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CHAPTER 1 

INTRODUCTION 

1.1 The Outer and Inner Radius of a Triangle 

From elementary geometry, we know that every triangle, T, 

has two circles associated with it. One which circumscribes 

T, and one which can be 

inscribed within T. 

Figure 1.1. 

Unless otherwise 

specified, we 

will assume that 

every triangle, T, 

has sides Z £ Y ^ X. 

We now define the 

the outer and inner 

radii for T. 

Figure 1.1 

Definition 1.1.1 The Outer radius, R, is defined to be the 

radius of the circle, which circumscribes T. A common 

methbd for evaluating R, involves the Law of Sines. 



method for evaluating R, involves the Law of Sines. For our 

purposes however, it would be convenient to find a formula 

for R which can be expressed as a function of side lengths 

X, Y, and Z only. 

Proposition 1.1. Let T be a triangle with side lengths 

Z £ Y £ X. Then the Outer radius, R, is given by, 

R = XYZ 

S / 4 X 2 Y 2 - (X 2 +Y 2 - Z2)2 

Note: It can be shown that R 

area of T. 

XYZ 
where A is the 

Proof s 

We will begin this 

proof by making 

several observations 

about Figure 1.2. 

Figure 1.2 



2 
(1) cosLw = 

2 R 

(2) Zw = Le, Isosceles 

(3) Lc + Lw - Ld, Isosceles 

(4) Id + If - La 

(5) Le + Lb = Lf, Isosceles. 

Adding (3) and (4), then rearranging we find, 

( 6 ) Lc + Lw = La - Lf . 

Using (2) and (5) we have, 

(7) Lw + Lb = Lf . 

Then by adding (6) and (7) we get: 

2Lw = La - Lc - Lb , 

/os / La - Lc - Lb 
( 8 ) Lw = . 

Using the fact that 

La + Lb + Lc = 180° , 



we see that together with (8) , 

Iw = La - 90° . 

Using (1) we find that, 

(9) R 
2 cos (La - 90 ) 

Applying the subtraction formula for cosines, 

cos(A - B) = cos(A)cos(B) + sin(A)sin(B), to (9) we obtain, 

(10) R = 
2sinZa 

Remark: Though we have assumed the center of our circle 

lies outside of our triangle, a similar proof shows 

we have the same equality, regardless of the 

position of the center. 

Note: Repeating this method for the two other sides of T, 

along with the opposite angles, will establish the 

Law of Sines. 



To find L a, we use the Law of Cosines, 

Z 2 = X2 + Y2 - 2XYcos la 

By solving we find, 

, r X
2 + Y2 - Z2 , 

La = arccos [ ] 
2 XY 

Therefore by (10) we have, 

(11) R = 

2 sin [ arccos 
X2 + Y

2 - Z 2 

2 XY 

Finally by applying to (11); the trig identity 

sin [arccos £ ] = \jl - E,2 , |£| s 1, 

our equation becomes, 

R 

2\ 
1 - ,X2 + Y2-Z2 

2XY 



Simplifying yields the desired result, 

R -
4X2 Y 2 Z (X2 + Y2 - Z2 ) 2 

When we restrict T to take a specific form, such as an 

Isosceles, Equilateral, or Right Triangle, we find, 

Isosceles: Let base = B, let sides = S, then 

R = S2 

\j4 S2 - B' 

Equilateral: Let sides = S, then 

3 

Right Triangle: Let X2 + Y2 = Z2, then 

2? - 1 . 
2 



Definition 1.1.2 The Inner radius, denoted r, is defined 

to be the radius of the circle which is inscribed within T. 

Figure 1.3. 

As with the case for 

R, we would also 

like to find a 

formula which will 

give r strictly in 

terms of the side 

lengths X, Y, Z. 

Figure 1.3 

Proposition 1.2 Let T be a triangle with side lengths 

Z ^ Y £ X. Then the Inner radius, r, is given by, 

r = 
X + Y - Z Z2 - (X - Y)' 

(X + Y)2 - Zl 

Note: It can be shown the we also have, r 

where A is the area of T. 

2 A 
(X+Y+Z) 

Proof: To prove this formula we will divide T into pieces 



then sum the areas of these pieces. Figure 1.4 

Connecting the 

center of the in 

circle to the 

vertices of 

T, we form three 

triangles, xsy, x 

xsz, 

and zsy. Let 

A [T] = A[xyz] , denote 

the area of T. So, 

A[xyz] 

Figure 1.4 

A[xsy] + A[xsz] + A[ysz] , 

(sq) (xy) + (st) (xz) + (sp) (yz) 
2 2 2 

rZ rY rX 
~ - " " ' " ' — — . 

r(X + Y + Z) 

Next, it can be shown 

that h, Figure 1.5 can be 

expressed as: 

X2 \2 
h 

_ lz2 + Y2 - X2\ 
' 2Z I 

Figure 1.5 



So, 

A m = *h, 
2 

Z 

2 M 
y 2 _ Z2 + Y2 - X2V 

2Z 

Thus, 

r(X + Y + Z) Z 

2\ 

Z2 + Y2 - Xz\2 
2 Z 

Solving for r yields our desired result, 

r = 
Z + Y - X 

\ 
X2 - (Z - Y)7 

(Z + Y)2 - X2 

The equation for the inner radius r, may also be 

further simplified when we restrict T to take a specific 

form, such as an Isosceles, Equilateral, or Right Triangle. 

Isosceles: Let base = B, and sides = S, then 

B 
r " 2N 

2 S - B 
2 S + B 
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Equilateral: Let Sides = S, then 

r = M 
6 

Right Triangio. L e t X
2 + Y2 = Z2, then 

X + Y - Z 
r -



CHAPTER 2 

THE CENTER DISTANCE 

2.1 The Center Distance 

In this chapter we discuss one of the fundamental 

relationships between a triangle T, and the inner and outer 

circles which are naturally associated with T. 

Definition 2.1.1: Let C0 and Ct be nested circles of radii R 

and r respectfully. Let Cs lie entirely within C0> then the 

Center Distance, denoted Dc, is defined to be the distance 

between the centers of C0 and Ct. 

Theorem 2.1.2 Let C0 and Cz be nested circles having radii 

R and r respectfully, and suppose r £ }£R. Then there exists 

an Isosceles Triangle T with outer and inner radii R and r, 

if and only if D0
2 = R2 - 2Rr. 

Proof: Suppose there exists a Isosceles triangle T with 

outer and inner radii R, and r. 

11 
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Forming the right 

triangle as shown 

in figure 2.1, we 

have, 

(r + R + Dc)
2 + (^)2 = Sz . 

Figure 2.1 

Expanding then solving the quadratic for Dc, 

-2 ( r + R) + yf4S2 - B'' 

2 

where we have taken the positive root, 

Squaring both sides we have, 

2 4S2-B2 

Dc = \jAS2 -B2 ( r + R) + ( r + R)2 
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Replacing R and r, with S, B terms on the right, 

<2 B D: = — - BS + —. 
B 2S - B SB' 

4 2S + B 2S + B 4S2 - B2 

Multiplying top and bottom of the right by 4(4S2 

simplifying, 

B2), then 

2 S 4 - 2B S 3 + B2S2 

K = 

AS2 - B2 

BS2(2S - B] 

AS2 - B2 (2S + B){2S - B] 

Rewriting we have, 

D? . S BS2 s[2~S-B 

5 \J 4 S2 -B2 J2S + B 

S4 _ 2 S2 B 

4S2 - B2 ' J4S2-B2' 2 

2S-B 

2S + B 

Writing S and B in terms of R and r, we ha.ve, 

vl = R2 - 2Rr. 
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Next suppose that C0 

and Cx are nested 

circles of radii R 

and r respectfully, and 

that Dc
2 = R2 - 2Rr. 

See Figure 2.2. 

Define an Isosceles 

Triangle T' as follows: 

Let T' have base B' and 

sides S' satisfying, 

Figure 2.2 

B' = 2<jr(2R - r - 2 DJ 

and 

S1 = J2R(R + r - Dc) 

Since R > Dc for all 0 < r < ^R, both B' and S' are well 

defined. By making the substitution 

5 = R - Dc , 

B' and S' reduce to, 

B' = 2v/rT2T
I~7r, and S' = r> 

£ - r 



15 

We will suppose that 

T' has outer and 

inner radii R', and 

r 1. Then show 

R' = R, and r' = r. 

Thereby establishing 

that there exists an 

isosceles triangle 

which has outer and 

inner radii R, and r, 

as shown in Figure 2.3 
Figure 2.3 

To show that the outer radius R' = R, we have that, 

./ _ 

•Jis'2 - B'2 

Substituting S' and B1 into the equation yields 

R' = 
2 R(R + r + Dc) 

( 2 R (i? + r + Dc)) - 4r ( 2 J R - r - 2 D c ) 

Since we have assumed that Dc
2 = R2 - 2Rr, 
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R' can be written as, 

R(R + r + D ) r> = £_ 

J[R + r + Dc) (R + r + Dc) 

Simplifying yields the desired results, 

R' = R 

Now we must show that r' = r. By squaring the inner radius 

formula for T', 

,2 B' .2 S' - B . 
r = — r ( ; 7>-

4 2S + B' 

Substituting in S' and B1 we have, 

2 ^ ' 2 ^ - r ) - 2Vr(25-r) 
. / 2 = 4 ( r ( 2 £ - r ) ) ( 5 ~ r ) 

• 2/r[25-r) 
5 - r 

Upon simplifying this reduces to, 
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r'2 = r(2E - r) ' 2 ? - r " * ' *-!•£!) 
2^r(2 £ - r) (£ + ̂  - r) 

Simplifying yields 

r/2 - r (2 E, - r) (—£ ) 
2 ? - r 

Simplifying and taking the square root of both sides 

establishes the desired results, 

r/ = r 

End of proof. 
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Theorem 2.1.3 Let T be a triangle with outer and inner 

radii R, r. Then Dc
2 = R2 -2Rr. 

Proof: The proof of 

Theorem 2.2.3 closely 

parallels the proof of 

Theorem 2.2.2. 

Let T be arbitrary, see 

Figure 2.4. 

Figure 2.4 

We want to show that 

there exists an 

Isosceles Triangle, T', 

with outer and inner radii 

Rv, and r \ and that 

R1 = R, r1 = r. 

See Figure 2.5. 

Figure 2.5 
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Define T' as follows. Let T1 have base B', and sides S', 

such that, 

B' = 2\Jr(2R - r - 2/RTR ~ 2 r) ) 

sj r{2R - r - 2 JR(R - 2 r) ) ( R ~{r (R - 2 r) ) 

R - r - JR{R - 2 r) 

To show that the outer radius R' = R we make that 

substitution, 

$ = r + 2s]R{R - 2 r) . 

Then B1 and S' can be written as, 

B' = 2Jr(2R - $) S' = (2J? ^ + r £2-
v (2J? - r - 0) 

Substituting B' and S' into our Isosceles formula for R', 

e/2 

R' ~ S 

J AS'2 - B'2 
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we have, 

R' 

r„ ( 2 jR„ -<|>)( 2 i?„ ~ <P + r„) 2 ( ) 

( 2 R0 - <J) - r.)
2 

4 r„ ( 2 R0 - <|>) ( 2 R„ - <|) + r„)
 2 

( 2 R. - <|> - r,) 2 
- 4r. (2R. - <p) 

Simplifying we have, 

R ' = (2 i? - 0 + r)2 

4 (2i? - $ - r) 

Letting, 

$ = r + 2^i? (R - 2r) , 

then simplifying yields, 

R' = R. 

To show that the inner radius r' = r, we square both sides 

of our formula for r', 

B ,2I 2 S' - B;\ 

4 ^ 2S' + B''' 
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Making the substitution, 

W = (R - y/R(R - 2r) ) , 

B1 and S1 can be written, 

B> - 2 A ( 2 T - r), S> = r) 

V - r 

Substituting for B' and S' we have, 

2W/r(2¥ r) _ 2Jr(2W-r)\ 
j 2 _ 4 ( r (2Y - r) ) [ ¥ - r v * 

^s/r(2W-r) + 2 / _ _ t ; 
¥ - r 

r(2V- r ) ( ^ ( 2 y - r ) ( * + r)). 
V 2y/r{2W - r) + V - r) ' 

Simplifying and taking the square root of both sides 

establishes the desired result, 

r! - r 

Thus by Theorem 2.1.2, there exists an Isosceles triangle 

which and.outer and inner radii, R, and r, therefore, 

D£ = R2 - 2Rr. 



CHAPTER 3 

BICENTRIC CIRCLE CONSTRUCTION 

3.1 The Center Radius Method 

In addition to evaluating the distance between the 

centers of the circumscribed and inscribed circles for a 

triangle T, the Center Distance, Dc, is also useful in 

constructing triangles when both the inner and outer radius 

are known. 

Clearly there is no difficulty with constructing 

triangles within a circle of radius R, nor is there any 

problem with constructing triangles around a circle of 

radius r. Suppose however we are asked to construct a 

triangle which has both a fixed inner radius r, and a fixed 

outer radius, R. 

The problem encountered here is that we must be able to 

satisfy both the fixed inner and outer radius with the same 

triangle. The following method, the Center Radius Method, 

is useful in constructing such a triangle. 

22 
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Center Radius Method 

In chapter 2 we proved that for any triangle, 

D2 + r2 = ( R - r) 2. 
C 

Tools needed: 1. straight edge 

2. compass 

Step 1) Construct two perpendicular lines. 

Step 2) Construct two concentric circles of radius 

R and r. We require that r as shown in 

figure 3.1. 

Figure 3.1 
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Step 3) Construct a circle with center at (0,r), 

having radius (R - r)as shown in Figure 3.2. 

Figure 3.2 

Step 4) Locate the point of intersection between this 

circle and the positive x-axis, label it p, 

as shown in Figure 3.3. 

Figure 3.3 
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Step 5) Construct a circle of radius r centered at p. 

See Figure 3.4. 

Figure 3.4 

Step 6) By a standard right triangle we have, 

P2 + r2 = (R-r)2. (Figure 3.5). 

Figure 3.5 
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Step 7) The center of Cp, is placed a distance p from 

the center of C. (Figure 3.6). 

Figure 3.6 

Step 8) Let q be an arbitrary point on Cp, and construct a 

line segment through points p and q, as shown in 

Figure 3.7. 

Figure 3.7 
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Step 9) Construct a perpendicular to this line segment 

which passes through q, and label the points of 

intersection with C as h, and k. See Figure 3.8. 

Figure 3.8 

Step 10) Construct an arc of the circle whose center is h, 

and which passes through q. Label the point of 

intersection with Cp/ s. See Figure 3.10. 

Figure 3.9 
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Step 11) Construct a line segment which passes through h, 

and s. Let j be the point of intersection with C, 

as shown in Figure 3.10. 

Figure 3.10 

Step 13) Construct line segments hj and hk. 

Figure 3.11 
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Since segments hj and hk are tangent to Cp we have that 

segment kj is also be tangent to Cp. See Figure 3.12. 

Figure 3.12 

Thus our triangle is 

circumscribed by C and inscribes 

Cp. Now since for fixed R and r, 

our construction of T depends 

only on the point q, there exist 

an infinite number of triangles 

which share inner and outer 

circles C and Cp. See Figure 3.13. 

Figure 3.13 
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3.2 The Center Distance Method 

Suppose we are given a circle C of radius R, and a point 

pe C. The natural question to ask is; can we construct a 

circle centered at p, called Cp/ such that Cp can be 

inscribed within a triangle, T, while T is inscribed within 

C? The answer is yes, and we will call this method of 

construction the Center Distance Method. 

Tools needed: 1. straight edge 

2. compass 

Let C be a circle of radius R, and let pe C, as shown in 

Figure 3.14. 

Figure 3.14 
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Step 1) Construct a diameter of C which passes through p, 

as shown in Figure 3.15. 

Figure 3.15 

Step 2) Construct a perpendicular to this diameter which 

passes through 0. See Figure 3.16. 

Figure 3.16 
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Step 3) Construct the line segment and midpoint, m, as 

shown in Figure 3.17. 

Figure 3.17 

Step 4) Consruct a perpendicular bisector to this segment, 

and lable the point of intersection, r, as shown in 

Figure 3.18. 

Figure 3.18 
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Step 5) Let |r| = r. Since through m passes a 

perpendicular bisector, we have by the SAS 

postulate, that d(r,p) = R-r. See Figure 3.19. 

Figure 3.19 

Step 6) Construct a circle of radius r, centered at p. See 

Figure 3.20. 

Figure 3.20 
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Now since |p|2= R2 - 2Rr, this circle is properly spaced. 

Furthermore, since p was arbitrary, we can construct 

properly spaced circles about any point within C. See 

Figure 3.21. 

Figure 3.21 



CHAPTER 4 

TANGENTIAL CIRCLES 

4.1 Introduction 

In this section we define generated circles and explore 

the properties of properly spaced tangential circles. 

Unless otherwise specified all circles are assumed to be 

properly spaced. Let C = { (x,y) |x2 + y2 < R2}, and 

let pe C, i.e. p = (pi,p2) • 

Definition 4.1.1 We say that a circle Cp is generated by a 

point pe C, see Figure 4.1 if Cp is the circle given by, 

(x-p1)
2 + (y-p2)

2 2 , R2 - \p\2 
r , where r = ^ 
p p 2 R 

Figure 4.1 

35 
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4.2 Tangential Circles 

Definition 4.2.1 Let p,qe C, and let Cp and Cq resp., be 

the circles generated by p and q. We say that the two 

circles, Cp and Cq are 

tangent within a circle 

of fixed radius R, if 

and only if 

|P - q| = rp + rq. 

This is shown 

in Figure 4.2. 

Figure 4.2 

Definition 4.2.2 We define 

Tp as the set of all qe C 

s.t. Cq is tangent to Cp. 

Figure 4.3 
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Proposition 4.2.3 Let R > 0. Let p,q e C, and let Cp be 

the circle generated by p. If q = (qi,q2) , then 

qeTp ~ q2 = 4R2-q1
2-\p\2-2R][3R

2-2\p\q1. 

That is, 

TP = {gee I q2 = AR2-ql2-\p\2-2RpR2-2\p\q1 } 

Proof: Let p 6 C, and let Cp be the circle generated by p. 

W.L.O.G. rotate p to lie along the positive x-axis, and let 

<3 = (qifOfeJe TP# as shown in Figure 4.4. 

Figure 4.4 
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Then we have both, 

kl2 - P 2 " (rp + rg)
2 

COS0 = - — 
2p(rp + rq) 

Thus, 

« " P 

cos0 = 
r +r 
p <r 

2p(q1 - p) = \q\2 - p2 - (rp + rq) 

Since |q|2 = R2 - 2Rr, q ' 

r 2 + 2 (R + r ) r + (r 2 +2pq1~R2 -p2) = 0, 

Solving this quadratic in r, q' 

r
q

 = ~(R + r
p)

 + / ( J ? + rp)2 " (rp
2+2pq1-R

2-p2) 

Using the equalities, 

r2~\(I\2 I 12 2 2 
rg = 2R ' |g| = qi +q2' 

we have, 

q2 = AR2-q2 -p2-2RpR2-2pq'v 
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Thereby establishing the claim that, 

Tp = { qeC | q2 = 4R2-q1
2-p2-2RfTR2-2pq1 } 

With this result we are now ready to define the minimum and 

maximum tangential circles to a circle generated by an 

arbitrary point pe C. 

Definition 4.2.4 Let R > 0. Let pe C, and let Cp be the 

circle generated by p, having radius rp. Let ae Tp. We say 

that Ca is the minimum tangential circle if ra ^ rq for all 

qe Tp. Similarly if be Tp, then Cb is the maximum tangential 

circle if rb k rq for all qe Tp. 

The following Theorem establishes a fundamental result 

with respect to the minimum and maximum tangential circles. 
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Theorem 4.2.5 Let R > 0. Let C = { (x,y) |x2 + y2 < R2}. Let 

pe C, let Cpbe the circle generated by p. Let qe Tp. Let 

rmin, resp, r ^ denote the minimum and maximum radii V Cq. 

Let a,be Tp s.t. ra = rmin, and rb= rraax, then a and b lie on 

the diameter of C which contains p. 

Claim 1: If q,te C, then |q|< |t| if and only if 

rt < rq. 

The proof is trivial since, 

, . * 2 - l«l' v g e c . 
q 2 R 

Proof: Let pe C, and let Cp be the circle generated by p. 

W.L.O.G we may assume that through rotation p = (p,0), where 

0 ^ p < R. Let a,be Tp, let a = (a,0), a > 0, let b = (b,0), 

b < a. 

Case 1: p = 0. 

Let q,te T. So, |g |= rp + rg, |t| = rp + rt. 

Thus |q| - 111 = rq - rt. The claim here is 

that rq = rt. If not, say W.L.O.G. that 

rq > rt. Then by claim 1, |q| < |t|. This 

is a contradiction since, then rq - rt > 0, 
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while |q| - |t| < 0. Therefore if p = 0, rq = rt, Vq,te T, 

and rmin = rmax. Thus, ra = rmin and rb = rmax, and a and b lie 

on the diameter of C which contains p. See Figure 4.5. 

Figure 4.5 

Case 2: 0 < p < R. 

Let a,9 represent the angles as shown in Figure 4.6 

Due to symmetry about the diameter, we need only define 

0 £ a,6 £ n. 

Let pe (0,R) , let q,te Tp, let a = aq, let 0 = 0t. 
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Figure 4.6 

Claim 2: If aq > 0t/ then rq > rt. 

Proof: If a.q > 0t( then 180° - 0t > 180° - aq. 

Since cos(x) is strictly decreasing on [0,n], 

we have, cos (180° - 0t) < cos {180° - aq) . 

By the law of cosines we have, 

cos (180° - 0t) = P 2 + IP - t|2 ~ I tl 
2p\p - t| 

, and 

cos (180° - aq) 
p2 + |p - q|2 - | q\2 

2p|p " q\ 



Thus, 

p 2 + |p - 112 ~ 1 fc[2 < p 2 + |p - q\2 - 1 q\2 

2p\p - t\ 2p\p - q\ 

Since Cp is tangent to both Cq and Ct, we have 

that |p-t| = rp + rt, and |p-q| = rp + rq. 

So, 

p 2 + (rp + rt)
2 - | t|2 p 2 + (rp + rg)

2 - \q\ 

2p(rp + rt) 2p(rp + rg) A 

The claim is that rq > rt. To show this suppose on the 

contrary that rq < rt. 

Note: [We need not consider rg = rt since we have 

assumed aq > 0t. ] 

By claim 1, |q| > |t|. 

43 



44 

Thus, 

p 2 + |p - t|2 - 1112 < p 2 + |p - g|2 - | g|2 

2p|p " t\ 2p\p - q\ 

Since Cp is tangent to both Cq and Ct, we have 

that |p-t| = rp + rt, and |p-q| = rp + rq. 

So, 

p2 + (rp + rt)
2 - \t\2 p 2 + (rp + rg)

2 - |g 2 

2p (rp +
 r
t) 2P(rp + rg) 

The claim is that rq > rt. To show this suppose on the 

contrary that rq < rt. 

Note: [We need not consider rg = rt since we have 

assumed aq > 0t. ] 

By claim 1, jq| > |t|. Using the inequality, 

P + ( rP
 + rt)

2 - |t|2 < p 2
 + ( rp + rg)

 2 - | g|: 

2P(r p + rt) 2p ( rp + rq) 

we have, 
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<rp + rg)P2 + <rp + rg) (rp + rt)2 ~ <rp + r g H t | 2 

< (r +r. )p2 + ( r + r ) (r +r )2 - (r +r.) | g|2 , 

( rg " rt ) -P 2 + <rP
 + V ^rp + rt) (rt'rg) 

< (rp + rg) I t!2 " (rp + rt) l^l2' 

(r -rt)p
2 +rt\q\

2-r | t|2+ (r +r ) (r +rt) (rt-r ) 

< rp(|t|
2 - | q\2) 

Since by assumption |q| > |t|, 

(rq~rt)p
2 +rt\q\

2-rg\ t|
2+ (rp + rg) (rp + rt) (rfc-rg) 

< 0, 

rt\q\
2+ (rp + rq) (rp + rt) (rt-rq) 

< (rt-rq)p
2 +rq\t\ 
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Since all circles are properly spaced, we have, 

q\2 = R2 - 2Rrql 

p2 = R2 - 2Rrp, 

12 _ = Rz - 2 Rrt. 

Substituting in these equations and simplifying, 

2 2 2 2 2 2 
rDr, - rnr + r rt - r ra + r rt - r+ra 
P t P g P c P Q Q z t <? 

< 2firr - 2Rr r , 
p g p t' 

rP ( rt - r,' + r P
( rt - V + r,r

e(
rt " r„> 

< 2Srp(rg - r£) . 

Here we arrive at our contradiction since, if rq < rt then 

the L.H.S is greater than zero, while the R.H.S is less than 

zero, which is impossible. 

Therefore if aq > 6t, then rq > rt. 

Furthermore the Theorem is proved since n ^ aq > 0t ^ 0, 

implies that the maximum and minimum radii of all circles 

tangent to Cp occur when a = n, and 0 = 0, respectfully. 

Thus rmin = ra, and r ^ = rb, are s.t. a,b lie on the diameter 

of C which contains p. 
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Proposition 4.2.6 Let R > 0. Let pe C, and let Cp be the 

circle generated by p, having radius rp. Then if we let 

d = 2R, h = R + rp + |p|, and k = R + rp - |p|, the radii of 

the minimum and maximum tangential circles to CP/ rrain and 

rmax/ are given by, 

r . mm = \jdh - h, and rmax = Jd~k - k. 

Proof: 

We first consider rmin, using 

Figure 4.5. For convenience 

and W.L.O.G. rotate p to lie 

along the horizontal axis and 

let rmin = ra. Let Da = a, 

Ipl = p. So we have, 

Da = p + rp + ra Figure 4.7 

Squaring both sides we see that, 

Da
2 = p 2 + 2 prp + rp

2 + 2 pra + 2rpra + r/ 
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Since Ca is properly spaced we know that, 

D2 = R2-2Rr . 
3 <3 

Thus we have that, 

R2 - 2Rr = p2 + 2pr + r 2 + 2pr + 2r r + r,2 
a x P P x a P a « 

Rearranging we see that, 

ra + (2R + 2rp + 2p) ra + p
2 + 2prp + r

 2 - R2 = 0, 

Solving the quadratic for ra, 

r a 

-2(.R + rp+p) +^4 (R + rp + p)
2 - 4 (p2 +2prp + Tp -R

2) 



Simplifying we see that, 
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rg = - {R + rp + p) + ̂ 2R (R + rp+p) 

If we let d = 2R, and h = R + rp + p, ra = rmiI1( this 

equation reduces to, 

r . = Jdh - h 
m i n v 

Now consider rmax as shown in 

f igure 4.8. 

Let r ^ = rbf and let Db = |b| 

From this we can see, 

Figure 4.8 
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p + r + v - R =» v = R - r - p. 
P " 

and, 

w + rb + \b\ = R =• w = R - rb - \b\. 

We also see that, 

w + 2r. + 2r + v = 2R. 
b p 

Thus we may write, 

[R - rb - \b\] + 2rb + 2rp + [R - rp - p] = 2R. 

Simplifying we have, 

\b\ = r
b
 + r

P ~ P-

Squaring both sides, 

b2 = rl + 2rprb + r2
p - 2prb - 2prp + p2. 

Since Cb is properly spaced, 

b2 = R2 - 2 Rrb. 

So we have, 

rl + 2 (R + rp - p) rb + (p2 - 2prp - R2) = 0 

Solving the quadratic for rb, then simplifying, 

rb = - (R + rp - p) + ^2R (R + rp - p) 

Again letting d = 2R, and k = R + rp - p, and rb = rmax, 

we see, 

"̂max ~ \[dk ~ k . 
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Example 4.2.7 If T is an acute Isosceles triangle with 

sides Y and base X, show that rmin = Y - h. 

Where h = R + Dr + r. 

- imin 

Figure 4.9 

Solution: Forming the Right triangle as shown in 

Figure 4.9 we see, 

(1) h2 = Y2 - {-)2 h = —JAY2 - x2. 
2 

The outer radius R, and rrain are given by, 

( 2 ) R ' = 

J4 Y2 - X2 
' rmin = ~ h. 
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Using (1) and (2), we have, 

rmin 

\ 
2Y2 •. —JAY2 - x2 - h 

yjAY2 - x2 2 

ly2 - h 

Y - h. 
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Example 4.2.8 Let pe C. Let Cp be the circle generated by 

p. If the two tangent circles as shown in Figure 4.10 lie 

along the diameter of a circle of radius R, show the shaded 

area, A, can be expressed as, 

A = n( 10B2 + 3r2 - 2 |p|2 - l{d [h3'2 * k3/2 ] ). 

Where, 

p = |p|, d = 2R, 

h = R + rp + p, and 

k = R + rn - p. 

Figure 4.10 

Solution: 

Since all three tangent circles are centered along the 

diameter it must be the case that these circles are the 

minimum and maximum tangential circles to Cp. 

By proposition 4.2.5, the radii of the minimum and maximum 



54 

By proposition 4.2.5, the radii of the minimum and maximum 

tangential circles are given by, 

rmin = " h ' rmax = ^ " k ' 

The total area then is given by, 

A = n { yfdk - k)2 + n ( rp)
2 + n { { d k - k ) 2 . 

Combining and expanding each term we see, 

= n ( d k - 2ki[dk + k2 + r* + dh + 2h<fdh + h2 ) . 

Letting h = R + rp + p, k = R + r p - p , d = 2R, 

A = n(2R (R + rp-p) -2jd k3'2 + (R + r - p ) 2 + r? P 

+ 2R ( R +rp+p) -2y/d h312 + (i? + rp+p)2j. 

Simplifying yields our desired formula, 

A = n( 10i?2 + 3rj - 2 p 2 - 2{d [.h3'2 + k3/2 ] ). 



CHAPTER 5 

GENERATED AREAS 

5.1 Introduction 

Let C = {(x,y)|x2 + y2 < R2}, let pe C. Let Cp be the 

circle generated by p. Recall that Cp is properly spaced if 

and only if, 

= i?2 - bl2 
p 2 R 

Definition 5.1.1 Let pe C, the area generated by p, denoted 

A(p), is given by the area of Cp. 

We say that two points in C generate non-overlapping 

areas, when the following requirement is met. 

Let p= (pi,p2) and q= (qi,q2) be two points in C. Then 

the distance from p to q is given by, 

d = J (<7X " Px)
2 + (g2 - P2)

2 • 
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If p generates a circle of radius rp, and q generates a 

circle of radius rq, then the respective circles will not 

overlap if only if, d ^ rp + rq. 

Thus if S = { px, p2, p3, . . . . , pn } is any collection of 

points in C with non-overlapping areas then the total 

area, A(S) generated by S is, 

A(S) = En(r„ )2. 
i = l 
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5.2 The Diameter 

In this section we evaluate the area generated by-

all points p, lying along a diameter of a circle, C, of 

radius R. See figure 5.1 

For convenience we will 

choose the origin of the 

x-y plane to correspond 

to the center of C, and 

our diameter to lie along 

the x-axis from [-R, R]. 

Figure 5.1 

Note: The area is symmetric with respect to the four 

quadrants. This enables us to evaluate the area in say, 

quadrant I, then multiply this result by 4, to give us the 

total generated area of the diameter D, denoted A(D). 
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Restricting our attention to the 

first quadrant we see that the 

curve, f, is traced out by circles 

of decreasing radii as we go from 

0 to R along the diameter, see 

Figure 5.2. 

Figure 5.2 

In order to evaluate this function in terms of area we 

must determine the height, h, of f at any point x e [0,R). 

Figure 5.3. 

wtJayJ&a, 

Figure 5.3 
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To find the h(x), we recall 

that f is composed of points 

which lie on circles whose 

centers lie along the positive 

x-axis. Therefore there exists 

a point pe [0,R), whose generated 

circle lies on f a distance h, 

from x. This is illustrated in 

Figure 5.4. 

Figure 5.4 

Recall that the radius of the circle with center at p, rp is 

given by, 

R2 - p2 
r = — . 
p 2 R 

So that for some point p e [0,R), 

Solving for h2 we have, 

•( h2 - I - P 2' 2 

2 R 
~ ( x - p ) 
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To maximize the height, h, we differentiate h with respect 

to p, then set the result equal to zero. 

2 h— = 2 dh _ , J?2 - p' 

dp \ 2 R ) 
(^E) - 2 (x - p) (-1) = 0. 

Note: For x * 0, the maximum does not occur at the enpoints, 

since h'(x) > 0 , and h'(x) < 0 if x > p. Thus the maximum 

of h occurs in (O, x). 

Simplifying the right, 

2h^T = \(Z2-P2)i-P) + 2 (x-p) = 0, 
dp R 

Dividing through by non-zero 2h, 

1 • r>2 (Rz - p<) (-p) + 2 (x-p) = 0, 
R 

Rearranging the right side shows, 

p 3 - 3 R2p + 2 R2X = 0, 

a cubic in p. 
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To solve this cubic, we note that since 

2R2x" 
2 J 

-3 R2 = RHx .4 v2 tf6 < o, 

for all 0 £ x < R, we have three distinct real solutions, 

Using Vieta's method of solving the casus irreducibilis, 

3 R2 \3 d3 1 = RJ, coscp 

-2R x 
-Rlx 

R3 
-x 
T 

Thus, 

costp = 
~x 
T <p = cos '(-?) 

So the three possible solutions to the cubic equation are, 

Pi 

P2 

P3 

2i?cos ( ) , 

2Rcos (— + ), 
3 3 

2JRcos (— + -^2) . 
3 3 
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Claim: p = p3. 

Proof: Suppose on the contrary that p = p:. For 0 ^ x < R, 

we have 

-1 < -— s 0 

Since cos (x) is decreasing on (-1,0] we have, 

cos 10 < cos 1(~—) < cos 1-1 
R 

(#) =» —cos 10 ^ —cos"1(-—) < —cos 1-1 
3 3 R 3 

n 1 -X, x , n 
<: —COS ( "— ) < — 

6 3 R 3 

Since cos(x) is decreasing on [0,n] we have, 

n ,1 n 
cos—< cos (—cos 1 ^ cos — 

3 3 R 6 

2i?cos — < 2iRcos (— cos"1 ( ) ) £ 2.Rcos — 
3 3 R 6 

R < p <: i/3 R 

which is impossible since pe [0,R), so p ^ px< 
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Suppose p = p2. Then by (#), 

1 _i_ 2n 1 , x . 2n ^ 1 -i - 2n 
— cos 0 + ^ —cos (-— ) + < —cos -1 + 
3 3 3 R 3 3 3 

5n 1 -i.x. 2n^. 
^ —cos (-— + < n. 

6 3 R 3 

On this interval cos(x) is decreasing, so 

.1 -i.x. 2n. 5n 
cosn < cos (—cos (-— ) + ) £ cos 

3 R 3 6 

2iRcosn < 2 jRcos (—cos 1 (- — ) + -?-5) ̂  2Rcos 
3 R 3 6 

~ 2 R *£ P2 — — ̂/3~ R . 

Thus p * p2. 

The only possible solution then would be p3. 

From (#), 

1 -1a 4n 1 -i.x. 4 n ^ l 4n 
— cos 0 + < —cos (-—) + < —cos -1 + , 
3 3 3 R 3 3 3 

2 5 s loos-M--) t in < 5n. 
2 3 R 3 3 
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Since cos (x) is increasing on [n,2n], we hcive, 

cos ^ cos (—cos 1 ( ) + -̂ -5 ) < cos , 
2 3 R 3 3 

0 < cos (— cos 1 ( , 
3 R 3 2 

0 <, 2 i?cos (—cos 1 ( ) < Rf 
3 R 3 

0 < p. < R. 

Thus, p = p3 is the proper root, and so 

P = 2J!cos(| • 

= 2f?cos (icos"(^) 
4n 

The radius of the circle with center at p, rp, is given 

by, 

R2 

r_ = 
- (4i?2cos2(—cos x(——) + ^ nK 

\ 3 R 3 I 

2 R 
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Therefore the height, h, of our curve at an arbitrary point 

x, is given by, 

h(x) = 
' R2-4R2COS2[— COS'1— +—J") 

\ 3 R 3 I 
2 R 

(x-2RcoJ-cos 1 — + -1h)) 2 
\ 3 R 3 / 

Thus the area under f is given by the definite integral, 

D ^ — A n ̂  1 ^ ^ 1 \ 2 i? -4i?̂ C0Si — c o s ' + • 
J i? 3 
2R 

(x-2 Rcol-cos~1—+~\)2dx 
*3 3 / 

To solve this integral make the substitution, 

6 = -tcos"1!—) . — , 
3 \ R I 3 
1 _ ,-i( -x\ . 4n 

then, 

d0 = — -1 
\ / \ 

^1 
R 

l - , ^ > 

dx 

/ 3^R2 -
•dx 

x' 

So, 

dx = 3\jR2 - x 2d0. 
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Now, 

0 = cos ^ (——) + -» 30 = cos'-'f — ) + 4n 
3 R 3 R 

30 - 4n = cos 1 (—-) 
R 

=» cos (30 - 4n) = —— 
R 

=• x = -i?cos30. 

Thus 

dx = 3/R2 - I?2cos230d0 = 3i?\Zl-cos230d0 = 3£sin30d0, 

Adjusting our limits of integration we see that, 

If x = R then 0= 

If x = 0 then 0= -^5 
2 

So our integral becomes, 

5n 

3n 
2 

a _ (• ( R - 4J?cos20V / \2 
Ai ~ J aJ J " ( -l?cos30 - 2i?cos0] 3JRsin30d0, 
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Simplifying we have, 

5n 

3 R' A1 = "" f (1 - 4 cos20) 2 - 4 ( cos30 + 2 cos0) 2 sin30d0 
2 3n 

Using the trigonmetric identities: 

cos 30 = 4 cos 0 - 3cos0 

and 

sin30 = 3sin0 - 4sin30, 

Our integral can be writen as, 

5n 

3J?2 3 
A1 = —— f (1 - 4 cos20) 2 - 4 (4cos30 - cos0) 2 ( 3sin0 -4 sin30) d0 

2 3n 

Simplifying we have, 

A, = 

5n 

3i?2 3 

1 2 , 
3n 

f j (1 - 4COS20)2{1 - 4cos20) (1 - 4cos20) (-sin0) d0 



We can further simplify the integral as, 
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5n 

A. 
3R 

1 2 
1-4cos20)2 {-sin0)d0 

3n 

2 

To solve we make the substitution u = 2cos0 

Adjusting the limits of integration, 

If 0 = , then u = 1, 

and 

if 0 = 
3n 

then u = 0. 

Thus the integral can be represented by, 

a1- 5 

Ai = ^-f(l~u2)2 du. 

Evaluating this integral, 

A, = 3 R' 
( [ l u - " 2 ) 1 - J f + A s i n - ' u ] j) 

A, 3 R: 
• ( [ o + o + o + | | ] - [ o + o + o + o]). 
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Finally multiplying this result by 4 to give us the total 

area, A(D), we have, 

A{D) = (if)11*2' 
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5.3 The Secant Line 

A generalization of the previous diameter example leads 

us to examine the area generated by any secant line S, 

Figure 5.5 to a circle C, with a fixed radius R. We state 

the following as a proposistion. 

Proposition 5.3.1 Let C be a circle of radius R, and let S 

be a secant line to C, having length X. Then the area 

generated by S, is given by, 

A(S) = 
16 

a-\JT~oF (14a2 + 3a - 2) + (8a4 + 8a2 - 1) sin 1 a 

a = 0<a<l. 
2R 

Figure 5.5 
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Introduction to proof: 

The proof of proposition 5.2 closely parallels that of 

the diameter example in section 3, familiarization with that 

example is therefore useful. The main difference between 

the two is that instead of integrating along the x-axis from 

0 to R, we will be integrating along a shifted x-axis 

from 0' to w, where w is half the length of S. A second 

notable difference is the lack of reducibility in the 

solution of the cubic equation, which is necessary to 

determine the height h, of our curve f, at an arbitrary 

point x lying along S. 

Preliminary results: 

Let C be a circle of 

radius R, with it's 

center at the origin, and 

let S be a secant line to 

C having length A as shown 

in Figure 5.6. 

Figure 5.6 
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Let D0 be the minimum distance from 0 to S, let X = 2w. See 

Figure 5.7, so we have, 

(1) w2 + D2 = R2 
O 

w
2 = R2 - D2 . 

0 

Figure 5.7 

Next, let p be an 

arbitrary point on S, see 

Figure 5.8. Then 

forming a second right 

triangle we see that, 

(2)D2 + | O'-pl2 = D2 . 
Figure 5.8 
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Figure 5.9 

Using (2) we have, 

Let Cp be the circle generated 

by p. If Dp represents the 

Center distance between C and 

Cp, see figure 5.9 , then 

the radius of Cp, denoted rp, 

is given by, 

R2 - Dl 

2 R 

R2- (D* + \0'-p\2) (R2-Dl) -lO'-pl5 

2R 2 R 

Using (1) , we see rp can be written as, 

(3) rn 
w2 - 10/-p|2 

2 R 
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With these preliminary results stated, we are ready to 

prove Proposition 5.2. 

Proof: 

Let S be a secant line to a circle, C, of radius R. Rotate 

S parallel to the x-axis, with the center of C placed at the 

origin of the x-y plane as shown in Figure 5.10. Figure 5.11 

shows the area generated by all properly spaced circles 

whose centers lie along S. 

Figure 5.10 Figure 5.11 
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Due to the symmetry of 

the area generated the 

secant line, we will 

again be evaluating only 

the top right area, 

shown in Figure 5.12 

then multiplying this by 

4 to give us the total 

generated area, A(S). 

0' 

Figure 5.12 

Let x be an arbitrary point 

along S. Here we will 

restrict x to lie in the 

first quadrant. Let f be 

the curve traced out by all 

circles with centers along 

w, as shown in Figure 5.13. 

Let h be the height above x, 

that is h = f (x) - 0'. 

0' 

Figure 5.13 



Then for some p on S, we have, 
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{4) h2 + \x-p\2 = r 

h = J r
p

2-\x-p\' 

For convenience let 0' = 0. 

This will allow us to 

integrate f from 0 to w. This 

is illustrated in Figure 5.14, 

Also now we have, 

P x 

Figure 5.14 

I*-P| = (x-p) . 

Using (3) and (4), h may be expressed as, 

*2 - l ^ # - u - P > -

To maximize h, we differentiate (5) with respect to p, then 

set the result equal to zero, 

2 h dh 
dp 
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The left side being equal to zero only if, 

p 3 - (w2 + 2Rz)p + 2Rx - 0 

This cubic in p is found to be casus irreducibilis 

since, 

( 2JR x)2 + ( (W + 2R ) )3 = r4x2__1_ (w2+2r2)3 < Vxe[0, w) 

We therefore have three distinct real solutions. 

So again we use Vieta1s method for solving the casus 

irreducibilis, 

P = 
w2 + 2R2 \3 

, and cos<p = 

-2 R2x 
2 

coscp -R2x 

w + 2R2 |3 



Thus, 
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<p = cos" 
-R2X 

w2 + 2R 13 

The three possible solutions to the cubic are, 

p1 = 2 p 3 cos , 

= 2p 3 cos + i£), 

p, = 2p cos I— + (| + f ) . 

A proof similiar to the one found in our diameter example 

shows the proper root to be p3, thus p = p3 and we have, 

A 
| w2 + 2R2 | 

cos 1 -1 
— cos 
3 

-R2X 4n 

w2 + 2R2 \3' 
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Define h(x) = f (x) . Then our area, Alt is given by the 

definite integral, 

A1 = Jf(x)dx. 
o 

Substituting in for p, we have, 

A, -J 

/ o AI W2 + 2R2 I 2 - 4 cos'' 1 -l 
— cos 
3 

-R2X 4n 

w2 +2R2h' 

2 R 

x - 2. 
W2+2R2 

cos 1 - i 
—cos 
3 

-R2X 

(-
2+2R2h' 

4n 
dx. 
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Letting w = aR, for some 0 < a < 1. 

• T 

a2R2 - 4R2\—-—i cos' 1 -i 
— cos 
3 

-x 4n 

R. 
a2 + 2 p 

2 R 

x - 2 R 
\ 

cos • C O S -1 
-x 

RL 
a2+2 b 

4n 
dx. 

By letting, 

k = a2 + 2 

3 ' 

our integral becomes, 

- 1 
R-

oi2 - 4 k2 cos2' 

x - 2Rk cos 

1 _i/ -x \ 4n) — cos 1+ — 
3 \ Rk3' 3 J j 

- i c o s " 1 ! — 1 

3 > Rk3' 3 ) t 
dx. 
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To solve, make the substitution, 

3 \Rkll 
4n 

Then we see, 

x - -Rk3 cos39 =» dx - 3Rk3sin3QdQ 

Adjusting our limits of integration, 

I f x = 0, then 0 = 3n 

I f x = aR, then 0 = 1 _i| -a \ 4n — cos — I + — 
3 k3 3 

Our integral becomes, 

Ai = 

-icos"l(—)+ 

3 \ jt3 r 

f 

4n 
*3' 3 

3n 
2 

R2 

4 |a
2 -47c2cos2e|2- [-Rk3cos3Q-2RkcosQ^2 

1^3 Rk3 sin3oj d0. 
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Simplifying under the radical we have, 

A, = 3 R' 
-icos"1/—)+ — 3 \k3r 3 

3n 

2 

f \ j (a2-4k2cos2Q)2- Ak2 (k2 cos 30+2 cos 0 ) 2 

(k3sin30) c?0. 

Using the trignometric identities, 

cos 30 = 4cos30 - 3cos0 

and 

we have, 

sin30 = 3sin0 - 4sin30 

(1 - 4 cos20 ) (-sin0) , 

1 2 

icos-ilS),— 
3 \k3t 3 

4n 

3n 
2 

/ (a2-4A:2cos20)2-4A:2(4^2cos30-3jt2cos0+2cos0) 2 

(A-2-4Jr2cos20) (-A:sin0) d0. 
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Simplifying, 

1 - 1 / - Q f \ , 4n 
_c°s H-ih— 

3 R 
A. = — : 1 2 

2 3 \ Jt3 / 3 

J \j(a2-4/c2cos20) 2 -4k 2 (4 k2cos30-cos0 (3k2-2) 
3n 

(k2-4k2cos2Q) (-^:sin0) d0. 

Letting 3k2 - 2 = a2 under the radical, then simplifying, 

* 1 ' — 
1 2 

icos-TEJY. 
3 \ 1̂3 / 

4n 
3"" \*3/ 3 

J ^ (a2 -4JT2COS20 )2- 4.fc2cos2© {a2 -4k2cos20 ) 
_3n 

2 

(k2-4k2cos2Q ) (-ksin0) d0. 

Simplifying, 

4 - ^ - / 
_ 3 R 

2 
^ (a2 - 4£2cos20 ) 2 (1 -4£2cos20 ) 

3n 

(k2 - 4k2 COS2Q) (-k sin0) d0. 
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Making the substitution, 

u = 2kcosQ -> du = -2./rsin0 d0, 

and adjusting our limits of integration, 

I f Q - then u = 0. 
2 

If 0 = —cos 1(—— )+-liE then u = a. 
3 V Jt3' 3 

* [The proof that this equality holds for all a, such that 

0 < a < 1 can be found in appendix 1, on page 88.] 

So we have, 

o p 2 a, 
=——JY(a2-u2)2{l - u2) (Jc2-u2) du. 

4 o 

Simplifying, 

,j2 « 
A, = 3tf" 
1 4 o 

j{a.2-u2) (k2-u2) J (1 - u2) du. 



85 

Upon expanding we see, 

A, = 2 £ 
1 4 

a' 
« a a 

•kZf/a^T du- (a2 +k2) Ju2J (1-u2) du+ J u^(l - u2) du 

Solving each integral we have, 

A, 3 R: 01 k ^u\j 1-u2 + sin 1 u | ) 
o ' 

u^/l-u2 - 2 us/ (1-u2)3 + sin"1 u | I 
n / 

2 

a2 + £2 

8 

* 1 V ( 1 " " J ) 3 + T g s i n l u I) 

Evaluating each integral solution from 0 to a, then 

combining like terms we have, 

A, = 3 R' 
a. 

2 J:2 1 
(a2+k2) + — ) 16 ) 

+ o^( 1 -a2) 3(-i (a2 +k2) - Ji. (4a2+ 3 ) ) j 



By letting, 

a2 + 2 

we have, 
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A, 
3 R' 

a 

Simplifying and multiplying by 4 yields the desired result, 

A(S) 
R2 

16 
a^l-a2 (14a2 + 3a - 2) + (8a4 + 8a2 - 1) sin xa 

Where, 

a = 
2R 
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APPENDIX 1 

If 0 < a < 1, then 

a = 2 
a2 +2 

cos 1 -l 
— cos 1 
3 

/ \ 

-a 4n 

V / a2+2 \*| / 
+ " T 

/ 

Proof: 

We begin with the following equality, 

or + 8 a2 + 8 

Multiplying top and bottom of the left by (a2+2), then 

multiplying top and bottom of the right by (1-a2)2, then 

rearranging the right. 

3 (a2 +2) 3 (1 - a2) 2 

(or + 2) (a + 8) (a2+2)3.- 27a2 
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Rewriting both sides we have, 

a2 + 2 \/ a2 + 8 

3 '\a
2
+ 2 

1 (1 - a2)2 

Dividing both sides by 

a' + 2\2 

3~/ ' 

then taking the square roots of both sides, 

(a2+2\| a2 + 8 
\ 3 1 \ a2 +2 

(1-a2) 

a2 +2 

~ 3 ~ / N 

a2 + 2 \3 2 1 - cr 

Multiplying both sides by 2/3, and top and bottom of the 

right by 

a2 +2 ̂2 
~~T~I ' 

we have, 

a2 + 8 J a2 + 2 \ 

a 2+2 ' 3 / 
a2 + 2 \3 [ s t l l } - * 



Rewriting both sides, 
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\ 4 (cr +2) 

a' 

4a2 + 8 -3a2 3(
a2+2| 

a2+2 h 

a2 + 2 \3 
-or 

a2 + 2 \ 2 2/,. 2 \ 
— ) • 3 1 1" 0" 

(^2). 

Further manipulation yields, 

4 (a2 + 2) -3a2 

4 (a2 + 2) 

a2+2\-5 , 2 2(i> 
a2 +2 

1 
3 

a + 2 \3 

a2+2h I a +2 q2 

(0^2)3. a2 



This is equivalent to, 
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d . -i 
— sin 1 
da 

a 

a2+2 \"f 

1 d . _j. 
sin 

3 da 

a 

a 
'rT 

Taking the integrals of both sides, 

sin -l 
a 1 . -x 

— sin 
3 

a 

V /a2+2W 

Taking the sine of both sides and using the fact that, 

cos 3n 0 , and sin 
3n 

= -1, 

we may write, 

a 

a2 + 2 

3n 
cos — cos 

2 
1 . -i 
— sin A 
3 

a 

I a2+2 \~2 > , 

3n . 
sin — sin 

2 
1 . 
— sin x 
3 

a 
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Using the difference of angles formula for the cosine, we 

have, 

a 

A 

cos 

a2+2 

3n 1 . -i 
— + — sin 
2 3 

a 

I a2+2 \i ) 

Using the trigonometric identity, 

sin"1 (0 
n = cos (-0) - — , 

we see that, 

a 
cos 

a2 + 2 

/ 
/ / \ \ \ 

3n 1 
-f cos"1 

\ 

-a n 

\ 

3 
cos"1 

\ \ f a2+2 \|J *2 
/ / 

Rewriting yields our desired result, 

a = 2; a
2+ 2 

cos 
1 
— cos 
3 

-a 

/ a2 + 2 W / 

4n 



BIBLIOGRAPHY 

[1] Euclid, with translation by Sir Thomas L. Heath, The 

Elements, Dover, New York, New York, 1956. 

[2] Ross Honsberger, Mathematical Gems II, Mathematical 

Association of America, United States, 1976. 

93 


