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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. 

TECHNICAL MEMORANDUM NO. 576. 

THE VORTEX THEORY AND ITS SIGNIFICANCE IN AVIATION.* 


By A. Betz. 

During the last decade considerable progress has been made 

in the theory o± fluid motion, particularly in two directions. 

Prand.tl's boundary-layer theory enabled us to determine, at 

least qualitatively, the origin of drag.** 

By drag we mean the force experienced by a moving body in 

opposition to its motion. A theory of wing lift which enables 

the mathematical treatment of a vast number of practical prob-

lems with considerable reliabil,ity will be developed later.*** 

By lift we mean the force normal to the direction of motion. 

The vortex idea and a few other closely related conceptions 

play a very important part in both these problems. In spite of 

the fact that much theoretical work is being done to-day on the 

basis of the vortex idea, considerable confusion still prevails 

regarding the real significance of this theory. 

* U Der Wirbelbegrff uncl 1 seineBedeutung für die Flugtechnik,t' 
from Unterrichtsblatter fur Mathematik und Naturwissénschaften, 
Vol.34 (198), No. 12. (Lecture delivered in 1926 summer 
course at Gottingen." 
** prandtl, Ueber Flussigkeitsbewegung bei sehr kleiner Rei-

bung," Third International Congress of Mathematicians, p. 484. 
(For translation, see N.A.C.A. Technical MemorandumNo. 452:: 
"Motion of Fluids with Very Little Viscosity, t' ( 1928). 
***Compare Prandtl's "Wing Teory," Parts I ad II, Nachr. V. d. 
Kgl. Ges. d. Wissensch. zu Gottingen, Math.-Phys., Kiasse 1918, 
p. 151; and 1919, p. 107; or the more popular presentation by 
Betz, "Einfuhrung in die Theorie der Flugzeug-Tragflugel," Die 
ITaturwissenschaften 1918, pp. 557 and 573.
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Aside from the difficulty of representation exhibited by 

fluid motion in general, the widely spread coiifusion about the 

vortex concept ion is also due to the fact that the term itself 

is not always used to indicate the same thing, so that misunder-

standings easily arise. The ideas closely related to the vortex 

conception will be illustrated therefore by the simplest possible 

examples. In addition to these general considerations, 1 shall 

then devote my attention principally to showing the application 

of the vortex theory in connection with the wing theory. 

Part I: The Vortex Theory 

Let us now observe a few typical forms of flow, so that we 

may learn from them the conception of rotation. In the simplest 

form of flow, all fluid particles move parallel to one another 

and at the same velocity (Fig. 1). The lines represent stream-

lines, while the length of the heavy arrows is proportional to 

the velocity. If a small stick s is placed in such a flow, it 

will be moved by and parallel to the latter, its orientation re-

maining unchanged, independently of its original position in the 

fluid. 

Another simple flow is that in which a fluid rotates like a 

solid body (Fig. 2). The velocity of any point in this fluid is 

therefore proportional to its distance from the axis of rotation. 

If a sma..l stick -s is placed in this flow, at each rotation of
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the fluid body it will also revolve about the same axis; its ori-

entation does no remain the same, however, but turns 3600 with 

every revolution. In this process it is also immaterial as to 

what the original position of the stick is, the angular velocity 

not being affected thereby. 

A third type of flow is represented in Figure 3. The 

streamlines are straight and parallel to each other as in the 

first type, but the velocity increases proportionally to the dis-

tance from a reference line ot' ze.o velocity. If we now bring 

our small stick parallel to the direction of the flow	 it 

will experience no turning. If, on the contrary, we place it in 

a direct±on normal to the flow (2)' it will, then turn in the 

direction indicated by the arrow, with an angular velocity of 

dv 

• The angular velocity in this case depends on the orientation 

of- the small stick and. varies between zero in the position s 

and. 'a maximum value in the position: 82• 

As the last example, we will consider again: a flow with con-

centric circular paths (Fig. 2). The velocity in.this case de-

creases, however, inversely proportional to the distance from. 

the middle point (Fig. 4). in this case a small stick placed 

parallel to the streamlines s tcirns once in a clockwise direc-

tibn for each revolution, while a small stick 2 in the radial 

P

	

	
position will' turn 'in . the opposite direction, due to the given 

velocity distribution. If v is the velocity at the point in
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question, r distant from the middle point, the time for a com-

plete turn is then	 , Hence the angular velocity of the 

small stick s	 is..

V 
I 

Since v has been assumed to be inversely propOr*.ional ±-o--. 

the radius, for any point in the fluid, we may write. 

- V0 

in which '	 is now a constant f or every point. Therefore 

ü)= 

The small stick 2 
has the angular velocity 

2	 dr 

However, since v =
	 we get

V 
'2= 

that is, equal in magnitude but opposite in sign to w,. In 

this example, as well as in the previous ones, we have therefore 

the case that the rotational apeed depends on the position of 

the small stick. 

These processes may appear c1earer to •the eye if we imagine 

a square formed of small sticks, as shown in Figures 1 to 4, and 

observe the deformation caused by the fluid motion. Figure 5
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shows the variations in the four above-described typical flows. 

In the first case (uniform parallel flow), there is no other van-

ationbesi.des a lateral displacement. Ip the second case (rota-

tion like a solid body), the figure rotates without changing its 

form. In the third and fourth cases the square is distorted into 

a rhombus. In the fourth case the dotted. diagonals of the figure 

retain their original direction, since the angular velocity of 

the small sticks is exactly symmetrical to the diagonals. If we 

consider what forces produce this deformation of the fluid square, 

it is obvious that they must be symmetrical to the diagonals and 

therefore produce no rotational moment. A fluid particle is con-

sidered as self-rotating when a turning moment is required for 

the production of its state of motion. Fluid particles, the 

state of motion of which is produced without the intervention of 

turning moments, as in the above case 4, are classified as non-

rotational. The fourth example represents therefore a nonrota-

tional motion. In the third case we have the same deformation 

as in the last example, but also a rotation through which two 

sides of the parallelogram are brought back to their original 

direction, the angular velocity of rotation being 

	

°-1 t	 1 dv 

	

2	 - 2dy 

That example 1 represents a nonrotationaJ. motion, and exam-

pie 2, a rotational one, requires no further explanation. We 

may simply remark that the rotation is mathematically expressed
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by the vector "rot V." As you probably know, this is found by the 

formula
rot V =	 = 

dy dx 

This is, however, equal to 	 + w2 ; consequently to double the 


angular velocity ü of the rotation. 

We shall now undertaJce to answer the question as to how a 

rotational moment may be exerted on a fluid particle, thereby 

setting the latter in motion. We imagine a sphere separated from 

the rest of the fluid and let the same pressures act over the 

whole surface (Fig. 6). Since the pressures are normal to the 

surface, they are all directed toward the center and can there-

fore produce no turning moment. Symmetrical deformation, however, 

can be produced as, for example, when the horizontal forces are 

greater than the vertical ones. If we wish to set the spherical 

fluid particle in rotation, tangential shearing force$ must be 

applied to the surface. These shearing stresses in a fluid par-

ticle are transferred to the adjacent medium by virtue of the 

fluid viscosity. In some deformations , such as those of exam-

ples 3 and 4, certain tangential forces appear on the peripheral 

surface which are proportional to the angular velocity o - 

(Fig. 7). From these considerations, we learn that pure pressure 

forces can produce only nonrotationa]. motion, while for the pro-

duction of rotational motion, we must have forces produced by the 

viscosity of the fluid. We might perhaps infer that this consid-

eration applies to a spherical particle, but not to any other
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shape. If we stop to think, however, that the internal portions 

of any fluid particle, in motion of any form whatever, possess 

rotation, we must then admit that in order to impart the motion 

to the whole particle, each portion withiit the latter must be 

set in motion. 

In order to explain, these considerations, I shall point out 

how motions similar to the four above-mentioned examples are pro-

due e d. 

The first form of flow (parallel) can be produced by let-

ting the fluid from a large receptacle flow through a nOzzle 

(Fig. 8). For this purpose, we need only take care that the 

pressure in the nozzle is lower than that prevailing in the re-

ceptacle A, so that the fluid may flow into the tube. At some 

dietance from the tube inlet the streamlines will be parallel to 

the walls of the tube. The pressure at any section of the nozzle 

must be constant therefore, since each pressure drop normal to 

the direction of flow would deflect the flow from its path, and 

the streamline,s would be no longer straight. Equality of pres-

sure at any cross.section however, also requires equality of 

velocity, since these are only the result of the pressure differ-

ence between the nozzle and the large space A. it has been as-

sumed that no force other than this pressure difference has any 

accelerating or retarding effect on the fluid. In particular, 

we must exclude even frictional effects.
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The procedure is quite different if we wish to produce the 

second form of flow. The production of this is not possible by 

mere pressure difference for, in order to bring about the veloci-

ties of the outer portion, we must see that the pressure in this 

region is less than in the slower inner region. Due to the cen-

trifugal force of the fluid particles, such a pressure distribu-

tion is not possible, however. These could, in fact, move in 

their circular path only if we had pressure difference directed 

toward the center in order to counteract the centrifugal force. 

A circular path requires therefore the pressure at the outer re-

gion to be greater than at the inner region. Such a pressure 

distribution, however, is also contrary to that needed for the 

production of the desired velocity distribution. This form of 

flow can be produced, however, by rotating a hollow cylinder 

filled with a liquid about its own axis. Due to viscosity (fric-

tion) the fluid is gradually carried along by the cylinder Wall 

and eventually attains a uniform. rotation. It is not necessary 

for the viscosity to be particularly strong. On the contrary, it 

suffices for it to be always present. The smaller the viscosity 

is, the longer it will take to impart the contemplated motion to 

the revolving fluid. 

The third form of flow can be produced by letting the fluid 

flow between two smooth parallel walls, one of which stands still 

while the other moves along parallel toitself (Fig. 9)... Due to 

its viscosity the fluid is then carried along by the moving wall



N.A.C.A.Technical Memorandum No. 576 	 9 

and the desired flow is gradually acquired. 

The flow given in the fourth example can be produced, t 

least approximately, by the method illustrated in Figure 10. The 

fluid flows out of the large container A through a seniicircular 

channel. By virtue of the centrifugal force, the pressure on 

the outer wall of this curved path will be greater than that on 

the inner wall, and consequently the velocity near the outer 

wall will be smaller than that near the inner wall. Deviations 

from the contemplated form of flow occur, however, on account of 

the proximity of the straight portion of the channel. These de-

viations become smaller as the channel becomes narrower with re-

spect to the radius of curvature. The existence of a velocity 
v0 

distribution equal to v = -- In such a flow can be inathematic-

ally proved. 

Let p0 be the pressure in the large container A and p 

the pressure at a point in the bend. According to Bernoullits 

equation, the relation between pressure arid velocity in a fric-

tionless flow is

V2 = p0 - p. 

The radial pressure increase, due to the centrifugal force, 

is

Differentiating Bernoulli's equation, we obtain
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pv-! -	 = - ar	 r	 r 

from which

r 

or 

In which v0 is the integratioi constant. 

Thus we seethat a rotational fluid motion can result only 

from frictional forces which are in turn attributable to the vis-

cosity of the fluid. Such frictional forces, however, do not 

necessarily produce a rotational motion. If we have a nonrota-

tional motion, such as that in our fourth example, the shearing 

forces will also be symmetrical and will therefore exert no turn-

ing moment on a fluid particle and will not set it in rotation. 

We cannot easily convince ourselves of this fact if we consider 

the, shearing forces acting on the four sides of the distorted 

square (Fig. 7), which are perfectly symmetrical. The same is 

true when the rotation in the vicinity of the particle is constant, 

as in the second. and third examples. 

If a fluid,. originally at rest, is set in motion by a pres-

sure difference, similarly to the case of the fluid flowing from 

a vessel (Fig, 8), or even when a body is set in motion in a 

fluid, no shearing forces are present at the beginning of the 

motion, since the velocity and a1so the velocity gradients neces.-

sary for the shearing forces ar? everywhere zero. The fluid par-
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tides are therefore nearly all accelerated by pressure forces, 

and. the resulting weak flow is consequently nonrotational. Con-

sequently, as we have just considered, the gradually appearing' 

shearing 'forces likewise produce no turning moment and the motion 

therefore remains nonrotational. 

From this we obtain the remarkable result that, when a via-

cous fluid is set in motion by pressure forces, a nonrotationaJ. 

motion develops internally. The question instinctively arises as 

to how rotation takes place in spite of all this, since experience 

shows that in every fluid motion, regions of more or less rota-

tional flow develop. The solution of this ifficulty is found by 

observing the phenomena at the fluid boundary. We have already 

seen that the shearing forces in anonrotationaJ.. motion are so 

distributed over the four sides of the square (Figs. 4-7) that 

they produce no rotational moment, The assumption was therefore 

that the motion was surrounded by a nonrotational flow on all 

four sides. , At the boundaries of the fluid, however, this is not 

the case. If, for example, we place the square in Figures 4 or 7 

with one side coinciding with the surface of the fluid, the shear-

ing force on that side will disappear and the shearing forces on 

the other sides will produce a turning moment. Still more power-

ful is the effect if the particle comes in contact with a rigid 

surface. In this case the velocities, at first unstable, fall to 

zero and produce an infinitely large shearing force, which imme-

diately disturbs the symmetry of the shearing forces,
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As soon as the outermost strata are set in rotation, other 

particles adhere, thus causing further asymmetry of the shearing 

forces, so that the latter particles likewise begin to rotate. 

The rtation of the boundary layer is thus gradually increased 

from the outside inward, quite similarly to the temperature 

changes in a body heated from the outside. The rate of propaga-

tion of the rotation depends on the viscosity of the fluid. In 

most technical processes the viscosity is very small, so that in 

the motion of a body in general, only a very thin layer of fluid 

particles adheres to its surface. This layer is commonly known 

as the "boundary layer." How thick this boundary layer is with 

respect to the proportions of the body depends on the Reynolds 

Number which, as you have heard in PrandtUs lecture, expresses 

the relation between the inertia and viscosity forces. 

As you may likewise have heard in Prandtl's lecture, the 

boundary layer separates from the surface of the body under cer-

tain circumstances, and some of the rotating fluid particles get 

into the steady flow, thereby causing most 0±' the important dis-

turbances in the, main flow. Due to the thinness of the boundary 

layer, the rotating portions of the fluid which penetrate the fr 

fluid are naturally very small, while much th:e greater portion of 

the flow remains practically free from rotation. This is very im-

portant for the theoretical treatment of the flow since, as you 

must know from vector analysis, a nonrotational vector field, 

like the velocity field of a nonrotational flow, can be expressed
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by the differential. quotient of a potential function. For this 

reason, nonrotational flows are also called potential flows. 

The theory of this potential problem hac, however, been mathemat-

ically very extensively worked out, so that nonrotationaJ. motions 

can be treated mathematically much easier than rotatiorral motions. 

After these general remarks on rotational and nonrotational 

motions, and.their occurrence in ordinary processes, we shall 

once more turn our attention to the fourth typical flow (Fig. 4) 

which represents a circular and at the same time nonrotationaj. 

flow. If we take the small stick, which we employed to investi-

gate the rotation, and lay it so that it coincides with the cen-

ter of the circle, it will indicate the same rotation for wht-

ever direction we give it	 The shorter the stick is, the faster 

it will revolve about the center, since the velocity of flow in-

creases indefinitely as we approach the ceiter of the circle. 

While at all other points in the flow we found noirotational 

condition at this special point we find a rotation of infinite 

strongth. If we wish to inquire into the physical significance 

of this result, we must first remember that a flow of this type 

is only possible if we separate the middle point and a small re-

gion in its immediate surroundings, sincç it is impossible to 

produce velocities of. infinite magnitude. Nevertheless, this 

fourth type forms an extraordinarily important type of flow, 

whereby we must realize that this flow occurs only beyond a cer-

tain distance from the center, the, flow prevailing within this
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distance being of a different nature. 

The flow represented by Figure 11 may be described as fol-

lows. The fluid flows in concentric circles. Outside a certain 

circle a nonrotational flow of type 4 (Fig. 4) prevails. Inside 

of this circle (hatched area) there is a rotational flow of type 

2 (Fig. 2). Such a type of motion we shall call a single vortex.* 

The region of revolving fluid is called the vortex core, and the 

nonrotational flow outside of the core is called the vortex field. 

It is not necessary, as in the above exaxiple, for the rotation 

in the vicinity of the middle point (that is, in the vortex core) 

to be of the same magnitude everywhere. A point of importance 

is that there must be a distinct region of revolving fluid parti-

cles separated from a field of nonrot'ational motion, or at least 

from a field of small rotation. Very different types of rota-

tional motion can be conceived for the vortex core of a given 

vortex field. Thus, for example (Fig. 12), the revolving fluid' 

can be confined in a ring (hatched area). Outside of this ring 

the flow is nonrotational; inside of it there is a region of zero 

velocity. Since in ordinary fluids of low viscosity, according 

to what we have said, the rotating portion of the fluid is very 

limited, the vortex core is generally very small and the phenom-

ena which interest us are dispersed to a great measure in the 

vortex field. In most cases it is therefore unimportant, as to 

how each individual vortex core appears so long as it is adapted 

*Very often the term fivortexU is applied to any motion not free 
from rotation.



N.A.C.A. Technical Memorandum N. 576 	 15 

to the vortex field. In most cases it is therefore unimportant 

as to how each individual vortex core appears so long as it is 

adapted to the vortex field. However, since' it is immaterial as 

to what the phenomena are in the vortex core, for simplicity we 

can assume the cross section of the core to have the form of a 

point and return to the flow of Figure 4 (fourth type). We must 

understand, however, that this means only that the actual flow 

outside of a certain small region agrees with that represented 

in Figure 4, while inside of this region other velocities may 

prevail, which individually do not interest us. This ideal form 

of a vortex, in which the size of the core is infinitely small, 

is frequently called a potential vortex. 

In order to describe the entire process of flow outside of 

the vortex core 'in all its characteristics, it suffices, in addi-

tion to the assumption that the motion i.e nonrotational, to know 

the center and a single number which, for example, represents the 

velocity at a unit distance from the center. Instead'of the lat-

ter number, we generally take anumber 21T times as large, 

which is called the circulation. This is the line .ntegral of 

the velocity along a closed curve surrounding the vortex core. 

As we know from the theory of functions, this is independent of 

the path as long as the path is in the nonrotational field. In 

the present case the circulation is obtained as the product of 

the circumference of any circular streamline and the velocity 

along this line. This product is the same for every circle out-
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side of the vortex core, since the velocity decreases in the same 

proportion as the circumference increases. This circulation is 

the characteristic value for the vortex core. 

It appears at first surprising that the whole fluid motion 

extending to infinity should be so definitely determined from:so 

few data (location of center and magnitude of circulation). The 

explanation of this is the assumption that the flow is nonrota-

tional as far as the small region of the vortex core. The vast 

number of conceivable flow processes are all eliminated by this 

method of determination except this particular one, since all 

the other processes are not free from rotation.* One of the al-

ready mentioned, extraordinary simplifications is introduced by 

the assumption that the flow is free from rotation. And, as we 

have pointed out above, this assumption is often fulfilled for 

the greatest portion of the fluid. 

We have considered only the nonrotational motion of four 

different types and their relation to a vortex core. We may in 

this manner generalize the argument, and turn to other nonrota-

tional motions by superposition of two or more forms of flow. 

If we have a motion, a simple vortex field with the center A1 

(Fig. 13), we shall then have a certain velocity v, at the 

point P. If we take another motion, a vortex field with its 

center at A, the velocity at the point P will be v2.By 
*Strictly speaking, we should also introduce the condition that 
the flow extends to infinity and that it exhibits no restrictions 
due to the presence of other bodies. The vortex core and the 
point at infinity then form the boundaries of the fluid. The ve-
locity at infinity is zero.



N.A.C..A.. Technical Memorandum No. 576
	

17 

adding together the velocities V1 and v2 , and combining them 

by a parallelogram of forces, we obtain the new velocity V. If 

we perform the same operation for each, point in the space, we 

obtain a new velocity for each point. These new veloci'ie give 

a new form of flow, and we say that the resultant flow is pro-

duced by the superposition or additiOn of both original fields 

of ' flow. It can be shown now that the rotation exhibited at any 

particular point by the flow resulting from the superposition is 

equal to the sum of the rotations which the original flow compo-

nents had at the same point. In particular, if nonrotational 

flows are superposed, a nonrotational motion is obtained again, 

and if a nonrotationa]. field of motion is superposed over a ro-

tational field, the rotation then remains unchanged. This law 

can be easily understood by observing that the velocities which 

bring about the motioniof our test-sticks add themselves by super-

position. The same thing is true of the angular velocities of 

the little stick and., also of the rotations, since these are the 

result of the angular relocities. By means of such superposi-

tions, we can now construct the most different kinds of nonrota-

tional forms of flow, for the explicit description of which suf-

fice the location of the vortex cores and the respective circu-

lations. I Is not necessary therefore to make a separate anal-

ysis of the vortex cores. These can also mingle uninterrupted-

ly with one another. Instead of adding the velocities of the in-

dividual vortex fields, an integration then takes place. The
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vortex core often consists of a thin layer of rotating fluid. 

We can then generally disregard the thickness of this layer and. 

obtain a surface of unsteady motion (Fig. 14). We can visualize 

this as composed of potential vortices with their centers lo-

cated very close together (a vortex surface), and cmpute the 

field by superposition of these potential vrtices (Fig. 15). 

If the origin and motion of the rotating fluid particles in 

any flow whatever can be followed, so that their distribution 

arid rotational magnitude are known, the behavior of the remain-

ing nonrotationaJ. flow will be known. One often vionders over 

this fact and finds it incomprehensible that any spatially re-

stricted figure, such as a vortex core, can have any decisive 

effect on the remaining flow. The vortex core is therefore er-

roneously looked upon as the mechanical cause of the vortex 

field. In reality the nonrotational flow is produöedby the 

pressure forces and, at the place where the influence of friction 

is felt in a noticeable measure, rotating fluid regions develop, 

which in turn are somehow distributed. through space by the other 

fluid motion. One could therefore much better say that the whole 

fluid. motion causes the production and space distribution of the 

vortex cores. In any case, the magnitude and distribution of 

the vortex cores are greatly affected by the motion of the remain-

ing fluid, so that the corresponding flow can be computed bik-

ward. from the core distribution in the same way that causes can 

be determined from their effects.
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	 Due to the small effect of viscosity on the motion, a vortex, 

once generated, continues for a long time. In the presence of 

several cores, however, their relative positions change and con-

sequently the entire field of flow changes, but the partial fields 

corresponding tO the individual vortex cores remain the semé. 

They overlap one another only in a different way. In the course 

of a long time, however, the viscosity makes itself felt and al-• 

ters the individual cores. The fluid particles near the core 

are gradually set in rotation also, and fbrm the components of 

the core itself. In time, therefore, the cores assume a surface 

extension. However, the circulation around the core is not al-

tered thereby, since it can be measured at any distance from the 

core and hence at so great a distance that the effect of the vis-

cosity has not made itself felt there. If, however, the vortex 

surface is enlarged, while the circulation remains unchanged, the 

mean rotation of the fluid in the core must become smaller, be-

cause it has been distributed over a greater area. Figure 16 

represents the velocity distribution., of a vortex at two differ-

ent points of time. The longer arrows give the. original veloci .

-ties; the shorter arrows, the later velocities. As long as the 

fluid remains nonrotational, the velocities remain unchanged. 

Inside the core they have become smaller. The rule that the cir-

culation remains constant in this enlargement of the core holds 

good only so long as the different cores do not grow into one 

another. If two cores of opposite rotation flow into each other
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by reason of this growth, their rotations are entirely or parti-

ally arrested. If the circulations around these cores were orig-

inally of the same magnitude but opposite in direction, both vor-

tices would disappear entirely in the course of sufficient time. 

The case is similar, if the fluid is confined within walls, in 

which event the circulation diminishes as soon as the cores reach 

the solid boundary or the boundary layer which possesses a rota-

tion opposite to that of the cores in question. Such conditions 

are, however, always present. Either solid walls are in the vi-

cinity o± a vortex or, if the flow is very wide, more vortices 

are constantly appearing, the rotation of which is partly in one 

direction cnd partly in the' other, so that the sum of the circu-

lations around the individual cores is 'zero. I a flow extend-

ing to infinity the kinetic energy of a single vortex would be 

infinitely great. It is not possible, therefore, to generate 

such a vortex, but there must always be many vortices rotating 

in opposite directions with finite energy, if the sum of their 

circulations is zero. By virtue of this circumstance all Vorti-

ces would gradually disappear in a fluid, if left to itself for 

a long time without being acted on by external forces. 

Our discussion has been thus far limited to uniplanar flow 

phenomena, namely, those in which each particle remains in one 

plane through the whole course of its motion, and the same flow 

form. is found in all planes parallel to it. Naturally these are 

more obvious and point out the essential features of the process.
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At this point vie shall briefly indicate a few peculiarities 

brought about by the multiplicity of the three-dimensional 

processes. For the flow to be uniplanar, the vortex cores must 

form cylinders normal to the plane of flow in question. In the 

case of an infinite flow they must extend to infinity, and when 

the flow is confined between parallel walls, parallel to the 

flow, they terminate at these walls. In the general case of 

three-dimensional flow the vortex cores do not follow a:straight 

line, but follow some sort of curved vortex tube around which 

the flow takes place. The field of such a vortex core is like-

wise definitely determined, as soon as the location of the core 

and the circulation about the same are known. The velocity corn-

putation is, to be sure, somewhat less easy than in the two-

dimensional flow, though still quite simple. The velocities 

pertaining to the same vortex core are governed by the same law, 

which determines the strength of a magnetic field about an elec-

tric conductor. The velocity corresponds to the strength of the 

field, the vortex core to the conductor, and the circulation to 

the cui'rent strength. Just as the strength o± the current is 

the same in every cross sectionof an electric conductor, the 

circulation around a vortex core cannot change along its course. 

The vortex core therefore cannot end anywhere in the fluid. It 

must either form a ring-shaped self-contained body, or extend to 

infinity, or terminate at the boundaries of the fluid. The pos-

sibility may also arise that a vortex core splits into several
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branches. The sumo±' the circulations in the different branches 

then remains the smne, exactly like the current in a branched 

system of electric conductors. Such a core can be visualized 

as a bundle of several cores located close together so that they 

appear as a single core. This important theorem on the spatial 

constancy of circulation.. follows entirely from geometrical con-

siderations which, however, are not easily understood. It can 

be shown, in fact, that when different circulations prevail at 

two neighboring sections of a vortex core, the difference in 

the velocities V1 and v2 (Fig. 17) imparts a rotation to the 

fluid. This is, hower, contrary to the asswnption that the 

flow outide of the core is nonrotational. A well-known exmui-

pie of a vortex core which is not rectilinear is the vortex 

ring often visible in smoke. 

Part II: Wing Theory 

As a wing, one prefers a body which, when in motion, pro-

ducesa small drag but a relatively large lift (Fig. 18). The 

drag W, that is, the force component opposing the motion has,

in flight, a detrimental effect tb overcome, which requires en-

ergy that rmist be provided by an engine. The lift A, or the 

force normal to the motion, is the useful force. It requires 

no expenditure of energy, since it is perpendicular to the di-

rectiorr. of motion. Since the drag is small in comparison with 
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the lift, it can be neglected in many cases, but of course, 

only when one is not interested in the energy required for fly-

ing, which depends exclusively on the drag. 

When lift is to be produced by a wing, the pressure on its 

upper side must obviously be rnaller than that on the under 

side. Since the region in which viscosity i felt is restrict-

ed to the immediate vicinity of the wing, and to a small region 

behind the wing, Bernoulli's equation p + 	 = constant 

applies to the rest of the flow. Therefore, when the pressure 

on the upper side is smaller than that on the under side, the 

velocity on the upper side (v 1 ) of Figure 19, must also be 

greater than (v2 ) on the under side. Consequently, by plot-

ting the line integral	 v ds for a line circwnscribing the 

wing, the contributions of the upper and lower surfaces are not 

destroyed, and we obtain the circulation P . The lift is there-

fore obviously connected with a circulation around the wing. 

A quantitative determination of this relation between the lift 

A and the circulation P leads to the equation 

d A = p v0 P d b 

wherein p is the air density, v0 the airfoil velocity, and 

db the width of the wing strip on which the lift dA acts. 

This equation was discovered by the German scient1t Kutta and 

the Russian scientist Joukowski, independently of each other, 

and is now known as the Kutta-Joukoweki equation.
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On account of the circulation, the flow around a wing has 

a great similarity to the flow in a vortex field. The wing it-

self represents the vortex core. The essential difference con-

sists in the fact that an ordinary vortex core is carried along 

by the flow, while the wing moves relatively to the flow. An 

ordinary vortex core, in spite of its oirculation, produces no 

lift, since the velocity v0 in the Kutta-Joukowski equation 

is zero. 

It Was stated in Part I of this paper that a single vortex 

cannot be produced, since the energy of its field would be in-

finite. The same is also true regarding the circulation around 

an airfoil. In practice, the process at the beginning of the 

motion is such that, since the flow cannot follow around this 

sharp edge, a vortex of reversed circulation develops at the 

trailing edge of the wing (Fig. 20). It grows, and then gradu-

ally recedes, but produces a smooth uniform flow at the trail-

ing edge. The circulation around the airfoil develops in the 

same proportion as the vortex and, when the vortex has traveled 

far away, the circulation remains constant. Due to its great 

distance from the wing .the vortex itself does not generally 

need to be considered. The magnitude of the circulation there-

fore depends on the smoothness of the flow at the trailing edge. 

Let us now turn our attention to the lateral ends of the 

wing. Positive pressure prevails on the lower side of the wing 

and negative pressure on the upper side. This pressure differ-
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ence cannot exist at the wing tips, since, all pressure differ-

ences are there immediately equalized. Consequently, both posi-

tive and negative pressures diminish toward the wing tips, with 

the result that the fluid particles which flow above the wing 

near the tips are deflected laterally (Fig. 21). When they meet 

again behind the wing, their velocities no longer coincide. The 

particles which flowed above the wing have 'acquired a velocity 

component away from the edge, while those which flowed below 

the wing have a velocity component toward the.edge. 

These lateral disturbing velocities (or induced velocities) 

form a potential motion, since they are produced by pressure 

differences. At the point beyond the wing where they meet again, 

they form ' an unstable motion which corresponds to a surface vor-

tex. When the vortex distribution in this surface is known, the 

whole disturbing field can then be computed from it. Since the 

streline deflection.on the wing depends on the lateral pres-

sure drop, and since this in turn represents a lift drop or a 

circulation drop toward the wing tips, it is clear that the 

vortex in the surface of discontinuity corresponds to the circu-

lation drop. We can easily understand this relation quantita-

tively, if we consider, the theorem mentioned in Part I of this' 

paper, nnely, that a vortex core or, more generally, the core 

of a flow with circulation cannot terminate. If, therefore, the 

circulation around a wing becomes smaller near the tips, then 

vortices of corresponding circulation must pass off from the
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wing. These are indeed the vortices in the surface of disconti-

nuity. The previously mentioned relation between the circifla-

tion around the wing and the vortices behind the wing means, in 

other words, that the circulation along line I of Figure 22 

(circulation around the wing is equal to the cirbulation along 

line II, (circulation around the.vortex sheet extending froz 

the point in question to the wing tip). Therefore, if the lift 

distribution along the wing span is known, the vortex distribu-

tion in the surface of discontinuity and hence the whole flow 

can be calculated. 

In orde to produce the transverse motion, work must be 

done. This is manifested by the fact that the wing experiences 

a drag which depends on the lift distribution along the span. 

This drag could be computed from the energy of the vortex field. 

It is simpler, however, to follow the development of the drag on 

the wing. The vortex field is accompanied, on the wing, by a 

downward velocity w, which generally varies from point to point. 

If the circulatloit around a wing is at a distance x from the 

middle F, there is then developed, together. with the downward 

velocity w, according to the Kutta-Joukowski theorem, a force 

d. W = p w F d x, opposing the wing motion (normal to w) for a 

piece of wing dx long. 

By integrating over the whole span, we, obtain the entire 

drag produced by the lateral edges, which is called induced or
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rim drag:

+b/2 
W1=pJ wI'dx.


-b/2 

The induced velocity w can be determined very easily from 

the distribution of F over the span F(x). 

The question now arises as to how a given lift must be dis-

tributed over a wing of a given span, in order that the induced 

drag shall be a minimum. A simple minimum calculation shows 

that this can be accomplished if the induced velocity w is 

constant along the entire span. This takes place when the lift 

dist±ibution over the span is e'lIiptidI, that is, when 

in which Fm is the circulation at midspan, t. that at the dis-. 

tance x from the middle, and b, the wing span. The induced 

drag for this most favorable lift distribution is 

A2 
= ii• i? 

•!• v02 

It is obvious that, for wing forms occurring in practice, 

the induced drag does not vary materially from this minimum 

value, so that this sinle formula can 'cc safely used for all 

calculations of induced drag. Naturally,. we must add to this 

the resistance of the profile itself, the so-called proflle 

drag," even when the wing is of infinite length. In practical
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wings, however, the profile drag is considerably smaller than 

the computable induced drag. 

In the above example, I have illustrated one of the best 

known aerotechnicaJ. applications of the vortex theory. Another 

series of problems connected with the wing theory can be treat-

ed in a similar way. 

All problems connected with the resistance of fluids, how-

ever, lead us back to the vortex theory. Naturally, the prac-

tical solution of these problems requires experience. The lim-

ited time at your disposal and the many other branches of sci-

ence make it impossible for you to acquire this experience. In 

my lecture I have therefore endeavored to explain the principal 

phenomena. If the fundamental theories you have probably al-

ready encountered in other lectures in a more mathematical form 

have been made clearer, the main purpose of this lecture will 

have been accomplished. 

Translation by 
National Advisory Committee 
for Aeronautics.
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