of high computational performance of the modern graphics hard-

ware, programmable flexibility turned out to be a bonus. Many researchers apply this tech-

nology to resolve problems previously attempted to solve using CPUs. The GPU consists of

a number of streaming multiprocessors (SMs). Each SM has a set of execution units, a set

of registers and a shared memory, designed to obtain the best performance with graphics

computing. Although, the GPU programming for general purpose (GPGPU) are becoming

more popular because of its promise of massive parallel computation abilities. The mod-

ern GPUs consider as highly multithreaded architecture which is very suitable for solving

data-parallel problems and does it with increasingly higher performance rate. Furthermore,

CUDA is basically a new programming approach that improves the unified shader model of

the most current GPUs from NVIDIA. The unified shader models are capable of executing

any type of shader when graphics hardware supports the assignment. This Chapter contains

a brief introduction of fundamentals of the GPU programming using CUDA and OpenGL.

2.1. Hardware Performance and Comparison

This section committed to present a performance analysis and GPU development of

the last few years. The idea of presenting relevant data is to illustrate the potential of this

current hardware and evidencing the purpose of my research leading to this direction. In

addition, my hypothesis laid on performance of current existing hardware. There are many

research carried out in past few years with various comparison criteria between CPUs and

GPUs with different assignments. Out of many convincing references with positive conclu-

sions about GPU performances, I list few relevant ones as follows. General purpose molecular

dynamics simulation work present by Joshua A. Anderson a and Chris D. Lorenz [5] claim

that their single GPU implementation provides a performance equivalent to that of fast 30

processor core distributed memory cluster. Ronan Amorim and Gundolf Haase [4] present

their work comparing CUDA and OpenGL implementations for the Jacobi iteration with

6

CPU performance. By benchmarking GPUs to tune dense linear algebra by Vasily Volkov

James W. Demmel [53] claims matrix-matrix multiply routine (GEMM) runs up to 60%

faster than the vendors implementation and approaches the peak of hardware capabilities.

Furthermore, Victor W Lee, Changkyu Kim [28], Naga K. Govindaraju, Jim Gray [19],

Nadathur Satish, Mark Harris [44], Chi-Keung Luk, Sunpyo Hong [31], Ian Buck, Tim Fo-

ley [10] and Glenn A. Elliott, James H.Anderson [13] have present work with executing

various datasets and algorithms on modern GPUs. In addition, Shane Ryoo and Christo-

pher I. Rodrigues [43], Buatois, Luc and Caumon [9] present optimizing techniques that

useful in memory management with GPUs using CUDA.

The following figure 2.1 summarize the development of the GPU technology for the

past few years by illustrating floating-point operations per second (FLOPS) for the CPU

and GPU (left) and Memory Bandwidth for the CPU and GPU (right).

Figure 2.1. Performance of CPUs and GPUs over the last few years. Figure
courtesy of NVIDIA, and adapted from Ref. [39]

Since, GPUs are designed for highly parallel computations and its transistors are

devoted to data processing rather than data caching and flow control, the above results are

obvious. However, CPU and GPU comprehend with different characteristics of design criteria

to serve its purpose. Generally, CPU core is designed to execute one set of instructions when

GPUs are designed to execute multiple parallel set of instructions per cycle. The CPU uses

7

cache to improve performance by reducing the latency of memory accesses as GPU uses

cache to amplify bandwidth using shared memory. CPUs support one or two threads per

core while latest CUDA supported GPUs support up to 2048 or more threads per streaming

multiprocessor. Therefore, the GPU is especially well suited to address problems that can

be expressed as data-parallel computations than CPU. This observation is not conclude

GPUs are much efficient than CPUs in every aspect. However, it is clear that could improve

performance of a given task by consuming combination of both CPU and GPU. In order

to manipulate the usage of these devices we must have general understand of its structural

design. The following Section presents a brief overview of memory architecture of CUDA

supported GPUs.

2.2. GPU Memory Architecture

The structure of GPU memory architecture contains most die area with thousands

of cores consist with Arithmetic Logic Units (ALUs) and relatively small caches. On the

contrary, CPUs consist of a few cores that most optimized for serial processing. GPUs

designed to execute number of threads within cores to support data-parallel processing.

Data-parallel processing can be performed on applications that process large data sets such

as arrays, sets of pixels and vertices etc. Data-parallel programming model often used in

3D rendering applications due to its ability to speed up the computations. This data-

parallel processing executes by mapping data elements to parallel processing threads. When

programmed through CUDA, the GPU capable of executing a very high number of threads

in parallel. GPUs always operate as a coprocessor to the CPU. Therefore, GPU identify

as a compute device when CPU identify as host. In running application, compute-intensive

portions of the host could load to the compute device as it to process in data-parallel mode.

This data transaction between host and device must be proceeding through storage spaces.

To accomplish these criteria, both units maintain their own Dynamic random-access memory

(DRAM), referred to as host memory and device memory. CUDA provides a mechanism to

copy data from one DRAM to the other using optimized Application Programming Interface

(API) calls that utilize the devices high-performance Direct memory access (DMA). Having

8

an overview of this structure is always helpful when its come to allocate the memory spaces

for mapping the data structures that has used in the implementation.

Furthermore, CUDA provides the flexibility of manipulating threads to attain the

most optimum data-parallel procedure under given operation. The independent threads are

organized into blocks which can contain anywhere from 32 to 2048 threads each in modern

CUDA supported GPU. The blocks are completely independent and each block is given a

small area of shared memory that exists on the multiprocessor. Threads in a single block will

be executed on a single multiprocessor, sharing the software data cache, and can synchronize

and share data with threads in the same block [42]. On the otherhand, threads in different

blocks may be assigned to different multiprocessors concurrently. CUDA provides its own

synchronization mechanism to keep all the threads in order. Any thread in the block is

delayed at this synchronization point until all the other threads in the block complete its

task. Any thread in the block can access this shared memory area without much latency.

Each thread is identified by its thread ID and each block identified by its block ID.

These thread IDs are designed as thread index within the block. For example:

For a two-dimensional block of size (Dx, Dy), the thread ID of a thread of index (x, y) is

(x+ yDx).

For a three-dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z)

is (x+ yDx + zDxDy).

Usually, block ID specified by a grid as a two-dimensional array of blocks using a

2-component index. For the block of size (Dx, Dy), the block ID of a block of index (x, y)

is (x+ yDx). The following figure 2.2 illustrates the diagram of imaginary structure for two

dimensional (left) and three dimensional (right) thread ID index alone with block ID index.

The CUDA provides the flexibility to apply necessary dimension for the thread in-

dexing depending on the application. For example, two dimensional indexing more suitable

for matrix multiplication, texture mapping procedures etc. On the other hand, three dimen-

sional threads indexing mostly used in image processing and video streaming applications.

The number of threads per block and number of required blocks may decide depending on

9

Figure 2.2. Index of multi-dimensional thread IDs and block IDs.

the application. Usually, developer must have a basic approximation about the total num-

ber of data elements to be scheduled with data-parallel processing. Less number of threads

and blocks for large number of data elements may cost the performance of the application.

Therefore, proper optimization measure must to be addressed depending on the circum-

stances. This will help the cores to be productive and there will be enough parallelism to

keep them busy. Furthermore, maximum number of threads supported by each block may

vary depending on the hardware specification. Rest of the chapter consists with a quick

overview of required the data structures and mapping techniques that followed to achieve

the prompted task.

2.3. OpenGL Interoperability with VBO

In this section, we will look into making host side data structures that suit enough

to precede with device side data-parallel operations. A vertex buffer object (VBO) is an

ideal feature that OpenGL provides. VBO is a powerful method that allows us to store

certain data in high-performance memory of the host. This method facilitate for uploading

data such as vertex, vertex normals, color, etc. to the video device prior to immediate

10

rendering. The basic idea of this mechanism is to encapsulate data into memory buffer

in object state. Each data element will be available through identifier pointers. CUDA

and OpenGL interoperability follows when CUDA maps a data buffer into its own memory

space. When a deformation occurs on a burning object, its color and shape subjected to

be changed. In order to illustrate these features, I have loaded vertices, color map and

list of normals coordinates into the VBO and map to the CUDA. The following figure 2.3

shows the imaginary view of serialized VBO memory data structure that I have used in the

implementation. Each pointer has access to the appropriate data set and provides it service

in each call.

More information related to function calls and detailed description can be found in

NVIDIA CUDA programming Guide [39]. Next we must map this serialized data structure

into data-parallel processing structure described in section 2.2.

Figure 2.3. Representation of OpenGL supported serialized VBO data layout.

11

2.4. GPU Implementation with CUDA

To this point, I have discussed different memory structures that have being used to

manipulate the model data. When it comes to object deformation, modifications of color

and normal coordinates must be situated in the corresponding vertices. Therefore, it is vital

to gain precise control over GPU mapped data and its correspondents. However, the VBO

contains a serially arranged data set and GPU must achieve data-parallel approach. In this

transition, one primary criterion is to keep track of each data element that to be processed

in separate threads. The key to succeed from this problem is to find a way to map these data

into the threads without breaking its serialized order. CUDA facilitate the user to choose

threads and block size based on the size of the data sets using in the procedure. Here, user

may decide the dimension of the grid including number of blocks and number of threads per

block. These values will be passing to the GPU on the CUDA initializing process. When

data mapping begins CUDA assigned each element with an index number (idx). I have

calculated this idx value as follows.

idx = block ID * Number of threads per block + thread ID

This assignment presents one to one alignment between idx value and the serial-

ized index while mapping the data into each thread. For a given vertex DATA[idx], the

corresponding color value can be found in location at DATA[idx+number of vertices] and

the Normal coordinates will be located at DATA[idx+number of vertices+Number of color

elements]. CUDA supports different idx assignments. User can define idx depending on the

application, the required memory structure and its dimension.

The implementation code snippets related to the discussion in this chapter can be

found in Appendix A. In order to gain extended knowledge of this procedure, it is important

to understand CUDA fundamental function type qualifiers such as device , global ,

host and Variable Type Qualifiers such as device , constant , shared . Detailed

description related to these topics and additional memory types and management techniques

are listed in NVIDIA CUDA programming guide [39].

12

CHAPTER 3

REAL-TIME RENDERING OF BURNING OBJECTS

This chapter presents fundamental framework for emulating the deformation and

consumption of polygonal models under combustion while generating procedural fire. I

concentrate on introducing this framework aiming to facilitate video games. One way a game

can make an impact on a player is by increasing realism. Replicating the details of a physical

process can increase the believability of virtual worlds, and draw the player into the virtual

environment. My focus is on achieving the best visual effects possible while maximizing

computation speed so that the processing power is available for other tasks in video games.

In this chapter, I describe my representation framework for the internal deformation and the

key features of such a strategy including useful optimization techniques.

3.1. Overview

When an object burns, its geometry and topology changes as heat spreads. There

will be multiple internal chemical reactions at various stages of the process, during which

its properties may change from solid to liquid and from liquid to gas due to volumetric

expansion caused by weakening bonds at the molecule level. Modeling an object undergoing

combustion also includes heat boundary expansion, flame distribution, fuel consumption,

and shape deformation over time. Using a unified representation of all the properties of

a given object’s deformation and consumption during combustion in a gaming environment

may not effective due to the limitations of resource consumption and the suitability of specific

representations. Here, I have focused on most fundamental changes of the physical process of

such event. The changes in the bond strength between molecules disturb the stability of the

internal forces. Therefore, these unstable molecules will start moving to find its firm position

in the available space. This causes the changes in shape to the object’s affected areas. I

show how to mimic this molecular behavior into vertex displacement. In this chapter I have

mainly discuss heat boundary expansion, internal and structural deformation alone with the

flame distribution of exposed simulation.

13

Figure 3.1. Animation frames for burning the Stanford Bunny.

3.2. Previous Work

To the best of my knowledge, a simulation of procedural deformation and consump-

tion of objects due to combustion has never been used in gaming environments. Instead,

developers appear to use model swapping techniques. Therefore, this is the first attempt to

introduce the modelling of combuston to the field of gaming in a generalized form.

Melek and Keyser [32, 33] discuss techniques that were used in selected object defor-

mation due to fire, however, these methods are not designed for game playing environments in

which a certain amount of realism can be traded for performance. Sederberg and Parry [46]

and Hsu, Hughes and Kaufman [23] introduce some adaptive techniques of model defor-

mation. Müller and McMillan [36] discuss real-time rendering techniques for deformation

focussing on selected materials in spacial cases. Toivanen [52] is quite adaptive in deforma-

tion of gaming models. Nguyen and Fedkiw [38] introduce high quality flame simulations,

but do not address object deformation. Wei and Zhao [57] use an approach similar to Melek,

defining solids as a volumetric implicit field, but also do not discuss object deformation. Wei

and Li [55] use splatting techniques that help to increase visual impact. Moidu, Kuffner, and

Bhat [34] demonstrate an attempt to animate deformable materials, but they do not intro-

duce complex heat transfer models. Although they discuss the spring-mass model technique

to simulate combusting surfaces, their main focus is on selective materials such as paper and

cloth. Fuller [17] has a useful method for generating procedural volumetric fire in real time

using curve-based volumetric free-form deformation.

14

3.3. The Heat Boundary

In the real world, the temperature of an object changes over time and space during

combustion. I assume that the elevated temperature generated in the model due to fire effects

have a strong influence on the mechanical behavior of the object and that the mechanical

behavior influences the thermal response. Calculating actual heat transfer in a finite element

is considered to be a composite process and depends on many parameters including the

impact of environmental factors such as humidity.

R2 = | sin(πΘ/∆r) + sin(πΘ) + ρ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

where R = r + ∆r, the radius r is incremented by ∆r in each ∆t time period. The

angle Θ is a random value in order to avoid uniformity of the expanding heat boundary. The

heat index value is represented by ρ. The value of ρ depends on the size of the triangles used

in the model and the material that the model is made from. The location of the heat source

is (x0, y0, z0).

The above boundary function creates a roughly spherical but irregular heat boundary

around the heat source. Burning objects contain different intensities depending on flamma-

bility of the material. Some were burn rapidly when others burn in relatively slower. The

intensified flames produce more heat that flow through the burning surfaces. The rate of

heat transfer through a given surface defined as heat flux or thermal flux [8, 29]. This causes

a heat flux determind the deformation speed of the burning object. To maintain the sim-

plicity and the visual effectiveness of the simulation, I let the heat flux determined by the

changes of the ∆r. If the flames are intense, the increment of ∆r in time ∆t will be increase

by suitable approximation. I let the developer to choreograph the simulation with proper

measures depending on the game environment where the replication is engaged in.

Figure 3.2 illustrates the similarity of the approximated heat boundary expansion for

single versus multiple heat sources. The multiple source heat boundary expands throughout

the model with behavior similar to single heat source approximation implemented using the

above function. In the real world, heat sources reproduce throughout the burning object

15

Figure 3.2. Approximated heat boundary expansion in case of single vs.
multiple heat sources.

as flames distribute over time. Each flame capable of generate heat that flow throughout

the object. In order to determine the temperature dispersal in a medium, it is necessary

to solve the suitable form of the heat equation. However, the solutions would depend on

the physical conditions of the medium. Therefore, determination of the authentic heat

boundary expansion is computationally expensive. I believe that the use of a single source

heat boundary expansion is a viable alternative for use in video games.

In object combustion process, there will be various physical changes taking place. In

addition to heat boundary expansion, color diffusion, thermal expansion and deformation are

the few sequential events that may occur in affected areas. Some of these events are fairly

noticeable than the others. In a dynamic simulation, these sequential occurrences must

handle carefully. Therefore, when representing a unified framework, the deformation process

must perform on different stages. Deforming a polygonal model must take many cautious

measures to maintain realism of the performance. First we must gain enough control over

16

the sequential events folding in the simulation. As a solution, I divide the heat boundary

into different areas and performed different systematic operations.

Figure 3.3. The division of the heat boundary.

Figure 3.3 shows the heat boundary division consist with three different areas, the

initial heat boundary area in which combustion is actively taking place and vertices are being

deformed, the combustion-ready area in which ignition starts, and the deformed area which

has been burned and is ready for surface removal. By this proceeding, I was able to apply

the color effects to the model as it is shown here. First, the vertices within the area under the

initial heat boundary are directed to the deformation process. Especially, the initial Heat

boundary used to apply structural deformation. Secondly, division is also useful when it

comes to flame distribution throughout the model. The combustion ready area is considered

as the area where ignition starts in the model. Finally, the actual internal deformation and

surface removal process undergoes on the deformed area.

3.4. Internal Deformation

Some events like volumetric expansion due to the heat of an object are barely visible

to the naked eye in a real world physical simulation, and can easily be ignored in given virtual

world. Internal deformation is achieved by displacement of the vertices of the model mesh.

17

The position of each vertex will depend on three properties: vertex distance, gravitational

force, and material index. While I may assume that material is a constant over large areas

of the model, vertex distance and gravitational force are more complicated, and will be

examined next. Here, I consider each vertex of the object to be analogous to an molecule,

and I take the distance between vertices of a given triangle as the strength of the bond

between vertices. The bond between two vertices of a triangle is taken to be inversely

proportional to the distance between them. Vertex displacement is inversely proportional to

bond strength, that is, directly proportional to distance, and scaled by material index.

I make use of the following designer-set constants, L, ε, β, ρ, and φ described in

Table 3.1. The first is an integer, the remainder are real-valued constants between zero and

one. All of the values can be made constant for the entire model, but in principle L can be

different for each vertex, ε can be different for each edge, and β, ρ, and φ can be different

for each block.

Name Type Description Level

L Integer Flammability Vertex
ε 0 < ε < 1 Meltability Edge
β 0 < β < 1 Displacement scale Block
ρ 0 < ρ < 1 Material density Block
φ 0 < φ < 1 Bond strength Block

Table 3.1. Designer set constants.

Figure 3.4 illustrates the coordinates and parameters used in these equations. The

values λ and µ are the displacement amounts of each triangle due to the effect of heat on

the vertex. The values used for λ, µ will be discussed further below. The lengths of BC and

BA are d1 and d2 respectively. The points (x1, y1, z1) and (x2, y2, z2) are a µ and λ fraction

of the length along the edges (respectively BC and BA) of the triangle.

Suppose B is a vertex to be displaced in triangle ABC, where A = (xa, ya, za),

B = (xb, yb, zb), and C = (xc, yc, zc). B is to be displaced to (X, Y, Z) as follows:

X = (x1x2(ya − yc) + x1xa(yc − y2) + xcx2(y1 − ya) + xaxc(y2 − y1))/

18

Figure 3.4. The deformation coordinates of a single triangle.

((xa − x2)(yc − y1)− (xc − x1)(ya − y2))

Y = (y1y2(xa − xc) + y1ya(xc − x2) + ycy2(x1 − xa) + yayc(x2 − x1))/

((ya − y2)(xc − x1)− (yc − y1)(xa − x2))

Z = (z1z2(ya − yc) + z1za(yc − y2) + zcz2(y1 − ya) + zazc(y2 − y1))/

((za − z2)(yc − y1)− (zc − z1)(ya − y2))

where

(x1, y1, z1) = µC + (d1 − µ)B

(x2, y2, z2) = λA+ (d2 − λ)B.

The values µ and λ are displacement parameters for vertex B. In addition I use a

displacement adjustment parameter β to allow for the variation in triangle size from one

model to another. The designer must set this value as part of the design process. Let

ρ denote a material density index . When both vertices of an edge are inside the heat

boundary, bond strength is weaker by a factor of φ than when one vertex is outside of the

heat boundary. ρ and φ are real values between 0 and 1 that are again set by the model

19

designer. Placement(λ) is then defined to be βρL/d2 if A is outside the heat boundary, and

φβρL/d2 otherwise, where L is the flammability of the vertex.

Burning objects are consumed by combustion, and combustion subsides when there is

nothing left to consume. I model this with a flammability value at each vertex. The counter

decreases each time vertex displacement is processed. After the level counter reaches zero, I

consider that there is no consumable resources left at the vertex. The designer sets the initial

flammability value for each vertex. This gives the designer the ability to vary flammability

from place to place in the model, thus mimicking the effect of having the model constructed

from different physical materials such as wood or metal. Among all of the external forces,

gravity plays a major part in every physical based simulation. The effect of gravity is

computed as follows:

Y = Y − ε~g,

where ε be a constant that represents the amount that the model melts due to heat,

and ~g be the gravity vector.

3.5. Structural Deformation

Deformation of a burning object can be caused by factors such as the expansion

and weakening of the internal bonds, and the relative weights of cantilevered parts of the

object. Exact calculation of these complex processes is costly. Furthermore, accuracy of

the real world simulation represents all the details of the physical phenomena, this is usually

impractical when I consider the processing capability, and even when it comes to the chemical

changes of the physical process. Therefore, I have usually target in this computer simulation

is to simplify the physical model that enough to feel realistic essence. Here, I have eliminated

certain secondary effects in order to achieve visually plausible results. By doing so I was

succeeded achieving effective results in structural deformation. I simplify the process by

considering only the weight of a given point of the structure. The weight changes of the

burning structure will occur due to consumption of the object by fire. I have divide the

object into uniform blocks and treat each block as a single unit. Changes within a block are

propagated to neighboring blocks. This section is divided into two subsections. Section 3.5.1

20

describes the model subdivision into blocks in more detail. Section 3.5.4 describes the removal

of surfaces that have been marked by having their vertices flammability value go to zero.

Figure 3.5. Model subdivided into blocks.

3.5.1. Model Subdivision

I start by constructing an axially aligned bounding box around the object, then

decompose it into a grid of smaller axially aligned bounding boxes which I will call blocks.

Deciding the number of blocks per model is up to the designer. Higher numbers of smaller

blocks will make the simulation more realistic at the cost of lower performance. I weight the

blocks according to the number of vertices in them, and discard the empty ones of weight

zero. Figure 3.5 shows a model subdivided into blocks. Only nonempty blocks are shown. I

store for each block the amount of rotation, midpoint of each box, number of vertices and

the list of neighboring subunits. Since all the blocks are interlinked, a change to one block

may affect all of the blocks in the model. To limit the required computation, I apply changes

21

to only immediate neighboring blocks, and rely on time to propagate the effects further. The

initial condition of the box with its assigned weight (number of vertices) chanegs as vertices

are removed. The change of the weight in the block is indicated by a slight rotation of the

box around its midpoint. The direction of the rotation will be determined by the placement

of the displaced vertex compared to the midpoint of the box. Interestingly, I have found

applying a random rotation also gives satisfactory results of the structural deformation. In

fact, it appears that for gaming applications the random rotation will be adequate since

calculating position of displaced vertex can be costly. Secondly, stability will change due to

the rotation of the immediate neighboring box. In order to cope with this I keep track of

neighbors of each subunit by maintaining a data structure that contains neighbor indices,

rotation amount, number of vertices etc.

3.5.2. Rotate Around the Midpoint

Over doing the rotation of each subunit of the model may cause an unrealistic dis-

figured structural deformation. However, to handle this situation I have consider that the

total rotation must be very minute in degrees unless the subunit is not free from adjacent

neighbors (two or three sides). Thus corner bending is possible effect of a deforming ob-

ject under combustion. I consider the rotation amount of the subunit proportional to the

change in number of vertices in each unit. If a given displaced vertex changed index of its

corresponding subunit to one of its neighboring subunit indexes, then there is a break in the

equilibrium of the original subunit due to weight change. In addition this vertex displace-

ment is sufficient enough to decide the direction of the rotation as well as its orientation

such as pitch, roll and yaw.

The following function is used to calculate the rotation amount(R) of each bounding

box.

R(Pitch,Roll,Y aw) = γ∆Θ 0<γ<1, (4)

where γ is a constant that controls the rotation amount depending on the number

of subunits in the model. In this simulation γ is carrying an important role by controlling

22

Figure 3.6. Object deformation without structural deformation vs. object
with structural deformation.

rotation angles without over doing such operations. ∆Θ is the change in angle by degrees

due to a single vertex displacement in a given subunit. The change in angle per vertex

displacement is something that the developer can assign due to the fact the triangles in a

model are not carrying same size, number etc. These properties may change from one model

to another. Therefore, the amount of rotation must be handled carefully in order to get a

realistic simulation. This ∆Θ value also may be define as a property of material density. In

my simulation, I calculate the amount of rotation as per vertex change by: ∆Θ = ρπ/Nε(5),

where, N is the number of vertices per subunit, ε implies the number of neighbors per subunit

and ρ is an approximated material density of the model. However, the γ was used to keep

control of the overall rotational angle. As a result, I gained a very appealing structural

deformation in this simulation. The following figure 3.6 illustrates difference between object

deformation without structural deformation (left) and object deformation with structural

deformation (right).

23

Futherfomre, one can notice the slumping in the last frames of the satellite and bunny

in figure 3.8. As I have mentioned above, the first order rotation of the subunit due to the

weight change will carry over to the immediate neighbors surrounding the subunit. The

rotation of the immediate neighbors is determined by the following algorithm:

Get displaced vertex A

Get corresponding subunit X

Get mid point of the X

Find ø(Pitch, Roll, Yaw)

by Function (4)

Add ø(Pitch, Roll,Yaw) to X

Get neighbor List Yn

If Y1 at side of X

-1 * œ* ø(Pitch, Roll, Yaw) where 0<œ<1

Else if Y1 at up ||down of X

+1 * œ* ø(Pitch, Roll ,Yaw) where 0<œ<1

Repeat for Y1....n

3.5.3. Vertex Mapping

So far, I have calculated the box rotation of each subunit of the model. However, the

rotation of the box does not demonstrates the actual structural deformation of the model. In

order to gain the proper visualization, this displacement must take place in the vertex level

of the model. Therefore, I have mapped the rotation of each subunit in to its vertices. Due

to the limited resources that has consumed in this simulation, I have avoided continuous

vertex mapping. In other words, this process does not change the vertices displacement

whenever the subunit changes its position. The changes of subunits will be recorded into the

data structure gradually. The vertex mapping will take part whenever the vertex is about

to render at the graphic hardware level using CUDA technology. Therefore, this process

24

can be distinct near rendering simulation; due to the fact, the structural deformation is not

completely dynamic in this simulation. It can be processed time to time while the simulation

is going on.

3.5.4. Surface Removal

Due to the combustion, the resource consumption of the object may cause the mass of

the subjected area to subside. This can be present in a graphical environment by removing

the surface of the object’s affected area. The model in this virtual world, there are few ways

to illustrate this phenomenon. One traditional practice that has been carried so far is to

illustrate the change in the model is by model swapping. In that case, the developer has to

keep extra models in the storage space or loaded into memory.

One may suggest reconstructing the model mesh by removing unnecessary (burned)

triangles. However, to carry out such a process in an ongoing simulation may cost more

processing time. My approach is more procedural and efficient. Since this simulation builds

influencing CUDA environment, I have gained an upper hand of controlling model rendering

procedures. I simply identified render required triangles without harming the complete model

mesh or orientation of the triangles. In order to determined the consumed triangles I have

used a level counter that has discussed above in section 3.4. However, when it comes to

the issue of surface removal the shape of the object has to be considered. For example, by

removing the surface the object may appear as two different pieces. Sometimes, it will be

an unrealistic behavior in the deforming model. I was able to prevent this sort of behavior

using block division techniques that I also used in structural deformation 3.5.1

The technique I have used to prevent the model breaking into pieces in surface removal

is fairly simple. If the subunit has no weight (no vertices) I simply consider it is a burned out

unit. However, there cannot be any subunit that contains weight but no neighbors. If so, I

have avoided applying the surface removal into that area; by doing so I have maintained the

connectivity of the object. However, breaking the model into pieces or keeping the model

intact is up to the choreography of the simulation. Figure 3.7 illustrates what my simulated

model looks like after surface removal applied.

25

Figure 3.7. Deformation with surface removal.

3.6. Flame Distribution

When it comes to the realistic simulation of a burning object, the size of flame must

change over time due to the richness of the resources it burns as well as maintaining the

proper distribution. To manipulate the flame distribution properly I have taken advantage

of the subdivided block properties described in Section 3.5.1. In this simulation, I have used

a particles engine to generate visual fire. Flames will appear in each subunit that belongs to

the combustion ready area of the heat boundary (Section 3.3). Treating set of particles as

one group of flames make my process much easier. I have increase the number of particles

in the given group according to the number of vertices covering the appropriate subunit. If

the weight of the subunit becomes zero I disregard the unit and move the flame group to

the adjacent neighboring unit that satisfies the combustion ready area of the heat boundary.

Then follows the same principle by considering the number of vertices in the subunit and

fluctuate the size of the flame group accordingly. By doing this I have gained a well controlled

flame distribution in this simulation.

3.7. Optimization

I believe combusting an object in a gaming environment should not take place in a rapid

time frame. This process can be manipulated to be complete in its own time frame without

interrupting the game play. In order to avoid consuming too many hardware resources of

26

the targeted machine where the game play takes place, I suggest the following techniques to

optimize the process in the areas of heat boundary expansion, time division, block division,

pre loading and using CUDA. These optimization techniques will be useful when it come to

combustion of average high polygonal models under procedural fire generation.

3.7.1. Heat Boundary Optimization

When heat boundary expansion takes place throughout the model over time, the number

of vertices to be deformed increases (active vertices). Increasing the number of vertices to

be deformed means the number of operations increases rapidly. However, when the vertex

reaches the inactive stage due to the level adjustments (Section 3.4), the number of active

vertices inside the heat boundary decreases. Therefore, we can control the number of vertices

to be deformed in a given time. Whenever, the number of vertices in the processing group

reaches the maximum level, the expansion of heat boundary can be halted until a certain

number of vertices become inactive. By doing so, we can control the use of resources in game

play mode. In other words, by controlling the heat boundary expansion over time, we can

maintain a balance between burning and burned materials and gain an upper hand in the

performance aspect.

3.7.2. Time Division Optimization

I believe that by manipulating time according to the processing speed of the hardware

most of the overhead operation can be avoided. Time division parameters (parameter that

adjust according to the processing speed) can be apply to the heat boundary expansion

process. As a common practice these types of parameters can be determined according to

the frame rate of the game running. By applying time division, the rapid expansion of the

heat boundary can be control systematically which eases the combustion and deformation

process into a suitable level.

3.7.3. Block Division Optimization

I have introduced a block structure for the given model that has being used for structural

deformation (Section 3.5.1). By deciding the number of subunits a certain model can control

27

the number of operation that has been used in the system. Applying block division to a

model depends on the size of the model. However, using more subunits gives a more realistic

essence in the simulation. Coming up with the number of adequate subunits is totally up

to the developer. In this case, I divided the model, which contains 15000 polygons into 336

subunits. However, I have experienced that even when the model divided into 3375 (15 x

15 x 15) subunits it gives satisfactory results slightly over 30 fps due to the fact that the

operations take place in the fairly modest CUDA supporting graphical hardware. Also, I

have come to the conclusion that even though the whole bounding box is divided into a

certain amount of subunits, I operate with only the ones that carry a weight (Section 3.5).

Therefore, the shape of the model must be an important factor when one decides the number

of subunits to be used.

3.7.4. Pre Loading Optimization

I suggest that loading all the necessary static data into the graphical hardware prior

to the simulation is useful. In this simulation the Level count parameters, material indexes,

density indexes (in case of different materials being used) and data structure of the sub-

units (used for structural deformation) etc. have been loaded to the graphical processing

unit(GPU) when the model loading take place. By doing so, I was able to limit the data

transfer back and forth between CPU to GPU and vice versa. This allows to gain the up-

per hand t the performance level and avoid over use of the data busses. By following such

optimization, I have gain impressive results for this simulation. The detailes of the data

structures have been used in the framework can be found in Appendix B.

3.7.5. CUDA Optimization

Since my primary objective is to come up with a method for deforming a polygonal model

due to combustion while generating procedural fire for gaming applications; avoid utilizing

most essential resources that are being used in the game play is important. Therefore, as I

discussed throughout this chapter, I have occupied part of GPU and allowed the CPU to do

more work in the game play. In terms of CUDA technology the developer has the upper hand

28

Figure 3.8. Animation frames for burning a model satellite (top),a head
(center), and a bunny (bottom) using my algorithm in real-time.

of choosing optimized techniques to carry on such operation in the GPU. Its all depends on

how to manage the memory as well as following the proper mapping techniques which are

dependent on the process that are needed. I have followed some of the standard techniques

described in CUDA in order to manipulate this simulation efficiently. I leave that to reader

to figure out since the strategies and techniques vary for CUDA. The related code snippet

supporting this framework can be found in Appendix B.

3.8. Results

Most of the images shown in this chapter were generated using the simulation described.

Figure 3.8 shows five image sequence of animation of a deforming model objects. The flames

29

are generated using 3000 fire particles and 1800 smoke particles. However, the rendered

particles at a given time are not up to the maximum. The model consists of 15949 trian-

gles. The animation runs on 70fps (frames per second) on an Intel R©CoreTM2 Duo CPU

P8400 @ 2.26GHz processor with GeForce 9800 GTS graphical hardware unit. Results could

be improved by tracking the sample particles over time using additional optimization tech-

niques. This performance will be much better on the current graphical hardware since the

performance of the parallel processing is quite high compared to a GeForce 9800 GTS GPU.

In this chapter, I have proposed a method for the real-time deformation and consumption

of a polygonal model during combustion by procedural generated fire. I have focused on the

performance with a reasonable amount of realism sufficient enough to attract the game

player into the virtual world. I believe this method is the first of its kind. It takes into

account a variety of physical properties including material density indexes, material indexes,

heat distribution, gravity, structural and internal deformation, and flame distribution. My

method described in this chapter, performs well on a model with fairly high polygon count

and small triangles. It remains to apply my results to models with a low polygon count.

I suggest that triangle subdivision is an intelligent first move. Most of the models used in

video games are so called shell models. Deformation of shell models is different from solid

models, and they should burn differently. In the rest of the chapters comprise with my

proposal solutions to solve these problems.

30

CHAPTER 4

REAL-TIME RENDERING OF BURNING LOW-POLYGON OBJECTS

In this chapter I present a framework for modeling the deformation and consumption

of low polygonal models under combustion while generating procedural fire. Many recent

publications have shown variety of deformation techniques involved in computer graphics

using the GPUs instead of using CPU alone. However, when it comes to low polygonal

models, deformation is quite challenging since it is hard to maintain the realistic essence of

such animation (Ex. Deforming a burning door consist of few triangles). On the other hand,

use high polygonal models for every entity in the game environment may not be practical for

most games due to the lack of resources and consumption of the processing power. Therefore,

I suggest a method include mesh refinement in needy basis while maintaining both low and

high end of polygonal aspects in balance. My focus is on trading realism for computation

speed so that the processing power is available for other tasks, such as might arise in the

current generation of video game.

4.1. Overview

In most of the video games, model deformation is essential to maintain the realism of

the physical object behaviors. When it comes to maintaining the quality of video games,

usage of high quality graphics is an inescapable necessity. However, due to the limitations

of hardware resources and processing power in real time rendering, developers may have to

choose detailed structure of game models carefully. One of the key features of such detailed

structure is a number of polygons per model covered by pragmatic textures. As a trade-off

between quality and performance, many game developers use low polygonal models for most

of the flat surfaces in the game environment such as Doors, Windows, Walls etc. Due to this

reason interaction between player and physical entities in the gaming world is restricted to

some extent. Especially when deformation occurs, manipulating low polygonal models and

maintaining the realism of the event is quite thorny. Therefore, when it comes to deformation

of low polygonal models, model swapping techniques were commonly being used.

31

Figure 4.1. The consumption of a low polygonal model due to procedural fire.

Here, I am mainly focusing on general modeling of deformation and consumption of low

polygonal models due to combustion. Fire simulations may be used effectively to increase

the reality of visual effects in computer animations. Although, there is a little work has

been done on model combustion and deformation. When it comes to the deformation of low

polygonal models, triangle subdivision must be useful technique in many customs. However,

complete model subdivision of each and every model is not a practical solution to accomplish

my task. My main focus in this chapter is to introduce refinement method that could be used

in deformation and real-time rendering of burning low polygonal models while maintaining

the performance as well as realism in balance. My aim is to increase believability by a large

amount with increasing computation sustain minimally while mesh refinement techniques

have been used.

4.2. Previous Work

In the previous chapter 3, I have discussed techniques that were used object deformation

due to fire, in gaming environments. However, this approach is appropriate mainly on the

models that contain considerably high number polygons. When it comes to deformation and

consumption of low polygonal models due to combustion, the related work published in this

area is second to none. The obvious way to extend this technique to low-polygon models

is to use real-time mesh refinement, subdividing triangles only when necessary. There are

great amount of work has been done to optimize evaluation of various subdivision surface

schemes in area of fast mesh refinement for real-time applications. Martin Wicke and Daniel

Ritchie [56] introduces method of Mesh refinement to capture detailed physical behavior,

fractures are simulated by subdividing mesh elements. Kai Hormann, UlfLabsik, [15, 22]

discuss what kind of parameterizations are optimal for the purpose of remeshing. In geo-

32

desic remeshing using front propagation techniques introduce by Gabriel Peyré and Laurent

Cohen [40], is quite similar to the method of processing adaptive mesh refinement while the

heat boundary is expanding. The papers of Xiaohu Guo, Xin Li [20], and Lei He, Scott

Schaefer [21] discuss subdivision parameterization of mesh surfaces. L. Giraud-Moreau1, H.

Borouchaki1, A. Cherouat [6] introduces the real time application of deformation by apply-

ing remeshing to selective material. Denis Kovacs, Jason Mitchell [27] crease approximation

contains useful information about surface subdivition. I have found Pierre Alliez1, Giuliana

Ucelli [1] survey of recent developments in remeshing of surfaces quite useful to determined

the recent advances in this area of research.

Conversely, little work has been published about hardware assisted implementation of

subdivision schemes. T. Boubekeur and C. Schlick [6, 7] introduced useful mesh refinement

techniques that has done using modern GPUs. Hsi-Yu Schive, Yu-Chih Tsai1, and Tzi-

hong [45], uses the GAMeR technique using GPUs to introduce adaptive mesh refinement

for Astrophysics. Fengtao Fan, Fuhua Cheng [14] and Christoph Fünfzig and Müller [47],

discuss few techniques of subdivisions using modern GPUs.

4.3. Introduction to GAMeR

With the remarkable advancement of its computation power, GPUs are no longer limited

only to scene rendering, but also GPUs have been used for other general purpose computing.

Technology such as CUDA developed by NVIDIA is a distinctive platform for general purpose

computation of GPUs that lead developers to utilize the computation power of modern

generation of GPUs. However, as it mentioned by T. Boubekeur and C. Schlick [7], there

are limitations when it come to data translation from CPU to GPU, since current graphic

hardware is not able to generate more polygons than those sent through the graphics bus,

by the application running on the CPU. Consequently, I have adopt T. Boubekeur and C.

Schlick’s idea of The generic adaptive mesh refinement (GAMeR) technique that will be

used to virtually create additional inner vertices for a given polygon and further developed

an algorithm that ensemble for my criteria. However, my framework is different from the

GAMeR architecture described in T. Boubekeur and C. Schlicks paper [7]. Before I proceed

33

further, will look into the basic idea behind the GAMeR approach. GAMeR presents a

generic vertex program that used to perform an adaptive refinement for meshes with arbitrary

topology. For instance, starting from a stationary coarse mesh, this process replaces each

triangle with a refined triangular patch that stored in GPU memory. As it mentioned in

chapter 2, my framework is based on collaboration of CPU and GPU. First, the cores mesh

of the model loaded into the CPU. Second, this serial data structure map into GPU prior to

the immediate rendering. With CUDA supported GPUs, I was able to model the cores mesh

with vertex placements and produced a totally different output. I adopt this concept and

applied to the individual polygons of the mesh and advanced with an efficient subdivision

scheme. The following Section presents the mesh refinement process and further details of

this approach.

4.4. Subdivision Techniques

To this point, I have figured that GPU have ability to submit vertex placement prior

to the screen render. In other words, GPUs are capable of scaling and placing polygons

according to given calculations. GAMeR method has built upon this perception and gained

rather fascinating results when it comes to mesh refinement process. The important factor

in this procedure is that it is not required to have high number of polygons in the mesh

to start with. However, GPU cannot produce additional polygons other than the ones in

the graphic bus. Therefore, I have to provide demanded amount of polygons to support the

refinement process. To fulfill these requirements, I have adopted additional mesh pool and

bind required number of polygons from CPU side in needy basis. To make things easy on

calculations, this pool of vertices could be arranged as a copy of ARP. CPU keeps ARP pool

separate from the original VBO mesh and binds as a separate index buffer in order to load

through the graphic bus. Extended description of the GAMeR method can be found in [7].

4.4.1. Refinement Patterns and Properties

Even though, the suggested approach is valid for other polygonal shapes, I only consider

the usual case of triangular meshes in this Chapter. I have pre-computed the possible

34

Figure 4.2. The level subdivision of a single triangle.

refinement configurations of a single triangle. The subdivision approach is processed using

uniform decomposition where the subdivision takes place in all the cells recursively. I have

use isotropic template which divided each vertex into half for five recursive levels in depth

as it illustrate in figure 4.2.

Recall that my objective is not to subdivide each and every triangle in the object.

My aim is to subdivide only when necessary, and prior to deformation. Therefore, we

needed to gain more control over the refinement process before concede further. In order to

manipulate much sophisticated refinement process I have declared some attributes to each

of the subdivided triangles as it shown in Table 4.1.

Attribute Values Description of each Attribute

id Integer Track siblings and parent
SetLevel 1, 2, 3, 4, 5 Depth of the polygon division
Siblings Integer Each has three siblings
Parent Integer Parent id
Active −1, 0, 1, 2 Status of the triangle

Table 4.1. Adaptive refinement pattern (ARP) attribute set.

One of the important attributes in this set is status of the triangle. In this value set -1,

0, 1, 2 represent triangle’s status as inactive, initial, active, and processed respectively. The

35

renderer will draw only the final ARP of active and processed triangles generated by each

coarse triangle. I discuss about these attributes further alone with my proposed algorithm

in Section 4.4.3.

After loading ARP and its attributes to the vertex buffer, I needed to map ARP coor-

dinates to the qualified coarse polygon using displacement maps similar to figure 4.2. Unlike

T. Boubekeur and C. Schlick [7], I have recorded the final coordinates set into the GPU since

my approach of deformation has lot more to proceed prior to rendering the final output. At

this point I apply ARP to the coarse polygon only if is eligible to proceed to next level of

subdivision. This eligibility is depends upon the location of the heat boundary relative to

the triangle.

4.4.2. Barycentric Points and Heat Boundary

My objective is to perform an interactive, believable simulation of a low polygonal

burning object. When a primary occasion is combustion, it is necessary to address heat

boundary expansion of the object. As a fact, the temperature increase due to combustion

influences the mechanical behavior of the object. Likewise, the thermal conductivity of

the object influences the thermal response (Chapter 3). To speed up computation, I have

decided to proceed with approximated single point heat boundary. I have followed the same

functionality suggested in chapter 3. The approximated heat boundary expansion was given

by:

R2 = | sin(πΘ/∆r) + sin(πΘ) + ψ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

where R = r+∆r, the radius r is incremented by ∆r in each ∆t time period. The angle

Θ is a random value in order to make the expanding heat boundary irregular in shape. The

location of the heat source is (x0, y0, z0). However, in this approach, the value of heat index

constant ψ, which is supposed to be a constant that depends only on the size of the coarse

triangles of the model, is no longer fixed. Therefore, I let the designer set ψ depending on

how many levels of subdivision are planned.

It remains to decide which coarse triangles are eligible for subdivision. This has to be

36

Figure 4.3. Heat boundary areas and barycentric point sets.

a function of the expanding heat boundary. Furthermore, the subdivision has to take place

prior to the deformation process. My solution is to send a virtual heat wave through the

model prior to the actual heat boundary expansion. This creates an area in addition to the

three initial heat boundary areas described in chapter 3. Since the introduced boundary

expansion takes place prior to the three original expanding boundaries (see Figure 4.3), I

can proceed with the subdivision of qualified triangles before the deformation process begins.

Since I am using a single source heat boundary, temperature at all points will depend on the

distance from the heat source at (x0, y0, z0). If this point is in the middle of one of the coarse

triangles, the triangle will not be eligible for subdivision until the virtual heat boundary hits

one of its vertices. To avoid such issues I represent each triangle using barycentric coordinates

as follows.

Suppose point P = (x, y, z) is given by:

x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3

z = λ1z1 + λ2z2 + λ3z3,

37

Figure 4.4. The refinement hierarchy and deformation applied to a 12-
triangle model of a box.

where λ1,λ2 and λ3 are area parameters such that λ1 + λ2 + λ3 = 1.

I need to calculate the barycentric coordinates for non-eligible triangles only, where eli-

gible triangles are those that are close to the heat boundary. The following algorithm returns

true if coarse triangle T is eligible.

for each coarse triangle T

if T is not eligible then get barycentric point set P

for each barycentric point set P

if P is inside the heat boundary

return true

38

4.4.3. Deformation

After applying ARP to the eligible triangle, I next apply deformation techniques. Al-

though my ARP arbitrarily contains triangles of five levels in depth (see figure 4.2), this

number can be changed in the obvious fashion by the choreographer. Deformation applies

only to the final level (in this case, fifth level) status active triangles. At this point, render-

ing all levels of triangles in the ARP will be costly and wasteful. Instead, I choose which

triangles to render using the ARP attributes listed in Table 4.1.

The process can be described informally as follows. Initially, the coarse triangles of the

model are considered active (status value 1) triangles, and all ARP triangles are initialized

as initial (status value 0) triangles. Each subdivided triangle consists of three siblings and a

parent. As my algorithm proceeds, if one of the child triangles turns active, then the parent

will turn processed (status value 2) until all of its children also become status active. Once

its children have all turned active, the parent triangle will change its status from processed

to inactive (from status value 2 to -1). More specifically:

if triangle has SetLevel = 5 and Status = 0

if triangle is inside the heat boundary

Status := 1, Status of all siblings := 1

Status of parent := 2

if SetLevel <5 and Status >0

if sibling’s Status >-1

sibling Status := 1

parent Status := 2

if all children have Status = 1 and parent has Status = 2

parent Status := -1

In my high-polygon deformation algorithm (chapter 3), the displacement of each vertex

depends on the surrounding vertices. Therefore, to apply proper calculation of deformation,

39

Figure 4.5. Real-time computation of LOD for a burning object.

we must let the subdivision proceed a few steps further before applying deformation to the

mesh. By doing so, I was able to calculate the proper strength factors within the deforming

triangles properly. Figure 4.4 illustrates the refinement hierarchy and deformation applied

to a low-polygon model of a box.

4.5. Level Sets and Distance

In a game environment, objects located far from the viewer need not be rendered in as

much fine detail as those close up. A significant speed-up can be obtained by having models

stored at various Levels Of Detail (LOD) ranging from, for example, hundreds of triangles

for objects in the far distance to tens of thousands for close-up objects. These variants of

the model are usually created by the artist, although procedural methods do exist.

My algorithm allows us to implement LOD for burning objects by controlling the level of

adaptive refinement of the coarse mesh triangles. I calculate the distance between object and

the player in the CPU and pass it to the GPU as a parameter. Level adjustment is decided

and passed to the appropriate ARP before rendering. Figure 4.5 illustrates the burning box

model at different LODs.

For a solid object the level of refinement is directly proportional to the distance. How-

ever, surface removal and deformation of a burning object makes it slightly more challenging

to maintain a smooth transition between level swaps. Define the burn level of a model as

the number of triangles of the model that have been consumed by fire (chapter 3). Then use

the following algorithm to determine whether to render triangle T .

40

if number of children of T with

higher burn level than T is ≥ 2

and SetLevel ≥ 5

then hide T

else show T

4.6. Experiments and Results

The images of a burning box shown in this paper are screenshots from a CUDA imple-

mentation of my algorithm applied to a model with 12 triangles. The flames are generated

using 2000 fire particles and 500 smoke particles. The advantage of such a system is clear

when comparing the resources required to deform a completely subdivided model versus

deforming a low-polygon model using my method. Table 4.2 shows the frame rates of the

animation when my algorithm is implemented in CUDA on relatively modest hardware; An

Intel R©CoreTM2 Duo CPU P8400 @ 2.26GHz processor with an NVidia GeForce 9800 GTS

graphics card. This performance will of course be much better on the current generation of

graphics hardware, but that is not my aim. My aim is to provide detail sufficient to trigger

willing suspension of disbelief at a relatively low cost in computation load.

The outcome of these experiments shows that my method results in doubling the frame

rate. Therefore, I believe this approach is a better alternative than subdividing the complete

model when it comes to deforming low-polygon models.

Polygon Fully Our Speed-up
Count Subdivided Method Factor

10k 84fps 165fps 1.96
15k 76fps 159fps 2.09
20k 63fps 153fps 2.43
50k 48fps 60fps 1.25

Table 4.2. Frame rate of fully subdivided model versus my approach.

I have proposed a method for the real-time deformation and consumption of a low-

polygon model during combustion by procedurally generated fire. By doing so, I have

41

extended my work in chapter 3 to low-polygon models. I have performed simulation of

real-time deformation and consumption of any model regardless of the size of the triangles.

My simulations have performed well on a model with low-polygon count and large triangles.

Most of the models used in video games appear to be shell models, with a hollow

interior. Deformation of shell models is different from solid models. I intend to investigate

the extension of my method to solid models.

42

CHAPTER 5

REAL-TIME RENDERING OF BURNING SOLID OBJECTS

Many cutting edge console and PC games compete to attract seasoned players by in-

creasing realism over and above what they are accustomed to in other games. Replicating the

details of a physical process such as fire can readily draw the player’s attention. The typical

object in 3D video game is represented by a polygonal mesh in the shape of its surface, which

called a shell model. The problem of applying shape changes to a shell model by emulating

solid object properties without overloading the available computational resources is a chal-

lenging one. Here, I am exploring how to manipulate any given shell structure by applying

solid model characteristics under deformation circumstances. Solid objects do in fact burn

rather differently than shell objects. My objective is to gain believable visual simulation

that could clearly distinguish solid deformation from shell deformation. In this particular

case, I propose to tackle the emulation of solid object deformation and consumption under

combustion.

Figure 5.1. Shell model deformation (left) vs solid model deformation (right).

43

5.1. Overview

In this chapter, I describe a method for the real-time deformation and consumption of a

solid model during combustion by procedurally generated fire, extending my previous work

described in preceding chapters 3 and 4. Solid objects are expected to burn much differently

than shells. Aside from the obvious difference of being able to see the inside of a burned-out

shell (figure 5.1, left), a solid object will melt and deform under heat in a different way

(figure 5.1, right).

5.2. Previous Work

This chapter extends my previous work on the emulation of burning objects in video

games. Also as in publications, Amarasinghe and Parberry [3] laid down the foundation of

my approach and demonstrated the ability to realistically burn in real time on a relatively

slow GPU a high-polygon count shell model of a toy satellite. Amarasinghe and Parberry [2]

extended this work to models with a very low polygon count by judicious use of procedural

triangulation in the areas that are on fire, and demonstrated the ability to realistically

burn on the same GPU a 12-triangle shell model of a door. This approach also lent itself

easily to dynamic level of detail rendering. Model deformation is a popular topic in the

computer graphics community. I single out the following papers as relevant and significant,

but without exception they strive for realism at the cost of performance. Although they

are more realistic than my approach, their methods are not real-time and are therefore

more useful for offline applications such as motion pictures than for video games. Melek

and Keyser [32, 33] discuss techniques that were used in selected object deformation due

to fire. Demetri Terzopoulost and John Platt [50] introduce the theory of elasticity to

describe deformable materials such as rubber, cloth, paper, and flexible metals. Sederberg

and Parry [46] introduce a technique for deforming solid geometric models in a free-form

manner. E. B. Tadmor and Rob Phillips [49] and Nealen et al. [37] use finite element

methods to deform complex geometries. Toivanen [48] discusses free deformation of meshes.

Finally, Nguyen Rasmussen and Fedkiwr [38, 41] introduce high quality flame simulations

that I use in my experiments, but they do not address object deformation.

44

Figure 5.2. The combustion of a solid model and the spread of procedural fire.

5.3. Internal Deformation

According to Melek and Keyser [32], when an object burns there are assorted interior

chemical reactions at various stages that lead its properties to change in a process called

pyrolysis. Volumetric expansion of heated material is caused by weakening bonds at the

molecular level. Internal forces are disturbed by the effect of heat on unstable bond structure,

ultimately leading to the consumption of material. This causes changes in the shape of the

object’s affected areas. I begin by creating a simplified model of heat spread.

5.3.1. The Heat Boundary

As I discussed in previous chapter 4, I approximate the expansion of the heat boundary

by calculating it around a fixed solitary point, using the same function placed as:

R2 = | sin(πΘ/∆r) + sin(πΘ) + ψ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

where R = r + ∆r indicates that the radius r is incremented by ∆r in each ∆t time

period. The angle Θ is a random value in order to make the expanding heat boundary

irregular in shape. The location of the heat source is (x0, y0, z0). The heat index also can be

approximated by a constant that depends on the size of the coarse triangles of the model.

In this chapter I address the combustion of solid models with an arbitrary number of

polygons. If the targeted triangle is considerably larger than the rest of the triangles, I

can always apply the subdivision techniques discussed in chapter 4. Thus, the designer can

maintain a fixed heat index value that is suitable for the model and maintain the subdivision

level accordingly.

As shown in figure 5.3, I divide the heat boundary into four different areas. The Virtual

45

Figure 5.3. Heat boundary with different levels of boundary.

Heat Boundary is spread through the model prior to the actual heat boundary expansion and

is used to amortize essential calculations that could apply to the qualified triangles before

the deformation process begins. The other three boundaries are similar to those introduced

in chapter 4; where the Initial Heat Boundary in which combustion is actively taking place

and vertices are preparing to be deformed, the Combustion Ready Boundary where ignition

starts, and the Deform Boundary consisting of material that has been burned.

5.3.2. The Deformation Process

Surface removal as practiced in the prior chapters is less useful in solid models than

in shell models because the consumption of material in a solid model simply reveals more

material just underneath it. Consequently solid models have more triangles to deform than

shell models, and these need to be managed efficiently and effectively. In order to achieve

this I categorize model triangles into three major types as shown in figure 5.4. Those are

46

called boundary qualified triangles, combustion qualified triangles, and deforming triangles.

Boundary qualified triangles are the triangles located inside the virtual heat boundary. These

can be completely or partially contained within the heat boundary, depending on the size

of the triangle. If the latter is the case, triangle subdivision must take place. Combustion

qualified triangles are the ones that are ready to take part in the first round of deformation.

Figure 5.4. Categorized model triangles.

5.3.3. Inward Contraction Displacement

In shell models the heat-induced deformation of an object is achieved by displacement

of the vertices of the model mesh (see chapter 3), where the position of each vertex depends

on given properties such as vertex distance, gravitational force, and material index, and the

internal forces work on the triangle pointing towards the direction of its vertices. However,

when the model represents a solid object we must also apply inward contraction forces to the

vertices. In burning objects, the extending heat waves weaken the bond strength between

adjacent molecules. This weakening effect falls off as a function of the distance from the

47

heat source. As a result, surface molecules move towards the stronger bonds in order to find

stable equilibrium between the acting forces. This results in contraction of the burning area

of the object.

Melek and Keyser [32] also noted that due to multiple internal chemical reactions at

various stages of the combustion process, material may change state from solid to liquid and

from liquid to gas. Both these cause reduction of the mass in affected areas of the burning

object. In most cases this will cause an inward concave shape in the consumed area. To

illustrate this phenomenon in a simulation I have applied what I call the Inward contraction

displacement technique to calculate the inward movement of the vertices of the deforming

triangle. The idea of this technique is to identify for each triangle a virtual point covered

by the affected polygonal boundary in distance (see figure 5.5) and use this to calculate the

the local inward displacement.

First we must identify the inward direction of the combustion qualified triangle or

the deforming triangle. Secondly, the distance of the virtual point must be proportional

to the size of the qualified triangle. However, calculating random virtual points to meet

the necessary requirements on continuously deforming polygons is not an efficient solution.

Therefore, my best approach to succeed this task is to employ the face normal of the object

and calculate the inverse directional coordinates. To maintain the proportional distance

between the virtual point and the triangle surface, I factor the normal vector coordinate by

the length of either side of the triangle (d1 or d2 in figure 5.5).

That is,

(Xin, Yin, Zin) = −D · (Xfn, Yfn, Zfn),

where (Xin, Yin, Zin) is the inward contraction point and (Xfn, Yfn, Zfn) is the face

normal of the targeted polygon. The distance of the either side of a polygon is represented

by D. Deforming triangles are the triangles that actually performing the deformation of the

burning object. The displacement of its vertices is addressed in the following subsection.

48

Figure 5.5. The deformation coordinates of a single triangle.

5.3.4. Vertex Displacement

Suppose B is a vertex to be displaced in triangle ABC, where A = (xa, ya, za), B =

(xb, yb, zb), and C = (xc, yc, zc). B is to be displaced to (X, Y, Z), as follows:

X = (x1x2(ya − yc) + x1xa(yc − y2) + xcx2(y1 − ya) + xaxc(y2 − y1))

/((xa−x2)(yc− y1)− (xc−x1)(ya− y2)) (similarly for Y and Z as it described in chapter 3),

where

(x1, y1, z1) = µC + (d1 − µ)B and (x2, y2, z2) = λA+ (d2 − λ)B.

Figure 5.5 illustrates the coordinates and parameters used in these equations. A detailed

description of above function and its parameters can be found at section 3.4 of chapter 3.

The final displacement value of X, Y, Z can be calculated as follows:

49

X = λb cos(Θ) sin(α)

Y = λb sin(Θ)

Z = λb cos(Θ) cos(α)

where

α = tan−1 (Xd −Xin/Zd − Zin)

Θ = tan−1 (Ydcosα/Zd − Zin)

λb is either value of λ or µ depending on the corresponding distance that taken for D

as d1 or d2. Furthermore, Let ε be a constant that represents the amount that the model

melts due to heat, and ~g be the gravity vector. Then the effect of gravity is computed as:

Y = Y − ε~g.

5.4. Structural Deformation

As I described in The structural changes in a burning object are the result of various

factors including the expansion and the weakening of the internal bonds, and the relative

weights of cantilevered parts of the object 3.5. The precise calculation of these complex

processes is costly. Therefore, I adopt the block sampling methodmethod discussed in chap-

ter 3 as a computationally less expensive solution to maintaining realism while performing

systematic structural change. The block sampling method divides the object into uniform

blocks and treats each block as a single unit, propagating changes to neighboring blocks.

The difference with burning solids is that there are no surface removal techniques asso-

ciated with burn level adjustments. Furthermore, the weight changes of each block are not

significant enough without the effect of level adjustment. As a solution for these concerns, I

maintain a counter to monitor the time of combustion per each block. Weights of the blocks

are decided according to the number of vertices factored with the counter. The empty ones

50

Figure 5.6. Level of detail (LOD).

of weight zero are discarded.

I keep track of the orientation of each block as a triple of Euler angles. The change in

roll angle R (pitch and yaw are similar) for a block is: R = γρπ/NM , where γ is a scaling

factor chosen by the designer, ρ is a measure of the material density of the model in that

block, N is the number of vertices in the block, and M is the current number of nonempty

neighboring blocks.

5.5. Results and Optimization

I have implemented automatic LOD rendering into my simulation using techniques pre-

sented in chapter 4. Figure 5.6 illustrates my LOD algorithm applied to the burning of a

solid block of wood. The images shown in this chapter are from a CUDA implementation of

my algorithm applied to different models. Since there is no strict time line for the combus-

tion of the model, I can always control complexity of the simulation by limiting the number

of deforming triangles at a time. Optimization is possible since the deformation is always

applied mostly to the affected areas of the object. The continuous deformation of given poly-

gon can be controlled by parameter settings such as the flammability value L. In particular,

the shape and size of a deforming triangle can be drastically changed. Overly-exaggerated

deformation reduces realism. In order to maintain efficient simulation without heavy re-

source usage, once a deforming triangle’s flammability value L exceeds some limit I remove

51

the polygon from the group of deforming triangles and add more from the set of combustion

qualified triangles into the group. By following this practice I gained more control over the

simulation with better performance while maintaining realism.

I used approximately 2000 fire particles and 500 smoke particles to demonstrate the

visual effects. The algorithm was implemented in CUDA on relatively modest hardware;

An Intel R©CoreTM2 Duo CPU P8400 @ 2.26GHz processor with an NVidia GeForce 9800

GTS graphics card. I was able to maintain 60fps frame rate up to 45k triangle model with

balanced settings (quality vs. performance) in the graphic card. This performance will

of course be much better on the current generation of graphics hardware, and thus able

to run in parallel with other rendering tasks and game-related computation. I was able to

successfully perform my simulation on models of various mesh resolution and topology on less

than cutting-edge hardware. These simulations perform well on various models ranging from

a dozen to hundreds of thousands of triangles. When it’s come to incineration of objects,

the matter of melting cannot be ignored. I will discuss about possible solution criteria for

this issue in the next chapter.

52

CHAPTER 6

REAL-TIME RENDERING OF MELTING OBJECTS

I present a method for simulating the melting and flowing of material in burning objects

fast enough to be of use in video games where most of the graphical and computational

resources are needed elsewhere. One of the major goals in animation research is to be

able to simulate the behavior of real-world materials in practical situations. The standard

practice of using particle engines or fluid dynamics for melting are far too costly for use in this

environment. Furthermore, in the game industry we require simulations that are visually

compelling but not necessarily fully accurate imitations. My aim is to achieve a visual

effect that is as close as possible to that of scientific simulations, but at a small fraction

of the computational cost. I demonstrate that my method, which is based on systematic

polygonal expanding and folding, uses only a fraction of the computational power available

by implementing the computation on a very modest GPU using CUDA.

6.1. Overview

I commit this chapter to propose a method for emulating how solid objects melt under

combustion. Each object in a 3D video game is represented by a polygonal mesh in the shape

of its surface, which I will call a shell model. The challenge is to maintain a natural fluid-

like behavior in this polygonal structure. Unlike any other free form defamation, melting

simulations are required careful monitoring measurements to maintain its realism. Especially,

when it comes to viscoelastic fluid like behavior in certain polygons in a rigid mesh. In this

chapter, my goal is to introduce a polygon refinement method that can apply to any shell

model (Figure 6.1, left), and support compelling visual replication of the melting process

through to a burned-out and melted version of the object at the end (Figure 6.1, right).

6.2. Previous Work

Model deformation is a popular topic in the computer graphics community. I single

out the following papers as relevant and significant, but without exception they strive for

53

realism at the cost of performance. Although they are more realistic than my approach,

their methods are not real-time and are therefore more useful for offline applications such as

motion pictures than for video games.

Figure 6.1. A wax like solid model (left) and it’s melting effects taken place
(right).

Particle simulations are most popular techniques used to achieve fluid-like effects in com-

puter graphics. These use a high number of small particles. Examples include Iwasaki [24],

Foster and Fedkiw [16], Carlson, [11], Clavet [12], Keiser and Adams [26], and Goktekin

and Bargteil [18]. Losasso and Irving [30] introduce a method for liquid or gas simulation

using grid-based techniques including vortex confinement and the particle level set method.

Müller, Keiser, et al. [35] laid a point-based framework for the volume and the surface rep-

resentation, allowing arbitrarily large deviations from the original shape. Wei and Li [54]

introduce a 3D cellular automata approach for melting objects. Terzopoulos and Platt [51]

discuss deformable models featuring non-rigid dynamics governed by Lagrangian equations

of motion and conductive heat transfer governed by the heat equation for non-homogeneous,

non-isotropic media.

54

Figure 6.2. The melting of a solid model and the spread of procedural fire.

Melek and Keyser [32, 33] discuss techniques that were used in selected object defor-

mation due to fire. Terzopoulost and Platt [50] introduce the theory of elasticity to de-

scribe deformable materials such as rubber, cloth, paper, and flexible metals. Sederberg and

Parry [46] introduce a technique for deforming solid geometric models in a free-form manner.

Tadmor and Phillips [49] and Nealen et al. [37] use finite element methods to deform complex

geometries. Toivanen [48] discusses free deformation of meshes.

Finally, Rasmussen and Fedkiwr [38, 41] introduce high quality flame simulations that

I use in the screenshots and videos, but they do not address the topic of object deformation.

6.3. Internal Deformation

Numerous chemical reactions take place in the interior of a burning object caused by

the heat of combustion. Melek and Keyser [32] use the general term pyrolysis to describe

this process. Volumetric expansion of heated material is caused by weakening bonds at the

molecular level. Internal forces are disturbed by the effect of heat on unstable bond structure,

ultimately leading to the consumption of material. Both thermal flow and the latent heat

during the phase change bring the model to a state of melting (Jones, M.W. [25]). This

causes changes in the shape of the object’s affected areas.

The remainder of this section is divided into three subsections. Section 6.3.1 begins with

a review of a simplified model of heat spread from chapter 3. Section 6.3.2 gives an overview

of the deformation process and defines three new vertex classes, Flow True Vertices, Fixed

Point Vertices, and Base Point Vertices. Section 6.3.3 investigates the melting process at the

55

triangle level using Flow True and Fixed Point Vertices. Section 6.3.4 describes the motion

of Base Point Vertices.

6.3.1. The Heat Boundary

I have used the same approximated heat boundary expansion presented in chapter 3.

In this chapter I address the combustion of models with a large number of polygons. If a

particular targeted triangle is considerably larger than the rest of the triangles, I can always

apply the subdivision techniques discussed in chapter 4. Thus, the designer can maintain

a fixed heat index value that is suitable for the model and maintain the subdivision level

accordingly.

I divide the heat boundary into four areas described in Chapter 5.

(1) The Virtual Heat Boundary is spread through the model prior to the actual heat

boundary expansion and is used to amortize essential calculations that could apply

to the qualified triangles before the deformation process begins.

(2) The Initial Heat Boundary is the area in which combustion is actively taking place

and vertices are preparing to be deformed.

(3) The Combustion Ready Boundary is where ignition starts.

(4) The Deform Boundary consists of material that has been burned.

In order to implement melting, it will needed to add more computation within these

boundaries as described in the remainder of this paper. With composite simulations such as

melting, one major challenge is to maintain the relative size of triangles so as to avoid empty

triangles or sliver triangles. I will adapt the subdivision procedure introduced in previous

chapters to the areas affected. These calculations will be applied to the essential triangles

inside the virtual boundary.

56

6.3.2. The Deformation Process

The position of each vertex depends on given properties such as vertex distance, grav-

itational force, viscosity damping force (Wei and Li [54]), and the internal forces work on

each triangle pointing towards the direction of its vertices. However, when the model starts

to melt I must also consider the effect of fluid-like behavior on the movement of the vertices.

Although in particle based fluid dynamics particle overlapping is tolerable, in mesh

deformation vertex overlapping would result in unacceptable visual artifacts. Therefore,

the movement of vertices must be systematic and restricted. I will use three new vertex

categories (see Figure 6.3).

(1) Flow True Vertices are vertices defined inside the Combustion Ready Boundary that

are granted free movement within the given space.

(2) Fixed Point Vertices are vertices located in the non-melting region of the mesh but

carry an association with a polygon that contains Flow True Vertices.

(3) Base Point Vertices are vertices in charge of guiding the flow of the fluid.

6.3.3. Polygonal Melting Properties

Heat weakens the bond strength between adjacent molecules of burning objects. This

weakening effect falls off with distance from the heat source. As a result, surface molecules

move in the direction of stronger bonds in order to find stable equilibrium between the

forces that act on them. This results in stress on the burning area of the object. Melek and

Keyser [32] also note that due to multiple internal chemical reactions at various stages of the

combustion process, material may change state from solid to liquid. Material under change

may exhibit both fluid and solid characteristics. These are often referred to as viscoelastic

fluids, which have the property that the material initially responds to strain elastically like

a solid, but when subjected to increasingly large stresses it flows like a fluid (see Clavet,

S. [12]). The melting stage takes place as sub-volume transformation (see Wei and Li [54]),

in which the vertices perform free movement on limited space.

Since one of the prime effects of the melting process is to smear viscoelastic-fluid-like

57

Figure 6.3. Categorized model vertices.

characteristics into the flow true vertices, my framework models the free movement, velocity

and viscosity of the material. I achieve a fluid-like movement to a set of vertices by imple-

menting a polygon folding procedure that I call Fractional Folding Method. The following

approach contributes a fluid like behavior to the vertices in the targeted area by eliciting a

chain reaction among the flow true vertices towards a stable placement. This method will

result in polygons maintaining a certain range in sizes during the simulation.

The deformation coordinates and parameters of a single triangle is illustrate in Fig-

ure 6.4. To calculate the effect of melting on a triangle T , first identify the top, middle and

bottom vertices (that is, sort them in order of Y coordinate, breaking ties at random). Let

D be the given edge length of T . Compare D with the constant range ωDist/χ to ωDist,

where ω is the viscosity of the material, Dist is the average distance of a side of a triangle

58

Figure 6.4. The deformation coordinates of a single triangle.

in original mesh (after subdivision takes place if required) and χ is a constant integer value

that defines how small the smallest triangle should be.

Vertices are modified as follows:

if(D > ωDist)

(Dsx, Dsz) = (Dsx, Dsz) −

((Dsx, Dsz)− (Ddx, Ddz)) ∗ υ/(n+ 1)

if(D < ωDist/χ)

(Dsy, Dsx, Dsz) = (Dsy, Dsx, Dsz) +

((Dsy, Dsx, Dsz)− (Ddy, Ddx, Ddz)) ∗ υ/(n+ 1),

where υ is the velocity that determines how fast the vertices must move. If a flow true

59

vertex appears with n fixed point vertices in the same polygon, I factor the velocity of the

movement by n+ 1.

Since upward fluid motion would not make sense, when the contraction of the vertices

(D > ωdis) occurs, only x and z directional placement will be considered. After they reach

their stable position, the motion of the vertices taking part in Fractional Folding will come

to a halt until the next trigger occurs. The bodily flow of the melted substances needs a

proper directional trigger to begin movement. I use the flow of base point vertices for this

purpose. The table 6.1 contains the summary of the constant attribute set.

Attribute Values Description

Dist float Average distance
ω 0 < ω < 1 Viscosity
χ int(1− 10) Adjustment factor
υ 0 < υ < 1 Velocity

Table 6.1. Constant attribute set.

6.3.4. Base Point Movement

I identify base point vertices by adapting the Block Sampling Method from chapter 3.

This method divides the object into uniform blocks and treats each block as a single unit,

propagating changes to neighboring blocks. I choose one base point vertex per block and

keep them in an inactive state. They become active when they are reached by the combustion

ready boundary. Since flow of the viscous fluid must pass over the solid surface of the object, I

perform a collision check with the points in surrounding bounding boxes. In addition, usually

fluid flows towards the bottom of the object due to gravitational influence. Here, first find

the neighboring block that contains the lowest base point vertex, then, transform coordinates

towards the lowest point. The transformation of the base point vertex is given by:

(x, y, z) = (x, y, z − xd, yd, zd)ω + (xd, yd, zd),

where the (xd, yd, zd) are the destination coordinates and ω is the viscosity.

A block absent one of its left, right, front or back neighbors is considered to be an edge

60

block. Whenever, an edge block has no bottom neighbor, Base Point Vertices fall under

gravity:

Y = Y − ω~g/(Ycrb − Y),

where ~g is the gravity vector and Ycrb is the Y distance between the combustion ready

boundary and Y . This will provide a deceleration when the vertices move away from the

flames. Similarly, the rest of the Flow True Vertices will follow the Base Points.

6.4. Structural Deformation

In melting material the structural changes largely depend on the weight that is sup-

ported by the melting area. When combustion starts from the top of an area I assume that

there is no weight supported and the structural changes can be ignored. When combustion

starts from the middle or bottom, the weight effect causes a significant shape change. I have

modeled this by applying the following calculations to the area outside of the combustion

ready boundary and above the ignition point. I use the block sampling method described in

chapter 3. I construct a bounding box around the object, and then decompose it into a grid

of smaller axially aligned bounding boxes which I call blocks. Define the weight of a block to

be the number of vertices inside it. I keep track of the orientation of each block as a triple

of Euler angles. Weights of the blocks are decided according to the number of vertices inside

it. Empty blocks of weight zero are discarded.

Although a change to one block may affect all of the blocks in the model, to reduce

the computational load I apply changes to only immediate neighboring blocks, and rely on

subsequent iterations to propagate the effects further. The change of the weight in each block

results in a slight rotation of the box around its midpoint. The direction of the rotation will

be determined by the placement of the displaced vertex compared to the midpoint of the

box.

Stability will change due to the rotation of the immediate neighboring boxes. The

change in roll angle R (pitch and yaw are similar) for a block is:

R = γρπ/NM ,

61

where γ is a scaling factor chosen by the designer, ρ is a measure of the material density

of the model in that block, N is the number of vertices in the block, and M is the current

number of nonempty neighboring blocks.

Figure 6.5. Melting sequence of a wax form solid model.

6.5. Results

I have described a method for the real-time melting of a wax type solid model during

combustion by procedurally generated fire, extending my previous work described in preced-

ing chapters. I was able to successfully perform this simulation on models of various mesh

resolution and topology on less than cutting-edge hardware. My algorithm was implemented

in CUDA on relatively modest hardware; An Intel R©CoreTM2 Duo CPU P8400 @ 2.26GHz

processor with an NVidia GeForce 9800 GTS graphics card. I was able to maintain 60fps

frame rate up to 40k triangle model with balanced settings (quality vs. performance) in the

graphic card. This performance will of course be much better on the current generation of

graphics hardware, and thus able to run in parallel with other rendering tasks and game-

related computation. I have used approximately 2000 fire particles and 500 smoke particles

to demonstrate the visual effects.

62

CHAPTER 7

CONCLUSION

In this dissertation, I have proposed a method of real-time rendering of burning objects

in video games. I have focused on deforming a polygonal model due to combustion while

generating fire. I believe this is the first known method that could be used in gaming as

modeling the deformation of a burning object. My work presents an extensive contribution

to bring up the gaming environments one step closer to the real world phenomenon. The

summary of my introduced framework generalize in the following section.

7.1. Summary

My research aimed specifically on decomposition and deformation of burning shell mod-

els and burning solids. In chapter 3, I have laid down the foundation and demonstrated the

ability to realistically burn a high-polygon count shell model in real time on a relatively slow

GPU. Chapter 4 extended this work to models with a very low polygon count by judicious

use of procedural triangulation in the areas that are on fire, and demonstrated the ability

to realistically burn on the same GPU. This approach also lent itself easily to dynamic level

of detail (LOD) rendering, which is an important method for reducing the polygon count in

games. In chapter 5, I have extended this work from shell models to solid objects by proce-

durally filling in the exposed interior of a burning object. I have described a method for the

real-time melting of a wax type solid model during combustion by procedurally generated

fire in chapter 6.

My findings and framework covers the basic theme of decomposition and deforming of a

burning model. This introduced model can be improved further and there are open avenues

for future research. For example, this framework works around single source heat boundary.

Investigate a better approximation to heat boundary expansion with multiple heat sources

still at large.

63

7.2. Hypothesis

My hypothesis stated that one can simulate different aspects of deformation and con-

sumption of virtual objects by procedural fire and achieve visually plausible results at inter-

active rates on current hardware.

I have concluded my hypothesis as follows.

(1) I have successfully simulated deformation and consumption of burning objects.

(2) I was able to manipulate procedural fire distribute along the heat boundary using

block sampling strategies.

(3) I was able to simulate objects with different aspects such as high polygonal models,

low polygonal models, shell models and solid models. Furthermore, I was able to

successfully address melting physiognomies of the burning objects.

(4) Almost all the deformation Figures included in this dissertation generated by my

simulation framework. I believe these are adequate enough to lure the visually

plausible results.

(5) I have designed and implemented my simulations for the video games. I have gain

more than required interactive level frame rates in relatively modest GPUs.

64

APPENDIX A

BASIC DATA STRUCTURES

65

Here, we have laid out the basic data structures that have been used in our implemen-

tation and the useful code snippets castoff in OpenGL and CUDA interpolation.

66

67

68

APPENDIX B

GPU CODE STRUCTURES

69

In this section we list the code snippets for GPU side coding which include GPU Normal

calculation. This structure of implementation can be used to demonstrate color, texture

changes as well as midpoint rotation of the deforming model.

70

71

APPENDIX C

CUDA GPU IMPLEMENTATION

72

In this section, we listed a complete GPU side code sample that illustrates how to

apply fluid like behavior to the polygonal model. Studying this may help understanding the

complete implementation strategy behind our framework. In addition this section exemplifies

how to use device memory parameters and how to manipulate functions in GPU side

coding using CUDA.

Note: Before executing kernel call to this code segment user must allocate GPU memory for

the passing data structures (ex:for verticies *s data and GPUinds *inds) using cudaMalloc().

73

74

75

76

BIBLIOGRAPHY

[1] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in remeshing of

surfaces. Shape Analysis and Structuring, pages 53–82, 2008. 33

[2] Dhanyu Amarasinghe and Ian Parberry. Fast, believable real-time rendering of burning

low-polygon objects in video games. In Proc. 6th Internat. North American Conf. on

Intelligent Games and Simulation (GAMEON-NA), pages 21–26. EUROSIS, 2011. 44

[3] Dhanyu Amarasinghe and Ian Parberry. Towards fast, believable real-time rendering of

burning objects in video games. In Proc. 6th Annual Internat. Conf. on the Foundations

of Digital Games, pages 256–258, 2011. 44

[4] Ronan Amorim, Gundolf Haase, Manfred Liebmann, and R Weber dos Santos. Com-

paring cuda and opengl implementations for a jacobi iteration. In High Performance

Computing & Simulation, 2009. HPCS’09. International Conference on, pages 22–32.

IEEE, 2009. 6

[5] Joshua A Anderson, Chris D Lorenz, and Alex Travesset. General purpose molecu-

lar dynamics simulations fully implemented on graphics processing units. Journal of

Computational Physics, 227:5342–5359, 2008. 6

[6] H. Borouchaki, P. Laug, A. Cherouat, and K. Saanouni. Adaptive remeshing in large

plastic strain with damage. International Journal for Numerical Methods in Engineering,

63(1):1–36, 2005. 33

[7] T. Boubekeur and C. Schlick. Generic mesh refinement on GPU. In Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 99–

104. ACM, 2005. 33, 34, 36

[8] Rodney Bryant, Carole Womeldorf, Erik Johnsson, and Thomas Ohlemiller. Radiative

heat flux measurement uncertainty. Fire and materials, 27(5):209–222, 2003. 15

[9] Luc Buatois, Guillaume Caumon, and Bruno Lévy. Concurrent number cruncher: An

efficient sparse linear solver on the gpu. High Performance Computing and Communi-

77

cations, pages 358–371, 2007. 7

[10] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for gpus: stream computing on graphics hardware. In

ACM Transactions on Graphics (TOG), volume 23, pages 777–786. ACM, 2004. 7

[11] M. Carlson, P.J. Mucha, R.B. Van Horn III, and G. Turk. Melting and flowing. In Proc.

2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 167–

174. ACM, 2002. 54

[12] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based viscoelastic fluid simulation. In

Proc. 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages

219–228. ACM, 2005. 54, 57

[13] Glenn A Elliott, James H Anderson, et al. Globally scheduled real-time multiprocessor

systems with gpus. In Proceedings of the 18th International Conference on Real-Time

and Network Systems, pages 197–206, 2010. 7

[14] F. Fan and F.F. Cheng. GPU supported patch-based tessellation for dual subdivision. In

2009 Sixth International Conference on Computer Graphics, Imaging and Visualization,

pages 5–10. IEEE, 2009. 33

[15] M.S. Floater and K. Hormann. Surface parameterization: A tutorial and survey. Ad-

vances in Multiresolution for Geometric Modelling, pages 157–186, 2005. 32

[16] N. Foster and R. Fedkiw. Practical animation of liquids. In Proc. 28th Annual Con-

ference on Computer graphics and Interactive Techniques, pages 23–30. ACM, 2001.

54

[17] Alfred R. Fuller, Hari Krishnan, Karim Mahrous, Bernd Hamann, and Kenneth I. Joy.

Real-time procedural volumetric fire. In I3D ’07: Proceedings of the 2007 Symposium on

Interactive 3D Graphics and Games, pages 175–180, New York, NY, USA, 2007. ACM.

14

[18] T.G. Goktekin, A.W. Bargteil, and J.F. O’Brien. A method for animating viscoelastic

fluids. In ACM Transactions on Graphics, volume 23, pages 463–468. ACM, 2004. 54

[19] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: high

78

performance graphics co-processor sorting for large database management. In Proceed-

ings of the 2006 ACM SIGMOD international conference on Management of data, pages

325–336. ACM, 2006. 7

[20] X. Guo, X. Li, Y. Bao, X. Gu, and H. Qin. Meshless thin-shell simulation based on

global conformal parameterization. IEEE Transactions on Visualization and Computer

Graphics, pages 375–385, 2006. 33

[21] L. He, S. Schaefer, and K. Hormann. Parameterizing subdivision surfaces. ACM Trans-

actions on Graphics, 29(4):1–6, 2010. 33

[22] K. Hormann, U. Labsik, and G. Greiner. Remeshing triangulated surfaces with optimal

parameterizations. Computer-Aided Design, 33(11):779–788, 2001. 32

[23] W.M. Hsu, J.F. Hughes, and H. Kaufman. Direct manipulation of free-form defor-

mations. In Proceedings of the 19th Annual Conference on Computer Graphics and

Interactive Techniques, pages 177–184. ACM, 1992. 14

[24] K. Iwasaki, H. Uchida, Y. Dobashi, and T. Nishita. Fast particle-based visual simulation

of ice melting. In Computer Graphics Forum, volume 29, pages 2215–2223. Wiley Online

Library, 2010. 54

[25] M.W. Jones. Melting objects. The journal of WSCG, 11(2), 2003. 55

[26] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross. A unified lagrangian

approach to solid-fluid animation. In Proc. Eurographics/IEEE VGTC Symposium on

Point-Based Graphics, pages 125–148. IEEE, 2005. 54

[27] D. Kovacs, J. Mitchell, S. Drone, and D. Zorin. Real-time creased approximate subdi-

vision surfaces. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and

Games, pages 155–160. ACM, 2009. 33

[28] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, An-

thony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per

Hammarlund, et al. Debunking the 100x gpu vs. cpu myth: an evaluation of through-

put computing on cpu and gpu. In ACM SIGARCH Computer Architecture News,

volume 38, pages 451–460. ACM, 2010. 7

79

[29] MJ Lighthill. Contributions to the theory of heat transfer through a laminar boundary

layer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical

Sciences, pages 359–377, 1950. 15

[30] F. Losasso, G. Irving, E. Guendelman, and R. Fedkiw. Melting and burning solids

into liquids and gases. IEEE Transactions on Visualization and Computer Graphics,

12(3):343–352, 2006. 54

[31] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping. In Microarchitecture, 2009.

MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pages 45–55. IEEE,

2009. 7

[32] Zeki Melek and John Keyser. An interactive simulation framework for burning objects.

Technical Report 2005-03-1, Department of Computer Science, Texas A&M University,

2005. 14, 44, 45, 48, 55, 57

[33] Zeki Melek and John Keyser. Driving object deformations from internal physical pro-

cesses. In Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling,

pages 51–59, New York, NY, USA, 2007. ACM. 14, 44, 55

[34] Sameer Moidu, James Kuffner, and Kiran S. Bhat. Animating the combustion of de-

formable materials. In ACM SIGGRAPH 2004 Posters, page 90, New York, NY, USA,

2004. ACM. 14

[35] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point

based animation of elastic, plastic and melting objects. In Proc. 2004 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 141–151. Eurograph-

ics Association, 2004. 54

[36] Matthias Müller, Leonard McMillan, Julie Dorsey, and Robert Jagnow. Real-time sim-

ulation of deformation and fracture of stiff materials. Computer Animation and Simu-

lation 2001, pages 113–124, 2001. 14

[37] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically based

deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836,

80

2006. 44, 55

[38] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically based mod-

eling and animation of fire. In Proceedings of the 29th Annual Conference on Computer

Graphics and Interactive Techniques, pages 721–728, New York, NY, USA, 2002. ACM.

14, 44, 55

[39] CUDA NVIDIA. C programming guide:

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc.

CUDA C Programming Guide.pdf, 2013. 7, 11, 12

[40] Gabriel Peyré and Laurent D Cohen. Geodesic remeshing using front propagation.

International Journal of Computer Vision, 69(1):145–156, 2006. 33

[41] N. Rasmussen, D.Q. Nguyen, W. Geiger, and R. Fedkiw. Smoke simulation for large

scale phenomena. ACM Transactions on Graphics, 22(3):703–707, 2003. 44, 55

[42] Diego Alejandro Rivera-Polanco. Collective communication and barrier synchronization

on nvidia cuda gpu. 2009. 9

[43] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S Stone, David B Kirk,

and Wen-mei W Hwu. Optimization principles and application performance evaluation

of a multithreaded gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Sym-

posium on Principles and practice of parallel programming, pages 73–82. ACM, 2008.

7

[44] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algo-

rithms for manycore gpus. In Parallel & Distributed Processing, 2009. IPDPS 2009.

IEEE International Symposium on, pages 1–10. IEEE, 2009. 7

[45] H.Y. Schive, Y.C. Tsai, and T. Chiueh. Gamer: A graphic processing unit accelerated

adaptive-mesh-refinement code for astrophysics. The Astrophysical Journal Supplement

Series, 186:457, 2010. 33

[46] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models. ACM

SIGRAPH Computer Graphics, 20(4):151–160, 1986. 14, 44, 55

[47] V. Settgast, K. Müller, C. Fünfzig, and D. Fellner. Adaptive tesselation of subdivision

81

surfaces. Computers & Graphics, 28(1):73–78, 2004. 33

[48] JC Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and

the method of incompatible modes. Internat. J. for Numerical Methods in Engineering,

33(7):1413–1449, 1992. 44, 55

[49] EB Tadmor, R. Phillips, and M. Ortiz. Mixed atomistic and continuum models of

deformation in solids. Langmuir, 12(19):4529–4534, 1996. 44, 55

[50] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.

ACM SIGGRAPH Computer Graphics Quarterly, 21(4):205–214, 1987. 44, 55

[51] D. Terzopoulos, J. Platt, and K. Fleischer. Heating and melting deformable models.

The Journal of Visualization and Computer Animation, 2(2):68–73, 1991. 54

[52] J.I. Toivanen. A Non-Linear Mesh Deformation Operator Applied to Shape Optimiza-

tion. 2006. 14

[53] Vasily Volkov and James W Demmel. Benchmarking gpus to tune dense linear algebra.

In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 31. IEEE

Press, 2008. 7

[54] X. Wei, W. Li, and A. Kaufman. Melting and flowing of viscous volumes. In Proc.

16th International Conference on Computer Animation and Social Agents, pages 54–59.

IEEE, 2003. 54, 57

[55] X. Wei, W. Li, K. Mueller, and A. Kaufman. Simulating fire with texture splats. In

IEEE Visualization, pages 227–234, 2002. 14

[56] M. Wicke, D. Ritchie, B.M. Klingner, S. Burke, J.R. Shewchuk, and J.F. O’Brien.

Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics,

29(4):1–11, 2010. 32

[57] Ye Zhao, Xiaoming Wei, Zhe Fan, Arie Kaufman, and Hong Qin. Voxels on fire. Visu-

alization Conference, IEEE, page 36, 2003. 14

82

