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Learning and representing and reasoning about temporal relations, 

particularly causal relations, is a deep problem in artificial intelligence 

(AI). Learning such representations in the real world is complicated by the 

fact that phenomena are subject to multiple time scale influences and may 

operate with a strange attractor dynamic. This dissertation proposes a new 

computational learning mechanism, the adaptrode, which, used in a 

neuromimic processing architecture may help to solve some of these 

problems. The adaptrode is shown to emulate the dynamics of real 

biological synapses and represents a significant departure from the classical 

weighted input scheme of conventional artificial neural networks. Indeed 

the adaptrode is shown, by analysis of the deep structure of real synapses, 

to have a strong structural correspondence with the latter in terms of 

multi-time scale biophysical processes. 

Simulations of an adaptrode-based neuron and a small network of 

neurons are shown to have the same learning capabilities as invertebrate 

animals in classical conditioning. Classical conditioning is considered a 

fundamental learning task in animals. Furthermore, it is subject to 

temporal ordering constraints that fulfill the criteria of causal relations in 

natural systems. It may offer clues to the learning of causal relations and 

mechanisms for causal reasoning. 



The adaptrode is shown to solve an advanced problem in classical 

conditioning that addresses the problem of real world dynamics. A 

network is able to learn multiple, contrary associations that separate in time 

domains, that is a long-term memory can co-exist with a short-term 

contrary memory without destroying the former. This solves the problem 

of how to deal with meaningful transients while maintaining long-term 

memories. 

Possible applications of adaptrode-based neural networks are 

explored and suggestions for future research are made. 
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CHAPTER I 

INTRODUCTION 

1.1 The Nature and Significance of the Problem 

Autonomous intelligence is characterized by the capacity of an agent 

to adapt to the contingencies of its environment. That is, the agent must be 

capable of incorporating new knowledge about the objects with which it 

interacts in its environment into internal representations. It must also learn 

the dynamic relationships between objects in its world in order to reason 

about how those objects behave so that it might effectively exploit oppor-

tunities and avoid threats. The purpose of knowledge might therefore be 

characterized as enabling the agent to predict the future state of the 

environment given the current and past states. 

Operating in natural environments presents a particularly challeng-

ing problem to constructing autonomous agents. These environments do 

not have fixed boundary conditions, they are open to the influences of 

outside forces so that local conditions will, in general, change over time. 

As such, these environments are nonstationary and the agent's knowledge 

representations must, themselves, be able to change over time. Knowledge 

which is useful at one time may become useless at another time. Learning 

representations in such circumstances requires a real-time, on-line 

mechanism. 



A consequence of the problem of nonstationarity in natural environ-

ments is that relationships between objects, and hence between those objects 

and the agent, may change over several time scales. For example, the 

diurnal cycle will change lighting and temperature conditions over the 24 

hour period. Over a year changes in the seasons modulate these daily 

fluctuations. Over a yet longer period, that of, say, solar "sun spot" 

activity (roughly 11 years), the seasonal averages for light and temperature 

are themselves varied. And over the scale of geological time, shifts in 

tectonic plates and even the tilt of the earth relative to the orbital plane 

contribute yet longer time-scale modulations. 

While an agent might not be required to maintain knowledge over 

geological time scales, it is certainly likely that it will be reasonably 

expected to do so over tens of years; as in the case of mobile, autonomous 

robots sent to Mars. Within this time scale the agent should be able to 

adjust its behavior to slowly changing patterns in the relationships of 

objects. A useful agent may be faced with pattern changes that occur over 

years or weeks down to minutes, seconds and even milliseconds. 

Another complicating factor in natural environments is that there is 

reason to believe that many, perhaps most, processes in nature are 

operating in a strange attractor dynamic (West, B., 1993) or with inherent 

flicker noise (Bak, P., 1992). Interacting systems of this type are subject to 

episodic and possibly catastrophic change for which there is no known 

prediction method. One of the defining features of chaotic systems is that 

they may be highly organized in the sense of an attractor dynamic, while 



remaining unpredictable due to their extreme sensitivity to initial 

conditions. 

Against this backdrop of multi-time scale and chaotic changes in real 

environments we are still intent on devising machines which can acquire 

knowledge, make decisions based on their current situation and act 

autonomously. They are expected to survive and accomplish their assigned 

missions without explicit programming or a prior knowledge of all objects 

and relationships in their environments. As will be argued below, the 

majority of current approaches to machine learning, both in the traditional 

artificial intelligence (AI) paradigm of symbolic representation and in the 

neural network paradigm of distributed, subsymbolic representation, do 

not adequately address the problems of real-time, on-line learning in 

natural environments. The work to be presented here addresses these 

problems directly and the results indicate that an efficient, computational 

learning mechanism is realizable. 

The economic impetus behind the above mentioned intent is the on-

going desire to have machines do the unpleasant or dangerous work that 

would otherwise have to be done by humans. There is a broad applications 

potential for military, space and commercial use of autonomous agents. As 

an example, over the last several years many Small Business Innovation 

Research (SBIR) calls for proposals have detailed the need for robots to 

handle munitions, autonomous vehicles for transporting munitions and 

toxic substances, and explorer robots for planetary missions and 

underwater surveillance. Robots are needed to clean up toxic waste sites 

and nuclear facilities; jobs that are considered dangerous for humans but 



that require considerable skill and on-site judgment with respect to 

navigation and negotiation of the local terrain under highly uncertain and 

changeable conditions. 

Applications are important and certainly provide the economic 

incentive for research in autonomous agent technology. However, there is 

an equally important intellectual basis for this research. We want machines 

that can perform tasks which require considerable intelligence. The 

exploration of how to go about constructing machines that display 

intelligent behavior may provide insight into the computational properties 

of biological intelligence as well, giving important clues as to the nature of 

how intelligence might be achieved in animals and humans. 

Machine Intelligence and Learning 

Can we build machines that mimic natural intelligence in animals? 

What constitutes natural intelligence is a subject of ongoing debate in AI 

and cognitive psychology. There seems not to be a generally agreed upon 

definition of intelligence. Brooks (1991) has argued that a definition, per 

se, is not the issue. Rather, the focus of research should be on behaviors 

that agents can perform. Furthermore, Brooks argues that looking at the 

way in which evolution of natural intelligences built cognitive capacity atop 

lower-level sensory, perceptual, and motor systems provides the right view 

of how machine intelligence might be achieved. Brooks calls this approach 

the construction of "behavior-based agents." 



Following Brooks' suggestion, if biology should be scrutinized more 

deeply for clues to the computational properties of intelligence then one 

might ask what properties of behaviors are common across phylogenetic 

lines on the presumption that such properties are fundamental to the 

emergence of intelligence. In the spectrum of behaviors, from primitive 

animals foraging for food up through human cognition, there seems to be 

at least one critical property shared by all: All organisms have the 

capacity, within qualified limits, to adapt to changes in their environments 

and/or improve their abilities to interact with their environments over 

time. In other words, a cornerstone of intelligence in biological systems is 

the ability to learn from experience. It is natural, therefore, to suspect that 

learning should be important for machine intelligence as well. 

Even without a clear cut definition of intelligence we can describe 

machines that operate in a manner that produces what we would call 

intelligent behavior if it were done by a human or animal (Turing, 1950). 

Such a description offers an operational definition. From the pragmatic 

perspective of constructing machines that act as if they were intelligent, this 

may be sufficient. The key question then becomes, how can we construct 

machines that behave intelligently, and, in particular, that adapt their 

behavior to meet the conditions of a dynamic environment. The question 

will be approached from the basis of behavior-based systems. 

A behavior is an action taken by an agent in response to an input 

signal or stimulus from the agent's environment. The behavior is reactive 

if its time course is in consonance with that of the stimulus signal (Brooks, 

1991). Reactive systems are often characterized as operating in real-time. 



The mapping of stimuli to behaviors, called an action map, (Kaelbling, 

1993) in the general case, is a many-to-many mapping. Furthermore, 

stimuli signals may be real valued but will be considered as bounded for 

this discussion. 

An agent may be characterized as having a set of primitive 

behaviors, B = {bi, b2, b3,... bn},n a fixed integer and a pairwise mapping 

r(b/, bj), i ^ j, which maps the relationship between any two behaviors 

into the set, R = {b, > by, b, < by, b, = by, b, * by}. The relational symbols 

indicate competitive priority if two, or more, behaviors are initiated at the 

same time. The "not equal" symbol in this case means no priority - both 

behaviors may be performed simultaneously. Each primitive behavior is 

initiated by at least one stimulus in a set, S = {si, S2, S3,... sm}, m a fixed 

integer. An action mapping, then, is a set of functions relating the evoked 

behavior, b*, to a stimulus, s/, under the restrictions of r (). At any time 

step, t, (in a discrete analysis) some arbitrary subset of S may be non-zero 

leading to the activation of a subset of B. Such a subset is called a 

composite behavior. 

It is assumed that some subset of the action map is fixed in the sense 

that a given stimulus will always result in a specific behavior unless over-

ridden by the r () function. This corresponds to the idea of reflex 

responses in animals. It is likewise assumed that the compliment of fixed 

mappings are malleable in the sense that they may be formed as needed and 

can be zero until so formed. The action map can, therefore, be viewed as a 

sparse matrix of functions. 



Intelligent behavior, by the above suggested operational definition, 

has the following characteristic: Given a novel situation, that is a subset of 

stimuli whose members have not been observed in this particular 

combination by the agent previously, the agent will respond after some 

reasonably short time interval with a composite behavior. If the result of 

the behavior is the acquisition of a reward, or the avoidance of a 

punishment, then, over several episodes the non-fixed elements of the 

action map will be altered so as to maximize the reward or minimize the 

punishment for the effort expended in behaving. The modification of the 

non-fixed action mappings is what will be meant by learning in the context 

of this work. 

In the above, a tendency to optimize means that the objective 

function will show some improvement from trial to trial, perhaps leveling 

off after some number of trials. Many animal learning experiments show 

this pattern empirically (Alkon, 1987; Alkon, et al., 1991; Baxter, et al., 

1991; Klopf, 1988; Mackintosh, 1983). 

An Animal Learning Model and its Implications 

Examination of a real-life animal learning model will help to frame 

the concept of leaning in intelligent behavior and serve to underscore some 

problems in current approaches to machine learning that will be addressed 

below. It will also provide a target performance criteria for the model to 

be developed in Chapter V. 

Following a regimen of classical conditioning (Pavlov, 1927), an 

animal might learn to associate a given stimulus cue (e.g., a tone) with a 
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reward (e.g., a food pellet.) The animal learns from experience that the 

sound of a tone precedes the availability of a food pellet and orients itself 

so as to obtain the pellet as quickly as it can. If this regimen is repeated for 

a short time, say over the course of a day or two, the animal will show an 

initial association. After a time, this association will fade and the animal is 

no longer responsive to the tone alone. If, however, the regimen is 

repeated over a very long time, on the order of weeks say, the animal 

forms what can be shown to be a long-term response-to-tone association. 

In other words, the response to the tone, in orientation behavior, persists 

over a long time scale even if the reinforcement is not given on every event 

of the tone (a reduced reinforcement schedule). 

Consider what happens if on several sequential occasions, after the 

tone sounds, and the animal orients according to its expectation for food, a 

mild shock is delivered instead of food. That is, a new relationship, 

contrary to that previously learned, has arisen. The animal responds by 

trying to escape the shock. But more subtly the animal's behavior changes 

over the course of these trials with respect to the 'meaning' of the tone. 

After not too many such pairings, it can be shown that the animal comes to 

expect not food, but a shock and so on sounding of the tone, it will respond 

with aversion. 

If this treatment is followed by a sequence of tones without any 

subsequent shocks the animal's behavior undergoes a marked and 

interesting change. Initially the animal averts indicating that it has formed 

a short-term association between tone and shock. Over the course of 

several trials where shock does not follow the tone, however, the animal 



may actually show signs of orienting as if it expected food. What appears 

to have happened is that the animal's long-term memory of the tone-food 

association re-emerges when the short-term memory of tone-shock 

extinguishes. What this model demonstrates is the subtle but important role 

of multiple time scales in the learning of associations. It can be seen that 

some association which is valid in one time scale may be completely 

contrary in a longer (or shorter) time scale. 

There is a second, more subtle but very important aspect of the 

above animal learning model. The association encoding that took place in 

the animal, the conditioning of a non-semantic (that is non-meaningful) 

stimulus to a semantic stimulus-response pair, encodes what can be called a 

causal relationship. That is, a causal relationship exists between two events, 

A and B, iff A nearly always precedes B in occurrence by not more than 

some (usually small) finite time difference and B never precedes A. B may 

occur without the occurrence of A preceding it, or A may occur without B 

always following but the two must co-occur some statistically significant 

number of times. A causal relation, so defined, is simply a correlation 

with an imposed temporal order. By this definition it is possible to derive 

the inference that either A causes B or A and B are jointly caused by some 

third, unseen event - in the case of classical conditioning whatever caused 

the food pellet to appear also caused the tone. In either case the temporal 

ordering is important for the following reason: for the animal, the non-

semantic cue, the tone, became a predictor of the semantic stimulus, food 

or shock. In the more cognitive arena of AI causal encoding is a signifi-

cant factor in both reasoning from the present state to the future state and 
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in abductive reasoning, from the present state to prior states. Causal 

relation encoding is a deep problem in knowledge representation and 

knowledge-based systems in AI (Pazzani, 1990). 

1.2 Purpose of the Research - Steps Toward Machine 

Intelligence 

From the proposition that a critical component of machine intel-

ligence must be the capacity to learn from experience and adapt behavior 

accordingly, the objective of the research reported here is to obtain a 

computational model of a learning mechanism that addresses the problems 

of multiple time scales and chaotic dynamics as embodied in the contrary 

association memory task outlined above. Given the intention that this 

model should be realizable in a working agent, it will be, ideally, 

computationally efficient in both time and space. 

The thesis advanced here is that the construction of autonomous, 

intelligent agents will depend on the availability of a mechanism for 

learning representations of causal relations in the environment and for 

associating those representations with semantic (that is meaningful to the 

agent) stimulus-behavior pairs pre-existing in the agent's action map. The 

mechanism should be capable of encoding relations that vary over a wide 

range of time scales and it must be capable of retaining associations that 

separate in time, even when those associations would be mutually exclusive 

in a single time scale as in the animal learning model above. 

Machine intelligence has been pursued by two, quite different routes. 

Traditional AI has assumed that intelligence is a property independent of 
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the underlying machinery. Under this assumption the mechanisms of 

biological intelligence are unimportant. What AI has sought to do is find 

algorithms that simulate the performance of tasks that would, ordinarily, 

require intelligence. The second approach considers the underlying 

mechanisms of biological intelligence as possessing properties important to 

the emergence of intelligence in general. This route, using computational 

models of brain-inspired processors called neural networks, has been 

explored in solving problems in pattern recognition and classification and 

adaptive control. What makes these models potentially very powerful is 

that they provide a means for naturally integrating some method of 

learning directly into the processing component. In one of the most studied 

models, the multi-layered perception, the network learns a mapping of 

inputs to outputs, given an exemplar set of mappings, even for nonlinear 

maps. 

At the same time that successes are accruing to neural network 

learning research, the mainstream AI community is placing increasing 

importance on learning as a necessary component of any model of 

intelligence. After an initial combative stance (Fodor & Pylyshyn, 1988) 

that put the symbolic school (traditional AI) at odds with the subsymbolic 

school (neural networks), in more recent years there has been a growing 

amelioration between symbolic AI models and neural network models of 

knowledge representation and reasoning (c.f. Aparicio. & Levine, 1994; 

Shastri & Ajjanagadde, 1993). 

Neither the performance paradigm of conventional AI, nor the brain 

paradigm of neural networks has yet generated truly autonomous 
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intelligent agents. Such an agent is expected to act in a real environment 

where events are sporadic and episodic. Most attempts to model intelligent 

behavior have been done in abstract, simulated environments such as 

Blocks World for SHRDLU (Winograd & Flores, 1986) or in problem 

domains selected specifically to avoid the open systems problem. These 

worlds are convenient for formal analysis but have failed to capture the 

essence of real world dynamics. Brooks has argued that real autonomous 

intelligence cannot be built into agents that are not embodied and situated in 

a real world (Brooks, 1991). Agents must have the capacity to deal with 

stochastic processes of real environments while having observational access 

to a small sample of events in those environments. 

In this work is presented an computational model of a learning 

mechanism, called an adaptrode, that will be shown to efficiently encode 

multi-time scale correlations of both associative (cross correlations) and 

non-associatiative (autocorrelations) signals. Adaptrode-based neural 

networks are used to implement an action map as outlined above. It will be 

shown that such a network can address the problem of learning in 

potentially chaotic environments, thus providing a step in the direction of 

machine intelligence. 

1.3 Methodology 

Of late, a growing number of researchers have become interested in 

what may be called biologically-inspired computation. Artificial neural 

networks, as mentioned above, are examples. The guiding principal in this 

program is that biological systems, in particular animals, solve some 
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interesting and hard computational problems - at least approximately - and 

if one could discover the mechanisms underlying the computation, one 

could design emulators that could mimic this ability. Rather than the 

'black-box' approach of AI, the new approach seeks to reverse engineer the 

brains of animals in order to construct computational counterparts. It 

shares philosophical underpinnings with the behavior-based, subsumptive 

architecture agent espoused by Brooks (1991). 

The effort reported here follows such a program. The steps are: 1) 

consider a problem that at least some animals solve that cannot now be 

solved as readily algorithmically, e.g., pattern recognition; 2) characterize 

the method by which an animal solves the problem - a combination of 

biological research and mathematical modelling; 3) infer a mechanism that 

emulates the problem solving behavior; 4) simulate it and see if it captures 

the essential qualitative properties of the biological system. 

This work presents a computational model of an adaptive element 

that, used in the context of a neuromimic synaptic processing element, fits 

the animal learning model above. In doing so, the mechanism employed in 

the computation provides a means for constructing neural network-based 

agents with at least the primitive level of intelligence seen in simple animals 

that exploit causal associations across multiple time scales to improve their 

chances of survival in a complex, nonstationary environment. 

The model is obtained from consideration of memory trace dynamics 

in living synapses. To test the model, it is incorporated into a neuromimic 

architecture that, in turn, is shown to generate behavior which has the 

essential properties of a very fundamental form of learning in animals -
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classical conditioning. It will be shown that the model meets the important 

criteria of classical conditioning reflected in animal learning studies. 

Several classical conditioning phenomena will be demonstrated following 

methods developed by Sutton and Barto (1987) and Klopf (1988). In 

addition, this model goes beyond prior studies of these basic criteria to 

show that adaptrode-based neuromimes have the capacity to encode 

memory traces that separate in time scale, even when those traces encode 

contrary associations. 

1.4 Organization of the Thesis 

The thesis is comprised of six chapters. This chapter has served to 

introduce the argument that intelligent behavior in machines will depend on 

the capacity to learn from experience. The associated problems of multiple 

time scales and nonstationary environments were also introduced. Chapter 

II will provide a review of related work in neural network learning, 

particularly the area of reinforcement and real-time learning rules as 

models of classical conditioning in animals. In Chapter in the adaptrode 

model is obtained from consideration of the dynamical behavior of living 

synapses as adaptive filters. Whereas the adaptrode model as derived in 

Chapter HI is based on the dynamics of observed behavior of synapses, 

Chapter IV will provide a more detailed account of the correspondence 

between the adaptrode model and the biophysical model of processes 

underlying synaptic plasticity. 

Chapter V will present the simulation models that demonstrate the 

behavioral efficacy of a network comprised of neuromimic processors 
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using adaptrode-based synapses in the context of classical conditioning. 

Additionally, Chapter V will show how the adaptrode model extends the 

capability of learning into multiple time scales with non-interference 

between mutually-exclusive stimulus-response associations that separate in 

time. This demonstration is the basis for the claim that the adaptrode can 

address the issue of learning in a nonstationary environment. 

The simulation results together with the demonstration of structural 

correspondence between the adaptrode model and biological synapses in 

Chapter IV constitute a compelling argument for considering the adaptrode 

as a viable alternative to learning rules now employed in neuromimic 

processing. 

Finally, Chapter VI will summarize the conclusions of this research, 

give examples of the applicability of the adaptrode model and suggest 

avenues for future exploration. 



CHAPTER II 

A REVIEW OF RELATED WORK 

2.1 A Neurobiological/Artificial Neural Network Connection 

As argued in Chapter I, the hallmark of intelligence in animals is the 

capacity to adapt behavior in response to environmental change. 

Adaptability is based on learning spatio-temporal patterns that, themselves, 

may change over time. An important feature of learning is that an animal 

can predict the near-future state of the environment based on prior states 

(Sutton & Barto, 1981). Prediction should allow the animal to anticipate a 

future stimulus that has physiological consequences (meaning or semantic 

content) and emit appropriate behavior in anticipation of that stimulus. 

Computation of expected states must rely on some form of time series 

analysis, particularly for non-associative adaptation (Koshland, 1980), and 

clearly involves correlational analysis for associative adaptation 

(Sejnowski, Chattarji & Stanton, 1989; Hebb, 1949). Furthermore, the 

computation of a future expected state wherein the occurrence of an event 

(or pattern) in one channel predicts the occurrence of an event (or pattern) 

in another channel, as will be seen is the case in classical conditioning, must 

involve aspects of both of these techniques. 

16 
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There is reasonably general agreement in neurobiology that the 

principal site of learning, in the sense of encoding memory traces, is the 

synaptic junction. Both pre-synaptic and post-synaptic mechanisms have 

been elucidated (Alkon, 1987; Kandel & Schwartz, 1982; Small, Kandel & 

Hawkins, 1989). Each patch of post-synaptic membrane contributes to the 

overall depolarization (or hyperpolarization, in the case of inhibitory 

synapses) of the cell body membrane with each arrival of a signal pulse 

called an action potential. A sufficient depolarization of the cell membrane 

can result in the initiation of an outgoing action potential along the 

neuron's axon. Action potentials are fixed-amplitude and fixed-width 

pulses arriving at the pre-synaptic bouton (ending of the axonal branch). 

Synapses are known to produce a variable amplitude response, the post-

synaptic excitatory potential (EPSP), for a fixed-amplitude stimulus 

depending on the frequency of the stimulus. Increases in the capacity of a 

synapse to contribute to the depolarization (or hyperpolarization) of the 

membrane is called the synaptic efficacy. 

Artificial neural network models, currently under investigation, are 

idealizations of biological neurons based on large-scale known features of 

the latter and some presumed mechanisms of information processing. The 

computational model of a formal neuron can be traced back to that 

proposed by McCulloch and Pitts (1943). This model was inspired by what 

was known of biological nerve nets at the time, which was basically the 

gross morphological view of neurons and a limited anatomical model of a 

few neurological preparations (c.f. Kandel & Schwartz, 1981, Chapter 1, 

pp 3-13). The prevailing view of the time was the "cellular connectionism" 
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model of Ramon y Cajal and Karl Wernicke. In this model, neurons are 

the signalling elements of the brain. Very little was known of the details of 

the neurophysiology of individual cells and even less about the synaptic 

connections between cells. 

Against this background, and motivated to find some commonality 

between the functioning of nerve nets and computing machinery, 

McCulloch & Pitts considered the obvious features of neural tissue that 

might be a basis for such a commonality. Neurons were known to have a 

large fan-in of incoming signals through their dendrites. The existence of 

a discrete action potential argued for a boolean-type logical operation. 

There was a single output channel, the axon, which might, however, fan-

out to many destination cells. Very little was known at the time about 

synaptic efficacy changes as the basis of learning. Additional prominent 

features of neural tissue seemed to be the substantial number of neurons 

involved, and even more substantial number of interconnections made 

between them. 

Without a basis in actual knowledge of what neurons did, internally, 

to process information, McCulloch and Pitts proposed their model of a 

simple threshold-logic element. In the milieu of "brain-as-computer" 

paradigm that was emerging in the period, the idea of neurons being very 

simple logic gates appealed to many other researchers (c.f. von Neumann, 

1958). McCulloch and Pitts showed that their model could compute 

arbitrary logic functions. Hence, they provided a tacit reinforcement to the 

notion that real neurons were indeed simple computing elements. 
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The output for a McCulloch-Pitts formal neuron, Xj, is given by: 

xj = - ej) (2.i) 
i 

where Wy are the weights associated with each input line from neuron (or 

external source) i to neuron j, and 9j is a threshold value. The function 

fi:•) in the original formulation is a simple binary output, i.e., Xj = 1 if 

ft*) > 0, 0 otherwise. This outer product interpretation of synaptic 

efficacy has largely been accepted without question in the ANN community 

but has been questioned by a number of neuroscientists (Crick, 1989; 

Shepherd, 1992). The actual mechanisms for synaptic contribution to 

neuron firing is drastically different from the formal model (Sejnowski & 

Qian, 1992). 

McCulloch and Pitts used fixed weights for their outer product 

formulation. Neurons did not adapt or learn. In 1949 Donald Hebb 

published his book, The Organization of Behavior. In it he provided a 

relatively simple model of how one neuron might encode the correlation of 

activity between itself and another neuron. The "Hebb" rule of connection 

weight modification became the basis for applying learning mechanisms to 

McCulloch-Pitts neurons. The idea is simple enough. If a neuron that is 

providing input to another neuron is found to be firing at the same time the 

second neuron is firing then there is an increase in the weight on the link 

between them. The simple Hebb rule implies: 

Wy(f+1) = \Vij(t) + Aw (2.2) 

and 

Aw = £(Wij(t), xM, Xj{t)) (2 .3 ) 
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where (t+1) is the next time step, (t) is the current time step and Aw is the 

change in weight from t to t+\. The function^*) is determined by the 

specifics of a learning law that is being implemented. 

What is cogent in this brief review is the strong influence this model 

has had on neural network models in general. Specifically, there has been 

a generally held belief, sometimes voiced, but often lurking as a hidden 

assumption, that neurons are just simple processing elements. This has 

been joined and reinforced by another view that holds that it is the network 

level that does the interesting processing (Hopfield, 1982; Grossberg, 

1991a). Emergent behavior from simple interacting elements has been the 

credo of the neural network field for most of the past decade. Until very 

recently this has had a stifling effect on the investigation of more 

biologically realistic models of neurons as potentially more powerful 

computing elements. 

Learning in these formal neurons is the modification of the link 

weights according to a learning rule. As more detailed information has 

emerged regarding the molecular mechanisms underlying synaptic 

plasticity, coupled with an understanding of the behavioral aspects of 

learning, particularly in invertebrates, more biologically-plausible learning 

rules have been proposed and studied. Alkon, et a/., (1990 and 1991) have 

proposed a model of reinforcement learning called DYSTAL 

(DYnamically STAble Associative Learning) based on their findings of 

local interaction potentiation in Hermissenda crassicornis, a marine 

nudibranch, and also found in the hippocampus of the rabbit. Similarly, 

Gingrich & Byrne, (1987); Byrne, & Gingrich (1989); Byrne, Gingrich, & 
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Baxter, (1990); Buonomano, Baxter & Byrne, (1990); and Baxter, et al., 

(1991) have done extensive modelling of learning mechanisms based on 

their work with Aplysia, another marine snail. A land snail, Limax, was 

the inspiration for the LIMAX model of taste aversion learning of 

Gelperin, Hopfield & Tank, (1985). Another model that sought to capture 

biological realism in the form of the temporal displacement between input 

and output signals, Drive-Reinforcement, was proposed by Klopf, (1988). 

Additional models that attempt to adhere to biologically plausible 

considerations may be found in (Levy & Desmond, 1985; Lynch, Granger 

& Larson, 1989; Moore & Blazis, 1989; Sejnowski, Chattarji & Stanton, 

1989; Shepherd, 1992; Sutton & Bartow, 1981). 

Though these models have been based on biologically plausible 

considerations and, in many instances have generated results that fit the 

empirical data, two common aspects of the proposed learning rules are the 

primacy of associativity and singular time scale dynamics. The first aspect 

refers to the fact that the cause of a change in a weight value always 

depends on the correlation between two signals. The most widely cited 

example is the Hebb (1949) rule as given above. The second aspect refers 

to the dynamics of weight change which proceed only in the time scale of 

changes in the signals. Kosko (1991) has shown that simple associative 

rules compute the exponential weighted average of changes in the 

correlated signals such that the a memory trace would be washed out by 

subsequent processing. The trace would be lost exponentially fast when the 

conditions change. Efforts to preserve a trace in this context have to 

disallow forgetting. Thus is produced a conundrum for continuous, on-
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going learning based on simple associative and single time scale encoding. 

Either you remember none of the past or you must remember all of it. 

Clearly, biologically plausible learning rules must consider long-term 

memory phenomena as well. 

There are some additional biologically relevant problems with these 

two aspects in simple associative-based, single time scale learning laws. 

First, with respect to required associativity, there are a number of 

examples of non-associative memory formation and retention in excitable 

cells (Alkon, 1987; Alkon, 1989; Byrne & Gingrich, 1989; Byrne, et al., 

1990; Kandel & Schwartz, 1982; Small, et al., 1989; Staddon, 1993). 

Habituation, sensitization, and muscle development with training are 

several examples of purely activity-dependent encoding mechanisms. What 

is learned is a temporal association or expectation of future activation based 

on past and current activation. Post-tetanic potential (PTP), a transient 

elevation in synaptic efficacy following a brief burst of afferent action 

potentials (the stimulus trace of Sutton & Bartow, 1981), and long-term 

potentiation (LTP) in mossy fiber afferent synapses of the CA1 pyramidal 

cells of the mammalian hippocampus are other relevant examples of 

plasticity that is nonassociative. 

The second problem that current rules cannot adequately address is 

the role of time domains in memory formation and recall. Current real-

time models do address the need to differentiate between the activity 

memory trace (Klopf, 1988; Sutton & Bartow, 1981) or a short-term 

memory (STM) through recurrent self-stimulation (Grossberg, 1987 and 

1991) and a synaptic efficacy change representing long-term memory 
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(LTM). Little has been done, however, in artificial neural networks, to 

investigate the dynamics of memory over several time scales of biological 

importance (see Alkon, 1987; Alkon, et al., 1990; Alkon, et al., 1991; 

Staddon, 1993 for exceptions). 

2.2 Classical Conditioning: A Model Paradigm for Causal 

Knowledge Encoding 

To begin understanding how an animal perceives and reasons about the 

world, how it captures and uses the regularity of nature, we might ask how 

it is that causality, or more precisely, causal relations, are encoded in the 

brain. How does the brain represent causal relations and how are these 

representations learned? To make the task approachable we can note first 

that all animal life is faced with the same problem of discovering and using 

regularity in the quest for survival and propagation. Thus by studying 

primitive (that is phylogenetically simpler) brains we may discern some 

mechanisms for such encoding which will be found to be invariant across 

the phylogenetic spectrum. What has* been sought is a direct connection 

between neurophysiological processes of information encoding and the 

outward behavior of the animal that shows adaptation to changing 

environments. 

During the past decade some real progress has been made in under-

standing how simple neural systems function with regard to encoding 

information in synaptic efficacy (Alkon, 1987, 1989; Getting, 1980; Jaffe 

& Johnston, 1990; Kandel & Schwartz, 1982; Small, Kandel & Hawkins, 

1989; Starmer, 1987). Additional insights into the details of neural 
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representation, at the network level, learning and processing have been 

gained by building formal models of neural networks that simulate aspects 

of behavior in animals using these rules for synaptic encoding (Alkon, et 

al., 1990; Buonomano, Baxter & Byrne, 1990; Byrne & Gingrich, 1989; 

Byrne, Gingrich & Baxter, 1990; Gelperin, Hopfield & Tank, 1985; Klopf, 

1988; Klopf & Morgan, 1990; Koch & Segev, 1989; Morgan, Patterson & 

Klopf, 1990; Rumelhart & McClelland, 1986; Sejnowski, Chattarji & 

Stanton, 1989). The empirical studies in neurobiology along with these 

formal models demonstrate the potential connection between synaptic 

efficacy and overt animal behavior due to adaptive response to changes in 

causal relations in the environment. 

Specifically, the learning model of classical conditioning, demon-

strable in some very primitive animals, and considered as a fundamental 

basis of higher-order learning mechanisms (Dretske, 1988; Mackintosh, 

1983), is an operational version of learning and representing a causal 

relation. This follows from the fact that the success of conditioning has 

been shown to depend on the temporal ordering and contiguity of the 

conditionable signal with the unconditionable signal. Therefore, the 

general approach taken is to find correlates between neural events and the 

acquisition of conditioned response learning so that the former may be 

posited as contributory to the latter. 

The outline of neural and even molecular substrates of conditioned 

learning has begun to emerge from the laboratories of neuroscience 

(Alkon, 1987; Kandel & Schwartz, 1982; Small, et al., 1989). 

Connectionist views of classical and operant conditioning, likewise, have 
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provided computational models which may aid in the discovery of the 

invariants mentioned above (Carpenter & Grossberg, 1987a, 1987b; 

Grossberg, 1987; Sutton, 1988; Sutton & Barto, 1987, 1991). Such 

models, constrained by the wealth of neurophysiological and psycho-

physical data regarding conditioning, provide valuable insights into the 

principles of learning and may produce further hypothesis for 

investigation. Additionally, one hopes to find clues that will aid in the 

construction of machine-based mechanisms with animal-like learning 

competence (Anderson, Merrill & Port, 1989; Elman & Zipser, 1988; 

Morgan, et al., 1990; Rumelhart, Hinton & Williams, 1985). 

How does classical conditioning relate to the notion of a causal 

relation? The answer to this question provides a final link between 

learning models and higher-order intelligence in autonomous agents. As 

mentioned above, it is the temporal ordering and contiguity as well as 

contingiency constraints that earmark conditioned response learning. 

These are exactly the characteristics of a causal relation. 

A causal relation between two events, A and B, denoted A => B, has 

several important properties which impose temporal constraints on the 

form of any representation and derived inference as described in Chapter I. 

As noted already, an event A must precede an event B in order for us to 

say that A is a cause of B. We would never say that the breaking window 

caused the ball to be thrown. More precisely we require that the onset of 

A precede the onset of B by some At > 0. We can relax this constraint 

somewhat by requiring (or allowing) that A almost always precedes B, 

where 'almost always' refers to some statistically defined frequency. There 
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may be other causes of B and the occurrence of A may not always result in 

B. The constraint, however, strongly requires that B never precedes A, at 

least within some defined latency period, which is to say the temporal 

relation is one-way. 

Another, related but technically different, constraint is that of 

temporal contiguity. The events must occur within a contiguous temporal 

window of opportunity. This window is defined by the context of events 

and the memory trace retention of event A. Thus it is not that B must 

occur shortly after A, but rather, B must occur after A but before the 

memory of A fades and no intervening event changes the context 

established by A. This is a subtle aspect of contiguity not often fully 

appreciated. Memory plays an important role in inference of causality. If 

B occurs too long after A has occurred, then the linkage between them is 

weakened. 

A third constraint has to do with computing the correlation of A and B 

over time or contingency. In probabilistic causality we allow that the 

occurrence of A may increase the probability of the occurrence of B. The 

event B can have other, unobserved causes. Thus is inferred a causal 

relation between A and B only if the frequency of co-occurrence is 

sufficient to the purpose (note this need not be a majority of the times). 

The temporal constraint requires that a sufficient period of time has to pass 

in which multiple occurrences of A and B can be experienced. Note again 

that memory is involved in keeping a record of co-occurrences and that 

memory must persist over the time scale of the 'sufficient' observation 
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period. This is usually considerably longer than the short-term memory 

trace of the occurrence of A mentioned above. 

These constraints, implicit in the prototypical causality rules, 

underscore the importance of the role of time in learning, representing and 

processing (reasoning) causal inferences. Furthermore, we can see from 

the above discussion that temporal information extends across several time 

scales. It is not sufficient to deal with just the time scale of the real-time 

events (A and B). Therefore the nervous system must employ mechanisms 

which encode temporal information in multiple time domains. 

The conditioned learning task embodies the rules of causality and is 

well documented in a wide variety of vertebrate and invertebrate animals. 

As such it has become a standard testbed for computational models of 

reinforcement learning (Alkon, 1987; Alkon et al., 1991; Aparicio, 1988; 

Dretske, 1988; Gelperin, et al., 1985; Grossberg, 1991; Klopf, 1988; 

Mackintosh, 1983; Pavlov, 1927; Sutton & Barto, 1987, 1991; Tesauro, 

1986). In this paradigm (of which there are two flavors) the animal 

(model) learns to associate an event such as an environmental cue with a 

behavior (or with a consequence). Though the notion behind conditioning 

has its origin in laboratory experiments, the general idea of conditioned 

learning and how it benefits the animal in its natural environment is fairly 

straightforward. If an environmental event (cue) which is neutral with 

respect to the animal's survival is found by experience to precede another 

event which has direct survival impact, such as the availability of food or 

pain caused by a wound, then the animal forms a lasting association 

between those events and can use the prior event to predict the occurrence 
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of the second event. Such predictive ability allows the animal to respond 

more quickly to the impending meaningful event. This can be seen in the 

experimental paradigm called classical or Pavlovian conditioning (Pavlov, 

1927). The animal learns to associate a conditioned (or conditionable) 

stimulus (CS) with an unconditioned (hard wired) stimulus-response pair 

(US/UR). The association results in a conditioned response (CR), which is 

either the same as or similar to the UR, being elicited upon presentation of 

the CS alone. The animal has learned to respond to the CS as if it were the 

US. 

The second form of this type of learning involves the stochastic 

emission of a behavior which reliably produces some beneficial result (for 

the animal) in the environment. The animal learns to associate the 

behavior with the beneficial result and can, in principle, emit the behavior 

by choice in order to elicit the result. This latter form of learning, termed 

operant (or instrumental) conditioning, depends on a contextual situation, 

for example a physiological drive, which creates the condition in which the 

result will be beneficial. In the laboratory setting, animals are kept hungry 

so that they are "motivated" to press levers or buttons so as to receive a 

food pellet. 

How are these conditioned learning tasks to be viewed as simple causal 

representations? There is the philosophical side to this question wherein 

we can speculate over the animal's perceptions and beliefs about cause and 

effects (Dretske, 1988). However, I am more interested in an operational 

view in which the animal behaves as if a cause and effect relation has been 

learned. Whether A (the CS) actually causes B (the US) (which in turn 
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causes C, the UR) in an objective sense, or is the perception of the animal is 

of little concern just now. The point is that the animal responds to A (with 

C) as if a causal chain had been established. From the standpoint of 

behavior, there exists the inference of a causal chain. 

The balance of this chapter will focus on the way in which neural 

networks can encode the temporal and associative rules of causality. This 

will be examined at the level of conditioned response learning where it will 

be shown that a neural architecture can be built in which the prototypical 

rules, in particular the temporal constraints, of causality can be instantiated 

in representations of events which are causes (predictors) and events which 

are effects (consequences or reinforcers). If it is true that conditioned 

learning is a fundamental basis for higher forms of learning as has been 

suggested (Dretske, 1988; Mackintosh, 1983), then this approach may 

fulfill the promise of directing us toward a theory of causal inference 

learning and reasoning in higher cognitive processes. 

2.3 Representing Time in Neural Networks 

As has been argued above, the representation of time plays a central 

and crucial role in causal inference. In order to meet the temporal 

constraints of causality it is necessary to show how a neural network can 

encode temporal knowledge, integrated with spatial associative knowledge, 

such that information processing produces the correct inferential result. In 

this section some methods which have been employed to incorporate 

temporal representation in neural networks are briefly reviewed. 
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The Primacy of Associativity 

The vast majority of learning rules that are used in neural network 

architectures have at their base the assumption of associativity as the 

driving influence in changing the edge weights associated with processing 

element inputs. What this means, simply, is that in order for a weight to be 

modified, there must be some kind of correlation between two or more 

independent signals in the processing element. These can be, for example, 

an input correlated with the output of the element such as the Hebb rule 

(Hebb, 1949; Hertz, Krogh & Palmer, 1991), input correlated with an 

error (difference between the output and a desired output or delta rule, 

Widrow & Hoff, 1960), or two inputs (local interaction rule, Alkon, et aL, 

1990). Such rules can be further modified to take into account the time 

derivative of the signals (Klopf, 1988; Kosko, 1986) or the error 

derivative in the case of the generalized delta rule (Rumelhart, et al., 

1985). However, the change in a weight is still dependent on the activity of 

two or more signals. 

This form of associativity is a spatial encoding mechanism. A large 

number of neural network applications have addressed the issues of pattern 

learning, classification and recognition. Their successes have led to what 

seems to be a general consensus that learning rules must, at their base, be 

associative. As a result this has led to an interesting problem: How to 

represent temporal knowledge when the basic rule is spatial (Elman, 1990). 
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Adding temporal representation to associative-based networks 

A typical solution to this problem has been an attempt to add temporal 

representation to an otherwise associative learning scheme. The earliest 

efforts attempted to construct architectures in which time could be 

represented by a spatial analogue. For example an avalanche circuit could 

be used to represent time steps in a sequence (Grossberg, 1982). 

Another method for representing temporal information at the level of 

the network is through recurrent loops and/or time delay units (see Hertz, 

et al., 1991 esp. Section 7.3). In the simplest version a neuron excites itself 

through a loop with inherent decay. Grossberg and others have used this 

method to instantiate a short-term memory (STM) function at the level of 

individual neurons (see Grossberg, 1991a for an excellent review). An 

associative rule is used to update the link weights in order to form long-

term memory (LTM) encoding on the other inputs to the neuron. 

Recurrency can be used on a network-wide basis as well. One neuron 

can excite (through a non-learning connection) another neuron which can, 

in turn, excite the former directly or through a chain of neurons. This 

method has been used by a number of workers using the backpropagation 

learning method. Context units which feed back historical states to earlier 

layers in the network act as a memory of prior input and processing, thus 

having an impact on the current processing (Elman, 1990). Systems of this 

kind have been shown to be able to learn and recognize and/or generate 

sequences of spatially extended patterns. 
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Adding associativity to temporal representation - an alternative 

In the types of systems described above some form of temporal 

representation is added to a network architecture where learning is based 

on an associative learning rule. An alternative approach would be to add 

associative encoding to a temporally-based learning rule. I had been 

interested in the biological phenomenon of adaptive response in which an 

animal modifies its response to a stimulus based on the time course 

behavior of that stimulus. This is a fundamentally nonassociative 

phenomena which can become associative through modulation processes. 

The problem of temporal representation is more complex than simply 

representing sequences. Perhaps the most important aspect of temporally 

extended phenomena is that modulation may occur over multiple time 

scales. The impact of real-time signals, in terms of the synaptic 

contribution to the neuron's decision to fire, can be modulated by the 

longer time course activity of signals in that channel. The following simple 

example of adaptive response may help to illustrate: Muscles undergo 

adaptive response to athletic training. 

The real-time response of the body to athletic demand (performance) 

changes with time and training. If a rigorous training schedule is 

maintained the athlete's muscles strengthen and increase in bulk as new 

tissue is created. This will occur only if the demand schedule is maintained 

over an extended time period. The muscles come to expect an increase in 

workload as a result of past experience. They adapt to the expected level 

of demand. This is a form of autocorrelation learning which is based 
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primarily on activity and time. There are short-term effects, intermediate-

term effects and long-term effects that come into play. 

Muscle growth will, however, be constrained or modulated by 

associative factors such as nutrition - adequate protein and vitamins in the 

diet. Adaptation in the form of muscle growth will take place only if these 

factors are satisfied. In this example associative factors (nutritional 

elements) act as modulators to an otherwise temporal encoding process 

(training). There are numerous other examples of activity-dependent 

adaptation in biological systems. 

Could adaptive response be a biologically plausible basis for learning 

in neural networks? More to the point, could this phenomenon be used as 

the basis for efficacy modification of synapses. If so, could the temporal 

representation meet the criteria of causal inference, which from prior 

arguments means conditioned learning? In Chapter III a model of synaptic 

contribution and plasticity based on adaptive response is obtained and will 

be shown to have the desired temporal properties. An immediate 

advantage of this approach is that it will provide a passive means for 

encoding short-term memory traces at the synapse rather than maintaining 

activation of the neuron. 

Multiple Time Scale Encoding 

Recently, multiple time scale dynamics in biological synaptic plasticity 

and adaptive response has gained attention (Alkon, 1987). Chapter IV 

provides a more in-depth description of this concept, however, the basic 

notion is outlined here. In the post-synaptic compartment, the interior 
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portion of the neuron underlying the synaptic junction, a sequence or 

cascade of biophysical processes interact. The initial process is driven by 

the change in membrane potential. Each process in the cascade has a 

longer time course behavior than its predecessor, as measured by the 

accumulation of some chemical constituent. In turn, that constituent, acting 

as input to the next process in the sequence, drives the next process in the 

forward direction. Conversely, through a set of unique positive feedback 

loops, a subsequent process either reduces the rate of the reverse direction 

of the prior process or actually increases the forward rate of that process. 

These cascades constitute a series of ever longer-term memory traces in the 

compartment. Figure 1. shows a conceptual representation of such a 

cascade of processes. 

Multiple Time Scale Process Cascade 

Process 1 Process 2 Process 3 

Forward rate • 
a i 

' [constituent] 
Feedback \ i . 

^ U t •{[constituent] [constituent] 

Reverse rateX § j 

Fig. 1. In a cascade of interacting processes, each process accumulates 
some constituent that drives the forward rate of the next process by time 
constant a. The process has a reverse or decay direction with time 
constant 5. Each subsequent process operates over a longer time scale so 
that the constituent of Process 2 accumulates much more slowly than 
Process 1, and that of Process 3 even more slowly. Feedback from a later 
process to a former one reduces the rate of decay of the former creating a 
"memory" trace in the former process. 
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The long-term effect of this series of processes with their feedforward 

and feedback interactions is that the synapse displays varying degrees of 

efficacy in contributing to the neuron's firing depending on the time course 

behavior of the input signal (associative factors aside for the moment). 

The synapse might, thus, be viewed as an adaptive filter since its response, 

in the form of the local membrane potential, varies according to its input 

history. It is cogent to ask, then, what is the behavior of an artificial 

neural system in which the simple link weights are substituted by an 

adaptive filter with the characteristics of biological synapses. 

A recent attempt to model a multi-time scale non-associative memory 

phenomenon, habituation, has been carried out by Staddon (1993). He uses 

a two domain (time scale) model to show how such a cascade produces 

model output that better fits the empirical data. Somewhat similar to the 

model to be presented in the next chapter, Staddon linked two leaky 

integrators (exponential averagers) in series. What is important to note, 

here, is that the time constants of integration of the two stages are set so 

that the second stage operates over a significantly longer time scale. 

Staddon shows that the depth of habituation and the recovery rate from it 

in the model match the rate sensitive variations seen in living animals. A 

simple single stage integrator cannot accommodate the rate sensitive data. 

Staddon's model is important in showing that a by incorporating 

consideration of multiple time scale encoding, even as simple two-stage 

model, produces significant gains in modelling the behavior or real 

memory systems in nature. 
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2.4 Concluding Remarks 

This chapter has provided a background review of work related to the 

research and has attempted to show the relationship between three main 

disciplines that contribute to the work reported here. These are 

neurobiology, artificial neural network modelling and animal learning 

theory. Over the next several chapters I will develop the adaptrode model 

and examine it, and its consequences for machine learning, from all three 

perspectives. The integration of these perspectives into a realizable 

mechanism for real-time, on-line learning is central to effort to produce a 

working approach to artificial intelligence. 



CHAPTER IE 

A BIOLOGICALLY-REALISTIC MODEL NEURON 

3.1 Overview 

In this chapter the adaptrode model is introduced as a middle ground 

between the simple weighted input synapses used in neural networks, as 

described in the previous chapter, and the much more complex models of 

membrane dynamics used in neurobiology. In the adaptrode model the 

synapse becomes a much more powerful computing element as is posited 

for biological neurons (Shepherd, 1992). This is as contrasted with 

artificial neural networks in which the neuron is considered the principal 

processing element. It will be shown that this increase in power allows for 

the emergence, in an artificial neuron, of important capabilities one would 

want such a neuron to possess and that are not achieved by the simpler 

models. It will also be shown that this increase in capability is bought at a 

relatively cheap price in terms of computational complexity relative to the 

more complex neurobiologically-derived membrane models. That is, the 

computational requirements for this model are not much greater than those 

of simple neural networks, but the processing power achieved is sign-

ficantly greater in the sense that the model produces system-level memory 

acquisition and recall performance that approaches simple biological 

models. 
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All models seek to condense the essence of the modelled system in 

order to capture its behavior while reducing unnecessary detail. The key 

insight in the approach taken here is that the relevant phenomena giving 

rise to memory trace acquisition and recall at the synapse appear to 

segregate by time domain. Therefore, in the development presented below 

the state variables, representing memory traces, have been collapsed by 

categories of time scales, or domains. The resulting model is greatly 

simplified, compared to the membrane models, yet appears, by the results 

obtained here, to retain the essential features of the dynamical properties of 

real synapses. That is, the response of the adaptrode adapts to changes in 

the input signal over time scales covering several orders of magnitude. 

Thus the behavior of an adaptrode is a closer analogue of biological 

synapses and the artificial neuron resulting from use of the adaptrode 

synaptic processor will become a closer analogue of biological neurons as 

well. 

3.2 An Adaptive Filter Synaptic Model 

The adaptrode seeks to model certain key aspects of the qualitative 

behavior of biological synapses, namely the way in which a synapse acts as 

an adaptive filter. The next chapter will be devoted to a discussion of the 

correspondence between the adaptrode model and the multi-time domain 

model of biological synapses presented by Alkon (1987). The present 

chapter will only focus on the overt behavior of a prototypical biological 

synapse and provide a motivation for the development of the adaptrode 

mechanism. 
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Biological synapses are not simple multipliers with fixed weights, 

relative to the time scale of the input signal (Kandel and Schwartz, 1981, 

esp. Chapter 7, 1982; Alkon, 1987; Shepard, 1992). Most classical neural 

network models treat synaptic inputs as either time-averaged firing 

frequency of the presynaptic cell (real-valued numbers) or as binary (0,1) 

or bipolar (-1,1) representing discrete action potentials. These inputs are 

multiplied by a weight representing the 'efficacy' of that synapse. There is 

no time-dependence in the process, except through the longer time scale of 

learning as represented by something like the Hebb rule. 

The change in efficacy of biological synapses is quite different. The 

postsynaptic membrane undergoes an activity-dependent change in 

membrane potential that may bring it closer to or farther away from the 

triggering potential for an action potential to fire. An excitatory 

postsynaptic potential (EPSP) contribution is due to an excitatory synapse 

while an inhibitory postsynaptic potential (IPSP) is due to an inhibitory 

one. Figure 2. shows a stereotypic trace of a unitary EPSP following a 

single spike arrival. The horizontal axis is time in milliseconds, while the 

vertical axis is membrane potential with respect to the exterior of the cell 

which is more positive. The spatial summation of these local transients 

gives rise to the final potential arriving at the axonal hillock. It is this 

summation that gives rise to an action potential if the summed potential is 

at or above the triggering level. The development of the adaptrode model 

will focus on the local synaptic input and subsequent changes in the synaptic 

response. 
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Fig. 2. The time course trace of a single-source (unitary) EPSP with 
arrival of a single action potential at the synapse. Scales of membrane 
potential, time and input intensity are approximate in this figure. (After 
Aidley, 1989, Chapter 9). 

The time-course of the transient value of the postsynaptic membrane 

potential depends on several factors. The arrival of an action potential at 

the presynaptic bouton causes the release of neurotransmitter into the 

synaptic cleft. This diffuses across the cleft and combines with specific 

receptors on the postsynaptic membrane. In turn, these receptors cause 

specific ion channels to open allowing ion currents to flow due to strong 

gradients across the membrane. These gradients are developed by active 

processes in the cell and constitute the so-called resting potential of the 

membrane. The induction of currents cause the depolarization of the 

membrane (in the case of excitatory input). 

The relevant details of the subsequent actions will be covered in 

Chapter V. For now it is sufficient to point out that the depolarization of 

the membrane starts from a given resting state — nominally -80 mV with 
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respect to the outside of the cell -- and moves toward the triggering 

potential - nominally -60 mV. If the synapse has not been excited for 

some extended period, then a single action potential input will not produce 

sufficient depolarization to reach the triggering level. If however, 

subsequent action potentials arrive in a short period, then a temporal 

integration takes place, so that the local potential is elevated and the new 

increment of depolarization brings it closer to the triggering level 

threshold. 

Furthermore, after such a burst of activity, the membrane potential 

remains somewhat elevated, not immediately returning to the normal 

resting value, for many seconds. In Figure 3, several spikes have arrived 

over a short time. The figure shows a stereotypical EPSP resulting from 

such a burst. If the burst was of a long duration and/or if it is accompanied 

by correlated factors in the postsynaptic compartment, the level may stay 

elevated for relatively long periods, minutes, hours, even days. The exact 

time-course behavior of the postsynaptic potential varies from species to 

species and among cell types, however the basic properties of transient 

response, short-term and longer-term efficacy changes seem to be 

ubiquitous. In the following development the focus will be on those 

general features of synaptic plasticity which seem to have been conserved 

both across cell types within a single species and across phylogenetic lines. 

Alkon (1987) reports that some of the key mechanisms involved in 

invertebrate systems such as Hermissenda have been found in certain rabbit 

neurons. These same mechanisms are directly involved in the dynamics of 

plasticity. 
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Stereotypical (Average) Unitary EPSP 

I 
Time Increments -> 2 msec 

input 

Fig. 3. The time course trace of a unitary EPSP with a series 
of spikes arriving over an interval of time. Dashed lines show approximate 
membrane potential level that would have been obtained in the absence of 
subsequent input. 

What is a synapse doing? Its main job is to respond to an impulse 

signal by transiently depolarizing (or hyperpolarizing in the case of an 

inhibitory synapse) the local membrane. Depolarizations from a number 

of synapses are integrated, spatially, to produce a resultant EPSP at the 

neuron soma. As can be seen in Figure 3, however, the unitary response 

appears to depend on the immediate prior history of the signal. In the case 

of a sequence of relatively high frequency input pulses as shown in Figure 

3, each subsequent response is marginally stronger than the prior one. In 

fact it is well known that if action potentials arrive in rapid succession, that 

the signals are integrated over time with the result that the synapse may 

generate a larger depolarization than can be obtained from a single action 

potential. Thus the synapse is acting as a kind of adaptive filter, generating 

a 'significant' response only if the frequency of the input signal is above 
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some minimum. It is assumed that the input to a synapse is a constant-

width, constant-amplitude pulse-density coded signal so that high 

frequencies correspond to high intensity transduction from a source analog 

process. Such a process could be, for example, the light falling on a light-

sensitive cell such as the type-B cell in Hermissenda (Alkon, 1987) that 

eventually generates a burst of action potentials, the frequency of which 

corresponds to the intensity of light. 

Figure 3 shows the basis for the temporal integration. Dashed lines 

are used to depict approximately what the membrane potential trace would 

have been had the subsequent action potential not arrived. Due to the 

extended decay of the trace a subsequent arrival generates a response from 

a more depolarized state than would have occurred had the membrane 

completely returned to its resting potential. Each subsequent response 

starts from a more depolarized state relative to the resting potential with 

the result that the peak of the response is marginally greater. 

The trace of a unitary EPSP might be considered a form of 

expectation for future signal rates. Thus, a synapse could be viewed as an 

adaptive filter extracting information from the message to anticipate the 

contents of future messages for the purpose of responding to those 

messages more quickly. In the design of adaptive filters in nonstationary 

environments one is faced with several difficult problems with respect to 

real-time, on-line computation of the filter response. Typically, the 

statistical properties of the relevant signal parameters (in this case 

frequency) are computed from the sample space of the signal itself when 

the ensemble statistic is not known. Moving window averaging is 
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commonly used to compute this on-line, however, the method requires the 

discrete storage of samples over the course of the sample window and 

relatively sophisticated computation with each sample. Synapses do not 

appear to have either the storage space (particularly for discretely stored 

real numbers), nor the computational machinery to compute something as 

sophisticated as a moving window average. 

The general solution to these problems when designing certain kinds 

of adaptive filters is to use exponential smoothing (Sutton and Barto, 1981) 

which is an on-line, real-time computation that can be shown to be 

formally equivilent to the moving window averaging technique. A single 

stage averager is given by the recurrence formula: 

w(t+1) = ouc(t) + (1 - a)w(f) (3.1) 

where: 
w is the storage term 
x is the input term 
a is the smoothing constant, 0 < a < 1 
t is the time increment 

which is a particularly easy value to compute on-line and in real-time. The 

adaptrode development begins with this formulation. Rearranging terms, 

we have: 

w(t+1) = w(t) + ouc(t) - aw(t) (3.2) 

In this form it is easier to see the impact of a on the result. The storage 

term, w, will decay as fast as it rose when x goes to zero. Figure 4 shows a 

graph of the formula for a = .4. The choice of a is somewhat arbitrary 

but has been chosen so that the peak value of w after a single spike is less 



45 

than the trigger value of the neuron. This follows from the filtering 

capacity of the synapse as discussed above. In the graph the upper bound 

on w represents the maximum depolarization that could be achieved after a 

long train of spikes arriving at the maximum frequency. 

The trace represented in the graph shows some similarities with that 

of the stereotypic EPSP. However, there are also clear differences. Note 

in particular that the value of w falls asymptotically toward zero and does 

not have the desirable slow downslope shown in Figure 2. The solution is 

to change the second alpha to a new term, 5, which is set to some value less 

than a. The result of doing so is to slow the rate of decay so that a longer 

trace of the storage term is maintained as in Figure 5. This effectively 

lengthens the trace of memory in the system. 

w(t+1) = w(t) + ax(t) - 8w(t) (3.3) 

where: 
5 is a new decay term, 0 < 8 < a < 1 

1 + 

1 I 
| 
* t 
2 --

Exponential Smoothing 
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Fig. 4. Standard exponential smoothing for a single input pulse. 
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Modified Exponential Smoothing 
Single Spike 

a = 0.4 
8 = 0.15 

I input 

Fig. 5. Modified exponential smoothing for a single input pulse with a 
decay constant different from a. 

Modified Exponential Smoothing 
Low Frequency Spike Train 

a = 0.4 
8 = 0.15 

input 

Fig. 6. Modified exponential smoothing for a sequence of input pulses. 
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The formulation as in (3.3) does produce the desired longer 

downslope but produces an undesirable result when computing the trace 

after a rapid sequence. The value of w(h-I) is no longer bounded in the 

interval (0,1). This is shown in Figure 6 on the previous page. 

It is clearly undesirable to allow w to increase without bound. 

Therefore a shunting term is introduced into the formulation. 

w{t+1) = w(t) + ox(t)(wmax- W(t)) - 8w(0 (3.4) 

wherewmajc is the upper bound on the system, here set to 1. 

This has the effect of maintaining the upper bound on w, since as w 

approaches the boundary the term approaches zero and the effect of further 

inputs tend toward zero as well. Figure 7 shows the trace of w from (3.4) 

given a high frequency input signal. 

Shunted, Modified Exponential Smoothing 
High Frequency Spike Train 

13 \EJ e 
i 0* 

I 

Maximum depolarization 

a = 0.4 
8 = 0.15 

MM II Mill I 

I input 

Fig. 7. Modified exponential smoothing for a burst of input pulses with 
shunting term. 
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Comparing the traces of Figure 3 to Figures 6 and 7 shows that even 

this modified exponential smoothing mechanism lacks a longer-term 

memory component. The trace in the former figure shows that the floor 

level or equilibrium toward which the membrane potential returns is 

higher than before the series of spikes was received. This phenomenon in 

biological synapses is called potentiation, of which there are several types 

(Lynch and Baudry, 1985). In fact there is a range of potentiation time 

domains (Alkon, 1987) from very short-term to very long-term effects 

dependent on the input signal and correlated secondary factors. It is this 

complex dynamic which can be used to explain a variety of memory-

dependent behavioral phenomena (Alkon, 1987). 

I extend the now-modified exponential smoothing mechanism yet 

further by introducing a floor factor, /, into the last term in (3.4). 

w(t+1) = w(t) + aX(t)(wmax - W(t)) - 8(w(0 - f ) (3.5) 

I f f is set to zero, (3.5) reduces to (3.4). On the other hand, i f / takes on 

some value greater than zero, but less than w, then it is clear that w will be 

bounded from below by this factor. That is, it will not be able to decay 

below the value of/when x is clamped to zero. What values shall/be 

allowed to take on? And what should act to change those values? 
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Taking inspiration from biology again,/must evolve slowly 

compared with w, which represents the real-time memory trace. 

Furthermore, / , like w itself is somehow dependent on the input activity, 

but over a longer time scale. Could/, in fact, represent the longer-term 

time average of w? 

Let d e (0,1, 2,..., D) be the index on a set of time domains chosen 

such that the time constants, ad and 5d are progressively larger as d goes 

from 0 to D, some upper limit. Replacing/in (3.5) with a new storage 

factor, Wd+ I, the adaptrode equations are then given by: 

wd(t+1) = wd(t) + adXd(t)(wd-i(t) - wd(t)) - 5d (wd(t) - wd+\(t)) (3.6) 

where: 
Xd is an input signal as described later, xo is called the primary 
input to the adaptrode corresponding to the presynaptic input. 

Wd-i = Wffiox if d — 0 
Wd+1 = Wequil if d = D 

That is, if d = 0, then the shunting term in the second expression uses wmax, 

a constant, in place of Wd-i and if d = D, then the floor factor in the third 

expression is weqUii, another constant less than wmax, in place of Wd+i. 

The time-course behavior of storage terms, wo and vvi of a two-

domain adaptrode is shown in Figure 8 for the case of a single spike input. 

Adding the adaptive floor represented by w\ clearly increases the duration 

of a trace of wo without significantly changing the shape of wo's trace. 

Compare this figure with Figure 2 (decay curve). Clearly, and 

qualitatively, the former mirrors the latter. 
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Figure 8. The memory of a two-domain adaptrode. 

Similarly, Figure 9 mirrors the behavior of Figure 3 in that each 

subsequent peak is marginally higher than the previous peak, and the trace 

of depolarization is potentiated such that it will remain elevated for an 

extended period. 
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Two Domain Adaptrode - Storage Terms 
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Fig. 9. Memory traces for the two-domain adaptrode receiving a low 
frequency burst. 
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3.3 Construction of a Functioning Adaptrode 

Equation (3.6) provides a computationally efficient mechanism for 

integrating a single signal over time. Its qualitative behavior approximates 

that of biological synapses. With these results it is possible to construct an 

artificial synapse which will be embedded in an artificial neuron. 

In the following (and all previous) difference equations, an 

increment of time has been chosen so as to represent an interval from the 

onset of an action potential to the onset of the next possible action potential. 

This choice reflects the argument, made previously, for a model between 

the detailed Hodgkin-Huxely type and the typical neural network type. 

Thus in any given At I represent the presence (1) or absence (0) of an 

action potential. 

Response Unit 

While the value of wo might be used as the response output of an 

adaptrode unit, for reasons of flexibility I have incorporated a separate 

response unit, the output of which is given by: 

H* n - i f = 1 

u+a; ^ ( 0 - 8rr(0, otherwise ^ ' 

where: 
k is a preweighting constant e in general. 
XQ(T) is the action potential input to the adaptrode at time t, 

xoe {1,0}. 
8r is a decay constant for the response. 
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The constant, K, can be any negative or positive real number which 

can be used to: 1) preweight the synapse to model electro tonic distance 

from the neuron soma; 2) if positive, represent an excitatory synapse or if 

negative, represent an inhibitory one. In the simulations reported in the 

next chapter, K is either -1 or +1. Electrotonic distance refers to passive 

electrophysical characteristics of the cellular membrane that are affected by 

the physical distance from the cell soma (body) of a patch of membrane -

in this case a post-synaptic patch. 

Equation (3.7) describes a response that uses the trace of (3.6) where 

d - 0, if an action potential has arrived at the synapse. The adaptrode will 

produce an excitatory or inhibitory contribution (depending on K) with 

each action potential. Figure 10 is a graph of the response, r, along with 

the storage terms, wo and wi, as in Figure 9. As can be seen in the figure, 

r can decay at an independent rate from w>o and generate no contribution 

during periods of quiescence. 

Associative Encoding 

The adaptrode as given above, computes a temporal, multi-resolution 

average of the input signal as a basis for predicting the appropriate 

response level. That is it computes a form of autocorrelation over 

increasing time scales as a basis for response. Associative encoding 

addresses the issue of cross-correlation among multiple signals. 
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Fig. 10. A two-domain adaptrode with a response unit producing trace r. 

Associative encoding is accomplished in a rather straightforward 

manner. The principal idea is to introduce a threshold gate in the coupling 

between any two time domain levels, d and d+1. Given a gate, (d e {1, 

2, 3,..., D}, is an index of the level), and Yd e let ha denote the sum of 

response signals, /*y, from a proscribed set = {ry l i e {1, 2, 3, ...N}, 

the set of neurons in the network, including sensor inputs and j e {0, 1, 2, 

..., «;} the set of adaptrodes in neuron i}. That is: 

rn (3.8) 
Hd 

The set is given in its most general form where the response 

signal from any adaptrode (including the current one) can be designated in 

the set. For simplicity (as well as in practice), I will assume a single signal 

source rather than a set. 
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A particular temporal ordering constraint is imposed by the nature 

of associative learning phenomena such as classical and operant 

conditioning as covered in Chapter II. That is, the order of arrival of 

signals must be strictly enforced, where the arrival of the hurdling signal 

must come after the arrival of the primary excitation, XQ, of the learning 

adaptrode. The former takes on the role of a reinforcement signal in the 

terminology of conditioning. The current response, r^t), of the adaptrode 

is used to gate the computation of Xd. If exceeds a threshold, pd, before 

the summation of the hurdle sources exceeds yd, then the computation is 

performed. Otherwise it is locked out until the circuit resets. 

Mathematically for the input variable, Xd, for a specific adaptrode, k, of 

Equation (3.6) can now be defined as: 

f l , if r*(M) > pd and hdk(t) > Jdk „ m 

*<<*«>= to, otherwise (3-9> 

where: 
d indexes the time domain as above 
k is a new index for the current adaptrode in a population of 
adaptrodes. 
pd is a constant threshold to be described below. 

If the response, r, of the adaptrode is greater than a given constant, 

p, and the sum of the associated signals, h, is greater than the gate, g, then 

Xd, is set to 1 and for any d > 0 in Equation (3.6), wd will be increased iff, 

Wd-i is greater than wd by the equation. By setting p appropriately, one can 

control the time required to pass before the Wd level is permitted to 

potentiate. As with Equation (3.8), (3.9) is given in its most general form. 
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However, in practice, again, I have used this mechanism only in the wi 

level with good results (Chapter IV). 

3.4 Artificial Neurons 

At this point we are ready to construct a working artificial neuron 

that emulates some of the important computational properties of real 

neurons. The unit constructed here may be viewed as a very simple 

complete neuron as might be the case in the nervous system of an 

invertebrate, or it can be be construed as a compartment model for 

constructing much more complicated neurons such as pyramidal neurons of 

the mammalian cortex. This is quite different from the classical neural 

network caveat that "units" may represent individual neurons or groups of 

neurons. 

The conventional formal neuron has a set of input edge weights which 

are representative of the efficacy of a synapse in contributing to the 

generation of an action potential by the neuron. Model neurons based on 

adaptrodes are not much different except that the single weight (per input) 

is replaced by an adaptrode with its internal set of weight signals and its 

external response. It is the latter which constitutes the input to the spatial 

integration process leading to an overall activation value for the neuron. 

Integration is performed once in each time step, the same as the input 

sample rate, and the resulting activation is compared to a threshold. If the 

activation exceeds the threshold, then the neuron fires an action potential, 

otherwise it does not. It is this clocking at the maximum frequency rate 
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which squashes the output signals of neurons to be in the same range as the 

input signals at the synapses. 

Figure 11 compares a "conventional" artificial neuron (a) with an 

adaptrode-based neuron (b). Focusing on the adaptrode-based figure, the 

response signals from adaptrodes, labeled Ai through An, are summed and 

compared to the threshold, 0, as shown. The output signal, labeled y , will 

be a 1 (one) if the threshold is exceeded. In Figure l i b the output, y, 

serves a second purpose - as input to a special adaptrode labeled Ao. This 

adaptrode may be optionally used for several purposes. One important use 

is to compute a variable threshold based on output signal. This amounts to 

an activity-dependent learning process at the neuronal level which will be 

demonstrated more fully in Chapter IV. 

A second use is to provide a graded response output from the neuron. 

This signal may be used to establish cross-neuronal associations when the 

output of one neuron can act as a hurdle source for adaptrodes in another 

neuron. 

One major advantage gained in constructing neurons with adaptrodes 

is the ability to build a wide variety of neuronal types. This is possible 

because different types of synapses, with different dynamical properties, 

can be built by designating specific numbers of levels and values of ad and 

§d for all levels d in that type of adaptrode. This is an advantage from the 

standpoint of flexibility in creating models that emulate real biological 

neurons. It is, however, problematic from the standpoint of specification. 

There is, as yet, no theory that would guide the selection of these 

parameters and it may turn out that they be selected only empirically. 
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Comparison of Conventional Formal Neuron 
with Adaptrode-based Neuron 

a 

Fig. 11. Conventional formal neuron (a). Adaptrode-based neuron (b). 
Thin arrows with flat termini represent excitatory inputs, those with 
circular termini are inhibitory. Thick arrows represent weighted input (a) 
or response (b) values. The sigma processors (X) sum the graded values 
and produce an activation value which is fed into either a squashing 
function (a) or a simple threshold comparator (b). A unique aspect of the 
adaptrode-based neuron is the use of an adaptrode to monitor the output of 
the neuron. The response of the adaptrode (Ao) can be used to modify the 
threshold (0). 

To formalize the above description, let a be the activation of the 

neuron from the sum of current responses of all but "silent" adaptrodes. 

That is: 

a(t) = J^CFjrjit) 
;=i 

(3.10) 

where n is the number of adaptrodes in the neuron and <7; e (0,1) is set for 

each adaptrode that is not silent. An example of a silent adaptrode, 

typically, is the output adaptrode. 
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Then output, xo(t), of the neuron is defined to be: 

f l , if a(t) > 0 
* o ( t ) - 10, otherwise ( 3 > 1 1 ) 

Recalling that each At = (t+1) -1, is the the time interval of an action 

potential plus refractory period, the interpretation of (3.11) is that an 

action potential either fired, or it did not, during the time increment 

depending on the summed activation (EPSP) of the unit. 

3.5 Concluding Remarks 

The basic model of a biologically-realistic artificial neuron has been 

presented in this chapter. The basis of the claim for biological realism is 

that the adaptrode synapses show dynamical behavior in consonance with 

what is currently known about real synapses with respect to the post-

synaptic potential. The result is that the spatial integration of synaptic 

contributions and the decision to fire an action potential in any given At is 

much more like a biological neuron than current models derived from the 

McCulloch-Pitts formal neuron. 

As mentioned in Chapter I, one of the motivating principles followed 

in the development of the model has been to retain the computational 

tractability of more conventional ANNs while increasing the overall power 

of the artificial neuron. Clearly the equations presented in this chapter 

introduce no significant problems with respect to this goal. Typically, the 

computational complexity of ANNs is given in terms of the number, n, of 

connections or synapses that must be processed and in the majority of cases 
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this is found to be linear in n (Hecht-Nielsen, 1986). The adaptrode 

formulation increases the computational complexity of a neural network by 

no more than a constant amount. 

In this chapter the adaptrode was developed from consideration of 

the synapse as an adaptive filter. That is, only the input/output character-

istics of a biological synapse were used to infer an internal mechanism by 

which adaptive response might be achieved in a computationally tractable 

way. In the next chapter, the adaptrode formulation is compared structur-

ally with aspects of the post-synaptic compartment that give rise to the 

multi-time scale memory trace processing given in Alkon (1987). As will 

be seen, there is a striking correspondence between the model and the 

biology which lends weight to the argument that adaptrode processing 

captures the essential qualities of biological synaptic plasticity. 



CHAPTER IV 

CORRESPONDENCE OF THE ADAPTRODE WITH BIOLOGY 

4.1 The Biological Basis for an Adaptrode-like Model 

The adaptrode model was developed in Chapter HI from a consider-

ation of the signal filtering role of synapses in biological neurons. In this 

chapter I will examine the correspondence between the adaptrode model 

and what I believe to be the important aspects of the neurophysiology of 

biological synapses that explains adaptive response. 

The plan of this chapter is to give a summary of the Alkon model 

and then to compare it with the adaptrode in terms of structural corres-

pondence relating to the abstract view presented in Chapter 2 (Figure 12). 

Limitations of the adaptrode in emulating a biological synapse will also be 

examined. 

As shown in Chapter III, the adaptrode's dynamics emulate, at least 

qualitatively, the time-course behavior of the post-synaptic membrane 

reactivity. Alkon (1987) has developed a model of synaptic efficacy which 

depends not only on real-time modulation of the post-synaptic membrane 

patch (specifically the conductance of potassium ion channels), but also on 

intermediate-term and long-term molecular processes which operate deeper 

in the compartment cytosol. Changes in protein and mRNA synthesis are 

implicated and nuclear processes such as DNA activation have been 

suggested as well. 

60 
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The general model is summarized in Figure 12 and described here. 

The arrival of an action potential at a synaptic bouton (xio and *20 in the 

figure) initiates a rapid depolarization of the post-synaptic membrane. The 

nature of a unitary excitatory (inhibitory) post-synaptic potential, or EPSP 

(IPSP), was reviewed in Chapter HI. As the EPSP increases rapidly, 

somewhat slower acting processes, such as the sodium (Na+) ion pump, 

work to restore the membrane polarization to its resting state. As has been 

seen in the trace of the EPSP in Chapter III, this decrement process is 

negative exponential. 

Heavy black arrows in the figure represent slow decrement 

processes, while the thin, solid arrows represent fast forward driving 

processes. Dashed arrows represent feedback loops that down-modulate 

decrement rates. Up-pointing open arrows represent accumulation or state 

variables such as the EPSP or calcium concentration in the cytosol ([Ca2+]). 

Throughout the diagram as and ds represent kinetic rate constants that will 

be corresponded with the adaptrode model below. Specific references to 

neurophysiological components are made for the purpose of letting the 

interested reader be guided in referring to Alkon (1987). No attempt will 

be made here to illucidate the details of this model. 
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Fig. 12. A summary of the major biophysical processes that transpire in 
the post-synaptic cytosolic compartment. See the text for an explanation of 
the elements of the diagram. 

Following the track of events from the CS input (*10), through its 

EPSP, an arrow representing a forward, fast reaction points to the 

accumulation of calcium ions in the post-synaptic cytosol. Calcium 

accumulates due to the opening of ion-specific channels that allows the Ca2+ 

ions to enter the cell following a gradient. The rate of accumulation is 
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dependent on the magnitude of the EPSP. Over a slightly longer time scale 

(81 in the diagram) Ca2+ is removed from the cytosol by a number of 

mechanisms that work to restore the cytosolic concentration to pre-

excitation levels. It is important to note that these Ca2+ removal processes 

operate over a slightly longer time scale than the possible excitation rate of 

the EPSP. If several action potentials arrive in rapid succession, the 

calcium channels will be reactivated and there will be a net greater 

accumulation of Ca2+. Thus, Ca is acting as an excitation integrator (leaky) 

providing a rough approximation of a time averaged excitation. 

The accumulation of Ca2+ in the compartment triggers another 

process, the calcium-mediated phosphorylation of certain proteins 

associated with channels which provide for a potassium ion (K+) outflow 

(counter to the Na+ and Ca2+ inflows). When K+ outflow in response to 

depolarization is so down-modulated, that is K+ concentrations remain 

elevated in the cytosol, the membrane potential is kept more positive with 

respect to the exterior. Effectively the post-synaptic membrane is left in a 

state of polarization that is closer to the triggering potential. Through this 

feedback loop, any subsequent EPSP starts from a higher level. This is 

thought to be the basis for the temporal integration phenomenon reported 

in Chapter III. 

The time course for the EPSP as has been mentioned in on the order 

of milliseconds (time constants in the microsecond range). In the event of 

a rapid series of action potentials, a tetanic input, the local potential 

remains elevated due to the above mechanism for several seconds to 

minutes (PTP or post-tetanic potential). Thus the general form of the 



64 

dynamics is captured in this one loop. A fast activating process with a 

somewhat slower recovery rate drives the slower accumulation of a 

variable such as the Ca concentration. This, in turn drives a yet slower 

process (Ca2+ mediated phosphorylation). All of these processes have 

recovery rates that are longer than the activation rates. Eventually, the 

accumulation of one of these variables provides a unique kind of positive 

feedback to the original driving process. The feedback diminishes the 

decay rate of the fast driving process. Yet due to the decrement of the 

intermediate variable (e.g., removal of Ca2+ from the cytosol) this does 

not, ordinarily lead to a runaway process. 

The accumulation of Ca2+ triggers other processes shown in the 

diagram of Figure 12. These processes are characterized as having a yet 

longer time course (order of hours) and lead to an intermediate-term 

potentiation (ITP) of the post-synaptic membrane. If the Ca2+ 

concentration remains high enough for a long enough period of time, as 

would happen with either strong tetanic input or weaker, but sustained 

input, or, as I will discuss below, associated sources from cytosolic inputs, 

still slower acting and longer lasting processes accrue leading to a long-

term potentiation (LTP) of the post-synaptic membrane. These processes, 

involving the translocation of protein kinase-C from the cytosol to the 

membrane where its impact on additional protein phosphorylation is more 

efficacious, is thought to trigger (or drive) yet longer term processes such 

as the synthesis of protein, perhaps increasing the availability of new 

channel components for insertion into the membrane. Alkon (1987) 

reports evidence of increased messenger RNA synthesis and possibly DNA 
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activation that could lead to specific structural changes in the post-synaptic 

membrane and compartment. Such morphological changes after learning 

have been noted. 

The model presented so far might well be common to both 

associative and nonassociative learning mechanisms. Associativity requires 

the convergence of signals from two or more sources. Alkon (1987) points 

to the Ca2+ concentration in the post-synaptic compartment as a possible 

candidate (there are, in fact, many other candidates and in all likelihood 

many of them may operate in the same system - for the purposes of this 

discussion it is only necessary to focus on one such candidate). If the 

removal rate of calcium ions is increased by the presence of additional 

mechanisms (calmodulin, etc.) then a synaptic compartment might not 

undergo the kinds of processes outlined above without extra influxes of 

Ca2+. Such sources might be neighboring synapses. In Figure 12 an input 

at US (X2Q) would initiate the same kinds of reactions in the post-synaptic 

membrane. If the synapse type (and there are numerous types) is such that 

it accumulates Ca2+, and that Ca2+ diffuses to its neighbors, then such a 

synapse would provide a correlated source of Ca2+ that could participate in 

initiating the sequence of events described above. 
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4.2 Correspondence of the Adaptrode Model 

The Alkon model describes a time-domain cascade of processes 

(some of which may operate in parallel) which, collectively, modulates the 

post-synaptic membrane reactivity. A set of processes which have similar 

time-course behavior operate together, defining the dynamics of a 

characteristic time domain. For example, processes of neurotransmitter-

and voltage-activated ion channel openings, triggered by the arrival of an 

action potential at the pre-synaptic bouton, act together to reduce the 

membrane potential (in the case of excitatory synapses). These forward-

driving processes are followed and countered by the somewhat slower 

processes of active ion pumps working against the ion concentration 

gradients to restore the resting potential of the membrane. As a group, 

they operate in the microsecond time constant range with the time-course 

trajectory of post-synaptic potential in the millisecond scale. The 

adaptrode emulates this set by collapsing several component variables into a 

single time-domain variable, the w0 level, where an action potential, x0, 

triggers the depolarization, OL0(wmax - w0), offset by the slower recovery, 

50(w0 - Wi), due to the actions of the sodium and potassium pumps. This 

last expression, (w0 - wj) provides the feedback coupling. The Ca2+ 

concentration, as qualitatively represented in the adaptrode, would be at the 

Wi level. The forward drive, and its intrinsic rate, is coupled with the 

degree of depolarization of the membrane by cci(u>0 - vvx). Similarly, the 

removal of Ca2+ , a much slower process than the action of ion pumps 

mentioned previously, is approximated as - w2). 
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Which brings us back to the feedback coupling noted above. In the 

Alkon model, the presence of Ca2+ in the cytosol has an immediate 

damping effect on the potassium ion, K+, outflow. The effect, measured as 

the post-tetanic potentiation (PTP), is highly transitory, lasting only a few 

hundred milliseconds to perhaps several minutes depending on the 

preparation being studied. This marginally reduced potential, which is 

shown to have exponential decay, is a trace recording which is dependent 

on the intensity and/or duration of the input signal. As Alkon (1987) 

points out this translates into an increased, if transient, efficacy for the 

synapse. Hence, in the adaptrode, we make the decay of w0 (depolarization 

state) dependent not on just its own magnitude but on the difference 

between its magnitude and that of Wi (Ca2+ concentration). 

The w2 level in the adaptrode might be considered as a qualitative 

model of the phosphorylation of proteins, presumably components of the 

K+ channels or channel blockers that constitutes another, longer time 

domain. This activity is driven by the concentration of Ca2+ and is 

reflected in the adaptrode model in the form of a2(w1 - w2). Though the 

restoration mechanism for the K+ channels was not directly addressed in 

Alkon (1987), I suspect that some process restores them to their former 

conductivity in the absence of Ca2+. I believe it is reasonable to expect this 

restoration to follow an essentially exponential form. 

Finally, the gate hurdling mechanism in the adaptrode fills the role 

of the cytosolic convergence site for correlated signals. An interesting 

phenomenon in neural potentials involves what is known as a reversal 

potential. If the post-synaptic membrane is already too positive with 
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respect to the exterior, instead of a strong EPSP, excitation, the membrane 

undergoes a repolarizing shift. The characteristic potential at which this 

occurs is termed the reversal potential. It is intriguing to see that if a 

cytosolic process, such as the diffusion of Ca2+ into the compartment 

occurs prior to the input of an action potential actually prevents, or at least 

diminishes the possibility of the action potential setting off the chain of 

events outlined above. As I have shown in both in the derivation of the 

adaptrode model in Chapter III and in the simulations of Chapter IV, the 

hurdle mechanism, as in Equation (3.10), specifically the role of the p 

constant, acts to prevent potentiation from occurring in the event that the 

hurdle signal (from the US input) arrives before the input from the CS 

signal. 

4.3 Limitations of the Model with Respect to Biology 

The adaptrode as currently given is a linear, deterministic device. 

There are known to be a number of nonlinear processes at work in the 

feedback mechanisms of real synapses. Therefore, as an emulation of 

biological learning, the adaptrode is likely to be, at best, a first 

approximation. 

Another point to be reemphasized is that the adaptrode is not meant 

to be a mathematical model of the synapse. The time steps used in 

adaptrode processing are far to course to represent the fine structure of 

synaptic dynamics which would ordinarily be represented by a system of 

coupled, ordinary differential equations. It may be possible to build 

approximate models of neural circuits with adaptrode-based neurons that, 
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to some degree, demonstrate the large-scale features of network dynamics 

in living systems. However, the adaptrode, though derived from the multi-

time domain model of those dynamics can in no way describe the level of 

detail that a neurophysiologist would require. 

In terms of the behavior-producing capacity of the model, as will be 

shown in the next chapter, several key features of classical conditioning in 

simple invertebrates are found in the simulated adaptrode-based neuron. 

This does not translate directly into the production of animal-like behavior 

(animatics) in a fully embodied robot, but it is certainly suggestive of the 

possibility. 

4.4 Concluding Remarks 

In this chapter it has been shown that the adaptrode model, to a first 

approximation, corresponds quite well with now known or implicated 

biological mechanisms in post-synaptic placticity. This aspect, taken 

together with the results of the simulations reported next is compelling 

evidence for giving this model serious consideration as an alternative to 

simple weighted input connections in neural networks. 



CHAPTER V 

CONDITIONED RESPONSE LEARNING - SIMULATION RESULTS 

5.1 Classical Conditioning as an Experimental Model 

The animal learning paradigm of classical conditioning is considered 

to be a good starting point for the study of learning phenomena, both in 

neurobiology, to link behavior to neural substrates, and in artificial neural 

systems, to show performance (Alkon, 1987; Alkon, 1989; Alkon, et al., 

1990; Alkon, et al., 1991; Buonomano, et al., 1990; Byrne & Gingrich, 

1989; Byrne, et al., 1990; Gingrich & Byrne, 1987; Klopf, 1988; 

Grossberg, 1991b; Klopf & Morgan, 1990; Moore & Blazis, 1989; 

Morgan, et al., 1990; Staddon, 1993; Sutton, 1988; Sutton & Bartow, 1981, 

1987, 1991; Tesauro, 1986). In this chapter the adaptive capabilities of 

adaptrode-based neurons in the framework of the empirical work on 

classical conditioning will be demonstrated. This framework has a rich 

history which provides a widely accepted testbed for neural learning 

algorithms and neural network architectures (see esp. Klopf, 1988). 

Traditionally, researchers have demonstrated how their models 

match the animal performance data reported in the animal learning 

literature. It is customary in this framework to show that a model can 

account for basic conditioning phenomena and then show that the model 

performance measures approximate, in the sense of curve fitting, the 

animal performance data. Usually the modeler attempts to show how their 
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model addresses some more subtle aspects of learning and memory 

behavior which extends the usefulness of the model. This chapter will 

follow that formula. The first task is to show how the performance of an 

adaptrode-based neuron matches that of classical conditioning in animals, in 

particular, invertebrates. Then it will be shown how this model addresses 

the problem of contrary association learning without memory washing out. 

This demonstration advances the capabilities of artificial neural systems 

further into the domain of animal-like learning. 

In many of the models where artificial neural systems have shown 

some of the characteristics of classical conditioning there have been several 

difficulties with respect to the setup and interpretation of the data. It is 

frequently the case that the learning regimens or 'protocols' that are used 

in the model are highly abstract versions of those employed in actual 

animal studies. It must be remembered that the networks that are being 

simulated are not representing whole brains or whole animals. They do 

not, for example, live out or experience inter-trial periods as an actual 

animal does. Therefore it is hard to asses the role of forgetting or 

consolidation in these models. Also, the measurements taken from the 

simulation are often not necessarily those that are related to whole-animal 

performance in terms of evoked behavior. For example, Klopf (1988), 

who helped to pioneer this methodology, took the weight values of his 

drive-reinforcement neurons as a measure of memory acquisition over a 

sequence of trials. Similarly, Sutton and Barto (1981, 1987) used the 

connection weight as an analogue of performance. Both of these 

approaches assume that the connection weight is equivalent to what has 
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been learned. Yet what animal learning researchers measure is not 

synaptic efficacy, but the propensity (i.e., probability) for an animal to 

perform a specified behavior after receiving the appropriate stimulus. 

Whole animals, particularly mammals, have very complex networks that 

mediate behavior and memory. It is completely unclear how the measured 

performance of such a complex animal, even on simple protocols, is 

directly correlated with specific memory encoding sites within its brain. 

Finally, none of the models mentioned above address the role of 

motivation, neuromodulator effects, or other complicating factors in 

present in real animal studies. For example, animals must generally be 

hungry in order for a reward-based (food) protocol to show the 

unconditioned stimulus/response required for conditioning. The adaptrode 

model to be presented below does not address this issue directly. However, 

the means by which associative traces converge in the hurdle computation 

between time domain in an adaptrode offer a mechanism for use in 

exploring such issues in the future. 

For these reasons, the simulations that are described below are 

related to conditioning of very primitive animals - invertebrates - such as 

sea slugs (Alkon, 1987 - Hermissenda) and snails (Gelperin, et al., 1985 -

Umax). As was discussed in Chapter IV, Alkon (1987) and others have 

developed considerable evidence for the correlation between memory 

traces in the primitive brains of such animals and the behavior of the 

animals in classical conditioning trials (Kandel & Schwartz, 1982; Small, 

Kandel, & Hawkins, 1989). In the simulations reported here both trace 

phenomena and performance (i.e., network output) will be shown. 
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In addition to staying with animal models where memory trace 

phenomena are better understood and correlated with performance, the 

simulations below attempt to more closely approximate the real-time 

quality of actual training protocols used for these animals. They include 

long inter-trial periods in which the network is allowed to 'equilibrate' or 

experience purely (pseudo) random input fluctuations as would be the case 

for a live animal. 

5.2 Local-Interaction vs. Hebbian Learning 

The adaptrode mechanism produces a memory trace of a signal 

either as an uncorrelated time average or, in combination with a correlated 

hurdle signal, as an associative time average. This addresses the dynamics 

of signal encoding (trace formation) but does not speak directly to any 

specific learning rule. In this work I will focus on associative learning 

since it is a requisite for the conditioning paradigm. In that arena there are 

a number of correlation learning rules that have been proposed. It is 

possible, with adaptrodes, to construct neurons which emulate several of 

those rules. I will use two reinforcement models which relate to known 

biological mechanisms. One is a form of the Hebb postulate (1949) in 

which neuron output as recorded by the output adaptrode is used as 

feedback to the intermeditate-term memory trace to provide the 

potentiating hurdle signal in the learning synapse. The other is related to 

the local-interaction postulate of Alkon, et. al. (1991) in which the 

unconditioned stimulus input is directly used to potentiate the learning 

synapse. 
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Figures 13 and 14 show the schematic diagrams of these two 

configurations. In the case of the Hebbian neuron (Figure 13), the 

response output from adaptrode Ao is used as the hurdle signal for level w\ 

in the learning adaptrode (A2). The input to this latter adaptrode is labeled 

CS to indicate that it is the conditionable stimulus that will come to be 

associated with the US or unconditionable stimulus, arriving through 

adaptrode Ai. For the Hebbian neuron this occurs when the neuron's 

output is sufficient to cause the output adaptrode to become potentiated. 

The latter is set so that the response will 'follow', that is use the same value 

as, the wo value in each time step. 

For the local-interaction (LI) rule, the Ao adaptrode is not used. The 

response from adaptrode Ai, the US input, is used as the hurdle signal to 

adaptrode A2. 

In both figures an additional input, x?,(t), to adaptrode A3 is shown. 

This adaptrode will be used in network simulations where cross inhibition 

will be employed. Also, the response output of adaptrode Ao is shown as 

input to the threshold processor, a small rectangle labeled 6. This indicates 

the capacity for the output adaptrode to be used to modify the threshold of 

the neuron if desired. This too, will be used later. 
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Hebbian Neuron 

Hebbian Neuron 

Inhib 

Fig. 13. The response of adaptrode Ao is used as a hurdle signal to the wi 
level of the learning adaptrode A2. This arrangement constitutes a 
Hebbian-type feedback from the output so that correlations captured by the 
A2 adaptrode are between the input at *2 and the output of the neuron. 

*1(0. us— 

Local-Interaction Neuron 

h 

Local-Interaction Neuron 

c s - 2 ^ 1 

Inhib.-^Cj 

Fig. 14. In the local interaction configuration, the response of the US 
receiving adaptrode, Ai, is used as the hurdle source for the learning 
adaptrode. Thus the correlation captured is between two inputs. 
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5.3 Input-Output Relations - Experimental Protocols 

An experimental protocol is defined along several dimensions. The 

first involves the phase relation between the offset of the CS signal and the 

onset of the US signal. If the US onset occurs before the offset of the CS 

the conditioning method is called delay conditioning. Alternatively, if the 

US starts sometime after the offset of the CS then the method is called trace 

conditioning. In the latter instance the focus is on exploring the efficacy of 

a memory trace, (Hull, 1952). Figure 15 shows the phasic and amplitude 

relationships which are used in the following simulations. Arrows indicate 

the onset of the signal. It is customary to show these as step functions and, 

indeed the interpretation is that the sensory source for these signals is 

either present or absent. In animal experiments such as the classical 

Pavlovian work (Pavlov, 1927) with dogs, the CS is the non-semantic (that 

is, meaningless, a priori) stimulus such as the ringing of a bell sometime 

prior to the presentation of food, which is the US or reinforcer (having 

semantic quality). In delay conditioning, the bell would still be ringing 

when the food is presented, while in trace conditioning, the bell would be 

silent for some, usually short, period prior to food presentation. 

The CS signal for simple invertebrates such as snails could be the 

presence of light (Alkon, 1987) to which the animal is mildly attracted. 

Alkon showed that the snail learns through a set of conditioning trials on 

shaking (the US) to avoid the light or contract its foot in a characteristic 

'clinging' mechanism (the UR/CR). He conjectured that this is the type of 

response that would benefit the snail in its natural marine habitat where its 

food source (algae) would ordinarily be associated with the presence of 
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light which is near the surface. If, however, there is wave turbulence near 

the surface then the snail might get knocked off the algae and fall to the 

bottom, possibly becoming food for some other creature. 

Studies of the gill withdrawal reflex (UR) in another snail, Aplysia 

(Carew, Walters & Kandel, 1981), and taste aversion response in Limax 

(Gelperin, Hopfield, & Tank, 1985), have shown similar results in 

demonstrating classical conditioning in animals possessing relatively simple 

nervous systems. 

Delay and Trace Conditioning Protocols 
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Fig. 15. Signal traces for the CS and US signals under the two protocols, 
delay (upper) and trace (lower) conditioning. 
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Within either of, trace or delay conditioning, protocols several 

variations on specified parameters are used to test for the signatures of 

conditioning phenomena. The experiments are conducted so as to measure 

the acquisition of the CR, conditioned response, which is the same as or 

similar to the UR or unconditioned response in terms of performance 

(amplitude) and overt behavior (shape). The UR is the output behavior 

evoked by the US alone. Several in-protocol variants have been found to 

reveal specific characteristics of classical conditioning. Experimenters will 

typically vary one of these while holding the others at some nominal 

(generally empirically determined optimal) value. 

The values assigned to these variables constitutes a protocol regimen 

which is applied to several animals, over several sessions to obtain data for 

that regimen. The regimen schedule used in the simulations reported here 

are: 

1. Interstimulus Interval (ISI), defined as the time period 
between onset of CS and onset of US signals. 

2. Inter-episode Interval (IEI), defined as the time period 
between the offset of the US of one trial and the onset of the 
CS for the next trial. Also called the 'between-trial period.' 

3. CS Duration, defined as the time period during which the CS 
signal is on. 

4. US Duration, defined as the time period during which the US 
signal is on. 
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Figure 16 summarizes these variables in a typical delay conditioning 

protocol. The figure also shows a 'Sample Output' period after several 

trials. This represents a test probe in which the CS alone is presented and 

the CR is measured to determine the degree of acquisition. In addition to 

the above variables, the number of sequential trials prior to a test probe 

can be varied as can the amplitude of the signals. In order to keep the task 

manageable, within the scope of this work, these were fixed for the 

simulations run. 
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Fig. 16. The factors that are varied in the course of learning experiments 
in classical conditioning. All of the factors shown are time dependent. Not 
shown, but also of importance are amplitude values and relationships of the 
two signal types. As the figure depicts, after some number of pairings of 
the CS and US, with long intervals in between, the subject is sampled with a 
CS-alone test probe. This protocol is used in the simulation experiments 
presented here. 
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Protocol: 
Experimental Protocol Setup 

Local In refaction n.n Hehhian 
ISI CS-dur US-dur IEI Extinct ISI CS-dur US-dur IEI Extinct 
(.6 sec) (4 sec) (60 sec) (5 min) (25 mill) (.6 sec) (4 sec) (60 sec) (5 min) (25 min) 

0.0 l 5 l 5 0 .0 l 5 l 5 

3 .2 2 10 2 10 . 2 2 10 2 10 
Q .4 3 20 3 15 .4 3 2 0 3 15 

.6 4 30 4 20 .6 4 3 0 4 20 

.8 5 4 0 5 25 .8 5 4 0 5 25 
1.0 6 50 6 30 1.0 6 50 6 30 
1.2 7 60 7 35 1.2 7 6 0 7 35 
1.4 8 70 8 4 0 1.4 8 7 0 8 4 0 
1.6 9 80 9 45 1.6 9 8 0 9 45 
1.8 10 90 10 50 1.8 10 90 10 50 

(.4 sec) (4 sec) (60 sec) (5 min) (25 min) (.4 sec) (4 sec) (60 sec) (5 min) (25 min) 

.2 .5 5 I 5 .2 .5 5 I 5 

.4 1 10 2 10 .4 1 10 2 10 

.6 2 20 3 15 .6 2 20 3 15 

.8 3 30 4 20 .8 3 30 4 20 
Q 
cd 1.0 4 4 0 5 25 1.0 4 4 0 5 25 
u* 

H 1.2 5 50 6 30 1.2 5 50 6 30 
1.4 6 60 7 35 1.4 6 60 7 35 
1.6 7 70 8 4 0 1.6 7 70 8 4 0 
1.8 8 80 9 45 1.8 8 8 0 9 4 5 

9 90 10 50 9 9 0 10 5 0 
10 10 

Table 1. Nominal and variation values used in the simulation experiments. 

Table 1, above, summarizes the values that were used to test the 

model neurons of Figures 13 and 14. Numbers in parenthesis show the 

nominal values used for simulations when a different variable was being 

tested. There are small differences in some values (particularly the ISI 

values) between the delay and trace protocols, reflecting the temporal 
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differences between these two protocols. Values used to test the Hebbian 

vs. Local Interaction models were the same. 

Weight Traces for Delay and Trace Protocols 
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Fig. 17. Traces of the wo and wi weights as the CS and US signals are 
applied. The top panel shows an initial trial and a subsequent trial under 
the delay conditioning protocol. The bottom panel shows an initial trace 
conditioning result. 

5.4 Single Neuron Performance 

As mentioned previously, most of the simulation work has focused 

on synaptic weight evolution over the above described protocols. In this 

work I will focus on the output of the neuron which I believe more 

appropriately represents performance. However, it is instructive to 

observe the relationship that weight change has relative to the signal traces 

of Figure 15. Accordingly, Figure 17, above, shows traces of the WQ and 



82 

wi values for the CS receiving (A2) adaptrode, superimposed over traces of 

the CS and US inputs. In the case of delay conditioning several points are 

worth noting. First, if the ISI period is long enough to allow wo to 

approach its asymptotic value, we can see that the onset of the US causes w\ 

to start to rise which, in turn, allows wo to marginally rise. 

In the top trace (Delay Conditioning) is seen a second trial after an 

inter-episode interval. The values of wo and w\ have continued to decay 

gradually, but remain slightly elevated due to the potentiating effect of wi 

on wo. The impact is that at the onset of the subsequent episode (CS), wo 

rises slightly faster, with a steeper slope, and achieves a slightly higher 

asymptotic value. Over many trials, the slope of the rise of wo becomes 

significantly steeper, and, as will be seen in the simulation of a simple 

network below, becomes an important factor in the situation where two 

adaptrodes are competing through negative feedback. 

The bottom trace shows that trace conditioning produces essentially 

the same relationship as does delay conditioning but at a lower asymptotic 

value. Also, since the US does not overlap the CS, there is no marginal 

rise in the wo trace. Rather, the late rise of w 1 simply changes the shape of 

the exponential decay curve following the offset of the CS. 

5.5 The Simulation Environment 

The simulations reported herein were done using an Intel 

Corporation, iA-486 platform running the MS-DOS, version 5, operating 

system. The program was written in C and accommodates two versions of 

the adaptrode equations. Since the objective of this line of investigation is 
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to eventually produce a real-time, on-line processing capability, the 

adaptrode formulations were converted to integer representation. All 

divisions were converted to right shift operations using the mathematical 

equivalence of: 

fract = yx 

where: 

/ e (0, 1, 2,... F), F the number of right shift operations 

x is the number of time ticks between evaluations of fract. 

Every rate constant (e.g., a or 8) in the adaptrode equations are 

converted to equivalent fractions by designating the/and x values. For 

example, oco for the learning adaptrode in the simulations is set to 0.125 

which is equivalent t o / = 3 and x = 1. Similarly, 5o for the same 

adaptrode is 0.025 which i s /= 3 and x = 5. In the latter case, the 

difference between wj and wd+\ is taken every 5th time step and the result 

is shifted right 3 times. The resulting quantization error for time steps 2 

through 4 is not judged to be significant in terms of overall performance of 

the adaptrode. A rule of thumb has been used in selecting values for/and 

x that says for any given integer scale, keep /small so that the quantization 

error at the zero or wequa asymptote is minimized. For example, it is 

found that for values of wmax of 200 - 255 (8 bits resolution)/= 3 

produces good general results. In this case the quantized asymptote is 9 (w</ 

will never fall below vv̂ +i+9) which is mitigated by a secondary error 

minimizing method of decrementing the Wd value by one as long as it is 
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greater than the Wd+i value every ten time steps. The same approach is 

used at Wd-i asymptote. 

The two versions of the adaptrode that have been simulated are the 

standard form as given in equations (3.6) through (3.11), which uses a 

pulse coded input (1 or 0), and a time-averaged version in which the 

number of pulses over ten time ticks are lumped and multiplied by 1/10th 

the maximum signal frequency is used as input. This second version 

affords additional speedup of computation without, apparently, sacrificing 

the quality of results. Both versions have been tested on the models 

described in this work and have been found to produce equivalent results. 

Thus, the time-averaged version is preferable for long simulation runs. 

5.6 Simulations and Results 

A model neuron was simulated in the above environment under the 

various protocols to be described in the text, and as summarized in Table 1. 

Table 2, below, gives the parameter values for the learning adaptrode in 

the model. The neuron consists of three adaptrodes, two for input and one 

receiving its input from the output of the neuron. One of the input 

adaptrodes is designated as the 'learning' adaptrode or the unit that encodes 

the memory traces of the CS and, through the hurdle mechanism at its wi 

level, encodes the association between CS and US or between CS and UR 

for the Local Interaction and Hebbian rules, respectively. The other input 

adaptrode is the US input. This adaptrode does not learn in the sense that it 

encodes an association. It is a single-domain unit that undergoes wo 
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dynamics but does not potentiate. The output adaptrode, similarly, does 

not learn in the sense of encoding an association. 

In the simulated neuron, the threshold value, q, is held constant at 

100 for all runs. 

Learning Adaptrode Parameters 

Domain a /, 5 ft, Ts 

0 6.250E2 4 1 2.500E2 3 5 

1 3.125E3 4 20 1.250E3 3 100 

2 6.250E4 4 100 3.125E5 5 1000 

W W % Pi 

200 50 50 

Table 2. Parameter values used for the simulations of the learning 
adatrode in the environment described in section 5.6. The non-learning 
adaptrodes had the same values for ao, So and Wm<u-

Performance Acquisition 

A conditioned response (CR) is acquired after repeated presentation 

of a conditioned stimulus (CS) followed shortly by an unconditioned 

stimulus (US) acting as a reinforcer. The CR resembles, or may be the 

same as the unconditioned response (UR). After so many trials where the 

CS-US pairing has occurred, the experimenter subjects the animal to a CS-

alone episode having the same magnitude as the paired occurrence of CS. 

This is a test probe, and the experimenter measures the CR that obtains in 
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response to the CS alone probe. Over many series of trials and probes, the 

experimenter measures the evoked response. 

The CR may have an all-or-none character or be a graded response. 

In the former case, the experimenter measures the increase in the 

probability of response and plots this as a function of the number of trials. 

In the latter case, the CR magnitude may be plotted against number of trials 

to show the acquisition of the association. 

Much has been made of the characteristic S-shaped curve often found 

with these acquisition procedures (c.f. Klopf, 1988, esp. Figure 4). 

However not all acquisition measurements have proven to be S-shaped 

(Baxter, et al, 1991, esp. Figure 2.4). Coupled with the characteristic 

shape of the EPSP shown in the previous chapter, it is not at all clear how 

the synaptic weight change and the whole-animal acquisition curves are 

related. Klopf s model (1988) contains an explicit nonlinearity in the 

weight update function that accounts for the S-shaped curve he obtained. 

Other, more neurobiologically-motivated modelers have not found such a 

relationship in the physiological data (Baxter, et al., 1991). 

For the simulations reported here the neuron output, a graded 

response, is used as an indicator of the acquisition of a CR. It is easy to 

picture the output of such a neuron coupled to an actuator device (muscle) 

that produces the UR/CR behavior. Therefore, in what follows, the 

measure of CR refers to the relative strength of the neuron output over 

some stated number of trial-test cycles. In all of the simulations reported 

below, the number of paired trials was 6 per set, followed by a single CS-
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only test probe. The amplitude of the CS and US signals, while on, was 

held constant for all of the simulations. 

Figure 18 shows the acquisition curves for delay and trace 

conditioning protocols for both the local interaction rule and Hebbian 

neurons These are the curves obtained from models using the nominal 

values for the variable factors (see Tablel). 

Conditioned Response Acquisition 

05 20 

12 18 24 30 36 42 

No. of Reinforcement Trials 

Local Interaction Q Delay Cond. 

Hebbian A . Trace Cond. 

Fig. 18. Comparison of LI/Hebbian learning in delay and trace protocols. 

At the end of each set of six reinforcement trials, a test probe is used 

and the neuron response is measured. The measurement is actually the 

average response over the period of the CS stimulus plus eight time steps 

after CS shutoff. This is because the neuron continues to fire for some 

period after the removal of the signal. 
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As can be seen by the graph of Figure 18, the rate of increase of the 

response negatively accelerates and the curves approach some asymptotic 

values at the fixed amplitude input. As can be seen from the curves there 

are no appreciable differences between the delay and trace protocols except 

that the maximum CR values are lower. The principle difference between 

the LI and Hebbian learning rules is that the latter is shifted to the right due 

to the time delay for feedback in the Hebbian architecture. The apparent S-

shape to the curve here is an aberration of the graphing method and results 

from the fact that the resolution of the test probe is every 6th trial. Since 

the LI and Hebb neurons appear to perform essentially the same, except for 

the time delay effect, I will show the results primarily for the LI neuron, 

except in the sections on second-order conditioning and blocking where 

only the Hebb rule was used. 

This acquisition performance alone demonstrates that the adaptrode 

neuron is encoding an associative relationship between the two signals in 

the sense that after acquisition the neuron responds to the CS as if 

'expecting' the US. Furthermore since the two signals have a specific 

phasic relationship defined by the causal ordering constraint, the encoding 

captures the causal association if the US follows the CS. The encoding is 

completely causal iff it captures the association of a CS-before-US temporal 

ordering, and no encoding occurs for a US-before-or-at-CS ordering. In 

order to establish this test the interstimulus interval relationship was 

investigated. 
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Tnterstimulus Interval (ISP 

The ISI effect has been described as an inverted U curve (Baxter, et 

al., 1991; Klopf, 1988; Grossberg, 1991; Mackintosh, 1983). Its 

significance in delay conditioning is that it establishes a temporal contiguity 

window within which conditioning can occur. If a US arrives too soon 

after the onset of the CS, then the CS is not valuable as a predictor of the 

onset of the US. The behavioral interpretation is that CS-US associations 

represent a predictive binding of a non-semantic stimulus to a semantic one 

so that the occurrence of the CS can be used to generate an early onset of 

the CR (some version of the UR) so as to increase the probability of gain of 

a positive reinforcer (food) or avoidance of a negative reinforcer (pain). 

A CS that starts shortly before the onset of the US will not provide an 

adequate temporal advantage in the form of allowing time for an adequate 

response. There would be no purpose in encoding such an association. 

Typically, no encoding (as measured by the acquisition rate as a function of 

ISI) occurs if the US arrives before the CS (Alkon, 1987, Baxter, et al., 

1991, page 24; Klopf, 1988, Mackintosh, 1983). The amount of encoding 

increases rapidly as the ISI increases, reaching a peak, in many animal 

models, at about 500 milliseconds, after which it falls off exponentially. 

Figure 19 shows the results of simulating the adaptrode neuron over 

a range of ISI values. The vertical scale is a percentage of the total number 

of trials required to reach asymptote (42). At 800 milliseconds it required 

50 trials to reach asymptote so that the percentage of maximum is .84. For 

the set of constants that were used (Table 2) the peak in this model appears 

at about 600 milliseconds and does not begin to fall exponentially 
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until about 800 milliseconds. Nevertheless, the characteristic inverted U-

shaped curve with an exponential fall-off is evident. In several informal 

simulations using 'exploratory' values for several of the parameters, the 

shape of the curve, and its peak value varied somewhat. However, the 

overall inverted U form was found to be robust. 

Delay Conditioning, Interstimulus Interval Effect 
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Interstimulus Interval (ISI) 

Fig. 19. The effects on CR acquisition of increasing the interval between 
onset of CS and onset of US. 

The sharp rise in acquisition as the ISI period goes from .4 to .6 

seconds, in Figure 19, is explained by the role of the hurdle computation of 

Equation (3.10). Specifically, the value of p is found to play a role in the 

timing of the onset of acquisition relative to the ISI. If p is set to zero, 

then encoding starts as soon as the US arrives (ISI = 0). That is, w\ of the 

learning adaptrode can rise as soon as the hurdle signal exceeds whatever 

gate has been set. 
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Note that since the wo of the learning adaptrode cannot start rising 

and, hence, neither can the w\ weight, until a CS signal is received, the 

adaptrode cannot encode anti-causal relations, that is situations in which the 

US may precede the CS in time. These types of relations are implicated in 

several encoding mechanisms used for pattern recognition (Hopfield, 1982) 

and abductive reasoning (Pazzani, 1990). Due to the inherent flexibility of 

the adaptrode implementation, it is possible that two, or more, adaptrodes 

could be set up to mutually provide the other's hurdle signal. Thus a set of 

adaptrodes would collectively code either forward or anti-causal 

associations and be useful in such situations. 

Extinction 

Memories, if not reinforced, fade with time. This is true of 

nonassociative as well as associative memories, requiring an associated 

reinforcer. Technically there are two kinds of memory decrement noted in 

the animal learning literature (see Mackintosh, 1983 for a summary). 

Standard forgetting is a slow loss of memory after a stimulus pair is no 

longer presented. Extinction may be the loss of memory of an association 

due to the occurrence of a CS without the reinforcement of the US. In the 

classical conditioning model, extinction of a memory arises from the 

presentation of the CS without the reinforcement generated by a following 

US. Presumably, the CS is no longer acting as a good predictor or has 

come uncoupled causally from the US and so should not be retained in 

association with the latter. A rather large topic of debate has centered 

around the exact form which extinction takes. That is, it could be due to 



92 

simple passive decay (or forgetting), it could be due to active decay 

(selective forgetting - Grossberg, 1991b), or as was originally suggested by 

Pavlov (1927), it could be due to active inhibition. Different opinions on 

the exact nature of the underlying mechanism abound. Confounding the 

picture is the fact that a new series of co-presentations of CS and US will 

illicit the CR in fewer trials than were required for the original training. 

This phenomenon is called savings and is considered a key signature of 

classical conditioning. 

As stated above, it is probably dangerous to infer mechanisms from 

observations of the whole-animal model to the cellular substrates (and 

neural network models). It would be desirable to correspond performance 

observations in simple invertebrate systems such as Aplysia (Small, et al., 

1989) or Hermissenda (Alkon, 1987) with those in birds and mammals, in 

order to make such inferences. 

In the Adaptrode model the nature of reduction of an effective 

weight (the response of the Adaptrode) is through passive decay, but one 

which is proportional to the distance the weight is above equilibrium. 

However, this is accomplished in a piecewise fashion across multiple time 

scales. Thus over short time frames, say a series of trials with short inter-

episode periods, followed by presentation of the CS only, there would 

appear to be a rapid decay of the efficacy weight giving the impression of 

active decay. Over longer time frame protocols, the extinction curve starts 

to look passive. This is, in fact, what has been seen in simulations. As will 

be discussed below, in the case of learning a new, contrary association, we 

even see a curve which appears to be due to active decay. These findings 



93 

suggest that the appearance of passive versus active decay may be 

influenced strongly by the temporal nature of the protocol used. This is 

certainly a testable idea. 

An interesting aspect of passive decay of long-term memory in the 

adaptrode is that the effective weight can decay below the threshold 

necessary for the single adaptrode to initiate a neuron output. The memory 

appears, from the outside to have decayed away. However, because there is 

a long-term trace remaining, a new series of CS-US co-presentations causes 

reacquisition in a fewer number of trials which is not unlike what occurs in 

animal models. 

The graph in Figure 20 shows memory decrement in terms of the 

CR amplitude from a test probe at time intervals after the CR had reached 

asymptote (from Figure 18). Two delay conditioning curves are shown to 

demonstrate the difference in protocols. One uses a 5 minute inter-episode 

interval (IEI - see below) while the other uses a 10 minute IEI. These are, 

likewise compared to a single trace conditioning extinction curve in which 

the IEI is five minutes. Note that the trace curve actually extends out past 

the 10 minute IEI delay curve even though it starts from a lower CR 

amplitude. This was found to be due to the fact that in trace conditioning, 

the total period of time during which the CS/US combination is correlated 

is extended, compared with the delay conditioning protocol. The extension 

provides additional time for the w>2 level to potentiate since the latter is not, 

in these simulations, gated. It is not known if this relates to any specific 

animal model per se. But it does provide some support to the possibility 

that an adaptrode-like mechanism could account for the appearance of 
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active forgetting in one regimen/protocol while being based on a passive 

decay process. This remains an open issue. 

Extinction 

Local Interaction Learning Rule 

K 20 
5 min. IEI • 

10 min. IEI 

15 20 25 30 

Minutes after Asymptote 

Fig. 20. Extinction of adaptrode storage terms after the reinforcement 
protocol is stopped. 

Re-acquisition (Savings) 

If some time after the extinction of a CR, the animal is exposed to a 

series of trials again, it re-acquires the performance of the CR in a shorter 

number of episodes than it took to originally train the animal. Figure 21 

shows a graph of acquisition following a period over which the CR was 

allowed to extinguish (Figure 20). As can be seen in comparison to the 

acquisition curve of Figure 18, the CR is re-acquired in a significantly 

fewer number of trials. This is accounted for by the fact that the W2 level 

remains sufficiently high that the adaptrode is not starting from zero. The 

h>2 level is, however, low enough relative to the neuron's threshold that the 
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adaptrode cannot generate a sufficient response to illicit a CR output during 

a test probe after extinction. The neuron appears to have completely 

forgotten the association, yet on being exposed to the CS-US combination 

again, shows some lingering memory trace by re-learning the performance 

in a shorter time. 

« 20 U 

Re-acquisition (Savings) 

ft ft i ft ft ft 

m m m »• - - — — m m m <m mmm 
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\ 1 1 1 1 1 h" 
12 18 24 30 36 42 48 54 

No. of Reinforcement Trials 

Local Interaction Q Delay Cond. 

Hebbian A Trace Cond. - - - - - -

Fig. 21. A memory trace recovers toward its original strength with fewer 
reinforcement trials due to "savings". A longer-term trace, sufficiently 
below the threshold of the neuron could act as a higher starting point for 
re-acquisition of the response. 

Inter-episode Interval 

In animal models of classical conditioning it has been found that the 

period of time between trials has a acquisition rate effect. That is, if 

longer intervals are given between episodes, then it takes longer to acquire 

the CR and the level of performance is somewhat diminished. Since an 
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adaptrode forgets during the period of time between episodes, it should be 

the case that an acquisition rate effect should be seen for this model as well. 

Indeed, as the graph in Figure 22 shows, CR acquisition declines 

with increasing IEI as expected. Three curves for each of the two 

protocols are plotted as in Figure 18 (solid lines are delay, dashed lines are 

trace conditioning). Each of the three curves shows the effects of a longer 

IEI. 
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Fig. 22. It takes longer to learn something if the period between trials is 
extended. As the interepisode inteval (IEI) increases, the rate of CR 
acquisition declines. 
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CS and US Duration 

It is known that for the delay conditioning protocol, the duration of 

the CS has little, if any impact on the rate or strength of acquisition, while 

the duration of the US has a significant effect. The general interpretation 

of this is that a longer US is more significant to the animal than a short 

one, so should cause a stronger encoding of the association. 

The adaptrode-based neuron shows these same effects. Figures 23 

and 24 show graphs of CR amplitude as a function of the CS and US 

duration, respectively. As can be seen readily, the duration of the CS has 

little overall impact on acquisition while the US duration has a very 

marked impact. This can be explained by the potentiation of w\ which will 

continue over a longer time if the US is present. However, such would not 

be the case unless the ultimate decay of wo was delayed, as it is in the 

adaptrode equations by uncoupling the decay rate from the encoding rate. 

If standard exponential smoothing were used, the wo value would decay too 

rapidly to allow the longer term pull-up of wi to occur. 
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Fig. 23. CR amplitude is relatively insensitive to changes in CS duration as 

predicted from animal models. 
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Fig. 24. CR amplitude is sensitive to changes in the US duration due to the 
amount of potentiation of w\ which increases with longer US duration. 
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Second-order Conditioning 

Following the protocols given above the CS becomes able to initiate 

the CR by itself. This is generally referred to as primary conditioning. 

Second-order conditioning comes from the pairing of a second CS with a 

following CS that has already been conditioned to predict the US (i.e., 

produce the UR). Using the Hebbian rule this phenomenon was simulated. 

One neuron, in this model, is comprised of one US input and two or more 

CS inputs. After training the system on a particular CS-US pairing using 

the nominal values of Table 1, which produced a deep, sustained encoding, 

the trained CS, call it CSi, was paired with another CS input, call it CS2 

using the same protocol as if CSi were now the US- The latter successfully 

became a predictor of the former, and that, in turn remained a predictor of 

the US. 

If presentations of the CS signals alone were not occasionally 

followed by reinforcement from the US, then both memory traces 

extinguished in the reverse order. That is, CS2 extinguished first followed 

by CSi. 

Blocking 

An interesting phenomenon occurs when a second CS is correlated 

with the US in the same temporal frame as the first CS but for which the 

first CS has already encoded the association. In this case, the existence of a 

CSi-CR coding blocks the encoding of the second CS, CS2, from becoming 

associated with the US-UR. Since a predictor of the US already exists, 
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there is presumably no need for a second predictor having the same 

temporal relation so it is effectively ignored. 

It turns out that the same mechanism that gives rise to secondary 

conditioning is involved in blocking, namely the Hebbian rule. The actual 

blocking, however, is due to the gating of input signal to the adaptrode via 

the hurdle signal calculation. The onset of the CSi signal is sufficient to 

generate the CR which, in turn, generates an output from the Ao adaptrode. 

This response is used in the hurdle signal calculation but due to the causal 

temporal ordering imposed by the p factor in Equation (3.10), the hurdle 

will arrive at adaptrode A3 before its response has reached a level 

sufficient to overcome the p and allow potentiation of A3. The arrival of a 

hurdle signal prior to the buildup of a response signal prevents the input 

signal at x° from entering the adaptrode, thus preventing any growth of w° 

and any run-away effect on potentiation. 

Importance of Simulation Results 

What has been demonstrated is that the adaptrode-based neuron 

encodes memory traces in an emulation of biological systems. The above 

reported results mirror the invertebrate models of classical conditioning in 

several important features or signatures of conditioned learning. 

Furthermore, these simulations were conducted in such a way as to better 

replicate the conditions found in actual animal trials, including long inter-

trial periods. 
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However, these results only show that the adaptrode model is at least 

as efficacious as some other, more abstract models such as the drive-

reinforcement (Klopf, 1988) and temporal difference models (Sutton and 

Bartow, 1987). If this were all that was shown, the best that could be said 

for the adaptrode model is that, in principle, it could lead to a physical 

implementation more readily than these other models. Fortunately, there is 

more. Attention is now turned to the real benefit of the multi-time scale 

learning mechanism. As claimed in Chapter I, the nature of the real world 

is that event relationships that may be true in one time scale can change in 

another. Conventional neural networks nor any machine learning system 

that assumes a closed world boundary can accommodate changes without 

washing out the prior encoded associations. In the next section a small 

network of mutually competing neurons that will be shown to be able to 

learn two contrary conditions that separate in time (as opposed to space) 

without interference. 

5.7 Basic Associative Network (BAN), New Results 

A network of mutually competing neurons can be constructed as 

shown in Figure 25. In the simulations reported here, the local interaction 

model was used for all of the neurons. All neurons had the same parameter 

set as given in Table 2. There are several important features of this 

network. First, each US input to the network has an excitatory, non-

learning synapse (wo level only) on exactly one neuron. That is, there is a 

one-to-one relationship between US inputs and neurons such that each 

neuron is said to code for a separate US. Some US inputs may have 
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inhibitory synapses onto other neurons to implement a priority scheme, but 

that will not be considered here. 

Any number of CS inputs may have excitatory, learning synapses on 

any of the neurons. In fact in the general case, all CS inputs would have 

learning synapses on all neurons. This makes it a priori feasible that 

correlations between any CS and US can be encoded. The biological 

justification for this comes right from classical conditioning. One might 

wonder what possible connection could exist between the hearing a bell 

ring and salivating in preparation for eating. But that is exactly what 

Pavlov (1927) discovered and it suggests that many seemingly non-related 

signals have convergence points somewhere in the nervous system in order 

for such odd-seeming associations to be made. From the biological 

perspective it makes sense to be ready to exploit any causal association no 

matter what, since the environment is nonstationary and likely chaotic. 

In these simulations, the simple, two-neuron model with a single CS 

input was used. The objective of the simulation was to see what happens 

when, after training the system to associate the CS with one of the two USs, 

USi, such that a long-term memory trace is encoded (vt>3 approaches 

asymptote), we change the situation and the system is exposed to episodes 

where the CS is followed by the alternate, and mutually exclusive US. The 

first association was learned from long experience, whereas the second 

association was transient by comparison. 
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(Temperature) 

Basic Associative Network 
Local Interaction 

UR 

(Power) 

Neuron 1 

Neuron 2 

UR. 

Local Interaction 

Fig. 25. Schematic representation of the BAN network for two neurons. 
The neurons compete with one another through mutual inhibition (circular 
terminus). External inputs include two unconditionable stimuli (USi and 
US2) which are excitatory on neurons 1 and 2, respectively, through non-
learning adaptrodes An and A23 (Note: The first subscript indicates the 
neuron number and the second indicates the adaptrode index within the 
neuron). A third input, CS, has excitatory connections to both neurons 
through learning adaptrodes A12 and A22. Learning connections are 
indicated with a double, flat terminus. A local interaction hurdle signal 
(e.g., from An to A12) is used to generate associative learning; see text for 
details. 
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The two neuron network shown in Figure 25 might be viewed as a 

simple robot decision controller. The robot, in this case, can sense three 

environmental conditions, the presence of a power source for recharging 

its batteries (i.e., food) at US2, the presence of light at CS, and the presence 

of high temperature (i.e., pain) at USi. The output of each neuron in the 

BAN represents an unconditioned response to the corresponding 

unconditioned input. Thus, a signal at USi will result in an output at URi; 

values for 0, the threshold, and K, the pre weighting constant, have been 

selected to assure that an unconditioned input results in an unconditioned 

output. An input to the conditioned stimulus alone will not, however, 

produce a response of significance in either of the two neurons even though 

it is wired to both of them. This is due, in part, to the slower, and weaker 

response output from the learning adaptrodes (A12 and A22). It is also due 

to the cross inhibition between neurons. Even if a very strong signal at CS 

is sustained for a period long enough to drive the vv° signals in A12 and A22 

high enough to cross their respective thresholds, the cross inhibition 

between neurons ensures that output from each is inhibited. A signal at CS 

alone can activate a neuron only if the learning Adaptrode (either A12 or 

A22) has potentiated to a point that gives w° the ability to climb to a value 

greater than 0 and it does so before the competing neuron becomes active. 
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A priori, there is no reason to associate light with either pleasure or 

pain. It is a neutral signal. If, however, there is a causal relationship 

between the presence of light and the presence of one or the other of the 

unconditioned stimuli, following the constraints of causality discussed 

above, then the occurrence of light could be used as a predictor of the 

occurrence of the US. Such a prediction could give the robot a "head start" 

in reacting to the US, which, after all means something important. How 

then can an association be encoded in the BAN, if a causal relationship 

exists? 

The BAN was trained with a CS-USi combination, delay 

conditioning protocol as described previously. Potentiation of w>i and wz 

occurs in A12 as the result of local interaction between An and A12. This 

potentiation is sufficient so that Neuron 1 will win the competition as a 

result of input at CS only. Figure 26 shows the situation at the first episode 

of training. The graphs in Figure 27 shows the relative levels of vv°, w1, 

and w2 in A22 and A12 at the third episode of stimulation by CS and USi. 

Since A21 is not active, no potentiation occurs in A22. The intersecting 

lines at the leading edge of A12 show the point at which the corresponding 

time tick and potentiation level in A22 occurs. These cross hairs will be 

used throughout to show how one of the two adaptrodes will win the 

competition by responding incrementally faster than the other. 
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Adaptrode Comparison - First Episode 
Adaptrode A12 

USi Onset 
Adaptrode 

CS Onset CS Offset 

Fig. 26. Comparisons of the activities of A12 and A22. This set of graphs 
shows the situation at the end of the first episode of training. 

By the end of the fourth episode adaptrode A12 produces a substantial 

response to the CS input before A22 (Figure 28). Figure 29 gives an idea 

of the relationship between the activity in adaptrode A12 and the neuron 

output. In the initial trial, the neuron produces an output only when the 

USi signal comes on. By the last trial in the third episode (as in Figure 

5.15) the neuron response starts earlier due to the effect of A12. By the 

end of the fourth episode the effect is pronounced. Subsequently, the CS 

signal alone will cause neuron 1 to fire which in turn will strongly inhibit 

neuron 2. At this point the network is trained to respond to the CS by 

producing the CR which is some lesser value of the UR. 
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Adaptrode Comparison - Third Episode 
Adaptrode A12 

Adaptrode P*,2 

CS Onset CS Offset 

Fig. 27. Potentiation comparison between A22 and A12 at third episode, wo 
of A12 starts the episode with an advantage over wo of A22. Thus the point 
where the lines cross in A12 shows that its response is above that of A22. 
Before the end of the episode USi turns on and is sufficiently strong so that 
the response of An exceeds the gate threshold of wi in A12, thus allowing 
further weight potentiation of the latter. As a result of the rise in w\ of 
A12, and its very slow decay compared with that of wo, the wo trace 
remains elevated long past the end of the episode. At the same time the wo 
trace of A22 decays back toward zero. The level of the wos for these two 
adaptrodes represents their 'expectation' of a future occurrence of an 
episode involving the association of the CS and their respective US signals. 
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Adaptrode Comparison - Fourth Episode 
Adaptrode A12 
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Fig. 28. The state of the two competing adaptrodes at the end of the 
fourth episode. A12 is now sufficiently potentiated that it wins the 
competition by producing a stronger response, quicker than A22. 
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Fig. 29. The evolution of the efficacy of adaptrode A12 in generating 
neuron output. By the end of the fourth episode the neuron can be 
activated by the CS signal alone. This corresponds to the generation of the 
CR by the CS input. 
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Adaptrode Comparison - Long ISI 
Adaptrode A12 

T 
USi Onset 

Adaptrode A22 

CS Onset CS Offset 

Fig. 30. After a long interval of time during which no signal is received, 
the long-term memory encoded in adaptrode A^'s W3 level is sufficient to 
produce a response in the number 1 neuron. 

After the network has aged for some period of time without any 

inputs, Adaptrode A22 maintains a residual memory of the association to 

which it has been exposed (Figure 30 above). As a consequence of this 

residual, the network has established a relationship between the associated 

signals which can be recalled when a signal is injected at CS only. This 

corresponds to the robot seeing light alone. 

In this way, the network has learned to exploit CS, a non-meaningful 

signal in its own right, as a predictor of some meaningful signal (in this 

case power availability). The frequency and intensity with which these two 

signals have occurred together in the past will determine the reliability of 
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in the past then the robot will have a degree of confidence that the 

association will be valid in the future. What happens, however, if 

conditions change for some reason? Should the robot forget this learned 

association to learn the new situation? Should it ignore the new situation, 

treating it as transient or noise? If the new situation is as meaningful to the 

robot as the old, then surely it cannot ignore it. On the other hand, if the 

old association is washed out by learning the new association and the new 

one is transient or short-term, then the robot will be penalized by having to 

relearn the old association again. This would take a whole new set of 

training trials. These are the questions explored next. 

Suppose that, after primary conditioning as described above, for 

some short interval of time a contrary situation develops whereby a causal 

relationship exists between US2 and CS as, for example, might happen if a 

fire were to break out in the robot's environment. First, the robot should 

emit the appropriate response - that is, it should avoid the fire. Second, 

the robot needs some means of determining the significance of this 

contrary condition. It has no explicit knowledge of fire or lights. It does 

not 'know' that fire is an unusual circumstance. Is this new situation just 

noise or does it represent a more permanent change in the nature of the 

environment? Third, in the event that this new relationship is temporary 

(as compared to the duration of the prior conditioning), the robot should 

not forget the prior association since there is some possibility that the old 

relationship will again be the norm in the future. 
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Conventional artificial neural networks cannot easily deal with this 

last condition. Systems that do not learn in real-time cannot deal with the 

first condition. The problem resembles the classic XOR problem that 

Minsky and Papert lamented could not be solved by the perception (Minsky 

& Papert, 1969; Rumelhart, Hinton & McClelland, 1986). In this case the 

problem separates in time as opposed to space and must be learned on-line, 

in real-time. 

Adaptrode Comparison - Contrary Association 
Adaptrode A12 

Adaptrode A^ 

CS Onset US 2 Onset 

CS Offset 

Fig. 31. After two episodes where the CS is followed by US2, adaptrode 
A22 shows signs of potentiating to a level that is sufficient to beat adaptrode 
A12 through inhibitory feedback. Note, however that A22, while showing a 
higher potentiated value for its wi level, has a lower value for its W2 level 
than does A12. 
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In this experiment the network is exposed to US2 and CS for two 

episodes (Figure 31, prior page). This situation is clearly contrary to the 

system's prior conditioning. The system will initially start to fire the 

neuron in which the long-term association is encoded as if responding to 

the availability of power - the original semantic binding of the CS (Neuron 

1). It takes a small amount of time for the w0 value of A22 to build to a 

level sufficient to override, through the inhibitory link at A13, the output of 

Neuron 1. However, due to the more rigorous firing of the US2/UR2 

neuron, the latter wins the competition leading to the appropriate response 

(avoidance) at UR2. The robot avoids the fire. 

If the network is presented with the CS input only within a short 

time after this last episode (IEI = 10), it will, for a short while, respond, if 

only weakly, with output at UR2. The reason is that wl 0f A22 has risen to 

a level just slightly greater than that of Wi 0f Ai2- This will persist until 

wi of A22 has decayed to the same level as w{ 0f A12 a t which time the 

response will be ambiguous. The ambiguity will not last for long. Since 

the exposure to the contrary condition was short, compared with the 

"normal" association, and w2 of A22 not rise significantly, Wj of A22 

will continue to decay, falling below the level of wx 0f Ai2> which is being 

supported by its w2 level. At that time, after two more episodes after the 

contrary conditioning, the network will respond with the original CRi 

response as the older association reemerges as dominant (Figure 32). 



113 

Adaptrode Comparison - Return of Prior Association 
Adaptrode A12 

Adaptrode A,, 

! Onset CS Offset 

Fig. 32. The older association between CS and US1/UR1 emerges after 
potentiation of w\ at A22 decays below the W2 level of A12. 

This network, then, has the capacity to encode contrary associations 

which separate in time as opposed to space. The memory traces can be 

maintained without interference. If the short-term, newly encoded 

association is actually caused by a new causal alignment in the environment, 

then it will be reinforced and eventually completely override the former 

memory. If, on the other hand, the environment returns to the alignment 

which gave rise to the former encoding, the older memory will reemerge. 

It will be strengthened (in essentially the manner of re-acquisition) by the 

old reinforcement while the newer trace will decay. 
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5.8 Concluding Remarks 

These simulations provide evidence that the adaptrode model meets 

many of the behavioral and performance criteria for classical conditioning 

demonstrated in the empirical results from animal learning experiments. It 

should be noted that, except for the lack of an S-shaped (logistic) 

acquisition curve, the results reported here are in accord with many of the 

existing models based on biologically-plausible considerations (Alkon, 

1987; Baxter, et al., 1991). The results from the last simulation reported 

above extends the capacity of a neural network model to emulate some 

important biological memory behaviors. Namely, it provides a means for 

encoding memory traces that are time-domain specific. It provides a 

mechanism for learning associations that vary by time domain such that 

nonstationary processes are accommodated. Learning new, possibly 

transient, associations need not wash out existing memory traces. 



CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

The adaptrode model has been advanced in order to address critical 

questions in machine learning with respect to encoding memory traces that 

are time-domain dependent, serve in nonstationary environments and 

capture causal relations between non-semantic and semantic cues. The 

argument has been put forth that these factors characterize the quality of 

animal learning models, specifically the paradigm of classical or Pavlovian 

conditioning. Further, these research findings establishe that the 

adaptrode, to a first approximation, meets many of the fundamental criteria 

of that paradigm. In Chapter I, the animal learning problem for contrary 

associations that separate in time was posed. The research results support 

the adaptrode model's claim to solving that problem. 

The adaptrode was derived from considerations of the dynamics of 

synaptic modification and adaptive response learning. It was shown that 

the derived model shares some important structural features with what is 

now understood about the biophysical processes that underlie synaptic 

plasticity. 
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Causality relations, where a unidirectional temporal contiguity 

constraint applies to the occurrence of the non-semantic and semantic cues, 

is a natural outcome of the way the adaptrode emulates membrane reversal 

potential, locking out associations that violate the proper phase relationship 

between signals. This capacity was shown to give rise to the same 

inverted-U dynamics seen in conditioning acquisition experiments. 

Learning and representing causal relations is an important problem 

in AI research. The adaptrode provides a computationally tractable means 

of providing on-line, real-time learning of such relations. It remains open 

as to the nature of a network architecture that would ideally make use of 

this mechanism. However, the architecture of the BAN suggests some ways 

in which representational issues, particularly the schism between neural 

networks and symbolic systems, may be resolved. In the BAN each neuron 

represents a semantic stimulus/action pair. Each non-semantic or 

conditionable input represents a different feature of the environment. 

Thus, each neuron is a kind of associative rule which relates temporally 

ordered feature occurrences to an action. Unlike the fully distributed 

representations of neural networks, where the 'rules' are embodied in the 

weight matrix as a whole, this architecture provides a means for 

identifying each 'rule' and by examination of the wo levels of each of its 

adaptrodes determining why the rule was activated. 

Temporal reasoning, another important area in AI research, depends 

on representing temporal patterns. Adaptrodes explicitly represent 

temporal information in the dynamics of the weights. More importantly, 

the adaptrode encodes information in multiple time scales, providing a way 
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to deal with signals whose statistical properties may vary in one time 

domain but remain stable over a longer time scale. Due to the decay of 

even the longest-term weight level in the model, even long-term 

nonstationarity may be addressed by gradually forgetting those relations 

which are no longer true. 

There are several near-term areas where the adaptrode model might 

find applicability. Currently multivariate correlation analysis for data sets 

involving phase relationships is computationally intensive. Though this is 

not yet proved, I conjecture that under certain technical conditions the 

adaptrode is formally approximately equivalent to a moving average 

method with a biased window on a stationary process. If so then it is also 

approximately equivalent to an ensemble average under those same 

conditions. It would follow that a set of adaptrodes could be used to 

capture the correlations between time series data in real-time and on-line. 

The expected values are encoded in the weight vectors. If full potentiation 

lockout is employed (setting p so that the CS must arrive before the US) 

then an analysis of the adaptrodes' weights would suggest causal relations. 

Furthermore, adaptrodes with weight values close to or at zero would show 

which data are candidates for elimination. While such a method would not 

replace traditional statistical methods it could provide a useful, and 

efficient adjunct to suggest more efficient handling of the data sets in the 

traditional methods. 
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Another obvious application is in the field of autonomous agent 

learning, which was the motivation for this work. Neural networks based 

on adaptrode learning may be able to emulate capabilities of animal 

nervous systems. Two areas for using adaptrode learning are already 

under consideration. The first is their use in mobile, autonomous robots. 

The computational efficiency of this mechanism along with its naturally 

parallel architecture lends itself to reactive systems operating in real real-

time (human perception time). The BAN of Chapter V has already been 

suggested as a core for basic seek/avoidance control. The other area of 

agent research is the logical equivalent of a robot - a knowbot. A knowbot 

is envisioned as a personal assistant in the computer - human interface that 

will aid users in accomplishing a number of tasks. One such task under 

serious consideration is an agent that "forages" for information in a wide 

area network, such as the Internet. The knowbot would emulate foraging 

animals such as ants or bees. The success of foraging depends on the 

agent's ability to learn its environment. 

Adaptrode learning may also play a useful role in the classic arena of 

neural networks - pattern recognition. By setting the p value of Equation 

(3.9) to zero, one eliminates the strict causal ordering that is required for 

classical conditioning. In this instance, the adaptrode simply records 

correlations that are aphasic, but constrained to a well defined temporal 

window of opportunity. Under these circumstances adaptrode-based neural 

networks could capture ordinary static correlations as in single image 

patterns. The advantage of using adaptrodes in this area stems from their 

real-time, on-line capabilities which allows for continuous learning. 
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The work reported here has laid a foundation for a more advanced 

machine learning capacity with respect to temporal encoding. The 

adaptrode algorithm is designed for real-time, on-line learning that does 

not destroy memory traces that separate in time. Additionally, the 

algorithm is computationally efficient and suitable for direct digital 

implementation in VLSI due to its use of simple integer operations. In 

order to address some of the above application possibilities additional work 

is required. This includes comparative as well as formal analysis of 

adaptrodes as correlators with respect to traditional statistical techniques. 

Simulations of larger networks with richer stimulus environments need to 

be built in order to better understand the potentials of using multiple 

synapse, and neuron types in a single network. 

From the biological-correspondence side, it would be worthwhile to 

explore the effects of including nonlinear elements in the potentiation 

coupling terms of Equation (3.6). Some very preliminary, informal work 

with a nonlinear adaptrode indicates that it can generate an S-shaped 

acquisition curve as mentioned in Chapter V, section 5.7. The addition of 

nonlinearity to the model also holds promise for interesting chaotic 

dynamics which are thought to play a role in vertebrate nervous systems. 

Both artificial intelligence and neural network investigations have 

helped to shed light on learning an memory in animals and man. The 

adaptrode model may contribute to this tradition by providing a new 

dimension, multiple time scales, for investigating adaptive phenomena. It 

might prove useful in the field of learning about learning. 
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