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In this dissertation several results in Steinhaus graphs are investigated. First 

under some further conditions imposed on the induced cycles in steinhaus graphs, 

the order of induced cycles in Steinhaus graphs is at most |_~pj. Next the results of 

maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs 

having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma 

are used to show that almost all Steinhaus graphs are Hamiltonian. 
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CHAPTER 1 

INTRODUCTION 

How many edges must a graph of order n have if it is required to contain a 

path of length /? A cycle of length at least /? A complete graph K1 of order 11 

These questions are special cases of the so called forbidden subgraph problem: given 

a graph F, determine ex(n; F), the maximal number of edges in a graph of order n 

not containing F. The forbidden subgraph problem is a prime example of the rather 

large family of extremal problems in graph theory. 

Therefore, we may ask the following question which is quite a different approach 

by comparing the forbidden subgraph problem: for a given class of graphs of order n 

with a certain graph parameter, say the number of edges or the maximum degree, is 

at most some number / , then can we find a largest number r such that at least one 

graph in the given class contains a complete graph Kr of order r? a path of length 

r? a cycle of length r? etc. Thus these problems also could be considered examples 

of extremal problems which are quite different from forbidden subgraph problems. 

A Steinhaus graph is constructed by a certain rule which is called the Steinhaus 

property. Unlike many classes of graphs, one can not so easily specify the number 

of edges in the Steinhaus graphs since the edges are determined by the Steinhaus 

property. In [Ha], Harborth finds the upper bound for the number of edges in a 

Steinhaus graph. By aid of this upper bound, people have been investigating the 

above problems in the class of Steinhaus graphs. For example, the upper bound for 

the order of cliques in Steinhaus graphs, the upper bound for diameter of Steinhaus 

graphs etc. In Chapter 2, we define Steinhaus graphs and present recent results in 

Steinhaus graph theory. In Chapter 3, we define a simple induced cycle in Steinhaus 

graphs and ask the above problem about the upper bound for the order of simple 



induced cycles in Steinhaus graphs. In [BrDeDu], Brigham, Deo and Dutton find 

the upper bound for the order of cliques in Steinhaus graphs. From this result, in 

Chapter 4 we give the number of Steinhaus graphs which have a clique of maximal 

order and list them. Moreover, we present more general results and discuss the same 

problems in the complements of Steinhaus graphs. 

An important application of probability to mathematics occurs in the theory of 

random graphs. One of the basic questions in random graph theory is to determine the 

asymptotic proportion of graphs possessing a given property. Though the properties 

of random Steinhaus graphs have been investigeted by Brand and other authors, few 

results have been known by using the standard methods in random graph theory 

because Steinhaus graphs have complicated structure. But the recent work of Brand 

and Jackson [BrJa] gives rich results in the random Steinhaus graph theory. They 

show that the theory of random Steinhaus graphs is first order complete and identical 

with the first order theory of random graphs. There are many important properties 

possessed by almost all Steinhaus graphs which can not be expressed by a first order 

sentence for examples, cycles and clique numbers etc. In Chapter 2, we define quasi-

random graphs, pseudo-random graphs and generalized Steinhaus graphs. In Chapter 

5, we present the results of Brand, Thomason and other authors, and prove that 

almost all Steinhaus graphs are Hamiltonian. 



CHAPTER 2 

PRELIMINARIES 

2.1 Introduction 

The purpose of this chapter is to introduce basic concepts and results of graph 

theory (see [Be], [B2] and [Go]). In section 2.2 we give some basic concepts of graphs. 

In section 2.3 we define Steinhaus graphs and generalized Steinhaus graphs and give 

some results of the Steinhaus graph theory. Finally, in section 2.4 we state the two 

basic models of the theory of random graphs and state well known results in the 

random graph theory and define some pseudo-random graphs. 

2.2 Basic concepts of graphs 

Intuitively speaking, a graph is a set of points and a set of line segments joining 

some of the points. Formally, a graph G is an ordered pair of disjoint sets (V, E) such 

that E is a subset of unordered pairs of V. The set V is the set of vertices and E the 

set of edges. For the sake of convenience in most cases, we consider a graph with n 

vertices and take V = {1,2, • • •, n} to be the vertex set. An edge {x,y} is said to join 

the vertices x and y and is denoted by xy. If xy € E, then x and y are adjacent and 

the vertices x and y are incident with the edge xy. As the terminology suggests, we 

do not usually think of a graph as an ordered pair, but as a collection of vertices some 

of which are joined by edges. If a: is a vertex of a graph G = (V, then instead 

of x € V we usually write x € G. The order of G is the number of vertices; it is 

denoted by |G|. The same notation is used for the number of elements of a set: \X\ 

denotes the number of elements of the set X. The size of G is the number of edges; 

it is denoted by e(G). The number of edges in a graph of order n is at least 0 and at 



most . A graph of order n and no edges is called an empty graph and is denoted 

by En; a complete graph Kn has order n and edges. 

The set of vertices adjacent to a vertex x £ G is said to be the neighbor of x and 

denoted by T(x). The degree of x is d(x) = |r(x)|. We consider T(U) to be the set of 

neighbors of the vertices in the subset U of V. 

The minimum degree of the vertices of a graph G is denoted by S(G) and the 

maximum degree of a graph G by A(G). 

We say that a graph G' = ( V \ E ' ) is a subgraph of G = (V,E) if V' C V and 

E' C E. In this case we write G' C G. If G' contains all edges of G that join two 

vertices in V' then G' is said to be the subgraph induced by V' or simply we say that 

G' is the induced subgraph of the graph G and is denoted by G\V']. We shall often 

construct new graphs from old ones by deleting some vertices. If C V, then G — W 

is the subgraph of G obtained by deleting the vertices in W and all edges incident 

with them. There is another method to construct new graphs from old ones. Consider 

a graph G = (V,E ) and form a new graph G = (V, E) where an edge xy € E if and 

only if xy is not in E. We call G the complement of G. 

A path is a graph P of the form 

V(P) = {so,ai,...,3j}, E(P) = {a;0a;l,a;lx2,...,a;,_1x/}. 

This path P is usually denoted by xqx1 .. .x\. The vertices Xq and xi are the end 

vertices and I is the length of P. We say that P is a path from XQ to x\ or an XQ-XI 

path. Most paths we consider are subgraphs of a given graph G. A walk W in G 

is an alternating sequence of vertices and edges, say Xo, aj,xi,o;2,> • .^ct^xi where 

ai = Xi^Xi, 0 < i < I. In accordance with the terminology above, W is an x0xi 

walk and is denoted by XQX\.. .xf, the length of W is I. This walk W is said to be 

a trail if all its edges are distinct. Note that a path is a walk with distinct vertices. 

A trail whose end vertices coincide (a closed trail) is said to be a circuit. If a walk 

W = XQXI . . . a:; is such that / > 3, XQ = xi and the vertices a;, , 0 < i < /, are distinct 



from each other and xo then W is said to be a cycle. For simplicity this cycle is 

denoted by xix2... xi. The symbol Pl denotes an arbitrary path of length /. 

A cycle containing all the vertices of a graph is said to be a Hamilton cycle of 

the graph and a Hamilton path of a graph is a path containing all the vertices of the 

graph. A graph containing a Hamilton cycle is said to be Hamiltonian. 

Given two vertices x, y, their distance d(x, y) is the minimum length of an x-y 

path. If there is no x-y path then d(x,y) = oo. The diameter of a graph is the 

maximum of the distances between all pairs of vertices. 

A graph is connected if for every pair {a:, y} of distinct vertices there is a path from 

x to y. Note that a connected graph of order at least 2 cannot contain an isolated 

vertex. A maximal connected subgraph is a component of the graph, 

A clique of a graph is a maximal complete subgraph. 

A graph G is said to be bipartite with vertex classes V\ and if V(G) = V\ U V2, 

Vi D V2 = 0 and each edge joins a vertex of V\ to a vertex of V2. 

Let G = (V, E) be a graph of order n. Let V be the set {1,2 , . . . , n}. Consider 

the n by n matrix A = where each row (and each column) of A corresponds 

to a distinct vertex of V. Let atj be equal to 1 if vertex i is adjacent to vertex j in 

G and a4)j be equal to 0 otherwise. Note that a;;, = 0 for each i = 1 , 2 , . . . , n. This 

matrix A = (a;j) is said to be the adjacency matrix of G. The adjacency matrix 

of G is clearly a symmetric (0, l)-matrix, with zeros down the main diagonal. The 

adjacency matrix contains all the structural information about G and thus can be 

used as a representation for G. 

2.3 Steinhaus graphs 

Steinhaus graphs are named in honor of Hugo Steinhaus [Ste] who defined a 

triangle of plus (+) signs and minus (—) signs in terms of an initial row according 

to the following procedure. If a given row is of length k, then the following row is of 

length k — 1. Moreover, the ith entry of this row is + if the ith and (?' + l),si entries of 
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the preceding row are the same. Otherwise, this entry is —. Thus, for example, the 

triangle generated by 1 is 

— — + — -f 
+ - - -

- + + . 

- + 

Since there are 2n sequences of plus and minus signs of length n, there are 2™ trian-

gles generated by these sequences and each such triangle has ("j1) entries. Steinhaus 

asked if there exists for each n, such that ("2*) is even (i.e. n = 0,3 (mod 4)), a 

triangle with the same number of plus and minus signs. 

In [Ha], Harborth called these triangle Steinhaus triangles and answered Stein-

haus' question with the following theorem. 

Theorem 2.3.1 For every n = 0,3 (mod 4) there exists at least four Steinhaus 

triangles with | plus and minus signs. 

Harborth [Ha] also changed the notation by replacing + with 0 and — with 1 

and hence a Steinhaus triangle is formed by addition mod 2. We illustrate this by 

replacing the -|-'s with 0's and —'s with l's in the above example. 

1 1 0 1 0 
0 1 1 1 

1 0 0 . 
1 0 

1 

Thus if a i j is the entry in the ith row and jth column of a Steinhaus triangle, then 

for 1 < i < j, 

ai,j = "I" ^ ( m °d 2). 

Any triangle of zeros and ones where a^j = a . - i j - i + (mod 2) is said to 

have the Steinhaus property. Now we are ready to introduce Steinhaus graphs. 
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A Steinhaus matrix generated by the sequence of zeros and ones, (o-i J)™=2 is a 

symmetric n by n (0, l)-matrix, A = (a,-j) with the diagonal entries zero and the 

upper triangular paxt of A the Steinhaus triangle generated by («i,j)"=2- Thus if 

(aij)"=1 is the first row of a Steinhaus matrix, then for 1 < i,j < n, 

Q-l.i — 0, ai,j — aj,i 

and for 1 < i < j < n, 

ai,j — ai-i,j-i "f ai-i,j — ^ (mod 2). 

A graph G with n vertices is said to be a Steinhaus graph if the adjacency matrix 

of G is the Steinhaus matrix generated by a sequence (flij)"=2 of zeros and ones and 

the matrix is said to be the Steinhaus matrix of G. The first row in the 

Steinhaus matrix is said to be the generating string of the Steinhaus graph G and 

the graph G is said to be generated by the string («ij)"=i- From now, we denote the 

Steinhaus triangle by (atj)i<;<j<n if there is no confusion. 

Example 2.3.2 Consider the generating string = (01010110). The Stein-

haus matrix associated with this string is 

(0 1 0 1 0 1 1 0) 
1 0 1 1 1 1 0 1 
0 1 0 0 0 0 1 1 
1 1 0 0 0 0 1 0 
0 1 0 0 0 0 1 1 
1 1 0 0 0 0 1 0 
1 0 1 1 1 1 0 1 

1° 1 1 0 1 0 1 Oj 

Let G be a Steinhaus graph with n vertices generated by the string (a l j)"_1 . The 

partner of G, P(G), is the Steinhaus graph generated by the string (an_j+i]n)"=1. For 

example, the partner of the graph generated by the string (01010110) is generated 

by the string (01010110) (see Example 2.3.2). A Steinhaus graph G is said to be 

doubly symmetric if the Steinhaus matrix of G is equal to the Steinhaus matrix of the 
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partner of G, P(G). For example, the string (01010110) generates doubly symmetric 

graph (see Example 2.3.2). 

Note that it follows from the Steinhaus property that if G is doubly symmetric, 

then the Steinhaus matrix of G is symmetric with respect to both diagonals; that is 

a; hj for 1 < i < n, 1 < j < n. 

In [Mo], Molluzzo formed graphs from Steinhaus tringles. These, however, are the 

complements of what we have defined to be Steinhaus graphs. 

Now we list two basic results of Steinhaus graphs. 

(1) All Steinhaus graphs with n vertices except the empty graph En are connected 

[Myl], 

(2) Every Steinhaus graph with minimum degree at least three is two-connected 

[My2]. 

More on Steinhaus graphs can be found in [BrDu], [My3] and [My4], 

Recently, Brand and Morton developed the following generalization of Steinhaus 

graphs. Let s : N —> N — { l } b e a function. A generalized Steinhaus triangle of 

order n and type s is the upper triangular portion of an n x n array A = (a^j) whose 

entries satisfies 
s(i)-l 

®i,j = ^ l,j—r ( m o d 2 ) 
r=0 

where 2 < i < n — 1, i •+ s(i) — 1 < j < n, 6 {0,1} and = 1. As in 

the case of Steinhaus graphs, we define atii = 0 for 1 < i < rt and set a^j = a^i for 

i > j. A graph with such an adjacency matrix is referred to as a generalized Steinhaus 

graph. Properties of generalized Steinhaus graphs are investigated in [BrMo], 

2.4 Random graphs 

The theory of the evolution of random graphs which grew from the paper of 

Erdos and Renyi, [ErRe2] (see [Bo3] and [Pa]), is a striking example of the use of the 



probabilistic method in mathematics. We will not be concerned with the history of 

the theory but will only state the two basic models and some well known results. For 

more background and results see [Bo3], [Lu] and [Pa]. 

In the first model we consider, the sample spaces consisting of all labeled 

graphs G of order n. Specifically, for each positive integer n and number p = p(n) 

with 0 < p < 1, the probability of a graph G € 0 n with m edges is given by 

P(G) =pm(l -pp)~m. 

It is often convenient to view the set of pairs of vertices of G as a sequences of 

Bernoulli trials and consider p as the probability of an edge. This model of random 

graph theory is referred to as either Model A in [Pa], or Q(n}p) in [Bo3]. 

In the second basic model, the sample spaces fln,m consist of all labeled graphs G 

of order n and size m = m(n), that is with m(n) edges. In this model the probability 

of each graph G is given by p(G» = ((l) • 
This model is referred to as either Model B in [Pa] or Q(n, M(n)) where M(n) = m 

in [Bo3]. This Model B seems to be much more difficult to analyse than Model 

A. Nevertheless, the two models are closely related, as indicated by the following 

theorem. 

A set of graphs A is called convex if G € A whenever G\ and G'2 are in A and 

the subgraph relation Gi C G C G2 is satisfied. 

Let Q be a property of graphs and consider the set An of graphs of order n that 

possess property Q. If P{An) —* 1 as n —> 00 then we say that almost every graph 

has property Q. 

Theorem 2.4.1 ([Bo3], [Pa]) We assume that pn2 —• 00 and (1 — p)n2 —• 00 where 

p = p(n), with 0 < p < 1, is the probability of an edge. Suppose An is a set of graphs 

of order n with property Q and e > 0 is fixed. Furthermore, assume thai if m, = m(n) 
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is any sequences of integers such that 

(1 < q < ^ + e M 2 J' 
n\ , /n 1 

then P(An) —> 1 as n —> oo in model B, that is, almost every graph has property 

Q. Then also, in Model A, almost every graph has property Q. Now suppose An is 

a convex set, and in Model A almost every graph has the property Q. Then if we set 

m = in Model B almost every graph has property Q. 

From now, we will be using Model A only. A very useful property of graphs from 

which many results easily follow is property Pk. 

Definition 2.4.2 ([BIHa]) A graph G = (V, E) has property Pk if whenever Wi, Wi 

are disjoint sets of at most k vertices each then there is a vertex z £ V — W\ U Wi 

joined to every vertex in W\ and none in W%. 

In Model A, if p is fixed then almost every graph has Pk ([BIHa], [Pa]). From this 

it follows [BIHa] that if Q is any property giving a first order sentence, then either Q 

holds for almost every graph in Model A and Model B or fails for almost every graph 

in Model A and Model B. 

In particular, in Model A with p and k fixed, we have [Pa] 

• Almost every graph has diameter two. 

• Almost every graph is ^-connected. 

• Almost every graph contains a subgraph of order k as an induced subgraph. 

• Almost every graph is nonplanar. 

• Almost every graph is locally connected. 

An important property possessed by almost every graph which can not be ex-

pressed by a first order sentence is given by the following theorem. 
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Theorem 2.4.3 ([Po2], [Bo2] p.140) In Model A, with p = c(logn)/n almost every 

graph is Hamiltonian when c is somewhat larger than 1. 

Now let us give the definition of (p, a)— jumbled graphs. 

Definition 2.4.4 ([Th2]) A graph is said to be (p, a)-jumbled ifpy a are real numbers 

satisfying 0 < p < 1 < a and if every induced subgraph H of G satisfies 

e(JEf) - p( ' f •) \<<*\H\. 

where e(H) is the number of edges in H. 

Equivalently, if d(H) is the average degree inside H we may say 

d(H) - p(\H\ - 1) < 2a 

holds for every induced sugraph H. We think of a (p, a)-jumbled graph as behaving 

somewhat like a random graph where each edge is chosen with probability p. Note 

that if G is (p, a)-jumbled then every induced subgraph is (p, a)-jumbled and the 

complement of G is also (1 — p, a)-jumbled. Observe too that the clique number of G 

is at most 1 + 2ct(l — p) - 1 and the independence number is at most 1 + 2a.p~l [Th2], 

Here are some examples of jumbled graphs. 

Example 2.4.5 ([Th2]) 

(1) let G € Q(n,p), that is, the edges of G are chosen with probability p. Then G 

is almost surely (p, 2(pn)^)-jumbled provided pn —> oo and (1 — p)n —> oo. 

(2) Choose a graph in @(n,p), select a subset X of the vertices, with |X| = |_(p")2 J, 

and join each pair of vertices in X. Then G is almost surely (p, (pn) 2 )-jumbled. 

We close by mentioning a result of Chung, Graham and Wilson. In [CGW], the 

authors show that the equivalence of a set of graph properties possessed by almost 

all graphs in £?(n, | ) in the sense that any graph possessing any of one of them must 
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possess all the others. Such graphs are called quasi-random. They followed in the 

spirit of the seminal paper of Thomason [Th2]. Let us list 7 equivalent properties 

which give a quasi-random graph ([CGW]). Each of the properties will contain oc-

curences of the asymptotic "little-oh" notation o(-). Let {#„} and {yn} be sequence 

of real numbers. The little-oh notation is defined as usual: 

xn = o(yn) 

means that there is a sequence {kn} of positive terms such that kn —> 0 and a constant 

N so that 

l-̂ nl ^ knyn 

for all n > N. For example, if xn = o(l), then xn —*• 0. 

Let G = {V, E) denote a graph with vertex set V and edge set E. We use the 

notation G(n) ( and G(N, e)) to denote that G has n vertices (and e edges). For X C 

V, we let e(X) denote the number of edges in the induced subgraph X of G. Further, 

if G' — ( V ' , E ' ) is another graph, we let NQ(G') denote the number of (labelled) 

occurrences of G' as an induced subgraph of G and NG(G') denote the number of 

occurrences of G' as a (not necessarily induced) subgraph of G. Let A = (AVY) be 

the adjacency matrix of G. For v,v' € V, define s(u, v') = {y 6 V ; aViV = aviry}. 

Pi'. For all graphs M(s) on s vertices, 

iV*(M(s)) = ( l - fo( l )K2-(*) . 

P2: e(G) > (1 + o(l))£, Na(Ct) < (1 + o{\))f 

where Ct is the cycle with t edges. 

P3: e ( G ) > ( l + o ( l ) ) f , Ax = (1 + o(l)) | , A2 = o(n) 

where A,'s are the eigenvalues of A so that |Ai| > |A21 > . . . > |An|. 

P4: For each subset S C V, e(S) = jl^l2 + o(n2) 
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P5: For each subset S C V with 15*1 = |_fj, e(S) = ( ^ + o(l))n2 

Ps: £ „ y - f I = °(n3)-

Pr: E„v'| \T(v)nT(v')\-^ | = o(n3) 

where T(u) and r(u') are the neighbors of v and v' respectively. 

In Chapter 5, we will prove that almost all Steinhaus graphs are Hamiltonian. To 

do this, we will use P4 among the properties in order to have a good condition on the 

number of edges in Steinhaus graphs. 



CHAPTER 3 

INDUCED CYCLES IN STEINHAUS GRAPHS 

3.1 Preliminaries 

Steinhaus graphs have several interesting properties which are not shared by all 

graphs. For examples, 

(1). The diameter of all Steinhaus graphs with n vertices except Pn,En is at most 

[ | (n + 2)J ([BDD]). 

(2). The order of a large clique in any Steinhaus graph with n vertices is at most 

ft(n + 3)l ([BDD]). 

(3). The larger component of the complement of a Steinhaus graph has diameter at 

most two ([Dy2]). 

(4). A Steinhaus graph is bipartite if and only if it has no triangle ([Dy3]). 

More on the properties of Steinhaus graphs are found in [BrDu], [Dy5]. Also, it 

seems reasonable that the size of a large induced cycle in any Steinhaus graph with 

n vertices might have an upper bound similar to (2). In section 3.2, we investigate 

the maximum size of an induced cycle in Steinhaus graphs where the induced cycles 

are simple in the following sence: 

Definition 3.1.1 Let G be a Steinhaus graph. An induced cycle C = X\X2 ...£/ of 

G is said to be simple if xi = 1, xn = n and Xi < Xj whenever i < j. 

Let G be a Steinhaus graph and C be a simple induced cycle in G. For our 

convenience, we decompose the Steinhaus graph G with the simple induced cycle C 

in G as follows: Let = {Ai : Ai C C} be the partition of C such that each At is a 

14 
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maximal subset of C which consists of consecutive vertices and the largest vertex in 

Ai is joined to the smallest vertex in A,+i. Thus each induced subgraph A{ in G is a 

path. Let = {Bj : Bj C G — C} be the partition of G — C such that each Bj is 

the largest subset of G — C which consists of consecutive vertices. Then U $ c 

is said to be the cover of the Steinhaus graph G with the simple induced cycle C in 

G. Let us give an example of the cover of a Steinhaus graph with a simple induced 

cycle. 

Example 3.1.2 Let G be the Steinhaus graph which is generated by the string 

01000001111. Then C={1,2,3,4,5,11} is a simple induced cycle of G. The cover 

of G with C is given by A\ — {1,2,3,4,5}, A2 = {11} and Bx = {6,7,8,9,10}. 

In section 3.2, we will classify all simple maximal induced cycles in Steinhaus 

graphs. Before we begin the next section, let us mention the following simple lemma 

and some facts about Pascal's triangle. 

Lemma 3.1.3 Let G be a doubly symmetric Steinhaus graph with generating string 

(ai,0Lr ThenaX;n=0. 

Proof. If aitTl = 1, then + 02,n = 1 (mod 2). So G is not doubly symmetric. 

I 

We now present some facts concerning Pascal's triangle modulo two that will be 

needed in section 3.2. The rows of the triangle are labelled i?l5 R2,... arid so the kth 

element of Rn is (mod 2) if 1 < k < n. A Pascal triangle is said to be of 

dimension n if the triangle consists of the n rows R\, R2,... ,Rn and is denoted by 

(oi,i)i<j<i<n- More on the properties of Pascal triangles are found in [Dy5], 
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Example 3.1.4 Here we give the Pascal triangle of dimension 6. 

R\ —• 1 
R'2 —* 1 1 
-/?3 —• 1 0 1 

—> 1 1 1 1 
R§ —• 1 0 0 0 1 

Rq —• 1 1 0 0 1 1 

Lemma 3.1.5 Let (aiti) be the Pascal triangle of dimension n. If an,j = 1 for all 

j > L|(n + 4)J then n is a power of 2. 

Proof. We will use induction on n. Since an>3 = = ("_]) = an,n-j+i (mod 2), 

a^n-j = 1 for all j > L|(n + 4)J. Let n = 2m + k for some 0 < k < 2m . We want 

to show that k is equal to 0. Suppose that k is greater than or equal to 1. Then the 

Pascal triangle of dimension k satisfies the condition in lemma. So k is a power of 2 

by induction. Since anj = 1 for 1 < j < n — |_|(n "t" 4)J +1) k is equal to 2m 1 • Then 

an,k+1 = 0. This gives a contradiction since k < [§(n + 4)J. This prove lemma. I 

Lemma 3.1.6 Let anJ = 1 for some 1 < j < n. Then n is odd if and only if 

:=: 0 QrTld — 0. 

Proof. Since anj = 1, ( p j ) is odd. By Luscas' Theorem, we have the following fact: 

fact. (""}) is odd if and only if if when j - 1 has a 1 as its i-th binary digit, so does 

n — 1. 

Suppose that n is odd. Since (?"}) is odd and n - 1 is even, j - 1 is even by the 

above fact. By applying the above fact to the 0-th binary digits of j - 2, j and n - 1, 

( " I j ) all<* (" j 1 ) a r e e V e n " S° «nj—1 = «n,j+1 = 0. 

Conversely, suppose that n is even. So n — 1 is odd. Therefore n — 1 has 1 as its 

0-th binary digit. Now, j - I has either 0 or 1 as its 0-th binary digit. If j - 1 has 0 

as its 0-th binary digit, then j has 1 as its 0-th binary digit. So (n~ ]) is odd by the 

above fact. If j - 1 has 1 as its 0-th binary digit, then j - 2 has 0 as its binary digit. 

So ("I^) o c ^ a^ s o ky same fact. Thus either an,j-1 = 1 or anj44 = 1.1 
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3.2 Simple maximal induced cycles in Steinhaus graphs 

Let G be a Steinhaus graph with n vertices and («;j) be the Steinhaus matrix of 

G. Let C be a simple maximal induced cycle in G and U be the cover of G 

with C. In particular, in C, the largest vertex in Ai is joined to the smallest vertex 

in Ai+i. 

Now we give a series of lemmas in order to estimate the size of Bi in = 

{Bi : i = 1 ,2 , . . . , t}. Let a,- be the smallest vertex and fa be the largest vertex in Ai 

respectively. Note that a.\ is the vertex 1 and fa is joined to for each I < i < t. 

Also, Bi = {/9t + l, fa + 2,... , a t + i — 1}. Let a,-be the size of A,-. Then bi =cv,-+i — a,- — 1 

is the size of Bi respectively. 

Let us observe the following simple facts about strings in the Steinhaus triangle 

by using the above notations. 

1. Since Ai is the path a,-a,- + 1... fa, the string (aai,j)ai<j<Pi is (010 . . . 0) for each 

i. Thus for all a< < s < s' < fa, 

_ j 1 iffs ' = s + l; 
^ Q otherwise. 

2. For each 1 < i < t, the string, the transpose of (afc,ai+1 )ai<fc</?, > is the transpose 

of (00.. . 01). Therefore, (aQij)ai+1_ai+1< i<a.+1 is (10.. . 0). 

3. Since fa is joined to a;+i, the string (aftj)ai+1<i</?i+1 is (10 . . . 0). 

4. Either a\ or at is equal to 1. (Otherwise, the entries a l j n_i and a1)T, are equal to 
1 since a\^n = 1, 02,n = 0. Then C is not a cycle.) 

We will use the above facts in the following lemmas, but we will not often mention 

these facts. 

Lemma 3.2.1 For each i, bi > max{a4- — l,ai+i - 1}. 
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Proof. Without loss of generality, we assume that a, is greater than or equal to a8+1 by 

considering its partner, P(G), of G. Suppose that 6; is less than max{a, - 1 , a;+i — 1}. 

Consider the string in fact 2. So the entry a f t - f c j - i s equal to 1 by the Steinhaus 

property. Since k < a» - 1 , the entry is in the subtriangle generated by the 

string (aaiij)ai<j</3t. Therefore, # - bi - 1 + 1 = $ by fact 1. We have /),; = 0, which 

gives a contradiction. I 

Lemma 3.2.2 If ai is equal to a;+i then 

j -> f ° i */ ai a power of 2; 
% ~ 1 ai -f 1 otherwise. 

Proof. First, bi is at least — 1 by Lemma 3.2.1. 

Suppose that 6, is equal to ai — 1. Then the string {o,ai,j)ai<j<i3n.l in the af1 

row in the Steinhaus triangle is clearly (010.. .0). Since 6t- is equal to a, — 1, the 

entry aaj+1_1)/3j+1 is equal to 1. Since (a8i+1,;)ai+1<j<ft+i in the row is equal to 

(010... 0), the string (aai+1-i,j)ai+1-i<j<pi+i is (001 • • • 1) by the Steinhaus property. 

But the triangle ( i s the Pascal triangle of dimension 2a,- —1. 

By Lemma 3.1.5, 2a,- — 1 is a power of 2, which gives a contradiction. 

Suppose that ai is not a power of 2. Assume that 6; is equal to ai. 

Case 1. aai>pi+i is equal to 0. 

If aa j + 1_i l f t + 1 is 0, (aai+1 -2,j)cti+i-2<j<Pi+i in the row is (001... 1) by the 

Steinhaus property with the row. By the same arguement in the above, 

2ai — 1 is a power of 2. This gives a contradiction. 

If a a i + 1 . I l f t + 1 is 1, (aa,+1-i,j)ai+1-i<j<ft+1 in the a f t j row is (001... 1) by the 

Steinhaus property. By the same arguement in the above, 2a; is a power of 2, 

which gives a contradiction. 

Case 2. aaiJ?j+i is equal to 1. 

If a0l+1-i,ft+1 is equal to 0, then 2a,- is a power of 2 by the same arguement as 

in Case 1. This gives a contradiction. 
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Similarly, if a« j+1_i,f t+1 is equal to 1, then 2at + 1 is a power of 2. This gives a 

contradiction also. 

By combining both cases, we prove lemma. I 

L e m m a 3.2.3 If |a;+i - a,| is equal to 1, then 

b > f max{a„a i + i} if min{a;,a t+i} is a power of 2; 
% ~ | max{a,-,a,+i} + 1 otherwise. 

Proof. Without loss of generality, we can assume that a; is greater than ct{+i, by 

considering its partner, P{G). 

First, bi is greater than or equal to a,+i by Lemma 3.2.1. 

Suppose that 6t- is equal to a,i+\. Assume that a,-+i is not a power of 2. The string 

(aai,j)ai<j<Pi+1 i n the a f row is (010 . . . 010 . . . 0) where aaiw3i+i = 1. 

Case 1. floti+i-i./Ji+i is equal to 0. 

By Steinhaus property with a a ( + 1 -2 , f t + 1 = 15
 aai+i-i,/3;+i = 0 a n ^ the 

row in the Steinhaus triangle, the string (aai+i-2,j)ai+i-2<j<ft+i is (001.. . 1). 

Then (afc,j)ai<fc<«i+1-2lA-+i<i<fc+»i i s t h e P a s c a l t r i a n S l e o f dimension ai+1 + k 

satisfying the condition in Lemma 3.1.5. So a l+1 + bi = 2a !+i is a power of 2, 

which gives a contradiction. 

Case 2. a a i + 1 _ i , ^ + 1 is equal to 1. 

Again, by the same arguement in the Case 1, (aa i+ l_ij)a j+ l-i<j</3 i+1 in the 

(a i + i - l) t h row is (001.. . 1). So a< + k = 2a i+1 + 1 is a power of 2 by Lemma 

3.1.5, which gives a contradiction. 

By combining both cases, we prove lemma. I 

From Lemma 3.2.2 and Lemma 3.2.3, we observe the Mowings: 

Let {Ai : i = 1 ,2 , . . . ,t + 1} U {Bi : i = 1 ,2 , . . . ,<} be the cover of G with a simple 

induced cycle C with |At+i| = 1. 
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First, if bi is greater than or equal to a* for all 1 < i < t then it ic clear that the 

order of C is at most [§(" + 2)J. 

Second, if 6, is less then for some i, we can not guarantee that the order of C 

is at most [ | ( n + 3)J. It is the case from Lemma 3.2.1 and Lemma 3.2.3 that there 

exists i such that bt is equal to either a, - 1 = ai+1 where ai+1 is a power of 2 or 

a,i — 1 where a„+i < a,- — 2. 

Thus we give better estimations regarding the second observation in the following 

two lemmas. 

L e m m a 3.2.4 Suppose that ai is equal to ai+1 + 1 and that bi is equal to a»+1 for 

some i. Let a^\ be a power of 2 which is greater than 1L Let k be the smallest number 

such that k > i + I, ak > 2 and for alli + l<l<k — I 

and 

Then either 

or 

a\ — 1 

ak 7̂  —i. 

k-i k-i 
ai ^ Y , k 

l=i l=i 

k k 

l=i l=i 
Proof. First, since aj+i is equal to etj+2 a n ( l ai+i i s a power of 2, by Lemma 3.2.2 we 

have b{+1 > ai+i. Observe that if bi+1 = at+1 + 1 then bi+2 > al+2 + 1. By continuing 

this process, we have inequality 

k-2 k-2 
ai ^ Yh k +1-

l=.i l=i 

Suppose that we have the inequality 

fc-l k-1 
5 3 a i > /Chi-
l=i l=i 
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Then from the above inequalities, we have bi = a; for all i + 1 < / < k — 2. Since 

the a/'s are all the same and a power of 2, the string {aai,j)ai<j<at+i the a/ row 

is (010... 0110... 0) for i + 1 < / < k - 1. Then we have bk-i > ak~ i- Otherwise, 

we have bk~\ = ak~i — 1- Therefore the vector ( ^ r o w *s 

(010... 010.. . 0), which is impossible by Lemma 3.1.6. Hence bk~i = flfc-i- Moreover, 

we have bk > ak by the same argument as above. 

Next, we want to show that bk is greater than or equal to ak + 1, which gives the 

inequality 
k k 

Y , a i < X I 6 ' -
l=i l=i 

Assume that bk is equal to ak. 

Case 1. ak> ak-1. 

First, if ak > + 2 then bk-i > a,k-i + 1 by Lemma 3.2.1. This is impossible 

because bk = ak. Therefore, ak must be equal to afe_i + l. So the entry a ^ - i A is 

1. By applying the Steinhaus property to the a f row in the Steinhaus triangle, 

the string (aafc_1-ij)afc_i-i<j</3*_i in the (a^-i — l) t h row is (01.. . 1) because 

ak-1 is a power of 2. Since the string i*1 atk c ° l u m n is 

(00.. . 01), the entry aajt_1_2,(0fc_1 is equal to 0, which gives a contradiction by 

fact 3. 

Case 2. ak < ak-i-

Since the string (aj0fc_1,i)/9)t_1<j<a*+1
 i n t h e Pk-1 r o w i s (00 . . . 010 . . . 0) and ak is 

less than ak-1, we get the Pascal triangle (ai,j)pk_1<i<ak,j<k+ak^h-i of dimension 

ak-1 + 2 such that the entry aaktpk+i is 0. Since this entry aakt0k+i is in an even 

row in the above Pascal triangle, Lemma 3.1.6 implies that the entries aakt/3k+j 

are either all 0's or all l 's where j = 2,3. In both cases, bk > ak + 1. This gives 

a contradiction. 

By combining both cases, we prove lemma. I 
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Lemma 3.2.5 Suppose that a{ is greater than or equal to + 2 and that b{ is equal 

to a, — 1. Let k be the smallest number such that k > i + 2, for all i -f 1 < I < k — 1 

ai-1 > a/ 

and 

2 < ak~i <ak- 1. 

k—\ k—1 
^ 2 a i < J ^ b t 

l—i l—i 

k k 
Y,ai < Y^bi. 

i=i i=i 

Proof. First, by Lemma 3.2.1, we have bl+i > a;+1 — 1. Moerover, 6i+i > a,+1 by the 

following argument. If = a,+i — 1 then we have a a j + 1^ j + 1 = 0, flo-,+1,ft+1+i = 1 

and aai+1,p,+1+2 = 0. But the entries are in the Pascal triangle (aii3)ai<Kai+l j<i+ai+1 

of dimension a4- + 6j + 1. But by Lemma 3.1.6, a, + 6,- + 1 = 2a; must be odd, which 

gives a contradiction. 

Next, if bj is equal to aj for some i + 1 < j < k — 2, then bj+i > a ? + 1 by the same 

argument as above. Therefore, by continuing this process we have inequality 
k-2 fc-2 

2 ^ L 

i=« /=* 

Since > Ofc_i + 1, we have bk~i > Ofc-i by Lemma 3.2.1. Therefore, we have 

inequality 
k-i k-i 
X] a ' ^ Y1 h + 1-
l=i l=i 

If ah > o>k-1 + 2 then we have > a^_i + 1 by Lemma 3,2.L Therefore, we 

have inequality 
k-1 jfe-i 
Yla'-12 h 
l=i l-% 



23 

and this inequality gives the proof of theorem. So we assume that a,k is equal to 

ajt_i + 1. Suppose that we have the inequality 

A;—1 k— 1 
Y1 ai > £ b ' • 

l=i l=i 

We want to show that bk is greater than or equal to ^ -f 1, which gives the 

inequality 
k k bi-

i=i i=t 
Assume that bk is equal to afc. Then by the ineqality in the above, i.e. 

k—1 k—1 
£ < • , < £ ^ + 1, 
j=i j=i 

we have 6/ = ai for all i + 1 < I < k — 1. Therefore, the string (<l-ot>j)al<3<at+1 

in the a\h row is (010. . .0110. . .0) for each I. Since the entry aak-\,f3k = 0, the 

string {o-ak-\,j)ak~\<j<pk in the (a^ — l)</l row is (001... 1) by the Steinhaus property 

along with the otf" row. Thus we have the Pascal triangle ( j ) a ( i ; _ j <m<ak-i,m<j of 

dimension whose af row is (11 . . . 1). Hence ak is a power of 2. Since |ajt — a^-1| 

is equal to 1 and bk-i is equal to ak-i, we conclude that a,k-1 is a power of 2. This 

gives a contradiction. 

This proves that bk is at least + 1. I 

Now we prove the following theorem. 

Theorem 3.2.6 Let G be a Steinhaus graph with n vertices and lei C be a simple 

maximal induced cycle in G. Then the order of C is less than or equal to • 

Proof. Let {A,- : i = 1,2, . . . , £ + 1} U {jB; : i = 1 ,2 , . . . ,<} be the cover of the 

Steinhaus G with the simple induced cycle C. 

Without loss of generality, we assume that ai is greater than or equal to a\ by 

considering its partner P(G). Then a; is equal to 1 otherwise the entry a1>n_i is equal 

to 1. So C contains a cycle of length 3, which gives a contradiction. 
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It is enough to show that 

53 ai < 53 k + 2 

i=l i=l 

because this inequality gives 

t-j-1 t-\"\ t 
««<) * 5> + 5> + s 

i=l izz 1 i=l 
= n + 3. 

Since the order of the simple induced cycle C is S!=i aii w e have the inequality 

\C\ < [ - (n + 3)J. 

This prove theorem. 

Sublemma. Let a; be equal to 2 and bi be equal to 1. Let io be the smallest number 

such that ?o ^ ^ + 1) a«'o — 2 and = 1 f° r & "I" 1 — J — ^ • I hen 

io—1 »o~*l 
53 ai ^ E br 
j=i j=* 

Proof of Sublemma. Consider the subtriangle generated by string (<*<*<, 

in the Steinhaus triangle of G. Note that if bj < 2 for all i < j < «o — 1, then 

the generating string in the above subtriangle is (0110... 0) by the Steinhaus 

property. Thus for a,- < 5 < the pair {aS)S+i, as,«+2} is 

. _ f (0,1) iff s — oci is odd; 
(fls,s+i, a«,s+2) — | (1,1) iff 3 — a; is even. 

Assume that we have the inequality 

i° —1 io — 1 
E ai > E br 
j=i 3—i 

Then bj = 1 for all t + 1 < j < i0 ~ 1. Since aio = 2 and 6io_! = 1, we 

have (aa io-i,a i o ,aa io_i,a io+i) = (1,1). Thus a io - <*,• - 1 is even. This gives a 

contradiction because ai0 — ol{ is even. • 
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Now, we claim the following inequality which we asked. 

Claim. £ j= i a3 < bj + 2. 

Proof of Claim. If t is equal to 1, then a\ < bi + 2. Also if i = 2, it is not fifficult 

to show that 

&i 0,2 ^ -j- 62 4-1 

by considering all cases. From now we assume that t > 3. 

If Oj < 2 for all 1 < j < t, then we are done by Sublemma. Therefore, we 

assume that there exists j such that a,j > 3. 

Suppose that i is the largest number such that 

- X! + 1-
j=i j-1 

We want to show that i is equal to t. Suppose that i is less than t. 

If there is no j > i such that dj = 1, then we have 

jzzt 3—1 

by applying Lemma 3.2.4 or Lemma 3.2.5 sucessfully, which gives a contradic-

tion by the choice of i. Therefore, there exists a smallest number k such that 

k > i + 1 and = 1. 

First, if a ; , . . . , ak~\ satisfy the conditions in Lemma 3.2.4, then ak-i < bk-1 

and the string {aak,j)ak<j in the ct̂ 1 row is (000... 1 . . . ) because cik-i is a power 

of 2. Thus bk > 2, which gives a contradiction by the choice of i, 

Next, suppose that a , a t _ 1 satisfy the conditions in Lemma 3.2.5. Note 

that bk-1 > ak~ 1 by Lemma 3.2.5. If there is some ko > k such that a,k0 > 2 

then 

X><X> 
l=i l—i 
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for some s > j0 by Sublemma, which gives a contradiction by the choice of i. If 

a,j = 1 for all k < j <t, then i is equal to t, which gives a contradiction. 

Finally, if a\ < 2 for all j < I < t, then by applying Sublemma, we have a 

contradiction by the choice of i. 

By considering all cases, we prove the claim. • 

By the claim, we prove theorem. I The proof of Theorem shows that if t > 2 then 

the order of any induced cycle C can not achieve the upper bound. Therefore, we get 

the following: 

Corollary 3.2.7 Let G be a Steinhaus graph with n vertices and G be a simple in-

duced cycle in G. If the order of C is [ | (n + 3)J then C is either {1 ,2 , . . . , [|(ra + 

l ) J ,n} or {1 ,n— |_|(n + 1)J, . . . ,n}. 

Now, we give an example of simple induced cycle which achieves the bound in the 

theorem. Let G be the Steinhaus graph with generating string (aij)i<j<ra given by 

/ 0 if j = 1 ,3 , . . . , r i l ; 
1'JI | 1 otherwise. 

Then G has the induced cycle {1 ,2 , . . . , , n} of order [ | (n + 3)J. 

We close by mentioning the size of maximal induced cycles in Steinhaus graphs. 

The question is that "Does the order of any induced cycles in Steinhaus graphs have 

a reasonable bound like in Theorem 3.2.6?". But if n < 30, it is not difficult to show 

that the maximum size of an induced cycle in Steinhaus graphs with n vertices is 

Thus we give the following conjecture. 

Conjecture. The size of any induced cycles in a Steinhaus graph with n vertices 

is at most . 



CHAPTER 4 

CLIQUES IN STEINHAUS GRAPHS 

4.1 Introduction 

In this chaper, we investigate the classification of all Steinhaus graphs which 

contain cliques of large size. In section 4.2, we give some results (see [Ha], [BDD]) in 

Steinhaus graphs. Based on these results, we give definitions to classify several types 

of cliques in Steinhaus graphs and their classification. Also, we discuss maximal types 

of cliques in Steinhaus graphs. In section 4.3, we discuss the classification of Steinhaus 

graphs with n vertices which contain cliques of size win) = f"2^"] for n > 27. Also 

we investigate the number of Steinhaus graphs which contain cliques of size w(n). In 

section 4.4, we generalize the results in section 3 by counting the number of Steinhaus 

graphs which contain a clique of size near w(n). Finally, in section 4.5, we investigate 

similar results as in section 4.3 and section 4.4 on the complement of Steinhaus graphs. 

4.2 Preliminaries 

It is natural to expect that if a Steinhaus graph contains a clique of large size, 

then the Steinhaus graph must have many edges. Conversely, if a Steinhaus graph 

has many edges then the Steinhaus graph may have a clique of large size. Harborth 

investigated the upper bound for the number of edges in Steinhaus graphs, where he 

showed that the upper bound is given by the following theorem. 

Theorem 4.2.1 ([Ha]) The largest number of edges in Steinhaus graphs with n 

vertices is 
n(n - 1) + 1 

L o J * 

27 
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From this theorem one may expect that the order of any cliques in Steinhaus not 

so large. In [BDD], Brigham, Deo and Dutton find the maximum size of cliques in 

Steinhaus graphs by the following method. 

Lemma 4.2.2 ([BDD]) No clique in any Steinhaus graph contains two pairs of con-

secutively numbered vertices. 

Lemma 4.2.3 ([BDD]) No clique in any Steinhaus graph contains two pairs of ver-

tices such that the vertices in each pair are numbered with a difference 2. 

Here, we use the notations C, T and CT in [BDD]. It is possible for a clique 

to contain one pair of consecutively numbered vertices. If there is such a pair, we 

call it a configuration of type C. Similarly, there may be one pair of vertices whose 

numbers differ by two, and if such a pair exists, we call it a configuration of type 

T. Both configurations may occur in the same clique. If they do, they must either 

be separated in labelings by at least two nodes or they must overlap by occurring as 

nodes either i, i + 1 and i + 3 or i, i + 2 and i + 3. This latter case is designated a 

configuration of type CT, and if it occurs, there can be no other C or T. A vertex 

configuration is a vertex which occurs in a clique which is not in any of the three 

types C, T or CT. Consideration of the above two lemmas leads to the conclusion 

that in any clique of a Steinhaus graph the labelings for any two configurations must 

be separated by at least two vertices which are not in the clique. We include the proof 

of the following theorem which can be found in [BDD], because it is an essential tool 

to get for later results. 

Theorem 4.2.4 ([BDD]) The size of a largest clique in any Steinhaus graph is given 

by 

w(n) = ["(n + 3)/3] 

for n > 2. 
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Proof. First, a bound will be placed on the number of C, T, CT and vertex configura-

tions which can appear in a clique of an order n Steinhaus graph. Each configuration 

is assumed to occupy a single vertex position, and n is reduced by the number of 

vertices in the configuration less one. If n' represents this reduced value of n, then 

the total number of configurations in a clique is at most [n']. The number of vertices 

in the clique is then the number of configurations plus the number of clique vertices in 

the configurations which exceeds one, called the clique exess. Results are summarized 

in the following two tables. The first lists the excess numbers for each of the four 

possible configurations. 

nodes in clique nodes in 
unit configuration node exess configuration clique exess 
node 1 0 1 0 

C 2 1 2 2 
T 3 2 2 2 

CT 4 3 3 2 

The maximum number of vertices possible in a clique depends on the types of 

configurations in the clique. In all events this number can be computed by the 

following formula where a total excess refers to the sum of the corresponding excesses 

for all configurations in the clique: 

number of vertices < [(n — m)/3] + total clique excess, where ra is 

the total vertex excess. 

The following table shows this computation for the five possible combinations of 

configurations which can occue in a clique: 

Combination the number w(n) of vertices in the clique 
No C, T or CT w(n) < fn/3] + 0 = [n/3] 

C, noT w(n) < T(« - l)/3] + 1 = |"(n + 2)/3] 
T, no C w(n) < [(n - 2)/3] + 2 = f(ra + l)/3] 

CT w(n) < [(n - 3)/3] + 2 = |~(n + 3)/3] 
C and T w(n) < |"(n - 3)/3] + 2 = \(n + 3)/3] 
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This establishes the results as an upper bound. It is not difficult to see that this 

bound is achieved for the Steinhaus graphs generated by the sequence 0101101 - - I 

From the above Theorem 4.2.5, it is easy to get the following useful corollary. 

Corollary 4.2.5 Let G be a Steinhaus graph with n vertices. Let G have a clique 

Q = {yi < J/2 < J/3 < • • • < J/w(n)} of size w(n) = f(n + 3)/3] in G. Then Q satisfies 

one of the fallowings: 

(1) n = 3k -f 1 for some k > 2. 

In this case max2<,<iii(n){j/»~ J/i-i} = 3. So Q contains either a GT configuration 

or C and T configurations. 

(2) n = dk + 2 for some k > 2. 

In this case max2<;<„,(n){?/; — yi-1} is either 3 or 4-

If max2<,<m(n){yi — yi-i) — 3 then Q contains a C configuration. 

//max2<;<ii,(n){2A' — Hi-1} = 4 then Q contains either a CT configuration or C 

and T configurations. 

(3) n = 3fc + 3 for some k >2. 

In this case max2<;<w(n){?/,- — j/i-i} is either 3, 4 or 5. 

If max2<;<„(„) {t/i — ?/i-i} = 3 then Q contains a T configuration. 

If max2<i<w(„){j/i — yi-1} = 4 then Q contains a C configuration. 

If max2<i<«,(n) {yi — J/»'-i} = 5 then Q contains either a CT configuration or C 

and T configurations. 

We will use Corollary 4.2.5 to classify all cliques of size w(n) in G as the main 

tool in the following section. 
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4.3 Classification of maximal cliques 

Let G be a Steinhaus graph with n vertices which has a clique of size w(n). Then 

G may have several cliques of size w(n). But G satisfies 

m a x hi - t/i-i} < 5 
2<t<w(n) 

for any clique Q = {y\ < y2 < y$ < . . . < yw(n)} in G by Corollary 4.2.5. But we 

want to express all cliques Q = {?/i, 2/2,2/3, • •., yw(n)} of size w(n) such that 

max h i - yi-1} < 3 
2<%<w(n) 

because if Q satisfies the above inequalty then it will be easy to classify all cliques of 

size w(n). Thus the first goal in this section is to show that at least one clique Q of 

size tu(n) in G satisfies 

„ max {yt- - 1} < 3. 

Let us define several types of cliques which may occur in Steinhaus graphs. 

Definition 4.3.1 Let G be a Steinhaus graph with n vertices. A clique Q(G) = 

{yi < tf2 < ••> < J/m} in G is called a maximal clique type of G if Q{G) satisfies the 

following conditions: 

(a) Q(G) is contained in a maximal clique in G. 

(b) yi - y^i < 3 for all i > 2. 

(c) the size of Q(G) is largest among all possible cliques in G satisfying (a) and (b). 

(d) ym — j/i is also largest among all possible cliques in G satisfying (a), (b) and (c). 

Next, we will describe all maximal clique types precisely. 

Definition 4.3.2 Let G be a Steinhaus graph with n vertices. Let Q(G) be a maximal 

clique type of G where Q(G) = {yu y2,..., ym}-
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(a) Q(G) is said to be of type I in G if yi = y;_i + 3 for all i > 2. 

(b) Q(G) is said to be of type II in G if either yi = y\ + 2 and ?/,• = + 3 for all 

i> 3 orym = ym~\ + 2 and yi = + 3 for all 2 < i < m — 1. 

(cj <5(G) said to be of type III in G if either yi — yx + 1 and yi = + 3 for all 

i>3 or ym = ym-i + 1 and yi = yi-x + 3 for all 2 < i < m — L 

(d) Q(G) is said to be of type IV in G if there is unique i suck that either 

f Vj-i + l = 
Vi = | Vj-i + 2 = * + l; 

[ yj-1 + 3 otherwise 

or 
' yj-1 + 2 if j = i; 

Vs = 1 Vj-i +1 i f j = i +1; 
k yj-1 + 3 otherwise. 

(e) Q(G) is said to be of type V in G if either y2 = yi + 1, ym = Vm-i + 2 and 

S/i = ?/i-i + 3 for all 3 < i < m-l or y2 = yi + 2, ym = ym-i + l and yi = j/i-i + 3 

for all 3 < i < m — 1. 

Let G be a Steinhaus graph with n vertices. Then G seems to have several possible 

distinct maximal clique types Q of G. Note that if G has a maximal clique type then 

its partner P(G) has a clique of same size and same type. Now we give several 

examples of maximal clique types of G. 

Example 4.3.3 1. Let G be the Steinhaus graph which is generated by the string 

(0001101101). Then G has the clique {1,4, 7,10} which is of type I in G. 

2. Let G be the Steinhaus graph with generating string (011011011011). Then 

{1,3,6,9,12} is a maximal clique of type II. 

3. Let G be the Steinhaus graph with generating string (01001001001). Then 

{1,2,5,8,11} is a maximal clique of type III. 
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4. Let G be the Steinhaus graph with generating string (0101101010101). Then 

{1,2,4,7,10,13}, {1,4,5,7,10,13} and {1,4,7,8,10,13} are maximal cliques of 

type IV. 

5. Let G be the Steinhaus graph with generating string (0100100100101). Then 

{1,2,5,8,11,13} is a maximal clique of type V. 

Now, we want to classify a largest clique Q of size w(n) in a Steinhaus graph with 

n vertices and show that Q must be one of the above maximal types for n sufficiently 

large. 

Let G be a Steinhaus gragh with generating string (a1)t)f=1. Through this chapter 

we assume that if G is a Steinhaus graph with n vertices then G has the generating 

string (ajii)"_1. Then the entry a , j in the Steinhaus triangle is given by 

k
 l^JaU-k (mod 2) 

for all 1 < / < i — 1. 

Thus we have two useful facts from the above identity. 

Fact I. If dij = aitj+3 (mod 2) then a ! + 3 j + 3 = a; J + 2 + aitj+3 (mod 2). 

Fact II. If / > 0 then at+2',j+2' = aiJ + aij+2l (mod 2) by Lucas Theorem ([Sta] 

p.53). 

By using the above facts, we will decide the positions of configurations in the 

cliques by the following lemmas. 

Lemma 4.3.4 Let Q be a clique in a Steinhaus graph G. Then Q does not contain 

{i, i + 3, i + 4, i + 7} for any i. 

Proof. Assume that Q contains {i, i + 3, i + 4, i + 7}. Then we have 

®t,i+3 ~ ®s,i+7 = ®t+4,i+7 = 1 • 
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This gives a contradiction by Fact II. Hence Q does not contain {z, i -f 3, i + 4, i + 7}. 

Lemma 4.3.5 Let Q be a clique in a Steinhaus graph G. Then Q docs not contain 

{?, i + 3, i + 8, i + 11} for any i. 

Proof. Assume that Q contains {i,i + 3,i + 8,i + 11}. Then we have a,iii+3 = 

G^i+n = aj+8,t+n = 1. This gives a contradiction by Fact II. Hence Q does not 

contain {i, i + 3, i + 8, i + 11}. I 

The next lemma is a generalization of Lemma 4.2.2 and Lemma 4.2.3. 

Lemma 4.3.6 Let Q be a clique in a Steinhaus graph G. Then Q does not contain 

{v + 2',j,j + 2l} for 
anU j > i + 1 and l > o. 

Proof. Suppose that Q contains {i,i + 2', j,j + 2'} for some j > i + 2'. Then we have 

a l ,a , j+ 2 i = 1 and at+2i,j+2i = 1- This gives a contradiction by Fact II. I 

Clearly from the above lemma, we get Lemma 4.2.2 and Lemma 4.2.3 when I = 0,1 

respectively. 

From the above lemmas, we will find nice classifications of cliques of size w(n). 

More precisely, if a Steinhaus graph with n > 27 has a clique of size 'w(n) then at 

least one of its cliques of size w(n) in G is a maximal clique type of G. 

Lemma 4.3.7 Let G be a Steinhaus graph with 3k + 1 vertices for any k > 8. If G 

has a clique Q = {yj, y2, • • •, yk+2} of size w(3k + 1) = k + 2 in G then Q is either of 

type IV or of type V in G. 

Proof. By Corollary 4.2.5, Q satisfies max2<!<u,(n){?/i — yi-i} < 3. Moreover, Q 

contains either a CT configuration or C and T configurations. 

If Q contains a CT configuration, it is obvious that Q is of type IV from Corollary 

4.2.5. 
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If Q contains configuration C and T, by Lemma 4.3.5, either y2 = yi + 1 or 

Vk+2 = Vk+1 + 1- We want to show that either y2 = 2/1 + 1 and yk+2 = yu+1 + 2 or 

2/2 = 2/1+2 and yk+2 = Vk+i + 1. 

Assume that yi = 2/1 + 1 and j/jt+2 = y*+i + 3. Then there exists an i such that 

yi = y^ 1 + 2 for some 3 < i < k + 1. 

If 2/t-i > 8, then we have ayi_3ij = 1 for j = yi-2, Vi+i because Q is a. clique. Since 

2/i+i_ J/i-2 = 8, by Fact II we have ay,_3+s,y,+1 = 0. This gives a contradiction because 

yi-3 + 8 = y{ and ayim+1 = 1. 

If yi-i < 8 then i — 1 must be 3, so 2/2 = 2,3/3 = 5,2/5 = 10 and j/g = 13. Then we 

have a,2,j = 1 for j = 5,13. Thus aio,i3 = 0 by Fact II. This gives a contradiction by 

ays,y6 = ®io,i3 = 1-

Thus, we have yk+2 = yk+i + 2, which gives that Q is of type V in G. 

If we assume that y2 = 2/i + 3 and yk+2 = 2/fc+i + 1 then we have a contradiction 

by considering its partner, P(G), by the same arguement in the above. I 

Lemma 4.3.8 Let G be a Steinhaus graph with 3k + 2 vertices for any k > 8. Let 

Q = {2/1)2/2,2/3, ••• 5 yk+2} be a clique of size w(3k + 2) = k + 2 in G. If y\ = 1 and 

yk+2 = 3k + 2 then Q is of type III in G. 

Proof. By Corollary 4.2.5, Q satisfies one of the following. 

(1) max2<i<fe+2{ye - 2/i-i} = 3. 

(2) max2<;<fc+2{j/j - yi-x] = 4. 

Case 1 max2<,<jt+2{2/t- - yi-1} = 3. 

By Corollary 4.2.5, Q contains a C configuration. Thus we have a pair {yi, t/i+i} 

in Q such that yi+1 = t/, + 1. By Lemma 4.3.5, i is either 1 or k + 1. Therefore 

Q is of type III in G. 
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Case 2 max2<i<k+2{yi - Vi-1} = 4. 

By Corollary 4.2.5, Q contains either a CT configuration or C and T configu-

rations. 

In both cases, we have three pairs {j/t, y l+1}, {yj,yj+1} and 1} in Q such 

that yi+i = yi + 1, yj+i — yj + 2 and yi+1 = yi + 4. Without loss of generality, 

we can assume that j is greater than i by considering its partner P(G). 

Suppose that Q contains a CT configuration. Then yj = iji+i + 2, By Lemma 

4.3.7, Q satisfies either i = 1 and I < 4 or I = i — 1. 

First, if i = 1 and / = 3 we have 04,11 = os,n = 1- Then we have a4<7 = 0 by Fact 

II. Since a4ig = 1 we have a5)8 = 1. On the other hand, we have «1>4 = ai i8 = 1. 

Thus a5i8 = 0 by Fact II. This gives a contradiction. 

If i = 1 and 1 = 4 then we have a4)i3 = 0 by Fact I. Thus a3 in = 0. On the 

other hand, we have <13,7 = 0 by Fact I again. Thus we have 0,7,u = 0. But 

a7,\\ — 1? which gives a contradiction. 

Next, if / = i — 1 then <%_ll!/i+2 = = 1 since j + 1 = i -f 2. Note that 

yi = y,-_i + 4 and y^ i = y,_2 + 3. By Fact II, we have ayi_uVi^x = 0. Then 

1+1,1/, — s o %-i+i,yi = 1- Thus we have = 0 by applying Fact II 

to ayi_2,yi and This gives a contradiction. 

In both cases, Q does not satisfy (2). 

If Q contains C and T configurations, then yj > yi + 2. By Lemma 4.3.7, 

i = 1 and I = i + 1 = 2. Then j < I + 1, otherwise j > I + 2 so Q contains 

either {y^y^yj^yj+i} or {i/x, 2/4,^,^+3}- But y4-yi = yj+i - yj-2 = 8 and 

yj+3 — yj = 8. This is impossible by Lemma 4.3.6. 

Finally, if j = 1+1 then a2,Vk+i = a6,yk+i = 1. Thus a2,yk_1 = 0 by Fact II, 

which gives a contradiction. 

In any case, Q does not satisfy (2) also. 
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This proves the lemma. I 

Lemma 4.3.9 Let Q = {yi, y2, y3,..., yk+2} be a clique of size w(3k + 3) = k + 2 in 

a Steinhaus graph G with Sk + 3 vertices. If yi = 1 and yk+2 = 3fc + 3, then G has 

either a clique of type II, a clique of type III or a clique type IV in G of size k + 2. 

Proof. By Corollary 4.2.5, Q satisfies one of the followings. 

(1) max2<i<w(3fc+3){?/j- — yi-1} = 3. 

(2) max2<Ktu(3fc+3){yi ~ W-1} = 4. 

(3) ma,x2<i<w(3k+3){yi - Vi-1} = 5. 

Case 1 rnax2<i<w(3fc+3) {yi ~ Vi-1} = 3. 

Q contains configuration T by Corollary 4.2.5. Then there is a pair {yi, y,+1} in 

Q such that yi+i = yi + 2 for some 1 < i < k + 1. We want to show that either 

i = 1 or i = k + 1. 

Suppose that i is neither equal to 1 nor k + 1 i.e. 2 < i < k. Without loss 

of generality, we can assume that g/,-+i > 3(k + l ) /2 by considering its partner 

P(G). Then Q contains {yi — 6 , y i~ 3, yi + 2, yi + 5} because = yt + 2 and 

yi+2 = Vi + 5. This gives a contradiction by Lemma 4.3.7. Hence either i = 1 

or i = k + 1. Thus Q is of type II in G. 

Case 2 max2<i<w(3k+3){yi ~ Vi-1} = 4. 

By Corollary 4.2.5, Q contains either a C configuration, a CT configuration or 

C and T configurations. 

Subcase 2.1 Q contains a C configuration. 

In this case, Q has two pairs {yi,yi+i},{yj,yj+i} such that 

Vi+i =yi + 1 
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and 

Vj+i = Vj + 4. 

We can assume that i is less than j by condering its partner P{G). First 

by Lemma 4.3.5, i is either 1 or j - 2. Then by Lemma 4.3.7, i = 1 and 

j = 3. By applying Facts I and II, G has the generating string OlafOOl)^ 

where a = 0,1 and (abc)k means the sequence abcabcabc... that abc is 

repeated k times. If a = 0, then {2,3,6, • • •, 3fc + 3} is a clique of size 

k + 2, which is of type III in G. 

If a = 1, then {1,3,6, • • •, 3k + 3} is a clique of size k + 2, which is of type 

II in G. 

In this case, G has either a clique of type II, size k + 2 in G or a clique of 

type III, size k + 2 in G which is different from Q. 

Subcase 2.2 Q contains either a CT configuration or C and T configurations. 

In both cases, Q has two pairs {?/,,yt+i}, {yj,yj+i} such that 

Vi+i = Vi + 4 

and 

Vj+i = Vj + 4. 

Thus Q contains + 4, yj,yj + 4}, which gives a contradiction by 

Lemma 4.3.8. 

Case 3 max2<i<^(3A.+3){t/i - y^} = 5. 

By Corollary 4.2.5, Q contains either a CT configuration or C and T configura-

tions. In both cases, Q has three pairs {y3, yJ+\} and {;(//, yi+i} such 

that 

Vi+1 =Vi + 1, 

yj+1 = Vj + 2 
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and 

yi+1 =Vi + 5. 

Without loss of generality, we assume that i is less than or equal to j — 2 by 

considering its partner P(G). 

Subcase 3.1 Q has a CT configuration. 

Since Q contains a CT configuration, j is equal to i + 2. Moreover, I is 

equal to either 1 or k + 1 otherwise Q contains {yi-i, yi, yi+i, yi+i} and 

yi = yi-i + 3,2/z+i = yi + 5 and yi+2 - yi+i + 3. This is impossible by 

Lemma 4.3.6. 

First, if I = k + 1 then Q satisfies that yi is equal to either yt-+2 or t/4+3 

otherwise Q contains {y4+i, yi+4, yi-i, yz+i}, which is impossible by Lemma 

4.3.8. In any case, = O(lOl)^-1 by y^+i — 3k — 2. For example, 

if / = i + 2 then a3r+i,yi+1+i = 0 for 0 < r < k — 2 by Fact I. Then 

(a3r+ijS)2/i<s<OT+2 = (1101) for all 0 < r < k — 2. From these entries, it is 

not difficult to show that (aij/)i<j/<3fc_2 = 0(101)fc_1. 

Now, we want to find the entries ai|3fc_i, a\^k and a1)3fc+1 in the Steinhaus 

triangle of G. By using the entries a;/i3fc+3 where i'=l,4,7,10,13,16,19 and 

part of (3k — 5)i/l column which is { o - v = 0(101 )k~2 in the Stein-

haus triangle of G and by applying Fact II several times to the above facts, 

we have («•;',3fc+3)l'=7 — (1? 0,0,1,0,0,1). By those entries we can find the 

generating string of G such that 

1 = 1) 

®1,3 k — 0, 

&l,3fc+l = 1? 

«l,3fc+2 = 1 
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and 

al,3&+3 = 1-

Therefore, a y i + u 3 k + i = a y i + u 3 f c + 3 = 1. By Fact II, we have a y i + 2 t 3 k + 3 = 

ayi+2,yi+i = which is impossible. 

If I = 1, we have the same result by the same argument in the above. 

Subcase 3.2 Q has C and T configurations. 

Let us remind some facts from Lemma 4.3.5, Lemma 4.3.6 and Lemma 

4.3.7; 

(a) Q does not contain { x , x + 3, x + 4, x + 7} by Lemma 4.3.5. 

(b) Q does not contain { x , x + 3, x + 8, x + 11} by Lemma 4.3.6. 

(c) Q does not contain {x, x + 8, y , y + 8} by Lemma 4.3.7. 

Suppose that yi is equal to either y\ or y k + 2 -

Then either the subgraph G — {1,2,3,4,5} has the maximal clique of type 

V {?/2> J/3, • • •, 2/3̂ +2} with size k + 1 or G — { 3 k — 1 , 3 k , . . . , 3 k + 3} has the 

maximal clique of type V {1/1, y 2 , . . . , y h + i } with with size k + 1 by Lemma 

4.3.8. If y i = y k + 2 , then { y u y 2 , . . . ,yfc+i} = {1,2 ,5 , . . . ,3&-2}. Therefore 

(«i,j')i<j'<3fc-2 = (0(100) 2101) by Steinhaus property. Note that a 5 y ,3Jfe-5 

is 0, «9,3fc-5 is 1, ai2,3fc-5 is 1 and a 8 , 3 k - 2 is 1. We want to show that a 8 ^ k + 2 

and a12,3fc+2 are equal to 1. First, since ai7|3fc+3 is 1, 0,9^+3 is 0 by applying 

Fact II to a9i3fc_5. Since a8i3^+3 is 1, a & j 3 k + 2 is 1. Next, since a2o,3fc+3 is 1, 

«i2,3fc+3 is 0 by applying Fact II to a9|3fc_5. Also, by applying Fact II to 

«5,3i:-5 and a5(3fc+3, a13j3fc+3 is 1. Therefore, a U l 3 k + 2 is 1. By applying Fact 

II to a & t 3 k + 2 and ai2|3fc+2, a 8 , 3 k - 2 is 0, which is impossible. If y i = y 1 , this 

gives a contradiction by the similar argument in the above. 

Suppose that y2 < yi < Vk-

If V i = 2/i then either y i = y k - x and y j = y k or y i - y k a n d y j = y k + 1 

by (b) and (c). When yi — y k - 1 and t/j = y k , we want to show that 
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a7,yk-i ~ 1) a7,Vk-1
 = an,3/fc-i = 0) which gives a contradiction by Fact 

II. Since a n , y k = a>n,yk+1 = 1, ai3,yk+1 = 0 by Fact II. Since a 5 m + 1 = 1, 

= 1 by fact II. Since a 5 m _ 2 = a5|1/fc_1 = 1, a 5 i V k _ 2 + 1 = 0, therefore, 

a7,Vk-1
 = 1 b y Fact II. Since d\,yh = a l , y k + 1

 = a2,yk
 = a2,yk+i = a5,yk — 

a5,yk+i = a i , y k - t = a2,3/fc-i = 0 by Steinhaus property. Since = 

a2,yk-i = a5,3/fc-i = 06,»fc-i = 1, by Fact II. Thus a 7 j V k = 1. So a 7 m _ i = 0 

since ag,^ = 1- Finally, from above it is easy to get that a,4m-1 = 0 

and a5,ifc-i = a e ^ - i = 1. Since a4)3/fc_1 = a g , ^ = 1 and a 6 m _ t = 0, 

a s , y k - i = 1, a 9 , y k - i = 0 and a w , y k - i — 1 by Fact II. Therefore by Fact I 

and Steinhaus property, an,y k- i = 0. Similarly, we will get a contradiction 

by the same process in the above when y\ = yk and yj = yk+1. 

If y% > 2/2 and yi > yi then yt = j/fc_2, yi = yk-i and yj = yk+1 by (2). Since 

«3r+i,3/fc_3 = 03r+i,yfc = 1, «3r+9,yk = 0 by Fact II for r = 0 , 1 , — Since 

«3r+io,3/fe+1 — 1 for r = 0 ,1 , . . . , G has the generating string 0(011)^(11) by 

the yf" column and applying Fact I several times. Thus G has the clique 

{ 1 , 3 , 4 , 7 , . . . , 3k + 1} of size k + 2 which is of type IV. 

If Vi > V2 and yi < yh then yj is either yk or yk+1 by (a), (b) and (c). Say, 

y j = yk+i• Then either y; = y k - 2 , y i = V k - \ or t/,- = y k - i , y i = yk- First, if 

yi = yk—2 and yi = y k ^ , we want to show that a V k _ 3 + l i V k _ 1 = a y k _ 3 + l m + 1 = 

0, which gives a contradiction since a y k _ l ! V k + 1 = a y k _ 3 + l t y k _ 2 + a y k _ 3 + h y k + 1 = 

0. Since ayk_3,yk_2 ®yk-3,Vk-i I ' ayk-3+^>yk-i Since a Vk-3,yk+2 

a yk-i>yk+2 ayk-3,yk+i ~ 0. So, ayk-3+1,^+1 — 0 since &yk_2,yk+i — 1 and 

apply to get a y k j y k + 2 — 1. Next, if yi = yfc_i and yi = y k , we want to 

show that ar,yk_± = 1 for y k - e < r < yk-5, which gives ayk_6>yk_& — 0. It is 

impossible. Note that ayk_1>Vk+2 = a y k , y k + 2 = 1 and a V k + 1 : y k + 2 = a y k + 2 i V k + 2 = 

0. Since ayk_6,yk+2 = 1 and ayk_6+2,yk+2 ~ ayk-em-t+^ = a2/k-6+2,wt_4+i = 

0. By Fact I, we get the claim. 

Finally, if yj = yk, we have the same conclusion by the above argument. 
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By combining all cases, we prove lemma. I 

Theorem 4.3.10 If n > 24, then at least one of the largest cliques of size w(n) in a 

Steinhaus graph G with n vertices must be of 

type IV or type V if n = 3k + 1; 
type III, type IV or type V if n = 3k + 2; 
type II, type III, type IV or type V if n = 3k + 3. 

Proof. Let Q = {yi, t/2? 2/3, - • -, J/u;(n)} be a clique of size ti>(n) in G, 

Case 1 n = 3k + 1. 

It follows from Lemma 4.3.8 that Q is either type IV or type V in G. 

Case 2 n = 3k + 2. 

If 2/i = 1 and yw(n) = n, then Q is of type III in G by Lemma 4.3.9. 

If Q does not contain either 1 or 3k -f 2, then consider the induced subgraph 

of G which is either G — {1} or G — {n} having a clique of size iv(3k + 1). By 

Case 1, Q is either of type IV or of type V in G. 

Case 3 n = 3k 3. 

If yi = 1 and yw(n) = n, then G has either a clique of type II, a clique of type 

III or a clique of type IV in G by Lemma 4.3.10. 

Otherwise, consider the induced subgraph of G which is either G— {1} or G—{n) 

having a clique of size w(3k + 2). Then by Case 2, Q is either of type III, of 

type IV or type V in G. 

By combining three cases, we prove theorem. I 

Now, we are able to get the number of the largest cliques in the Steinhaus graph 

with n vertices from Theorem 4.3.11. 
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Before to get the number, we introduce two notations for our convenience. The 

following notations give simple expressions in the generating string of G with n ver-

tices if we know the generating string of the induced subgraph of G which is either 

G — {1} or G — {n}. 

(1) (a * ft) — a + ft (mod 2) where a, ft = 0,1. 

(2) a*(ai,»)i m e a n s the generating string (fri,;)™*1 such that b2,i = flj,» for 2 < i < n, 

bi,n+i = ot where a = 0,1. 

(3) (ait,-)"*a means the generating string (&i,i)i+1 s u c h that &it.; = aj)t for 2 < i < n, 

bi,n+i — & where a = 0,1. 

As examples of the above notations, we give the following fact. 

Fact III. 

(1) 0 * 0(101)fc = 0(011)* * o for any k. 

(2) 1 * 0(101)fc = 01(001)* for any k. 

(3) 1 * 0(011)fc = 01(101)* for any k. 

(4) 0*0 (100)^ (101)= 0 0 < 1 1 1 M 0 ^ ( ™ » « ^ odd; 
\ 01000(111000) 2 (HO) if k is even. 

(5) 0 , 0 ( 0 i 0 ) « ( 0 i i ) = ( 0 0 ° ( 1 1 1 M 0 » ^ > , " : s o d d ; 
[ 011000(111000) 2 (10) if k is even. 

(6) i ,0(100)—(ioi) = { o S o o o J m ^ o o n 
{ 00111(000111) 2 (001) if k is even. 

k - 1 

(7) 1 ,0(010)^(011) = P 1 ™ ™ " i s o d d ' 
\ 000111(000111) 2 (01) if k is even. 

(8) a * (R * ft) = [(a * ft) * R]* a for any generating string R. 

Lemma 4.3.11 Let Q be a clique in a Steinhaus graph. If Q contains {i,i + 3,i + 

6,i + 9}, then (a;j)}=i+3 is either 1(101)2 or 1(011)2. 
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Proof. First, by Fact I, we have the following identities, 

4 ~t" = 1 (mod 2) 

and 

a;(;+7 + fli.i+8 = 1 (mod 2). 

Suppose that (a,-t,-+4, a t | i+5) ^ (aj,i+7,at)j+8)-

If (cit,t+4) = (1 and (<Zj)4'̂ -7, cttji+s) = (0) l)j then (<1,̂ .3̂ .̂7, (0;0). 

Thus we have <2̂ +6,1+9 = 0, by Fact II. This gives a contradiction. 

If (̂ «,«+4; 1̂,1+5) — (0? I) <md ( î,i+7? ^i,i+8) (I)^)i then (<Ii'_(_3f4̂ _7, (1,1), 

which gives a contradiction because a;+6,i+9 = 0, by Fact II again, I 

Before we prove the next theorem, we want to observe two facts. Let G be 

a Steinhaus graph with n vertices which has a maximal clique type of G, Q = 

{Pit V2i • • • i Vw(n)}-

First, G may have several different cliques of size w(n) but they are of same type 

in G. If they are not of type IV, it is not difficult to show that G has only one 

maximal clique type of size w(n) by Lemma 4.3.7. If they are of type IV, there are 

two pairs {j/i,S/i+i} and {yj>yj+1} such that if j = i + 1 then 

yi+i = y,- +1, yJ+i = y,- + 3 

and if i = j + 1 then 

yj+1 = Vi + Vi = Vi + 3-

Both are not cliques at same time in G. 

Next, to find the number of all Steinhaus graphs which have a clique of certain 

type, first we will choose one of maximal clique types of and find all Steinhaus graphs 

which have the chosen maximal clique type. Then by adding their partners, we will 

get the number of all Steinhaus graphs which have a clique of the given type. 
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Theorem 4.3.12 The number of all Steinhaus graphs with n > 25 vertices which 

have a largest clique of size w{n) is 

4 if n = 3k + 1; 
19 if n = 3fc + 2; 
60 if n = 3k + 3, k odd; 
63 if n = 3k + 3, k even. 

Proof. Let Q be a clique of maximal type, size w(n), in a Steinhaus graph G with n 

vertices. 

Case 1 n = 3k + 1. 

By Theorem 4.3.11, Q is either of type IV or of type V in G. 

If Q is of type IV in G, say Q = {1,4,7, ••• ,3t + 1,3* +2 ,3 i + 4, • • •, 3fc + 1} 

for some 0 < i < k — 1, then by Lemma 4.4.12, G has the generating string 

0(101)fe. So its partner, P(G), has the generating string 0(011)fe. 

If Q is of type V in G, say Q = {1,2,5, • • •, 3k — 4,3k — 1,3k + 1}, then by 

Lemma 4.4.13 again, G has the generating string 0(100)A:_1(101). So its partner, 

P(G), has the generating string 0(010)fc—1 (Oil). 

By counting both types, we have 4 distinct Steinhaus graphs which have a clique 

either of tpye IV or of type V with size w(3k + 1). 

Case 2 n = 3k + 2. 

By Theorem 4.4.11, Q is either of type III, of type IV or of type V in G. 

Subcase 2.1 Q is of type III in G. 

Since Q is of type III in G, it is clear that Q is either {1,2,5,8, • • •, 3fc + 2} 

or {1,4,7,- • • ,3k + l,3k + 2}. If Q is {1,2,5,8,- • • ,3fc + 2}, then G has the 

generating string either (01a01)(001)fc_1 or (01o;01)(101)fc"'1 by applying 

Lemma 4.3.12 to G — {1} where a = 0,1. 



46 

If Q is {1,4 ,7 , . . . ,3fc + 1,3& + 2}, then G is one of the partners of the 

above Steinhaus graphs. In fact, the generating string of G is given by 

j either 0a(011)fc or 00a(101)fc_111 if k is even 
| either 0a/311(011)fc_1 or 0a/?(101) fc-1ll if k is odd 

where a, ft = 0,1 and a + ft = 1 (mod 2). 

Since none of them are doubly symmetric and they have different partners, 

we have 8 distinct Steinhaus graphs G which have a clique of type III with 

size w(3k + 2) in G. 

Subcase 2.2 Q is of type IV in G. 

Since Q is of type IV in G, Q is contained in either {1 ,2 ,3 , . . . , 3k + 1} or 

{2 ,3 ,4 , . . . ,3& + 2}. 

If Q is contained in {2 ,3 ,4 , . . . , 3& + 2} then by applying Case 1 to G—{ 1} 

and Q, G has the generating string which is either a*0(101)fc or a*0(011)fc 

where a = 0,1. By Fact III. (2) and (3), 1 * 0(101)^ and 1 * 0(01 l)fc are 

of type III in G. Thus we have 2 distinct Steinhaus graphs G which have 

a clique Q of type IV with size w(3k + 2) in G where Q is contained in 

{2 ,3 ,4 , . . . , 3k + 2}. By adding their partners P(G) which have a clique of 

type IV where the clique is contained in {1 ,2 ,3 , . . . , 3k + 1}, we may have 

4 Steinhaus graphs G which have a clique of type IV, size w{3k + 2) in 

G. But by Fact III. (1), we have only 3 distinct Steinhaus graphs G which 

have a clique of type IV with size w(3k + 2) in G. 

Subcase 2.3 Q is of type V in G. 

By the same arguement in Subcase 2.2, if Q is contained in {2 ,3 ,4 , . . . , 3k+ 

3} then G has the generating string either a * 0(100)fc—1 (101) or a * 

0(010)fc_1(011) where a = 0,1. By Fact III. (4) - (7), they all are of 

type V. Therefore we have 4 distinct Steinhaus graphs G which have a 

clique Q of type V with size w{3k + 2) in G where Q is contained in 
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{2,3,4, . . . , 3k + 2}. Since none of them are doubly symmetric, by adding 

their partners we have 8 distinct Steinhaus graphs. 

Thus by combining three cases, we have 19 distinct Steinhaus graphs G which 

have a clique of type V with size w{3k + 2) in G. 

Case 3 n = 3k + 3. 

Again, by Theorem 4.3.11, we can assume that Q is either of type II, type III, 

type IV or type V in G. 

Subcase 3.1 Q is of type II in G. 

Since Q is of type II in G, Q is either {1,3,6,. . . ,3fc+3} or {1,4,7, . . . ,3&+ 

1,3k + 3}. If Q is {1,3,6, . . . , 3k + 3}, then by Lemma 4.3.12, (a3)j)|*g3 is 

either l(101)fc_1 or l(011)fc—1. By applying Fact II several times, G has a 

generating string which is either 0orl(011)fc or 0cd(001)fc where a — 0,1. 

Since none of them are doubly symmetric, by adding their partners we 

have 8 distinct Steinhaus graphs G which have a clique of type II with size 

w(3k + 3) in G. 

Subcase 3.2 Q is of type III in G. 

Since Q is of type III, Q is contained in either {1,2,3, . . . , 3fc + 2} or 

{2,3,4,. . . ,3& + 3}. Suppose that Q is {1,2,5,. . . ,3fc + 2}. 

If k is an odd number, the generating string of G is either OlaO^OOl)^-1/?, 

01a01(101)fc-V, 0a7ll(011 )k~ lp or (k^lOl)*-1 /? by Subcase 2.1 where 

— 0? 1 a n d a + 7 = 1 (mod 2). First, when the generating 

string of G is 01o;01(001)fc_1/5, its partner, P(G)y has the generating string 

0(/3*l)(a*/3*l)^(/3*l)[(/3*l)/?(^*l)]ft_1/3 which has a clique of type III, size 

w{3k + 3) in P(G). Since none of them are doubly symmetric, there are 8 

distinct Steinhaus graphs which have a clique of type III. When the gener-

ating string of G is 01a01(101)fc_1^, its partner, P{G), has the generating 
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string 0(/?*l)(a*/?*l)[/?(/?*l)/?]fc. But when a,/? = 1, the generating string 

is (011)fe+1 which has a clique of type II by Subcase 3.1. Also when j5 = 0 

and either a = 0 or a = 1, the generating string is either 010(01 l)fc_1010 or 

(011)fc010 respectively which is the same generating string as given above. 

Since the remaining generating strings are not doubly symmetric, there 

are 2 more Steinhaus graphs which have a clique of type III. When the 

generating string of G is 0a(a * l)ll(011) fc -1/3, its partner, P(G), has the 

generating string 0(a*/?)(a*/?*l)[(/?*l)(/?*l)/?]fc. But when a,/? = l , t h e 

generating string is 010(110)fc—1 111 which has a clique of type II by Subcase 

3.1. When /? = 0 and either a = 0 or a = 1, the generating string is either 

001(110)fe or 010(110)fc respectively each of which is doubly symmetric. 

Since the remaining generating string is not doubly symmetric, there are 

4 more Steinhaus graphs which have a clique of type III. Finally, when the 

generating string of G is 0c*(a: * l)(101) fc -1ll/?, its partner, P(G), has the 

generating string 

Since none of them are doubly symmetric, there are 8 Steinhaus graphs 

which have a clique of type III. By combining all cases, we have 22 distinct 

Steinhaus graphs which have a clique of type III with size w(']k: + 3 ) if fc 

is odd. 

If k is an even number, the generating string of G is either OlaOl (001 )jt—1/5, 

OlaOl(lOl)*-1/?, 01all(011) fe -1/? or 00a(101)*_:Lll/3 by Subcase 2.1 where 

a , (3 = 0,1. When the generating string of G is OlaO^OOl)*-1/?, its part-

ner, P{G), has the generating string 0(a * /? * l)2/?(/3 * 1)[(/? * 1)/?(/? * 

l)]fc-1/3. Since none of them is doubly symmetric, we have 8 Steinhaus 

graphs which have a clique of type III. When the generating string of G is 

01a01(101)*:-1/3, its partner, P(G), has the generating string 0(a * /3)(a * 

/?*l)[/?(/?*l)/?]*. But when a, (3 = 1, the generating string of G is (011)fc+1, 

which is of type II by subcase 3.1. When a — 1 and f3 = 0, the gener-



49 

ating string of G is (011)*010, which is the same generating string in the 

above. Since the remaining generating strings are not doubly symmetric, 

there are 4 more Steinhaus graphs which have a clique of type III. When 

the generating string of G is 01a;ll(011)fc-1/?, its partner, P(G), has the 

generating string 0(a * 0 * l )(a * 0)(0 * 1)(0 * 1)[0(0 * 1)(/? * l)]k~10. But 

when a = 0 and 0=1, the generating string of G is 010(110)* 1111, 

which is of type II by Subcase 3.1. When a = 0 and 0 = 0, the gen-

erating string of G is 010(110)*, which is doubly symmetric. Since the 

remaining generating strings are not doubly symmetric, there are 5 more 

Steinhaus graphs which have a clique of type III. When the generating 

of G is 00a(101)*-1(ll/?), its partner, P(G), has the generating string 

0(a * 0){a *0* 1)00[(0 * 1)(0 * l)(0 * l)000](k~2V2(0 * 1)(0 * 1)(0 * 1)0. 

Since none of them are doubly symmetric, there are 8 more Steinhaus 

graphs which have a clique of type III. By combining all cases, we have 25 

distint Steinhaus graphs which have a clique of type III with size w(3k + 3) 

if k is even. 

Subcase 3.3 Q is of type IV in G. 

Since Q is of type IV in G, Q is contained either in {1,2,3, . . . , 3k + 1}, 

{2,3,4, . . . ,3fc + 2} or {3,4,5,. . . ,3k + 3}. 

First, suppose that Q is contained in {1,2,3, . . . , 3k + 1}. Then by Case 1, 

the generating string of G is either 0(101)* * a * 0 or 0(011 )k * a* 0 where 

a,0 = 0,1. Assume that the generating string of G is 0(101)fc * a* 0. 

When a = 1 and 0 = 0, the generating string of G is 010(110)* which 

is of type III by Subcase 3.2. When a,0 = 1, the generating string of 

G is 010(110)*-1 111 which is of type II by Subcase 3.1. Assume that the 

generating string of G is 0(011)* * a * 0. When a = 0 and 0 = 1, the 

generating string of G is 001(101)* which is of type II by Subcase 3d. 

When a = 1, the generating string of G is 0(011)*1 * 0 which is of type III 
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by Subcase 3.2. By considering their partners, we have 6 distinct Steinhaus 

graphs which have a clique of type IV with size w(3k + 3). 

Next, suppose that Q is contained in {2,3,4, . . . , 3fc + 2}. By Case 1 

and Fact III. (8), the generating string of G is either a * [0( 101 )fc * j3] = 

0[(a * fl)(oc * j3 * l ) (a * /? * 1)]* * (a * 0) * a or a * [0(011)fc * fl] = 

0[(a? * /3)(ot * fi)(a * /? * 1)]* * (a * 0) * a . If a is not equal to /?, then the 

generating string of G is either 01(001)fc * a or 01(101)fc * «, which is of 

type III by Subcase 3.2. If a is equal to /?, then the generating string of 

G is either 0(011)* * 0 * a or 0(001)^ * 0 * a where a = 0,1. When a is 

equal to 1, 0(011)fc01 is of type II by Subcase 3.1 and 0(001)fe01 is of type 

II because its partner has generating string 001(101)fc and apply Subcase 

3.2. When a is equal to 0, 0(011)fc00 is of type IV which appeared in the 

above and 0(001)fc00 is of type IV which appeared in the above because 

its partner has the generating string 0(011)fc00. Thus we do not have any 

new Steinhaus graphs which have a clique of type IV in this case. 

By combining both cases, we have 6 distinct Steinhaus graphs which have 

a clique of type IV with size w(3k + 3). 

Subcase 3.4 Q is of type V in G. 

Since Q is of type V in G, Q is contained in either {1,2,3, . . . , 3k + 1}, 

{2,3,4, . . . , 3fc + 2} or {3,4,5,...,3Jb + 3}. 

First, suppose that Q is contained in {1,2,3, . . . , Sk + 1}. Then by Case 1, 

the generating string of G is either 0(100)fc-1(101)*a:*/? or 0(010)fc_1(011)* 

a * /? where a, (3 = 0,1. By considering their partners, we have 16 distinct 

Steinhaus graphs which have a clique of type IV with size w('ik + 3). 

Next, suppose that Q is contained {2,3,4, • • •, 3fc + 2}. By Case 1 and 

Fact III. (8), the generating string of G is either a * [0( 100)fe—1 (101) * 

/?] or a * [0(010)fe-1(011) * /?] where a,/? = 0,1. Note that if G has a 
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generating string a * [0(100)fc_1(101) * /?] then the partner of G, P{G), 

has the generating string a * [O(OIO)*-1 * (a; * /?)]. Thus in this case we 

have 8 distinct Steinhaus graphs which have a clique of type IV with size 

w(Sk + 3). 

By combining both cases, we have 24 distinct Steinhaus graphs which have 

a clique of type IV with size w(3k + 3). 

From the above Subcases, the number of all Steinhaus graphs which have a 

clique of size io(3k + 3) is 

f 60 if k is odd; 
| 63 if k is even. 

By combining all cases, we prove theorem. I 

Before we close this section, we list all generating strings of Steinhaus graphs of 

order n > 27 which have a clique of size w(n). 

(I) n — 3k + 1. 

t y p e IV: 0(101)* 0(011)fc 

t y p e V: 0(100)fc"1(101) O(OIO)^-1 (011) 

(II) n = Zk + 2. 

(1) k is odd. 

t y p e I I I : 01(001)& OllOl(OOl)*-1 01(101)fe OlOOl(lOl)*-1 

OOlllCOll)*-1 01(011)fc 001(101)fc—1(11) 010(101)fe-1(lL) 

t y p e IV: 00(110)* 0(001)*0 0(101)fc0 

t y p e V: OflOO^-^lOlO) 0(100)*-1(1011) 0(010)fc-1(0110) 

0(010)Ar-1(0111) 00(111000)^(110) 000(111000)^(10) 

01(000111)^(001) 011(000111)^(01) 
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(2) k is even. 

type III: 01(001)* OllOl(OOl)*"1 01(101)* OlOOl(lOl)*-1 

00(011)* 01(011)* OOO(lOl)*"1 001(101)*_111 

type IV: 00(110)* 0(001)*0 0(101)*0 

type V: 0(100)*"1(1010) 0(100)*"1(1011) 0(010)*-X(0U0 

0(010)*_1(1011) 01000(111000)̂ (110) 011000(111000)̂ (10) 

00111(000111)̂ (001) (000111)1(01) 

III n = 3k + 3. 

(1) k is odd. 

type II: 001(011)* (011)*+1 (001)*+1 011(001)* 

00(011)*1 0(101)*(11) 0(011)̂ (01) 01(110)*1 

type III: 01(001)*0 01(101)*0 01(001)*1 00(010)*1 

011(010)* 010(011)*~1(010) 0110(100)*_1(11) 001(100)A:-1(101) 

010(011)* 000(101)* 001(110)* 010(110)* 

001(110)A:-1(111) 010(001)* 001(101)*-1(110) 001(10t)fc-A(110) 

00111(000111)^0 01000(111000)^1 010(101)*-1(110) 

01011(000111)^0 00100(111000)^1 010(101)*—1 (111) 

type IV: 0(101)*(00) 0(101)*(01) 0(011)*(00) 000(100)* 

0000(111000)^(11) 0111(000111)^(00) 
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type V: 0(100)fe"1(10100) 0(100)fc"1(10101) 0(100)fc-1(10110) 

0(100)fc"1(10111) 0(010)*-1(01100) 0(010)/E-1(01101) 

0(010)fc-1(01110) 0(010)fc-1(01111) 00(111000)̂ (1100) 

01(000111)̂ (0011) 01(000111)̂ (0010) 

00(111000)̂ (1101) 000(111000)̂ (100) 

011(000111)̂ (011) 011(000111)̂ (010) 000(111000)̂ (101) 
f 0001(011110100001)'(00) if k = 41 + 1; 

{ 0110100001(011110100001)'(00) if k = 4/ + 3. 

f 0011110100001(011110100001)/-1(11011) ifjfc = 4/+l; 

{ 0100001(011110100001)'(11011) if k = 41 + 3. 

f 0(011110100001)'(01110) ifJfc = 4/ + l; 

\ (OOOOlOlOllll)'(OOOOlOlOlllO) iffc = 4/ + 3. 

J 010100001(011110100001)|-1(01111011) ifJfe = 4/ + l; 

\ 00001(011110100001)'(01111011) if & = 4/ + 3. 

f 0111(010000101111)'(00) if *: = 4/ + 1; 

\ (01000010111iy+1 if k = 41 + 3. 

J 00001(011110100001)'l if jfc = 4/ + 1; 

\ 01110100001(011110100001)' if* = 4/+ 3. 

f 01011(110100001011)<0 ifJb = 4/ + l; 

[ 01100001011(110100001011)'0 if fc = 4/ + 3. 

J 001(000010111101)^(001) iffc = 4/ + l; 

\ 010111101(000010111101)'(001) if fc = 4/ + 3. 

(2) k is even. 

type II: 001(011)* (011)*+1 (001)*+1 011(001)* 

00(011)fcl 0(101)̂ (11) 0(011)̂ (01) 01(110)*1 

type III: (010)*+1 (011)fc(010) 01(001)fel 00(010)*1 

011(010)* 00001(101)*_11 01101(001)fc-1l 01110(010)A;-11 

010(011)*-19010 001(010)* 010(011)* 010(101)* 

010(110)* 011(110)* 001(110)* 011(110)fc—1(111) 

010(001)* 000(101)*"1(110) 000(101)*-x(lll) 001(101)^-1(110) 

OO^lOl^-Hlll) 00100(111000)^(1110) 01011(000111)^(0001) 

01000(111000)̂ (1110) 00111(000111)̂ (0001) 
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t y p e IV: 0(101)fc(00) 0(101)fc(01) 0(011)fc(00) 000(100)fc 

0(000111)1(00) 0(111000)^(11) 

t ype V: OflOO^-^lOlOO) 0(100)fe"1(10101) 0(100)fc"1(10U0) 

0(100)fc-1(10111) 0(010)*-1(01100) 0(010)fc-1(01101) 

0(010)fc~1(01110) 0(010)fc-1(01111) 011000(111000)^(100) 

(000111)2(100) (000111)5(010) 011000(111000)^(010) 

01000(111000)^(1100) 00111(000111)^(0011) 

. fc—2 k—2 

00111(000111)—(0010) 01000(111000)^(1101) 

f 0(011110100001)'(00) if A: = 41; 
\ 0100001(011110100001)^(00) if k = 4/ + 3. 

I 0110100001(011110100001)f-1(11011) if k = 41; 
I 0001(011110100001)'(11011) if fc = 4/ + 3. 

f 0110100001(011110100001)'-1(01110) if k = 4/; 
[ O o i l l i o i o o o o i i o i l l i o i o o o o i j ' - H o i l i o ) if k = 4 / + 3. 

J 0100001 (011110100001)'-1 (01111011) if k = 41; 
I 0(011110100001)'(01111011) ifjfc = 4/ + 3. 

f O^lOOOOlOllll^OO) ifjb = 4/; 
\ 0101111(010000101111^(00) if * = 4 / + 3. 

f 01(011110100001)^1 ifjfc = 4/; 
\ 00100001 (011110100001)' 1 if ifc = 4/ + 3. 

f 01(110100001011)^0 if k = 41; 
\ 00001 (011110100001)'(0110) iffc = 4/ + 3. 

f (OOOOlOllllOl)'(OOl) iffc = 4/; 
\ 0111(010000101111)'(01001) if fc = 4/ + 3. 

4.4 The number of Steinhaus graphs which have a clique of large size 

In Theorem 4.3.13, we showed that the number of all Steinhaus graphs with n vertice 

which have a clique of size w(n) has period 6. In other word, W(n, 0) = W(n + 6,0), 

where I is a nonnegative integer and W(n, I) is the number of all Steinhaus graphs 

with n vertices which have a largest clique of size w(n) — I. So, it is natural to ask 

the following question: 

W(n,l) I W(n + 6,l) 
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for a fixed / and large enough n. 

A series of lemmas will give the answer of this question. 

Lemma 4.4.1 Let G be a Steinhaus graph with generating string Let 

Q{G) = {yi, t/2, V3, • • be a clique of type V in G which is contained in a largest 

clique Q in G. Let j > 3 be a positive integer. Let k be the smallest integer such that 

2* > j. I f y m > 2fe+1 +j + 8 then ym+j£ Q. 

Proof. Without loss of generality, we can assume that yx = \ by considering the 

induced subgraph G — {1,2,3, . . . , yi — 1} of G. 

Suppose that ym + j € Q. Then by Fact II, we are able to find all entries 

in Steinhaus triangle where 2k + 1 < i < ym — 2k — 1. Using these entries, we are able 

to find aitVm where 2k + 1 < i < 2k + 7. Moreover, there exists an i such that 

ai,vm = ai+i,ym ~ 1 

for some 1 < i < 7. 

On the other hand, since Q(G) is of type V in G, the first row in the induced Stein-

haus triangle on the subgraph G — {ym + 1 , . . . , n} of G is either 0(0 l.0)^m-4^3(011) 

or its partner 0(100)^m_4^3(101). This gives a contradiction by the same argument 

in the above. I 

Lemma 4.4.2 Let G be a Steinhaus graph with n vertices. 

LetQ(G) = {y1,y2,y3,...,ym} be a maximal clique type of G which is not of type 

V in G. Under the same conditions on j,Jc,ym and Q in Lemma 4-4we have one 

of the followings: 

(1) ym H~ j Q• 

(2) Q U {ym + 3} is a clique. 
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Proof. Suppose that ym + 3 € Q. Then by the same argument in Lemma 4.4.1, we 

conclude that Q U {ym + 3} is a clique. I 

Now, we are ready to prove the following theorem. 

Theorem 4.4.3 Let I be a fixed nonnegative integer. Let G be a Steinhaus graph 

with n vertices which has a largest clique of size w(n) — I. Then at least one of largest 

cliques in G must be one of maximal clique type of G if n is large enough. 

Proof. Let Q(G) = {yi,y2, V3, • • •, Vm} be a maximal clique type of G. Suppose that 

a clique Q contains Q(G) where Q = {x\, x2, £3, . . . , zw(„)_i} is of size w(n) - I in G. 

We want to show that Q = Q(G). 

Suppose that Q ^ Q(G). Since the size of Q is w(n) — I, we have the inequality 

max {X{ — Xi-i — 1 j <3 / . 

Let x be the smallest integer in Q which is greater than ym. Then 4 < x — ym < 3/ + 1. 

Let j be the integer x — ym. Since n is large enough, ym is also large enough to satisfy 

the conditions in the lemmas. 

Case 1 Q(G) is of type V. 

By Lemma 4.4.1, ym + j = x £ Q. This gives a contradiction. 

Case 2 Q(G) is not of type V. 

Since ym + j € Q, Q(G) U {ym + 3} is not a clique by Lemraa 4.4.2. On the 

other hand, we can show that Q U {ym + 3} — {ym + 4} is a clique of size at least 

w(n) — /. Thus Q(G) U {ym + 3} is a maximal clique type of G which contains 

Q{G). This gives a contradiction by the choice of Q(G). 

By combining two cases, we prove theorem. I 

To prove that the question in this section is true, we need the following lemmas. 
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Lemma 4.4.4 Let G be a Steinhaus graph wuth n vertices which have a largest clique 

of size w(n) — I. Then there exists exactly one maximal clique type of G,size w(n) — I 

where I is a fixed nonnegative integer and n is large enough. 

Proof. Suppose that G has two maximal clique types of G. then by combining two 

maximal cliques, G has another maximal clique which is larger than two maximal 

cliques by applying Fact I and II, which is impossible. I 

Lemma 4.4.5 Let Q(G) = {t/i,«/2,J/3,,•••,yw(n)} be a type I ofG, size w(n). Then 

the two subtriangles generated by (ai,fc)fc=1 and the Steinhaus triangle of 

G are same if yi < i < j < yw(n) and i = j (mod 6). 

Proof. By Lemma 4.3.13, .the y{h row in the Steinhaus triangle of G is either 

0c*/?(101)Mn)-4)/3 or 0c*/?(011)Mn)-4)/3 where a, 0 = 0,1. Then the {yx + 6)th row is 

either 0a /3(101)(^n '_1°^3 or 0a/3(011)^n) - 1 0^3 respectively. I 

Now, we are ready to prove the following theorem. 

Theorem 4.4.6 Let I be a fixed nonnegative integer. Then we have the following: 

W(n,l) = W(n + 6,l) 

if n is large enough. 

Proof. Let T(n, I) be the collection of all Steinhaus graphs G with n vertices which 

have a maximal clique type of G, size w(n) — I. To prove the theorem, we want to 

find a bijection function from T(n, I) to F(n + 6,1). Here, we observe some fact about 

Steinhaus triangle. In fact, there are several ways to generate the same Steinhaus 

triangle. For example, 1 < j < n, we may denote (altj, a2j,..., a J J ) ( a , ( J + 1 , . . . , ahn) 

as a generating string of G with the Steinhaus triangle In partucular, when 

j = 1, we have the standard generating string. 
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Let G be a Steinhaus graph with n vertices which has the unique maximal type 

clique Q(G)={yi, y?, 2/3,..., yw(„)-i} of size w(n) — I. Consider the Steinhaus triangle 

(dij) of G and the generating string (ai i V l , . . . , ayityi )(ay i : j / 1 + i , . . . , aVl.n) of G. From 

this generating string, we will construct a Steinhaus graph G' with n + 6 vertices. It 

suffices to construct a string which is the generating string of G'. Define the string 

> * • •' ^yi <yi )(^yi iVi+i' * * •' ii+s) 

bi.i = < 8,J 

'*i,3 
aij if 1 < i < y5 and y1 < j < y5 

1,3 1 (ii ,_6 otherwise 

It is clear that the Steinhaus graph G' with the above generating string has a largest 

clique of size w(n + 6) — I which is the same type of G' as Q(G) of G by Lemma 4.4.5. 

Moerover, it is not difficult to show that the above contruction gives a one to one 

correspondence between T(n, /) and T(n + 6, /). I 

4.5 Maximal clique in the complements of Steinhaus graphs 

In [Dy2], Dymacek study several properties of complements of Steinhaus graphs. 

In this section, we investigate the results in previous sections on the complements of 

Steinhaus graphs. 

For each positive integer n, it is obious that the largest size of cliques in the set 

of all the complements of Steinhaus graphs is n, which can be obtained by the empty 

graph En with the generating string consisting of zeros. 

Let / be a fixed nonnegative integer. Let W(n, /) be the number of all steinhaus 

graphs with n vertices such that their complements have a maximal clique of size 

n — I. Now we give a nice expression of clique of large size in the complement of 

Steinhaus graph. 

Lemma 4.5.1 Let I be a fixed positive integer. Let G be a Steinhaus graph with n 

vertices which has the Steinhaus triangle (a^j). Let Q be a clique in the complement 

of G. Then the size of Q is n — I if and only if Q = {«, ? + 1, z + 2 , . . . , n — I + i — 1} 
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and a2,i, as,i,a^2,i, l)On_ ' (l , a,,n_;+»+1 , . . . , al>n) is the generating string of G 

for some 1 < i < I + 1 if n is large enough. 

Proof. Suppose that the size of Q is n — I. Since n is large enough, Q contains a 

set A of size at least n/l which consists of consecutive vertices. First, assume that 

j is the largest vetex in A and k is a vertex in Q which is greater than j. Since 

k — j is far less than n/l, all entries in the Steinhaus triangle of the induced subgraph 

A U {j + 1, j + 2, j + 3 , . . . , k} are zero. By applying this arguement continuously, we 

conclude that Q consists of consecutive vertices. If i is the smallest vertex in Q, G 

has the generating string in the above. 

Conversely, suppose that G has the generating string in the above and {?', i +1, i + 

2 , . . . , n — I + i — 1} is a clique of size rt — I in the complement of G. Since n is large 

enough, this set is maximal clique in the complement of G. I 

Theorem 4.5.2 Let I be fixed. 

W(n,l) = W(n + l,l) 

if n is large enough. Futhermore, W{n, I) is 

_ f 1 if 1 = 0; 
W(n,l)= 2 if 1 = 1; 

{ 2' + (/ — 1)2'~2 otherwise. 

Proof. Let T(n,l) be the collection of all Steinhaus graphs G with n vertices which 

have a maximal clique of size n — I in the complement of G. It is sufficient to find a 

bijection fuction between T(n, I) and T(n + 1,1). 

Let G be a Steinhaus graph whose complement has a maximal clique of size 

n - I. G has the generating string (au,..., l)On"'(l, a,-,n_/+<+1,..., ai>n) for 

some 1 < i < I + 1 by Lemma 5.5.1. So, {i,i + \,i + 2 , . . . ,n - / + i — 1} is 

the maximal clique in the complement of G. From this string, we construct the 

string . . . ,ai_2;i, l )0 n _ , + 1 (1, aj )Tl_/+,+1,... ,a ! | n) of lenghth n + 1. Clearly, the 
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Steinhaus graph with the generating string in the above has the maximal clique 

{i, i + 1, i + 2 , . . . , n — / + i} of size n — I + 1. It is not difficult to show that this 

construction gives a bijection. 

Next, we will decide the number W(n, /). Clearly, W(n, 0) = 1 and W(«, 1) = 2. 

Suppose that I > 2. For each 1 < i < I + 1, let W{ be the number of the 

Steinhaus graphs G in F(n, I) such that the smallest vertex in the maximal clique in 

the complement of G is i. If i is either 1 or / + 1, then W{=2'-1. If 2 < i < /, then 

Wi = 2'~2 by Lemma 4.5.1. 

By combining both cases, VK(n, /) = 2' + (/ — 1)2'~2 if I > 2. I 



CHAPTER 5 

HAMILTON CYCLES IN RANDOM STEINHAUS GRAPHS 

5.1 Introduction 

Since its introduction by Erdos and Renyi ([ErRel], [ErRe2]), the theory of random 

graphs has been greatly developed and many properties of a random graph have been 

studied in detail [Bo4], [Bo5], [Ma] etc. One of the important questions Erdos and 

Renyi [ErRe2] raised in their fundamental paper on the evolution of random graphs 

is "is almost every graph Hamiltonian?" A breakthrough was achieved by Posa [Po2] 

and Korshunov [Kor]. They prove that for some constant c almost every labelled 

graph with n vertices and at least cn log n edges is Hamiltonian. 

On the other hand, it would be useful to have a criterion by which to decide 

whether a specific graph behaves like a random graph, that is, has the property (of 

almost every graph) that interests us. Such a criterion gives the concepts of pseudo-

random graphs and quasi-random graphs which is a special type of pseudo-random 

graphs. In [Th2], Thomason shows that a (p1 a)-jumbled graph behaves like a. random 

graph with edge probability p. 

The properties of random Steinhaus graphs and random generalized Steinhaus 

graphs have been investigated by Brand and other authers. The first paper to address 

a question of this nature is [Brl] in which Brand answered in the affirmative Brigham 

and Dutton's [BrDu] conjecture that almost all Steinhaus graphs have diameter two 

where P[a i j = 1] = 1/2. In [BCDJ], Brand, Curran, Das and Jacob generalize this 

result to the case where 0 < P[d\,i = 1] < 1. A much more general result is obtained 

in [BrJa] in which Brand and Jackson show that the theory of random Steinhaus 

graphs is first order complete and identitical with the first order theory of random 

graphs. Thus a first order statement is true for almost all graphs if and only if it is 
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true for almost all Steinhaus graphs. Moreover in [BrMo], Brand and Morton show 

that almost all generalized Steinhaus graphs are quasi-random graphs. 

In section 5.2, we investigate if almost all Steinhaus graphs are Hamiltonian. 

5.2 Hamilton cycles 

Many theorems on Hamilton graphs require a degree condition (see [Be], [Bol]). 

But not many graphs satisfy the degree conditions. For example, in [Pa] we see that 

almost all graphs G do not satisfy the condition that for every pair of nonadjacent 

vertices u and v, d(u) + d(v) > n. Also some theorems on Hamiltou graphs require an 

edge condition (see [Be], [Ore]). But not many graphs satisfy the edges conditions. 

For example, it is clear that almost all graphs G do not satisfy the condition that 

the number of edges of G is at least |^n *Mn 2) _j_ 3J Therefore it is natural to think 

that if we combine an edge condition (sometimes, called a global condition) with a 

degree condition then a given graph satisfying both conditions may be Hamiltonian. 

From the definition of quasi-random graph G, with n vertices ([CGW]) we find the 

following property P4 which we use through this Chapter 5 because of its good global 

condition: 

P4. For each subset S of G, t{S) = l lSf + o(n2) 

where o(n2) means -» 0 as n -> 00. 

In [CGW], they showed that this property P4 gives the following property P'Q: 

PQ. All but o(n) vertices of G have degree | (1 + o(l))n 

where o(l) means o(l) —* 0 as n —> 00. 

In this case we say that G is almost-regular. Note that the property PQ does not 

imply the property P4 ([CGW]). Thus we conclude that a quasi-random graph has 

a good global condition but does not have a good degree condition. From now we 
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assume that the probability of an edge is | . In [BrMo] and [Pa], we can find that 

almost every Steinhaus graph satisfies the desired global and degree conditions. 

Theorem 5.2.1 ([BrMo]) Almost all Steinhaus graphs are quasi-random. 

Theorem 5.2.2 ([Si]) Let e > 0. Then almost all Steinhaus graphs satisfy 

^(1 -e)n < d(v) < ^(1 + e)n 

for all of their vertices v. 

In this section, we present two proofs that almost all Steinhaus graphs are Hamil-

tonian. The first proof follows from a result in [Th2] and the second proof follows the 

standard method in the theory of random graphs (see [Bo2], [Po2]) with the above 

theorems. Let us give the first proof. 

Let G be a quasi-random and Steinhaus graph with n vertices. Let S be a subset 

of G. Then we have 
1 

Thus 

If |5| < o(n) then 

e(S) = j | S | 2 + „(n2). 

e ( S ) ~ ( ^ ) = j | S | + o(n2) = o(n
2). 

"(•SO-iC?) | < tI-512 < o(«)|5| 

and if l^l > o(n) then 

e(S) - l ( ' f ' ) | = <.(»') < .MISI . 

By combining both cases, we show that the graph G is (|,o(n))-jurnbled. Thus 

almost all Steinhaus graphs are ( | , o(n))-jumbled. Since almost all the Steinhaus 

graphs G satisfy the degree condition in Theorem 5.2.2, 6(G) > (1 + o ( l ) ) | where 

8(G) is the minimum degree of G. This gives the first proof by the following theorem. 



6 4 

Theorem 5.2.3 ([Th2]) Let G be a (p, a)-jumbled graph, and P be a path in G of 

length I > 0 and 8(G) be the minimum, degree of G. If 8(G) > Qap-1 + /, then G has 

a Hamilton cycle containing P. 

Now we give the second proof. 

Let G = (V,E) be a Steinhaus graph with n vertices. Also, assume that G is a 

quasi-random graph with the degree condition in Theorem 5.2.2. Let XQ be a vertex 

in G. Let 5* be a longest xo-path in (7, that is a path beginning at x0: S = xQx\... Xk-

Then the neighbor of Xk, r(xfc), is contained in {a;0, x\,... ,Xk--i} since otherwise S 

could be continued to a longer path. If Xk is adjacent to Xj, 0 < j < k — 1, then S1 

= x 0 x i . . . XjXkXk-1... Xj+i is another longest x0-path. We call S' a simple transform 

of S. 

Let L be the set of end vertices (different from x0) of transforms of S and put N 

= {xj € S : Xj-1 G L or Xj+\ € L} and R = V — N U L. We are now ready to state 

Posa's lemma. 

Theorem 5.2.4 ([Bo2], [Pol]) The graph G has no L-R edges. 

Corollary 5.2.5 If\L\ < n/3 then there are disjoint sets of size \L\ and n — 3 | i | + l, 

that are joined by no edges of G. 

Proof. Consider L and R in Theorem 5.2.4. Then we have 

\R\ = n — \N U L\ > n — 2\l\ > n — 3|?| + I. 

Choose any subset W of R such that the size o fVFisn — 3 | i | + l. I 

Let U and W be two subsets of G. Then from Theorem 5.2.1 and Theorem 5.2.2, 

we get the following corollaries. 

Corollary 5.2.6 Let k be the number of edges between U and G — W. Then k is 

given by 

k = ±\U\\W-U\ + o(n2). 
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Proof. Apply the property P4 to the subsets U, W, U U W, U — W arid W — U. I 

Corollary 5.2.7 |U U r({7)| > | (1 + o(n))n. 

Now we give a simple lemma in the vein of Theorem 5.2.10. 

Lemma 5.2.8 Let 0 < 7 < 1/3 be a constant. Then almost all Steinhaus graphs G 

are such that if U is a subset of G and |[/| < 7n then 

| t / u r ( t / ) | >3 | t / | . 

Proof. Suppose that there is a quasi-random Steinhaus graph G with n vertices such 

that 

\UUT(U)\ < 3\U\ 

for some 7 and some subset U of G and \U\ < 7n. 

Let W be the complement of U ur({7). Denote a, b and c by the size of subsets U, 

T(U) — U and W respectively. By Corollary 5.2.6, (1 + o ( l ) ) | < a. Also, y = o(n2) 

by Corollary 5.2.5. 

Since a < jn and a + b < 3a, we have c > (1 — 37)n. Thus we have 

o ( n 2 ) = y - i 2 ( 1 + o ( 1 ) ) ( 1 - 3 7 ) -

This gives a contradiction for all n large enough. I 

Let G = (V,E) be a Steinhaus graph with n vertices which is quasi-random. 

Denote Dt by the number of pairs (X,Y) of disjoint subsets of U such that \X\ = t, 

\Y\ = n — 31 and G has no X — Y edges. In fact, Corollary 5.2.5 provides an example 

of Dt. Lemma 5.2.8 gives the following corollary. 

Corollary 5.2.9 Let D = {G : Dt = 0 for every t, 1 < t < •yn} where 0 < 7 < | is 

a constant. Then we have 

P(D) = o(l) 

where D is the complement of D in G. 

2 
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Now we give the second proof. 

Theorem 5.2.10 Almost all Steinhaus graphs contain a Hamiltonian path. More 

precisely, if x and y are arbitrary distinct vertices, then almost every Steinhaus graph 

contains a Hamilton path from x to y. 

Proof. Since almost all Steinhaus graphs are quasi-random, we can assume that 

the Steinhaus graphs in this proof are quasi-random. Let us introduce the following 

notation for certain events whose general element is denoted by G< 

• Let D be the collection of all Steinhaus graphs such that Dt = 0 for every t where 

1 < f and 0 < 7 < | . 

• Let E(W,x) be the collection of all Steinhaus graphs G such that the induced 

subgraph G\W) of G has a path of maximal length whose end vertex is joined 

to x. 

• Let E(W,x\w) be the collection of all Steinhaus graphs G such that the induced 

subgraph has a iu-path of maximal length among the tw-paths whose end 

vertex is joined to x. 

• Let F(x) be the collection of all Steinhaus graphs G such that every path of maximal 

length in G contains x. 

• Let H{W) be the collection of all Steinhaus graphs G such that the induced sub-

graph G\W) of G has a Hamilton path. 

• Let H(x, y) be the collection of all Steinhaus graphs G such that G has a Hamilton 

x-y path. 

• The complement of an event A is A. 

Note that by Corollary 5.2.9 we have 

P(D) = 1 - P(D) = o(l). 
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Let \W\ = n — 2o rn — 1 and let us estimate the probability of the event D fl E(W, x) 

and P(D fl E(W, x)) where x is not in W. Let G € D fl E(W, x) and consider a path 

S = x0xi.. .Xk of maximal length in CrfW]. (By introducing an ordering in W, we 

can easily achieve that S is determined by G[W).) Let L = L{G[W}) be the set of end 

vertices of the transforms of the £0-path S and let R be as in Theorem 5.2.4 (applied 

to G\W\). Recall that |i?| > |VT| +1 — 3|L| and there is no L-R edge, so no L-RU{x} 

edge either. Since G € D and |il U {x}| > n — 3|L|, we find that |X| > 7n. As L is 

independently of the edges incident with x, we have 

P(Df\E(W,x)) < P(G € D and x is not joined to L(G[W])) < (J)L7"j. 

Exactly the same proof implies that 

P(D C)E(W,x\w) < (i)^nJ 

£ 

provided \W\ = n — 2 or n — 1, x EW and x $ W. 

Note now that F(x) C E(V — {#}, {«}), so 

P(H(V)) = P(\JxeVF(x)) 

< P(D fl Ux€vF(x)) + P(D) 

< J2P(DDF(x)) + P(D) 
x£V 

< nP{Dr)E(V - {x},x)) +P(D) 

< «(|)lwl +»(!)• 

This proves that almost every Steinhaus graph has a Hamilton path. 

Now let x and y be distinct vertices and put W = V — {#, y}. By the first part 

P{H(W)) <2n{^)W + o(l). 

Since H(x, y) D H{W) fl E(W, y) fl E(W,x\y) we have 

P(H(x,y)) < P(H(W)) + P(Dr\E(W,y)) + P(DnE(W,x\y)) + P(D) 

< 2 n ( i ) W + 2 ( i ) W + o ( l ) . 
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Thus almost every Steinhaus graph contains a Hamilton path from x to y. I 

Corollary 5.2.11 Almost all Steinhaus graphs are Hamiltonian. 

Proof. Let e > 0 be given. Choose k such that (|)* < | . Let //([«,«]) be the 

collection of all Steinhaus graphs with n vertices which have a Hamilton path from 

the vertex 1 to the vertex i and A([n,i]) be the collection of all Steinhaus graphs such 

that the vertex 1 is adjacent to the vertex i for 2 < i < n. Then by Theorem 5.2.10 

there exists no > k such that 

p ( t f ( M ) ) > i - i 

for all n < no and 2 < i < k. 

Therefore, we have 

t=2 t=2 i=2 Z Z 

1 6 € 

> 2 ~ 2 

= 1 — £ 

for all n > no-

This shows that almost all Steinhaus graphs are Hamiltonian. I 

We close by mentioning Hamiltonian connected property on Steinhaus graphs. 

While almost all graphs are Hamiltonian connected ([Bo2]), it is still not known that 

almost all Steinhaus graphs are Hamiltonian connected. 
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