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CHAPTER I 

INTRODUCTION 

Given a population of objects characterized by some property, the first task 

a combinatorialist might undertake is to determine its cardinality. In many cases 

this is a difficult task, and an approximate answer would suffice. Another task con-

fronting our combinatorialist might be to choose (or generate) an object uniformly 

at random from the population. Again, in many cases this can be a daunting task, 

and an object chosen almost uniformly would be sufficient. These two seemingly dis-

parate problems have been shown to be equivalent for sets defined by self reducible 

relations [Va]. Thus one need only consider the problem of uniform generation. 

One powerful tool in tackling the problem of almost uniform generation is the 

Markov chain technique. In the Markov chain technique, one first attempts to 

construct a Markov chain whose states are the structures of interest and whose 

stationary distribution is uniform on the state space. If such a chain can be con-

structed, one then simulates the chain until its distribution is close to stationarity. 

The state of the chain after this mixing will be an element of our set with almost 

uniform distribution. 

However, for the Markov chain technique to be useful we need to meet several 

criteria. Firstly, we want the steps of the chain to be efficiently simulated. Secondly, 
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we require that the chain converge rapidly to its stationary distribution, that is, be 

rapidly mixing. Now, the task of constructing a chain whose steps are efficiently 

simulated generally poses no problem; however, determining rate of convergence 

can be a much more difficult undertaking. 

The recent work of Jerrum and Sinclair provides a tool for addressing just 

this question. In [SiJe], they show that the mixing rate of a Markov chain can be 

analyzed by examining the underlying digraph of the chain. Thus in Chapter 2, 

we present classic results in Markov chain theory and the results of Jerrum and 

Sinclair. 

An important application of probability to mathematics occurs in the theory of 

random graphs. One of the basic questions in random graph theory is to determine 

the asymptotic proportion of graphs possessing a given property. If this number is 

one, then almost all graphs are said to possess the property. An interesting class 

of graphs about which much is known is the class of generalized Steinhaus graphs 

[BrMo]. In Chapter 3, we define Steinhaus graphs and generalized Steinhaus graphs, 

present the results of Brand and other authors, and prove that almost all generalized 

Steinhaus graphs are rapidly mixing. 

Finally, in Chapter 4 we lay the foundations of an algorithm for the uniform 

generation of cyclic Mendelsohn designs. First, we define Mendelsohn designs and 

their equivalent formulation as difference families. Then we construct a chain whose 

states are difference families and where the transistions between states can be easily 



simulated. We then obtain upper and lower bounds on the degrees of vertices of 

the underlying digraph of this chain. 



CHAPTER II 

MARKOV CHAINS AND RANDOM WALKS 

1. Introduction 

In this chapter we present both classical and recent results in the theory of 

Markov chains. In Section 2, we give definitions and basic theory culminating 

in the fact that a finite-state, homogeneous, irreducible, aperiodic Markov chain 

has a unique stationary distribution, and in Section 3 we note the equivalence of 

simulating a Markov chain and taking a random walk on a graph. Then we discuss 

recent results of Mark Jerrum and Alistair Sinclair on applications of Markov chains. 

In Section 4, we discuss how Markov chains may be implemented to approximate 

the size of a population of combinatorial objects and to generate examples almost 

uniformly at random. The efficacy of such algorithms, as pointed out by Jerrum 

and Sinclair, depend on the rapid convergence of a Markov chain to stationarity. 

Such chains are said to be rapidly mixing. In Section 5, we give a powerful criterion 

discovered by Sinclair for analyzing the mixing rate of Markov chains. 

There are many excellent references on the theory of Markov chains. In partic-

ular [Bil], [Fe], [GrSt],[Rol] and [Ro2] are quite good. The following text borrows 

heavily from all of the above sources. Our usage attempts to be consistent where 

possible with [Bil], [GrSt] and [Ro2]. 



2. Preliminaries 

The theory of stochastic processes is the branch of probability that addresses 

systems that evolve or change. Specifically, a stochastic process is an indexed col-

lection of random variables, {X( : t € T}, defined on a probability space (0, P). 

One usually thinks of the index set T, which may be continuous or discrete, as 

representing time. In this section we consider a special class of stochastic processes, 

Markov chains. 

Let S be a countable set and let X = {Xt : t € T} be a stochastic process such 

that Xt (0) C S for all t. The set S is referred to as the state or phase space and 

if Xn = i we say that Xn is in state i at time n. If S is finite, X is said to be of 

finite-state and, in this case, we may and will consider S — {1,2, • • • , |5"|}, without 

loss of generality. 

Definition 2.2.1. ([Bil] p.107) The stochastic process X is a discrete-time Markov 

chain if 

Pr [-X"n+i — j \ Xq — io,Xi =«!,••• ,Xn = i„] = Pr [Xn+i = j | Xn = in] = Pinj 

for all sequences t„, iu • • • , in such that Pr [X0 = «0, Jfi = iu • • • ,Xn = in\ ± 0. 

This condition is known as the Markov property and can be interpreted as say-

ing that "the conditional distribution of any future state Xn+1 given the past states 

• ,Xn-i and the present state Xn is independent of the past states and 

depends only on the present state.»([Ro2]). The numbers Pin>, are the transition 



probabilities of the chain and represent the probability that a chain in state i at 

time n will make a transition to state j in one step. 

In general the transition probabilities are dependent on time. If not then 

Pr [X n + 1 =j\Xn = i]= Pr [Xi =j\X0 = i] = P, 
»3 

for all n, i,j and the chain is said to be homogeneous. In this case, we let P = (Pij) 

be the matrix of the one-step transition probabilities and refer to P as the transition 

matrix of the chain. Henceforth, all of our Markov chains will be assumed to be 

homogeneous, discrete-time, and of finite-state. 

We now consider the n-step transition probabilities, that is, the probabilities 

of going from one state to another in n steps. These probabilities are given by the 

Chapman-Kolmogorov equations ([GrSt p. 196). In our case of a finite state space, 

these equations are 

|S| 

Pij(n + m) = Pik(n)Pkj(m) for all n, m > 0, all i,j, 
fc=l 

where Pij(n) denotes the probability of going from state i to state j in n steps. 

Let Pn denote the matrix of the n-step transition probabilities. Then from the 

above equations we get Pn+m = PnPm. This property is refered to as the semigroup 

property of the chain. In particular, we have Pn = Pn. That is, the n-step transition 

probabilities can be computed by taking the n-th power of the transition matrix. 

Furthermore, if p0 is any initial distribution, then the distribution of the chain after 

t steps, pt, is given by pt = poP*. 



We now note some important properties of Markov chains necessary for our 

investigation. 

Definition 2.2.2. ([Rol] p.141) A state j of a Markov chain is said to be accessible 

from a state i if Pfi > 0 for some integer n. Two states are said to communicate if 

they are accessible from each other. 

Proposition 2.2.3. The relation of communication is an equivalence relation. 

Definition 2.2.4. Two states are said to be of the same class if they communicate. 

A Markov chain that has only one class is said to be irreducible. 

Thus a Markov chain is irreducible if and only if any state is accessible from 

another. 

Definition 2.2.5. ([Ro2] p.104) A state i is said to have period d if P£ — 0 

whenever n is not divisible by d and d is the greatest integer with this property. A 

state with period 1 is said to be aperiodic. 

Proposition 2.2.6. ([Ro2] p.105) Periodicity is a class property, that is, i f i and 

j communicate then d(i) = d(j). 

Let fPj denote the probability that, starting in state i, the first transition to 

state j occurs at time n. That is, 

fij — Pr I-^n = j, ^ j, Xn-2 T^j,---,X1^j\X0=i]. 



Then, 

/« = E/5 
n=l 

denotes the probability of ever making a transition from i to j. The /£• are called 

the first passage probabilities of the chain. 

Definition 2.2.7. ([Ro2] p.105) A state i is said to be recurrent or persistent if 

fii = 1, and transient otherwise. 

Proposition 2.2.8. ([Ro2] p.106) Recurrence is a class property. That is, i f i and 

j communicate and i is recurrent, then j is recurrent. 

Definition 2.2.9. ([GrSt], p.203) Let Tj = min{n > 1 : Xn = j} denote the time 

of first passage to state j. The mean recurrence time m of a state is defined as 

Hi = E(Tj | X0 = * ' ) = ( " !f \ i$ p e r s i s t e n t 

I oo if i is transient. 

Recurrent states may be classified as null or non-null according as ji{ is finite. 

Definition 2.2.10. ([GrSt], p.203) A recurrent state i is called ( n u U i f ^ = °° 

1 non-null if m < oo. 

Null (non-null) recurrence is a class property. The next proposition gives us a 

condition for the existence of non-null states. 

Lemma 2.2.11. ([GrSt], p.206) If S is Bnite, then at least one state is persistent 

and all persistent states are non-null. 

The next definition is important. 



Definition 2.2.12. ([GrSt], p.203) A state is called ergodic if it is persistent, 

non-null and aperiodic. 

Thus if X is an irreducible, aperiodic, finite-state Markov chain, then all states 

are ergodic. In the case that all states are ergodic, we say that the chain X is 

ergodic. Now let us consider the limiting behavior of the chain. 

Definition 2.2.13. ([GrSt], p.207) The vector 7r = ,tt|5|) is called a 

stationary distribution of the chain if 

(a) 7rj > 0 for all j, and Y^j77j — 1 

(b) 7r = 7rP, that is ir} = zipij for all j. 

Theorem 2.2.14. [GrSt p.208] An aperiodic, irreducible chain has a stationary 

distribution 7r if and only if all the states are non-null persistent; in this case, 7r is 

the unique stationary distribution and is given by ir; = m~l for each i € S, where 

Hi is the mean recurrence time of i. 

Thus any irreducible, ergodic Markov chain has a stationary distribution. 

3. Connection with graphs 

It is often convenient to view Markov chains in the context of graphs. Clearly, 

we can represent a Markov chain by a directed graph, G = (V,E). Simply let V = S 

and let E = | Pij 7̂  0}. In this section we will show that there is a one-to-

one correspondence between transition matrices (or equivalence classes of Markov 



10 

chains) and normalized, weighted, directed graphs. This is of course, a well known 

result in the theory of Markov chains. We will then show that the simulation of an 

irreducible aperiodic Markov chain is equivalent to a random walk on the underlying 

digraph of the chain. 

Proposition 2.3.1. There is a one-to-one correspondence between transition 

matrices and normalized, weighted, directed graphs. 

Proof: Let P be the transition matrix of a Markov chain. We associate with P 

the underlying graph of P, Gp(V, W) as follows. Let V ~ S and let W = {wij = 

KiPij j i,j € 5*}. Clearly, Gp is a weighted, directed graph. Now, summing up the 

edge weights, 

E E *<p'i = E E p'i = £ * • • = 1 

» j i j i 

we see that Gp is normalized. 

Conversely, let G(V, W) be a normalized, weighted, directed graph. Without 

loss of generality we will assume that V = {1,2, , |V|}. For all i,j € V let 

Pij — • Then by the Kolmogorov Existence Theorem([Bil], p.510), there is a 

Markov chain X with state space S = V having the transition probabilities Pi}. • 

We can now note the analogues of some of the properties of a Markov chain X 

in the underlying digraph, G. In particular, 

• j is accessible from i if and only if there is a path from i to j, 

• i and j communicate if and only if there is a cycle containing i and j, 
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• X is irreducible if and only if G is connected, 

• if X is irreducible, then X is aperiodic if and only if G is not bipartite. 

We will now show that the simulation of a Markov chain is equivalent to a 

random walk on the underlying digraph of the chain. First we will examine random 

walks on (unweighted, undirected) graphs. 

Definition 2.3.2. Let G = (V, E) be an unweighted, undirected graph. A random 

walk on G is a discrete-time, homogenous Markov chain, Xo,Xi,X2 , • • • , taking 

values in V such that 

^ . , , , , i —TTTi if j is a neighbor of i 
Pv[Xk+1 =j\Xk = . ' ]= { deg(i)' 6 

0, otherwise. 

Thus, to execute a random walk on a graph we start with an arbitrary vertex 

t>o, and choose t>i from the neighboring vertices with probability deg(„0). We then 

continue this process, choosing vertex vk from the neighbors of vk-\ with probability 

dS i r fa l f o r all A > 0. 

Now suppose that G = (V, W) is a normalized, weighted, directed graph with 

edge weights Wij. As before, a random walk on G commences from an arbitrary 

initial vertex i = u0, but instead of choosing the next vertex uniformly at random 

from the neighbors of v0, we choose a neighbor j with probability ^ 

Now when we simulate a Markov chain, we generate a sequence of states, 

5o>«ij«2}"* where P [^n = j | = j] — And when we execute a random 
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walk on its underlying graph, we generate a sequence of vertices v0,vi, • • • where 

P fa™ = j | Vn-1 = i\ = = Pij. Hence, simulating of a Markov 

chain is equivalent to taking a random walk on its underlying digraph. 

4. Applications 

A problem which frequently arises in combinatorics is to count the number of 

instances of a certain type of combinatorial structure. Consider, for example, the 

problem of determining the number, Tn, of labeled trees of order n. The solution 

to this well-known problem is known as Cayley's formula. 

Proposition 2.4.1, [Cayley] Let Tn denote the number of labeled trees of order 

n. Then Tn = nn~2. 

As E. Palmer ([Pa] p. 4) notes, the discovery of this proposition is unavoidable 

if one merely lists the numbers of labeled trees of order n < 5. In fact, proofs abound 

for Cayley's formula. J.W. Moon [Mo2] is said to have collected ten distinct proofs 

of this theorem and, H. Priifer [Pr] has given a particularly elegant proof. 

However, it is usually prohibitive to take such an approach to counting. After 

examining a few initial cases, a conjectured solution might not be forthcoming or 

may be difficult to prove. Also it may happen, as in the above example, that the 

number of structures is exponentially large in terms of the problem size. Thus 

generating all the possible structures for a given problem size could prove to be 

intractable. 
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Consider, for example, the open problem of computing the permanent [Br2]. 

Given a square 0-1 matrix M — (m,j) of size n, the permanent of M is defined by 

per(M) = I I 

cr 

where a ranges over all permutations of {1,2, • • • , n}. 

It has been observed that this problem is equivalent to counting the number 

of perfect matchings, or 1-factors, in the bipartite graph G{V\,V2,E), where \Vi \ = 

IV2I = n and E C V\ x V2 such that (i,j) € E if and only if m,j = 1. 

Valiant has shown that this problem is #P-complete [JeSi2]. In such cases, 

it is often just as good to have an approximate solution to the problem. Fully 

polynomial randomized approximation schemes are efficient algorithms for obtaining 

such approximations. 

Definition 2.4.2. ([Va] p.100) A fully polynomial randomized approximation 

scheme (fpras) is a probabilistic algorithm which given an error parameter e and 

a confidence parameter 8 outputs an estimate with relative error at most e with 

confidence at least 8 in time bounded by some polynomial in and the length of 

the input. 

Now, suppose that we have a population of combinatorial objects and we wish 

to generate elements from it uniformly at random. Clearly, this would be a trivial 

problem if one could easily generate any item at will from an enumerated list. But 

as we have seen, it is not always feasible to get an exact count of the population. 
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Further, it might be difficult to generate elements from it. Here we would also be 

satisfied with an "almost random" member. 

These two seemingly disparate problems have been shown to be equivalent 

for sets defined by self reducible relations [Si],[SiJe]. Thus, in such instances one 

can formulate an approximate counting problem in terms of an almost uniform 

generation problem. 

A particularly elegant approach to almost uniform generation is the Markov 

chain technique. In the Markov chain technique, one constructs a Markov chain 

whose state space is the set of structures in question and whose stationary dis-

tribution is uniform on the state space. One then simulates the chain until it is 

sufficiently close to stationarity and accepts the terminal state as the desired "ran-

dom" element. 

The feasibility of the above technique relies heavily on two conditions. First, the 

transitions of the Markov chain should be easy to simulate. Secondly, the Markov 

chain should converge rapidly to stationarity. Chains which converge rapidly to 

stationarity are called rapidly mixing. This will be the subject of the next section. 

5. Convergence to Stationarity 

in a ran-
Analysis of the rate of convergence of the Markov chain implemented 

dom generation scheme is crucial to determining its efficiency. Classical techniques 

have relied on the analysis of the second largest eigenvalue of the transition matrix, 

but such methods are impractical in most cases, especially when the chain has a 
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large state space. However, recently powerful new tools have been developed to 

tackle the task of analyzing the mixing properties of Markov chains. 

The first steps taken in this direction were made by Jerrum and Sinclair [SiJe]. 

They showed that the rate of convergence of a Markov chain could be analyzed 

by examining the underlying digraph of the chain. First they defined a quantity, 

conductance, and related it to the second largest eigenvalue of the chain. Then they 

obtained a lower bound for the conductance by a technique called canonical paths. 

This enabled them to get a bound on the mixing time of the chain. For a detailed 

history of these developments see Vazirani [Va]. 

We will now state basic definitions and theorems needed for the subsequent 

chapters. Our exposition will follow that of Vazirani [Va] which is based on the 

work of Mihail [Mi]. 

Before we make precise what we mean when we say that a Markov chain is 

rapidly mixing we need the following definition. 

Definition 2.5.1. A Markov chain with transition matrix P and state space S is 

strongly aperiodic if Pu > | for all i € S. 

Let X be an irreducible, strongly aperiodic Markov chain with state space 

V = {1,2, ••• ,JV}, transition matrix P and stationary distribution 7r, and recall 

that if po is any initial distribution, the the distribution of the chain after t steps is 

given by pt — poP*. 
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Definition 2.5.2. ([Va] p.102) Let di(t) = Eili IMO ~ ^l- Then we say a 

Markov chain is rapidly mixing if di(t) < e for t = log(i)poly(logiV), for some 

polynomial poly. 

Definition 2.5.3. Let S C V. Then the conductance, $p(S) of S, is defined to 

be 

, , Hies Z*v\s wv J2ies Y,jev\s w'j ^ ^ , 

l^ieS n i Z-a'£S 2-/j€V Wi3 

and the conductance of P is : 

= min tfrpfS'). 

We have the following proposition relating conductance to the L2 distance, 

d2(t) = YaLi ~ vi)21 between pt and 7r. 

Proposition 2.5.4. ([Va] p.103) For any irreducible and strongly aperiodic 

stochastic matrix P, and any initial distribution po we have: 

d2(t + 1) < (1 - $p)d2(t) 

Hence: 

d2(t) < (1 - $2p)fd2(0). 

The fact that ^2(0) < 2 and the Cauchy-Schwartz inequality gives 

di(t) < y/Ndi(t) < yj2N(l-&p)\ 
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Now, if we can obtain a lower bound on the conductance, we can obtain an 

upper bound on d\(t) and hence a lower bound on the mixing time. We need the 

following definitions. 

Definition 2.5.5. ([Va] p.112) The conductance of an unweighted, undirected, 

regular graph is given by 

$ = min , . „ . 
| s |<m { | ^ s | 

(\ES,§\\ 

I \Es\ J ' 

Note that this definition is a special case of Definition 2.5.3. Here, 

denotes the number of edges between S and S and |Es| = J2 v^s ^eg(u)-

Definition 2.5.6. ([Va] p.112) The edge magnification of a graph is given by 

. / l-Bs,sl 1 
ix = mm < — ? • 

,S|<ml \s\ / 

Another key concept in determining the mixing properties of a graph is con-

gestion. Let G be a digraph. For every ordered pair, (u, v), of vertices of G, fix a 

path from u to v called the canonical path from u to v. The congestion of an edge 

e is defined to be the number of canonical paths that contain e. 

The argument of Vazirani's that follows relating conductance and congestion 

assumes that the graph G is regular. Later we will generalize these results. 

Proposition 2.5.T. ([Va] p.114) Let G(V,E) be a (regular) directed graph. Let 
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JV = |V|. If aN is the maximum congestion through an edge then 

r ~ 2a 

Proof: Given a cut (S,S), there are |S||5| paths that cross from S to 5, each of 

which must use at least one edge in Es§. Since the number of edge crossings from 

5" to S is \ESts\ and aN is the maximum congestion for any edge, the number of 

edge traversals does not exceed |-E's,s| a-^- Hence, 

[£ s , s | a«'>|S , | |S ' |> |S' |^. 

Therefore 

\Es,s\ > J_ 
|S| - 2a 

and since this is true for all cuts (S, S) we have 

D 

We now examine the case where G is not regular. Utilizing bounds on the 

degrees of G we obtain the following bound on the conductance. 

Proposition 2.5.8. Let G = (V, E) be a graph with \V\ = N such that 

N N 
—(i - e) < deg(u) < — (1 + e) 
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for all of its vertices v. If aN is the maximum congestion through an edge then 

, ^ / 1-e \ 1 $ > 
XI + e)V Na 

Proof: Let S C V with ^ \ a n d f o r any T CV let D(T) = EieT
deS(0-

Then D(S) < |D(G) and D(S) > |£>(G). By assumption we have 

| 3 | f ( l - « ) < I > ( S ) < | S | f ( l + e). 

Hence, 

|S|f (1 + e) > D(S) > jB(G) > ijV^(l - e). 

Thus 

f ( l - £ ) \ N 
l-SI > , N 

2 (1 +e)J 2 

1 - e \ N 

Hence 

Thus 

1 ~1~ £ ) 2 

| ^ , s | « W > | S | | 5 | > | S | ( j ^ f -

\Es,SI > 1 
\S\ \ 1 4- £ / 2a 

Since this is true for all S C V with £ \ g s 7ri < \ , we have 

$ mm 
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> min J —-— 
S c V : i 3 i 6 s 1T,'-5 I + £)l^l 

\Es,s\ > —7- r } min 

> 

KN(1 +e)J 5CK:^.gs^i<i | 151 

( I z l ) - 1 

yN(l +e) J \ 1 + e J 2a 

' 1 — e \ 1 
XI + e ) v iVa 

• 

We conclude by noting Definitions 2.5.5 and 2.5.6 in the case of a regular graph 

of degree - is equivalent to Proposition 2.5.8 in the case e = 0. In this case we have, 

d> * J ̂  \ 
$ = mm < , ' . > 

|S|<l^i I |£s l J 

I E$,l = mm x ,r 

IS IS^ I f l^l 

2 
= — mm 

N |s|sm 
2 

= N» 

> 1 ± 
~ N 2a 

1 
~ Na' 

r i ^ s i i 

1 \s\ } 



CHAPTER III 

APPLICATIONS TO STEINHAUS GRAPHS 

1. Introduction 

In this chapter we investigate the mixing properties of random generalized 

Steinhaus graphs. A basic question in the theory of random graphs is: Given a 

graph property, what is the probability that a graph has this property? If this 

number is one we say almost all graphs have the property. In this chapter we show 

that almost all generalized Steinhaus graphs are rapidly mixing. 

In Section 2 we state the two basic models of the theory of random graphs and 

state some well known results. In Section 3 we define Steinhaus graphs and gener-

alized Steinhaus graphs and give some recent results of Brand and other authors. 

Finally, in Section 4 we employ the results of Chapter 2 to show that almost all 

generalized Steinhaus graphs are rapidly mixing. 

2. Random graphs 

The theory of the evolution of random graphs which grew from the two seminal 

papers of Erdos and Renyi, [ErRel], [ErRe2] (see [Pa]), is a striking example of the 

use of the probabilistic method in mathematics. We will not be concerned with the 

history of the theory but will only state the two basic models and some well known 

21 
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results. For more background and results see [Bo2] and [Pa]. 

In the first model we will consider, the sample spaces Q,n consisting of all labeled 

graphs G of order n, Specifically, for each positive integer n and number p = p(n) 

with 0 < p < 1, the probability of a graph G € with q edges is given by 

P{G) = pq{l - pp)~q. 

It is often convenient to view the set of pairs of vertices of G as a sequence of (£) 

Bernoulli trials and consider p as the probability of an edge. This model of random 

graph theory is refer to as either Model A, [Pa] Q{n, P((edge)) = p(n)} or Qp{n) 

[Bo2]. 

In the second basic model, the sample spaces Q.n,q consist of all labeled graphs 

G of order n and size q = q(n), that is with q(n) edges. In this model the probability 

of each graph G is given by 

P(G) = . 

This model is referred to as either Model B, Q{n, M(n)) or QM(TI) where M(n) = q. 

In this chapter we will be using Model A. For more information on these models 

and others see [Bo2], [Lu]. 

Let Q be a property of graphs and consider the set An of graphs of order n 

that possess property Q. If l im, , -^ P(An) = 1 then we say that almost all graphs 

have property Q. A very useful property of graphs from which many results easily 

follow is property P*. 
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Definition 3.2.1. ([Bo2] p.40) A graph G = (V,E) has property P& if whenever 

W\, W2 are sets of at most k vertices each then there is a vertex z G V — W\ U W% 

joined to every vertex in W\ and none in W2 • 

In Model A, if p is fixed then almost every graph has Pk ([Pa] p.13). However, 

Bollobas [Bo2] proves a more general result. 

Proposition 3.2.2. ([Bo2] p.40) Suppose M = M(n) and p = p(n) are such that 

for every e > 0 we have 

Mn~2+£ -* 00 and (N - M)n~2+t: -» 00, 

pne —* 00 and (1 — p)ne —* 00. 

Then for every fixed k € N almost every graph in Model B has Pk and almost every 

graph in Model A has Pk. 

From this proposition it follows [Bo2] that if Q is any property of graphs given 

by a first order sentence, then either Q holds for almost every graph in Model A 

and Model B or Q fails for almost every graph in Model A and Model B. 

In particular, in Model A with p and k fixed, we have [Pa] 

• Almost all graphs have diameter 2. 

• Almost all graphs are fc-connected. 

• Almost all graphs contain a subgraph of order k as an induced subgraph. 

• Almost all graphs are nonplanar. 

• Almost all graphs are locally connected. 
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An important property possessed by almost all graphs which can't be expressed 

by a first order sentence is given by the following proposition. 

Proposition 3.2.3. ([Pa] p.66) Let G = (V,E) be a graph, \V\ = n,£ > 0 and 

suppose <jon —> co arbitrarily slowly. If the probability of an edge is 

log n 
p = un , 

n 

then almost every graph satisfies 

(1 — e)pn < deg(v) < (1 + e)pn 

for each of its vertices v. 

Proof: For each 1 < i < n let 

y.tr\ - / 0 if ^ ~ £^pn < deg^ K ^ + e^pn 

' \ 1 otherwise. 

Then X(G) = Xi(G) is the number of vertices of G whose degrees lie 

outside the interval ((1 — s)pn, (1 + e)pn). The expected value of X is 

E(X)=n Y. ( " i 

k:\k—pn\>ps 

Then by using estimates on the tail of the binomial distribution one can easily 

see that E(X) —+ 0. • 

We close by mentioning a result of Chung, Graham and Wilson. In [CGW] 

the authors show the equivalence of a set of graph properties possessed by almost 
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all graphs in Q^{n) in the sense that any graph possessing any one of them must 

necessarily possess all of the others. Such graphs are called quasi-random. Let us 

consider the the properties P2(t),Pa. 

P 2 (0 : e(G) > (1 + o ( l ) ) ^ , NG(Ct) < (1 + o(l)) ( f ) ' 

where No(Ct) denotes the number of occurrences of the cycle of length t as a 

subgraph of G and e(G) denotes the number of edges of G 

P3 : e(G) > (1 + o ( l ) ) £ , Aj = (1 + o( l ) ) f , A2 = o(n) 

where A i are the eigenvalues of the adjacency matrix of G and |Ai| > ••• > |A„|. 

Proposition 3.2.4. For each n, let Qn be a quasi-random graph with n vertices 

and let Gn be the graph obtained by adjoining a tail of length y/n to Qn. Then Gn 

is quasi-random but not rapidly mixing. 

Proof: For each n, the number of edges in Gn is 

e(Gn) = e(Qn) -f- y/ri 

> ( l + o ( l ) ) ^ + ^ 

( 1 + 0 ( 1 ) ) ^ + ^ 

and the miraber of 4-cycles is 

iVG„(C4) = NQ„(C,) 
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< ( i + « D ) ( t r 

= d + o ( X ) ) ( ^ ) 4 . 

Hence Gn is quasi-random. But certainly Gn is not rapidly mixing as it takes 

at least y/n steps for a random walk commencing at the end vertex to reach a vertex 

in Qn. • 

3. Steinhaus graphs 

Steinhaus graphs are a class of graphs whose adjacency matrices satisfy a sim-

ple recurrence relation. A defining property of Steinhaus graphs is that they are 

completely determined by adjacencies of a single vertex. In this section we will 

define Steinhaus graphs and generalized Steinhaus graphs and note some of the 

properties possessed by almost all of them. The results of this section are taken 

from [Brl], [BCDJ], [BrJa] and [BrMo] where generalized Steinhaus graphs are first 

defined. 

Let be a string of O's and l's. We define a j j for 1 < i < j < n 

inductively by the relation aitj = a j_ i j_ i + mod 2. The numbers ai>;, 1 < 

i < n - 1,2 < j < n are referred to as a Steinhaus triangle of order n. We complete 

a i j to an n x n matrix by setting a,-,; = 0 for 1 < i < n and setting = ctj^ for 

i > j • A graph whose adjacency matrix is so generated is referred to as a Steinhaus 

graph and the string of O's and l's, (ai,y)"=1 is called the generating string of both 
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the graph and the triangle. 

Note that by specifying a generating string, we are specifying the adjacencies of 

the vertex with label one. It is easy to see that a Steinhaus graph is also determined 

by specifying the adjacencies of any other vertex. 

Example 3.3.1. Consider the generating string (ai,j)®=2 := (1> 0}. The 

Steinhaus triangle and adjacency matrix associated with this string are 

1 0 
1 

1 0 1 
1 1 1 
0 0 0 

0 0 
0 

1 0 
0 1 
1 1 

0 
1 
0 
1 

/ 0 1 0 1 0 1 1 0\ 
1 0 1 1 1 1 0 1 
0 1 0 0 0 0 1 1 
1 1 0 0 0 0 1 0 
0 1 0 0 0 0 1 1 
1 1 0 0 0 0 1 0 
1 0 1 1 1 1 0 1 

Vo 1 1 0 1 0 1 0 / 

In [BrMo], Brand and Morton develop the following generalization of Steinhaus 

graphs. Let s :N—> N — { l } b e a function. A generalized Steinhaus triangle of 

order n and type s is the upper triangular portion of an n x n array A = (ciij) 

whose entries satisfy 

a( i ) - l 
ai,j ~ ^ "] Cr,i,jai—l,j—r (mod 2) 

r = 0 

m where 2 < i < n - l,i + s(i) - 1 < j < n,cr,i,j € {0,1} and = 1. As i 

the case of Steinhaus graphs, we define aiti = 0 for 1 < i < n and set ah] = ajt,• 

for i > j. A graph with such an adjacency matrix is referred to as a generalized 

Steinhaus graph. 
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Example 3.3.2. Let n = 8,^(2) = 4, s(3) = 3, s(4) = 4, s(5) = 2, s(6) = 3,^(7) = 

2 and c n»,j 
1 if r = 0 or .s(i) — 1. Otherwise c r j i j == 0. Then below is the 

generalized Steinhaus triangle of the generating string in boldface. 

c 
1 0 0 1 1 0 1 

(1,0,0,1) 4 0 1 0 1 0 0 
(1,0,1) 3 1 0 0 0 1 

(1,0,0,1) 4 1 1 1 1 
(1,1) 2 0 0 0 

(1,0,1) 3 1 0 
(1,1) 2 1 

As in [BrMo] we define a probability measure on the set of generalized Steinhaus 

graphs by requiring Pr [aij = 1] = | for each a i j in the generating string so that 

each graph occurs with the same probability. It then follows that Pr [ai j = 1] = | 

for all 1 < i < j < n. We will also assume that co:i,j = 1 for 2 < i < n — 1, i + 

s(i) — 1 < j < n. Note that with this additional restriction, when s = 2 we generate 

Steinhaus graphs. 

The properties of random Steinhaus graphs and random generalized Steinhaus 

graphs have been investigated by Brand and other authors. The first paper to ad-

dress a question of this nature was [Brl] in which Brand answered in the affirmative 

Brigham's and Dutton's [BrDu] conjecture that almost all Steinhaus graphs have 

diameter two where Pr[olfJ- = 1] = i . In [BCDJ] Brand, Curran, Das and Jacob 

generalize this result to the case where 0 < P r [ a i j = 1] < 1. A much more general 

result is obtained in [BrJa] in which Brand and Jackson show that the theory of 
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random Steinhaus graphs is first order complete and identical with the first order 

theory of random graphs. Thus a first order statement is true for almost all graphs 

if and only if it is true for almost all Steinhaus graphs. Finally in [BrMo], Brand 

and Morton extend these results to generalized Steinhaus graphs. 

4. Almost all generalized Steinhaus graphs are rapidly mixing 

Let us recall what it means to say a set of events is independent. 

Definition 3.4.1. ([Bil] p.48) A finite collection of events Au A2, • • • , An is inde-

pendent if 

Pr [Akin-'-nAkj]=Pr[Akt]-..Pr [Akj] 

for 2 < j < n and 1 < k\ < • • • < kk < n. 

Let us fix i and consider the events 

[oi,i = 1], [<ti,i = !],••• , [a,-!,; = 1], [a^+i = 1], [alij+2 = 1], • • • , [a;in = 1], 

That is we consider the events that vertex i is adjacent to another vertex. Our aim is 

to show that this is an independent collection of events. Now, since Pr [ai j = 1] = i 

for all 1 < i < j < n this is equivalent to showing that 

Pr ( K ; = zxj n • • • n [ai_1|t- = Ii^j n K i + 1 = /,•] n • • • n [ai>n = /„_!]) = J L 

f o r a n y / = {/j ,- . . , / ^ j ) € {O,!}""1. 

In [BrMo], Brand and Morton developed a scheme for numbering the entries 

in the generalized Steinhaus triangle with the following properties. 
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• No two elements of the generating string have the same number. 

• Each entry that is not in the generating string has the same number as some 

entry in the generating string. 

• Changing an entry a t j in the generating string will change all of the entries 

with the same number as a i j and leave unchanged any entry with a number 

less than ctij. 

• For each 2 < j < n, is an increasing function for 1 < i < j — 1 where </>j(i) 

denotes the number of ciij. 

Additionally, since c0>jj = l f o r 2 < i < n — l,z + s(i) — 1 < j < n, we have the 

following property. 

• Changing an entry a i j in the generating string will change the entries ciij for 

2 < * < j — 1. 

Thus there are n - 1 positions in the generating string that will determine the entries 

«i,i, • • • , a.,j+i, • • • , «i,n- Hence for any assignment of values to the entries in 

the generating string outside these n - 1 positions and any I € {0, l } n _ 1 there is 

only one choice for these n — 1 positions which will give 

al,i 111' ' ' i ai—l,i = Ii—1, = Ii, * • • , Ot,n == In — 1 • 

Hence the desired probability is clearly Thus we have the following proposi-

tion. 
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Proposition 3.4.2. For each i — 1, • • • , n the events 

[®l,i ~ l]j [®2,i 1]) ' j [®»—l,i = 1]) 1]) [®i,i+2 1]) j [®i,n 1] 

are independent. 

Thus as an analog to Palmer's proposition on the degrees of almost all graphs, 

we have the following proposition on the degrees of almost all generalized Steinhaus 

graphs. 

Proposition 3.4.3. (See [Pa] p.66) Let e > 0. Then almost all generalized 

Steinhaus graphs satisfy 

^"(1 ~~ e) < degd(v) < ~(1 + e) 

for all of their vertices. 

Finally, with the above proposition and the last result of Chapter 2, we have 

the following lower bound on the conductances of almost all generalized Steinhaus 

graphs. 

Proposition 3.4.4. For almost all generalized Steinhaus graphs, the conductance 

$ satisfies 

$ > 
XI +e)2 J Na' 

where Na is the maximum congestion of an edge. 

We now estimate the mixing rate of almost all generalized Steinhaus graphs. We 

will use the method of canonical paths. To do so we need the following proposition. 
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Proposition 3.4.5. For almost all generalized Steinhaus graphs G, given x, y € V 

there are at least ^ vertices connected to both x and y. 

Proof: In [BrMo] it is shown that given Ti,T2 C V, |Ij.| = |T2| = A; there is a 

"good set" S of size at least gp- such that the events a(v2,i>f2) | wi,U2 € 

S, Vtk € T\,vt2 € I2} are independent. We will call such a set independent for T\ 

and Ti 

Let x, y 6 V} T\ — {a;}, T% = {y}. Then there is a set S of size at least j that is 

independent for {x} and {?/}. For each s € S, let X3 = 1 if s is adjacent to both x 

and y; otherwise, let Xs = 0. Since S is independent for {a:} and {y}, {Xs \ s € S} 

is a sequence of independent Bernoulli trials with Pr [X3 = 1] = | where we regard 

the event X = 1 as a success. Thus the number X of successes is a binomial random 

variable with parameters (|5|, j ) and expected value at least 

We now obtain an upper bound for Pr [X < . 

Pr X < 71 ~ 64 
<

 L"^4J (n/8\ f i y f3\n/8' 

0 X 

< nL/n/8\ f i y ' 6 4 / 3 \ 7 n / 6 4 

64 \n/64j \ 4 

( J M (f )"/8 V? (1_\"/M / 3 \ 7 " ' 6 4 

6 4 v ^ ( & ) " / 6 4 v ^ ( i f ) 7 " / 6 4 7 i f w w 

n ( l ) " / 8 ^ / 1 \ " / 6 4 /3\7n/64 

1127T \ J ^4 
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n I gn/8 \ /|\ n/64 7n/64 

1127T \ 77"/64 J \A J \ 4 

n~ ( 8n/8 \ / 3 \ 7,1/64 

112tt V 4n /6 4 / V28 

n / 24 • 21 /7 , 7n/64 

112tt v 2 8 

< 
n (26.5 7n/64 

1127T V 28 

Thus the probability P that for some pair of vertices there are less than — 
64 

vertices adjacent to both satisfies 

'n\ I n / 2 6 . 5 \ 7 n / 6 4 

P < 
,2 y V 112tt V 28 

^ ( n5/2 \ / 2 6 . 5 \ 7 n / 6 4 

~ V v S ^ F y v 28 7 

which clearly approaches 0 as n —• 00. 

Hence for almost all generalized Steinhaus graphs, for each pair of vertices there 

is set of vertices of size at least ^ that are connected to both. • 

To estimate the mixing rate of a generalized Steinhaus graph we will use the 

method of canonical paths. Let G be a generalized Steinhaus graph such that for 

every pair of vertices in G there is a set of vertices of size at least ~ that are 

connected to both. For 1 < t < j < n choose a vertex vitj that is adjacent to both 

* and j and different from for J ~jk<l< J and vkJ for i-J±-<k<i. The 
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canonical path from i to j will consist of the edges (i,vkii) and (vk,i,j). If i > j we 

reverse the path from j to i. 

Thus the maximum usage of an edge (t, x) is at most 2 ^ ? = 2 5 6- Hence for 

almost all generalized Steinhaus graphs, 

$ > 
1 _ e ^ (-1 

XI + e)2J \256, 

For convenience, assume e < y/5 - 2 so that 

$ > — . 
~ 512 

Thus for 0 < s < 1 we wish to find t such that 

< €. 

Taking logs of both sides we see we want 

~ [log2N + tlog (l — 2~16)] < logs 

or 

log 2N + t log (l — 2~16) < -2log 

Let C — |log (l - 2~16) | . Thus 

21og(i) + log2iV 
t > 

C 
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log[i 
9 i 1°S2 N 

logl 

which is of the form 

log ( ^ ) poly(log N). 

Thus almost all generalized Steinhaus graphs are rapidly mixing. 



CHAPTER IV 

THE RANDOM GENERATION OF CYCLIC 

MENDELSOHN DESIGNS 

1. Introduction 

In this chapter we develop an algorithm to generate 2 — (4/ + 1,4,1) cyclic 

Mendelsohn designs at random with a uniform distribution. The motivation for 

this algorithm is a conjecture of Brand and Huffman on the construction of cyclic 

Mendelsohn designs. In [BrHu], the authors construct 2 — (13,4,1) and 2 — (17,4,1) 

Mendelsohn designs from generic difference families by performing "switches" and 

ask whether all 2—(pn, k, 1) Mendelsohn design can be constructed in a similar man-

ner. In this vein, we will construct 2 - (4/ + 1,4,1) Mendelsohn designs at random 

by starting with a generic difference family and performing random switches. 

The basis for this algorithm is the Markov chain technique. In Section 2, we 

introduce Mendelsohn designs, difference families and related facts. In Section 3, we 

construct the underlying graph of an irreducible, strongly aperiodic Markov chain. 

The vertices of this graph will be equivalence classes of difference families and the 

edges will correspond to switches. At each vertex we add enough loops so that 

after a sufficiently long random walk on the graph, it will occur with probability 

proportional to the number of difference families it represents. Thus, if one were 

36 
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to choose an arbitrary initial vertex, simulate the chain for an adequate number of 

steps, and choose a difference family at random from the class corresponding to the 

terminal vertex, the probability of this difference family would be nearly uniform. 

Finally, in Section 4 we outline our algorithm. 

2. Mendelsohn Designs 

Design theory is an intricate branch of combinatorics that has applications to 

statistics and computer science. We will not be concerned with the elementary 

theory of designs here, we will merely define the topics of interest. 

Definition 4.2.1. ([BrHu]) A 2 — (u, k, \)Mendelsohn design D is a multiset con-

sisting of blocks B = {(vi,W2),(v2,t73),-.- , (wfc_i, vjfe), (v*, wi)} where v1,v2,--- >"* 

are distinct elements of a u-set V such that every ordered pair with distinct entries 

is in precisely A blocks of D. 

We have a concept of isomorphism for designs. Two designs are said to be 

isomorphic if there is a bijection on the u-sets which preserves block multiplicity 

and a design automorphism is an isomorphism of the design onto itself. We can 

now say what it means for a Mendelsohn design to be cyclic. 

Definition 4.2.2. A Mendelsohn design is cyclic if it has u-set Z„ and translation 

by 1 is an automorphism. 

In this chapter we will only consider Mendelsohn designs with u = 4/-f-l,A; = 4 
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and A = 1. In this case we have the obvious fact. 

Proposition 4.2.3. A cyclic 2 - (41 + 1,4,1) Mendelsohn design has (4/ + 1)/ 

blocks and I orbits. 

Proof: In a cyclic Mendelsohn design with A = 1, every ordered pair of elements 

of Z4i+i appears in exactly one block. Since there are (41 + 1)4/ such pairs and the 

size of each block is four, there are (4*+1)4< = (4/ + 1 ) / blocks; and since translation 

by one is an automorphism, there are = I orbits. • 

For the sake of simplicity, we will henceforth abuse notation by writing the 

block {(t>i, V2), (i>2, V3), (V3,^4), (^4) )} as {uj, V2, i>3,1*4}. Let us now consider the 

following example with v = 13. 

Example 4.2.4. 

{0,1,3,6} {0,4,9,2} {0,8,4,1} 

{1,2,4,7} {1,5,10,3} {1,9,5,2} 

{2,3,5,8} {2,6,11,4} {2,10,6,3} 

{3,4,6,9} {3,7,12,5} {3,11,7,4} 

{4,5,7,10} {4,8,0,6} {4,12,8,5} 

{5,6,8,11} {5,9,1,7} {5,0,9,6} 

{6,7,9,12} {6,10,2,8} {6,1,10,7} 
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{7,8,10,0} {7,11,3,9} {7,2,11,8} 

{8,9,11,1} {8,12,4,10} {8,3,12,9} 

{9,10,12,2} {9,0,5,11} {9,4,0,10} 

{10,11,0,3} {10,1,6,12} {10,5,1,11} 

{11,12,1,4} {11,2,7,0} {11,6,2,12} 

{12,0,2,5} {12,3,8,1} {12,7,3,0} 

Note that the blocks in each column are a translation by one of the block just 

above. Hence, we can consider this design as being generated by the starter blocks 

{{0,1,3,6},{0,4,9,2},{0,8,4,1}}. 

Now for each block in the above design, we form the quadruple consisting of the 

differences of consecutive elements. That is, if B = {a,b,c,d} then we get the 

quadruple (b — a,c — b,d — c,a - d). Doing this and taking the equivalence modulo 

13 wherever we get a negative difference, we obtain 

~ {(1) 2,3,7), (4,5,6,11), (8,9,10,12)}. 

We call T a difference family for the design. Notice that the sum of the entries 

in each quadruple is equivalent to 0 modulo 13 and that each element of Z13 ap-

pears as an entry in a quadruple. This is not an accident. We will now formally 

define difference family and show that there is a one to one correspondence between 

difference families and Mendelsohn desigr ms. 
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Definition 4.2.5. A (4/+1,4)-difference family is a partition of Z4/4.1 —{0} into 

cyclically ordered quadruples such that the sum of the entries in each quadruple is 

zero, and such that no element appears next to its inverse. Two difference families 

are considered equivalent if, neglecting order, they have the same quadruples. 

Proposition 4.2.6. There is a one to one correspondence between (41 + 1,4)-

difference families and 2 — (4/ + 1,4,1) cyclic Mendelsohn designs. 

3. Development of algorithm 

Recall that the Markov chain technique for almost uniform generation proceeds 

as follows. First one constructs an irreducible, strongly aperiodic Markov chain 

whose states are the structures of interest and where the transitions between states 

can be efficiently simulated. Then one chooses an arbitrary initial state, simulates 

the chain for an appropriate number of steps, then outputs the final state. 

In this section, we develop an algorithm for the uniform generation of cyclic 

Mendelsohn designs employing the Markov chain technique. The majority of our 

work will lie in the construction of the underlying digraph of our Markov chain. To 

demonstrate that this is an efficient algorithm we would, of course, have to prove 

that convergence to stationarity is rapid. We cannot do this, although we feel that 

this is the case. 

We first note that since we have a natural bijection between 2 - (4/ + 1,4,1) 

cyclic Mendelsohn designs and (4/ + 1,4) difference families, we could equivalently 
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generate (4/ + 1 , 4 ) difference families. We choose to generate difference families 

because, as we will soon see, the transitions between states are efficiently simulated. 

Hence, the states of our chain will be labels for equivalence classes of difference 

families. Our algorithm will first generate a label for an equivalence class and 

then choose an element at random from the equivalence class. Recall that two 

difference families are considered to be equivalent if, neglecting order, they have the 

same quadruples. We will represent an equivalence class of difference families by 

first listing the elements of each quadruple in order then listing the quadruples in 

lexicographic order. We will call such a construct a label. 

Example 4.3.1. The equivalence class containing 

{(3,1,4,5),(2,6,11,7),(9,10,12,8)} 

{(4,1,5,3), (2,7,11,6), (9,10,8,12)} 

{(1,3,5,4),(2,7,11,6),(10,8,9,12)} 

has label 

{(1,3,4,5), (2,6,7,11), (8,9,10,12)}. 

Note that in general a label is not a difference family. 

Let L be a label and let (a, b, c, d), (e, f,g, h) be two quadruples in L such that, 

without loss of generality, a + b = e + f . Then if we interchange a, b with e, / (and if 
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necessary reorder the quadruples) we obtain another label, L'. Such an interchange 

we call a switch. 

Example 4.3.2. We can obtain 

{(1,2,3,7), (4,5,6,11), (8,9,10,12)} 

from 

{(1,2,4,6), (3,5,7,11), (8,9,10,12)} 

by interchanging 4,6 in the first quadruple with 3,7 in the second. 

Hence, the underlying graph G = (F, E) of our Markov chain has vertex set 

V — {L | L is a label} and edge set E D {(L, L') | 3 a switch from L to L'}. 

Now our Markov chain must be irreducible or equivalently our graph must be 

connected. 

Conjecture 4.3.3. G = (V, E) is connected. 

We do not have a proof of this conjecture. However, since V has a natu-

ral lexicographic order we add edges to the lexicographically previous and lexi-

cographically next vertices so that G is connected. Thus G will have edge set 

E = {(L,L') | 3 a switch from L to V or L and L' are consecutive }. 

Our Markov chain must also be strongly aperiodic. We first show that it is 

aperiodic. Since the underlying graph of our chain is now connected, it is sufficient 

to show that it is not bipartite. 
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Propos i t ion 4.3.4. G = (V,E) is not bipartite. 

Proof : Let k denote the number of quadruples. Consider the vertex: 

{(2n - 1,2n, -2n, - ( 2 n - 1)) : 1 < n < k}. 

We perform the following switches among the first two quadruples: 

( 1 , 2 , - 2 , - 1 ) , ( 3 , 4 , - 4 , - 3 ) —> ( 1 , 3 , - 3 , - 1 ) , ( 2 , 4 , - 4 , - 2 ) —• 

(1,4, - 4 , - 1 ) , (2,3, - 3 , - 2 ) —• (1,2, - 2 , - 1 ) , (3,4, - 4 , - 3 ) . 

Then this is a cycle of length three, so the graph can not be bipartite. • 

However, it is not enough that our graph be aperiodic. We must ensure that it 

is strongly aperiodic, that is, Pn > \ for all i. This will prevent the occurrence of 

oscillatory or "near-periodic" behavior [SiJe], [Mi]. As noted by Sinclair and Jerrum, 

including a large self-loop (or in our case multiple loops) to each vertex yields a 

graph with the same stationary distribution without slowing down convergence too 

much. 

Thus we turn to the task of adding the proper number of loops to each vertex. 

Our purpose here is twofold. First, we add loops so that the probability of a vertex 

is proportional to the number of difference families that it represents. Secondly, we 

add loops for strong aperiodicity. 

Definit ion 4.3.5. A quadruple q that contains both an element of Z^+i — {0} 

and its inverse will be referred to as a zero quadruple. 



44 

Proposition 4.3.6. Let L be a label, S(L) be the number of switches for L and 

p be the number of non-zero quadruples of L. Then the number of loops to add to L 

so that the probability of L is proportional to the number of difference families that 

L represents, and so that G is strongly aperiodic is 2 • 3P 3 ( ^ + 2 — (S(L) + 2). 

Proof: We will first add enough loops so that each vertex occurs with the proper 

probability. Recall that the (stationary) probability of a vertex v in the case that 

the underlying graph is undirected is jijj where d(v) is the degree of vertex v and 

TD = d(v) is the "total degree". Let vp be a label which has exactly p non-

zero quadruples. Then vp represents 6p2l~p = 3p2l difference families. Thus the 

probability of choosing a difference family represented by this vertex is ~yd"3P2t-

Since we want difference families to be equiprobable, we must have 

d( v0) 1 d(^i) 1 d{v 2) 1 d(vi) 1 
TD 3°2< TD 3l2l TD 322' TD 3l2l 

or 

3ld(v0) = S'-UM = 3 l~2d(v2) = • • • = d(Vl). 

Hence, 3 l~pd{vp) = 3ld(v0) or d(vp) = ^jd(v0) = 3pd(v0) for 0 < p < I. Thus the 

degree of any vertex should be a multiple of d(v0). We will prove later that the 

maximum number of switches possible for a label is 3(2) and this maximum occurs 

when p = 0. Thus taking into account the edges to the previous and next labels 

we see that the maximum degree, A = 3('2) + 2. Thus, we first add enough loops 

to each vertex to raise its degree to the maximum degree A, and then enough so 
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that its degree is the appropriate multiple of A. Hence, to a label L with p non-zero 

quadruples, we add 3 Q + 2 - (S(L) + 2) = d('2) - S(L) loops to raise the degree 

to A. We then add 3P _ 1 3 ( J ) + 2 loops for a total of 3P 3 © + 2 - ( £ ( £ ) + 2 ) 

so that this label occurs with the proper probability. We then add enough loops to 

double the degree so that our graph is strongly aperiodic. Hence, we add a total of 

2-3> [ 3 © + 2 - (S(L) + 2) loops. • 

Now, it might seem that adding such a large number of loops will slow down 

the rate of convergence of our algorithm, as it is likely that many loops would be 

chosen before an edge is encountered. We can overcome this difficulty by simulating 

the number of loops encountered until an edge is chosen. That is, we simulate a 

geometric random variable, where we interpret a success as choosing an edge. 

The procedure for simulating a geometric random variable is an elementary 

exercise in probability, hence we include it here without proof. 

Proposition 4.3.7. Let X be a geometric random variable with probability of 

success p. Then we may simulate X with 

from [0,1]. 

log r 
log 1 -p + 1 where r is chosen uniformly 

Corollary 4.3.8. We may simulate the number of steps to exit a vertex L with 

p non-zero quadruples by incrementing the iteration counter by 

S(v) + 2 
logr / log I 1 

2 • 3 p 3 © + 2 
+ 1. 

where r is chosen uniformly from [0,1]. 
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We now determine the maximum degree of G. 

Proposition 4.3.9. Fix a vertex v in the label graph with parameter k. Let nj 

denote the number of quadruples having a pair of entries whose sum is j and let S 

denote the number of switches possible. Then, 

"21 + - + r " , 

Proof: Let us first count the number of switches between quadruples with a sum of 

zero. Certainly if no < 1 there are no such switches. Suppose that v has two quadru-

ples with a sum of zero: (a, b, —6, —a), (c, d, —d, —c). There are two switches for this 

pair. Namely, interchange b, —b with c, —c to obtain (a, c, —c, —a), (6, d, —d, —6); or 

interchange 6, —b with d, —d to obtain (a, d, —d, —a), (b, c, —c, —6). Thus, there are 

2 (2°) switches involving quadruples with a sum of zero. 

Suppose that both of (a,b,c,d) and ( e , f , g , h ) have a sum of j, say c + d = 

g + h = j where 1 < j < 2k. Then a + b = e + / = 4k + 1 — j. So, we can either 

switch c, d with g, h or switch a, b with e, / . In either case, we obtain the quadruples 

(a, b, <7, h), (e, / , c, d) after switching. Thus rij = n^i-j and we need only count 

the switches involving pairs that have a sum between 1 and 2k. Thus there are 

1 
2 2 + - H T 

switches between pairs whose sum is nonzero. Hence, the total number is as claimed 

in the statement of the proposition. • 
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We now associate with each label v, a 4k + 1-tuple, N = (no,ni,--- , n4*) 

representing the distribution of sums. We would like to find the maximum value of 

S over all such iV, but such a maximum is difficult to obtain. Instead, we find the 

maximum value of an equivalent function over a larger set of 4k + 1-tuples which 

contains those corresponding to the distribution of sums in labels. We then show 

that one N achieving this maximum comes from a label. 

Lemma 4.3.10. If v is a difference family then the distribution N satisfies: 

1) 0 < np < k for 0<p< 4k, 

2) 2uq + «i H 1- n4k = 6fc, 

3) rij — nu+i-j for j ^ 0. 

Proof: Since np is the the number of quadruples having a sum of p, it is clear that 

0 < np < k. Also as noted before, if a quadruple has a sum of j,j ^ 0, then it also 

has a sum of 4k + 1 — J; hence, nj = n^k+i-j- Finally, if a quadruple has a pair of 

entries whose sum is zero, then the complementary pair also sums to zero. Since 

there are six pairs of elements for each quadruple, we have 2n0 + «i H = 6k. 

• 

Our goal is to maximize S' subject to the conditions in lemma 4.3.10. We have 

S = no (no — 1) + ^(^i2 + ri22 + • • • + n^2 — n\ — ri2 — n^k) 

= (no — g"0) + j ( n i + n2 + ' ' * + n4k2 — (2no + n j -f n2 + • • • + n^ ) ) 
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(no2 — -no) + ^ ( n i + n | + • • • + n ^ 2 ) — — k 

(n0
2 - ^n0) + ^(nf + n\ H h n2*2) -

The last step follows from condition (3). We now rewrite condition (2) as 

2) no + «i + • • • + n^k = 3&, 

and S as 

S — -((2no2 — no) + (n\2 + n2
2 + • • • + n2£2) — 3&) 

r((n0 - l)n0 + (n0
2 + ni2 + n2

2 + h n2fc
2) - 3k). 

Now note that (no,ni, • • • , n2fc) maximizes S if and only if it maximizes 

S' = (no — l)no + (no2 + ni2 + * • • + n2fc
2) 

and that S' is invariant under permutations of ni, • • • , n2k- Hence for convenience, 

we will assume ni > n2 > • • • > n2fc. That is, we reindex N so that the distribution 

of sums is decreasing. We now impose a fourth condition 

4) if no Tii k 0 then ^ 0. 

Proposition 4.3.11. If v is a difference family and riQ + n\ — k > 0 then 

ni-fn0+m-fc > 0. 

Before we prove this proposition, we will prove the following lemma. 
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Lemma 4.3.12. Let v be a difference family and q\, be quadruples in v. Then 

qi and q2 generate the same sums if and only if q2 = —q\. 

Proof of Lemma: Let q\ = (a,b,c,d),q2 = (e,f,g,h). Clearly, if <72 = —Qi then 

they generate the same six sums. Now let us suppose that qi and 52 generate the 

same six sums. Without loss of generality, we can assume that a + b = e + f . We 

now consider the possibilities for a + c. Certainly, a + c ^ g + h. Thus a + c equals 

e + g,e + h j + h or / + g. Assume without loss of generality, that a + c = e + g. 

Thus, the only choices left for a + d are e + h and / + g. But if a + d = e + h then 

a + b = e + Z1 

a + c = e + g > V 3o -f- b -4- c -f- d — 36 -f- f -J- g -f- h V ci = c. 

a + d = e + h, j 

A contradiction. Thus a + d = f + g and we can see 

a + b = e + / , 

a + c= e + j > 3a + b + c + d = 2e + 2f + 2g =>• 2a = 2(e + f + g) =4> a = —h. 

a + d = / + g > 

Then substituting - / i for a into the three equations above, we see that b = -g, c = 

—f and d = —e. Hence, q\ = — q2. • 

Proof of Proposition: If v has no quadruples with a sum of 0 and n\ quadruples 

with a sum of then there are at least no + n\ — k quadruples with a sum of both 

0 and si. Note that no pair of these quadruples can have another (nonzero) sum in 

common. For if they did, they would agree in all six sums and would be negatives 
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of each other. But this is impossible as a quadruple with a sum of zero is of the 

form (a, b, —b, —a), and the negative of a quadruple of this form is itself. • 

In summary, we seek N € Af maximizing S' where J\f is the set of all 2k + 1-

tuples satisfying 

1) 0 < np < k, 0 < p < 2k, 

2) Ho + «i 4 " • • + ^2k = 3&, 

3) n\ > n2 > • • • > ri2k, 

4) if n0 + rii — k > 0 then n i + n o + n i _ * > 0. 

Proposition 4.3.13. If ,n2fc) maximizes S' and n0 ^ k,ni ^ k then 

S' < 3k2. 

The proof of this proposition requires the following lemma. 

L e m m a 4 . 3 . 1 4 . If N maximizes S', no / k,n\ / k then N has the following 

form. 

(i) no + nj — k > 0. 

(ii) 3p such that: 

S. flj — " " ' — Tip y 

b. if p ^ 1 + no + n\ — k then ri\ > np+i > 0, 

c. ifp + l^l+nQ + n1-k then np+2 = • • • = ni+no+m-ft = 1, 

(Hi) m = 0 for I > 1 + n0 + nj - k; 

. . . n i - l 
(lv) n0 < —-—. 



51 

Proof of lemma: Let N = (n0, ni, • • • , n2fc) be a 2& + l-tu.ple satisfying properties 

(1) - (4) which maximizes S'. Suppose that no + n\ — k < 0 and I is the largest 

subscript such that n/ > 0. Consider 

N' - (no, ni + l ,n 2 ,n 3 , - • • ,n /_i ,m - 1,0,0, ••• ,0). 

Then, clearly N' satisfies properties (1),(2) and (3). Now, n0' + n\' — k < 1. If 

n0 ' + ri\ — k < 0, property (4) is satisfied vacuously. If no' + n\ — k — 1, we 

need only to check that n2 > 0. This follows clearly from property (2). An easy 

calculation shows S'(N') > S'(N). 

Now suppose that there are 1 < q < r < 2k such that ni > nq > nr > 1. 

Consider N' — (wo,ni,*-- ,ng + 1, • • • ,tir — 1, • • •). Then N' satisfies properties 

(l)-(4) and an easy calculation shows that S'(N') > S'(N). 

Thus, for at most one subscript 1 can we have nx > ni > 1. Let p be the 

largest subscript such that np = nx. Then from property (4) it follows that if 

P ^ l+n0 +m- k then np+1 > 0. Similarly, if p + 1 ^ 1 + n0 + nx - k then 

np+1 = • • • = ni+no+n4.i_fc = 1 follows from property (4). 

Suppose n, > 0 for / > 1 + n0 + nx - k. Then N' = (n0, nx + 1, • • • , np - 1, • • •) 

satisfies properties (l)-(4) and an easy calculation shows S'(N') > S'(N). 

Finally, consider N — (no -(-1, nx 1, • • • J. Then clearly N1 satisfies properties 

(l)-(4). Evaluating, we find S'(N') > S'(N) if and only if 4n0 - 2 ^ + 2 > 0 or 

no > n i ~ l . Thus, we must have no < . • 
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Proof of Proposition: We now calculate S1 using Lemma 4.3.14. 

{n0(n0 - 1) + n0
2 + pri\2 + np+

2 + (n0 + ni - k - p) if n p + i ^ 0; 

n0(n0 - 1 )+ n 0
2 + p n i 2 if n p + i = 0. 

Case 1. rip+i ^ 0. 

S' = n0(n0 - 1) + no2 + pn\2 + np+
2 + (n0 + nx - k - p) 

= 2 n0
2 + pnx

2 + na + n p + 1
2 — k—p 

— p(n i2 — 1) + 2no2 + n\ + Hp-i-i2 — k. 

We want S1' < 3k2 or 

(I) K n i ~ l)(n i + 1) < 3A:2 - 2n0
2 - rai - n^+i2 + A:. 

We wish to eliminate p from the above expression. From condition (2) we get 

no + pnx + rip+i + (1 + no + n\ — k — (p + ! ) ) = 3 k 

2n0 + p(r»i - 1) + m + np+1 - k = 3k 

or 

p(m - 1) = 4k - 2n0 - m - n p + i . 

Hence, 

( I I ) p{n\ — l ) ( n i + 1) = Akrii - 2n0m - n\2 — ninp+i + 4k — 2 n 0 - n i — n p + 1 . 
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Substituting the expression obtained in equation II for p(n\ — l)(ni +1) into equation 

I and simplifying, we see that we need to show 

Zk2 — 3k — Akri\ + 2n0ni + n\2 + n in p + 1 + 2no + np+i — 2no2 — np+i2 > 0. 

We factor the above and obtain 

(3k - ni)(k - ni - 1) + 2n0("i - n0 + 1) + (np+1 - l)(ni - n p + i ) > 0. 

It is clear that all of the terras in the above are nonnegative. 

Case 2. np+i = 0. 

Note that if = 0 then p — ———. Substituting this value of p into S' 
ni 

and setting S' < 3A;2, we see upon factoring that we need to verify 

3k(k — ni) + no(ni + 1 — 2no) > 0. 

Clearly, all of the terms in this expression are nonnegative. • 

Proposition 4.3.15. If ni = k and k > 3 then the maximum value of S' occurs 

if no — 0 or no — k. 

Let Af(i,j) = {N £ Af : no = i,n\ — j}. We need the following two lemmas. 

Lemma 4.3.16. If k is odd and N € JV(l, k) maximizes S', then N is of one of 

the following forms. 

I. If 0 < / < 2 then 
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(i) m = n2 = k, 

(ii) nz — k- I, 

(iii) rij = 0 for j > 3. 

II. If 2 < I < *±i then 

(i) ni = ri2 = k, 

(ii) n3 = k - 2(1 - 1), 

(iii) n4 = ••• = nt+1 = 1, 

(iv) rij = 0 for j > I + 1. 

III. If^<l<kthen 

(i) ni = k, 

(ii) n2 = 2(k - I) + 1, 

(iii) n3 = ••' = nt+i = 1, 

(iv) rij = 0 for j > I + 1. 

Lemma 4.3.17. If k is even and N e Af(l, k) maximizes S', then N is of one of 

the following forms. 

I. If 0 < I < 2 then 

(i) ri! =n2 = k, 

(ii) n3 = k -

(iii) rij = 0 for j > 3. 

II. If 2 < 7 < *±2 then 
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(i) m = n2 = k, 

(ii) n3 = k - 2(1 - 1), 

(iii) n4 = • • • = m+i = 1, 

(iv) rij = 0 for j >1 + 1. 

III. If I = then 

(i) n\ = k, 

(ii) n2 = k — 1, 

(iii) n3 = ••• = m+1 = 1, 

(iv) rij = 0 for j >1 + 1. 

IV. <l<k then 

(i) nx = k, 

(ii) n2 = 2(fc — /) + 1, 

(iii) n3 = • • • = n,+ 1 = 1, 

(iv) rij = 0 for j > I + 1. 

The proofs of these lemmas are similar to the proof of Lemma 4.3.14. Thus for 

the sake of brevity, we will only prove part I of Lemma 4.3.16. 

Proof of Lemma 4.3.13, part I: Suppose 0 < I < 2 and N £ 7V"(/, A;) maximizes 

S'. Then from property (4), we have n1+„0 > 0. Let s be the largest subscript such 

that na > 0. If 5 > 3 then N' = (n0 + 1 ,ns^un3 - 1,(},••• ,0) € Af and 

an easy calculation shows S'(N') > S'(N). Hence, nj = 0 for j > 3. Similarly, if 
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rt,2 7̂  k, let N' — {no,ni,ri2 + 1,«3 — 1,0, • • • ,0). Then, another easy calculation 

will show that S'(N') > S'(N). Thus from property (2) we have n0 -f n\ + n2 + riz = 

I + k + k + «3 = Zk or = k — I. • 

Proof of Proposition: 

Let /(/) denote the maximum value of S' over k). Using the above lemmas 

we calculate / and see that if A:, is odd then 

( 3 k2 

m 

and if k is even, 

if I = 0; 

if I = 1; 

if I = 2; 

3k2 - 2k + 1 

3k2 - 4k + 10 

Zk2 + 2(/ — 1)(3/ — (2k + 1)) i f 2 < / < ^ ± i ; 

3k2 + 2(1 - k)(3l ~ (k + 2)) if A±1 < / < jfc 

f ( 0 

Zk2 

Zk2 - 2k + 1 

3k2 - 4k + 10 

3Jb2 + 2 ( / - l ) ( 3 / - ( 2 i b + l ) ) i f 2 < / < ^ ; 

|(5*r2 H- 4) if Z=*±2; 

Zk2 + 2(1 - k)(Zl ~(k + 2)) if 4±2 < / < k. 

if / = 0; 

i f / = 1; 

if / = 2; 

From the above it is clear that if k > 3, S' has a maximum value of Zk2 and 

that this maximum is achieved if and only if / = 0 or / = k. • 

Proposition 4.3.18. If no = k then the maximum value of S' occurs for n\ = k. 

k 
Let Afo(k) = [ J Af(k,j). Again the proof of the following lemma is nearly 

j—0 
idntical to the proof of lemma 4.3.14. Hence, we omit a proof. 

Lemma 4.3.19. If N e Afo(k) achieves max S'(N), then N has the following 
iVGAZo(fc) 

form. 
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(i) n0 = k, 

(ii) 3p such that: 

a. n\ = ri2 — • • • = np, 

b. if 1 + ni then n\ > np+1 > 0, 

c. if p + 1 ^ 1 + then n p + 2 = • • • = »i+n i = 1, 

(in) n\ = 0 for / > 1 + rij. 

Proof of Proposition: First we note that if N € A/o(&) achieves max S'(N) 
N<EAf0(k) 

and ri\ = k then, 

(i) n0 = ni = A;, 

(ii) n2 = ••• = nfc+i = 1, 

(iii) rij = 0 for j > A; + 1, 

and S'(iV) = 3 P . 

Now suppose that nx / k and that iV € Af0(k) achieves max S'(N). We now 
NeAfo(k) v ' 

show this is impossible in a series of cases by appealing to Lemma 4.3.19 which gives 

the form that N must take and then producing another element of JV0(Jb) yielding 

a greater value of S'. 

We need the following equality. From properties (2) and (4) we see that if 

np+1 / 0, then 

n0 + Ml + ' * ' + n>2k — 3k 

k + pni + np+1 + 1 + m - 0 + 1) = 3k 
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k + (p + l)«i + np+i - p = 3k 

(p + l)nj =2k + p- np+i 

2 k + p — rip+i 
n i = p +1 

and that if np+1 = 0, 

no + n i + • • • + ^2fc — 3A; 

k + pn\ = 3 k 

2k 
n\ = —. 

P 

/j — J "pi"1' if 2 < Wp+i < Mi; f np+i> 

I " l , if np+1 < 2. 

We consider the cases: h = 2, h ^ 2. 

Case 1. h — 2. Suppose that h = 2, AT 6 Afo(k) achieves max S'(N),nx ^ k 
Netfo(k) 

and ni is as large as possible. If p = 1 then = 2 ^ 1 } a contradiction since ni is an 

integer. Thus p > 2. Let N' - (k,ni + l ,--- ,n p - 1 ,1 , . . . ,n1+ni = 1,1,0, • - • ,0). 

Then N' £ J\fo(k) and S'(N') = S'(N), a contradiction. 

At this point, we remark on our peculiar use of notation. The sequence of 

symbols - n„ - 1 ,1 , . . . ,n1+ni = 1,1 - in the 2k + 1-tuple (jfe, nx + 1, • • • , np -

1? l j ' i ^i+ni 1? l j 0, • • • ,0), indicates that = • • • = = Ti2-\-n1 — 1. 
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Case 2. h ^ 2. Suppose h ^ 2,N € .A/o(&) achieves max S'(N) and that 

h = 2j + 1. 

Let N1 / 31''' ' ^p+I = 1) 1?'- > ^i+t»i+j == 1) 0) • • • j 0), if h — Tip.)-i, 

\ j ^1 "1" J) " " " ) = 1)1) ' ' ' ) ^l + ni+j = 1,0, • • ° ,0), if h — Tli. 

We wish to show that N' 6 Afo(k), and S'(N') > S'(N). By considering the terms 

in the sum S' that change, to check that S'(N') > S'(N) we see we need to check 

(*) (ni +j)2 + i + 1 > m 2 + (2 j + l)2 , 

and to ensure that N' € Afo(k), all we need to check is 

(ii) k-nx> j. 

We check (i) first and see 

(m + i ) 2 + i + i > m 2 + (2;' + l)2 

rii2 + 2nij + j2 + j + I > ni2 + 4 j 2 + 4j + 1 

2ni; > 3 j 2 + 3 j 

3 j + 3 
Til > 

- 2 

Since m > h, it is sufficient to check h = 2j + 1 > But this inequality is 

equivalent to j > 1 or h > 3, which is clearly true. 

We remark at this stage, that the proofs of the succeeding cases will follow 

the same style. That is, we will start with the inequality that we wish to prove, 
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and reduce it by a sequence of reversible steps to a trivially true inequality. This 

approach, though somewhat unconventional, makes the proofs, in my opinion, easier 

to follow. 

We now check k — n\ > j. Note that if < | k } then k — n\ > > \n\ > 

\h > j. Thus, we need only to check the cases p = l , p = 2. 

Suppose p — 1. Then h ^ n\, since this would imply = k. Thus we may suppose 

h = rip+i. We note j = and check, 

k - tii > j 

2k — h + 1 
> 

h - 1 

h — 1 h — 1 

Suppose p = 2 and h = np+i. We check 

k-ni > j 

k -
2 k — h -f- 2 

> 
h — 1 

k + h — 2 /j — 1 

2k + 2h - 4 > 3A - 3 

2fc > A + 1 
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which is clearly true. 

Suppose p = 2 and h = m . Then either rtp+i = 0 or np+j = 1. If np+1 = 0, then 

from (3) we get n0 + ri\ + n2 = k + 2n\ = 3k. Hence ni = A;, a contradiction. Thus 

= 1. We apply (3) again and get 

«o + n\ + b n%k = k + ni + ni + (ni + 1) — 2 = 3k ==>- ni = 
2& + 1 

Also 

h = 2j + 1 
/ i - 1 

We now check 

k — n\ > j 

k — 
2k + 1 

> 
ft — 1 

& — 1 h — 1 

This is clearly true. 

Now, let us suppose that h — 2j, h ^ 2 and AT € J\fo(k) achieves max S'(N). Let 
ivejVo(fc) 

us suppose further that h = np+i. Let 

N' = (k,Tli , n j > + 1 = 2 , 1 , - . . + = 1 , 0 , - . ,0). 

We wish to show that N' € Af0(k) and that S'(N') > S'(N). Again to verify 

S'(N') > S'(N) we only need to consider the terms of S' that change. Thus we 
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check 

(i) (m + (i - l))2 + 22 + ( j - 1) > m 2 + (2i)2 . 

Also to verify N' £ A/o(&), we need to check 

(ii) k — n\ > j — 1. 

We check (i) first. 

( « i + ( i - l ) ) 2 + 2 2 + ( i - l ) > n 1
2 + ( 2 i ) 2 

ni2 + 2n 1 ( j - l ) + (i - l)2 + 4 + i - 1 > nx
2 + 4 j 2 

2nj ( j - 1) > 4 j 2 - (j - I)2 - 4 - ( j - 1) 

2«i ( j 1) ^ 4 j j -f- 2j — 1 — 4 — j 1 

2m(i - 1) > 3 j 2 + j - 4 = (3j + 4)0" - 1) 

. 3i + 4 
m > 

~ 2 

Since h^n1,n1>h + 1. Hence, we check A + 1 = 2 j + 1 > ^ and obtain j > 2 

or /i > 4 which is clearly true. 

As before, to verify (ii) we need only consider the cases: p— l,p = 2. 

Suppose p-1. We note that j - 1 = £=i and check 

k — n i > j — 1 
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k-
2k — h + 1 

> 
h — 2 

h — 1 h — 2 > . 

Suppose p = 2. We check 

k — n\ > j — 1 

2 & — /i -)- 2 
> 

h — 2 

k + h — 2 ^ h — 2 

2k + 2h — 4 > 3h — 6 

2k > h — 2. 

This is clearly true. 

Now let us suppose that h ^ np+ Let 

N' - ( M l +j - l ,nj + !,••• ,np = 1,1,- - ,n1+Hl+j= 1,0, - - ,0). 

To verify S'(N') > S'(N) we need to check 

0) (m + ( j - l))2 + («! + l)2 + 1 + ( j - 1) > 2rii' 

And to verify N' e Af0(k) we need to check 

k — rii > j — 1 and p > 2. 



64 

We now check (i). 

(m + ( j " I))2 + (ni + l)2 + 1 + ( j - 1) > 2nx
2 

ni2 + 2 m ( j - 1) + ( j - l)2 + m 2 + 2m + 1 + 1 + j - 1 > 2ni2 

j(2nx + ( j - 1)) + 2 > 0. 

This is clearly true. 

As before we know that if p > 2, then (ii) follows. We now show that the cases 

p = 1 and p = 2 are impossible. Since h = nx , either np+i = 0 or np+1 = 1. 

Suppose p = 1. Then n p + 1 ^ 0, for if it were 0, then from (3) we would have 

k + n\ = 3& or n\ = 2&, a contradiction. Thus, we can assume that n p + : = 1. But 

from the equality m = 2 f c + ^" p + 1 we get nx = k. A contradiction. Thus, we can 

suppose that p> 2. 

Suppose p = 2. If n^+1 = 1, we have ni = 2fc^~1. But this is impossible as ni is an 

even integer and if it is a n integer, is odd. On the other hand, if np+1 = 0, 

then we get m = & = k. A contradiction. 

Hence, the maximum value of S' over J\f0(k) is 3k2. • 

Thus we have the following proposition. 

Proposition 4.3.20. The maximum value of S' over J\f is 3k2 and is achieved 

by N = (no, nj, • • • , ri2k) where 
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(i) n0 = ni = k, 

(ii) n2 = • • • = nk+1 = 1, 

(iiiJ ni — 0 for I > k + 1. 

Proposition 4.3.21. The maximum value of S over all difference families is 3(2) 

and is attained by 

V = {(j, 2k + 1 -j,2k +j,4k + l - j ) : l < j < k ) . 

Proof: First note that each quadruple in V has a sum of both 0 and 2k + 1. Also, 

each has a sum of 2k + 2 j = 2(k+j) and as 2 is a unit modulo 4k + 1, these values 

are distinct. Thus, V has the required distribution. Calculating S we see 

1 

S = 2(^0(^0 — 1) + (no2 + «i2 + • • • + ^2fc2 — 3 k) 

= — 1) + 1 H~~H 1 — 3k) 
h times 

3 P - 3 k 

3 © ' D 

We now give a lower bound on the minimum degree of G. The proof of this 

proposition is similar to the proof on the maximum degree of G. Consequently, we 

will only give a sketch of the proof. 
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Proposition 4.3.22. Let m denote the minimum degree of the label graph with 

parameter k. Then m > k — 1. 

Sketch of Proof: First we note that if N € J\f minimizes S', then N must have 

the form 

(i) n0 = 1, 

(ii) m = • • • = nk-\ = 2, 

(tit) Tlfc — *••=: fl— 1. 

Evaluating S for this N we obtain, 

& = 2^n°^n° ~ (n°2 + ' ' " + n2k2 — 3k) 

= £(1(1 - 1) + 22 + • • • + 22 + l 2 + • • • + l2 -3k) 
Z ^ v s s. i i II i iiî  

k — l times fc-f 1 times 

= i ( 4 ( l - 1) + (* + 1) - 34) 

= | (2* - 3) 

= k-3-
2 ' 

Thus m > k — 1. • 

Unfortunately, in the case of the minimum degree we can not specify a vertex 

having minimal degree for each value of k. However, computer experiments indicate 

that vertices of minimal degree are abundant. 
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4. Outline of the algorithm 

In this section we present a brief synopsis of the preceeding algorithm. Here 

we assume that a stopping time, MAX, has been determined. 

Step 1 Initialize v. 

Set v = {(j,2& + 1 -j,2k + j,4k + l - j ) : l < j < k } . 

Step 2 Determine the number of switches for v: S(v). 

Determine the distribution of sums: N(v) = (no, «i, • • • , ri2k)-

Set S(v) = 2( "2° j + > ~ + 7 . 

Step 3 Determine the number of steps to exit v: E(v). 

Set p = UQ. 

Choose r uniformly in [0,1]. 

Set E(v) logr / log I 1 
S(v) + 2 

2 • 3 p 3(2) + 2 
+ 1. 

Step 4 Increment the iteration counter. 

Set C = C + E{v). 

Step 5 I F C > MAX T H E N 

Choose a random difference family represented by the label u; 
S T O P . 

ELSE 

Choose R at random from {1,2, • • • , S(v) + 2}; 
Determine switch to make; 

I F R — 1 T H E N set v to the lexicographically previous vertex, 
I F R 2 T H E N set v to the lexicographically next vertex, 

I F R > 2 T H E N make the lexicographically (R — 2)-nd switch-
G O T O Step 2. 
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