
37?
/J Bid

m- qsrs't,

A UNIFYING VERSION MODEL FOR OBJECTS AND SCHEMA IN OBJECT-

ORIENTED DATABASE SYSTEM

DISSERTATION

Submitted to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

Doctor of Phylosophy

By

Dongil Shin, B.S., M.S.

Denton, Texas

August 1997

Shin, Dongil, A Unifying Version Model for Objects and Schema in Object-Oriented

Database System. Doctor of Philosophy (Computer Science), August, 1997, 78pp., 1

table, 8 illustrations, references, 55 titles.

A traditional database management system generally supports applications that

consist of a large number of instances for relatively few number of data types. In contrast,

application environments that are supported by object-oriented databases (OODBMS) are

characterized by a small number of objects (i.e., individual records) linked to a large

number of classes (i.e., schema). The large number of types or classes in an OODBMS

makes it more likely that these data elements will be changed sometime during the life of

the database. These changes may occur for several reasons such as flaws in the design,

changes to requirements, or the need to reuse classes. As a result, there is a greater need

for object-oriented database systems to support the efficient management of object and

schema versionings to handle changes to the data.

There have been a number of different versioning models proposed. The research

in this area can be divided into two categories: object versioning and schema versioning.

Although researchers acknowledge that both object and schema versioning is necessary,

they have tended to handle these items separately. That is, most OODBMS models

provide users with two different sets of functions; one for handling changes to objects,

and another for schema changes. As a result, most OODBM systems contain code that

supports both object and schema versioning, and programmers must learn two different

versioning techniques to handle the two types of changes.

In this dissertation, both problem domains are considered as a single unit. This

dissertation describes a unifying version model (UVM) for maintaining changes to both

objects and schema. UVM handles schema versioning operations by using object

versioning techniques. The result is that the UVM allows the OODBMS to be much

smaller than previous systems. Also, programmers need know only one set of versioning

operations; thus, reducing the learning time by half. This dissertation shows that UVM is

a simple but semantically sound and powerful version model for both objects and

schema.

37?
/J Bid

m- qsrs't,

A UNIFYING VERSION MODEL FOR OBJECTS AND SCHEMA IN OBJECT-

ORIENTED DATABASE SYSTEM

DISSERTATION

Submitted to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

Doctor of Phylosophy

By

Dongil Shin, B.S., M.S.

Denton, Texas

August 1997

Copyright

by

Dongil Shin

1997

111

ACKNOWLEDGEMENTS

First of all, I really appreciate Dr. Robert P. Brazile for his excellent advising and

encouragement during the course of this dissertation. I would like to thank Dr. Swigger

for her consturtive comments on the structure of the dissertation and careful reading of

my work. I would also like to thank Dr. Farhad Sharokhi and Dr. Tom Jacob for serving

on my Ph.D. committee.

I also owe to Dr. Kathleen Swigger and Dr. Robert P. Brazile for hiring me as a

Research Assistant for the course of my Ph.D. study. They helped me financially and

allowed me to participate in research activities.

I am especially grateful to my parents. They made it financially possible for me to

study and live since I started my studies in United States. I thank my father for putting

pressure on me to speed up my writing, and my mother for encouraging me all the time.

I would also like to thank my two daughters, Rachel and Michelle, for giving me

inspiration and the joy of life. Most of all I'd like to thank my wife, Sunyoung Chung, for

being so supportive despite having two great children to take care of. I dedicate this

dissertation to my wife, Sunyoung.

IV

TABLE OF CONTENTS

Page

LIST OF TABLES vii

LIST OF ILLUSTRATIONS viii

CHAPTER

1. INTRODUCTION 1

2. PREVIOUS RESEARCH ON VERSIONING 5

Basic Concepts
Versions of Objects

Batory and Kim
Chou and Kim
Klahold, Schlageter, and Wilkes
Landis
Rumbaugh
Vines, Vines and King
Agawal, Buroff, Gehani, and Shasha

Versions of Classes
Bjornerstedt
Chiueh
Kim and Chou
Penny and Stein
Skarra
Zicari

Summary

3. UNIFIED VERSION MODEL 20

Description of the Model
UVM Operations

Creating Different Versions of Objects and Classes
Objects

v

Classes
Deleting Versions of Objects and Classes

Accessing Versions of Objects and Classes
Accessing Instances When There Are Versions of Classes
A Complete Example

4. IMPLEMENTATION OF UVM 37

Persistent Objects and the DBO Class Library
Using DBO to store Versions of Objects and Classes

Modifying the UID for Versioning
The Set of Classes for UVM

Class UVM
Class UVMNode
Class UVMAttribute

Special Implementation Issues
The C++ Specification for UVM

5. CONCLUSION 48

UVM Features
Implementation Results
Potential Disadvantage
Future Research

Class Evolution
Evaluation
Alternate Implementation Strategies

Conclusion

Appendix A C++ Class Definitions 54

Appendix B. Introduction to DBO: A Simple Object Manager 60

BIBLIOGRPHY 70

VI

LIST OF TABLES

Table Page

1. Versioning functions inUVM 26

Vll

LIST OF ILLUSTRATIONS

Figure Page

1. Unifying Version Model 22

2. Creating Versions of a Person Object 27

3. Creating Versions of a Person Class 30

4. Creating Versions of an Instance and a Class 34

5. Accessing Version of an Instance for the Different Class 36

6. A Derivation Hierarchy of the Unifying Version Model 38

7. Version Derivation Tree 42

8. Dynamic Object Conversion 46

Vlll

CHAPTER I

INTRODUCTION

Traditional data processing applications usually have a large number of instances

of a relatively small number of different types of data. As a result, traditional database

systems exist to support the long-term persistence of this kind of data. For example, a

typical accounting database for a large bank contains millions of master records that

describe each deposit or withdrawal credited or debited against an account over the

course of a billing period. In order to accommodate these types of transactions,

conventional database management systems have evolved to provide efficient ways of

storing and accessing such regularly structured data.

In contrast, application environments which object-oriented databases

(OODBMS) support are characterized by a small number of objects (i.e., individual

records) linked with a large number of classes (i.e., schema). Moreover, frequent object

and schema changes are the rule rather than the exception (Atkinson et al. 1989). Design

objects will often undergo a number of changes to both values and their logical

structures. These changes arise due to many reasons: design flaws, changes in

requirements, the need for reusability and extensibility of classes, or the need for

comparability with other systems (Tresch. and Scholl 1993). For example, an OODBMS

that supports design information for a microprocessor chip will have to contain

descriptions for each part in terms of several million interconnected transistors. In

addition, one can expect these descriptions to change radically as the chip is being

developed. It is inevitable that the programmer will have to make changes to objects as

well as the schema in response to new requirements, bugs, or performance bottlenecks.

Thus, efficient management of object and schema versions to handle object and schema

changes is one of the most important functions of an OODBMS.

In order to improve both the efficiency as well as management of changes to

objects and schema in Object Oriented Databases, there have been a number of different

versioning models proposed. The research in this area can be divided into two categories:

object versioning (Zdonik 1986, Kim 1986, Chou and, Katz 1990, Agrawal et al. 1991,

Ahmed and. Navathe 1991, and Sciore 1991) and schema versioning (Banerjee et al.

1986, Penney and Stein 1987, Skarra and Zdonik 1986 and 1987, Bjomerstedt and Hulten

1989, Kim and Chou 1988, Zicari 1989, Casais 1990, Lerner and Habermann 1990,

Zdonik 1990, Andany, Leonard, and Palisser 1991, Clamen 1991, Roddick 1991, Bertino

1992, Odberg 1992, Bratsberg 1993, Monk 1993, and Scherrer, Geppert, and Dittrich

1993). Object versioning techniques keep track of different versions of the same object

whenever the data in the object changes but the schema remains the same. For example,

if a specific dimension value for an object is changed from five units to six units, the

system retains both versions of the object (the old and the new object) in the database. On

the other hand, schema versioning keeps track of changes to the schema and the

corresponding objects that relate to the different schemas. For example, if a new data

member is added to a class definition, the system must store objects created under both

the new and old versions of the schema.

Although researchers acknowledge that both object and schema versioning is

necessary, they have tended to handle these items separately. That is, most OODBMS

models provide two different sets of functions, one for handling changes to objects and

another for schema changes. As a result, most systems contain redundant code to support

both object and schema versioning, and programmers must learn two different versioning

processes to handle these two items.

In response to the problem presented above, this dissertation describes a single

model for versioning that includes both object versioning and class versioning. It was

observed that the schema is maintained in a database as instances of other (Meta)classes,

or in other words, as objects. It was also observed that the data and operations, at least

conceptually, are very similar for maintaining versions of objects and versions of classes.

This observation led to the idea that there could be a single model of versioning which

would be suitable for both objects and schema. While there are additional data and

operations necessary for the maintenance of instances of the classes that change, there is

a core set of data and operations for the maintenance of versions of both objects and

classes that can be identified and included in a single model.

The benefits of a single model are: (a) it is less complex; (b) there is a reduction

of redundant code and data; and (c) it is a more elegant model for versioning.

Therefore, this dissertation describes a unifying version model (UVM) for

maintaining changes to both objects and schema. UVM handles schema versioning

operations by using object versioning techniques. The result is that the UVM allows the

OODBMS to be smaller and simpler than previous systems. Also, programmers need

know only one set of versioning operations, so it reduces the learning time by half. This

dissertation will show that UVM is a simple but semantically sound and powerful version

model for both objects and schema.

The schema is the definition of the database, and in an object-oriented system the

schema is represented by a set of class definitions. Therefore in the remainder of this

discussion, the schema and schema versions will be referred to as classes and class

versions.

The next sections of the dissertation are organized as follows. Section 2 presents a

discussion of previous research on object versioning and class (schema) evolution.

Section 3 introduces the Unified Version Model and provides a detailed description of the

various components of the model. Section 4 presents the DBO Class Library which can

be used to implement the model. Section 5 presents the conclusion and lists topics for

future research.

CHAPTER II

PREVIOUS RESEARCH ON VERSIONING

Basic Concepts

This section introduces the basic concepts and problems of management systems,

with specific reference to object-oriented databases (OODBMS). In OODBMS, an object

that is associated with a state and a behavior represents each real world entity (Chou and

Kim 1988). The state is represented by the values of the object's attributes, while the

behavior is defined by a method acting on the state of the object whenever it is invoked

(Chou. and Kim, 1986).

A set of objects that have exactly the same attributes and methods are called a

class. The class defines the implementation of a set of objects. The term Instantiation

means that the same class definition can be used to generate objects with the same

structure and behavior. In this sense, a class acts as a template for the creation of objects.

A schema, in turn, is a set of class definitions, including any relationships to other

classes. This relationship is commonly represented as a hierarchy, and classes are said to

be associated with each other through an inheritance hierarchy (Chou. and Kim 1986).

A version of an object can be thought of as a semantically significant snapshot of

the object taken at a given point in time (Chou. and Kim 1986). The term semantically

significant means that a new version of an object is created only when a major, as

opposed to any, modification has occurred. Derivation and history are terms used to

describe the conceptual mechanism of version management.

A version model is defined as a description of the data structures that store the

information necessary to maintain versions of objects and the operations necessary for the

manipulation of those data structures. Kats (Katz 1990) surveyed various version models

and provided a common terminology and collection of mechanisms that underlies any

version modeling approach. For example, his research suggests that derivation and

history are two basic conceptual ideas used in version management. An object's

derivation refers to the object's previous version, while an object's history defines how a

given version was arrived at over a period of time (Landis 1986). The relationship among

versions can be represented as either a tree or graph. Further, the history of an object or

class is maintained to show how a given version was derived. History information can be

structured and saved in many forms.

In general, a version of a complex object consists of specific versions of its

component objects which is sometimes referred to as an object's configuration (Vines,

Vines, and King 1988). This particular feature enables a version of a complex object to

establish a link between itself and versions of each of its component objects. A

configuration is said to be either static or dynamic. If the user explicitly and permanently

defines the link, then the configuration is considered static. If the versions are linked

together at runtime, then the configuration is dynamic (Vines, Vines, and King 1988).

Because objects can sometimes contain references to other objects (primitive or

complex), which can, in turn, be referenced by still other objects or versions, programs

that manage versions must have some type of mechanism for notifying and for

propagating changes (Kerr, Chan, and Cooper 1992) to objects. It must also have a way

of supporting different versions of instances of classes, objects, and versions of versions.

Most versioning systems contain three general operations for version control: creating,

accessing, and deleting versions (Chou. and Kim, 1986). Creating a new version requires

that the system locates a particular object, and records and stores any changes to that

object. Accessing a particular version requires that the system understand how to convert

the original version to the latest version, either in a backward or forward manner.

Backward and forward compatibility and automatic conversion (building) of versions is a

desirable feature of versioning systems (Clamen 1991). Deleting a version requires that

the system identify the correct version to delete.

One final aspect of version management is the need to apply all the above

functions to supporting class versioning. Because of the nature of OODB applications, it

is probably more common to alter or change the structure of classes than instances of

objects. Therefore, it is useful to have a versioning mechanism that applies to both classes

and instances of classes.

Due to the lack of a standardized model for version control, various version

models have been proposed. Although many issues have been addressed by this research,

no single model has been proposed that is able to create versions for both classes and

8

instances of classes. Current models concentrate on creating either versions of instances

of classes, where the primary issues are maintenance of derivation information,

configuration management, and change notification or versions of classes, where the

primary issues are backward/forward compatibility and automatic conversion of instances

among the various class versions (Monk and Sommerville 1992). The current activities in

these two categories of models are summarized in the following sections.

Versions of Objects

Various version models have been proposed and implemented, although research

in this area has focused on creating versions for a single object. In this section, key

research describing the current version models will be reviewed. The major areas of

research have centered on implementation issues in three areas: (1) maintenance of

information about how to derive versions of objects; (2) configuration management; and

(3) notification to objects about changes among the various versions. Below is a

description of some of the systems that address these particular issues.

Batory and Kim

Batory and Kim (Batory and Kim 1985) examine the issue of representing

versions for a VLSI CAD application and propose using an extension of the E-R model

for this purpose. Other researchers who address the version representation issue are

Beech, Chou, Dijkstra, and Kafer.

This particular research introduces four basic concepts: molecular objects, type-

version generalization, instantiation, and parameterized versions. Molecular objects are

introduced as a way of aggregating more primitive objects and their relationships. In the

Batory and Kim model, interfaces are used to specify an object type, and versions are

represented as instances of that type. Versions are viewed as an alternative way of

implementing revisions to previous versions, with no explicit support for derivation

history.

The model's instantiation mechanism separates use of design data from its

definition. Parameterized versions are basically a way to support dynamic configurations.

The fourth mechanism, parameterized versions, is used to support dynamic

configurations. Since a molecular object can be bound to a specific version of its

component or can reference a component's type, it can be used to gain access to any

component.

Batory and Kim also address the issue of change notification by using timestamp

information to limit the range of messages that must be sent.

Chou and Kim

Chou and Kim (Chou. and Kim 1986 and 1988) describe a model that supports

versions, derivations, and operations based on workspaces that provide check-in/check-

out operations and dynamic configuration binding via a context mechanism. They are

particularly concerned with the problem of notifying the system about changes that have

occurred. They distinguish between message-based and flag-based notification

mechanisms. Message-based notification can be sent either immediately or later, whereas

10

flag-based notification is sent whenever the user is working on a particular object that has

undergone a change. Because of the difficulty of successfully limiting the scope of

changes, the authors' approach to change propagation is to limit changes to a single level.

That is, only the objects that directly reference the changed object undergo change, and

the process does not recurse.

Klahold, Schlageter, and Wilkes

Klahold et al. (Klahold, Schlageter, and Wilkes 1986) propose a version model

based on the concept of a Version Graph that is designed to represent the

ancestor/descendent interrelationships among versions. Similar to other authors who use

graphical representations (Chou. and Kim 1986 and Kim and Chou. 1988), the authors

employ partitions to show groups of versions according to their level of consistency.

They also provide support for different views of versions.

Landis

Landis (Landis 1986) describes a version model that was used for the initial

design of the Ontologic data model. The research introduces four important ideas: non-

linear history, version references, change propagation, and scope limitation. Because

versions of objects are organized like branches on a tree, the history of a particular object

can be derived by simply following the links up (or down) the tree. Each branch of the

tree represents a particular version of the object. As a result, the system can easily

identify the current version as well as any default branch.

11

Version references are proposed as a mechanism to support dynamic

configurations. Historical references are always bound; that is, once a version is

superseded, any reference to other versions cannot be altered. References from current

versions that are not explicitly bound always refer to the current version of the target

object.

Rumbaugh

Rumbaugh suggests using a simple mechanism for controlling change

propagation which is based on the idea of assigning a propagation attribute for particular

operations (Rumbaugh 1988). These attributes can take on one of four values: 1) none, if

the particular operation does not propagate; 2) propagate, if the operation should be

applied to both the relationship instance and the related object; 3) shallow, if the

operation should be applied to the relationship instance but not the related object; and 4)

inhibit, if the propagation should be suppressed for a particular period of time. Although

the mechanism was originally proposed for operations such as copy, destroy, print, and

save, it proved was for controlling change propagation.

Vines, Vines and King

Vines et al. describe the version and change control model of GAIA, an object-

oriented framework for an ADA-programming environment developed for Honeywell

(Vines, Vines, and King 1988). Their approach for change control is based on four

related concepts. First, timestamps rather than version numbers are used to keep track of

12

the relationships among various versions. Second, explicit relationships between objects

are created to define the impact of a specific change. Third, a special object is created

whenever a human or the machine issues a request to change an object. This special

object then tracks the change as it evolves and provides the anchor for an audit trail. A

change notification object is spawned whenever a change request is propagated along

version- or change-sensitive relationships. Finally, configuration objects are introduced

as a way of grouping changes.

Agrawal, Buroff, Gehani, and Shasha

Agrawal et al. (Agrawal et al. 1991) present versioning techniques used in the

Ode (Agrawal and Gehani 1989) object-oriented database system. The authors built a

number of powerful language primitives that implement a variety of functions for

performing versioning. The following are the important features introduced in ODE.

• Object versioning is orthogonal to type; that is, versioning is an object

property and not a type property. As a result, users can create new

versions of an object without having to make changes to the type

definition of that object. All persistent objects can be versioned, and both

versioned and non-versioned objects of the same type can be created.

• Reference to an object can be bound statically to a specific version of the

object or dynamically to the latest version of the object. Static binding is

useful for configuration management because it can be used to refer to

specific versions of component objects. Dynamic references are usefUl

13

because it can be used to track the latest versions of constituent objects.

• Both temporal and derived-from relationships between versions of an

object are maintained. Temporal relationships that reflect the history of an

object are important for historical databases and for databases that support

time. Derived-from relationships reflect the past history of an object and

can be useful for software engineering environments. The derived-from

relationship can also be used to identify differences between two versions

of the same object, a method sometimes used to store the version itself.

Versions of Classes

Whenever the designer changes a class definition, there is a possibility of creating

a new version of the class. This is known in the literature as schema evolution (Clamen

1994). Since schema evolution is a term applied to both non-object-oriented databases as

well as OODBs, this paper will refer to the process of changing the database definition as

changing the class definition or class versioning. Class changes result in a gradual

changing of the structure of the database, either to rectify the lack of some unforeseen

data storage requirement or to make the database conform to the changes in the real

world.

Thus, the definition of a database cannot be changed without considering what

will happen to the data whose structure is described by that definition. Unfortunately,

data may be created under the new definition that has a different structure than the data

created under the old definition. As data continues to be changed, the data and database

14

definition become inconsistent. Thus, one of the major issues with respect to class

versioning is insuring that the data is both backward and forward compatible. A class is

said to be backward compatible if a query that is formulated after the class definition has

changed can access data created before the class definition was changed in the same way

as data created after the change. Similarly, a class change can be said to maintain forward

compatibility if any query that is embedded in a program to access instances of a class

can retrieve instances that were created after the class changes were made.

There are basically three techniques used to do class versioning: Database

conversion which means that the system simply restructures the database; Class

versioning with views which means that the system creates a separate view of the

database whenever changes are made; and Class versioning without views which means

that the system continually manages the classes as well as all the versions of the classes.

Only class versioning without views supports both backward and forward compatibility.

The second major issue surrounding versions for classes is the problem of

restructuring the objects to conform to any modifications to the database that occur as the

result of the creation of a new version. The most straight forward approach to this

condition is to simply convert the database whenever changes occur (Banerjee and Kim

1987, Kim and Chou 1988, Narayanaswamy and Bapa Raol 1988, Ariav 1991, Ewald

and Orlowska 1993, Tresch. and Scholl 1993, Koerkotte and Zachmann 1993, and Breche

1996). A second approach is to wait until the user requests a version and then make the

necessary changes (Penney and Stein 1987, Tan and Katayama 1989, Nguyen and Rieu

15

1989, and Roddick 1991 and 1992).

Similar to the discussion of object research, descriptions of some of the systems

that address some of these issues are given below. The systems reflect both old and new

techniques for maintaining versions of classes.

Bjornerstedt

The AVANCE project developed general object versioning as part of their

prototype OODB (Bjornerstedt and Britts 1988,Bjornerstedt and Hulten 1989) and

extended this model to the versioning of class definitions. The system adopts a similar

approach to ENCORE in that it uses exception handling to resolve mismatches between

the expected and actual version found by the query. The exception handlers service the

query with values appropriate to the version of the class. Some unusual features of

AVANCE are its rigid separation between specification and implementation of classes

and its strict encapsulation of objects.

Chiueh

As a contrast to the other systems in this section, the Trait system avoids the

problem of schema evolution by dispensing with the idea of a rigid schema. Chiueh

(Chiueh 1994) justify their system by arguing that - "Pure type-based OODB models are

too restrictive to be useful in the context of engineering design (pp 168.)" He goes on to

propose a data model that supports classes and arbitrary attribute attachment.

In this system, a class definition defines the classes' initial attributes. The

16

attributes of individual instances may then be changed arbitrarily. In a traditional, rigid

class definition data model, the need for additional attributes would be handled in one of

two ways: 1) By modifying the whole class to include the new attribute, or 2) By creating

a new subclass for the instances requiring the new attribute and moving the instances to

the subclass. This approach runs contrary to the generally accepted idea that a class

definition should hold true for all instances of the class such as happens in GemStone1 s

representation invariant. Because of this problem, the database can have difficulty

managing changes to the attributes. The schema of the database becomes a suggestion

rather than the law. To some extent Trait represents a hybrid between inheritance-based

systems and delegation systems and may be better suited to applications that do not

require a rigid schema such as single user design applications.

Kim and Chou

The ORION system uses a deferred approach to class versioning; that is, it

updates instances of a changed class only when it is accessed (Kim and Chou 1988).

Orion defines four invariants of class modification that cannot be violated if a change to a

class occurs. The four invariants deal with the class hierarchy, name, origin, and full-

inheritance. The Name Invariant ensures against duplicate name fields for classes,

attributes, and methods. The Origin Invariant maintains single inheritance between class

and attributes with similar names. The Full Inheritance Invariant means that classes

inherit all attributes and methods of their ancestors, except in cases instances where there

are name conflicts.

17

Every OODB that maintains versions for classes must contains some form of

these invariants. There is often more than one way to satisfy the conditions for these

invariants, so rules are sometimes used to specify how the database should be changed.

Penny and Stein

GemStone performs class versioning similar to Orion. In addition to the

Invariants defined above, GemStone introduces four more (Penney and Stein 1987).

These constraints are used largely because of the differences between Orion's and

GemStone's data model. That is, GemStone does not support multiple inheritance and

uses a form of garbage collection rather than explicit deletion to maintain the classes in

the database. This simplifies the maintenance problem considerably because it means

that, unlike Orion, GemStone does not need rules to select the appropriate invariant.

Skarra

The ENCORE system is a prototype OODB that addresses some of the problems

of class versioning (Skarra and Zdonik 1987). Classes can be versioned, and the set of

versions of one class is defined as the version set of the class. In every version set, there

is only one version is termed the current version, and it is always the most recently

created version.

One serious limitation of ENCORE is its inability to associate additional storage

with existing attributes. This means that only a fixed, read only, default value can be

assigned to an attribute in the pre-version form of a class, although it is possible to get

18

around this problem by defining one or two additional attributes for each class.

In ENCORE, attributes with the same name, but referenced in different versions

of a class, are assumed to represent the same information. This means that it is impossible

to represent a change in the semantics of an attribute among versions, such as that which

occurs when you change the units of a height attribute from cm to inches. Such a change

requires the system to scale the numeric values during the conversion process.

Zicari

02 (Zicari 1989 and 1991) makes modifications to the database either in an

incremental fashion using specific primitives or by redefining the structure of single

classes as a whole.

No matter how a class is modified, 02 performs only those modifications that

keep the database definition consistent. 02 supports both the immediate and deferred

transformation of the database, where the deferred transformation is used by default. 02

transforms objects by means of either a series of default transformation rules or through

user-defined conversion functions.

Summary

There have been many approaches to both object versioning and class versioning,

and a list of these approaches has been presented in this chapter. However there is no

current approach that contains both types of versioning in a single model. The need for a

unified version framework has increased over the last several years, but unfortunately

19

such a framework has failed to appear. The subsequent chapters of this dissertation

contain a description for just such a model. Although the model itself is unique, there are

many elements of the UVM system that are similar to existing systems. For example,

many of the ideas for implementing versioning for objects UVM can be found in

(Agrawal et al. 1991). The overall concepts for versioning for classes for UVM are, in

part, from (Clamen 1994). Specific ideas for implementing backward and forward

compatibility are similar to (Clamen 1992). Finally, the model's dynamic conversion

techniques resemble those found it (Monk and Sommerville 1993). The remainder of the

dissertation now describes the model and its implementation in greater detail.

CHAPTER III

UNIFIED VERSION MODEL

One of the basic functions of any database system is to create and maintain

different versions of the data. A database system must also provide the ability to access

different versions of the data. These basic functions are also part of all object oriented

database management systems. However, previous research suggests that separate

systems are required to create and maintain different versions of classes and objects

(Brazile and Shin 1995a and 1995b). In spite of the large number of papers in the area,

researchers have proposed systems for unified versioning system of only objects or only

classes. In (Katz 1990) a generalized and comprehensive object version model for

engineering databases was presented, and a unified versioning for views and class

changes was explored in (Kwang and McLeod 1993). However, neither of these research

projects was able to unify both object and class versioning into a single model.

In contrast to the above research, this dissertation argues that a single, unified

version model (UVM) for maintaining and using object and class versions is possible.

The proposed model permits versions of both classes and objects to be represented in the

same way. The actual distinction between the two data types need occur only at the

20

21

implementation level. The UVM consists of 1) the data objects that are used to describe

the model, and 2) the operations that are necessary to maintain the model. The data

description includes a definition of the information that identifies the object or class from

which the new version is derived, and a list of the changes necessary to create the new

version. The list of the operations includes the functions that are necessary to create,

delete, and access different versions of objects and classes. In addition, this particular

UVM supports 1) versions that are orthogonal to type and 2) backward/forward

compatibility between different versions. Details of the basic model and its operations are

presented below.

Description of the Model

The object model for the UVM consists of three basic classes: UVM, UVMNode,

and UVMAttribute (see figure 1). The UVM class serves as a base class for the

versioning process and is inherited by every object or class that needs to have versioning

capability when it is initially defined. The primary function of the UVM class is to

maintain the references to the list of different versions of the objects or classes. A

separate UVMNode object is created for each new version of the object or class. Thus,

the primary function of the UVMNode is to store the instance of a particular version of an

object or class. UVMAttribute objects are created whenever a UVMNode is created and

are used to store the differences between the old and new versions. A more detailed

description of these elements now follows.

22

UVM
Node

UVM

UVM
Attribute

or
Metaclass

Any
class

one-to-many relationship

Inheritance relationship

parent relationship

child relationship

Fig. 1. Unifying Version Model

As previously mentioned, the UVM class is the base class for the versioning

process and is inherited by every class or object that one can anticipate will have a

version at some future time. Initially, the UVM portion of the object contains no

information. But as new versions of the class or object are created, the UVM class

maintains the list of references to the various versions of that class or object. The

unifying property of the UVM class is apparent in that all classes and objects inherit or

use the same basic structure for maintaining their versions. If the classes are ordinary,

then the versions represent modifications to data in individual object instances. If the

classes are meta-classes, that is, part of the definition of another class, then the versions

represent modifications to the class definitions of ordinary classes. While operations for

the classes and objects may differ at the implementation level, the basic data structure for

23

versioning is the same for both classes and objects.

Whenever a new version of a class or object is created, the system generates a

UVMNode. As new versions are added, a set of UVMNodes is created and stored as a

tree that has references to both the parent and children of each UVMNode. Information

about whether a specific UVMNode represents a version of either a class or object is

stored in the version© attribute. This is the only mechanism required to distinguish

between versions of classes and objects. Because specific modifications are stored in the

UVMAttribute object, the UVMNode maintains only a list of the attributes that have

changed in each version. This feature also allows the UVMNode to have a one-to-many

relationship with the corresponding UVMAttribute objects. The importance of the

UVMNode class is that it allows the system to store and retrieve distinct versions of an

object and show how these versions are related to one another. The specific attributes

contained within the UVMNode are as follows:

• versionID - a number identifying the specific version of the object or class

and the type (i.e., whether it is a class, object or a version of a class or

object)

• references - a variable that stores the number of times this specific version

has been referenced

• parentID - a pointer that designates the parent version of the object

• attribute list - list of attributes that have been changed from the generic

object

24

• children list - list of child version objects in the version derivation tree

As previously mentioned, whenever a new version is created, the system also

creates a UVMAttribute object. The UVMAttribute object stores information about the

attributes of a class or object that have been added, deleted, or updated. The

UVMAttribute contains information about each attribute's name, type size, position and

value. Whenever an attribute is deleted, the attribute's size field is set to -1. Whenever a

new attribute is created, the attribute's value field contains a system default value for the

new attribute or the update function defined by the user. The importance of the

UVMAttribute class is that this instance is created for ONLY those attributes that change.

Those attributes that do not change do not have a corresponding UVMAttribute instance.

Each UVMAttribute object includes the following attributes:

• attribute name - name of the changed attribute with generic object

• attribute type - type of the changed attribute

• attribute size - size of the changed attribute

• attribute position - byte position of the changed attribute in the generic

object

• attribute value - changed value of the attribute

As different versions of an object/class are created, a list of the changes are kept

along with a pointer to the generic object (i.e., the first version). The original version of

the object is stored in the database and is not modified until the entire class is destroyed.

Whenever the user asks for a specific object, the instance of the object (at the time of the

25

request) is used to derive a specific version of the requested object. However, if the

reference counter in the UVMNode exceeds a specified threshold, then the system

automatically creates a new object in the database rather than continue to derive the

correct version.

UVM Operations

A previously mentioned, UVM contains operations that create, delete, and access

versions of various objects and classes. While the specific details of the operations may

vary depending on whether they are applied to classes or objects, the functions are

basically the same for both types of data. For example, the system creates a new version

of an object whenever a value of a property changes, such as when a number is changed

from 5 to 6; whereas it creates a new version of a class whenever the property itself

changes, such as when the length of an attribute string is changed from 5 to 6. Similarly,

the system deletes versions of an object by simply deleting an instance of the object,

whereas it deletes versions of a class by deleting the object itself and all other objects

that represent a particular version. Finally, accessing a version of an object may require

building the version by starting with the generic object and applying whatever changes

are required to construct the target version. However, the system handles this building

process automatically.

Table 1. provides a detailed comparison of the basic operations for the UVM's

objects and classes. The table clearly illustrates that the functions differ only in the details

26

of their implementation. A more detailed description of these functions now follows.

Table 1. Versioning functions in UVM.

Creating versions UIDov = newVersion(UIDo) U1DCV = newVersion(UIDc) Creating versions

UID0V = newVersion(UIDov) U1DCV = newVersion(UIDCv)

Deleting versions DeleteVersion(UIDo) deleteVersion(UIDc) Deleting versions

deleteVersion(UID0v) deleteVersion(UIDcv)

Accessing versions UIDov = parentVer(UID0v) UIDcv = parentV er(UIDcv) Accessing versions

UIDov = child Ver(UIDov) UIDCV = childVer(UIDcv)

Accessing versions

UIDov = prevSiblingVer(UIDov) UIDcv = prevSiblingVer(UIDcv)

Accessing versions

UIDov = nextSiblingVer(UIDov) UIDcv = nextSiblingVer(UIDcv)

UIDC is a U1
UIDCV is a UID c

UIDo is a UII
UIDov is a UID of

D of a class.
)f a class version.
> of an object.
• an object version.

M l

Creating Different Versions of Objects and Classes

Objects

As previously mentioned, the user is allowed to change an object without

necessarily creating a new version of the object. For example, if the user detects an error

in the data, then he can change the information in the object without creating a new

27

version. In this particular model, a new version of an object is created only when the user

makes an explicit call to the function newVersion. It should also be noted that the

system does not actually create a new version of an object. Rather it creates a new

UVMNode and links it to the object. The UVMNode contains a version number and

pointer(s) to the information that has been changed. Thus, whenever the system needs to

retrieve a specific version of an object, it actually derives the information rather than

accessing it directly.

Changes an instance object

• N
Fersonl VO

f ^
Ferson l j f l

Don Shin Dongil Shin

777-77-7777 777-77-7777

3 - 3 - 6 6
^ —J

4 - 3 - 6 6
v. J

Creating a new object version in UVM

PBO

UVM

Don Shin

777-77-7777

3 - 3 - 6 6

DBO

UVM

Don Shin

777-77-7777

3 - 3 - 6 6

UVMNode

1.0

attList
parent=nuil
childLi$t=null

UVMAttrtbute

attName-name
attype«char
attSize=24
attPosition=0
attValue="Dongil Shin"

UVMAttrtbute
\

attName-date- of-birth
attype-char
attSize=9
attPosition=33
attValue="4-3--66"

Fig. 2. Creating Versions of a Person Object.

28

Figure 2 shows an example of how the system creates a new version of an object.

The top portion of the figure shows the original data for the Person object and the

changes the user wishes to make. As is indicated, the Person object contains attributes for

name, number, and date-of-birth. The changes the user wishes to make are to the name

(from Don Shin to Dongil Shin) and the date (from 3-3-66 to 4-3-66) fields. The bottom

portion of the figure shows how the system creates a new version of this data. The lower-

left part of figure shows the original instance for the Person object. The system first notes

the changes that need to be made by checking the differences between the two objects;

creating a new UVMNode with the appropriate version number (in this case a 1, because

it is the first version of this particular object); creating two new UVMAttribute objects to

store the changes; and updating the UVMNode's attribute list to include pointers to the

new UVMAttribute objects. The result of these operations are shown in the lower-right of

figure 2. Each UVMAttribute stores the changes to its corresponding attribute.

Classes

Similar to the procedure used above, UVM creates a new version of a class only

when the user explicitly requests it. A new class version is created in the same manner

that a new object version is created; that is, the user invokes a special function

newVersion that takes as an argument a class id or a class version id number (UID).

Although the operation is the same, the creation function for classes is somewhat

different. For example, the system maintains all the class definitions in a meta-class

called a Persistent Class Type (PCT). Similar to other classes in the database, the PCT

29

inherits its versioning capabilities from UVM. Therefore, whenever a new version of a

class is created, the system actually creates a new version (i.e., a UVMNode instance) of

the PCT instance that represents the specified class. For example, the Person class used in

the previous example would also have an instance of the PCT class called "Person."

Associated with the PCT instance of Person would be a set of instances of Attributes,

each defining one of the attributes in the Person class. For this particular Person class,

there are three Attribute instances: name, number, and date-of-birth. Thus, as changes to

the class definition are made, the UVMAttribute instances contain the changes to the

Attribute instances associated with the PCT instance. This particular operation is-

illustrated in figure 3.

Again, the top portion of figure 3. shows the original data for the generic Person

class along with the changes the user wishes to make. The original class definitions for

Person include name, number and date-of-birth. The changes to the class appear in the

upper right hand corner of the figure and show that the user wishes to add a new attribute

called address and to change the number from character to long. The system view of the

original Person class is represented in the bottom left-hand corner of the figure. The

right-hand corner picture illustrates what happens when the system creates a new version

of the Person class. Similar to the object example, the system adds a UVMNode with

version id 1.0 to designate the newly created node as being the first version of the Person

class. Two UVMAttribute objects are then created and linked to the UVMNode. Each

UVMAttribute object represents addition/deletion/changes to the corresponding attribute.

30

Therefore, one UVMAttribute is created for the change to the number and another is

created for the addition of the address field. The difference between this versioning

procedure and the preceding object example, is that the UVMAttribute instances are

recording changes to the class definition; that is, changes to the attribute definitions of the

class rather than changes to the actual data associated with the attributes of the instance

of the class.

Changes a class object

RBrson_Class_VO

char name[24]

char number[3|

date date-of-birth

<P&rson>

DBO

UVM

attribute Jst 1
<Attribute> — < Attribute > - <Attribute>
name* name name* number name* date-of-birth
attjype* char sttjype* char att Jype* date
size* 24 size* 9 size* 6
location* 0 location* 24 location* 33

Person Class VI

char name[24]

long int number

char address[36]

date date-of-birth

Creating a new} class version in UVM

in n i
<Person>

DBO

UVM

attributeJist -
<Aitribute> -
name* name
attjype* char
size* 24
locations o

<Aitribute> -
name* name
attjype* char
size* 24
locations o

parent™
chHdli3t«nu*

<AttrHoute> -
name* number
att_type* char
size* 9
location* 24

<Attribute>
name* date-of-birth
att Jype* date
size* 6
location" 33

<UvMNocte>

attName'= number
attiype= long mt
attSize= 4
attPosition = 24

< UVMAttribute*
attName* address
attType = char
attSize = 36
att Position̂ 39

Fig. 3. Creating Versions of a Person Class.

Deleting Versions of Objects and Classes

The UVM allows the user to delete entire objects and classes or a specific version

31

of an object or class. The delete functions for objects and classes act in a similar way.

For example, if the user calls the delete object function (i.e., deleteVersion) with an

ID value consisting of an object version ID, then the system deletes the specific version

of that object. On the other hand, if the user calls the delete function (i.e.,

deleteVersion with an object ID, then the system deletes the object and all versions

of that object. In a similar manner, if the user calls the delete class function (i.e.,

deleteVersion) with a class version ID, then the system deletes the version of the

class specified. If the user calls the function with just a generic class ID, then the system

deletes the class, all instances of that class, and all versions of that class. Whenever the

system deletes an object or a class, then that object or class is marked as deleted. If the

user deletes a version of a class or object, then the corresponding version is deleted

although access to the children of the class or object is still allowed.

When a new version of a class is defined, the user can attach special

update/backdate functions or default values to particular fields of the class or object. In

the above example, the user added an address field to the new version of the class. At this

particular time, the user can specify a default value for older instances that may be

converted to the new class definition. Alternatively, the user can specify a function, such

as a lookup function or a data input form function, that would supply a value for the

address attribute when needed.

Accessing Versions of Objects and Classes

UVM keeps a copy of the generic objects and classes and stores versions of the

32

different objects and classes as changes occur. UVM does not actually create the object

represented by the new class until runtime. The technique used to do this is called

Dynamic Object Conversion (Monk 1993). More specifically, UVM stores only the

changes and generates the correct version of the object whenever it is requested. Thus,

UVM creates the requested version from the generic version (i.e., delta storage) rather

than storing every copy of the version (i.e., omega storage). A more complete description

of the specific method used to do the dynamic object conversion in UVM is given in

Chapter 4.

There are four basic functions that are used to access the appropriate version of

the object or class. Again, the system recognizes that it should retrieve a version of either

an object or class by checking the UID argument passed to the specific function. If the ID

refers to a class, then a class accessed. If the ID refers to an object, then a version of an

object is retrieved. If the user simply asks for an object or class, then the default version

of the object or class is retrieved. If the user wants to access the object or class from

which a specific version was derived, then he uses the parentVer function. The

functions childVer, prevSiblingVer, and nextSiblingVer are used to access

the child version of the specific version.

Accessing Instances When There Are Versions of Classes

As new versions of a class are created, each derivation is added to a tree. As a

result the system has a history of all the changes that are made to the database. For

example, if a new version is created from the original object, it becomes a sibling of

33

version 1.0. If a new version is, in turn., created from version 1.0, it becomes a child of

version 1.0. By following a path through the version history tree, it is possible to convert

an instance of any version of the class definition to any other version. This ability to do

automatic conversion allows the system to treat any instance as an instance of the class as

a whole rather than as a particular version of the class. The actual version to which a

particular instance belongs at any specific time is transparent to the user because UVM

automatically converts the instance to the version requested by the user. UVM supports

not only forward conversion (i.e., from the old version to the new version) but also

backward conversion.

As the user creates a new version of a class, he or she can specify default values

or update/backdate functions for any attribute or value for the class or object. The user

specifies default values for attributes which are used to convert instances between

different versions of classes. The update functions are specified for attributes and tell the

system how the attribute should be converted in the next version. The backdate function

does the reverse of this. These update/backdate functions are stored with the class

versions and are invoked by the system whenever the instance(s) are accessed and need to

be converted.

A Complete Example

This section presents a complete example of the UVM and how it handles the

creation and retrieval of different versions of objects and classes. It is intended to

demonstrate the overall system and how it responds to the creation of different versions

of classes and objects.

34

Person class

Person_Class_VO

char name[24]

char number[9]

date date-of-birth

Instances of Person class (Person dass_VO)

Tom Johns

222-22-2222

5-5-67

< UVMNode >

2.0
attList
parent=null
chlldLlst- null

< UVMNode >

< UVMNode >

atlLlst=
parents
chlldLlst- null

< UVMAttritaute >

attName- date-of-birth
attTypes date
attSize* 6
attPositlon= 33
attValue* "9-10-68"

UVMAttribute >

attName- name
attType® char
attSize® 24
attPosition= 0
attValue- "Thomas Lee1

UVMAttribute >

attName* number
attType* char
attSize* 9
attPosltlon- 24
attValue* "333-33-3333'

Person class

Person Class_V1

char name[24]

char number[9]

date date-of-birth

char address[36]="No Address"

Fig. 4. Creating Versions of an Instance and a Class.

35

As the upper portion of figure 4. shows, the user begins by creating the Person

class and one instance of the Person object with a name attribute of "Tom Johns," a

number attribute of 222-22-2222, and a date-of-birth attribute of 5-5-67. The user then

creates version 1.0 for "Tom Johns" and changes the name field from "Tom Johns" to

"Thomas Lee." In version 1.1 the user changes {\em number) from "222-22-2222" to

"333-33-3333".

The user then creates a version 2.0 and changes the date-of-birth field from 5-5-67

to 9-10-68. Since version 2.0 is the last version to be created, it becomes the default

version of the "Tom Johns" instance.

The user then adds a new version of the Person Class and a new attribute of

Address (see the lower portion of figure 4.). The user specifies "No Address" as the

default value for this new attribute. UVM builds a new version of the class similar to

figure 3.

Figure 5. shows what happens when the user accesses the 1.1 version of "Tom

Johns," which of course is now "Thomas Lee." The system first recognizes the 1.1

version which contains the new number of 333-33-333. Finally, it recognizes that a new

version of the Person Class has been created. Because the user has not specified an

address for this object, the system simply uses the default value of "No Address." The

system then ends the process and displays the information to the user.

36

UVMAttribute for
UVMNode 1.1

Tom Johns

222-22-2222

5-5-67

Partitioning/Mopifying/Combining

Person_Class_V1

Modifying

Thomas Lee

333-33-3333

5-5-67

| Partitioning

f Thomas Lee)

(333-33-3333)

f 5-5-67)

Combining

Thomas Lee

333-33-3333

5-5-67
No Address

Fig. 5. Accessing Version of an Instance for the Different Class

CHAPTER IV

IMPLEMENTATION OF UVM

This chapter describes several issues related to the implementation of UVM. The

first section discusses the Database Object System (DBO), a system that was used to

manage the persistent objects for UVM. Section 4.2 discusses the unique object identifier

(UID). Section 4.3 presents detailed information about the classes that were used to

implement versioning in UVM. Finally, section 4.4 discusses special implementation

issues such as dynamic object conversion and class conversion.

Persistent Objects and the DBO Class Library

The system has been implemented using a persistent object manager called the Database

Object System (refer to Appendix B) that runs on both DOS and UNIX platforms. DBO

is not a fully functional object-oriented database management system, but rather an object

manager that allows users to store and retrieve objects. The DBO Class Library consists

of a set of C++ classes that can be used to create and maintain persistent objects (i.e.,

objects that continue after the life of the program). Because DBO writes the persistent

objects to stable storage, subsequent programs can retrieve them.

The idea behind DBO is that all the persistent classes are derived from a root

persistent class called DBO. This root class contains methods that know how to store and

39

retrieve objects from the database. Further, all persistent classes are derived from the

DBO class using a public derivation method. A complete description of the DBO system

is presented in Appendix B. In order to accommodate versions of classes and objects, the

embedded UID variable within the DBO model was modified to include a new type of

identifier of the different versions classes or objects, and a pointer variable was added to

record the version's original object. Figure 6. illustrates how DBO was used to

accommodate the idea of versions. The dotted lines illustrate how a new version is stored

in DBO. As new versions are created, they are represented in the system as a tree. Each

node of the tree is an instance of the class UVMNode (see below for details). A version's

place in the tree is determined when the new version is created.

DBO Inheritance
— >

Versioning

Class 1 Class 2 Class 3 Instantiation

Q ass 4

! Class 1.1 >

•<^Object r > — ^ < j b j e c t r >
I I
V ¥_

(̂ Object 1 T> <gbject zT}
I
v

(Object 1 .fit)

Fig. 6. A Derivation Hierarchy of the Unifying Version Model.

40

Using DBO to store Versions of Objects and Classes

As previously mentioned, UVM uses DBO to store versions of objects and

classes. In attempting to use DBO for this purpose, several versioning techniques were

considered. One method is to store the different versions as a collection of pointers to

values (Ecklund et al. 1987). Another method is to store the original object and only

changes to the object (Ecklund et al. 1987). A third method is to store the original object

and changes to the object, but also a counter that records the number of times a specific

version of an object is accessed along with a pointer to the original or generic object.

Since the first two methods require a great deal of execution time in order to

recreate the requested version, they were not implemented in UVM. Although the third

method requires some additional storage, it uses considerably less time to recreate the

requested version. Thus, the third method was used as the method for storing versions of

classes and objects in UVM. Each version of a class or object maintains counter and

pointer variables. Whenever the user accesses a specific version of a class or object, the

counter value is increased by one. If the counter exceeds a specified threshold, the system

makes a new copy of the object with the changed values and saves a pointer to the

derived version. This implementation needs only a small amount of additional storage

space but provides fast access to frequently referenced objects. However, access to

infrequently referenced versions requires substantially more time. Therefore, it is very

important to find an optimal threshold value. As a result, this feature was created so that

the user could modify the variable whenever necessary.

41

Modifying the UID for Versioning

The system is able to unify versions because it creates a single type for both

objects and classes. By specifying a single type for both classes and versions, the system

can call the same functions for either classes or objects. This is accomplished by creating

a special UID number and storing it in the UID field. The system stores information in

the UID field that indicates where the version is stored and whether the location refers to

a class, a version of a class, an object, or a version of an object. Data items that refer to

classes are assigned a 0; versions of classes are assigned the number 1; objects are

assigned the number 2; and versions of objects are assigned the number 3. The following

class definition indicates how the system specifies this field.

enum ID_KIND {Class, Class_Version, Object,

Object_Version};

class UID {

private:

long uid;

ID_KIND kind;

public:

... uid manipulation functions ...

};

A version number for an object with a unique UID can be represented as

follows:

\51D[.version number]*.

42

The very first version of a class is given the version number of CUID.l where

CUID is a class UID. The second, is assigned the version number of CUID.2, etc.

Similarly, the first version of an object is assigned the version number OUID.l where

OUID is an object version UID, etc. The first version derived from version OUID.l

would be given an identifier of OUID. 1.1. Through this method, the system can derive

the location, type and version of a specific object, class or version of a class or object.

Instances of versions are objects in their own right and, therefore, are uniquely

identified to the system using the above version number scheme. They are related to a

common generic instance from which attributes and default values can be inherited. The

system does not need to maintain the ancestor/descendent relationships between the

instances of versions because the number scheme itself encapsulates this relationship.

The Set of Classes for UVM

A specific class is given the ability to have versions by designating it as a subclass of

UVM. Thus, any class given this designation inherits the generic class UVM as one of its

base classes. A tree, in turn, is used to represent the set of versions of an object of

versioned objects and each node of the tree is in the class UMNode. The exact location of

a version in the tree is determined by when the new version is created and which version

it changes.

A new version (except the initial generic version) is always based on an existing

version; the new version has a derived-from relationship to the version it is based on. The

derived-from relationship is established when the version is created and does not change

43

even when updates occur. As previously stated, the derived-from relationship between

versions of an instance are represented as a tree. Although other researchers have used an

acyclic graph to represent the derived-from relationship (e.g., (Banerjee et al. 1986 and

Banerjee and Kim 1987)), others have argued that a tree is sufficient for this particular

application (Chou and Kim 1986).

Figure 7. illustrates an example of how versions are stored in UVM. The tree's

nodes identify the versions, and the arcs represent the derivation relationships. Several

parallel versions can be derived from a single version. In this particular example, the

default value for the object is the latest version created (i.e., 0[3]).

latest version
*

/
/

Q o n i H o t 2 1
*

0O[3]

Q o p . u C JO[2.1J [̂ 0[2.2]

O on .1.11

Fig. 7. Version Derivation Tree.

The rest of this section describes the important classes within UVM.

Class UVM

The UVM class is considered a base class and must be inherited by any class or

object that has a version of itself. Because of its "meta-class" status, it is assigned a set of

44

protected constructors that guards against any objects of the class UVM being created.

A UVM object contains a pointer member that links the newly created object into

the version tree. It also contains member functions that retrieve information from the tree,

create new versions, and delete old versions. The system first copies the values and

attributes of the old version into the new version and then inserts the new version as the

rightmost child in the version tree.

Class UVMNode

The UVMNode class is used to store a version of a particular object. The

UVMNode acts as a node in a version derivation tree. It contains attributes as explained

in the previous chapter. More specifically, it contains attributes for a version id, pointer

to the parent version, a list of child versions, and a list of changed attributes. It also

includes functions for manipulating attribute lists and child version lists.

Class UVMAttribute

The UVMAttribute object stores changes for the corresponding attributes among

the different versions. As stated in the previous chapter, UVMAttribute contains

information about any changes to the generic object's name, type, and size. It also

contains the new value of the changed attribute and the position of that value in the

generic object. Thus, the system uses this information to display to users whenever they

request a specific version of an object or class.

45

Special Implementation Issues

One of the major concerns for UVM as well as other versioning models is the

problem of providing support for changes to the database schema or meta-classes. More

specifically, a versioning system must be able to resolve any inconsistencies that arise as

a result of a change to any part of the schema. These inconsistencies often occur

whenever a user changes the definition of a class. The result of such changes is that

instances generated from any previous version of the class become incompatible with the

new version.

Several solutions to this problem have been suggested by a number of different

researchers. One technique, called class conversion, simply restructures the instances of

the modified classes until they agree with the current representation of the classes. Class

conversion is supported in the ORION (Banerjee et al. 1986 and Baneijee and Kim 1987)

and GemStone systems (Penney and Stein 1987). The primary weakness of this approach

is that it does not support backward/forward compatibility. This term is to describe the

ability to access previous versions of an object at any time without losing data. Because

systems that use class conversion discard all former versions of the object whenever they

make the changes, the application programs that must use the former versions of the

objects soon become obsolete.

One alternative to the above approach is to maintain all the versions of classes.

This technique is called class evolution (Skarra and Zdonik 1986 and 1987). Each

"evolution" of the class defines a new version of the class. Thus, old class definitions

46

persist indefinitely or until the user deletes the entire class. Instances and applications are

associated with a particular version of a class, and the system is responsible for

simulating the semantics of the new class on top of instances of the old, or vice versa.

In the Unifying Version Model (UVM), the schema is treated as a set of current

versions of classes, and the schema is maintained as instances of classes designed to

contain the necessary information for representing a particular schema. Moreover, a class

is constructed with slots that contain information about each attribute and method

available to the current version of the class. To avoid any loss of data during class

evolution, UVM stores the first version of an instance or a class object and keeps track of

only the changes made to the object. Any version of the generic object can be accessed

dynamically at runtime.

Unlike evolutionary systems such as ENCORE (Skarra and Zdonik 1986) and

AVANCE (Ahlsen et al. 1983, Bjornerstedt and Britts 1988, and Bjornerstedt and Hulten

1989), UVM dynamically converts objects between different versions rather than

emulating other versions. This conversion is reversible, and any object in the system may

be freely converted between different versions of its classes. In addition, objects are

partitioned into pieces while being converted back and forth between versions of classes.

Therefore, the term Dynamic Object Conversion is used to describe UVM.

Since instances of objects can be converted from one format of a class version to

any other, it is best to consider instances as having an indeterminate type, and that they

are given a certain type only when they are accessed. The instances may only be accessed

47

in one of the representations provided by the class versions. The class version is

determined by functions used to extract instances from the system.

Instance VI Instance for Class VI

partitioning

000
part

modifying

compming

Class V2 00
modi ying

UVMAttribute

itioning

•

01U 0
iipi combining

Instance V2 Instance for Class VZ

i

attribute value is modified

attributed type is modified

a new attribute

Fig. 8. Dynamic Object Conversion.

Figure 8. illustrates an example of how dynamic object conversion is

implemented in UVM. In this particular example, a version of the VI instance object is

partitioned, modified, and combined into a new version (i.e., V2) of the instance. The

partitioning is accomplished with information taken from the PCT for the class. All

changes to the attributes are extracted from UVMAttribute. When an instance for a class

48

of version VI is accessed as an instance of the class of version V2, it is first partitioned

into attributes. Again this partitioning uses information from the PCT. Next, a special

modifying procedure extracts attribute information from class VI and V2 and uses this

information to build a new set of attributes for class V2. Finally, all modified attributes

are combined into the instance for class V2.

The C++ Specification for UVM

Portions of the specifications of the classes used to support UVM are described in

Appendix A. The listings include a description of the classes and methods used to

implement the major features of UVM. Readers need to be familiar with C++ to

understand some of the specific implementation issues specified in these listings.

CHAPTER V

CONCLUSION

In this thesis, various research efforts on object and class versioning systems were

presented, and the need for a unified version model (UVM) for both classes and objects

(instances of classes) was suggested. The major reason for designing the UVM was to

introduce a simple but semantically sound version model that uses a single set of

operations to support versioning for both objects and classes. Other OODBMS systems

consider versioning as two problems: one that looks at problems related to objects, and a

second that examines issues concerning class versioning. UVM combines these functions

into a single model, thus providing a system that is both easier to learn and conceptually

simpler. UVM is able to unify both objects and classes into a single model because it

forces classes and objects to inherit their versioning functions from a single meta-class

(i.e., UVM) . Such a concept greatly reduces the number of methods that have to be

supplied for both classes and objects. In addition, UVM uses the UID attribute to store

information about whether the particular instance represents a class or object. As a result,

UVM can apply similar functions to both classes and objects, making the need to

differentiate between the two transparent to the user.

49

50

UVM Features

Because UVM can be used to create versions for both classes and objects, it

contains the following features:

• One versioning model for both objects and classes'. Operations for

creating, accessing and deleting versions of objects or classes are the

same.

• Version orthogonality. Versions of an instance or a class can be created

without requiring any change to the object or the class. Thus, the decision

to create a version can be made as needed instead of when the database is

initially designed.

• Backward/Forward compatibility with data retention: Backward/forward

compatibility is provided by using dynamic object conversion. Class

versioning using a delta storage scheme supports program compatibility

and a variety of class evolutions without data loss.Class versioning also

permits multiple views of the database definition to coexist.

• Dynamic object conversion: Objects are converted only when needed at

runtime. To access a specific version of an object (an instance or a class),

the system divides the object into attributes, modifies it, and then merges

the changed information into the new version of the object.

Implementation Results

In order to test the UVM model, an actual OODBMS system was been built as an

51

extension to DBO. Six basic functions were developed to create versions. These functions

are: newVersion, deleteVersion, parentVersion, childVersion,

pervSiblingVer, and nextSiblingVer. The system distinguishes between

classes and objects by checking the UID argument passed to the specific function. A new

version of an object or a class is created only when the user calls the function

newVersion explicitly. The user can delete entire objects and classes or a specific

version of an object or class by calling deleteVersion. The functions of

parentVersion, childVersion, pervSiblingVer, and nextSiblingVer

are used to access the appropriate version of the object or class. When the user accesses

objects for different versions of classes, the system creates the object represented by the

specified version at runtime.

The system was tested using data for a simple student information system. The

system allows the user to store personal information, change the class structure by

adding or deleting attributes, and access different versions of classes and objects. The

database for the student information system included one class (Person), containing three

initial attributes. Five objects were initially created for the Person class, and four

different versions of Person class were created and named CUID.l, CUID.2, CUID.2.1,

and CUID.2.1.1. For each version of the class, five objects were created. The versioning

capabilities were then tested by accessing fifteen objects for each version of the class.

The system successfully retrieved the correct version of the class for all cases.

52

Potential Disadvantage

The system was implemented using C++ and the UNIX operating system to prove

the feasibility of the design of the model. However, a full performance test was not

completed. One of the potential problems with the design is the amount of time that may

be needed to convert the instances of the different versions of objects. For certain types of

applications, the time required to access and convert the different versions of objects and

classes may be unacceptably slow. However, in those database applications where the

number of versions is high but the number of instances low, UVM should perform well.

A more complete series of performance tests should be done to determine a range of

performance values for different types of problems.

Future Research

There are a large number of areas that need further investigation as a result of the

work suggested in this dissertation. A few of these areas are listed below:

• The development of a new mechanism to support class evolution.

• A validation of the model using real applications.

• An evaluation of the three storage mechanisms proposed in Chapter 4.

Class Evolution

The current system does not address some of the changes that involve

modifications to the class inheritance tree. A potentially fruitful area of versioning

research would be to devise a class set versioning system that would allow a system to

53

create a version of a whole set of related classes (that could comprise the entire database

definition). Class set versioning appears to be a promising area of fixture research that

would extend the range of forward/backward compatibility changes that can be made to a

database definition.

Evaluation

Industrial strength object-oriented database management systems have been

limited to class evolution strategies that use database definition modification rather than

class versioning techniques. This means that the utility of class versioning has never been

tested in the real world. It would be interesting to incorporate a class versioning system

such as the one used to implement UVM into a commercial object-oriented database

management system and evaluate its usefulness in this area.

Alternate Implementation Strategies

As suggested in Chapter 4, there are three different ways to store and maintain

information about versions. These three ways are: (a) store the different versions as a

collection of pointers to values; (b) store the original object and only changes to the

object; and (c) store the original object and changes to the object, but also a counter that

records the number of times a specific version of an object is accessed along with a

pointer to the original or generic object. One significant line of research would be to

compare the performance of these three methods and determine which method was most

efficient and effective. The following criteria could be used to evaluate their

54

performance.

• Number of pages accessed for processing the same set of user queries

• Number of conversions performed to retrieve the correct version

• Total amount of storage required for processing the same set of user

queries

A comparison of these three Strategies would provide valuable insight into how version

information should be maintained.

Conclusion

The last few years has seen a rapid growth in both object-oriented languages and

object-oriented databases. As the need for such systems arise, the current object oriented

database systems must become more sophisticated to keep pace with the demands of

applications in new domains such as CAD/CAM, graphics information systems, and

multimedia. As the objects of such applications become more and more complex, the

possibility that there will be changes to these objects increases, and the need for better

support for object and class versioning rises. The model presented in this thesis attempts

to meet this challenge. It provides a unified model for both class and object versioning.

Such a model greatly simplifies the conceptual framework that is needed to develop the

next generation of object oriented database management systems.

APPENDIX A.

C++ Class Definitions

55

56

class UVM {

// Constructors and destructors are protected, so the users

// cannot create Version objects.

protected:

UVM(void);

UVM(void);

public:

// functions for creating and deleting versions

UVMNode* newVersion(UVMNode* parent);

UVMNode* newVersion(VID& parent);

UVMNode* newVersion(void);

void delVersion(VID v); // for deleting version

// functions for navigating around the version set

UVMNode* parentVer(void);

UVMNode* childVer(void);

UVMNode* prevSiblingVer(void);

UVMNode* nextSiblingVer(void);

void resetTraverse() ;

void activateTravVersion();

57

void activateCurrVersionO;

void displayUvmf);

// public data

public:

Plist *root;

UVMNode* currentVersion; // the latest version

UVMNode* travVersion;

// for traversing version tree

int counter;

// the number of existing version instances

class UVMNode {

private:

UVMNode();

UVMNode() ;

public:

// attribute list manipulation functions

int addAttribute(UVMAttribute* att);

int deleteAttribute(char *attname);

58

UVMAttribute* firstAttribute ();

UVMAttribute* nextAttribute();

void activateAttList() ;

// child list manipulation functions

int appendChild(UVMNode* node);

int deleteChild();

UVMNode* firstChild();

UVMNode* nextChildO;

UVMNode* lastChildO;

void activateChildList() ;

// attribute accessing functions

int getReferences();

void incReferences();

VID* getVID();

UVM* getRoot();

void setRoot(UVM* r);

UVMNode* getParent();

void setParent(UVMNode* p);

UVMNode* getCurrentChild();

void setCurrentChild(UVMNode* c);

59

protected:

Plist *attList;

// a linked list of changed attributes

// along with values

Plist *childList;

// a linked list of child versions

UVM* root;

// root of the version tree (pointer to UVM)

UVMNode* parent; // parent of this node

static UVMNode* currentChild;

VID versionID;

int references; // reference counter

};

class UVMAttribute {

private:

UVMAttribute(char *dboName, char *attName, char *type,

int size,

int offset, void *value=NULL);

char* getAttName();

char* getAttType() ;

60

int getAttSize ();

int getAttPosition();

void* getAttValue();

public:

char attName[MAX_ATT_NAME];

// name of the changed attribute

char attType[MAX_TYPE_NAME];

// type of the changed attribute

int attSize; // size of the attribute in byte

int attPosition;

// starting byte position of this

// attribute in the original object

char* attValue; // a storage for the new value will be

// allocated dynamically by the size

};

APPENDIX B.

Introduction to DBO: A Simple Object Manager

61

62

B.l Introduction

The DBO Class Library is a set of C++ classes to be used for creating and maintaining

persistent objects. The DBO has been developed on DOS, Windows, Solaris, FreeBSD,

and Linux. The main idea of DBO is that any object which is to be persistent must be an

instance of a class which has been derived from the root persistent object DBO. DBO has

methods which know how to store and retrieve objects from the database. Thus all

persistent classes are derived from DBO using a public derivation. For example:

II kkkkkkkkkkk p02rSOn»l"l k k k k k k k k k k k k k

#include <string.h>

#include "dbo.h"

class Person; //forward reference

class Job: public DBO {

public:

Job(char *s, int i):DBO("Job",s, sizeof(Job))

{ salary=i; boss=NULL; }

void display();

protected:

Person *boss;

63

int salary;

};

class Person: public DBO {

public:

Person(char *s, char *n):DBO("Person", s, sizeof(Person)

{ strcpy(ssn,n); father=mother=NULL; job=NULL; }

void display()

{ cout « name « " ssn: 11 « ssn « "\n";

if ((job != NULL) && ((UID)job != INACTIVE))

job->display();

}

void setjob(Job *j) { job = j; }

void setf(Person *f) { father = f; }

protected:

Job *job;

Person *father;

Person *mother;

char ssn[12];

};

64

void Job::display()

{

cout « "salary: " « salary « "\n";

if ((boss != NULL) && ((UID)boss != INACTIVE))

boss->display();

}

The constructor for the class must call the constructor for class DBO and pass the

arguments classname, objectname and class size. Every object has a name which is kept

in an attribute which is inherited from class DBO. This name should be unique because it

can then be used to lookup the object using the name as a search key. The name of the

object must only be unique within the class for this to work properly. If an object is not

given a unique name, it may still be found if it is a component of another object which

does have a unique name, (see the Complex Objects section)

When an object is created for the persistent class, it is put into a persistent class

buffer which will be saved to the database if the transaction which created it commits. If

the transaction aborts, the object will not be saved to the database.

When an object is read in from the database, it will not be written back to the

database unless the programmer issues a putObject command. This causes the system to

write the object back to the database if the transaction commits.

B.2 Complex Objects

Complex objects are objects which contain other objects. The idea of contain may

65

be that object a is physically contained within object b. In this case, object b cannot be

referenced outside the scope of object a. If object a is a persistent object then object b

will be stored on the database, too, because it is physically inside of object a.

Alternatively, object b may be only referenced inside of object a. In the above

example of Person, the attributes job, mother and father are references to other persistent

objects. If object a is a persistent object and it references object b, then object b should be

a persistent object also. To use the DBO class library, the reference must be a pointer to

object b and the fact that it is referenced must be in the Persistent Class Table (PCT). The

PCT must be built by the user and contains the name of each persistent class and the

number of other persistent objects that are referenced. For example:

DBO 0

Pnode 3

Plist 2

Student 0

Keyword 2

Query 1

Element 1

quit 0

The format of the file is class name, number of references to other persistent

objects. This set of data is repeated for each persistent class. The last line of the file has

the keyword quit. Look at the entry for the Person class for an example of the PCT data

66

for the Person class defined above.

B.3 Using the DBO Class Library

To access the database, the application opens the database and starts a transaction.

It may then access objects in the database, make changes to them and write them back.

When the application has completed a consistent piece of work, it commits the

transaction, and actually causes the database to be updated with the changes it has made.

Alternate

BIBLIOGRAPHY

Agrawal, R. and Gehani, N.H. 1989. Ode (Object Database and Environment): The
Language and the Data Model. In Proceedings of the ACM-SIGMOD 1989
International Conference on Management of Data, 36-45, Portland, Oregon:
ACM Press.

Agrawal, R., BurofF, S., Gehani, N. and Shasha, D. 1991. Object versioning in ode. In
IEEE 7th International Conference on Data Engineering, 446-455: EEEE
Computer Society Press.

Ahlsen, M., Bjornerstedt, A., Britts, S., Hulten, C. and Soderlund, L. 1983. Making Type
Changes Transparent. In Proceedings of IEEE Workshop on Languages for
Automation, 110—117, Chicago: IEEE Computer Society Press.

Ahmed R. and. Navathe, S.B. 1991. Version management of composite objects in cad
databases. In Proceedings of the 1991 ACM SIGMOD International Conference
on Management of Data, 218-227, Denver, Colorado: ACM Press.

Andany, J., Leonard, M. and Palisser, C. 1991. Management of schema evolution in
databases. In Proceedings of the 17th International Conference on Very Large
Data Bases, 161-170, Barcelona, Spain: Morgan Kaufmann.

Ariav, G. 1991. Temporally oriented data definitions: Managing schema evolution in
temporally oriented databases. Data and Knowledge Engineering, 6:451-467.

Atkinson, M., Banchilhon, F., Dewitt, D. and Dittrich, K. 1989. The object-oriented
database system manifesto. In Proceedings of the 1st International Conference on
Deductive and Object-Oriented Databases, 223-240, Kyoto, Japan: Springer-
Verlog.

Banerjee J. and Kim, W. 1987. Semantics and implementation of schema evolution in
object-oriented databases. SIGMOD Record, 3:311-322.

Banerjee, J., Kim, W., Kim, H. and Korth, H.F. 1986. Schema Evolution in Object-
Oriented Persistent Databases. In Proceedings of the 6th Advanced Database
Symposium, 23-31, Tokyo, Japan.

71

72

Batory, D.S. and Kim, W. 1985. Modeling concepts for vlsi cad objects. ACM
Transactions on Database Systems, 3:322-346.

Bertino, E. 1992. A view mechanism for object-oriented databases. In Proceedings of the
3rd International Conference on Extending Database Technology, 136-151,
Vienna, Austria: Springer-Verlag.

Bjornerstedt, A. and Britts, S. 1988. Avance - an object management system. In
Proceedings of the Conference on Object-Oriented Systems, Languages and
Applications (OOPSLA), 206-221, San Diego, CA: ACM Press.

Bjornerstedt, A. and Hulten, C. 1989. Version control in an object-oriented architecture.
Edited by W. Kim and F. Lochovsky, Object-Oriented Concepts, Databases and
Applications. Addison-Wesley.

Bratsberg, S.E. Evolution and Integration of Classes in Object-Oriented Databases,
Ph.D.Dissertation, Norwegian Institute of Technology.

Brazile, R.P. and Shin, D. 1995a. A unifying version model for objects and schema. In
Proceedings of International Corference on Intelligent Information Systems, 245-
248,Washington D.C.

Brazile, R.P. and Shin, D. 1995b. A unifying version model for object-oriented
engineering database. In Proceedings of the 9th Annual ASME Engineering
Database Symposium, 221-224, Boston, MA.

Breche, P. 1996. Advanced primitives for changing schemas of object databases. In
Proceedings of CAiSE '96 Conference: Springer Verlag.

Casais, E. 1990. Managing class evolution in object-oriented systems. In Tsichritzis, D.
(Ed.), Object Management, 133-195, Geneva: Centre Universitaire
dTnformatique, University of Geneva.

Chiueh, T. 1994. Papyrus: A history-based vlsi design process management system. In
Proceedings of the 10th International Conference on Data Engineering: IEEE
Computer Society Press.

Chou, H. and Kim, W. 1986. A unifying framework for version control in a cad
environment. In Proceedings of the 12th International Conference on Very Large
Data Bases, 336-344: Morgan Kaufmann.

Chou, H. and Kim, W. 1988. Versions and change notification in an object-oriented
database system. In Proceedings of the 25th ACM/IEEE Design Automation

73

Conference, 275-281: ACM Press.

Clamen, S.M. 1991. Managing type evolution in the presence of persistent instances,
Ph.D. Dissertation Proposal, Carnegie Mellon University.

Clamen, S.M. 1992. Type evolution and instance adaptation: Carnegie Mellon
University, CMU-CS-92-133R.

Clamen, S.M. 1994. Schema evolution and integration. Distributed and Parallel
Databases, 1:101-126.

Ecklund, D.J., Ecklund, E.F., Eifrig, R.O., and Tonge, F.M. 1987. Dvss: A distributed
version storage server in cad applications. In Proceedings of the 13th VLDB
Conference, 443-454, Brigton, England.

Ewald, C.A. and. Orlowska, M.E. 1993. A procedural approach to schema evolution. In
Proceedings of the 5th International Conference on Advanced Information
Systems Engineering, 22-38, Paris, France: Springer-Verlag.

Katz, R.H. 1990. Toward a unified framework for version modeling in engineering
databases. ACM Computing Survey, 4:375-408.

Kerr, D., Chan, D. and Cooper, R. The variety of approaches to change propagation in
multiversion databases: University of Glasgow, Glasgow, England, 1992.

Kim, W. and Chou, H. 1988. Versions of schema for object-oriented databases. In
Proceedings of the 14th International Conference on Very Large Data Bases,
148-159: Morgan Kaufmann.

Klahold, P., Schlageter, G., and Wilkes, W. 1986, A general model for version
management in databases. In Proceedings of the 12th International Conference on
Very Large Data Bases, 319-327, Kyoto, Japan: Morgan Kaufmann.

Kwang, J.B. and McLeod, D. 1993. Toward the unification of views and versions for
object databases. In Proceedings of the Object Technologies for Advanced
Software; First JSSST International Symposium, 222-236. Berlin: Springer-
Verlag.

Landis, G.S. 1986. Design evolution and history in an object-oriented cad/cam database.
In Proceedings of the 31th COMPCON Conference, San Francisco, CA.

Lerner, B.S. and Habermann, A.N. 1990. Beyond schema evolution to database
reorganization. In Proceedings of the Conference on OOPSLA (ECOOP'90), 67-

74

76, Ottawa, Canada: ACM Press.

Moerkotte, G. and Zachmann. A. 1993. Towards more flexible schema management in
object bases. In Proceedings of the IEEE 9th International Conference on Data
Engineering, 174-181, Wien, Austria: IEEE Computer Society Press.

Monk, S.R. and Sommerville, I. 1992. A model for versioning of classes in object-
oriented databases. In Proceedings of the 10th British National Conference on
Databases, 42-58, Aberdeen, Scotland: Springer-Verlog.

Monk, S.R. and Sommerville, I. 1993. Schema evolution in oodbs using class versioning.
SIGMODRECORD, 3:16-22.

Monk, S.R. 1993. A Model for Schema Evolution in Object-Oriented Database Systems.
Ph.D. Dissertation, Computing Department, Lancaster University.

Narayanaswamy, K. and Bapa Rao, K.V. 1988. An incremental mechanism for schema
evolution in engineering domains. In Proceedings of the fourth International
Conference on Data Engineering, 294-301, Los Angeles, CA: IEEE Computer
Society Press.

Nguyen, G.T. and Rieu, D. 1989. Schema evolution in object-oriented database systems.
Data and Knowledge Engineering, 1:43-67.

Odberg, E. 1992. A framework for managing schema versioning in object-oriented
database. In DEXA 92. Database and Expert Systems Applications: Proceedings
of the International Conference, 115-120: Springer-Verlog.

Penney, D.J. and Stein, J. 1987. Class modification in the gemstone object-oriented
dbms. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications, 111-117, Orlando, Florida: ACM Press.

Roddick, J.F. 1991. Dynamically changing schemas within database models. Australian
Computer Journal, 3:105-109.

Roddick, J.F. 1992. Sql/se - a query language extension for database supporting schema
evolution. SIGMOD RECORD, 3:10-16.

Rumbaugh, J. 1988. Controlling propagation of operations using attributes on relations.
In Proceedings of the OOPSLA '88 Conference, 285-296, New York: ACM Press.

Scherrer, S., Geppert, A., and Dittrich, K.R. 1993. Schema evolution in no2: University of
Zurich, No. 93.12.

75

Sciore, E. 1991. Using annotations to support multiple kinds of versioning in an object-
oriented database system. ACM Transactions on Database Systems, 3:417-438.

Skarra, A.H. and Zdonik, S.B. 1986. The management of changing types in an object-
oriented database. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications, 483-495, Portland, Oregon:
ACM Press.

Skarra, A.H. and Zdonik, S.B. 1987. Type evolution in an object-oriented database. In
Bruce Shriver, B. and Wegner, P.(Ed.), Research Directions in Object-Oriented
Programming, MIT Press.

Tan, L. and Katayama, T. 1989. Meta operations for type management in object-oriented
databases - a lazy mechanisms for schema evolutions. In Proceedings of the first
International Conference on Deductive and Object-Oriented Databases, 241-258,
Kyoto, Japan: North-Holland.

Tresch, M. and Scholl, M.H. 1993. Schema transformation without database
reorganization. SIGMOD RECORD, 1:21-27.

Vines, P., Vines, D., and King, T. 1988. Configuration and change control in gaia.
Communications of ACM.

Zdonik, S.B. 1986. Version Management in an Object-Oriented Database. In Proceedings
of the 4th International Workshop on Advanced Programming Environments,
Trondheim, Norway.

Zdonik, S.B. 1990. Object-Oriented Type Evolution. In Bancilhon, F. and Buneman, P.
(Eds.), Advances in Database Programming Languages, 277-288: Addison-
Wesley.

Zicari, R. 1989. Schema Updates in the 02 Object-Oriented Database System:
Dipartimento di Elettronica - Politecnico di, Milano, 89-057.

Zicari, R. 1991. A framework for schema updates in an object-oriented database system.
In Proceedings of the 7th International Conference on Data Engineering, Kobe,
Japan.

