
319
HQ!<i
fla. a.'ii?

IMPACTS OF QUERY SPECIFICATION MODE AND PROBLEM COMPLEXITY

ON QUERY SPECIFICATION PRODUCTIVITY OF NOVICE

USERS OF DATABASE SYSTEMS

DISSERTATION

Presented to the Graduate Council of the

North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

by

Wen-Jang Jih, B.S., M.C

Denton, Texas

December, 1985

J2£>C

Jih, Wen-Jang, Impacts of Query Specification Mode and

Problem Complexity on Query Specification Productivity of

Novice Users of Database Systems. Doctor of Philosophy

(Business Computer Informaton Systems). December, 1985, 185

pp., 13 tables, bibliography, 95 titles.

With the increased demand for the utilization of

computerized information systems by business users, the need

for investigating the impact of various user interfaces has

been well recognized. It is usually assumed that providing

the user with assistance in the usage o-f a system would

significantly increase the user's productivity. There is,

however, a dearth of systematic inquiry into this commonly

held notion to verify its validity in a scientific fashion.

The purpose of this study is to investigate the impact

of system-provided user assistance and complexity level of

the problem on novice users' productivity in specifying

database queries. The study is theoretical in the sense that

it presents an approach adopted from research in deductive

database systems to attack problems concerning user

interface design. It is empirical in that it conducts an

experiment in a controlled laboratory setting to collect

primary data for the testing of a series of hypotheses.

The two independent variables are system-provided user

assistance and problem complexity, while the dependent

variable is the user's query specification productivity.

Three measures are used as separate indicators of query

specification productivity: number of syntactic errors,

number of semantic errors, and time required for completing

a query task. Due to the lack of a well-defined metric for

user assistance, the study first presents a generic

classification scheme for relational query specification.

Based on this classification scheme, two quantitative

metrics for measuring the amount of user assistance in terms

of prompts and defaults were developed. The user assistance

is operationally defined with these two metrics.

Four findings emerge as significant results of the

study. First, user assistance has a significant main effect

on all of the three dependent measures at the 1 percent

significance level. Second, problem complexity also has a

significant impact on the three productivity measures at the

1 percent significance level. Third, the interaction effect

of user assistance and problem complexity on the number of

semantic errors and the amount of time for completion is

significant at the 1 percent level. Fourth, Although this

interaction effect on the number of syntactic errors is not

significant at the 5 percent level, it is at the 10 percent

level.

More research is needed to permit a thorough

understanding of the issue of user interface design. A list

of topics is suggested for future research to confirm or to

modify the findings of this study.

TABLE OF CONTENTS

Page

LIST OF TABLES ii

LIST OF ILLUSTRATIONS iv

Chapter

I. INTRODUCTION 1
Statement of the Problem
Purpose of the Study
Conceptual Framework of the Study
Significance of the Study
Definition of Terms

II. LITERATURE REVIEW 22

Database-User Interface
Procedural versus Nonprocedural Language
User-System Dialogue

Logic for the Study of Database Problems
Logic for Database Definition
Logic for Database Manipulation
Logic and Integrity Contraints

Implication of Previous Research for this Study

III. RESEARCH METHODOLOGY 36

Major Factors Affecting Query Specification
Productivity

Research Variables and Measurements
Independent Variables

Operational Definition of System-
Provided User Assistance

Operational Definition of Problem
Complexity

Dependent Variables
Number of Syntactic Errors
Number of Semantic Errors
Time of Completion

Research Hypotheses
Experiment Design
Data Collection

Design of the Experimental Database System
Architecture of the System
Hierarchy of Database Views
Conceptual Model of the Databases
Implementation Models of the Databases
Logical Access Maps for the

Interactive Query Patterns
Experimental Procedure

Data Analysis
Limitations of the Study

IV. RESULTS AND ANALYSIS 77

Demographic Distribution of the subjects
Overall Effect of Use Assistance Mode and Problem

Complexity
Main Effect of Use Assistance Mode on the Number

of Syntactic Errors
Main Effect of Use Assistance Mode on the Number

of Semantic Errors
Main Effect of Use Assistance Mode on the Amount

of Time Required to Complete a Query
Main Effect of Problem Complexity on the Number

of Syntactic Errors, the Number of Semantic
Errors, and the Amount of Time Required to
Complete a Query

Interaction Effect of Use Assistance Mode and
Problem Complexity on the Number of
Semantic Errors and the Amount of Time
Required to Complete a Query

Interaction Effect of Use Assistance Mode and
Problem Complexity on the Number of
Syntactic Errors

Summary of the Results of Hypotheses Testing

V. CONCLUSIONS 99

Summary of Critical Research Findings
Theoretical Explanation of Research Findings
Suggestions for Future Research

APPENDICES ' 1 0g

BIBLIOGRAPHY 1 7 1

XI

LIST OF TABLES

Table Page

I. Research Variables List 39

II. A Classification Scheme for Relational
Query Specification 43

III. Distribution of Subjects's Major Areas 78

IV. Analysis of Variance for the Number of Syntactic
Errors With Both Simple and Complex Problems
Included gg

V. Analysis of Variance for the Number of Semantic
Errors With Both Simple and Complex Problems
Included . . . gi

VI. Analysis of Variance for the Time of Completion
With Both Simple and Complex Problems Included .. 81

VII. Analysis of Variance for the Number of Syntactic
Errors for Simple Problems 84

VIII. Analysis of Variance for the Number of Syntactic
Errors for Complex Problems 84

IX. Analysis of Variance for the Number of Semantic
Errors for Simple Problems 87

X. Analysis of Variance for the Number of Semantic
Errors for Complex Problems 87

XI. Analysis of Variance for the Time of Completion
for Simple Problems 90

XII. Analysis of Variance for the Time of Completion
for Complex Problems 90

XIII. Summary of Results of Hypotheses Testing 97

i n

LIST OF ILLUSTRATIONS

Figure Page

1. Conceptual Framework of the Study 12

2. Major Factors Affecting Query Specification

Productivity 38

3. Experiment Design (2 X 2) of the Study 58

4. Architecture of the Experimental System
(Non-User-Assisted Mode) 63

5. Architecture of the Experimental Database System

(User-Assisted Mode) . . . 64

6. Hierarchy of Database Views . 66

7. Logical Access Maps, of the Interactive

Query Patterns 69

8. Experiment Data Sheet Used for Grading 73

9. Interaction Effect of Use Assistance and Problem
Complexity on the Number of Semantic Errors . 95

10. Interaction effect of Use Assistance and Problem
Complexity on the Amount of Time Required to
Complete a Query 95

11. Interaction Effect of Use Assistance and Problem
Complexity on the Number of Syntactic Errors . 96

xv

CHAPTER I

INTRODUCTION

Many database systems require users to possess a

certain level of knowledge about computer language syntax.

While this assumption may apply quite well to a member of

the professional programming staff, it usually does not hold

true for the large population of novice users. Characterized

by the lack of extensive training in computing technologies,

novice users are often in need of various forms of

assistance to communicate effectively with a computer

system. In the context of database systems, many actions

have been taken to improve this user-computer interface.

Examples include separation of different layers of

abstractions (33), vary high level query language (11), and

natural language query (21), etc. Due to the huge potential

demand for easy-to-use database systems among novice users,

research on the design and evaluation of easy-to-use

interfaces has been one of the main activities of applied

computer science.

This study addresses a particular group of novice

users, functional area managers. It suggests that the

pattern of a functional area manager's information need can

be idenified through the interaction between the managers

and the analysts. Then a collection of "interactive query

2

patterns" can be developed based on these information

requirement patterns. An interactive query pattern is a

named module which, once invoked, will actively collect

relevant data from the user and will execute when the data

collection process is complete. By providing users with

assistance in the use of a database system, these

interactive query patterns may significantly improve users'

productivity in specifying database queries.

To systematically investigate the effect of system's

assistance in the use of database queries, a controlled

experiment is conducted in the laboratory setting. The

query specification mode without system assistance is used

as the control group, and the mode with system assistance

constitutes the experimental group. System assistance is

implemented as prompts for user inputs and default (built-

in) values for appropriate objects essential for a query

program. Since it is likely that more complex query problems

are affected more than simpler ones. problem complexity is

investigated with regard to its mediating effects on the

productivity measures.

The productivity meaures, in this study, include (1)

the number of syntactic errors, (2) the number of semantic

errors, and (3) the amount of time required to specify a

database query. Other factors such as data model, data

manipulation language, and on-line/off-line specification

could play critical roles in the effectiveness of a database

interface. These factors are controlled by using the

3

relational data model, a logic-based query language, and on-

line specification for both modes (user-assisted and non-

user-assisted modes). In addition, the selection of subjects

was done is such a way as to ensure that none of the

subjects possess extensive experience in the use of

computer.

The problem complexity in the context of database query

specification is measured by Halstead's Volume (V) measure.

To ensure the validity of using this measure, a set of query

problems was derived from Date's text, Introduction to

Database Systems (14). A query program was written for each

of these problems. Volume meaures were then taken for the

resulting programs. Significant differences were found to

exist between the set of simple problems and that of the

complex problems. For the experiment, two level's of problem

complexity are employed based on the measure V.

Syntactic errors are defined to include spelling errors

and grammatical errors found in the query programs written

by the user. Semantic errors include several types of

mistakes: wrong order of relations, incorrect names of

exiting relation names, wrong attribute names, wrong

operation names, and non-descriptive relation names. Any

syntactic error will be detected by the system interpreter

and will result in no output being returned. A semantic

error will pass interpretation, but will return the

incorrect output. Since the results of all syntactic errors

are identical, the number of this type of error in a query

4

is used as one of the productivity measures. For the same

reason, the number of semantic errors is used as another

productivity measure.

In some cases, a query is specified without any

syntactic error or semantic error, but a large amount of

time has been consumed for its completion. It appears that

the amount of time used to complete a query specification

activity constitutes a different dimension in measuring the

user's productivity. This measure is calculated as the time

elapsed between the point a problem is handed to the subject

and the point that query is completed, regardless of its

correctness.

Statement of the Problem

The general problem motivating this study is that

database systems assume some computer knowledge on the

user's part, hence tending to hamper wide use by the novice

user. This study approaches this problem by investigating

the effects of a system's assistance on the user's

productivity in specifying queries. Because of the growing

role of computer-aided decision making in business,

successful formulation of database queries can have

substantial significance in promoting the use of database

systems for managerial decision making.

An array of database management systems have been

developed to provide sophisticated data management

capabilities in the years past. Although many database

5

systems were initially developed to work specifically with

transaction processing, many researchers have suggested that

many of the capabilities of database management software can

be beneficially utilized by functional area managers to

support their decision-making activities (23, 24, 26).

Normally, this software is general-purpose in nature (it is

domain-independent); it does not possess much knowledge

about users' problem space. In order to utilize the

software's capabilities, the user must first learn the

syntax of the system's query language. However, in the

context of managerial decision making, users tend to be

reluctant to devote much effort in mastering the use of the

computer. Therefore, it remains a seemingly endless

challenge for information system researchers to explore

effective alternatives for resolving this obvious dilemma.

This challenge has been observed by several researchers.

For example, Eason and Damodaran maintained that,

It is of little interest to him (the user) that
the system is a technical masterpiece, or that it
serves another user very well; if it serves his
tasks poorly, it stands condemned as a poor system
(17, p. 116).

In the introduction to their co-edited book, Designing

f Q r Human-Computer Communication, Sime and Coombs indicate

that "the practical range of tomorrow's computer

applications depends heavily upon the successful development

of acceptable user interfaces (31, p. 1)," Because of the

large population of novice users of the computer system,

6

notions such as "natural communication," "user

friendliness," "ease of use" have been widely discussed in

both academic and practical literature. Here, the major

concern is that a computer system should be designed to

adapt to the novice user instead of forcing the latter to

adapt to the system. As stated by Moran (27, p. 4):

Novice and expert users generally exhibit quite
different modes of behavior. The novice user
usually finds himself engaged in problem-solving
activity - almost everything for him is a problem
- whereas the expert is skilled in interacting
with the computer - it is for him a routine
cognitive skill.

A similar observation is made by Coombs and Alty (12, p. 3),

who noted that:

Many people now use computers as part of their
daily work, having little or no training in the
technicalities of computing. This development is
important for the continued growth of the industry
but will necessitate a new philosophy towards the
user. Whereas in the past systems have been
designed with a central objective of obtaining
maximum processing out of scarce and expensive
hardware, the user being expected to adapt to the
demands of machine-oriented software, future
systems will have to take more account of users'
current work practices and expertise. It is
unlikely that the majority of users will wish to
be extensively trained in computing, and
commercial employers will certainly wish to
minimize user training costs. Furthermore,
inadequate user interfaces cost real money.

In general, despite the fact that much work has been

done to investigate human factor aspects of the computer

system, it is still difficult to make "prescriptive comments

about the detailed design of the communication interface on

a general basis as much depends upon the particular

7

situation (32, p.24)." Because of the lack of a well-founded

theory for the effective design of the human-computer

interface, system designers have to rely on some heuristics

in their endeavor. Although such design guidelines abound

(2, 18), more research is still needed in the search of a

normative theory which is capable of providing a systematic

blueprint for the interface design. Drapper and Norman (16,

p. 215) summed up the situation by saying, "The development

of psychologically based, quantitative design tools is still

in its infancy and much work remains to be done, both in

development and in validation."

In summary, the value of a database system when used by

novice users depends heavily upon the interface between the

user's information requirements and system's functional

capabilities. A useful system for the novice user of a

database must be able to meet the user's information needs

without requiring the user to expend much effort in the

syntax learning activity. Several aspects of user-database

interface have been explored such as data model selection,

natural language vs. artificial language, and specification

(nonprocedural) vs. prodedural language (20, 21, 35).

Relatively little attention has been paid to the systematic

investigation of possible effects of system-provided

assistance on the user's query specification productivity.

This study seeks to fill that gap.

8

Purpose of the Study

The primary objective of the study is to investigate

the effect of system's assistance in forms of prompts and

built-in defaults on novice users' productivity in

specifying database queries. The secondary objective is to

investigate the effect of problem complexity and the

interaction effect of the two independent variables on the

productivity measures.

A prototype relational database system is implemented

for the domain of human resource management as a vehicle for

data collection. The relational data model is employed as

the conceptual view of the database designer as well as the

external view of the end users. A logic-based programming

language, Micro-Prolog, is used both as the data definition

language and as the data manipulation language. The use of

the same data model and the same language helps eliminate

critical extraneous factors and thus allows for the

isolation of the variables under investigation. The

selection of the relational data model is consistent with

the trend of database technology developments. It is also an

attempt to build upon Ray's finding that relational model

tends to provide a more natural user's model (28).

The choice of a logic programming language is motivated

by research in deductive relational database systems (19).

Among its most important features are nonprocedural!ty,

modularity, and deductive capability. Nonprocedural!ty

provides for a very high level of abstraction. iModularity

9

allows for gradual growth of the system's model. And

deductive capability efficiently facilitates implementation

of interactive query patterns for the modelling of users'

information requirements. Further explanation of the

rationale for using the logic programming language is

provided in the section on the experimental design.

Operationally, the objectives of this study can be

achieved by answering the following two research questions:

(1) How does the novice user's productivity in specifying

database queries differ between the use-assisted mode

and non-use-assisted mode of query specification?

(2) What are the interaction effects of query specification

mode and the complexity level of database query

problems on novice users' query specification

productivity?

Conceptual Framework of the Study

During the first decade since database technology

started receiving interest from business data processing

community, most database management systems (DBMSs) were

aimed at the transaction and batch processing environment.

The predominant concern was minimizing the computing

resource required for per unit of work. The main function of

database management was managing multiple files of different

record types in an integrated fashion. Users are

appropriately shielded from the underlying complexity of the

database. As the utilization of the database technology

10

evolved, it was recognized that the same integrated approach

to data management can also be useful in the context of

managerial decision making (29). With a user-friendly

interface, a database system can assist functional area

managers who are novices in the use of computer techonology

by providing easy access to the database. As a matter of

fact, a database system often constitutes a major component

or subsystem in many proposed DSS design frameworks (6, 26).

This study investigates a specific approach to the

design of the user-database interface for functional area

managers. It stems from the observation that functional

managers' information needs can be partially identified and

classified into a collection of patterns. This task may be

accomplished through the analysis of their functions, tasks

and decisions. In summarizing the techniques for modelling

users' information requirement, De and Sen (15, pp. 179,

180) contended:

Decision analysis is characterized by its focus on
decisions at the.managerial level of the
organization for each management-oriented
applications. The approach requires identification
of the critical decisions. One these critical
decisions are identified, each of them is
thoroughly discussed with the responsible manager
and then carefully analyzed and modelled, usually
by a decision flowchart. The decision flowchart
indicates a set of discrete steps which the
decision maker takes to make the decision.

Figure 2 depicts the conceptual framework of the study.

Designing a user-system interface involves two parties - the

user and the system. The user is characterized by a set of

11

information requirements. In the case of functional area

managers, the information required to support decision

making is a function of the decision to be made. Some

decisions are well-structured and thus can be automated.

Other decisions require more human judgment before the

proper action is taken. For this type of decision, a

database system can be used to provide relevant information

on the user's demand. An interface for this purpose should

be designed with more emphasis on usability and

effectiveness than on computing resource efficiency.

This study asserts that a portion of functional

managers' information requirement for decision making can be

analyzed and categorized into a collection of patterns.

These requirement patterns constitute the user's problem

space. The problem space can grow gradually along a learning

curve. A collection of predefined query patterns may be

designed to incorporate the prior knowledge about the user's

problem space, and makes the query specification a question-

answering process. As the user's experience in using the

system increases, more decisions can be pinpointed to

facilitate the design of a more comprehensive decision

support system (DSS).

12

I Function |

I
V

| Task |

I
V

I Decision I

Personal Characteristics

- Cognitive Style
- Computer Knowledge
- Problem Knowledge
- Cultural Background

Information Requirements
(User's Problem Space)

User Interface

Database Management System

I
-V-

I Database

I

I Model Base |

Figure 2—Conceptual Framework of the Study

13

In a relational database management system, a query

typically consists of specifications of relation names,

attribute values, and conditions in conformity with the

query language's syntax. Relation name, attibute name-value

pair , and condition specification constitute a relational

query's basic objects. Where the system does not possess any

knowledge about the user's information needs (or problem

space), all these objects must be explicitly specified by

the user. However, if the user's information needs can be at

least partially identified in advance, a collection of

interactive query modules can be developed to assist the

user in specifying the required objects in the query.

Prompts and defaults can, then, be employed to facilitate an

easier interaction between the system and the user as

perceived by the user. These interactive query modules

collectively serve as the user interface when interacting

with the underlying DBMS. Will this type of interface

facilitate easier user-system interaction? A controlled

experiment may be conducted to collect empirical evidence

for answering this question.

Significance of the Study

This study investigates the effect of the assistance

provided by the system in the specification of database

queries. Intuitively, any such assistance should be

beneficial to the user, hence worth the resource spend for

its development. However, an objective justification

14

requires a systematic inquiry. The empirical evidence

collected in this study will serve to validate or to modify

such a speculation.

Providing novice users, especially functional area

managers, with an easy-to-use interface to facilitate more

extensive use of database technologies has long been a

critical issue in database research. Although ease of use

may not be a predominant factor in the design of transaction

processing database systems, a system which is easier to use

certainly receive a warmer welcome from novice users.

Many companies have installed database systems to

establish integrated management of internal data.

Functional area managers are likely to benefit from this

technology through easier access to the huge pool of

corporate data. Providing an easy-to-use interface is a

critical function of this type of system. Knowledge and

experience gained in this study will provide some useful

guidance for adapting database systems to the user, rather

than the other way around.

Another contribution of the study is to the growing

area of deductive database (DDB) systems. A DDB uses the

same representation formalism (first-order predicate logic)

for the definition and manipulation of the database,

including integrity contraints. This uniform representation

formalism provides unique convenience useful for the study

of many database problems (19). Currently, most effort has •

been directed to the theoretical investigation of such a

15

logic-based approach to the design of large-scaled

databases. Only a small number of experimental databases

have been developed for the demonstration purpose (19).

These experimental databases primarily address such problems

as database definition, query optimization, and functional

dependency. This study uses deductive database approach to

investigate an issue concerning user interface, i.e., impact

of user assistance on the user's query specification

productivity. The experience obtained in this study will add

to the existing body of knowledge about the application of

logic in the study of database problems.

Definition of Terms

Being an interdisciplinary investigation, this study

draws a number of terms from numerous fields in addition to

some constructs identified by the study. This section is

devoted to clarifying the meaning of these existing terms

and the constructs found in the study. The following list

merely serves as a summary to be referenced when necessary.

The definitions of some terms will be described more

thoroughly in the later chapters.

Query Pattern - A query module retrieving information to

support the same category of decisions, e.g., employee

promotion, training. Formally, a query pattern is

characterized by a 4-tuple:

(Pattern label, Relation name, Attribute value.

Condition).

16

When implemented with PROLOG, a query pattern is an IF-

THEN inference rule. The goal of the rule serves as the

label of a pattern, while the conjunctive conditions

constitute a series of query statements for the retrieval

of data. Entering a module name initiates the execution

of these statements.

Mode of Query Specification - refers to the way queries are

specified. In the interactive mode, queries are

specified by the cooperation of the user and the system's

assistance. System's assistance is primarily in the form

of prompt and/or default. Two metrics (Interactive Volume

Metric and System Default Metric) are devised to

distinguish between two different modes.

Complexity of the Problem - The notion of problem

complexity, in this study, is measured by Halstead's

Volume metric. Complex problems require query programs

with higher volume metric values, while the volume metric

values of the query programs for simple problems are

lower.

User Productivity in Specifying Database Queries - a

construct to be measured by the number of syntactic

errors, the number of semantic errors , the amount of

time taken by the user to complete a query specification

task.

Novice User - a type of users defined by Mayer (25, p. 123)

17

as "users who had little or no previous experience with

computers, who do not intend to become professional

programmers, and who thus lack specific knowledge of

computer programming."

Logic Programming Language - a programming language which

basically regards any information processing as a

theorem-proving process, i. e., a logic programming

language is a computer realization of the first-order

predicate logic.

Interactive Query Specification - a query specification mode

in which database queries are specified through an

interactive process between the user and the system

interface. Prompts and/or defaults are used to reduce the

computer knowledge requirement on the user's part. The

unique feature is knowledges about the user's information

needs implemented as a collection of interactive query

patterns. This mode represents a "user's model plus

system's model" mode of query specification.

Non-interactive Query Specification - a query specification

mode in which users specify database queries without any

system s assistance. The user has to have a sufficient

knowledge about the query language syntax as well as the

system's behavior. This mode repersents a "user's model

only" mode of query specification.

CHAPTER BIBLIOGRAPHY

1. Alter, S. L., Decision Support Systems: Current
Practices and Continuing Challenges , Reading,
Massachusetts, Addison-Wesley Publishing Company,
1980, pp. 123 - 182.

2. Bailey, Robert W., Human Perfromance Engineering: A
Guide for System Designers , New Jersey, Prentice-
Hall, Inc., (1982).

3. Bateman, R. F. , "A TranBlator to' Encourage User
modifiable Man-Machine Dialog," in Sime, M. E., and
Coombs, M. J., (Eds), Designing for Human-Computer
Communication , New York, Academic Press, 1983, pp.
157 - 172.

4. Bedard, J., Gray, G. L., and Mock, T. J., "Decision
Support Systems and Auditing," Center for
Accounting Research, School of Accounting,
University of Southern California, Working Paper
No. 49, (April 1983).

5. Boies, S. J., "User Behavior on an Interactive Computer
System," IBM Systems Journal , 13, No. 1, (1974}.
pp. 1 - 18.

6. Bonczek, R. H., Holsapple, C. W., and Whinston, A. B.,
Foundations of Decision Support Systems , New York,
Academic Press, (1981)

7 • ! . ' "The Evolving Roles of Models in
Decision Support Systems," Decision Sciences , Vol.
11, No. 2, (April 1980), pp. 337 - 356.

' "A Generalized Decision Support System
Using Predicate Calculus and Network Data Base
Management," Operations Research , Vol. 29, No. 2,
(March-April 1981), pp.263 - 281.

9. Brooks, Ruven E., "Studying Programmer Behavior
Experimentally: The Problems of Proper
Methodology," Communications of the ACM , Vol. 23,
No. 4, (April 1980), pp.591 -597.

10. Carlson, Eric D., Grace, Barbara F., and Sutton, Jimmy
A., Case Study of End User Requirements for
Interactive Problem—Solving Systems," MIS Querterlv
, (March 1977), pp. 51 - 63.

18

19

11. Chamberlin, Donald D., "Relational Data-Base Management
Systems," Computing Surveys , Vol. 8, No. 1, {March
1976), pp.43 - 66.

12. Coombs, M., J., and Alty, J. L., (Eds.), Computing
Skills and the User Interface , New York, Academic
Press, (1981).

13. Cuff, Rodney N., "On Casual Users," International
Journal of Man-Machine Studies, 12, 1, (1980), pp.
163-187.

14. Date, C. J., Introduction to Database Systems, (2nd
Edition), Menlo Park, California, Addison-Wesley
Publishing, Co., 1981.

15. De, Prabudelha, and Sen, Arun, "A New Methodology for
Database Requirements Analysis," MIS Quarterly ,
Vol. 8, No. 3, (September 1984), pp. 179 - 194.

16. Drapper, Stephen W., and Norman, Donald A., "Software
Engineering for User Interface," Proceedings of 7th
International Conference on Software Engineeing ,
(March 1984), pp. 214 - 220.

17. Eason, K. D., and Damodaran, L., "The Needs of the
Commercial User," in Coombs, M. J., and Alty, J.
L., (Eds), Computing Skills and the User Interface
, New York, Academic Press, 1981, pp. 115- 142.

18. Gaines, B. R., and Shaw, M. L. G., "Dialog Engineering,"
in Sime, M. E. and Coombs, M. J. (Eds), Designing
for Human-Computer Communication, New York,
Academic Press, 1983, pp. 23 - 54.

19. Gallaire, H., Minker, J., and Nicolas, J.M., "Logic and
Databases: A Deductive Approach," ACM Computing
Surveys , Vol. 16, No. 2, (June 1984), pp.153 -
186.

20. Harris, L. R., "The Advantages of Natural Language
Programming," in Sime, M. E., and Coombs, M. J.,
(Eds), Designing for Human-Computer Communication ,
New York, Academic Press, 1983, pp. 73 - 86.

21. Hill, I. D., "Natural Language Versus Computer
Language," in Sime, M. E. , and Coombs, M. J.
(Eds), Designing for Human-Computer Communication ,
New York, Academic Press, 1983, pp. 55 - 72.

20

22. James, E. B., "The User Interface: How We May Compute,"
in Coombs, M. J. , and Alty, J. L., (Eds),
Computing Skills and the User Interface , New York,
Academic Press, 1981, pp. 333 - 336.

23. Loomis, Mary E. S., "The Nature of Database Management
for Effective Decision Support Systems," in
Holsapple, C. E. and Whinston, A. B., (Eds.), Data
Base Management: Theory and Applications ,
Armsterdam, North-Holland Publishng Co., 1983, pp.
155 - 174.

24. Martin, James, Managing Data Base Environment , New
Jersey, Prentice-Hall, 1983.

25. Mayer, Richard E., "The Psychology of How Novices Learn
Computer Programming," ACM Computing Surveys , Vol.
13, No. 1, (March 1981), pp. 121 - 141.

26. Methlie, Leif B., "Data Management for Decision Support
Systems," Data Base , Vol. 12, No. 1/2, (Fall
1980), pp. 40 - 46.

27. Moran, Thomas P., "An Applied Pshchology of the User,"
ACM Computing Surveys , 13, 1, (March 1981), pp.
1-10.

28. Ray, Howard, An Empirical Investigation of the Effects
of Individual Differences and Data Models on the
Ease-of-Use of Database Query Facilities by Casual
Users , PhD Dissertation, North Texas State
University (1984).

29. Reisner, Phillis, "Human Factors Studies of Database
Query Languages: A Survey and Assessment," ACM
Computing Surveys , 13, 1, (March 1981), pp. 13-31.

30. Rich, E., "Natural-Language Interfaces," Computer , Vol.
17, No. 9, (September 1984), pp. 3 9 - 5 0 .

31. Sime, Max E., and Coombs, Michael J., " Introduction,"
in Sime, M. E., and Coombs, M. J., Designing for
Human-Computer Communication , New York, Academic
Press, 1983, pp. 1 - 2 .

32. Smith, H. T., "Human-Computer Communication," in Smith,
H., and Green, T., (Eds.), Human Interaction with
Computers , New York, Academic Press, 1980, pp. 5 -
38.

33. Ullman, J. D., Principles of Database Systems,
Rockville, Maryland, Computer Press, 1982.

21

34. Vassiliou, Y. , Jarke, M., Stohr, E. A., Turner, J. A.,
and White, N. H., "Natural Language for Database
Queries: A Laboratory Study," MIS Quarterly ,
(December 1983), pp.47 - 6 1 .

35. Welty, C., and D. W. Stemple, "Human Factors Comparison
of a Procedural and a Nonprocedural Query
Language," ACM Transactions on Database Systems,
Vol. 6, No. 4, (September 1981), pp. 626 - 649.

CHAPTER II

LITERATURE REVIEW

This study investigates impacts of system-provided user

assistance on the user's productivity in specifying database

queries. Essentially, a deductive database is created to

facilitate the comparison of two database query

specification modes in terms of various productivity

measures. Relevant concepts and techniques upon which this

study is built upon are works on database-user interface

design and the role of logic in the study of database

problems. Two specific topic of the former will be

described in the first section: procedural versus

nonprocedural language and user-system dialogue. The second

section describes relevant theories and experimental works

regarding the use of logic for the study of database

problems: database definition, database manipulation, and

definition of integrity constraint. The last section

indicates the implications of these previous works for this

study.

Database-User Interface

A database system is normally a complicated system

requiring special considerations in the system architecture.

A typical approach is to construct the system into multiple

layers, with a mapping facility to facilitate the

22

23

communication between each pair of consecutive layers. In an

on-line environment, the user supplies inputs to and

receives outputs from the database system. An interface of

some kind is usually provided to enable the smooth

communication between the user and the system. For novice

users, the main function of this interface is to make the

specification of database queries easier than otherwise.

The user interface has appeared in several different

forms: nonprocedural query language, graphic specification

format, and natural language query, etc. This study employes

a nonprocedural language, PROLOG, as the implementation

vehicle for the development of a particular form of user

interface, question-answering. Therefore, some research

results concerning relative merits of procedural versus

nonprocedural languages and some guidelines for the design

of system-user dialogue are reviewed here.

Procedural versus Nonprocedural Language

Welty and Stemple (12) investigated the notion of

procedurality of query languages and its impact on the

user's query writing performance. A quantitative metric,

termed procedurality metric (PM), was constructed to be the

arithmetic sum of two ratios: the ratio of the number of

variable bindings to the number of permissible variable

binding orderings, and the ratio of the number of

operations to the number of permissible operation orderings.

Here, a "permissible ordering" means "an order specified or

allowed by the syntax and semantics of the language (12, p.

24

633)." When measured by the PM, the two query languages

under investigation, SQL and TABLET, have PM values of 3.5

and 14.0, respectively. Assuming the two query languages

have signigicantly different procedurality as indicated by

the obvious arithmetic difference, the study went on

comparing the user's query writing performance using the two

languages. A controlled laboratory experiment was designed

to collect data. Thirty query problems were divided into a

"hard" group and an "easy" group. A test was administered

immediately after the instruction, and a retention test was

administered three weeks after the first test. Multivariate

Analysis of Variance was used to analyze the resulting data.

For the hard problems, the performance of experienced

subjects is not significantly different in the first test.

In the retention test, experienced subjects performed

significantly better using TABLET (a procedural language)

than using SQL (a nonprocedural language). For the easy

problems, no significant difference in performance was found

between TABLET and SQL. The overall conclusion of this study

seemed to favor procedural languages for hard problems, and

suggested that either a procedural or a nonprocedural

language would be equally convenient for easy problems.

One weakness of the Welty and Stemple's study is that

"easy" and "hard" problems seemed to be defined intuitively.

No objective metric was used as a classification criterion.

Consequently, replicating the study will be difficult if the

same set of query problems and databases are not to be used.

25

User-System Dialogue

Dialogue type is one of the important characteristics

of the user interface of an interactive system. Miller and

Thomas (9) proposed a classification in which system-user

dialogue can be viewed as differing in terms of two

characteristics: 1. whether the dialogue is guided by the

system or by the user, and 2. whether the user can respond

freely or must choose from a set of predefined alternatives.

Miller and Thomas (9, p. 524) maintained that these two

dimensions are independent, and therefore, four basic types

of dialogues can be identified. With the first type of

dialogue, the dialogue process is guided by the system and

the user is given a predefined set of alternatives to choose

from. This design is most appropriate when the user is

novice in the usage of the system and when the user's

problem space is well-bounded. With the second type, te

system guides the dialogue process and the user can respond

freely. The design is necessary when the system is

complicated and the user's problem space is not very well-

bounded. In other words, the dialogue is essentially an ill-

structured, information-gathering process. With the third

type, the user guides the conversation, but the user's

response is fixed. This design is appropriate when the user

is at least somewhat knowledgeable about the usage of the

system and when the user's problem can be well defined. The

fourth type of dialogue has the user guiding the

conversation and has free choices for the user. This

26

provides maximum degree of freedom and is desirable for

experienced users performing complicated tasks.

Although this classification and the suggested

situations in which each of the basic dialogue types can be

most benefically employed is logically sound, empirical

evidence need to be collected for verification. A controlled

experiment conducted in an on-line environment seems to be

the most desired approach.

Logic for the Study of Database Problems

The idea of using first-order logic in clausal form as

a formalizing vehicle has been applied in a variety of

fields. Recent research accomplishments in specialized

knowledge-based systems have prompted interest in applying

logic more entensively in investigating database problems.

The main convenience of this logic-based approach derives

from the fact that logic "provides not only a conceptual

framework for formalizing various database concepts, but

also (in the form of logic programming) a tool for

implementing them (4, pp. 102, 103)." This section briefly

reviews the application of logic in three critical aspects

of database problems: database definition, database

manipulation, and integrity constraints.

Logic for Database Definition

Among the three main data models (relational,

hierarchical, and network), logic has been linked mostly

with the relational data model. A relational database

27

defined with first-order logic (termed deductive relational

database, or shortly as deductive database, DDB) retains all

the useful features of the traditional relational database

as developed by Codd (1). Since the only representation

formalism for both database definition and manipulation is

formal logic, it can make use of the inference power offered

by formal logic.

The portion of formal logic which has been found most

helpful as related to database research is first-order

predicate calculus. Its primitive symbols set include:

parentheses, variables, constants, predicate symbols,

logical connectors, and quantifiers. A term is defined

recursively to be a constant, a variable, an n-ary function

with terms as arguments. If P is an n-ary predicate symbol,

and tl, t2, ..., tn are terms, then P(tl, t2, ..., tn) is *

called an atomic formula. An atomic formula, the negation of

an atomic formula, or a set .of atomic formula and/or their

negations makes a well-formed formula. Well-formed formulas

constitute useful building blocks of deductive databases. A

special form of well-formed formulas, called a Horn Clause,

is employed as the implementation basis by the logic-based

language, PROLOG.

An easy way to conceptualize a DDB is to regard it as a

set of atomic formulas with all constants as arguments and a

set of general laws governing the generation of virtual (or

derived) data. The atomic formulas represent the facts

about the universe of discourse. When general laws are

28

invoked, new facts can be derived from existing facts. A

citical design consideration of DDB, therefore, concerns the

relative amount of atomic formulas which depict the world

model explicitly and general laws modelling the real world

in an implicit fashion.

Since the language used to define databases is

executable, there is no need to separate tasks of

requirement specification and database definition. The

design cycle is shortened, thus facilitating faster feedback

and closer interaction between the user and the designer.

Logic for Database Manipulation

According to Gallaire (7, p.249), Logic has many

advantages over other query languages when related to

relational databases. An obvious advantage is the

nonprocedurality of the logic-based language. Constucting a

query with Logic involves more of what information are

wanted than of how the requested information are to be

obtained. At this moment, there is still no consistent

conclusion on the relative merits of nonprocedural versus

procedural languages. It appears that for novice users,

nonprocedural language tends to provide a more convenient

vehicle for constructing queries.

Another unique feature of logic-based query language

concerns the notion of "relational completeness" as defined

by Codd (3). According to Codd, a query language is said to

be relationally complete if it has the same expressive

capability as relational calculus. However, using relational

29

calculus as the yardstick of expressive power has its

restrictions. Jarke and Koch (8, p. 117) contended that

relational completeness should only be considered as a

minimum requirement with respect to a query language's

expressive power. At least two significant operations can

not be expressed in a single relational calculus expression:

transitive relationship and aggregation. An example of a

query involving transitive relationship is, "Find the names

of all employees reporting to manager Smith at any level."

Many aggregations commonly encountered in daily operations

can not be expressed in pure relational calculus. Although

various aggregation functions have been added to most

existing query languages, the problem with transitive

relationship can be more effectively resolved by logic

through its recursive capability.

Warren (10) studied the issue of improving query

processing efficiency for interactive relational database

queries expressed in logic. As he stated, the premise of his

study is, 'the first order logic formulation of a query

lends itself to transformation which can improve the

efficiency, corresponding to what is usually called query

optimization (22, p. 272)." His query planning startegy

essentially keeps track of the relative amount of pattern-

matching associated with a query. Most restricted

predicates, i.e., those involving the least amount of

pattern-matching operations, are evaluated prior to the

evaluation of less restricted predicates. This

30

rearrangement of the sequence of predicates to be evaluated

can generate query processing efficiency comparable with

some well-enhanced existing systems such as INGRESS and

System R (10, p. 279).

Logic and Integrity Constraints

Integrity constraints refer to the rules concerning

valid states of databases. Two classes of integrity

constraints are often discussed in database literatures:

fcyPe constraints and dependency constraints (7, p. 251).

Type constraints ensure that all data values fall into

appropriate domains. Dependency constraints maintain various

forms of data dependency among data items, such as

functional dependency, multivalued dependency, etc. While

fcyPe constraints ensure consistency of database instances,

dependency constraints serve as critical guidelines for

logical database design.

Logic does not distinguish the form of type constraints

from that of general laws generating virtual data. Both type

constraints and general laws are expressed in clausal forms

with some predicates at both sides of the implicational

connector. They also may be specified explicitly in query

programs. This feature allows much flexibility in

determining binding times for particular applications and

users.

The significance of various data dependencies in the

design of well-behaved logical data models have been widely

documented. It has been demonstrated that the following

31

guidelines implied by dependency constraints when designing

a data model can most effectively avoid undesired anomalies

associated with ongoing manipulations of the database (11).

Gallaire (7, p.256) showed that these dependency constraints

can be expressed in the form of first-order predicate

calculus. Therefore, a theorem-prover can be used to

generate a set of relations of desired normal forms. This

feature may significantly improve the productivity of

logical database design efforts.

Implications of Previous Research
for this Study

This study was motivated by previous research in

database-user interface and deductive databases in several

ways. First, the relative merit of procedural and

nonprocedural languages is still an issue of great

controversy. While intuition suggests that a nonprocedural

language might be easier to use than a procedural language,

some empirical evidence has been found to support the

opposite at least to some extent. Particularly related to

this controversy is the effect of complexity level of the

involved problems. In order to scientifically examine this

effect, this study uses Halstead's Volume metric as a

quantitative measurement for the degree of problem

complexity. A validation procedure was followed to ensure

the validity of using this metric in this context.

Second, As evidenced by frequent emphasis found in both

academic and professional trade literature, providing novice

32

users with an easy to use interface constitutes a critical

success factor for most application systems. Various forms

of assistance have been presented by research as well as by

commercial products in an attempt to improve ease of use.

However, there is still a dearth of systematic investigation

of possible benefits due to the existence of system usage

assistance from the perspective of user productivity. It is

expected that empirical evidence collected in a scientific

manner would provide better understanding of this critical

component of system design.

Third, this study is supported by a useful tool used by

deductive database researchers: logic programming language.

Although many other languages are available for

investigating effects of system assistance on users'

productivity in specifying queries, a logic programming

language is used for a number of reasons, including those

cited in the above section. For summary, some of them are

listed below:

1. The same language can be used for both data definition

and data manipulation.

2. Fact assertions and inference rules are of the same

basic forms: they are all Horn clauses. Modification of

the database system components (database and knowledge-

based interface) is relatively easy to perform.

3. As a predicate calculus language, a logic programming

language satisfies Codd's notion of relational

completeness by definition. In addition, some critical

33

features not supported by relational calculus, such as

transitive relationship and aggregate operation, are

available in the logic programming language. More

specifically, transitive relationships can be

implemented by recursion, and aggregate operations can

be implemented by user-defined functions in forms of

inference rules.

4. The high modularity of a system developed in a logic

programming language facilitates prototyping strategy

for system development.

The fourth motivation from previous researches stems

from the observation that most research focused on

development of individual systems. The literature survey has

not found any research addressing possible effects of

problem complexity on human performance measures. It is

reasonable for one to speculate that problems of different

complexity levels may benefit to different extents from

system-provided assistance.

CHAPTER BIBLIOGRAPHY

1. Codd, E. F., "A Relational Model of Data for Large
Shared Data Banks," Communications of the ACM ,
Vol. 13, no. 6, (June 1970), pp. 377 - 387.

2. Codd, E. F., "Relational Completeness of Data Base
Sublanguage," In Data Base Systems , edited by R.
Rustin, New York, Prentice-Hall, 1972, pp. 65 - 98.

3. Codd, E. F., "Relational Database: A Practical
Foundation for Productivity," Communications of the
ACM , Vol. 25, No. 2, (February 1982), pp. 109 -
117.

4. Dahl, V., "On Database Development through Logic," ACM
Trasactions on Database Systems , Vol. 7, No. l7~
(March 1982), pp. 102 -123.

5. Ford, Nelson, "Decision Support Systems and Expert
Systems: A Comparison," Working Paper, Department
of Management, Auburn University, (1985).

6. Gallaire, H., J. Minker, and J.-M. Nicholas, "Logic and
Databases: A Deductive Approach," ACM Computing
Surveys , Vol. 16, No. 2, (June 1984), pp. 153 -
186.

7. Gallaire, H., "Impacts of Logic on Data Bases,"
Proceedings of International Conference on Very
Large Databases , 1981, pp. 248 - 259.

8. Jarke, M., and J. Koch, "Query Optimization in Database
Systems," ACM Computing Surveys , Vol. 16, No. 2.
(June 1984), pp. Ill - 152.

9. Miller, L. A., and J. C. Thomas, JR., "Behavioral Issues
in the Use of Interactive Systems," International
Journal of Man-Machine Studies, (1977), 9, dd. 509
- 536.

10. Warren, D. H. D., "Efficient Processing of Interactive
Relational Database Queries Expressed in Logic,"
Proceedings of International Conference on Very-
Large Database , 1981, pp. 272 - 281.

11. Ullman, J. D., Principles of Database Systems ,
Rockville, Maryland, Computer Science Press, 1982.

34

35

12. Welty, C., and D. W. Stemple, "Human Factors Comparison
of a Procedural and a Nonprocedural Query
Language," ACM Transactions on Database Systems,
Vol. 6, No. 4, (September 1981), pp. 626 - 649.

CHAPTER III

RESEARCH METHODOLOGY

This research is both theoretical and empirical. It's

theoretical in the sense that it suggests and experiments

with an idea of using deductive database in investigating

problems concerning the user-system interface. It's

empirical since it conducts a controlled experiment to

collect empirical data and tested a set of hypotheses

regarding possible impacts of the proposed idea. This

section primarily describes methodogical issues of this

experiment. Specifically, issues described in this section

include: theoretical constructs to be investigated, research

variables and the way these variables are measured,

hypotheses to be tested, general experiment design, design

of the experimental deductive database system, and the data

collection and analysis techniques. Due .to the exploratory

nature of the experimental system, a substantial portion of

this section is devoted to a detailed description of this

system. Critical topics related to the experimental database

system design are: architecture of the system, conceptual

model of the database, implementation design of the

database, and logical access maps of the interactive query

patterns.

36

37

Major Factors Affecting Query
Specification Productivity

The user's productivity in specifying queries is often

affected by several factors. As indicated by Ray (5), these

dimensions include: environmental context, system features,

and individual differences. In an investigation of

procedurality of query languages, Welty (11) found that, for

easy problems, a procedural language results in better

performance in query writing. This finding is in contrast to

a popularly held conjecture that a nonprocedural language

should always be easier to use than a procedural language.

One may also suspect that the complexity level of problems

may have some bearing on the productivity of query

specification, given the same environment, system features,

and psychological characteristics. Figure 2

diagrammatically summarizes these critical factors. Each of

the three classes of factors has a main effect on the

productivity measures. For example, one with sufficient

knowledge of a system tends to perform better than the other

without much system knowledge; a relational data model may

provide a more natural view of the database, thus allowing

for higher productivity. In addition to the main effects,

these factors may interact and affect the productivity •

measures in more subtle ways. Welty*s finding that a

nonprocedural language seems to be more appropriate for

simple problems, whereas a procedural language may be better

for complex ones is an obvious example.

38

Individual Differences:

- Computer Knowledge
- Education
- Cognitive Style

~¥
I

_>k.

System Characteristics:

- Data Model
- Procedurality of Query

Language
- Response Time
- System-provided
Assistance

I
I

Task Characterisitcs

- Structuredness
- Complexity

Productivity:

- Syntactic Error
- Semantic Error
- Time

Note: Each class of factors has effects on the
productivity measures. And different classes of
factors may interact and generate some subtle
impacts. It is worth noting that, while the
definitions of syntactic errors and semantic
errors depend upon the implementation
language, they are also determined by the
characteristics of the associated task domain.

Figure 2--Major Factors Affecting Query Specification
Productivity.

39

Research Variables and Measurements

This study investigates the effect of system-provided

assistance on novice users' query specification

productivity. It also explores the role of problem

complexity in this respect. Therefore, the independent

variables involved in the experiment are system assistance

and problem complexity. Three productivity measures are used

as separate measures of the dependent variable, productivity

in specifying queries. Table I provides a summary list of

research variables followed by detailed explanations for

each variable.

TABLE I

RESEARCH VARIABLES LIST

INDEPENDENT VARIABLES DEPENDENT VARIALES

System-provided User Query Specification
Assistance Productivity

- Syntactic Errors
Problem Complexity - Semantic Errors

- Time of Completion

Note: The three dependent measures are treated
separately in this study.

Independent Variables

Operational Definition of System-Provided User-

Assistance. The major independent variable investigated by

this study is system-provided assistance when interfacing

with a database system. Although many reports regarding this

40

feature can be found both in the academic literature and in

commercial products, a generic metric for the measurement of

the "amount" of assistance has not been proposed. In order

to conduct the investigation in a systematic fashion, such a

measurement scheme is needed to facilitate experimental

manipulation.

System-provided user assistance has many different

forms, such as menu-selection, command macro, help facility,

and graphic prompts. Therefore, a generic measurement

scheme for the relative amount of use assistance must be

independent of the forms of assistance. In the context of

database query, there are some unique characteristics

helpful for this purpose. Typically, the way the user views

a database is primarily through data models. An interface

for end users must inevitably be closely linked to the data

model supported by the database management system. It can

be expected that the basic conceptual constructs of the data

model would determine, to a great extent, the format of such

a measurement scheme.

In the relational database, data are stored in a set of

two-dimensional tables, called relations. Each relation has

a number of columns, called attributes, and a dynamic, time-

varying number of rows, called tuples. The set of possible

values for a given attribute is called its domain. In the

literature, a formal definition is usually based on the

notion of domians. Given a collection of domains Dl, D2,

..., Dn, a relation of degree n is defined as any subset of

41

the cartesian product of these domains. Therefore, a

relation can be viewed as a set of ordered tuples <dl d2,

dn> such that dl belongs to Dl, d2 belongs to D2,

and dn belongs to Dn. Here, n denotes the number of

attributes constituting a relation. A relational database

is manipulated by query programs written in specially

defined query languages. Basically, the definition of a

relational query language is supported either by relational

algebra or by relational calculus. A query program

specifies which attributes are to be extracted from what

relations subject to certain conditions on the values of

those desired attributes. The relational algebra takes one

or two relations as operands and produces one relation as a

result. While the relational algebra manipulates the

relational database at the row (or tuple) level, the

relational calculus manipulates the relational database at

the relation level. Instead of having to create a number of

intermediary relations as in the case of relational algebra,

the relational calculus specifies only the list of

attributes, the relations from which those attribute are

drawn, and the predicates which have to be satisfied. From

the logical point of view, the same fundamental objects are

specified in an algebra-based as well as a calculus-based

query program. These fundamental objects are: 1). relation

name, 2). attribute name, and 3). condition regarding

attribute values. The requirement for the specification of

these objects remains the same regardless of syntactical

42

differences between lanuages.

A generic measurement scheme for use assistance

provided by the system may be developed based on whether or

not a particular object is assisted. There are at least two

levels involved in this concern. In a measurement scheme at

the first level, assistance for the specification of an

object is either existent or not existent. A measurement

scheme of the second order takes into account different

forms of assistance for the specification of each object.

An even higher-order measurement scheme can be contructed

incorporating amount of assistance associated with each form

of assistance for the corresponding object. Generally, the

degree of sophistication of a measurement model depends on

the purpose that the model is developed for. For this

study, a first-order measurement is sufficient for the

experiment which was designed to test the hypotheses of this

study. However, the significance of a more sophisticated,

more comprehensive, second-order metric is not excluded in

any sense.

Table II illustrates how a user interface may be

classified based on the existence or non-existence of the

assistance for specifying an object. In addition to the

three fundamental objects (relation name, attibute name, and

condition operator) described in the previous paragraph,

this classification scheme includes a higher-level object,

the label of the query pattern.

43

TABLE II

A CLASSIFICATION SCHEME FOR RELATIONAL
QUERY SPECIFICATION

OBJECTS

Query Pattern Relation Attribute Conditional
Label Name Name Operator

l + + + +

2 + + + -

3 4* + - +

c I 4 + - + +

A | 5 - + +

T | 6 + + - -

E | 7 + - * +

G | 8 + • - + -

o I 9 - - + +

R j 10 - + - +

y j 11 - + + -

12 + - - -

13 - + - -

14 - - + -

15 - - - +

16 — _

Note: A "+" indicates presence of system assistance
as to the specification of a particular
object, while a indicates absence of such
assistance.

44

Several points about this classification scheme must be

noted before proceeding to describe the metrics based on it.

First, this scheme is not intended to classify existing

commercial products. As a matter of fact, it only considers

conceptual contructs of the relational data model. No

technical details regarding system implementation have been

considered. In other words, it is primarily a conceptual

tool without consideration of technological feasibility.

This lack of correspondence with existing technology is

desirable if a model is to extend its life beyond the scope

of current state-of-the-art.

Second, it is clear that more assistance is available

when more objects are included. Consider the two extremes,

for instance, in this classification scheme. While Category

Sixteen provides no assistance for any of the objects,

Category One furnishes assistance for all the objects.

Although the relative "amount" of assistance is difficult to

distinguish for the categories between these two extremes,

it can be comfortably asserted that Category One represents

more assistance than Category Sixteen.

Third, the label of a query pattern represents a

meaningful name of a predefined query program which is

similar to a procedure or subroutine name of, for example,

COBOL or PL1 programs. In a command-driven interface,

entering such a label will invoke the execution of the

associated query program. Since labels or query pattern

names are easier to remember and to specify, they represent

45

abstractions at a very high level. With the aid of a

template or a well-designed menu prompt, the user does not

need to have much knowledge of the underlying system and

still can successfully interface with it.

The major independent variable, user assistance, can be

further operationalized by developing two related,

quantitative metrics. Essentially, this study employs an

experimental database system which provides use assistance

in forms of prompts and defaults. Thus, the amount of user

assistance may be expressed as a function of prompts and

defaults. This indicator for the amount of user assistance

is termed Interactive Metric (IM) in this study. Since

prompt and default are basically two different forms of

system assistance, a metric is defined for each. A metric,

termed Interactive Volume Metric (IcfcC), is suggested for

measuring relative amount of system-provided users

assistance in the form of prompts. Another metric, termed

System Default Metric (SDM), may be used to measure this

assistance in the form of defaults. The definition of IVM

and SDM together with the meanings of involved parameters

are presented as follows.

46

Interactive Volume Metric (IVM) = (£j(ni/ Ni)) / k
1=1

Where

nl: Average no. of prompts for query pattern labels;

n2: Average no. of prompts for relation names;

n3: Average no. of prompts for attribute values;

n4: Average no. of prompts for conditional operators;

Nl: Average no, of query patterns to be specified;

N2. Average no. of relations to be referenced;

N3- Average no. of attributes to be bound;

N4: Average no. of conditions to be specified;

ni <= Ni

k: 1 - 4

Boundary Conditions of the metric:

1. nl = n2 = n3 = n4 = 0 > IVM = 0

(No prompts are provided for any one of the objects.)

2. nl = Nl
n2 = N2
n3 = N3 > xvm = 1
n4 = N4

(A comprehensive menu is provided for all query pattern

labels in addition to the prompts for all of the

other objects.)

47

k
System Default Metric (SDM) = (Xl(n^/ Ni)') / k

i=l

Where

nl: Average no. of defaults for query pattern labels;

n2: Average no. of defaults for relation names;

n3: Average no. of defaults for attribute values;

n4: Average no. of defaults for conditional operators;

Nl; Average no. of query patterns to be specified;

N2: Average no. of relations to be referenced;

N3: Average no. of attributes to be bound;

N4: Average no. of conditions to be specified;

ni <= Ni

k: 1 - 4

Boundary Conditions of the metric:

1. nl = n2 = n3 = n4 = 0 > SDM = 0

(No defaults are provided for any one of the objects.)

2. nl = Nl
n2 = N2
n3 = N3 > SDM = 1
n4 = N4

(A natural language description of the problem is

parsed, and the query program formulation process is

entirely transparent to the user.)

48

In this study, the user assistance is therefore

operationally defined as

The user assistance is a variable concerning

system-provided use assistance in forms of

prompts and/or defaults, the amounts of which are

measured by IVM and SDM, respectively.

Operational Definition of Problem Complexity.— The

complexity of a problem is usually measured indirectly by

measuring the complexity of the corresponding program. This

approach presumably implies that there is a proportional

relationship between problem complexity and program

complexity. In the field of software engineering, the

measurement of program complexity has long been a critical

research issue. Many metrics have been proposed. However,

many researchers have noted that the software science

proposed by Halstead (2) represents "the most encompassing

quantitative relevant theory (in learning and using query

languages) (9, p. 173). Other studies (8) have found that

Halstead*s metrics are more suitable for simple programs

than complex ones. Since query programs in this study are

written in a predicate calculus language, they can be

considered as simple programs as opposed to equivalent ones

written in procedural query languages. It seems that

Halstead"s metrics may be used for distinguishing simple

problems from complex ones.

In order to ensure the validity of this choice, a

validation process was performed on a particular metric,

49

Volume (V) measure. This validation involved three steps.

At the first step, a collection of database query problems

were established based on a list of query problems found in

Date's book (2, pp. 141, 142). At the second step, a query

program was written for each of these problems in the

predicate calculus language, Micro-Prolog, and V measures

were taken for these programs based on a criteria of

assignment of operators and operands. The third step

performed a pooled t test on the two groups of problems

(programs), and found a significant difference between the

V values of simple problems and those of complex ones. In

an attempt to examine possible effects of different

assignment of operators and operands, a sensitivity

analysis was conducted for several different assignments.

This last step found no sensitive effect was caused by

different assignments of operators and operands. As a

consequence, the choice of Halstead's V measure has been

justified. This metric is summarized as follows.

Volume (V) = (N1 + N2) Log2 (nl + n2)

Where

Nl: gross occurrences of operators
N2: gross occurrences of operands
nl: number of unique operators used
n2: number of unique operands used

Log2: Logarithm function based on 2

The validation process with the list of database query

50

problems and the associated programs are described more

clearly in Appendix A. In summary, the operational

definition of Problem Complexity is

The complexity levels of database query problems

are measured by the Halstead's Volume (V) metric

as applied to the associated query programs

written in Micro-Prolog.

Dependent Variables

Number of Syntactic Errors.-- In a query specification

process, a syntactic error occurs when a spelling error is

committed and/or a grammatical rule is violated. In the

experimental system of this study, a syntactic error will

cause the query specification process either to fail or to

behave abnormally. The main reason for committing syntactic

errors is unfamiliarity with the experimental query

interface. Theoretically, users tend to make fewer

syntactic errors with an easier-to-use interface. A good

user interface should be able to improve users'

productivity in specifying queries. As one of the

productivity measures, syntactic errors in the query

specification process were counted, and the number of these

errors served as a dependent measure in the data analysis

process.

Number of Semantic Errors.— Semantic errors refer to

incorrect specifications passing interpreter's syntactic

check but resulting in incorrect outputs to be retrieved.

51

A semantic error can be caused by insufficient knowledge of

the problem. In most cases, it arises from deficient

mapping from the function of the query interface facility

to the formulation of the problem solving solution.

Therefore, in this sense, familiarity with the interface

syntax represents "superficial" knowledge, whereas

mastering the mapping procedure requires "deep" knowledge

of the query interface facility. A good interface for end

users should not only facilitate avoidance of syntactic

errors, but also lead to minimal semantic errors.

Identification and categorization of possible semantic

errors depends heavily upon the implementation of the

interface. Based on the framework proposed in the previous

section, several classes of semantic errors are listed as

follows.

1. Incorrect order of relation names: With a nonprocedural

language, most relation names can be specified in any

order. However, this freedom of reference order applies

to database relations only. In the predicate calculus

language, conditional operators also appear in the same

form as database relations. These predicate relations

must be specified after the associated database

relations. The reason for this is that binding of

variables must occur before these variales can be

manipulated in any way.

2. Incorrect relation names: This error refers to a case in

which a relation is specified where it should not

52

appear. This error will cause wrong relations to be

searched, and thus resulting in retrieval

irregularities.

Incorrect attribute names or values: Attribute names

function as variables, and will be bound to any values

of the attributes. Attribute values are constants, and

are bound to identical values of the attributes only.

Specifying incorrect attribute names or values causes

incorrect tuples being selected.

. Incorrect conditional or Boolean operators: Conditional

and Boolean operators allow specifications of predicates

which restrict the data to be retrieved from the

database. All query facilities have a set of predefined

conditional and Boolean operators to support a variety

of query requirements. Some facilities provide an easy

way of specifying conditions correctly, while others

require more knowledge of the system.

Non-descriptive relation names: When a relation other

than any of the existing ones is specified, the system's

search for the relation will fail. No output will be

returned in this case. Since this error is concerned

more with knowledge of domain databases than with the

query interface, it is treated as a semantic error.

Another reason for this treatment is because a program

with this type of error will successfully pass the

syntax check of the query processor.

Non-descriptive attribute names and condition operators:

53

A critical requirement of the experimental system is

that all attributes must be given either a unique

variable name or a correct constant. Depending on the

specific situation, specifying a non-descriptive

attribute name may produce unpredictable query results.

Although there might be some complicated relationships

existing between different types of semantic errors, this

study considers all types of semantic errors being

equivalent due to their same consequence. The numbers of

types of semantic errors are summarized. This sum of

the numbers of semantic errors is used as a dependent

measure. It is assumed that a better query interface

facility should lead to fewer semantic errors being

committed in the query specification process.

•^me ££ completion. The third dependent measure of this

study is the amount of time required to complete a query

specification activity. This variable was measured from

the instant the user received a query problem and started

to read the problem to the moment the query specification

activity was complete. The time elapsed between these two

points includes several components. The first component is

the time a user spends for reading and comprehending the

problem. The second component is the time used by a user

when thinking about how to formulate a solution with the

features provided by the query facility. The third

component involves user typing time. The fourth component

is the system response time It is worth noting that these

54

components are not necessarily mutually exclusive with each

other. For example, some users may be typing while

thinking. Since the main purpose of this study is to

investigate the impact of different user assistance modes

on users' query specificaton productivity. No attempt needs

to be made to deal with individual time components. The

gross time as represented by number of minutes was used in

the data collection, and statistical analysis process.

Research Hypotheses

In order to answer the two research questions laid out

in the first chapter, two sets of hypotheses are

established for statistical testing. These hypotheses are

devised to test the main effects as well as the interaction

effects of the independent variables (User Assistance and

Problem Complexity) on the dependent measures (Number of

Syntactic Errors, Number of Semantic Errors, and Time to

Completion). Each hypothesis is stated below in the null

form. The rejection of a null hypothesis implies

significant impacts of the investigated independent

variable on the associated dependent measure.

Hla - The number of syntactic errors committed by novice

users in specifying database queries is the same

regardless of the mode of use assistance or the

problem complexity.

Hlb - The number of semantic errors committed by novice

users in specifying database queries is the same

55

regardless of the mode of use assistance or the

problem complexity.

Hlc - The amount of time required by novice users to

complete a database query is the same regardless of

the mode of use assistance or the problem complexity.

H2a - The number of syntactic errors committed by novice

users in specifying database queries is the same

regardless of the mode of use assistance.

H2b - The number of semantic errors committed by novice

users in specifying database queries is the same

regardless of the mode of use assistance.

H2c - The amount of time required by novice users to

complete a query specification task is the same

regardless of the mode of use assistance.

H3a ~ The number of syntactic errors committed by novice

users in specifying database queries is the same

regarless the type of problems encountered.

H3b ~ The number of semantic errors committed by novice

users in specifying database queries is the same

regardless of the type of problems encountered.

H3c ~ The amount of time required by novice users in

specifying database queries to complete a query

specification task is the same regardless of the type

of problems encountered.

H4a " For simple problems, the number of syntactic errors

committed by novice users in specifying database

queries is the same regardless of the mode of use

56

assistance.

H4b - For simple problems, the number of semantic errors

committed by novice users in specifying database

queries is the same regardless of the mode of use

assistance.

H4c - For simple problems, the amount of time required by

novice users to complete a query specification task

is the same regardless of the mode of user

assistance.

H5a - For complex problems, the number of syntactic errors

committed by novice users in specifying database

queries is the same regardless of the mode of use

assistance.

H5b - For complex problems, the number of semantic errors

committed by novice users in specifying databse

queries is the same regardless of the mode of use

assistance.

H5c - For complex problems, the amount of time required by

novice users to complete a query specification task

is the same regardless of the mode of use assistance.

Database query specification is a human-computer

interaction activity. In order for this communication to

proceed effectively and efficiently, either the user has to

have sufficient knowledge about how to use the system or

the system has to know much about the user's information

requirement. Typically, functional managers possess a

substantial body of knowledge about the problems in the

57

domains of their interest. However, many managers tend to

be less fluent in their use of computer language required

to communicate with the computer. Therefore, incorporating

knowledge about users1 information requirements seems to be

a feasible approach to facilitate easier communicaton

between this type of users and the computer. Hypotheses

Hla - H2c were devised to test this idea.

Complexity level of the problem has long been

considered a key variable in the dynamics of human-computer

interaction. For example, Welty (11) found no significant

difference between writing queries in a procedural language

and writing queries in a nonprocedural language for easy

problems. However, it was found that procedural language is

more appropriate for difficult problems. It seems to be a

reasonable assumption that user assistance provided by a

system may have different impacts for simple problems and

complex ones. Empirical evidence can be obtained by testing

Hypotheses H3a - H5c.

Experiment Design

This study is not only concerned with the main effects

of use assistance mode and problem complexity, but also the

interaction effect of these two variables. A factorial

design is appropriate for this purpose. According to

Montgomery (5, p. 124), the rationale for using a factorial

design includes the following:

1. A factorial design is necessary when interaction effects

58

may be present.

2. The factorial design is more efficient than one-factor-

at-a-time experiment design.

3. Factorial designs allow effects of a factor to be

estimated at several levels of the other factors,

yielding conclusions that are valid over a range of

experimental conclusions.

The specific design of this study is depicted by Figure 3.

I Simple Problems | Complex Problems

User-Assisted 1 |

Mode j |
\

Non-User- | |

Assisted | i

Mode j 1

Figure 3—Experiment Design (2 X 2) of the Study

With this design, User Assistance Mode has two

treatment levels. Both modes are provided with an interface

facility which translates a more English-like query

statement into the internal representation of the

experimental system. Beyond this front-end support, Non-

User-Assisted Mode provides no assistance for specifying

database queries. In the non-assistance mode, users

essentially have to construct a query program to satisfy

59

the infromation retrieval requirement as indicated by each

of a set of problems. The IVM and SDM values of this query

specification mode is zero. The other mode (User-Assisted

Mode) offers defaults for relations , operational

predicates and some attribute values. Prompts are provided

for users to enter the other attribute values to complete

the query specification. The SDM value is 0.75, and the IVM

is 0.25. The sum, i. e., IM, is 1.00 for this mode.

Therefore, query specification basically involves a

question-answering process. Given a problem description,

users select and enter a relevant command to initiate this

question-answering process. When all the questions have

been answered, the query program is complete and is

executed. The command format of the user-assisted mode is

the same as that of the non-user-assisted mode. The fact

that both query specification modes have the same language

syntax assures that language syntax will not constitute

noise in the experiment.

Problem Complexity also has two treatment levels. Each

level has four replications: four simple problems and four

complex problems. The four problems at each level are

semantically equivelent; only a slight difference exists in

their information requirements. The volume measures of the

four problems is 77.7, while the volume measures of the

four complex ones range between 164.2 and 211.8. The

significant different volume measures of the two sets of

problems was intended to make the treatment strong enough

60

so that the cause-effect relationship can be examined

clearly. The query programs associated with all the

problems are presented in Appendix 5 together with the way

their volume values are calculated. A sensitivity analysis

has been performed for different assignments regarding

operators and operands. No significant impact of different

assignments on the volume values was found. Appendix 1

presents more fully this validation process.

Data Collection

This study conducted an experiment in a controlled

laboratory setting. An experimental database system is

developed based on a PROLOG interpreter. This experimental

system consists primarily of two databases, a set of high-

level operators, and a collection of interactive query

patterns implemented as inference rules. The system and the

procedure in which the experiment was conducted are

described in this section.

Design of the Experimental Database System

The experimental database system was developed based

on a PROLOG interpreter running under MS-DOS, version 2.1,

called micro—Prolog. Therefore, this is a deductive

database system. Major components consist of a modified

module of the micro-Prolog's language preprocessor, two

application databases, and a collection of interactive

query patterns.

System Architectures— Both query specification modes

have the following common components: translation front-

61

end (a language preprocessor), inference mechanism, and two

deductive databases. In addition to these common

components, the user-assisted mode has an interactive query

pattern module. The ways these two modes interact with the

user are described as follows.

In the non-user—assisted mode, the user enters a query

program in an easier-to-read format. This program basically

states WHAT attribute values are to be extracted from WHAT

relations subject to WHAT conditions. There is no

specification in the program as to HOW the database should

be navigated. This user-entered program will be translated

into the internal representation by the translation front

end and stored in the working memory. This front-end is

essentially a version of a limited natural language

processor coming with the interpreter diskette refined to

fit this study's need. The internal representation of the

program is in the format of a list. The inference mechanism

evaluates the program using a depth-first, backward-

chaining control strategy. The fundamental operation during

this reasoning process is pattern-matching. When a pattern

is found in the deductive database which matches the

pattern of the subgoal, binding occurs and the value is

returned as the side effect of the evaluation process.

Evaluation of the program terminates when no (more)

relations in the database can be found to match a subgoal

of the program. Figure 4 illustrates this user-system

interaction behavior.

62

In the user-assisted mode, the user selects and enters

a command based on his understanding of the problem. The

commands are implemented in the same language as that for

non-user-assisted mode. As a result, the format of the

commands is identical to that of query programs. This

choice excludes likely noise arising from effects of

differnent query languages. When the command is executed,

an interactive query pattern is invoked. By going through a

question-answering process, the user supplies data

essential for the specification of a query under the

assistance of the system. This interaction process is

illustrated by Figure 5.

63

User

Translation
Front-end

I I
I Working |
I Memory ĵ - •>l

Inference
Mechanism

T "

Deductive Databases

(Four relations in the applicant
database and six relations in
the employee database)

Note: The user enters an English-like query program
which is translated into the internal represen-
tation and is stored in the working memory.
Inference Mechanism searches the databases when
evaluating the program by pattern-matching and
backtracking.

Figure 4 Architecture of the Experimental Database System
for the Non-User-Assisted Mode.

64

User
t
I
^

Translation
Front-end

4c

I Working
I Memory K-

I
4r

Interactive
Query-

Patterns

(Implemented as
inference rules)

•>l
Inference
Mechanism

t
I
I
I

"i<

Deductive Databases

(Same contents as
those of non-user-
assisted mode)

Note: Given a problem, the user selects and enters a
command to invoke an interactive query pattern.
Through a system-controlled question-answering
process, the user supplies appropriate data to
complete a query specification.

Figure 5--Architecture of the Experimental Database System
for the User-Assisted Mode

65

Hierarchy of Database Views.— As an integrated

collection of data resources, a database typically has

various users interfacing with it. These users play

different roles in the life cycle of the database. For

example, database administrators design, implement, and

maintain the whole database. Application programmers

develop applications which obtain inputs from the database.

End users extract from the database information pertaining

to their jobs. Each class of users holds a unique view of a

database. The ANSI/SPARC architecture basically proposes a

hierarchy of views for a database. Each view is built on

top of the next lower one to" represent a next higher

abstraction of the original database. For example, the

internal view regards the database as a set of storage and

search strategies. The conceptual view treats the database

from the standpoint of inter-records relationships. And the

external view represents a logical window through which a

user sees the portion of a database which is related to his

scope of responsibility. A major function of the external

view is provision of data independence; the user is

shielded from the complexity of the original design. This

notion can be extended even further: multiple levels of

external views can be developed to provide simpler views.

The use-assisted mode of this study represents an

implementation of a second-level external view (Figure 6).

66

f—

L.

~~l

Second-level External View I

-J

I
__n

I . I
I First-level External View I
' I
L J

I
I

I I
I Conceptual View |

L

^
1 I
I Internal View |

L

Figure 6—Hierarchy of Database Views

Conceptual Model of the Databases.— A conceptual data

model provides a comprehensive logical view of a database,

and should serve as a foundation for all applications.

This study involves two subject databases: Applicant

database and Employee database. The Applicant database

contains information about job applicants, whereas the

employee database contains information about existing

employees of a hypothetical, management information systems

department. These conceptual models are presented as

follows.

67

Applicant Database:

1. Applicant-info(SS# Name Address Phone-no Degree
Major Position-wanted Expected-annual-pay)

2. Experience-applicant(SS# Skill-name Number-of-years)

Employee database:

1. Employee-info(Employee-ID Name Address Phone-no
major Department Title Date-in Communication-grade)

2. Experience-employee(Employee-ID Skill Number-of-
years)

3. Project-completion(Employee-ID Current-project
Date-of-completion)

A commonly used convention is adopted here for the

depiction of a relation: a relation name followed by a list

of attribute names which are specified within a pair of

parentheses. Primary keys are underlined. Secondary keys

are not shown in the following models. From the

perspective of the theory of functional dependency, all of

the relations are in the third normal form.

Implementation models of the databases.— Since a

conceptual data model is typically independent of any

database management software, some modification is often

needed to take into account various constraints when the

database is implemented. These constraints include DBMS

characteristics, application processing requirements, user

characteristics,, etc. In this study, two relations

(Applicant-info and Employee-info) seem to be containing

too many attributes. Breaking them down can also offer more

68

flexibility for possible future growth of the system.

Shown below are the implementational (operational) models

the experimental databases derived from the conceptual

models.

Applicant Database:

1. Applicant(SStt Name Address Phone-no)

2. Education-applicant(SS# Degree Major)

3. Experience-applicant(SS# Skill Number—of-years)

4. Looking-for(SS# Position-wanted Expected-pay)

Employee Database:

5. Employee(Employee-ID Name Address Phone-no)

6. Education(Employee—ID Degree Major)

7. Job-title(Employee-ID Department Title Date-in)

8. Experience(Employee-ID Skill Number-of-years)

9. Communication-skill(Employee-ID Grade)

10. Project-status(Employee-ID Current-proiect
Date-of-completion)

Logical Access Maps for the Interactive Query

Patterns.-- A logical access map identifies the sequence in

which the relations are accessed. This technique was

proposed and explained by Martin (4, pp. 361 - 374), and

has been claimed to well suit application specification

needs for database environments. From a logical access

map, a database action diagram can be drawn in a

straightforward way. In a nonprocedural language,

69

developing an application requires only minimal translation

from the database action diagram to the source code. In the

course of developing the experimental system, this study

also finds logical access maps a convenient

conceptualization tool for the design and implementation of

interactive query patterns. Figure 7 illustrates an example

of these logical access maps.

I
I
V

Education-applicant j

I
V

I
Looking-for

V
V

I Experience-applicant

I
V

'I

I
Applicant-info

Note: This query pattern is designed for extracting
information from the Applicant database.
The single arrow indicates that the
relation is specified only once, while the
double arrow indicates the relation is
specified multiple times. However, the
inference mechanism's backtracking feature
may return multiple values as the result of
pattern-matching

Figure ^--Logical Access Maps of the Interactive
Query Patterns

70

Experiment Procedure.-- This study used two sections of a

fundamental course offered by the Department of Business

Computer Information Systems at North Texas State

University as experimental subjects. Fifty students were

randomly divided into a control group and an experimental

group. These students are characterized by a lack of

extensive experience in the use of computer, hence can be

considered a convenient sample of the population addressed

by this study, novice users. The experiment was made a

mandatory , graded assignment so that students would pay

serious attention to their performance.

Two databases were created for a personnel management

domain. For the user-assisted mode, a collection of

interactive query patterns was developed. There were eight

database query problems to be solved. Four problems

concerned selecting from the applicant database job

applicants qualified for a particular job opening, while

the other four were related to project team assignment and

the employee database was involved. Among these eight

problems, four were simple problems, whereas the other four

were complex. The complexity levels were measured by

Halstead s Volume metric. The two classes of problems were

randomly mixed when presented to the subjects. This

arrangement is an attempt to mimic the real world situation

where various kinds of problems arrive in an unpredictable

fashion. A functional manager must be able to match a

computing tool's functional capability with the problem's

71

semantic requirements. A user-friendly tool should be able

to provide aid in this respect.

The experiment was conducted over a period of five

days. Two to four subjects participated in the experiment

in each session. When arriving at the scheduled date and

time, the subject had no idea about the details of the

experiment. After being given a brief but clear

introduction, the subject was given a tutorial , written

instruction on the experimental system and example problems

to be solved (Appendices B, C, D, and E). The subjects

were encouraged to ask any questions when reading the

instructions. There was no limitation on the amount of time

used for reading the instructions. Actual lengths ranged

anywhere between fifteen minutes and ninety minutes. At the

end of reading, the subjects indicated that they had felt

comfortable about the system and the problems.

Problems for all subjects were in the same sequence,

and all problems were given to a subject at a time. To

ensure the correctness of the time recorded, the

administrator of the experiment stood nearby to double

check the time they started and finished each problem.

When the subject inadvertently ran into a long loop, or

when the keyboard stuck, the administer solved the problem

immediately so that the experimental result wouldn't be

contaminated by irrelevant time measurements. The entire

problem-solving process was conducted on-line for both

query specification modes (Appendices G and H provide an

72

outline of system operating procedures for both modes). A

printer was used to capture both users' input and system's

output to facilitate data analysis. Conducting the

experiment for both experimental group and controlled group

on-line helped to eliminate possible discrepancies in user

performance which may exist between the on-line and off-

line environments.

Data Analysis

All users inputs and system's outputs recorded by the

printer were analyzed according to the criteria established

and described in the measurement section. In order to

encode the experimental data in an organized manner, a data

sheet was prepared. This data sheet includes subjects'

demographical data, as well as dependent measures. Figure 8

shows its format.

73

EXPERIMENT DATA SHEET

1. Subject Name: Sex: Age:
Computer Courses Completed!

Software Use Experience: '

2. Query Specification Mode:

3. Number of Syntactic Errors:
Spelling Error:

Grammatical Violation: — — — —
Total Syntactic Errors: ' — — —

4. Number of Semantic Errors:
Incorrect order of

relations:
Incorrect Relation Names: — — — — —
Incorrect attribute Names — — — — —
Incorrect conditional ~~ — — —
or boolean operators:
Non-descritive relation: — — — — —
Non-descriptive — — — —
attribute names and
condition operator:

Total Semantic Errors: — — —

5. Time of Completion:
(minutes) — — — — —

Figure 8--Experiment Data Sheet Used for Grading

Due to some unique syntax of the implementation

language, micro-Prolog, several notes need to be made

regarding the classification of errors found in the query

specification. First, grammatical errors include the

following cases:

1. The key word, and, is missing.

2. Parentheses are not balanced.

3. Given a correct relation, the number of variables

and constants together are not identical to what it

is supposed to be.

74

4. Separating blanks are missing.

Second, since there is a hierarchical relationship

between certain error types (wrong attributes are always

specified if relations are not correct, for example), the

grading process only counted the error at the highest level

to avoid overemphasis on some user-made errors. This

practice was performed for both modes to maintain essential

consistency. Third, any other errors not exactly identified

by the list of semantic error types were assigned to the

error type items closest to the actual errors. For

example, extra relation(s) specified was regarded as wrong

relation(s). Since only total number of all semantic

errors is used as a dependent measure, the results will not

be affected by minor deviations from a truly exhaustive

list of semantic errors. This confidence is further

enforced by the consistency of practices for both modes.

The resulting data were analyzed by Analysis of

Variance (ANOVA) procedure of the Statistical Analysis

System (SAS), Release 5.08, running under OS/MVS. Since

each dependent measure was to be analyzed separately, three

ANOVA runs were performed for the three dependent measures

with simple and complex problems togethers. Then, another

three ANOVA analyses were performed with either simple or

complex problems removed. This procedure resulted in nine

sets of ANOVA test results.

75

Limitations of the Study

Limitations to the external validity of this study can

be caused by the use of student subjects, hypothetical

sample databases and problems, single data model, and

single implementation language. Findings of the study will

not be overgeneralized for these reasons. Another source of

limitation may come from a drawback found in most

laboratory experiments: relatively weak treatments. This

study uses two very distinct levels for both independent

variables, in an attempt to significantly increase the

strengths of the treatments. When resource is sufficient,

£6al world subjects can be used to either confirm or modify

the findings of this study with problems derived directly

from the real world. However, due to these limitations, all

findings will not be overly generalized.

CHAPTER BIBLIOGRAPHY

1. Bonczek, R. H., C. W. Holsapple, and A. B. Whinston, " A
Generalized Decision Support System Using Predicate
Calculus and Network Data Base Management,"
Operations Research , Vol. 29, No. 2, (March-April
1981), pp. 263 - 281.

2. Date, C. J., Introduction to Database Systems, (2nd
Edition), Menlo Park, California, Addison-Wesley
Publishing, Co., 1981.

3. Halstead, M., Elements of Software Science , New York,
Elsevier Computer Science Library, 1977.

4. Martin, James, Managing Data Base Environment ,
Englewood, New Jersey, Prentice-Hall, 1983.

5. Montgomery, D. C., Design and Analysis of Experiments ,
Englewood, New Jersey, Prentice-Hall, 1976.

6. Ray, Howard, An Empirical Investigation of the Effects
of Individual Differences and Data Models on the
Ease-of-Use of Database Query Facilities by Casual
Users , PhD Dissertation, North Texas State
University, 1984.

7. Reisner, Phllis, "Human Factors Studies of Database
Query Languages: A Survey and Assessment,"
Computing Surveys , 13, 1, (March 1981), pp. 13 -

8. Shneiderman, Ben, Software Psychology , Cambridge,
Massachusetts, Winthrop Publisers, Inc., 1980.

9. Thomas, J. C., "Psychological Issues on the Design of
Database Query Languages," in Designing for Human-
Computer Communication , edited by Sime, M. E., and
M. J. Coombs, New York, Academic Press, 1983, DP.
173 - 208.

10. Ullman, J. D., Principles of Database Systems ,
Rockville, Maryland, Computer Science Press, 1982.

11. Welty, C., and D. W. Stemple, "Human Factors Comparison
of a Procedural and a Nonprocedural Query
Language," ACM Transactions on Database Systems ,
Vol. 6, No. 4, (September 1981), pp. 626 - 649.

76

CHAPTER IV

RESULTS AND ANALYSIS

This study involves two independent variables (User

Assistance Query Mode and Problem Complexity) and three

dependent variables (Number of Syntactic Errors, Number of

Semantic Errors, and Time of Completion). In order to

analyze the independent (main) as well as the interaction

effects of the two independent variables on a dependent

variable, a factorial analysis of variance was used. This

chapter first presents the distribution of some

characteristics of the subjects. Then, the results of

statistical analysis are reviewed from the perspective of

the hypotheses established in Chapter III.

Demographical Distribution of the Subjects

Most students participating in this study are majoring

in business. As shown in Table III, the major area covers a

wide range. The range of age in the use-assisted query

specification mode (the experiment group) is 20 - 39, with

the mean of 23. In the non-use-assisted mode (the control

group), this range is 21 - 34, with the mean of 24. Thirteen

females and twelve males are in the experiment group, while

the control group has fourteen females and eleven males. The

relatively lower age of the experiment subjects than the

real world counterpart constitutes one of the critical

77

factors limiting the exernal validity of the study.

TABLE III

DISTRIBUTION OF SUBJECTS' MAJORING AREAS

78

Major Areas Total User- Non-User-
Assisted Assisted

Mode Mode

Marketing 9 3 6
Finance 7 2 5
General Business 6 3 3
Accounting 5 4 1
Management 5 1 4
Production Management and
Organizational Behavior 4 2 2
Business Computer Information
Systems 4 3 1
Undecided 3 2 1
Personnel and Industrial
Relations 2 2 o
Political Science 2 1 1
Computer Science 2 1 1
Real Estate 1 1 0

Number of Subjects

The majority of the subjects (95 percent) have

completed only an introductory computer course in the past

five years. Only the two subjects majoring in computer

science have had more computer-related courses. The same

percentage of subjects had no prior experience in using any

application software. None of them had any experience in

using database management software. In general, this sample

group is characterized by the same minimal level of computer

knowledge as that of the population addressed by the study.

79

Overall Effects of Use Assistance Mode and
Problem Complexity

The objective of the study is to investigate possible

effects arising from each independent variable as well as

from the interaction of the use assistance mode and problem

complexity. The first attempt of the analysis is to examine

the overall effect of these two independent variables as a

whole. If the overall effect is not significant, it is still

possible that one of the variables has a significant effect,

but that effect has been obscured by its interaction with

another variable. On the other hand, if there is a

significant overall effect, this overall effect can be

broken down to several components to provide more

information about the sources of the effect.

Hypothesis Hla states: The number of syntactic errors

committed by the novice users in specifying database queries

is the same regardless of the modes of use assistance and

the complexity levels of the problems. This null hypothesis

has been rejected by the F test at a significance level of 1

percent (Table IV).

Hypothesis Hlb states: The number of semantic errors

committed by novice users in specifying database queries is

the same regardless of the mode of use assistance and the

complexity levels of the problems. The result of analysis

of variance rejects this null hypothesis at a significance

level of 1 percent (Table V).

Hypothesis Hlc states: The amount of time required by

80

novice users in specifying database queries is the same

regardless of the modes of use assistance and the complexity

levels of the problems. At the significance level of 1

percent, this null hypothesis is rejected (Table VI). It is

therefore obvious that users' productivity in specifying

database queries is affected by the use assistance provided

by the system and the complexity levels. Together, these two

factors contribute to the significant difference of

productivity measures in some way. The remainder of this

chapter examines the main effects as well as the interaction

sffect of these two factors.

TABLE IV

ANALYSIS OF VARIANCE FOR THE NUMBER OF SYNTACTIC
ERRORS WITH BOTH SIMPLE AND COMPLEX

PROBLEMS INCLUDED

SOURCE

MODEL

ERROR

CORRECTED
TOTAL

DF

3

396

399

SUM OF SQUARES

6 8 . 7 6 7 5 0 0 0 0

4 7 9 . 9 3 0 0 0 0 0 0

5 4 8 . 6 9 7 5 0 0 0 0

MEAN SQUARE

2 2 . 9 2 2 5 0 0 0 0

1 . 2 1 1 9 4 4 4 4

F VALUE

1 8 . 9 1

PR > F

0.0001

SOURCE

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

DF

1
1

ANOVA SS

3 9 . 0 6 2 5 0 0 0 0
2 5 . 5 0 2 5 0 0 0 0

4 . 2 0 2 5 0 0 0 0

F VALUE

3 2 . 2 3
2 1 . 0 4

3 . 4 7

PR > F

0.0001
0.0001

0 . 0 6 3 3

81

TABLE V

ANALYSIS OF VARIANCE FOR THE NUMBER OF SEMANTIC
ERRORS WITH BOTH SIMPLE AND COMPLEX

PROBLEMS INCLUDED

SOURCE

MODEL

ERROR

CORRECTED
TOTAL

DF

3

396

399

DF

SUM OF SQUARES

101.01000000

6 9 2 . 5 0 0 0 0 0 0 0

7 9 3 . 5 1 0 0 0 0 0 0

ANOVA SS

MEAN SQUARE

3 3 . 6 7 0 0 0 0 0 0

1 . 7 4 8 7 3 7 3 7

F VALUE

1 9 . 2 5

PR > F

0.0001

SOURCE

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

1
1

6 2 . 4 1 0 0 0 0 0 0
2 7 . 0 4 0 0 0 0 0 0

1 1 . 5 6 0 0 0 0 0 0

F VALUE

3 5 . 6 9
1 5 . 4 6

6.61

PR > F

0.0001
0.0001

0 . 0 1 0 5

TABLE VI

ANALYSIS OF VARIANCE FOR THE TIME OF COMPLETION
WITH BOTH SIMPLE AND COMPLEX PROBLEMS INCLUDED

PROBLEMS ARE INCLUDED

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR >]

MODEL 3 2 6 8 7 . 9 6 1 8 7 5 0 0 8 9 5 . 9 8 7 2 9 1 6 7 3 5 . 0 0 0 . 0 0 0 1
ERROR 396 1 0 1 3 7 . 1 4 7 5 0 0 0 0 2 5 . 5 9 8 8 5 7 3 2

CORRECTED
TOTAL 399 1 2 8 2 5 . 1 0 9 3 7 5 0 0

SOURCE DF ANOVA SS F VALUE PR > F

QRYMODE
PROBLEM,
QRYMODE*
PROBLEM

1
1

1

1 5 7 4 . 1 0 5 6 2 5 0 0 •
8 8 3 . 5 7 5 6 2 5 0 0

2 3 0 . 2 8 0 6 2 5 0 0

6 1 . 4 9
3 4 . 5 2

9 . 0 0 j

0 . 0 0 0 1
0 . 0 0 0 1

0 . 0 0 2 9 j

82

Main Effect of Use Assistance Mode on the Number
of Syntactic Errors

The number of syntactic errors committed by the user in

the query specification process reflects the structural

complexity of an interface. An interface which is easier to

use tends to lead to fewer syntactic errors. As an attempt

to investigate the effect of use assistance provided by the

system in this regard, Hypothesis H2a states: The number of

syntactic errors committed by novice users in specifying

database queries is the same regardless of the mode of use

assistance. This hypothesis concerns the main effect of Use

Assistance when both simple and complex problems are

present. The test result shown in Table IV (F value =

32.23) rejects the hypothesis at the significance level of 1

percent. It clearly indicates that significant difference

of the number of syntactic errors exists between the two use

assistance modes. Another analysis results shows that the

average number of syntactic errors made in the non-use-

assisted mode is 0.965, while that in the use-assisted mode

is 0.34. This result represents an empirical evidence that

the use-assisted mode results in higher user productivity

marked by fewer syntactic errors.

In the case that only simple problems or only complex

problems are present, what would be the main effect of the

use-assisted mode on the number of syntactic errors?

Hypotheses H4a and H5a are devised to investigate this

issue. H4a states: For simple problems, the number of

83

syntactic errors committed by novice users in specifying

database queries is the same regardless of the mode of use

assistance. H5a states: For complex problems, the number of

syntactic errors committed by novice users is the same

regardless of the mode of use assistance. Tables VII and

VIII show that both null hypotheses are rejected at the

significance level of 1 percent. Further analysis shows

that , for simple problems, the average number of syntactic

errors per problem is 0.61 in the non-use-assisted mode, and

0.19 in the use-assisted mode. For complex problems, this

average is 1.32 in the non-use-assisted mode, and 0.49 in

the use-assisted mode. It is clear that Use-Assisted Mode

consistently results in fewer syntactic errors regardless

the complexity level of the problems encountered by the

users.

84

TABLE VII

ANALYSIS OF VARIANCE FOR THE NUMBER OF SYNTACTIC
ERRORS FOR SIMPLE PROBLEMS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR >]

MODEL 1 8.82000000 8.82000000 13.95 0.0002

ERROR 198 125.18000000 0.63222222

CORRECTED
TOTAL 199 134.00000000

SOURCE DF ANOVA SS F VALUE PR > F

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

1
0

0

8.82000000
0.00000000

0.00000000

13.95 0.0002

TABLE VIII

ANALYSIS OF VARIANCE FOR THE NUMBER OF SYNTACTIC ERRORS
ERRORS FOR COMPLEX PROBLEMS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR >]

MODEL 1 34.44500000 34.44500000 19.23 0.0001

ERROR 198 354.75000000 1.79166667

CORRECTED
TOTAL 199 389.19500000

SOURCE • DF ANOVA SS F VALUE PR > F

QRYMODE 1 34.445&0000 19.23 0.0001 PROBLEM 0 0.00000000
0.0001

QRYMODE*
PROBLEM 0 0.00000000

• •

85

Main Effect of Use Assistance Mode on the Number
of Semantic Errors

A computer interface facility such as the one used in

this study is merely a tool assisting the user in problem

solving activities. The user must be able to map the

functional capability provided by the interface to a specifc

implementation of the associated query activity. This study

uses the number of semantic errors committed by the user to

reflect the relative ease of use of the interface in terms

of this conceptualization aid. Would different use

assistance modes lead to different productivity as measured

by the number of semantic errors found in the query

specification process? Hypotheses H2b, H4b, and H5b are

devised to investigate this issue.

Hypothesis H2b states: The number of semantic errors

committed by novice users in specifying database queries is

the same regardless of the mode of use assistance. This

hypothesis is tested with both simple and complex problems

included. As shown in Table V, the F value of Use Assistance

Mode is 35.69, rejecting H2b at the significance level 1

percent. Analysis also shows that the average number of

semantic errors per problem is 1.18 in the non-use-assisted

mode , and 0.39 in the use-assisted mode. Thus, regardless

of complexity level of the problems, the use-assisted mode

tends to result in fewer semantic errors.

H4b and H5b attempt to investigate the effect of the

use assistance on the number of semantic errors with simple

86

and complex problems treated separately. H4b states: Fox

simple problems, the number of semantic errors committed by

novice users in specifying database queries is the same

regardless of the mode of use assistance. H5b states: For

complex problems, the number of semantic errors committed by

novice users in specifying database queries is the same

regardless of the mode of use assistance. The analysis

results shown in Tables IX and X reject both null hypotheses

at a significance level of 1 percent. Analysis of data also

reveals that the average number of semantic errors per

simple problem is 0.75 in the non-use-assisted mode, and

0.30 in the use-assisted mode. For complex problems, this

average is 1.61 for the non-use-assisted mode, and 0.48 for

the use-assisted mode. These consistent results provide

strong evidence that the use-assisted mode does tend to lead

to higher user productivity indicated by fewer semantic

errors found in the query specification process.

87

TABLE IX

ANALYSIS OF VARIANCE FOR THE NUMBER OF SEMANTIC
ERRORS FOR SIMPLE PROBLEMS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR > F

MODEL 1 10.12500000 10.12500000 7.96 0.0053

ERROR 198 251.75000000 1.27146465

CORRECTED
TOTAL 199 261.87500000

SOURCE DF ANOVA SS F VALUE PR > F

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

1
0

0

10.12500000
0.00000000

0.00000000

7.96 0.0053

TABLE X

ANALYSIS OF VARIANCE FOR THE NUMBER OF SEMANTIC ERRORS
FOR COMPLEX PROBLEMS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR >]

MODEL 1 63.84500000 63.84500000 28.68 0.0001

ERROR 198 440.75000000 2.22601010

CORRECTED
TOTAL 199 504.59500000

SOURCE DF ANOVA SS F VALUE PR > F

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

1
0

0

63.84500000
0.00000000

0.00000000

28.68 0.0001

88

Main Effect of Use Assistance on the Amount of Time
Required to Complete a Query

Users' time is precious. Users tend to resist using a

computing tool if much time is required for the use of it.

This study investigates possible effects of use assistance

provided by the system on the amount of time for completing

a query by Hypotheses H2c, H4c, and H5c. H2c examines the

issue with both simple and complex problems included, while

H4c and H5c deal with simple problems and complex problems,

respectively.

Hypothesis H2c states: The amount of time required by

novice users to complete a query specification task is the

same regardless of the mode of use assistance. Hypothesis

H4c states: For simple problems, the amount of time required

by novice users to complete a query specification task is

the same regardless of the mode of use assistance.

Hypothesis 5c states: For complex problems, the amount of

time required by novice users to complete a query

specification task is the same regardless of the mode of use

assistance. According the test results shown in Table VI,

Table XI, and Table XII, F value of Use-Assistance Mode is

61.49 when both simple and complex problems are present,

19.22 when only simple problems are present, and 42.27 when

complex problems only are present. These high F values

reject the three hypotheses at a significance level of 1

percent.

The average amount of time required to complete a

89

query, regardless of the complexity level of the problems,

is 8.8 minutes with the non-use-assisted mode, and 4.8

minutes with the use-assisted mode. With the use-assisted

mode, each simple problem requires, on the average, 4.1

minutes, while each complex problem requires 5.5 minutes.

With the non-use-assisted mode, each simple problem requires

6.5 minutes, and each complex problem requires approximately

11 minutes. A consistent pattern seems to be clear: the

use-assisted mode requires less time on the user's part to

complete a query specification activity. If the assumption

that the user interface requiring less time for the user to

complete a query is preferred by the user is correct, then

incorporating appropriate use assistance in the system would

be an effective approach.

The fact that null hypotheses Hla - Hlc, H2a - H2c, and

H5a - H5c are all rejected by F test of ANOVA at a very

significant level suggests an interesting finding. Although

the three dependent measures used in this study represent

different dimensions of user's productivity in specifying

database queries, they appear to be affected by the use

assistance of the system in the same manner. This implies

that perhaps one of them can be more economically used as

the sole indicator of user's productivity in query

specification.

90

TABLE XI

ANALYSIS OF VARIANCE FOR THE TIME OF COMPLETION
FOR SIMPLE PROBLEMS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR >]

MODEL 1 300.12500000 300.12500000 19.22 0.0001

ERROR 198 3091.47000000 15.61348485

CORRECTED
TOTAL 199 3391.59500000

SOURCE DF ANOVA SS F VALUE PR > F

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

1
0

0

300.12500000
0.00000000

0.00000000

19.22 0.0001

TABLE XII

ANALYSIS OF VARIANCE FOR THE TIME OF COMPLETION
FOR COMPLEX PROBLEMS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR >]

MODEL 1 1504.26125000 1504.2612500 42.27 0.0001

ERROR 198 7045.67750000 35.5842298

CORRECTED
TOTAL 199 8549.93875000

SOURCE DF ANOVA SS F VALUE PR > F

QRYMODE
PROBLEM
QRYMODE*
PROBLEM

1
0

0

1504.26125000
0.00000000

0.00000000

42.27 0.0001

91

Main Effect of Problem Complexity on the Number of
Syntactic Errors, the Number of Semantic Errors,

and the Amount of Time Required to
Complete a Query

The analysis of variance also reveals the main effect

of problem complexity on the three dependent measures.

Although the main concern of this study is with the impact

of use assistance, knowledge regarding the effect of problem

complexity can supplement our understanding of this impact.

Therefore, hypotheses H3a - c were established to facilitate

this investigation.

Hypothesis H3a states: The number of syntactic errors

committed by novice users in specifying database queries is

the same regardless of the type of problems encountered.

Hypothesis 3b states: The number of semantic errors

committed by novice users in specifying database queries is

the same regardless of the type of problems encountered.

Hypothesis H3c states: The amount of time required by noivce

users to complete a database query specification task is the

same regardless of the type of problems encountered. The F

values associated with these three hypotheses are 21.04,

15.46, and 34.52 (see Table IV, Table V, and Table VI). All

the three null hypotCeses are rejected at the significance

level of 1 percent.

When examining the average values of each dependent

measure in terms of complexity levels of problems, a

consistent pattern is identified. With the non-use-assisted

mode, the average number of syntactic errors for simple

92

problems is 0.61, the average number of semantic errors

0.75, the average amount of time required for completing a

query 6.5 minutes. With the same mode, for complex problems,

the average number of syntactic errors is 1.32, the average

number of semantic errors 1.61, the average amount of time

for completion approximately 11 minutes. These statistics

are in contrast to those with the use-assisted mode. For

simple problems, the averages are 0.19, 0.30, 4.07,

respectively. For complex problems, the averages are 0.49,

0.48, and 5.5 minutes. With the use-assisted mode, users

tend to perform query specification tasks with higher

productivity.

This empirical evidence supports the common sense

regarding the impact of problem complexity: more complex

problems require more effort to solve. Nevertheless, it

serves to reinforce the finding that use assistance does

provide a significant contribution to improving users'

productivity in query specification effort over a wide

spectrum of problem complexity. This consistent pattern also

adds to the validity of Halstead's Volume metric as a

complexity measure.

93

Interaction Effect of User Assistance Mode and Problem
Complexity on the Number of Semantic Errors, and
the Amount of Time Required to Complete a Query-

Table V shows that the interaction effect of Use

Assistance Mode and Problem Complexity appears not to be

ignorable. The F value of 6.61 indicates that the

interaction effect is significant at slightly below the 1

percent level. The same situation is found in Table VI where

the interaction effect on the amount of time required for

the completion of a query appears to be significant at the 1

percent level. There is clearly some dynamic relationship

existing between the use assistance mode and the problem

complexity. Further analysis is necessary to arrive at sound

interpretation of this phenomenon.

Referring to Figure 9, with the non-use-assisted mode,

the average number of semantic errors for each complex

problem is 1.61, for each simple problem 0.75. With the use-

assisted mode, these averages are 0.48 and 0.30,

respectively. When linking the two points representing

complex problems, and the two points for simple problems,

the two line segment are clearly not parallel to each other.

This is a graphical illustration of significant interaction

effect.

Figure 10 shows that the distance between the two

points representing the amount of time of completion with

the non-use-assisted is much wider than that between the two

points representing the use-assisted mode. With the non-use—

94

assisted mode, the average time for completing each complex

problem is 11 minutes, simple problem 6.5 minutes. With the

use-assisted mode, the averages are 5.5 minutes and 4.1

minutes, respectively. A significant interaction effect is

graphically illustrated.

The interaction effects observed in these two cases can

be explained by two possible reasons. First, in the case of

number of semantic errors, it is possible that the average

number of semantic errors has been so low that reducing this

measure very much is not likely. Second, in both cases,

perhaps complex problems do benefit more than simple ones

from the use assistance provided by the system. It is also

possible that both reasons hold. In any case, it seems to be

a reasonable conclusion that use assistance does provide a

useful aid in dealing with complexity associated with the

problems encountered by the users.

95

2 . 0 0 +

1.50 +

1.00

0.50 +

1.61

Problems

0 . 75

0.48
0.30

Non-Use-Assisted
Mode

Use-Assisted
Mode

Figure 9—Interaction Effect of Use Assistance and
Problem Complexity on the Number of
Semantic Errors

12.00 +

9.00 +

6 . 0 0

3.00

11.0

Simpl

Non-Use-Assisted
Mode

Use-Assisted
Mode

Figure 10 —Interaction Effect of Use Assistance and
Problem Complexity on the Amount of Time
Required to Complete a Query

96

Interaction Effect of Use Assistance Mode and Problem
Complexity on the Number of Syntactic Errors

When plotted on the same scale as that for the number

of semantic errors, the interaction on the number of

syntactic errors does not appear to be so significant. Table

IV shows that the F value for this interaction effect is

3.47. This means that no significant interaction effect

exists at the significance level of 0.01 and 0.05. If the

significance level of 0.10 (or even 0.07) is used, this

interaction effect will be regarded as significant. A

conservative conclusion is that there may be some

interaction effect on this dependent measure, the number of

syntactic errors. This conclusion is illustrated in Figure

11.

2 . 0 0 +

1.50

1.00

0.50

1.32

0.61

0.49

Simple 0.19

Non-Use-Assisted
Mode

Use-Assisted
Mode

Figure 11—-Interaction effect of Use Assistance and
Problem Complexity on the number of
syntactic errors

97

Summary of the Results of Hypotheses Testing

With Analysis of Variance, it has been found that all

the null hypotheses established in the study have been

rejected at the 1% significance level. The critical F value,

the calculated F value, and the probability of rejecting the

true null hypothesis associated with each hypothesis are

listed in the following summary table for ease of reading

(Table XIII).

TABLE XIII

SUMMARY OF RESULTS OF HYPOTHESES TESTING

Hypothesis Critical F Value
(Alpha = 0.01)

Calculated F Value PR'

HI a 3.78
Hlb 3.78
Hlc 3.78
H2a 6»63
H2b 6.63
H2c 6.63
H3a 6.63
H3b 6.63
H3c 6.63
H4a 6.76
H4b 6.76
H4c 6.76
H5a 6.76
H5b 6.76
H5c 6.76

18.91 0.0001
19.25 0.0001
35.00 0.0001
32.23 0.0001
35.69 0.0001
61.49 0.0001
21.04 0.0001
15.46 0.0001
34.52 0.0001
13.95 0.0002
7.96 0.0053

19.22 0.0001
19.23 0.0001
28.68 0.0001
42.27 0.0001

Probability of rejecting the hypothesis while it is
actually true.

CHAPTER BIBLIOGRAPHY

1. Cochran, W. G., and G. M. Cox, Experimental Desians .
Second Edition, New York, Wiley, 1957. —

2. Kerlinger Fred N. , Foundations of Behavioral Research ,
New York, Holt, Rinehart and Winston, Inc~ 1973.

3- ^AS User's Guide , Cary, North Carolina, SAS Institute
Inc., 1985.

98

CHAPTER V

CONCLUSIONS

User/system interface is a critical success factor of a

database system aimed at providing functional manager users

easy access to the database. This class of users is

characterized a rich body of knowledge about their problem

domains and a lack of knowledge which would permit fluent

manipulation of the computer system. In order to present an

interface which would enhance users' productivity in

specifying database queries, this study investigates an idea

derived from research in a number of fields. Generally, this

study suggests that the design of database query interface

for this class of users may take advantage of users' prior

knowledge of information requirements. When incorporating

this knowledge into the system at system design time, a

collection of interactive query patterns is created. A

question-answering facility is recommended because of the

need for flexibility: users' inputs are bound at the run

time.

This chapter first summarizes the critical findings of

this study. Then, the concept of abstraction and a theory

of limitation of memory capacity are employed to link the

research findings to the theories of information systems.

The last section presents a list of suggestions for further

99

100

research.

Summary of Critical Research Findings

An experiment was conducted in a controlled lab setting

to collect empirical evidence for testing a set of

hypotheses. The result of Analysis of Variance on the data

exhibits several findings:

1. The use assistance mode has a significant main effect on

the number of syntactic errors, the number of semantic

errors, as well as the amount of time required for

completing a query specification task. The significance

level is 1 percent.

2. The complexity level of problems has a signifcant main

effect on all of these three productivity measures at the

significance level of 1 percent.

3. The interaction effect of the use assistance mode and the

problem complexity on the number of semantic errors and

the amount of time for completion is significant at the

significance level of 1 percent.

4. This interaction effect on the number of syntactic errors

is significant at the 10 percent level. However, it is

not significant at the 5 percent level.

Since both query interface modes are implemented in the

same very high level language, PROLOG, complex problems and

simple problems probably derive similar degree of assistance

from the system. However, in the case of the number of

semantic errors and the amount of time for completion,

complex problems appear to benefit more from the system-

101

provided use assistance. This implies that users' burden for

conceptualization when mapping the problem requirements into

a query has been significantly relieved by the system. This

result supports the notion that users' problem knowledge can

be incorporated into a system to make the system interface

more intelligent.

Theoretical Explanation of Research Findings

The advantage of incorporating users' knowledge about

their problem domains into the system can be explained in

terms of the concept of abstraction and a theory of short

term memory. Miller (2) suggested that the capacity of

human's short term memory in processing information lies

within a range of seven plus or minus two. If a system

requires too many constructs to be mastered by the user at

the same time, productivity tends to suffer. In this study,

the use-assisted mode requires less constructs to be

remembered by the user. The comlexity of query formulation

has been broken into several portions. The user enters a

command based on the problem requirement, and then provides

answers to system-prompted questions.

On the other hand, the non-use-assisted mode requires

the user to specify the query program from scratch. The user

must be able to put a number of "pieces" together according

to the syntactical rules. More constructs must be kept in

the short term memory for this task. In other word, more

complexity must be dealted with in the the non-use-assisted

102

mode. This difference of complexity users have to deal with

with two different modes accounts for at least part of the

main effect of the use assistance mode.

Another perspective to view the results of this study

is through the concept of abstraction. Wirth (5, p. 1)

stated that "our important mental tool for coping with

complexity is abstraction". No widely accepted definition

of abstraction has been proposed. Usually, it means a model

which ignores irrelevant details. In the database system

design, an internal model represents an abstraction at the

next higher level than physical organization of the stored

database. The conceptual model is a logical view of the

database, thus more abstract than the internal level. The

external view ignores much of the complexity of the

conceptual model, and presents the portion of the datbase

relevant to the user. If desired, multiple levels of the

external view can be constructed to make a database system

easier to use. This concept has been proposed for the design

of model-based decision support systems (or model management

systems). For example, Dolk and Konsynski (1) derive a

concept of model abstraction as a special instance of the

frame construct in the artificial intelligence. Model

management systems are characterized as frame-systems. Their

motivation is to treat a model management system as an

analog of a database management system. Wang and Courtney

(4) use the concept of abstraction as the conceptual

foundation for the development of generalized decision

103

support systems. A generalized decision support system thus

developed integrates the capabilities of data management,

model management, and knowledge base management.

The use-assisted mode represents an interface at a more

abstract level than the non-use-assisted mode: much

complexity of the syntactical details has been hidden from

the user. The results of this study support the notion that

abstraction is a useful mental tool for interfacing with

computer systems in general, and with database systems in

specific.

Suggestions for Future Research

A number of research issues have been identified in the

course of this study. These issues are mostly concerned with

extending the scope of this study such that the findings of

the study may be validated or modified to be applied to

broader domains. Specifically, future research may be

directed to investigate issues such as the following:

1. Different problem domains may be used.

This study uses personnel management in an industry of

information systems as the application domain. It is

implied that the findings will be applied to any other

domains as well. However, before empirical evidence is

found, this assumption is still subject to scientific

verification. A study addressing this issue has

different problem domains as an independent variable.

This variable s main effect as well as its interaction

104

with other independent variables may be investigated in

the similar fashion as this study.

A different data model may be used.

Although there is research supporting the usage of the

relational data model as being more natural to end

users, many firms are currently using database

management software which support hierarchical or

network data model. These data models make explicit the

access path to the desired records, and therefore, more

constructs must be dealt with by the user. Would the

data model be a significant factors in determining

users' query productivity? Empirical evidence is needed

to answer this question.

It is more appropriate to conduct the experiment with

real world users.

As any finding will be applied to the real world

practice eventually, using real world users as

experiment subjects would generate results with higher

external validity. Sufficient attention must be paid to

the control of irrelevant factors in this case.

Appropriate sample size must be assured to justify the

use of analysis techniques.

Users' individual difference may be a critical factor.

As identified by many previous researchers, individual

difference of the user often constitutes a significant

factor determining productivity measures. Further

research may be conducted using users with different

105

experience in the use of computer, or different

psychological patterns in collecting and processing

information (cogintive style). If these factors are

found to have significant impacts on the productivity

level, they should be input into the design process of

user-system interface.

Other assistance types may be investigated.

The question-answering process is invoked by the command

entered by the user of this study. Other assistance

types are feasible in this context. Particularly, a

menu-driven may be most beneficial to the domain where

maximal prior knowledge of information requirements may

k® identified. As a menu-driven interface places less

memory burden on the user, productivity may be improved

as a result of reduced complexity associated with the

use of the system. More research must be conducted to

accumulate knowledge in this area.

Benefit of system-provided assistance must be traded off

with the associated cost.

As revealed by this study, incorporating use assistance

in the system interface facilitates easier interaction

between the novice user and the system. However,

designing and implementing the use assistance requires

consumption of various kinds of cost, especially human

cost associated with the interaction between the user

and the interface designer. A relevant research issue at

this conjunction is how much assistance is optimal

106

considering both benefit and cost. Some case studies may

have to be conducted before a more comprehensive,

analytical approach is taken to attack this problem.

It is very likely that stages of the learning process

also play a significant role in determining the

relationships investigated by this study. A longitudinal

study may help to reveal possible effects of the user's

learning curve. This study speculates that the user-assisted

mode would lead to higher productivity because of lower load

being placed on the user's memory capacity. A rigorous

design involving several distinct stages on the learning

curve is needed to verify this statement.

In addition to those empirical inquiries suggested

above, research effort can also be beneficially directed to

making several conceptual models more sophisticated. For

example, the classification scheme for relational query

specification as presented in this study treats each cell on

the table as consisting of a binary value (0 or 1). A useful

extension may be made to consider multiple values or even a

continuous distribution for some cells.

CHAPTER BIBLIOGRAPHY

Dolk, D. R., and B. R. Konsynski, "Knowledge
Representation for Model Management," IEEE
Transactions on Software Engineering , Vol. SE-10,
No. 6, (November 1984), pp. 619 - 628.

Miller, G. A., "The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information," Psychological Review , 63, (1956),
pp. 81 - 97.

Shneiderman, B. , Software Psychology: Human Factors in
Computer and Information Systems , Cambridge,
Massachusetts, Winthrop Publishers, Inc., 1980.

Wang, M. S.~ Y., and J. F. Courtney, Jr., "A Conceptual
Architecture for Generalized Decision Support
System Software," IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-14, No. 5,
(September/October 1984), pp. 701 - 711.

Zimmer, J. A., Abstraction for Programmers, New York,
McGraw-Hill Bool Company, 1985.

107

APPENDIX A

108

109

VALIDATION OF HALSTEAD'S VOLUME METRIC (V)

1. Halstead's Volume metric has been used to measure

relative complexity of programs written in different

languages as well as programs in the same language using

different algorithms for the same problem (Mynatt 1984). As

the other software metrics proposed by Halstead (1977), this

metric is a function of the numbers of operators and

operands in the program. The formula is

V = (Nl + N2) Log2 (nl + n2)

Where
Nl = the total number of ocurrences of all operators

in a program,
N2 = the total number of occurrences of all operands

in a program,
nl = the number of distinct operators in a program,
n2 = the number of distinct operands in a program.

Log2: Logarithm function based on 2

2. As an implementation language for first-order predicate

calaulus, PROLOG has been recommended as an appropriate

vehicle for the database research (Gallaire et al. 1984).

The fundamental operation of a PROLOG program, when viewed

by the programmer, are pattern-matching and backtracking.

Therefore, relation names and operations are in the uniform

form; they are all predicates. For example, in Micro-Prolog,

the relation
*

Project(Project-no Project-name City)

is represented as Project(x y z). The operation that prints

110

the values of Project-no is represented by PP(x). After

converted into internal representation, the former is

(Project x y z), and the latter becomes (PP x); they are all

lists. It is this simplicity that this study assumes

Halstead's volume metric can be used to measure the

complexity of query problems.

3. VALIDATION

In Date s book (1981 pp.141, 142), he has a list of

query problems which approximately range from easiest

through most complex. Typically, easy problems involve less

relations than complex ones. In order to have some means of

validating the proposal of using Halstead's volume metric in

the context of PROLOG programs, the same relational database

a s Presented in Date's book is assumed. A set of 10 easy

problems and a set of 7 complex problems are then developed

based on Date's list. Some of the problems in both sets are

drawn directly from the list, while some are similar to

Date's problems in complexity.

The database, the problems, and some Micro—Prolog

programs for solving the problems are described as follows.

The number within the parenthesis after each problem is the

Volume measure.

DATABASE (in third normal form):

Supplier(supplier-no supplier-name status city)
Part(part—no part—name color weight city)
Project(project-no project-name city)
SPJ(supplier-no part-no project-no quantity)

Ill

SIMPLE PROBLEMS:

1. Get full details of all projects.
2. Get full details of all suppliers.
3. Get full details of all parts.
4. Get supplier numbers for suppliers in London.
5. Get project numbers for projects in London.
6. Get suppliers names for suppliers in London.
7. Get supplier numbers for suppliers who supply

Project Jl.
8. Get part numbers for parts used by Project Jl.
9. Get part numbers for parts supplied by supplier SI

for Project Jl.
10. Get supplier names for suppliers who supply some

parts to Project Jl.

COMPLEX PROBLEMS:

1. Get part numbers for parts supplied to any project in
London by a supplier in London.

2. Get project numbers for projects using any part from
London supplied by a supplier in London.

3. Get supplier names for suppliers in London who supply
red parts to some projects in London.

4. Get all <city part-no city> triples such that a
supplier in the first city supplies the specified
part to a project in the second city.

5. Get part names for parts supplied to all projects in
in London.

6. Get project names for projects in London using red
parts supplied by suppliers in London.

7. Get all <supplier-name part-name> pairs such that a
supplier in London supplies some parts to a project
in Paris.

EXAMPLE MICRO-PROLOG PROGRAMS AND V CALCULATIONS:

Simple Problem #5:

Which(x Supplier(x y z London) & PP(x))

Nl: 6 N2: 6 nl: 4 n2: 4

V = 12 Log2 8

Complex Problem #7:

Which((x y) Supplier(xl x2 x3 London) &
SPJ(xl yl y2 Z5) &
Project(y2 y Paris) &

112

PP(x y))

Nl: 11 N2:18 nl:4 n2:13

V = 29 Log2 17

Operators: Which, (), &, operation predicate
Operands: relation predicate, variable, constant

Volume values are obtained for all the programs using the

above convention. Two-sample T test is then used to test the

hypothesis that complex measures for both sets of problems

are actually equal in the statistical sense. An output from

MINITAB is shown as follows.

Simple Problems N: 10 Mean = 51.086 St. Dev. =15.9
Complex Problems N: 7 Mean = 129.37 St. Dev. =24.8

Approx. degree of freedom: 9

A 95.00 percent C. I. for mul - mu2 is
(-102.3751, -54.1967)

Test of mul = mu2 vs. mul N. E. mu2
T = -7.354

The test is significant at 0.0000

The result of statistical testing shows that Halstead's V

metric is able to distinguish two sets of database query

problems.

4. SENSITIVITY ANALYSIS:

In order to assure the convention adopted to count the

operators and the operands does not constitute a major

factor in the calculation of V measures, two other different

conventions which are likely to be adopted by other

113

researchers are used and tested. First, relation predicates

are treated as operators instead of operands. Then,

operation predicates are treated as operands instead of

operators. The same result has been obtained in all cases.

This phenomenon rules out the possibility of getting

significantly different results due to inconsistent

subjective judgments regarding the classification of

operators and operands.

APPENDIX B

114

115

Subject Information Sheet

(Informations provided herein will be used by this research

only. No disclosure will be made for any other purpose.)

1. Name:

2. Sex (M: Male, F: Female): 3. Age:

4. Major:

5 . 1 have completed the following computer courses in the past

five years:

6. I can use the following software(s) to complete my work

without much assistance from somebody else:

7. I am currently taking BCIS 361 Section-

APPENDIX C

116

117

Instruction for Non-User-Assisted Mode

I- A B°UT THE DATABASES

This experiment involves two personnel databases: the

AAplicant Database and the Employee Database. The Applicant

Database contains various information about the individuals

applying for data processing positions: SS#, Name, Address,

Phone-no, Terminating Degree, Degree Major Area, Skill(s),

Number of years associated with each skill, Position

Wanted, and Expected Annual Pay. The Employee Database

contains informations about current employees of a company

in the industry of computer information system design. Data

items are Employee-ID, Name, Address, Phone-no, Date of

Entry, etc.

All the data items are divided into a number of

groups. Each group is given a name. Another term for such a

data group is relation . For example, four data items -

SS#, Name, Address, and Phone-no - are parts of a group

named Applicant. The format of relation Applicant is:

Applicant (SS# Name Address Phone-no)

It indicates that the first data item within the relation

Applicant is an applicant's SS#, the second one is Name,

and so on. SS# is underlined, meaning it can be used to

uniquely identify the rest of the data items in the same

relation, i.e. Name, Address, Phone-no.

The names of all the relations together with the data

items contained in each relation are listed below. You will

118

need to keep refering back to this list at the later part

of the experiment.

A. Applicant Database:

1. Applicant(SSft Name Address Phone—no)

2. Education-applicant(SS# Degree Major)

3. Experience-applicant(SStt Skill Number-of-year)

4. Looking-for(SStt Position Expected-annual-pay)

B. Employee Database:

5. Employee(Employee-ID Name Address Phone-no)

6. Education(Employee-ID Degree Major)

7. Job-title(Employee-ID Department Title Date-in)

8. Experience(Employee-ID Skill Number-of-year)

9. Communication-skill(Employee-ID Grade)

10. Project-status(Employee-ID Current-project Date-

of-completion)

Explanation:

1. Date-in is the date on which the employee entered the

company. Its format in the database is (mm dd yy).

2. Date-of-completion is the date on which the project the

employee is currently working on will be complete. The

format is also (mm dd yy).

3. Grade in the relation Communication-skill ranges from 1

to 5. 5 means excellent. 3 means fair. 1 means poor.

4. Education: 1 - bachelor, 2 - master, 3 - PhD.

119

II. HOW TO INSTRUCT THE COMPUTER TO FIND WANTED INFORMATION?

Instructing the computer to find wanted information, in

this experiment, is a straightforward task. It invloves some

simple rules and the specification of WHAT is wanted using

these rules. This section uses examples to explain how a

query specification program is constructed. Go through these

examples. Keep the pages for database definitions at hand

because you may need to refer to them from time to time.

Example Problem 1:

An information center consultant is to be recruited.

Appropriate applicants must have at least one year of

experience in IBM-PC. Print the names and the phone numbers

of the qualified applicants.

Example Command 1:

&Find((xl x2) Experience-applicant(x IBM-PC x3) and

x3 at-least 1 and Applicant(x xl x4 x2)) <return>

Explanation:

1. This problem concerns recruiting qualified applicants for

a position opening. Therefore, Applicant Database is to

be used.

2. The data items pertaining to the problem are 1). Skill,

2). Number of years for the skill, 3). Name, and 4).

Phone number. These data items can be found in relations

120

Experience-applicant and Applicant.

3. In the above program,

Experience-applicant(x IBM-PC x3)

instructs the computer to search through all occurrences

(Data Items) of the relation.

Experience-applicant(SS# Skill Number-of-year)

and to select the ones with IBM-PC as the value of Skill.

That is, all the applicants having experience of IBM-PC

are selected. Their SS#'s (represented by x) and Number-

of-year 's (represented by x3) are identified and passed

on to the next element of the program.

4. The second element,

x3 at-least 1

c a u s e only those applicants with at least ONE year

of experience being kept.

5. The third and last element in the above program,

Applicant(x xl x4 x2)

will accept the values of SS# values of remaining

applicants, i.e. those with at least one year of

experience in IBM-PC, and uses xl to represent the values

of Name, x4 for values of Address, and x2 for values of

Phone-no.

6. The &. in the beginning of the sample is a prompt symbol

of the system. So the first entry of the program is

Find((xl x2))

which indicates that the values of xl and x2 are to be

printed as a result of executing the above three

121

elements. The rule requires that Find begins with

capital F and that a pair of parentheses is needed for

the entire part of the program after Find. A pair of

parentheses is also needed to encompass xl and x2.

7. The x, xl, x2, x3, and x4 in the program are variables. A

variable representing a data item should be unique.

Different data items must use different variables.

8. The IBM-PC in this program is called a Constant. A

constant should be specified exactly as indicated in the

problem descripiton.

9. There is at least one space between (xl x2) and the first

element following it, Experience-applicant in this case.

At least one space is required before and after "and".

Data items are also separated by at least one space.

10. When entering the program into the computer, keep typing

until the entire program is complete before the <return>

key is pressed. DON'T PRESS <return> KEY BEFORE THE

PROGRAM IS FINISHED. If indentation is desired, use space

bar for this purpose. Use <back space> key to move the

cursor back to the beginning of the mistake and type in

the correct line when necessary. DON'T USE ARROW KEY(S)

FOR MOVING AROUND THE CURSOR.

Pressing <return> key will cause the program to be

executed.

Example Problem 2:

122

A new division is looking for a well-trained applicant to

fill a Data Administrator position for its database group.

Qualified applicants must have at least a master degree in

Information Systems', at least two years of experience in

data modelling , and at least two years of experience in

IMS-DB-DC. Obtain a listing of qualified applicants' names

and phone numbers.

Example Command 2:

&Find((xl x2) Education-applicant(x x3 "Information Systems")

and X3 at-least 2 and Experience-applicant(x IMS-DB-DC x4)

and x4 at-least 2 and Experience-applicant(x

"data modelling" x5)

and x5 at-least 2 and Applicant(x xl x6 x2)) <return>

Explanation:

1. The Applicant Database is to be used, since this is a

recruiting problem.

2. Pertinent data items (Degree, Major, Skill, Number-of-

year, Name, Phone-no) can be found in relations

Education-applicant, Experience-applicant, and Applicant.

Therefore, these are the relations to be referenced in

the program.

3. The program begins with a Find and a set of data items to

be printed (xl and x2). The last element of the program

Applicant(x xl x6 x2)

123

shows the xl represents Name and x2 represents Phone-no.

4. Education-applicant(x x3 "Information Systems") will

search for all applicants with "Information Systems" as

the major area, x is used to represent SS#'s and x3 used

to represent Degree of these selected applicants. Note

that "Information systems" is quoted. When a multiple-

word constant is specified, it has to be quoted. A

hyphened word is considered a single word which does not

needed to be quoted.

5. x3 at-least 2 will screen away all the applicants except

those with at least a master degree.

6. Experience-applicant(x "data modelling" x4) will screen

away the applicants without experience of "data

modelling from the remaining applicants passed from the

preceeding relation.

7. x4 at-least 2 specifies that the qualified applicants's

"data modelling" experience must be at least two years.

8. When the next two elements

Experience-applicant(x IMS-DB-DC x5) and x5 at-least 2

are evaluated by the computer, only the applicants who

have at least a master degree in "Information Systems',

at least two years of experience in "data modelling", and

at least two years of experience in IMS-DB-DC are

selected. These remaining applicants' SS#'s (represented

by x throughout the program) are then passed on to the

last element.

124

9. As Example Program 1, the last element,

Applicant(x xl x6 x2)

instructs the computer to search for the applicants whose

SS# match the SS#'s passed from the preceeding relations.

It also uses xl, x6, and x2 to represent Name, Address,

and Phone-no, respectively.

10. When the entire program has been typed in, press

<return> key to have the program executed.

As a summary of the above two examples, a query program

begins with a key word

Find

followed by a pair of parenthese. Within these parentheses

are two components: answer pattern and relation series. The

answer pattern specifies the data items which values are to

be displayed, for example, Names and Phone-no's. The

relation series specify the relation(s) containing the data

items involved in the problem as well as the condition(s) to

be satisfied. When the relations and condition expressions

are connected by the key word

and

there must be at least one space before and after the "and".

When the entire program has been entered into the computer,

pressing <return> key will cause the program being

evaluated. The output, if it exists, will be printed. The

system prompt symbol &. will appear when the execution of

the program is through.

Occasionally, when the <return> key is pressed, instead

125

of evaluating your program, the computer displays a dot and

a number. That simply means exactly that many more right

parenthesis needs to be entered to make a complete program.

For example, if the system displays a .2 after you pressed

<return> key, your response would be to enter two

parentheses, i.e.)), and then press <return> key. JUST

REMEMBER THAT THE NUMBER OF RIGHT PARENTHESES MUST BE

IDENTICAL TO THE NUMBER OF LEFT PARENTHESES.

You must choose a unique variable for each desired data

item and each data item of a particular relation which is

not relevant to the problem. You can choose anything from x,

xl to x50, and y, yl to y50. For example, to refer to

relation Applicant, you can specify

Applicant(x xl x2 x3)

where x represents SS#, xl represents Name, x2 represents

Address, and x3 represents Ph#. In other words, the

positions of variables determine which data items these

variables stand for. For another example, to refer to the

relation Education-applicant with "information Systems" as

the value of data item Major, you can specify

Education-applicant(x x5 "Information Systems")

Where x and x5 represent SS# and Degree, respectively.

Example Problems 3 ,4 and 5 are examples of problems

concerning project team assignment. Read through these three

problems and the associated query programs. The rules are

the same as the previous two examples. Then you will have a

better idea on how to construct query programs for the ten

126

problems to be handed to you.

Example Problem 3:

A programmer/analyst trainee is needed for a project

development team. This team member will be selected from

the existing employee. Qualification includes at least a

bachelor degree, and entering the company no later than June

1, 84.

Example Command 3>:

&Find((xl x2) Education(x x3 x4) and x3 at-least 1 and

Job-title(x x5 x6 y) and y no-later-than (06 01 84)

and Employee(x xl x7 x2)) <return>

Explanation:

In addition to the rules explained in the previous two

examples, some more comments are made below,

1. This is a project team assignment problem, hence the

Employee Database is used.

2. Some data items are included in the relevant relations

but are not involved in any condition. For example, the

problem does not mention what major area is required.

This irrelevant data item is also represented by a

variable. That's it. But no condition expression will

ever include this irrelevant data item.

127

3. The condition expression

y no-later-than (06 01 84)

specifies that all qualified personnel must enter the

company no later than the date indicated. Throughout this

experiment, whenever a date is concerned, always use this

format: (mm dd yy).

Example Problem 4̂ :

Two systems analysts are to be selected from the existing

staff for a project team. These two staffs must have at

least two years of experience in ADR-DATACOM-DB, at least

two years of experience in "manufacturing applications", and

will be available by August 1, 85. Obtain a listing of all

qualified employees.

Example Command 4:

&Find((xl x2) Experience(x ADR-DATACOM-DB x3) and

x3 at-least 2 and

Experience(x "manufacturing applications" x4)

and x4 at-least 2 and

Project-status(x x5 x6) and

x6 no-later-than (08 01 85) and

Employee(x xl y x2)) <return>

All rules associated with example are the same as what

have been explained in the previous examples.

128

Example Problem JS:

A "Programmer" trainee is to be recruited from the

applicants who have at least a bachelor degree and expected

annual pay no higher than 30000. Get a list of names and

phone numbers.

Example Command 5:

&Find((xl x2) Education-applicant(x yl x3) and

yl at-least 1 and

Looking-for(x y2 x4) and

x4 no-higher-than 30000 and

Applicant(x xl y x2)) <return)

Explanation:

x4 stands for Expected-annual-pay in this program. The condition

x4 no-higher-than 30000

specifies that the applicant's expected annual pay should not

exceed 30000. NO COMMA MAY BE INSERTED INTO A NUMERIC VALUE.

* TO INDENT YOUR PROGRAM LIKE THIS EXAMPLE, PRESSING SPACE BAR

UNTIL THE CURSOR GETS TO THE APPROPRIATE POSITION.

APPENDIX D

129

130

Instruction for User-Assisted Mode

I. ABOUT THE DATABASES

This experiment involves two personnel databases: the

Applicant Database and the Employee Database. The Applicant

Database contains various information about the individuals

applying for data processing positions: SS#, Name, Address,

Phone-no, Terminating Degree, Degree Major Area, Skill(s),

Number of years associated with each skill, Position Wanted,

and Expected Annual Pay. The Employee Database contains

informations about current employees of a company in the

industry of computer information system design. Data items

are Employee-ID, Name, Address, Phone-no, Date of Entry,

etc.

All the data items are divided into a number of groups.

Each group is given a name. Another term for such a data

group is relation . For example, four data items - SS#,

Name, Address, and Phone-no - are parts of a group named

Applicant. The format of relation Applicant is:

Applicant (SS# Name Address Phone-no)

It indicates that the first data item within the relation

Applicant is an applicant's SS#, the second one is Name, and

so on. SS# is underlined, meaning it can be used to uniquely

identify the rest of the data items in the same relation,

i.e. Name, Address, Phone-no.

The names of all the relations together with the data

items contained in each relation are listed below. Go

131

through these definitions before proceeding further.

A. Applicant Database:

1. Applicant(SS# Name Address Phone-no)

2. Education-applicant(SS# Degree Major)

3. Experience-applicant(SS# Skill Number-of-year)

4. Looking-for(SS# Position Expected-annual-pay)

B. Employee Database:

5. Employee(Employee-ID Name Address Phone-no)

6. Education(Employee-ID Degree Major)

7. Job-title(Employee-ID Department Title Date-in)

8. Experience(Employee-ID Skill Number-of-year)

9. Communication-skill(Employee-ID Grade)

10. Project-status(Employee-ID Current-project Date-

of-completion)

Explanation:

1. Date-in is the date on which the employee entered the

company. Its format in the database is (mm dd yy).

2. Date-of-completion is the date on which the project the

employee is currently working on will be complete. The

format is also (mm dd yy).

3. Grade in the relation Communication-skill ranges from 1

to 5. 5 means excellent. 3 means fair. 1 means poor.

4. Education: 1 - bachelor, 2 - master, 3 - PhD.

132

HOW TO RETRIEVE INFORMATION FROM DATABASES

1. General Description:

Retrieving information from the databases involves a

question-answering process. A collection of conversational

programs have been designed and implemented in the computer.

After realizing what information is to requested, you then

select and enter an appropriate command to initiate this

question-answering process. Each of these commands is named

to reflect some specific characteristics of the problems to

be resolved. YOU ARE TO JUDGE WHICH COMMAND SHOULD BE

SELECTED BASED ON PROBLEM CHARACTERISTICS.

Once a command has been entered, you are advised to

read the displayed message carefully, and follow the

instruction for data entry before typing in the response.

Mistakes can be corrected ONLY before the <return> key is

pressed. Once the <return> is pressed, any user input will

be executed as such.

2. Specific Instruction:

There are two kinds of problems in this experiment, six

for each. The first kind of problems concerns retrieving the

names and the phone numbers of job applicants who are

qualified for a job opening. The second kind of problems

concerns retrieving the names and the phone numbers of

existing employees who satisfy the requirements for a

133

project development team appointment. These twelve problems

have been mixed in order. However, each problem was

described in a specific manner so that you will be able to

tell what kind of problem each one is as you read through

the problem description.

For the recruiting problems, you are to select and

enter a command of the following format:

Find((xl x2) Recruiting-n(xl x2))

where n must be a positive interger indicating the number of

experience(s) involved. For example, if a job requires no

prior experience of any kind, then the command to be entered

will be

Find((xl x2) Recruiting-0(xl x2))

On the other hand, if the job requires three different

experiences, then you will enter

Find((xl x2) Recruiting-3(xl x2))

For the project assignment problems, the command has

the following format:

Find((xl x2) Assignment-n(xl x2))

where n also indicates the number of experience(s) involved.

A &. symbol on the screen means the computer is ready

for you to enter a command. V7hen entering a command, key

words such as Find, Recruiting, and Assignment must begin

134

with the capital letter. Upper case and lower case letters

are treated as different characters. Within the command, AT

LEAST ONE SPACE IS NEEDED BETWEEN XI AND X2 . THERE ALSO HAS

TO BE AT LEAST ONE SPACE SEPARATING THE FIRST (XI X2) AND

EITHER Recruiting OR Assignment. No other space is needed

elsewhere. This format requirement is illustrated below,

&.Find({xl x2) Recruiting-1(xl x2))
I I I

space space

(One experience is assumed.)

Several examples are provided in the rest of this

instruction. Be sure that you read through these examples.

They will help you solve the problems to be handed to you.

For each of the following problem, system's prompt is

indicated by a header (SYSTEM:), while the input you are

supposed to enter is indicated by the header (USER:). EVERY

USER INPUT MUST BE BE FOLLOWED BY PRESSING THE- <return> KEY.

135

Example Problem 1:

An information center consultant is to be recruited.

Appropriate applicants must have at least one year of

experience in IBM-PC. Print the names and the phone numbers

of the qualified applicants.

Interaction Session for Example Problem 1:

&Find((xl x2) Recruiting-1(xl x2)) <return>

(This command is selected because this problem concerns

recruiting activity and one experience is involved.)

SYSTEM: Enter the minimum degree required as follows,
1 for bachelor,
2 for master,
3 for PhD, or
0 if the degree requirement is net mentioned

in the problem:
USER:0 <return>

SYSTEM: What's the major area?
Or simply enter an X if no specific area of major
is specified:

USER: X <return>

SYSTEM: What's the maximum annual pay that should not
by exceeded? Enter a large number such as 1000000
if not mentioned. No special character such as
$ or , may be included in the amount:

USER: 1000000 <return>

SYSTEM: Enter the experience required:
USER: IBM-PC < return >

SYSTEM: Enter the minimal number of year(s):
USER: 1 <return>

Output is displayed and session ends.

136

Example Problem 2:

A new division is recruiting a well-trained applicant to

fill a Data Administrator position for its database group.

Qualified applicants must have at least a master degree in

Information Systems", at least two years of experience in

data modelling", and at least two years of experience in

IMS-DB-DC. Obtain a listing of qualified applicants names

and phone numbers.

Interaction Session for Example Problem 2:

&Find((xl x2) Recruiting-2(xl x2)) <return>

(This command is selected because this is a recruiting
problem and two experiences are required in this problem.)

SYSTEM: Enter minimum degree required as follows,
1 for bachelor,
2 for master,
3 for PhD, or
0 if no degree requirement is specified:

USER: 2 <return>

SYSTEM: Enter required major area, or simply enter X if no
specific area is required. Multiple words must be
put within a pair of quotes:

USER: "Information Systems" <return>

SYSTEM: Enter maximal amount of annual pay that should not
be exceeded. Enter a large number such as 1000000
if no maximal level of allowed annual pay is
specified. No special character such as $ or ,
may be included in the amount:

USER: 1000000 <return>

SYSTEM: Enter the first experience required:

137

USER: IMS-DB-DC <return>

SYSTEM: Enter minimal number of years:
USER: 2 < return >

SYSTEM: Enter the second experience required:
USER: "data modelling"

SYSTEM: Enter minimal number of years:
USER: 2 <return>

Output is displayed and session ends,

138

Example Problem 3:

A programmer/analyst trainee is wanted by a project

development team. This team member will be selected from the

existing employee. Qualification includes at least a

bachelor degree, and entering the company no later than June

1, 84.

Interaction Session for Example Problem 3:

&Find((xl x2) Assignment-0(xl x2)) <return>

(This command is selected because this problem concerns
project team assignment and no experience requirement is
specified in the problem.)

SYSTEM: Enter minimum degree required as follows,
1 for bachelor,
2 for master,
3 for PhD, or
0 if no degree requirement is specified:

USER: 1 < return >

SYSTEM: Enter required major area, or simply enter X if
no specific area is required. Multiple words must
be put within a pair of quotes:

USER: X <return>

SYSTEM: Enter the current position title of the qualified
candidates. Enter an X if the required current
title is not mentioned:

USER: X <return>

SYSTEM: Enter the latest date before which qualified
candidates must enter the company in order to
be considered for the new assignment. The format
of your input must be (mm dd yy). If no deadline
of entry is mentioned, enter (99 99 99) as your
response:

USER: (06 01 84) <return>

139

SYSTEM: Enter the required minimum grade for communication
skill. Enter 0 if the communication skill grade
is not mentioned:

USER: 0 < return >

SYSTEM: Enter the deadline date the personnel must become
available in order to be considered for the new
assignment. If the requiremet is not mentioned,
enter (99 99 99). The format of your input should
be (mm dd yy):

USER: (99 99 99) <return>

Output is displayed and session ends

140

Example Problem A:

Two systems analysts are to be selected from the existing

staff for a project team. These two people must have at

least two years of experience in ADR-DATACOM-DB, at least

two years of experience in "manufacturing applications", and

will be available by August 1, 85. Obtain a listing of all

qualified employees.

Interactive Session for Example Problem 4̂ :

&Find((xl x2) Assignment-2(xl x2)) <return>

(This command is selected because this is a project team
assignment problem and two experiences are required.)

SYSTEM: Enter minimum degree required as follows,
1 for bachelor,
2 for master,
3 for PhD, or
0 if no degree requirement is specified:

USER: 0 <return>

SYSTEM: Enter required major area, or simply enter X if no
specific major area is required. Multiple word must
be put within a pair of quotes:

USER: X <return>

SYSTEM: Enter the current position title of qualified
candidates. Or enter X if the required current
position title is not mentioned.

USER: X < return >

SYSTEM: Enter the latest date before which personnel
must have entered the company ir order to be
considered for the new assignment. The format of
your input is (mm dd yy).
If no deadline of entry is mentioned, enter
(99 99 99) as your response:

USER: (99 99 99) <return>

141

SYSTEM: Enter the first experience required:
USER: ADR-DATACOM-DB < return >

SYSTEM: Enter minimal number of years:
USER: 2 <return>

SYSTEM: Enter the second experience required:
USER: "manufacturing applications"

SYSTEM: Enter minimal number of years:
USER: 2 <return>

SYSTEM: Enter the required minimum grade for
communication skill. Enter 0 if the requirement
for communication skill grade is not mentioned:

USER: 0 < return >

SYSTEM: Enter the deadline date the personnel must become
available in order to be considered for the new
assignment. If the requirement is not mentioned,
enter (99 99 99).
The format of your input is (mm dd yy):

USER: (08 01 85) <return>

Output is displayed and session ends

142

Example Problem 5:

A programmer trained is to be recruited from the applicants

who have at least a bachelor degree and expected annual pay

higher than 30000. Get a list of names and phone numbers.

Interaction Session for Example Problem 5:

&Find((xl x2) Recruiting-0(xl x2))

(This command is selected because this is a recruiting
problem and no experience requirement is mentioned.)

SYSTEM: Enter minimum degree required as follows,
1 for bachelor,
2 for master,
3 for PhD, or
0 if no degree requirement is mentioned:

USER: 1 <return>

SYSTEM: Enter requirement major area, or simply enter X
if no specific major area is required.
Multiple words must be put within a pair of quotes:

USER: X < return >

SYSTEM: Enter maximal amount of annual pay that should
not be exceeded. Enter a large number such as
1000000 if the allowed maximum pay is not mentioned
No special character such as $ or , may be included
in the amount:

USER: 30000 <return>

Output is displayed and session ends.

APPENDIX E

143

144

Query Problems Used in the Experiment

Problem #1:

An entry level programmer is to be recruited. The only

qualification is at least a bachelor degree of any major

area. Obtain a list of the names and the phone numbers of

qualified applicants.

Query Program:

Find((xl x2) Education-applicant(x x3 x4)

and x3 at-least 1

and Applicant(x xl x5 x2))

Calculation of Volume Measure:

Operator Gross Occurrence Unique Count

Find 1 1
() 4 1
and 2 1

Operation Predicate 1 1

Total (Nl) 8 (nl) 4

Operand

Data Relation 2 2
Variable 10 6
Constant 1

Total (N2) 13 (n2) 9

V = (Nl + N2) Log2 (nl + n2)

= (8 + 1 3) Log2 (4 + 9)

= 77.709

145

Problem #2:

A project development team is to be formed. The project

leader will be an existing employee with the following

qualifications:

1. Current job title is "Project Leader",

2. At least two years of experience in the design of

"payroll processing" (skill name: "payroll processing").

3. At least three years of experience in IMS-DB-DC (skill

name: IMS-DB-DC).

Obtain a listing of the qualified employee's names and

phone numbers.

Query Program:

Find((xl x2) Job-title(x x3 "Project Leader" x4)

and Experience(x "payroll processing" x5)

and x5 at-least 2

and Experience(x IMS-DB-DC x6)

and x6 at-least 3

and Employee(x xl x7 x2))

146

Calculation of Volume Measure (Problem #2):

Operator Gross Occurrence Unique Count

Find 1 1
() 6 1
and 5 1

Operation Predicate 2 1

Total (Nl) 14 (nl) 4

Operand

Data Relation 4 3
Variable 15 8
Constant 5 5

Total (N2) 24 (n2) 16

V = (Nl + N2) Log2 (nl + n2)

= (14 + 2 4) Log2 (4 + 6)

= 164.233

147

Problem #3:

A junior programmer is wanted for a project development

team. The qualified employee must have at least one year

of COBOL experience. Find the names and the phone numbers

of qualified employees. (Skill name is COBOL.)

Query Program:

Find((xl x2) Experience(x COBOL x3) and

x3 at-least 1 and

Employee(x xl x4 x2))

Calculation of Volume Measure:

Operator Gross Occurrence Unique Count

Find 1 1
() 4 1
and 2 1

Operation Predicate 1 1

. Total (Nl) 8 (nl) 4

Operand

Data Relation 2 2
Variable 10 6
Constant l]_

Total (N2) 13 (n2) 9

V = (Nl + N2) Log2 (nl + n2)

= (8 + 13) Log2 (4 + 9)

= 77.709

148

Problem #4:

A senior systems analyst is to be recruited. Job

requirements include:

1. At least a bachelor degree in "Information Systems",

2. At least three years of experience in "systems analysis"

(skill name: "systems analysis").

3. Expected annual pay no higher than 50000.

Get a listing of qualified applicants' names and phone

numbers.

Query Program:

Find((xl x2)

Education-applicant(x x3 "Information Systems")

and x3 at-least 1 and

Experience-applicant(x "systems analysis" x4)

and x4 at-least 3 and

Looking-for(x x5 x6) and

x6 no-higher-than 50000 and

Applicant(x xl x7 x2))

149

Calculation of Volume Measure (Problem #4):

Operator Gross Occurrence Unique Count

Find 1 i
() 6 1
and 6 1

Operation Predicate 3 2

Total (Nl) 16 (nl) 5

Operand

Data Relation 4 4
Variable 16 8
Constant 5 5

Total (N2) 25 (n2) 17

V = (Nl + N2) Log2 (nl + n2)

= (16 + 25) Log2 (5 + 1 7)

= 182.837

150

Problem #5:

A part time contract programmer is to be recruited.

Applicants must have at least three years of COBOL

experience. Get a listing of qualified applicants' names

and phone numbers. (Skill name is COBOL.)

Query Program:

Find((xl x2) Experience-applicant(x COBOL x3)

and x3 at-least 3

and Applicant(x xl x4 x2))

Calculation of Volume Measure:

Operator Gross Occurrence

Find
()
and

Operation Predicate

Total (Nl)

Operand

Data Relation
Variable
Constant

Total (N2)

1
4
2
1

2
9
2

13

Unique Count

1
1
1
1

(nl) 4

2
5
2

(n2)

V = (Nl + N2) Log2 (nl + n2)

= (8 + 1 3) Log2 (4 + 9)

= 77.709

151

Problem #6:

A programmer/analyst is needed by a project developement

team. This person must be currently a programmer/analyst

(position title: "Programmer/Analyst"). The experience

requirement includes: at least three years of COBOL (skill

name: COBOL), at least three years of manufacturing

applications design (skill name: "manufactuirng

applications"), and at least three years of MVS-TSO (skill

name: MVS-TSO). Print the names and the phone numbers of

employees who are qualified for this position.

Query Program:

Find((xl x2) Job-title(x x3 "Programmer/Analyst x4)

and Experience(x COBOL x5)

and x5 at-least 3

and Experience(x "manufacturing

applications" x6)

and x6 at-least 3

and Experience(x MVS-TSO x7)

and x7 at-least 3 and

Employee(x xl x8 x2))

152

Calculation of Volume Measure (Problem #6):

Operator Gross Occurrence Unique Count

Find 1 1
O 7 1
and 7 1

Operation Predicate 3 1

Total (Nl) 18 (nl)

Operand

Data Relation 5 3
Variable 18 9
Constant 7 5

Total (N2) 30 (n2) 17

V = (Nl + N2) Log2 (nl + n2)

= (18 + 30) Log2 (4 + 17)

= 210.831

153

Problem #7:

A senior programmer/analyst is to be recruited. Job

requirements include:

1. At least a bachelor degree in "Information Systems",

2. At least three years of experience in COBOL (skill name:

COBOL).

3. At least two years of experience in MVS-TSO (skill name:

MVS-TSO).

Find the names and phone numbers of all qualified

applicants.

Query Program:

Find((xl x2)

Education-applicant(x x3 "Information Systems")

and x3 at-least 1 and

Experience-applicant(x COBOL x4)

and x4 at-least 3 and

Experience-applicant(x MVS-TSO x5)

and x5 at-least 2 and

Applicant(x xl x6 x2))

154

Calculation of Volume Measure (Problem #7):

Operator Gross Occurrence Unique Count

Find 1 1
() 6 1
and 6 1

Operation Predicate 3 1

Total (Nl) 16 (nl)

Operand

Data Relation 4 3
Variable 15 7
Constant 6 6

Total (N2) 25 (n2) 16

V = (Nl + N2) Log2 (nl + n2)

= (16 + 25) Log2 (4 + 1 6)

= 177.199

155

Problem #8:

A programmer trainee is wanted by a newly-established

project development team. The only requirement is at least

a bachelor degree in "Information Systems". Get a listing

of qualified employees' names and phone numbers.

Query Program:

Find((xl x2) Education(x x3 "Information Systems")

and x3 at-least 1

and Employee(x xl x4 x2))

Calculation of Volume Measure:

Operator Gross Occurrence Unique Count

Find 1 l
() 4 1
and 2 1

Operation Predicate 1 1

Total (Nl) 8 (nl) 4

Operand

Data Relation 2 2
Variable 9 5
Constant 2 2

Total (N2) 13 (n2) 9

V = (Nl + N2) Log2 (nl + n2)

= (8 + 13) Log2 (4 + 9)

= 77.709

APPENDIX F

156

157

Program Listing of Interactive Query Patterns

I. Operation Predicates:

/* With the primitive features of Micro-Prolog as building

blocks, this study defines some higher level predicates

which make the system easier to use. These operation

predicates are available for both user-assisted and non-

user-assisted modes. Furthermore, these operation

predicates are named in such a way that the user knows the

meaning of the predicate simply by its name. */

X at-least Y if X EQ Y

X at-least Y if Y LESS X

X no-higher-than Y if X EQ Y

X no-higher-than Y if X LESS Y

X Find Y if X which Y

(X Y Z) after (x y z) if z LESS Z

(X Y Z) after (x y Z) if x LESS X

(X Y Z) after (X x Z) if x LESS Y

(X Y Z) no-later-than (x y z) if (x y z) after (X Y Z)

(X Y Z) no-later-than (x y z) if
X EQ x and
Y EQ y and
Z EQ z

II. RECRUITING PROBLEMS:

/* The following relations are used to generate prompts for

attribute values and to capture those values entered by the

user. The user inputs will be passed along to formulate a

complete query. */

158

Experience-input-3 X Y Z)
space 10)
P Enter the third experience required:)
R Y)
PP)
PP)
space 10)
P Enter minimal number of years:)
R Z)
blank-line 5)

Experience-input-2 X Y Z)
space 10)
P Enter the second experience required:)
R Y)
PP) (PP)
space 10)
P Enter minimal number of years:)
R Z)
blank-line 5))

Experience-input-1 X Y Z)
blank-line 5)
space 10)
P Enter the experience required:)
R Y)
PP) (PP)
space 10)
P Enter the minimal number of years:)
R Z)
blank-line 5))

Looking-for-input X Y Z)
space 10)
PP Enter maximal amount of annual pay that should

not be exceeded.)
space 10)
PP Enter any number larger than 1000000 if no maximal

level of allowed annual pay is specified.)
space 10)
PP No special characters such as $ or , may be present
in the amount:)
R Z)
blank-line 5))

Education-input X Y Z)
blank-line 20)
space 10)
PP Enter minimum degree required as follows:

159

(space 15)
(PP 1 for bachelor)
(space 15)
(PP 2 for master)
(space 15)
(PP 3 for PhD, or)
(space 15)
(P 0 if no degree requirement is specified:)
(R Y)
(PP) (PP) (space 10)
(PP Enter required major area, or simply enter an x if

no specific area is required. Multiple words must
be put within a pair of quotes:)

(R Z))

/* This relation provides an error message when the user

inadvertently misses the number specifying the number of

experience required in the command. A help message is also

provided to remind the user of the correct command. */

((Recruiting X Y)
(P " ")
(PP Recruinting (X Y) is NOT defined.)
(P " ")
(PP Enter:)
(P " ")
(PP Recruiting-n (X Y))
(P " ")
(PP where n is 0, 1, 2, 3, ...))

/* Recruitng-0, Recruiting-1, Recruiting-1, Recruiting-2,

and Recruiting-3 define the main bodies of the interactive

query patterns. To illustrate the various ways of the query

pattern definition, Recruiting-0 and Recruiting-1

incorporate all of the fundamental relations, while

Recruiting-2 and Recruiting-3 use predefined higher level

relations as building blocks for prompts generation and user

inputs storage. */

((Recruiting-0 X Y)
(blank-line 20)

160

space 10)
PP Enter minimum degree required as follows,)
space 15)
PP 1 for bachelor,)
space 15)
PP 2 for master,)
space 15)
PP 3 for PhD, or)
space 15)
PP 0 if the degree requirement is not mentioned:)
R Z)
PP) (space 10)
PP Enter required major area, or simply enter an x if)
space 10)
PP no specific major area is required.)
space 10)
P Multile words must be put within a pair of quotes:)
R y)
blank-line 10) (space 10)
PP Enter maximal amount of annual pay that should not

be exceeded.)
space 10)
PP Enter any number larger than 1000000 if not mentioned.)
space 10)
PP No special character such as $ or , may)
space 10)
P be included in the amount:)
R z)
blank-line 20)
space 10)
P Name)
space 5)
P Phone-no)
PP)
Looking-for XI Y1 Zl)
no-higher-than Zl z)
Education-applicant XI xl yl)
at-least xl Z)
EQ yl y)
Applicant XI X zl Y))

Recruiting-1 X Y)
blank-line 20)
space 10)
PP Enter the minimum degree required as follows,)
space 15)
PP 1 for bachelor,)
space 15)
PP 2 for master,)
space 15)
PP 3 for PhD, or)
space 15)

161

(P 0 if the degree requirement is not mentioned in the
problem:)

R Z)
blank-line 5)
space 10)
PP Or simply enter an x if no specific)
space 10)
P area of major is spefified:)
Y y)
blank-line 5)
space 10)
PP What's the maximum annual pay that should not

be exceeded?)
space 10)
PP Enter any number larger than 1000000 if not mentioned.)
space 10)
PP No special character such as $ or , may be)
space 10)
P included in the amount:)
R z)
blank-line 5)
space 10)
P Enter the experience required:)
R XI)
space 10)
P Enter the minimum number of years:)
R Yl)
blank-line 20)
Looking-for Zl xl yl)
no-higher-than yl z)
Education-applicant Zl y2 Z2)
EQ Y2 y)
Experience-applicant Z1 y2 Z2)
EQ Y2 XI)
at-least Z2 Yl)
Applicant Z1 X x2 Y))

Recruiting-2 X Y)
Education-input Z x y)
Looking-for-input Z z XI)
Experience-input-1 Z Yl Zl)
Experience-input-2 Z xl yl)
blank-line 10)
space 10)
P Name)
space 5)
P Phone-no)
PP)
Looking-for Z zl X2)
no-higher-than X2 XI)
Education-applicant Z x2 y2)
EQ Z2 y)

162

at-least y2 zl)
Experience-applicant Z z2 X3)
EQ z2 xl)
at-least X3 yl)
Applicant Z X Y3 Y))

Recruiting-3 X Y)
Education-input Z x y)
Looking-for-input Z z XI)
Experience-input-1 Z Yl Zl)
Experience-input-2 Z xl yl)
Experience-input-3 Z zl X2)
blank-line 15)
space 10)
P Name)
space 5)
P Phone-no)
PP)
Looking-for Z z Y2)
no-higher-than Y2 XI)
Education-applicant Z Z2 x2)
at-least Z2 x)
EQ x2 y)
Experience-applicant Z y2 z2)
EQ y2 Yl)
at-least Zl z2)
Experience-applicant Z X3 Y3)
EQ X3 xl)
at-least yl Y3)
Experience-applicant Z Z3 x3)
EQ Z3 zl)
at-least X2 x3)
Applicant Z X Z3 Y))

/* The following relations define synonyms for the

previously defined commands. Instead of capitalizing each

command, the uesr may enter lower case comands. */

((recruiting-0 X Y)
(Recruiting-0 X Y))

((recruiting-1 X Y)
(Recruiting-1 X Y))

((recruiting-2 X Y)
(Recruiting-2 X Y))

((recruiting-3 X Y)
(Recruiting-3 X Y))

III. Project Team Assignment Problems:

163

/* The following relations generate prompts and capture

user inputs. Texts of prompts are listed in a more readable

format for more natural presentation. When implemented, the

format presented for the Recruiting problems must be used.

*/

((Job-title-input X Y Z)
(blank-line 5)
(space 10)
(PP Enter the position title of interest, or simply

enter an x if the required current title is not
mentioned:)

(R Y)
(PP) (PP) (space 10)
(PP Enter the latest date before which personnel must enter

the organization in order to be considered for the
new assignment. The format of your input is (mm dd yy).
If no deadline of entry is mentioned, enter (99 99 99)
as your response.)

(R Z))

((Communication-skill-input X Y)
(blank-line 5)
(space 10)
(PP Enter the required minimum grade for communication

skill. Or enter 0 if the communication skill grade is
not mentioned:)

(R Y))

((Project-status-input X Y)
(blank-line 5)
(space 10)
(PP Enter the deadline date the personnel must become

available in order to be considered for the new
assignment. The format of your response should
be (mm dd yy). Enter (99 99 99) if the requirement
is not mentioned.)

(R Y)
(blank-line 5))

/* The following relations define the main bodies of the

interactive query patterns for the Project Team Assignment

Problems. Predefined building blocks are used to generate

164

prompts and to capture user inputs. The variables presented

herein are generated by the interpreter. The user may use a

different set of variables for ease of manipulation. */

(Assignment-0 X Y)
Education-input Z x y)
Job-title-input Z z XI)
Communication-skill-input Z Yl)
Project-status-input Z Zl)
space 10)
P Name) (space 5)
P Phone-no) (PP)
Education Z xl yl)
at-least xl x)
EQ yl y)
Job-title Z zl X2 Y2)
EQ X2 z)
no-later-than Y2 XI)
Communication-skill Z Z2)
at-least Z2 Yl)
Project-status Z x2 y2)
no-later-than y2 Zl)
Employee Z X z2 Y))

Assignment-1 X Y)
Education-input Z x y)
Job-titie-input Z z XI)
blank-line 5)
Experience-input Z Yl Zl)
Communication-skill-input Z xl)
Project-status-input Z yl)
PP) (space 10)
P Name)
space 5)
P Phone-no)
PP)
Education Z zl X2)
EQ Z2 z)
no-later-than x2 XI)
Experience Z y2 z2)
EQ y2 Yl)
at-least z2 Zl)
Communication-skill Z X3)
at-least X3 xl)
Project-status Z Y3 Z3)
no-later-than Z3 yl)
Employee Z X x3 Y))

((Assignment-2 X Y)

165

Education-input Z x y)
Job-title-input Z z XI)
Experience-input-1 Z Y1 Zl)
Experience-input-2 Z xl yl)
Communication-skill-input Z zl)
Project-status-input Z X2)
PP) (space 10)
P Name)
space 5)
P Phone-no) (PP)
Education Z Y2 Z2)
at-least Y2 x)
EQ Z2 y)
Job-title Z X2 Y2 z20
EQ Y2 z)
no-later-than z2 XI)
Experience Z X3 Y3)
EQ X3 Yl)
at-least Y3 Zl)
Experience Z Z3 x3)
EQ Z3 xl)
at-least x3 yl)
Communication-skill Z y3)
at-least y3 zl)
Project-status Z z3 X4)
no-later-than X4 X2)
Employee Z X Y4 Y))

Assignment-3 X Y)
Education-input Z x y)
Job-title-input Z z XI)
Experience-input-1 Z Yl Zl)
Experience-input-2 Z xl yl)
Experience-input-3 Z zl x2)
Communication-skill-input Z y2)
Project-status-input Z Z2)
PP) (space 10)
P Name)
space 5)
P Phone-no)
PP)
Education Z x2 y2)
at-least x2 x)
EQ y2 y)
Job-title Z z2 X3 Y3)
EQ X3 z)
no-late-than Y3 XI)
Experience Z Z3 x3)
EQ Z3 Yl)
at-least x3 Zl)
Experience Z y3 z3)
EQ y3 yl)

166

(at-least z3 yl)
(Experience Z X4 Y4)
(EQ X4 zl)
(at-least Y4 x2)
(Communication-skill Z Z4)
(at-least Z4 Y2)
(Project-status Z x4 y4)
(no-later-than y4 Z2)
(Employee Z X z4 Y))

/* The following relations define synonyms. */

((assignment-0 X Y)
(Assignment-0 X Y))

((assignment-1 X Y)
(Assignment-1 X Y))

((assignment-2 X Y)
(Assignment-2 X Y))

((assignment-3 X Y)
(Assignment-3 X Y))

/* The following function extend the primitive spacing

feature of the interpreter and provide building blocks for

screen formating. */

(blank-line 5) (PP) (PP) (PP) (PP) (PP))
(blank 5) (blank-line 5))
(blank-line 10) (blank-line 5) (blank-line 5))
(blank-line 20) (blank-line 10) (blank-line 10))
(space 5) (P " "))
(space 10) (space 5) (space 5))
(space 15) (space 10) (space 5))
(space 20) (space 10) (space 10))

APPENDIX G

167

168

System Operating Procedure for the Non-User-Assisted
Mode

The following procedure is to be followed in the experiment:

1. Boot the system with the MS-DOS diskette.

2. Remove the MS-DOS diskette. Insert the PROLOG
diskette.

3. Type PROLOG LOAD SIMPLE then hit <return>
key.

4. When in &. type load db then hit
< return >.

5. When in &. again, the system is ready for the user to
specify his/her query program.

6. PRESS <control> AND P SIMULTANEOUSLY before handing
out the first problem.

7. Record the time each problem is handed to the subject.

8. Record another time when the output from the system is
displayed, or when the subject has given up that problem.

9. In case the subject runs into an infinite loop, press
<control> and C simultaneously to get out. When this
situation does occur, the system must be reloaded. To
proceed, enter

prolog load simple

and then enter

load db

10. Enter QT. to exit the system and return to MS-DOS.

APPENDIX H

169

170

System Operating Procedure for the User-Assisted Mode

The following procedure is to be followed in the experiment:

1. Boot the system with the MS-DOS diskette.

2. Remove the MS-DOS diskette. Insert the PROLOG
diskette.

3. Type PROLOG LOAD SIMPLE then hit <return>
key.

4. When in &. type load db then hit
< return >.

Then, type load r and hit <return>.

5. When in &. again, the system is ready for the user to
specify his/her query program.

6. PRESS <control> AND P SIMULTANEOUSLY before handing
out the first problem.

7. Record the time each problem is handed to the subject.

8. Record another time when the output from the system is
displayed, or when the subject has given up that problem.

9. In case the subject runs into an infinite loop, press
<control> and C simultaneously to get out. When this
situation does occur, the system must be reloaded. To
proceed, enter

prolog load simple

and then enter

load db <return> and load r <return>.

10. Enter QT. to exit the system and return control to
MS-DOS.

BIBLIOGRAPHY

Books

Bailey, Robert W. , Human Perfromance Engineering: A Guide
for System Designers , New Jersey, Prentice-Hall, Inc.,
1982.

Bonczek, R. H., Holsapple, C. W., and Whinston, A. B.,
Foundations of Decision Support Systems , New York,
Academic Press, 1981.

Chang, C. L. , and Lee, R. C., Symbolic Logic and Mechanical
Theorem Proving , New York, Academic Press, 1973.

Clark, K. L., and Tarnlund, S.-A., (Eds.), Logic Programming
New York, Academic Press, 1982.

Clocksin, W. F., and Mellish, C. S., Programming in Prolog ,
New York, Springer-Verlag, 1981.

Coombs, M., J., and Alty, J. L., (Eds.), Computing Skills
and the User Interface , New York, Academic Press,
1981.

Date, C. J., Introduction to Database Systems , (3rd
Edition), Menlo Park, California, Addison-Wesley
Publishing Co., 1981.

Halstead, M., Elements of Software Science , New York,
Elsevier Computer Science Library, 1977.

Keen, Peter G. W., and Scott Morton, M., Decision Support
Systems: An Organizational Perspective , Massachusetts,
Addison-Wesley, 1978.

171

172

Machlup, F., and Mansfield, U., (Eds.)/ The Study of
Information - Interdisciplinary Messages , New York,
John Wiley & Sons, 1983.

Martin, James, Managing Data Base Environment, New Jersey,
Prentice-Hall, 1983.

, Design of Man-Computer Dialogues , New
Jersey, Prentice-Hall, 1973.

Montgomery, Douglas C., Design and Analysis of Experiments ,
New Jersey, Prentice-Hall, 1980.

Ray, Howard, An Empirical Investigation of the Effects of
Individual Differences and Data Models on the Ease-of-
Use of Database Query Facilities by Casual Users , PhD
Dissertation, North Texas State University, 1984.

Ryan, T. A., Joiner, B. L., and Ryan, B. F., MINITAB -
Student Handbook , Boston, Massachusetts, Duxbury
Press, 1976.

Shneiderman, Ben, Software Psychology , Cambridge,
Massachusetts, Winthrop Publishers, Inc., 1980.

Teorey, Toby J., and Fry, James P., Design of Database
Structures , Englewood Cliff, New Jersey, Prentice-
Hall, Inc., 1982.

Ullman, J. D., Principles of Database Systems, Rockville,
Maryland, Computer Press, 1982.

173

Articles

Bateman, R. F., "A Translator to Encourage User modifiable
Man-Machine Dialog," in Sime, M. E., and Coombs, M. J.,
(Eds), Designing for Human-Computer Communication
,Academic Press, NY.

Bedard, J., Gray, G. L., and Mock, T. J., "Decision Support
Systems and Auditing," Center for Accounting Research,
School of Accounting, University of Southern
California, Working Paper No. 49, (April 1983).

Benbasat, Izak, and Taylor, Ronald N., "An Experimental
Investigation of Some MIS Design Variables," MIS
Quarterly , (March 1977), pp.37 - 49.

Boies, S. J., "User Behavior on an Interactive Computer
System," IBM Systems Journal , 13, No. 1, (1974), pp. 1
- 18.

Bonzcek, R. H., Holsapple, C. W., and Whinston, A., "The
Evolving Roles of Models in Decision Support Systems,"
Decision Sciences , Vol. 11, No. 2, (April 1980), pp.
337 - 356.

, "A Generalized Decision Support System
Using Predicate Calculus and Network Data Base
Management," Operations Research , Vol. 29, No. 2,
(March-April 1981), pp.263 - 281.

Brooks, Ruven E., "Studying Programmer Behavior
Experimentally: The Problems of Proper Methodology,"
Communications of the ACM , Vol. 23, No. 4, (April
1980), pp.591 - 597.

Carlson, Eric D., Grace, Barbara F., and Sutton, Jimmy A., "
Case Study of End User Requirements for Interactive
Problem-Solving Systems," MIS Querterly , (March 1977),
pp. 51 - 63.

Chamberlin, Donald D., "Relational Data-Base Management
Systems," ACM Computing Surveys , Vol. 8, No. 1, (March
1976), pp.43 - 66.

174

Chen, E. T., "Program Complexity and Programmer
Productivity," IEEE Transactions on Software
Engineering , Vol. SE-3, (1978), pp.187 - 194.

Christensen, K., Fitsos, G. P., and Smith, C. P., "A
Prospective on Software Science," IBM Systems Journal ,
Vol. 20, No. 4, pp.372 - 387.

Codd, E. F., "A Relational Model of Data for Large Shared
Data Banks," Communications of the ACM , Vol. 13, No.
6, (June 1970).

Codd, E. F., "Relational Database: A Practical Foundation
for Productivity," Communications of the ACM , Vol. 25,
No. 2, (February 1982), pp.109 - 117.

Cuff, Rodney N., "On Casual Users," International Journal of
Man-Machine Studies, 12, 1, (1980), pp. 163-187.

Codd, E. F., "Seven Steps to Rendezvous with the Casual
User," Data Base Management, 1, 1, (1974), pp. 179-199.

Curtis, Bill, "Measurement and Experimentation in Software
Engineering," Proceedings of the IEEE , Vol. 68, No. 9,
(September 1980), pp.628 - 641.

Curtis, B., Sheppard, P., Borst, M. A., and Love, T.,
"Measuring the Psychological Complexity of Software
Maintenance Tasks with the Halstead and McCabe
Metrics," IEEE Transactions on Software Engineering ,
Vol. SE-5, (1979), pp.96 - 104.

Dahl, Veronica, "On Database Systems Development Through
Logic," ACM Transactions on Database Systems , Vol. 7,
No. 1, (March 1982), pp.102 - 123.

Dickson, Gray W., James A Senn, and Norman L Chervany,
"Research in MIS: The Minnesota Experiments,"
Management Science, 23, 9, (1977), pp. 913-923.

175

Dolk, D. R. and B. R. Konsynski, "Knowledge Representation
for Model Management Systems," IEEE Transactions on
Software Engineering , Vol. SE-10, No. 6, (November
1984), pp. 619 - 628.

Eason, K. D., and Damodaran, L., "The Needs of the
Commercial User," in Coombs, M. J., and Alty, J. L.,
(Eds), Computing Skills and the User Interface , New
York, Academic Press, 1981.

Embley, David W., and Nagy, George, "Behavioral Aspects of
Text Editors, " ACM Computing Surveys , Vol. 13, No. 1,
(March 1981), pp. 33 - 70.

Enrenreich, S. L., "Query Language: Design Recommendations
Derived from the Human Factors Literature," Human
Factors, 23, 6, (1981), p. 709.

Fitter, M. J., and Cruickshank, P. L., "Doctors Using
Computers: A Case Study," in Sime, M. E., and Coombs,
M. J., (Eds), Designing for Human-Computer
Communication , Academic Press, NY.

Gaines, B. R., and Shaw, M. L. G., "Dialog Engineering," in
Sime, M. E. and Coombs, M. J. (Eds), Designing for
Human-Computer Communication ,New York, Academic Press,
1983.

Gallaire, H. , "Impacts of Logic on Data Bases," Proceedings
of International Conference on Very Large Data Bases.,
(1981), pp.248 - 259.

Gallaire, H., Minker, J., and Nicolas, J.M., "Logic and
Databases: A Deductive Approach," ACM Computing
Surveys , Vol. 16, No. 2, (June 1984), pp.153 - 186.

Gingras, Lin and Ephraim R. Mclean, "Designers and Users of
Information Systems: A Study in Differing Profiles,"
Proceedings of the Third International Conference on
Information Systems , 1, 1, (December, 1982), pp.
169-181.

176

Grant, J., and Minker, J., "Answering Queries in Indefinite
Databases and the Null Value Problems," Tech. Rep.
1374, Computer Science Dept.,
University of Maryland, College Park, (1983).

Harris, L. R., "User Oriented Data Base Query with the ROBOT
Natural Language Query System," International Journal
of Man-Machine Studies , 9, (1977), pp. 697-713.

Harris, L. R., "The Advantages of Natural Language
Progr summing, " in Sime, M. E., and Coombs, M. J., (Eds),
Designing for Human-Computer Communication ,New York,
Academic Press, 1983.

Henderson, John C., and Paul C. Nutt, "The Influence of
Decision Style on Decision Making Behavior," Management
Science , 26, 4, (April, 1980), pp. 371-386.

Hill, I. D., "Natural Language Versus Computer Language," in
Sime, M. E. , and Coombs, M. J. (Eds), Designing for
Human-Computer Communication , New York, Academic
Press, 1983, pp. 55 - 72.

James, E. B., "The User Interface: How We May Compute," in
Coombs, M. J. , and Alty, J. L., (Eds), Computing
Skills and the User Interface , New York, Academic
Press, 1981.

Jarke, M., and Koch, J, "Query Optimization in Database
Systems," ACM Computing Surveys , Vol. 16, No. 2, (June
1984), pp. Ill - 152.

Keen, P.G.W., "Interactive Computer Systems for Managers,"
Sloan Management Review , 1, 1, (Fall 1976), pp. 1-17

Keen, Peter G. W., "Adaptive Design for Decision Support
Systems," Data Base , Vol. 12, No. 1/2, (Fall 1980),
pp. 15 - 25.

Kelly, J. F., "An Iterative Design Methodology for User-
Friendly Natural Language Office Information
Applications," ACM Transactions on Office Information
Systems , Vol. 2, No. 1, (March 1984), pp. 27 - 41.

177

Kennedy, T. C. S., "Some Behavioural Factors Affecting the
Training of Naive Users of an Interactive Computer
System," International Journal of Man-Machine Studies ,
7, (1975), pp.817 - 834.

Loomis, Mary E. S., "The Nature of Database Management for
Effective Decision Support Systems," in Holsapple, C.
E. and Whinston, A. B., (Eds.), Data Base Management:
Theory and Applications , (1983), pp. 155 - 174.

Lucas, Henry C. Jr., "A Descriptive Model of Information
Systems in the Context of the Organization," Database ,
(Winter 1973), pp. 27 - 39.

Lucas, Henry C. Jr., and Nielsen, N. R., "The Impact of the
Mode of Information on Learning and Performance,"
Management Science , 26, 11, (1980), pp. 982 - 993.

Mason, R. 0., and Mitroff, I. I., "A Program for Research on
Management Information Systems," Management Science ,
19, 1, (1973), pp. 475-487.

Mayer, Richard E., "The Psychology of How Novices Learn
Computer Programming," ACM Computing Surveys , Vol. 13,
No. 1, (March 1981), pp. 121 - 141.

Methlie, Leif B., "Data Management for Decision Support
Systems," Data Base , Vol. 12, No. 1/2, (Fall 1980),
pp. 4 0 - 4 6.

Miller, Lance A., and Thomas, John C., "Behavioral Issues in
the Use of Interactive Systems," International Journal
of Man-Machine Studies , Vol. 9, (1977), pp. 509 - 536.

Moran, Thomas P., "An Applied Pshchology of the User," ACM
Computing Surveys , 13, 1, (March 1981), pp. 1-10.

Moher, Thomas, and Schneider, G. Michael, "Methods for
Improving Controlled Experimentation in Software
Engineering," Proceedings of the Fifth International
Conference on Software Engineering , (1981), pp. 224
233.

178

Mozeico, Howard, "A Human/Computer Interface to Accomodate
User Learning Stages," Computing Practices , 25, 2,
(February 1982), pp. 100-104.

Mynatt, Barbee T., "The Effect of Semantic Complexity on the
Comprehension of Program Modules," International
Journal of Man-Machine Studies , (August 1984), 21, pp.
91-103.

Nickerson, Raymond S., "Why Interacitve Computer Systems Are
Sometimes Not Used By People Who Might Benefit from
Them," International Journal of Man-Machine Studies ,
15, 1, (1981), pp. 470-480.

Nolan, Richard L., and Wetherbe, James C., "Toward a
Comprehensive Framework for MIS Research," MIS
Quarterly , (June 1980), pp.1 - 19.

Palme, J., "A Human-Computer Inbterface Encouraging User
Growth," in Sime, M. E., and Coombs, M. J., (Eds),
Designing for Human-Computer Communication , New York,
Academic Press, 1983, pp. 139 - 156.

Rasmussen, J., "The Human as a Systems Component," in Smith,
• H., and Green, T., (Eds.), Human Interaction with
Computers , New York, Academic Press, 1980, pp. 67 -
96.

Reising, John M., Ward, Sharon L., and Rolek, Evan P., "Some
Thoughts on Improving Experiments," Human Factors ,
Vol. 19, No. 3, (1977), pp.221 - 226.

Reisner, Phyllis, "Use of Psychological Experimentation as
an Aid to Development of a Query Language," IEEE
Transaction on Software Engineering , 3, 1, (1977), pp.
218-229.

Reisner, Phyllis, "Human Factors Studies of Database Query
Languages: A Survey and Assessment," ACM Computing
Surveys , 13, 1, (march 1981), pp. 13-31.

179

Rich, E., "Natural-Language Interfaces," Computer , Vol. 17,
No. 9, (September 1984), pp. 39 - 50.

Rockart, J., and Flannery, L., "The Management of End User
Computing," Communications of the ACM , Vol. 26, No.
19, (October 1983), pp. 776 - 784.

Roland, Ronald J., "A Model of Organizational Variables for
DSS," Data Base , (1981), pp. 63 - 72.

Robinson, J. A., "A Machine-Oriented Logic Based on the
Resolution Principle," Journal of the ACM , Vol. 12,
No. 1, (January 1965), pp. 23 - 41.

Rouse, William B., "Human-Computer Interaction in the
Control of Dynamic Systems," ACM Computing Surveys
Vol. 13, No. 1, (March 1981), pp.71 - 100.

Scott Morton, M., and Huff, S., "The Impact of Computers on
Planning and Decision-Making," in Smith, H., and Green,
T. , (Eds.)., Human Interaction with Computers , New
York, Academic Press, 1981, pp.177 - 202.

Sheil, B. A., "The Psychological Study of Programming," ACM
Computing Surveys , Vol. 13, No. 1, (March 1981),
pp.101 - 120.

Shneiderman, B, and Mayer, R., "Syntactic/Semantic
Interactions in Programming Behavior: A Model and
Experimental Results," International Journal of
Computer and Information Sciences , 7, (1979), pp. 219
- 239.

Shneiderman, Ben, "Improving the Human Factors Aspect of
Database Interactions," ACM Transactions on Database
Systems , 3, 4, (December 1978), pp. 417-439.

Smith, H. T., "Human-Computer Communication," in Smith, H.,
and Green, T., (Eds.), Human Interaction with Computers
, New York, Academic Press, 1980, pp. 5 - 3 8 .

180

Thadhani, A. J., "Interactive User Productivity," IBM
Systems Journal , 20, No. 4, (1981), pp. 407 - 423.

Thomas, J. C., "Psychological Issues on the Design of
Database Query Languages," in Sime, M. E., and Coombs,
M. J., (Eds), Designing for Human-Computer
Communication , New York, Academic Press, 1983, pp. 173
- 208.

Thomas, J. C., and Carroll, J. M., "Human Factors in
Communication," IBM Systems Journal , Vol. 20, No. 2,
(1981), pp. 237 - 263.

Van Emden, M. H., and Kowalski, R. A., "The Semantics of
Predicate Logic as a Programming Language," Journal of
the ACM , Vol. 23, No. 4, (October 1976), pp. 733 -
742.

Vassiliou, Y., Jarke, M. , Stohr, E. A., Turner, J. A., and
White, N. H., "Natural Language for Database Queries: A
Laboratory Study," MIS Quarterly , (December 1983),
pp.47 - 61.

Wang, Michael S. Y. and James F. Courtney, JR., "A
Conceptual Architecture for Generalized Decision
Support System Software," IEEE Transactions on Systems,
Man, and Cybernetics , Vol. SMC-14, No. 5,
(September/October 1984), pp. 701 - 711.

Warren, David H. D., "Efficient Processing of Interactice
Relational Database Queries Expressed in Logic,"
Proceedings of International Conference on Very Large
Data Bases , (1981), pp.272 - 281.

Welty, C., and D. W. Stemple, "Human Factors Comnparison of
a Procedural and a Nonprocedural Query Language, " ACM
Transactions on Database Systems, Vol. 6, No. 4,
(September 1981), pp. 626 - 649.

Wiederhold, G., "Databases," IEEE Computer , Vol. 17, No.
10, (October 1984), pp. 211 - 223.

181

Zloof, M. M., "The Query-by-Example Concept for User-
Oriented Business Systems," in Sime, M. E., and Coombs,
M, I., {Eds), Desinging for Human-Computer
Communication , New York, Academic Press, 1983.

