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To prevent loss of lives during seasonal disasters, relief agencies distribute critical 

supplies and provide lifesaving services to the affected populations. Despite agencies’ efforts, 

frequently occuring disasters increase the cost of relief operations. The purpose of our study is to 

minimize the cost of relief operations, considering that such  disasters cause random demand. To 

achieve this, we have formulated a series of models, which are distinct from the current studies 

in three ways. First, to the best of our knowledge, we are the first ones to capture both perishable 

and durable products together. Second, we have aggregated multiple products in a different way 

than current studies do. This unique aggregation requires less data than that of other types of 

aggregation. Finally, our models are compatible with the practical data generated by FEMA.  

Our models offer insights on the impacts of various parameters on optimum cost and 

order size. The analyses of correlation of demand and quality of information offer interesting 

insights; for instance, under certain cases, the quality of information does not influence cost. Our 

study has considered both risk averse and risk neutral approaches and provided insights. The 

insights obtained from our models are expected to help agencies reduce the cost of operations by 

choosing cost effective suppliers. 
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CHAPTER 1  

INTRODUCTION 

This dissertation is inspired by the increasing degree of damages caused by several 

disasters striking some parts of the world every day. It is essential to prevent loss of lives in the 

aftermath of disasters by providing lifesaving products and services to the affected population in 

a timely manner. Supply chain planning becomes vital in delivering these supplies. Although 

planning for sudden onset disasters is extremely complex, planning for seasonal disasters is 

possible and would eventually help reduce the loss of lives considerably. This is possible only by 

facing many challenges of disasters and planning phases. Due to the randomness involved in the 

formation, movement, and occurrence of seasonal disasters, supply chain activities face 

challenges in procurement, transportation, storage, and distribution of supplies. On the disaster 

side, hazard attributes such as place of formation, direction of movement, intensity of impact, 

and the level of damage in the aftermath of disasters are uncertain. On the distribution side, the 

demand for products and supplies, place of demand, length of demand, capacity of distribution 

facility, and manpower requirements are also random due to the hazard characteristics. Failures 

of physical and communication links in the aftermath of disasters further complicate the 

distribution system. Supply chain partners, including public, private and non-profit relief 

agencies, often find it difficult to manage the ever changing demands. It is also difficult to 

procure the required supplies within the budgetary and temporal constraints. In this dissertation,  

I integrate the demand occurring at various stages of the disaster and create plans to procure the 

products at three instances, which reduce the imbalance between demand and supply. The major 

concern of relief agencies is to manage the relief operations within their available budgets 

because these agencies receive most of their funds only after a disaster dissipates in an affected 
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area. In this dissertation, I also consider the agencies financial constraints and provide an 

estimation of optimal order sizes. By integrating all these issues in my models, I balance the 

supply and demand within a minimum financial requirement. 

In chapter 2, I review the literature, structured mainly on five major areas: disasters and 

their impacts, stages of relief operations, factors differentiating humanitarian operations from 

commercial operations, current state of research about these operations, and unaddressed issues 

of humanitarian operations. The chapter starts with an overview of recent natural disasters and 

the magnitude of losses caused by them. This rationalizes the need for the examination of the 

problem. The different phases of disaster planning and their scope in humanitarian relief 

operations are reviewed.  The characteristics of seasonal disasters and how these affect the 

disaster planning activities are further analyzed. Further review of literature examines how the 

commercial supply chain operations are performed. Both commercial and humanitarian supply 

chain operations are compared to identify several distinct factors of humanitarian operations. 

Some of the factors identified include extremely random demand, non-existence of supply chain 

network and vague supply chain partners.  I identify relevant studies on commercial operations 

that become the base for my model development. I compare different methodologies adopted by 

prior studies and their applicability to the humanitarian context. Literature addressing these 

factors in different contexts with a view to incorporate them in the humanitarian setting are 

further reviewed. I consequently identify several research gaps pertinent to humanitarian 

operations. For example, no prior studies explicitly address demand forecast updating in the 

context of humanitarian operations. Most previous studies consider only a single location 

demand but since a disaster affects multiple sites, the demand rising from all the affected 

locations need appropriate consideration. No generalized model is available for both perishable 
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and durable products. Besides addressing these gaps, I also review prior studies on risk 

propensities of decision makers to find appropriate solutions.   

Chapter 3 starts with an overview of how the humanitarian operations are conducted by 

relief agencies. The study addresses some of the external and internal challenges that agencies 

face. The study includes the strategies adopted by these agencies to solve these challenges. 

Subsequently, the dissertation illustrates the processes of my models. This conceptual 

representation provides the basic framework for my preliminary and extended models. Following 

this, I introduce notations and symbols, and define the terms that I use in all my models of this 

study. I also specify the relationships among parameters and underlying assumptions of my 

models. Though some of these assumptions appear unrealistic for the preliminary model, I relax 

these assumptions step by step while formulating advanced models. After the introduction of 

these assumptions, I introduce the basic model along with its solution approaches. In the 

succeeding section, I perform comparative statics. I also illustrate the results of a numerical 

problem to understand the effects of various parameters on the decision variables. This chapter 

concludes with some additional observations or insights.  

 Chapter 4 starts with an extension of the preliminary model. The preliminary model 

examines distribution of a single product in a single unit to a single location to a single victim. 

However, disaster circumstances demand multiple products in different mixes and volumes. 

Moreover, multiple locations may get affected. In order to consider different aspects of relief 

operations, the preliminary model is extended into four additional models. The first model 

extends the preliminary model from single product to multiple products but in equal units to a 

single location. This model examines distribution of two or more than two products to each of 

the affected victim. The limitation of this model is that though it includes multiple products, it 
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considers only one unit of each product. The second model rectifies the limitation of the first 

model. The first two models focus on single location demand. Relief agencies, on the other hand, 

have the responsibility to manage the relief operations over multiple areas hit by disasters.  

I extend the third model to capture the demand arising from multiple regions. Assessing the 

demand in the aftermath of disasters becomes difficult due to various impending factors such as 

damage of road and communication links. Therefore, besides considering all the elements of the 

first two models, the third model also includes multiple locations and incomplete demand 

information.  

A correlation factor is introduced to help pool the demand of multiple sites even though the 

demands of certain sites are unknown.  The last model considers complete demand information, 

besides considering correlation. Both the third and the fourth model consider the quality of the 

forecast information of these multiple demands. Subsequently, I perform analytical and 

numerical analyses of all these models. Further, I use the data generated by Hazards-US 

(HAZUS) software and perform sensitivity analysis. FEMA (Federal Emergency Management 

Agency) uses this software to simulate the impacts of hurricanes, floods and earthquakes in a 

particular region of a country. This chapter concludes with the flexibility of all these earlier 

models. The flexibility explains the applicability of all these models not only in the strategic 

planning for the regions but also for the tactical planning for a specific location. 

 Chapter 5 starts with the widely used risk-measures such as value at risk (VaR) and 

conditional value at risk (CVaR). Researchers observe that supply chain and operational 

managers prefer a target profit or cost to expected profit or cost. The reason for this attitude is to 

avoid unexpected high losses in profit or high costs. This behavior represents risk-aversion of 

managers. Since cost minimization is the objective of the response/relief agencies, they prefer 
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risk aversion. Another reason for this is that these agencies have limited financial resources 

because they receive these funds mainly from donors. Such financial constraints force these 

agencies to be risk-averse (RA) decision makers. When the resources of relief agencies become 

very scarce, these agencies have to prioritize the products to ensure a victim gets the most critical 

one. In order to model this prioritization, I introduce a decomposable model. The model provides 

insights on the cost of these two categories of products in relation to different RA perspectives. 

This chapter concludes with an overall summary of the dissertation. Chapter 5 also includes the 

limitations of the study and concludes with scope for further research. 
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CHAPTER 2  

LITERATURE REVIEW 

In this chapter, I review the relevant literature. The literature review is structured around 

five major areas. First, the review of literature focuses on various disasters and their impacts. 

Second, the review focuses on various stages of relief operations and the challenges 

humanitarian agencies come across while executing these stages. Third, the unique factors that 

differentiate humanitarian operations from commercial operations are identified. Fourth, the 

literature that helps us to understand the current state of research on both humanitarian and 

commercial operations is reviewed. Finally, the gaps in the current literature are identified.  In 

the concluding section, the implications of this study are briefly discussed. 

2.1 Introduction 

Caused by nature or human, disasters strike every year worldwide killing thousands of 

lives and inflicting immense human sufferings (Lodree and Taskin, 2007). Though prevention of 

these disasters is impossible, the resulting damages can be minimized. On the contrary, human 

induced disasters occur at high probability, and their consequent damages vary widely by the 

type of disaster. Moreover, prevention of such disasters is possible. Irrespective of nature and 

type, all disasters disrupt economic activities, damage physical infrastructure, damage 

environment, and cause loss of life (Altay and Green, 2006). The impact of a disaster depends on 

many factors: time, place of impact, nature and severity of hazard agent, topographical features, 

etc. These impacts include short and long term consequences (Apte, 2010). Short term 

consequences are loss of lives; long term consequences are damage to physical infrastructure, 

loss of economic growth, and disruption of social orders. The frequency of occurrence of natural 

disasters in the last decade has been more than that of its previous decades. Furthermore, more 
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deaths have been reported in the last decade than its previous decades. For example, earthquakes 

and tsunamis have killed 696,000; heat waves, 51800; floods, 7800; hurricane and storms, 

144,600;  famine , 10000 (Yu et al., 2010). 

Effective planning and response operations considerably reduce the impacts of disasters, 

especially loss of lives (Berrin, 1995). Planning comprise of all pre disaster activities, which aim 

to reduce loss of lives. Response activities refer to the relief activities, which are carried out in 

the aftermath of disasters: demand assessment, distribution of critical supplies, restoration of 

physical infrastructure, etc. The duration required for executing pre and post disaster operations 

is called response period. Wealthy nations recover faster than poor ones. This faster recovery is 

attributed to preparedness and availability of basic infrastructure; whereas, slower recovery of 

poor nations is attributed to their existing problems, lack of resources, social background (Yu et 

al., 2010).  

2.2 Characteristics of Disasters and Their Impacts 

Since I examine only seasonally occurring natural disasters, I study the characteristics of 

seasonal disasters. The characteristics of seasonal disasters include seasonality, predictability, 

and location of landfall. Examples of seasonal disasters include heat waves, rains, hurricanes, 

and storms (Burling and Hyle, 1997). The life span of seasonal disasters varies from a few hours 

to several days. This time window helps relief agencies to plan their operations and respond to 

these disasters. On the other hand, suddenly striking natural disasters last for only few minutes, 

allowing no time window for preparedness (Salmeron and Apte, 2009). For instance, an 

earthquake strikes suddenly and allows no time for preparations or evacuations. In contrast, 

hurricanes and floods take considerable time for their formation, movement and landfall. The 

national weather service (NWS) predicts the formation of hurricanes days and weeks in advance 
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and warns the people. Further, it releases the status reports of hurricanes every 12 hours after a 

hurricane's formation. Indeed, NWS predicts the seasonal forecast well before the hurricane 

season starts. This time window permits agencies to plan and respond immediately in the 

aftermath of disasters. 

2.3 Overview of Disaster Relief Operations and Its Challenges  

Federal Emergency Management Agency (FEMA) has identified four distinct phases of 

emergency management operations: preparedness, response, recovery, and 

mitigation/prevention. Preparedness refers to plans and preparations made to save lives and 

property. Plans address the facilitation of relief and response operations. The response phase 

includes actions aimed towards saving human lives and providing support for the speedy 

recovery of the affected population from the disaster impacts. Response operation comprise of 

two phases: lifesaving and self-sustaining phase (Celine and Sandra, 2010).The life-saving phase 

is the period immediately after the disaster, during which the affected population is unable to 

meet their personal needs. The self-sustaining period is the period after the lifesaving period, 

during which the victims are able to meet their personal needs themselves. The duration of the 

recovery period may last for hours to years and includes actions intended towards bringing the 

community back to normal or improved operating condition in the aftermath of disasters. 

Mitigation activities try to eliminate or reduce the effects of a disaster. Readers can refer Altay 

and Green (2006) and Malini et al. (2009) for a comprehensive review of studies related to 

different stages of relief operations and humanitarian supply chains.  

Emergency relief operations are wrought with many challenges (Celine and Sandra, 

2010; Kathy and Sanjay, 2009; Sheu, 2007) including ineffective coordination among relief 

agencies, uncoordinated decision making processes, poorly defined policies, diverse social and 
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economic conditions, and other associated issues. Kathy and Sanjay (2009) have also identified 

other major challenges, which include emergency logistics, the timeliness of relief, resource 

management for emergency logistics, and real time relief demand-information. Relief agencies 

find it difficult to define and quantify these factors because of their dynamic and complex 

relationships (Altay and Green, 2006).  

Humanitarian operations face challenges of procurement, transport and distribution of 

relief supplies in their supply chain (Wassenhove, 2006). Since the impact time, place of 

occurrence, and severities of disasters are often unpredictable, the actual supply requirements are 

also random. This randomness of demands complicates procurement decisions. Another critical 

component of the relief operation is the transportation of supplies from source to destination. 

Moreover, relief agencies face challenges caused directly by disasters. Some of these challenges 

are the result of damaged infrastructure, limited transportation resources, and limited volume 

transport (Burcu et al., 2008). In addition, shortages of transportation vehicles often ruin supply 

distribution and public evacuation. Sometimes, volunteers are unfamiliar with the affected 

locations and face language barriers, being unable to converse with the affected population. 

Moreover, power outages occurring in the affected regions may spoil perishable products.  Some 

disasters like nuclear radiation even contaminate the available products and exacerbate the relief 

operations. For example, 2010-Japan tsunami and the consequent nuclear radiation contaminated 

milk and spinach available around its Fukushima nuclear plant (Johnson, 2011). 

2.4 Unique Features of Humanitarian and Commercial Operations 

Both commercial and humanitarian operations share some commonalities; however, the 

humanitarian supply network differs from commercial logistics. Commercial logistics involves 

clearly defined linkages among partners; however, humanitarian logistics does not exhibit clearly 
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stated linkages among partners (Thomas and Kopczak, 2005). In contrast, the common 

objectives of these operations are to produce and deliver the right product, in the right amount, in 

the right place, at the right price, and at the right time (Burcu et al., 2008). Although commercial 

and humanitarian operations share such commonalities, they are distinct in many ways. Since the 

time, location, type, and demand of these operations are different, these operations are managed 

differently (Kovacs and Spens, 2009). Beamon (1998) addresses various supply chain measures. 

Table 2-1 shows the relevance of several measures in the context of commercial and 

humanitarian operations. Unlike the commercial operations, demand is highly unpredictable in 

humanitarian operations. In commercial operations, partners fix the lead time; whereas in the 

humanitarian operations, lead time is not within the control of partners because of the 

randomness involved in the occurrence of the demand. Commercial supply chain employs a 

well- established network; whereas, humanitarian supply chain networks do not even exist in 

certain situations. Commercial operations adapt well-developed and validated inventory 

techniques. In contrast, humanitarian operations do not have such well-developed and validated 

techniques. Table 2-1 also shows the differences between commercial and traditional operations. 

Table 2-1 Comparison between Commercial and Traditional Operations  

Factors Commercial Operations Humanitarian Operations 
Demand Relatively stable and predictable Random & unpredictable demand  
Lead time Determined by partners Nearly zero lead time  
Network Well defined Unknown network 
Inventory Well defined techniques Techniques need to be defined 
Objective Maximize profitability  Minimize loss of life 
Output measurement Profit /cost  Serve at the right time and size 
Partners Profit oriented corporations Not for profit making agencies 
   

2.5 Current State of Research on Traditional Operations 

In this section, I review literature relevant to random demand, order size, and forecast 

updating. The pioneering work by Fisher and Raman (1996) addresses supply and demand 
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forecast updating. Their model considers a manufacturer-retailer context with two production set 

ups: one long before the selling season and the other during the early period of the selling season. 

The retailer places his second order after observing the demand during the early selling period. 

The manufacturer initiates his production- runs based on the retailer’s order time and order size. 

The quantitative model of their study (Fisher and Raman, 1996) minimizes costs of under and 

over production. Lau and Lau (1998) model a dual supplier and a single manufacturer inventory 

control model for a single demand period. Their model divides this single period into two slots. 

Their model further assumes that the total demand is the combination of demands of these two 

slots. Their model yields distinct solutions for both the slots. Models formulated by Lau and Lau 

(1998) differ from that of Fisher and Raman (1996) in two ways: First, the former assume an 

independent demand while the latter assume a bivariate demand. Second, the former do not 

impose a minimum lot size restriction while the latter impose such a minimum lot size 

restriction. 

Gurnani and Tang (1999) model a retailer’s dual instance ordering problem and use 

forecast information to update their demand distribution. Further, they assume that the second 

instant cost may be lower or higher than the first instant cost. They quantify the available 

forecast information as either worthless or perfect or in between these two extremes. Their study 

also considers a single period setting. They subjectively choose the first order.  Conditioned on 

the first order size, their second order size optimizes the cost of the overall demand.  Donohue 

(2000) models a manufacturer-outlet chain context and maximizes expected profit of the 

manufacturer, while assuming that manufacturer also owns the retail outlet. She considers two 

modes of production: a slower one and a faster one. The faster production mode starts after 

obtaining the demand forecast. The cost of the products in the faster mode of production is 
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assumed to be higher than that of the slower mode because faster production has lesser lead time 

than the slower production. Yan et al. (2003) model a supplier-manufacturer situation with two 

suppliers and one manufacturer. They assume that one of the suppliers delivers faster than the 

other. The faster delivery is considered more expensive than the slower delivery. They model the 

optimal order sizes of both the suppliers as functions of time, costs, and demand. Yan et al. 

(2003) use a dynamic programming approach to solve their model; whereas, the previously 

mentioned studies use either constrained or unconstrained optimization techniques.  Sethi et al. 

(2003) assume a multi-period context and place two types of orders per period: a slower one and 

a faster one. They assume that demand occurs at every period. Their objective is to find a vector 

of order quantities to minimize the expected total cost over multiple periods. At the beginning of 

every period, they update the demand forecast. Table 2-2 shows various features and 

methodologies used by these studies. 

Table 2-2 Models Focusing On Traditional Operations 

Author(s) Objective Methodology Updating No of 
orders 

Demand 
period 

Fisher and 
Raman, 1996 

min expected cost constrained 
optimization 

joint demand 
information 

2 1 

Lau and Lau, 
1998 

max expected profit unconstrained 
optimization 

demand 
information 

2 2 

Gurnani and 
Tang, 1999 

max expected profit unconstrained 
optimization 

joint demand 
information 

2 1 

Donohue, 2000 max expected profit unconstrained 
optimization 

conditional 
probability 

2 1 

Yan et al., 
2003 

min expected cost dynamic 
programming 

forecasting 
based 

2 1 

Sethi et al., 
2003 

min expected cost unconstrained 
optimization 

forecasting 
based 

2 multiple 
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2.6 Current State of Research on Humanitarian Operations 

Current state of research on humanitarian operations mainly focuses on transportation of 

supplies, formation of routes, evacuation of people, unreliability of supply chains, location of 

facilities and warehouses, control of inventories, and pre-positioning of resources. In this section 

I review some of the studies, specifically addressing these issues. Valinsky (1955) studies 

optimum location to set-up fir fighting centers in New York City. Haghani and Oh (1996) 

formulate a multi-product, multi- modal transportation network for delivering critical supplies. 

They route the supplies from suppliers to disaster sites. They use a heuristic to solve their model. 

They further analyze their heuristic in another study (Haghani and Oh, 1996) and derive further 

insights on several transportation issues. Their model includes four nodes, five arcs, and three 

modes of transportation. In reality, the number of nodes and arcs are high. Moreover, sometimes 

the supply chain network for supply distribution does not even exist.  

Barbarosoglu et al. (2002) consider a helicopter transportation problem in the context of 

emergencies. They address issues of aid delivery and evacuation. This helicopter evacuation, 

although suitable for evacuating few hundred persons, is not suitable for a situation in which the 

size of the affected population is in thousands and above. Using reliability inference theory, 

Thomas (2003) examines the unreliability of supply chain and logistical systems. He develops a 

metric to measure the reliability of supply chain and logistical systems, identifies critical 

measures, and suggests steps to improve the system. Barbarosoglu and Arda (2004) formulate a 

stochastic programming problem to address the transportation issues. Ozdamer et al. (2004) 

examine logistical planning. Beamon and Kotleba (2006) formulate a stochastic inventory model 

for long term relief operations. Their model considers multiple suppliers context and back 

ordering. They assume that the demand is random. Moreover, they consider back ordering. This 
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back ordering concept seems appropriate for the supplies, which victims need later, but does not 

seem appropriate for supplies, the victims need immediately. Mete and Zabinsky (2010) 

formulate a stochastic programming model to position the warehouses and find the optimal 

inventory level. Salmeron and Apte (2009) formulate a stochastic optimization model to pre-

position disaster supplies. 

2.7 Research Gaps and Contributions 

There are several studies on forecast updating (Gurnani and Tang, 1999; Yan et al., 2003), 

order break-ups (Donohue, 2000; Sethi et al., 2003). Though these studies consider commercial 

supply chain context, the concepts addressed by these studies can be extended to non- 

commercial humanitarian context if there exists concept commonality. My study is similar to 

these studies (Gurnani and Tang, 1999; Donohue, 2000; Yan et al., 2003) with respect to 

multiple orders; however, my study assumes that the second order cost is strictly higher than the 

first order. This assumption seems true in reality because prices of commodities do go up just 

before and after a disaster. This happens due to inaccessibility of the affected area, breakage of 

supply chain links and damage to roads and bridges and supply routes in general. Suppliers need 

to take extra risk in transporting products to the affected locations. To hedge this risk, suppliers 

fix higher prices during disasters. 

 Zhu and Thonemann (2004) use martingale model of forecast updating for aggregating 

multi-location demand. Besides demand, their model addresses quality of information. I employ 

this approach in my model to aggregate the demand arising (size of affected populace) at 

multiple locations. Although they include multiple products, their model is decomposable to 

individual products. Since relief agencies distribute relief packets containing multiple products, 

my models are not decomposable to individual products. To the best of my knowledge, I believe 
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that I am the first one to introduce non-separable models. This property of non-separability leads 

to lesser data requirements than separable models. In addition, these models have the flexibility 

to capture products with different shelf lives, for instance, durable and perishable products.  

Moreover, existing models use expected value criterion in their solution methodology, a 

criterion most appropriate for risk-neutral perspective. In contrast, my models include both risk-

neutral and RA perspectives. This application of RA perspective assists the relief agencies to 

assess their financial requirements for worst case disasters. The unique features of my study are 

depicted in Figure 2-1 

 

Figure 2-1  Comparison between Current and Previous Studies 
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CHAPTER 3  

PRELIMINARY MODEL 

In this chapter I provide an overview of current humanitarian operations and series of 

activities involved in the preparation and implementation of relief operations. Considering these 

relief activities, I formulate my basic model, derive its analytical solutions, and present its 

comparative statics. A numerical illustration is also introduced to obtain analytical insights. 

These analytical and numerical insights help relief agencies make informed decisions.  

3.1 Overview of Current Humanitarian Relief Operations 

Relief agencies perform various functions as part of their relief operations. These 

functions include procurement, transportation, storage, and distribution of relief supplies. These 

agencies procure relief supplies, which include, but are not limited to food, milk, bread, cleaning 

supplies, water, tarps, tents, napkins, blankets, batteries, etc. Some of these products are 

perishables, and the remaining ones are durables. These agencies have limited transportation 

resources. To distribute relief supplies at affected locations, these agencies hire trucks 

temporarily and transport supplies in large volumes. These agencies own warehouses only at 

specific locations to store a minimal volume of products. To avoid high storage costs, these relief 

agencies hire trucks and transport supplies directly from supply sources to affected sites. In the 

aftermath of disasters, volunteers distribute these products to the affected population.  

While executing relief operations, relief agencies face several challenges. Some of these 

challenges are inadequate financing, shortages of sufficient volunteers, scarcity of warehousing 

capacity, and lack of logistical and communication resources (Beamon, 1999; Berrin 1995). 

Relief agencies such as Red Cross and Doctors Without Borders /MSF mainly rely on their 

donors for financing their relief operations. These agencies receive a major portion of their 
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donations only after the severity of a disaster is known. In contrast, FEMA receives its full 

financial assistance from the federal government; funds are actually released only when the 

federal government declares an event as “disaster”.  This declaration is made while a disaster is 

in process or over. Because of this late declaration, FEMA is unable to act proactively to respond 

to an imminent disaster. These financial constraints compel these agencies to explore alternative 

ways to optimize their available resources. Further, the shortage of skilled manpower affects the 

preparation and response activities. To reduce the cost of operations, agencies employ unpaid 

and underpaid volunteers who assess demand and distribute supplies. Another challenge aid 

agencies face is that these agencies do not own local warehouses at all potential disaster sites. In 

addition, communication and coordination with other agencies become difficult during disasters. 

All these constraints collectively complicate effective relief efforts. In spite of all these 

constraints, these agencies are expected to provide relief supplies to all affected population.  

Relief agencies are subjected act under the aforementioned constraints and limitations. 

Nevertheless, these agencies always try to improve their operations by exploring effective 

strategies to reduce their cost of operations while simultaneously meeting disaster demands. 

3.2 Processes of Disaster Relief Operation  

Timely decisions are crucial for effective operations. Though relief agencies create a pre-

disaster purchase agreement with their suppliers at the beginning of a disaster season, these 

agencies do not create one for a specific disaster (Keith, 2006). Further, the aid agencies perform 

demand assessment after the landfall of disasters; however, they do not conduct such one either 

before or during the disaster. Though the demand assessment in the aftermath of a disaster is 

more accurate, it does not provide sufficient time for procurement, transportation and distribution 

of critical supplies. Researchers (Harrald, 2006; Tovia, 2007) emphasize that providing timely 
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services in the first 72 hours in the aftermath of disasters is significant to reduce loss of lives. 

However, the relief agencies have difficulty establishing their distribution networks in time due 

to many practical difficulties. For example, FEMA (Keith, 2006) established its logistical 

network 72 hours after the landfall of hurricane Katrina in Louisiana due to communication 

breakage and inaccessibility to the affected regions. In order to avoid this time lag in distribution 

of products, relief operations need reevaluation of their current practice of and improvement of it 

by appropriate strategies. Though the aid operations face challenges in many areas, I consider 

only inventory management for improvement. 

In this study I provide guidelines for improved operations. I support my guidelines via 

model’s analytical insights. Therefore, to improve their operations, I recommend the agencies 

place a disaster specific order at the time of the seasonal forecast. It would also seem logical for 

agencies and suppliers to create a pre-disaster agreement to fix the prices of supplies before, 

during and after disasters. If needed, agencies need to place another order just before the landfall 

of the specific disaster when the demand information is almost known to certainty. However, 

agencies need to choose the second ordering time in such a way that it will provide sufficient 

lead time to the suppliers.  This way, products ordered at both instances reach the disaster site in 

time for distribution. If the number of needed products exceeds the available inventory, a 

shortage occurs. If there is a shortage, agencies need to initiate spot market purchase and satisfy 

the demand by distributing products to all the affected people.  Instead, if the available inventory 

exceeds the demand, agencies can salvage the excess inventory or return it to the suppliers if 

there is any buy-back provision in the contract.  I show that these suggested practices ameliorate 

planning and response activities and consequently minimize risks and costs. Figure  

3-1 shows the inter relationships among the major activities: procurement, distribution and 
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disposal. The flow diagram is drawn for the distribution of a single product procured through 

multiple ordering and distributed to a single affected site. 

 

Figure 3-1 Processes Involved in Disaster Relief Operations  

3.3 Newsvendor Framework for Modeling Disaster Relief Operations 

Various components of the disaster relief operations discussed so far are similar to the 

news vendor framework which has several applications in manufacturing and service sectors 

(Gurnani and Tang, 1999; Kulkarni et al., 2009; Kulkarni et al., 2008; Kulkarni et al., 2005; 

Porteus, 2002; Van Mieghem and Rudi, 2002). This framework is most appropriate whenever a 

decision variable is associated with a random demand. For example, a newsvendor has to decide 

in advance how many newspapers he has to buy before the realization of demand. The demand 

for the newspaper is random. The consequences of the newsvendor’s decision are that his 

purchased units may either be more or less than the real demand. In the former case he has to 

lose opportunity cost, and in the latter case he has to dispose of the excess newspapers. The 

objective of the newsvendor is then to maximize his profit by finding a tradeoff between under 

and over ordering costs. In case of a humanitarian context, relief agencies have to ensure the 

availability of inventory in time for distribution. Since the realized demand is random, the 

available inventory may be either more or less than the realized demand.  Unlike the 
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newsvendor’s usual profit maximization objective, the relief agencies need to consider the cost 

minimization objective by finding a tradeoff between over and under ordering of inventories. To 

incorporate the discussed processes in my preliminary model, I define the following notation.  

3.4 Model Formulation and Numerical Analysis 

In this section, I introduce a series of models to capture various aspects of relief operations as 

depicted in Figure 3-2. Model 1, the basic model, assumes that the approaching disaster will hit 

only one location and each affected person in the location needs only one unit of a product.  

    Model 3  Model 4 
Model 1  Model 2  Multiple location  Multiple location 

Single location  Single location  Multiple products 
in any units  Multiple products 

in any units 
Single product  
in single unit  Multiple products 

in any units 
 Partial demand 

Information  Complete demand 
Information 

    Information quality   Information quality  

Figure 3-2 Progression of Models 

Though the applicability of this model is rare in reality, this model provides closed form 

solution and practical insights through sensitivity analysis. Model 2 considers distribution of 

more than one product in multiple units. Models 3 and 4 are more realistic and are likely directly 

applicable to real world relief efforts. For instance, FEMA distributes lifesaving supplies to all 

the states of the U.S during emergencies. For an effective relief operation, the relief agency plans 

for multiple locations by aggregating information from all those locations. Collecting this 

information may not be possible or feasible in some circumstances. In such situations, FEMA 

has to perform its planning and response activities based on partial information. Other 

international relief agencies such as Red Cross and Doctors without Borders also face such 

problem of partial information while planning for disasters.  
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3.5 Model 1– Single Location and Single Product Model 

My basic model is similar to previous studies (Donohue, 2000; Yan et al., 2003).  

I consider a risk-neutral relief agency which orders x1 units of a product at a cost of c1 per unit 

immediately after a seasonal forecast of a disaster (e.g., hurricane, flood, winter storm, etc) is 

known. This order quantity is subjective and is based on the agency’s budgetary and financial 

constraints. The agency closely observes evolution of the seasonal disaster and tracks its path of 

movement and intensity. Based on this observation, the agency identifies the potential locations 

prone to this disaster. Using HAZUS software – FEMA uses this software to simulate the impact 

of the damage –the agency estimates the potential number of households that will be displaced 

(θ). Using the forecast information (θ) and HAZUS simulated data, the agency places a second 

order for x2 units at a cost of c2 per unit. It is assumed that suppliers deliver the ordered 

quantities (x1 + x2) to the affected sites just after the dissipation of the disaster. The ordering 

instances are chosen in such a way that suppliers have enough lead time. In the aftermath of the 

disaster, the agency starts distributing the supplies to victims and conducts a post disaster 

demand assessment. If the actual demand for the product (ξ|θ) exceeds the ordered inventory, 

the agency purchases the shortage units (ξ − (x1 + x2)) at a price of p per unit. On the other 

hand if there are surplus units ((x1 + x2) − ξ), those units are salvaged at v per unit. To avoid 

trivial solutions, I assume  c1 < c2 < p . I assume that c2 > c1  because supply chain and 

logistical activities need to be performed with high risk when the disaster is still active in the 

area. For example, during the super storm Sandy, major suppliers such as Home Depot and Wal-

Mart had closed most of their centers located in areas prone to the hurricane. Since suppliers and 

transporters bear an extra risk, they charge more when the disaster is active in an area. The spot 

market price p > c2  because the demand for products increases in the aftermath of disasters 
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relative to the supply.  The salvage value (v) is assumed to be strictly less than c1to avoid trivial 

solutions. The probability distribution function of demand is ϕ and the cumulative distribution 

function is Φ . Distribution parameters μ and σ represents the normally distributed demand mean 

and variance. If only one product is distributed to each affected person, then the demand for the 

product is equal to the size of the affected population. Throughout this paper, the disaster 

demand refers to the size of the affected population. The objective function to minimize the 

expected cost can be expressed as,  

( )       )x,xh( xc)x,x( CT Min 2121 110x,x21 Ε+=≥  (1) 

Where, the term E(h(x1, x2) represents the expected value of the objective function of the second 

instance. The second instance problem is expressed as, 
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Rearranging the terms of equations 1 and 2, I get equation 3  
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To reduce the number of variables in equation 3, I introduce another variable y, called 

cumulative order size. Let 21 xxy += . Substituting the value of y and rearranging the terms of 

equation 3 yields equation 4. Equation 4 is equivalent to equation 1, which includes both the first 

and second instance ordering. Equation 5 represents the cumulative problem.   
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The optimal cost of the model represented in equation 4 is expressed in equation 6 
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3.6 Methodology and Solution Approach 

Since the cumulative order size, y, depends on the first instance order size, the basic 

problem exhibits the structure of a nested newsvendor. The basic problem cannot be solved in its 

current form because it has two variables but a single equation. To resolve this issue, first I solve 

the nested second stage problem (equation 5). The solution (y∗) reflects the optimal cumulative 

order size, which also minimizes the main objective function in equation 4. The optimal order 

size (y∗)  is obtained from equation 7. 
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Using the relationship, y∗ = x1 + x2∗ , the optimal second instance order size (x2∗) can be found as 
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Once 1x and *
2x are known, then the optimal cost can be calculated from either equation 3 or 4. 

An illustrative example is given below. 

Example 1: A relief agency plans to distribute one unit of a product to each of the affected 

victims for an impending disaster. From the quotes of the suppliers, the cost structure of the 

product is as follows: c1 = $12, c2 = $16, p = $23, v = $8. An approaching disaster is expected to 

displace an average 200 persons with a standard deviation of 20. For any given first order size 

(e.g., 0, and 75), the relief agency wants to find the optimal order quantity and cost. 
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Note that the first order size is given x1.  The optimal cumulative order size is then 

calculated from equation 7: y∗ = Ф−1 �p−c2
p−v

� which is 198.33 units. When x1 = 0, I have x2∗ =

 y∗, which implies that the optimal second instance order size, 𝑥2∗ , is equal to the optimal 

cumulative order size. The corresponding optimal cost for this scenario is $3319.26. If 𝑥1 =

75 units, then x2∗ = 123.33 units (i.e., 198.33-75). The corresponding optimal cost for this 

scenario is $3019.26.  Note that (3319.26-3019.26=$300= (16-12) x (75-0)). i.e., purchasing 

each additional unit at the first instance reduces the total cost in increments of  (c2 − c1). This 

cost reduction (c2 − c1) is the difference in cost between the second and first instance.  

Obviously, this marginal cost reduction can be achieved as long as the first order size ( 𝑥1) is less 

than the optimal order size ( y∗). However, ordering x1 = y∗ does not involve any updated 

demand forecast 𝜃𝜃. When x1 ≥ y∗ , the agency procures the required supplies all at once at the 

first instance (i.e., just after the seasonal forecast but even before any active disasters). If the 

seasonal forecast is 100% accurate, x1 = y∗ is beneficial. Otherwise, this bulk purchase involves 

very high risk. Besides, the decision is not based on any updated information of disasters.  

3.7 Sensitivity Analysis of Model-1  

The single product single location model is analyzed for the following parameters: 

c1 , c2 , p, v, µ and σ. Besides these parameters, the impact of first instance order size is also 

studied. The parameter values assumed for performing sensitivity analysis of this model 1 are 

same as in example 1 of §3.6. 

Proposition 4.1: a). The optimal cost is increasing in c1 , c2 , p and v. b). The optimal order size is 

independent of  c1, increasing in p and v, and decreasing in c2 . 
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Proof: Differentiation of expression 4 with respect to 𝑐1  yields ∂TC
∂c1

= x1 ; 𝑐2  yields 

∂TC
∂c2

= (y− x1); 𝑝 yields ∂TC
∂p

= ∫ (ξ − y)φξ|θdξ∞
y ; and v yields ∂TC

∂v
= ∫ (y− ξ)φξ|θdξ.y

−∞  Since all 

these derivatives are positive, The optimal cost is increasing in 𝑐1 , 𝑐2 ,𝑝 𝑎𝑛𝑑 𝑣. 

Since x1  is non-negative, the optimal cost is strictly increasing in 𝑐1 . The optimal order 

size is independent of 𝑐1  because the optimal order size expression, y∗ = Ф−1 �p−c2
p−v

�, does not 

include c1 . Since c1  is the lowest among all the purchasing costs (i. e. , c1, c2, and p), purchasing 

products at the first instance results in cost savings. However, before placing any first instance 

orders, relief agencies need to evaluate other constraints such as financial, warehousing, and 

other relevant constraints in conjunction with the cost analysis.   

 

Figure 3-3 Impact of Second Instance Cost c2 on Optimal Order Size and Cost 

The partial derivative of equation 4 with respect to c2 yields  (𝑦 − 𝑥1). This quantity 

(y − x1) is positive if  𝑥1 is strictly less than y. Therefore, the total cost is increasing in 𝑐2. 

Figure 3-3 shows the impact of 𝑐2 on total cost. Differentiation of equation 4 with respect to p 

yields ∂TC
∂p

= ∫ (ξ − y)φξ|θdξ∞
y . Since this derivative is positive, an increase in spot market price 
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increases the optimal order size. Figure 3-4 shows cost curves for various spot market prices. 

Differentiation of equation 4 with respect to v yields ∂TC
∂v

= ∫ (y − ξ)φξ|θdξ.y
−∞   This term is 

positive. Therefore, optimum cost is increasing in v. Figure 3.5 shows the impact of salvage 

value on the optimum cost and order size.  

 

Figure 3-4 Impact of Spot Market Price (p) on Optimal Order Size and Cost 

  

Figure 3-5 Impact of Salvage Value (v) on Optimal Order Size and Cost 

Proposition 4.2: Purchasing additional units at the first instance will reduce the total cost.  
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Proof: The proof is straightforward from the equation 4 (i.e., ∂TC
∂x1

= −(c2 − c1)). Since this 

derivative is always negative, purchasing every additional unit at the first instance will reduce 

the total cost by (c2-c1). Figure 3-6 describes cost curves for various first order sizes, starting 

from 80 to 160 in steps of 20. For all these first orders, the optimum order size remains the same 

because the critical fractile �p−c2
p−v

� does not include 𝑥1. However, optimal cost varies for different 

first order sizes. An initial order of 80 units incurs an optimum cost of $2999.26. When this order 

size increases to 100, the optimum cost reduces to $2919.26, a saving of $80. This $80 reduction 

is the result of (c2 − c1)x1 (i.e., (16-12)*20). This cost saving applies to any additional initial 

purchase if it does not exceed the optimal order size. Cost curves of Figure 3-6 explain the cost 

savings for additional purchase at the first instance. All these cost curves starts from their 

respective initial order as shown. 

 

Figure 3-6 Impact of First Order Size (x1) on Optimal Order Size and Cost 

Proposition 4.3:  

a) The optimal cost is increasing in the mean μ; optimal order size is also increasing in μ 
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b) The optimal cost is increasing in the standard deviation σ; optimal order size is also 

increasing in σ. 

Differentiation of the cost expression 4 with respect to μ yields a positive derivative. 

Therefore, the optimal cost is increasing in μ. Similarly, differentiation of the cost equation 4 

with respect to σ yields a positive derivative. This implies that the optimal cost is increasing in σ. 

Table 3-1 shows the insights derived from model 1for all parameters as well as the first instance 

order size. 

Table 3-1 Summary of Insights from Model 1 

Parameters (or) variables 𝑥1 ↑ 𝑐1 ↑ 𝑐2 ↑ 𝑝 ↑ 𝑣 ↑ 𝜇 ↑ 𝜎 ↑ 
Optimal order size No effect No effect ↓ ↑ ↑ ↑ ↑ 
Optimum cost ↓ ↑ ↑ ↑ ↓ ↑ ↑ 

 

In this chapter I have formulated a model for distributing a single product to a single 

location. The model is solved analytically and a numerical problem is also solved to derive 

insights in the context of humanitarian relief operations. In practice, humanitarian problem 

involves several other challenges such as procuring products of different shelf lives, procuring 

the products from multiple suppliers, bargaining quantity discounts, distributing products to 

affected population at multiple sites, and collecting demand information from affected sites. To 

capture such issues, the preliminary model is extended further. The extended models are 

introduced in the next chapter.  
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CHAPTER 4  

EXTENSIONS OF THE PRELIMINARY MODEL 

In this chapter, I introduce the extensions of the preliminary model. The extended models 

consider several practical aspects of relief operations such as multiple products, multiple 

location, complete and practical forecasting scenarios. 

4.1 Model 2– Single Location, Multiple Products of Any Quantity 

The model introduced in the previous chapter (§3.1) may seem unrealistic because relief 

agencies generally distribute relief packets, each of which contains more than one product, in 

multiple units. The number and mix of products depend on the disaster’s type and severity, the 

site’s topography and weather, and victims’ age and health. Whenever a product is supplied in 

multiple units, the respective costs of each unit are added together.  For example if I distribute a 

relief packet containing five bottles of water, each bottle costing $2, then I aggregate the costs of 

all five bottles, $10. This cost aggregation obviates the complexity of dealing with multiple units 

of each product. Here I assume that each victim gets one relief packet, which contains different 

units of each product. To capture different products, I use an index i, where   i = 1,2,3, … I.   

I introduce two non-negative coefficients, k1i and k2i , to help capture ordering products with 

unequal shelf-lives. Coefficients k1i and k2i,  represent respectively the number of units of 

product (i) purchased at instances 1 and 2. If a product is purchased at both instances, k1i =

 k2i ≥ 1. This restriction enables agencies to package products as “relief packets”. For example, 

if five water bottles are packed in a relief packet, it is convenient to buy water bottles in 

multiples of five irrespective of whether these bottles are purchased at the first instance or 

second. If these water bottles are purchased in non-multiples of five, after packing five bottles in 

each relief packet, there are some leftovers (1 or 2 or 3 or 4). In this context, ordering in 
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multiples of five will eliminate the leftover issue. In contrast if a product is purchased only once 

at the second instance, k1i = 0 and  k2i ≥ 1. The former (first and/or first &second instance 

ordering) is suitable for durable products; whereas, the latter (second instance ordering only) is 

suitable for perishable products. The model is flexible to include all possible values of 

coefficients k1i &  k2i  though I place restrictions mentioned above for the convenience of relief 

agencies. In the previous model (§3.1), the variables – x1, x2, y, y∗ and x2∗  –were expressed in 

units; however, from this model onwards those variables will be expressed in number of relief 

packets. Model 2 is given below. 
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The optimal order size in packets ( *y ) is given as 
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If a product is not distributed in single units, then  𝑦∗ has to be interpreted in conjunction with 

k1i and k2i . For any given x1, x2∗  is calculated as, 
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I denote 𝑥2𝑖∗  as the optimal order size of product i at the second instance. This 𝑥2𝑖∗  can be 

calculated using 𝑥2∗ as 
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The optimal cost equation becomes  
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 Model 2 differs from the conventional models in aggregation of products. Traditional 

model comprises multiple products. Terms representing a specific product are separable from 

other products. Though my Model 2 contains multiple products, terms representing a specific 

product are not separable from other products. This non-separability property requires lesser data 

than conventional models that require more data. Each component product of conventional 

model requires its distribution parameters. In contrast, my model requires only one demand 

distribution parameters– the distribution of number of persons affected. Conventional models 

provide optimal solutions to every product. These solutions differ themselves if the products’ 

demand distribution parameters are different. These differing solutions complicate packaging of 

products. On the other hand, model 2 offers a single solution, which also minimizes the efforts 

involved in packaging products. 

Example 2: A relief agency wants to distribute each victim a relief packet–containing five water 

bottles and two blankets. The agency procures these products at both instances. Cost structure of 

a water bottle is as follows: c11 = $2.40, c21 = $3.20, p1 = $4.60, v1 = $1.60. Cost structure of a 

blanket is as follows: c12 = $8, c22 = $13, p2 = $17, v2 = $4.50. Immediately after the seasonal 

forecast, the agency has ordered 30 relief packets, each of which contains 5 water bottles and 2 

blankets. The expected size of affected population is estimated from the forecast information as 

200 with a standard deviation of 20. The relief agency wants to find the optimal order quantity of 

each product and the associated optimum cost.  

 Let i=1 represent water bottle and i=2 represent blankets. Since both the products are 

purchased at both instances, I have k11 = k21 = 5 and k12 = k22 = 2. To help find the optimal 

solution, y∗,∑ k2ipi2
i=1  is calculated as 57; ∑ k2ic2i2

i=1  is calculated as 42; and ∑ k2ivi2
i=1  is 
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calculated as 17. Using the normally distributed demand with μ=200 and σ=20, 𝑦∗ is calculated 

as 193.63 packets. Since the agency has ordered 30 packets (𝑥1) previously, the agency still has 

to order 163.63 packets (𝑥2∗). Since the agency distributes five water bottles to each individual, 

the agency still has to order 818.14 water bottles (𝑥21∗ ).  and 327.25 blankets (𝑥22∗ ). The optimal 

cost of this arrangement is $8283.36. When no packets are ordered at the first instance, 𝑥1 =

0, 𝑜𝑟 𝑘11 = 𝑘12 = 0, the total cost will be $8703.36, an addition of $420. Note that as 

demonstrated in model 1, this increment is a result of  ∑ k1i(c2i2
i=1 − c1i) x1 (i.e.,5x(32-

24)x30+2x(13-8)x30=420). 

4.2 Sensitivity Analysis of Model-2  

In this section, I perform sensitivity analysis of single location multiple product model 

(Model 2). The impacts of cost parameters on the optimum cost and optimum order size are 

studied. These insights help relief agencies minimize their cost and negotiate prices of products 

with their suppliers. 

Proposition 4.4: 

a) For any given distribution parameters, if two products having equal critical fractiles are 

purchased in any mode (individually or together), their optimum cost and optimum order 

sizes remain the same irrespective of purchasing mode. 

b) For any given distribution parameters, if two products having  unequal critical fractiles 

are purchased together based on their combined fractile, then their optimum cost is higher 

than the sum of optimum costs of products purchased individually based on their 

individual fractiles. 

To prove proposition 4.4 a,  let product-1 and 2 have equal critical fractiles �i. e. , p1−c21
p1−v1

=

p2−c22
p2−v2

�.  For some given distribution parameters (µ,σ), these critical ratios yield equal  optimal 
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order sizes �i. e. , y1∗ = µ + Ф−1 �p1−c21
p1−v1

�σ = y2∗ = µ +Ф−1 �p2−c22
p2−v2

�σ�.  It can be shown 

algebraically that  when two equal ratios are combined, the resulting ratio will be equal to the 

individual ratios �i. e. ,
p1−c21

p1−v1
=

p2−c22

p2−v2
=

p1+p2−(c21+c22)

p1+p2−(v1+v2)
�. Under such circumstances, the optimum 

cost is same irrespective of placing orders based on the individual or combined critical fractiles.  

 Now I analyze the practical implications of this proposition in the context of 

humanitarian relief operations. Suppose that each relief packet contains multiple products– one 

unit of each product that is purchased individually. After packaging, agencies have a leftover of 

|y1∗ − y2∗|   units. This term will be positive unless the critical ratios are equal. Managing this 

leftover is an issue. To avoid this leftover problem, agencies can purchase products together, 

based on the combined critical ratio, despite a moderately higher cost. To reduce this higher cost, 

agencies can negotiate the prices with their suppliers. To negotiate prices with their suppliers, 

agencies need to consider the absolute deviation. The lower is the absolute deviation; the lower is 

the additional cost. Proposition 4.4 yields a corollary, which explains this additional cost. 

Corollary 1: When two products have unequal critical fractiles, ordering based on the higher 

fractile results in lower cost; however, either the spot market price or salvage value of the 

product with lower critical ratio needs to be increased to a value at which the lower critical 

fractile becomes equal to higher critical fractile. Instead of spot market price or salvage value, if 

the second instance cost is used, it should be reduced until the lower critical fractile becomes 

equal to higher critical fractile. 

Using a numerical example, I analyze how relief agencies can negotiate prices of 

products with their suppliers to reduce this additional cost. To reduce the average cost of relief 

packets, relief agencies need to focus on the second instance cost and salvage value of the 

product, specifically that with a lower critical ratio. Either by decreasing the cost or by 

33 



increasing the salvage value, the lower critical ratio of a product can be brought equal to the 

higher critical ratio. Then by ordering the products based on the max �p1−c21
p1−v1

, p2−c22
p2−v2

�, which is 

also equal to �p1+p2−(c21+c22)
p1+p2−(v1+v2)

�, will yield the minimum cost. To evaluate the magnitude of cost 

difference, I consider two products– water bottle and blanket –with the following cost 

parameters:  𝑐21 = $3.20,𝑝1 = $4.60,𝑣1 = $1.60 and  𝑐22 = $13,𝑝2 = $17,𝑣2 = $4.50. Let the 

demand be uniformly distributed with (U~ (0, β=50). The critical ratio of water bottle and 

blankets are calculated respectively as 0.4667 and 0.32. Based on products’ respective critical 

fractiles, water bottle and blanket are ordered individually. The sum of costs of water bottles and 

blanket is $491.67 (from −β�c212 −2c21p1+p1v1�
2(p1−v1) − β�c222 −2c22p2+p2v2�

2(p2−v2) );  y1 
∗ is 23.33; y2 

∗ is 16 .  Since min 

(y1 
∗ , y2 

∗ ) is 16, only 16 relief packets can be made, which consequently leaves a leftover of 7.33 

water bottles. After salvaging each water bottle at $1.60, the total cost reduces to $479.94 

(491.67-1.60*7.33), an average of $29.99 per relief packet. What is the total cost if I purchase 

just 16 units of each product? The cost is $493.28, an average of $30.83 per relief packet. 

Instead, what is the total cost if I purchase 23.33 units of each product? The cost is $498.38, an 

average of $21.36 per relief packet. These results ($29.99, $30.83, $21.36) imply that purchasing 

max (y1 
∗ , y2 

∗ ) will result in lower cost. Is there any other order quantity that reduces the lower cost 

further below max (y1 
∗ , y2 

∗ )? The answer is “yes”. The average cost can be reduced considerably 

by decreasing 𝑖𝑛 𝑐21; however, the leftover units will increase. In contrast, decreasing 𝑐22, from 

13 to 11.17, yields y1 
∗ as 23.33; y2 

∗ as 23.33.  The corresponding total cost is then $455.69, an 

average of $19.53 per packet. Note that there are no leftovers. Therefore, adjusting the cost of the 

product with lower critical ratio to max �p1−c21
p1−v1

, p2−c22
p2−v2

� reduces not only the leftovers but also the 

average cost of relief packets. Note that mathematically this process tends to use the combined 
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ratio �p1+p2−(c21+c22)

p1+p2−(v1+v2)
�. In contrast, by increasing the salvage value of the product with lower 

fractile, agencies can increase the lower critical ratio to max �p1−c21
p1−v1

, p2−c22
p2−v2

�; this increment also 

tends to keep the average cost minimum. For example, when 𝑣2 increases from 4.50 to 8.42, 

p1−c21
p1−v1

𝑎𝑛𝑑 p2−c22
p2−v2

 becomes equal (0.4667); both  y1∗ and y2∗ becomes equal to the 

combined 𝑦1+2∗ (23.33); the corresponding optimum cost is $455.69, an average of $19.53 per 

packet. Note that I have utilized both the cost and salvage value, not the price because relief 

agencies do not have any control over the spot market price. All these insights can be extended 

for relief packets containing more than two products. 

4.3 Model 3– Multiple Locations, Multiple Products of Any Quantity with Partial Forecasting 

and Quality of Information 

Until now, I have discussed single location models. However, more often than not, 

seasonal disasters strike multiple regions which lie on their path of travel or area of spread. 

When these disasters strike multiple neighborhoods, relief agencies need to plan for collective 

demand rather than a single location demand. While planning for such eventualities, collecting 

demand information from all affected sites is crucial; however, it becomes difficult due to 

inaccessibility to the affected regions due to breakage of road and communication links. This 

situation demands robust planning even when the information is incomplete. Researchers (Erkip 

et al., 1990; Thonemann, 2002; Zhu and Thonemann, 2004) have applied martingale model of 

forecast evolution (MMFE) to such partial information problems, arising in commercial supply 

chains. MMFE enables aggregation of multiple demands. Researchers (Erkip et al., 1990) 

formulate a model for a centralized warehouse system, which in turn collects product demand 

information from other warehouses. This study (Thonemann, 2002) considers the quality of 

demand information besides considering correlation of demand between locations. In my study, 
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I adapt the methods used by Zhu and Thonemann (2004) to aggregate the mean and variance of 

demand occurring at several locations in the aftermath of disasters. They have applied this 

approach to estimate the combined demand of multiple customers in a supply chain context; 

whereas, I apply this approach to estimate the total demand, arising at multiple locations in the 

aftermath of disasters. Now, I introduce a model incorporating MMFE. 

Let ρ be the demand correlation between any two sites: one with known demand and the 

other with unknown demand. To ensure the non-negativity of demand variance, Zhu and 

Thonemann (2004) assume that ρ is greater than -1/ (J-1), where J is the number of affected 

locations.  Define an index j, where j is indexed from 1, 2, 3,… n, n+1,…J. The term n indicates 

that the demand is known from n locations. The term (J-n) represents the number affected 

location from which no information is obtained. When J > n, the situation is termed “partial 

information”; when J=n, the situation is termed “full information.”  In addition, I assume J ≥ 2, n 

≥ 1, and J ≥ n. Equation 14 represents the objective function for the partial information scenario. 
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Here, the pooled mean and variance of the affected population are calculated as in equation 15, 

by following the approach of Zhu and Thonemann (2004). The symbol r refers to the quality of 

information, where 0 (no information)  ≤ r ≤ 1(perfect information). I have, 
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Where θ1, θ2, … , θn represent the latest demand information available from the affected locations. 

The optimal order size, y∗, is calculated as, 
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For a given x1, x2∗  is obtained from expression 16 (the same approach as in equation 11).  
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Since I consider multiple locations (indexed by j) and multiple products (indexed by i), I denote 

x2ji∗  as the optimal second instant order quantity of product i to location j. The second order size 

of a product for a specific location can be calculated from equation 18. 
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The optimum cost of this partial forecasting scenario is expressed as 
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An example illustrates model 3. 

Example 3: An agency wants to plan for four affected locations, distributing two products to 

each victim in the first three locations and distributing only one product to each victim in the 

fourth location. The information from the fourth location is unknown. The cost structures are 

given in Table 4-1. The mean and variance of the demand of each location is respectively 200 

and 20. Based on the historical data, the correlation coefficient is found to be ρ =0.5. The quality 
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of information is r =0.3. The agency has ordered 800 packets of all products (x1=800) for all 

locations, just after the seasonal forecast is known. The agency wants to find the optimal cost and 

optimal order quantities of each product to each location. 

Table 4-1 Numerical Problem  

Location  (j) Product (i) θj c1ji c2ji pji vji k1ji = k2ji 
1 1 250 7 10 17 5 1 
1 2  8 12 16 4 2 
2 1 180 7 13 16 3 1 
2 2  9 14 19 5 3 
3 1 256 10 16 25 7 1 
3 2  11 13 21 7 4 
4 1 Unknown 9 11 19 6 1 

 

 Using expression 15, the pooled mean and standard deviation are calculated 

respectively as 907.5 and 51.96. Aggregated spot market price ∑ ∑ k2jipji  I
i=1

J
j=1 is calculated as 

250; aggregated second instance cost,  ∑ ∑ k2jic2ji as 168; I
i=1

J
j=1  and the aggregated salvage value  

∑ ∑ k2jivji  I
i=1

J
j=1  as 72. Using the critical fractile, pooled mean and pooled standard deviation,  𝑦∗ 

is calculated as 902.37 packets. Using expression 17, x2∗  is calculated as 102.37 packets. Using 

expression 18, the order quantities of each product to each of the four locations are calculated 

and tabulated in Table 4-2. 

Table 4-2 Second Instance Order Quantities 

Location (j) 1 1 2 2 3 3 4 
Product (i) 1 2 1 2 1 2 1 
k2ji 1 2 1 3 1 4 1 
x2ji∗ =  k2ji . x2∗   in units 102.37 204.74 102.37 307.11 102.37 409.48 102.37 
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Note that the cost structures of products are different at different locations. This can 

happen for example, when suppliers quote prices based on their location, transportation cost and 

other factors.  

4.4 Model 4– Multiple Locations, Multiple Products of Any Quantity with Full Forecasting and 

Quality of Information 

Model 4 differs from Model 3 only in n and J. With full information n = J. Replacing n of 

equation 14 by J, I get the pooled mean and variance as  
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Expression 21 yields the optimal order size to full forecasting scenario. 
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The objective function for full forecasting can be obtained from equation 14 by replacing n by J. 

The optimal second instance order size for the ith product of jth location �x2ji ∗ � can be calculated 

from equation 18. A numerical example is introduced to demonstrate analytical results. 

Example 4: A relief agency plans to distribute relief packets to persons, who live in seven 

counties in the West Virginia region, which is prone to an imminent flood. All the persons 

seeking shelters in this region need relief packets. Using HAZUS software, the agency generates 

an estimate of affected population for four potential scenarios. HAZUS data (Table 4-3) 

(http://www.regionvii.com/images/18_Appx_HAZUS_DATA.pdf, accessed 10/10/12) include 

the estimation of number of households expected to seek shelter in each county. I assume that the 

number of persons affected follows a normally distribution with a mean of 200 and a standard 
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deviation of 20. The agency has stocked 5000 water bottles. Each relief packet contains five 

water bottles and two meals. The agency would also provide shelter to displaced persons. The 

cost structure for a water bottle is as follows: c11 = $1.50, c21 = $2, p1 = $2.50, v1 = $1.00. The 

agency purchases water bottles at both the first (k11 = 5) and second (k21 = 5) instances, meals 

and shelter are provided only at the second instance (k12 = 0, k13 = 0, k22 = 2, and k23 = 1).  The 

cost structure of meals is as follows: c22 = $10, p2 = $15, v2 = $3. Unlike the cost structures 

considered as example 3, the cost structure of water bottles and meals are the same across all 

counties. In addition to distributing relief packets, the agency provides temporary 

accommodation at public buildings available in the region. The agency spends $5 per person 

(c13 = $5, c23 = $5, p3 = $5, v3 = $0) for accommodation purposes. The agency assigns the 

quality of information as r=0.5, based on the expertise of the demand appraiser. The agency 

wants to find the optimal order size for each product and also the optimal expected total cost. 

Table 4-3 HAZUS Data on Flood  

Counties in  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Total 
West Virginia HD* PSS** HD PSS HD PSS HD PSS Population 
Barbour  190 165 249 224 288 311 328 362 15557 
Braxton  256 312 285 348 321 404 328 439 14702 
Gilmer  183 163 194 173 212 194 *** *** 7160 
Lewis  638 1023 704 1135 743 1263 770 1278 16919 
Randolph  493 583 614 816 657 932 685 984 28262 
Tucker  188 219 236 321 256 383 287 435 7321 
Upshur  478 842 555 971 587 1011 740 1446 23404 
Total 2426 3307 2837 3988 3064 4498 3138 4944 113325 
* Number of households displaced (HD) **Number of persons seeking shelters(PSS) 

 

To find the optimal solution  y∗,∑ k2ipi3
i=1  is calculated as 47.5; ∑ k2ic2i3

i=1  is calculated as 

35; and ∑ k2ivi3
i=1  is calculated as 11. Note that the accommodation is a service and hence, it 

does not have any salvage value. By correlating the number of persons seeking shelter from each 
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county with other counties, correlation coefficient is calculated and tabulated in Table 4-4. Since 

most of the values are more than 0.90, ρ is fixed as 0.90.  

Table 4-4 Correlation (ρ) between Counties (Based on HAZUS Data) 

 Barbour Braxton Gilmer Lewis Randolph Tucker Upshur 
Barbour 1       
Braxton 0.98 1      
Gilmer 0.97 1.00 1     
Lewis 0.99 0.99 0.96 1    
Randolph 0.97 0.96 0.92 0.99 1   
Tucker 1.00 0.96 0.93 0.99 0.98 1  
Upshur 0.95 0.87 0.93 0.91 0.86 0.95 1 

 

I assume that one of the demand scenarios, scenario three, occurs when the disaster hits. 

The demand for this scenario is 4498 from Table 4-3. I have calculated the long term mean and 

variance for the number of people seeking shelters using all the 27 available PSS values, 

generated by HAZUS. The mean and standard deviation are 619.89 (μ) and 404.59 (σ). Total 

number of locations affected is seven (J). Substituting all these values (ρ, σ, and J) in equation 

20, the standard deviation (pooled) is calculated as 1940.35.  The optimal order size, y∗, is then 

calculated from equation 21 as 3710.72 units. The agency has to order 7421.44 (i.e., x22∗ , 

3710.72*2 meals/person/day) meal packages because it has not ordered any meals at the first 

instance. It also needs to find accommodation for 3711 persons (x23∗ ). A total of 18553.6 (i.e., 

3710.72*5 bottles/person/day) water bottles are needed. Since the agency has already stocked 

5000 (𝑥1 = 1000) water bottles, the agency still need to order 13553.6 water bottles. The 

optimum cost (TC∗) turns out to be $160,952. 

4.5 Sensitivity Analysis of Model-3 and 4 

In this section, I perform sensitivity analysis of multiple locations, multiple product, and 

forecast updating model. The impacts of various parameters–correlation coefficient, quality of 
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information–on the optimum cost and optimum order size are examined in the context of partial 

and full information scenarios. Since Models 3 and 4 differ in only J and n, most of the insights 

derived from them are similar; therefore, I analyze them together in this section. I state explicitly 

wherever the insights of Model 4 differ from Model-3. 

Proposition 4.5: In full information case, the optimal order size depends on both critical ratio and 

specific values quality of information as tabulated in Table 4-5; in partial information, the 

optimal order size is increasing in correlation coefficient except when z > 2 & r ≥ 1+J(n−1)
Jn

 and 

except when z <- 2 & r < 1+J(n−1)
Jn

.  

Proof:  Optimal order size of full information scenario is  

y∗ = � θj
J

j=1
+ Φ−1(. )�((1 − ρ)(J − 1) + J(1 + (J − 1)ρ)(1 − r))σ 

Taking partial derivative of this  𝑦∗ with respect to ρ yields  

∂y
∂ρ

∗
= Φ−1(. ) σ �1−2J+J2+Jr−J2r�

2��(−1+J)(1−ρ)+J(1−r)(1+(−1+J)ρ)�
  , where, Ф−1(. ) = Ф−1(critical ratio)  is the standard 

normal variable (z). The denominator of this derivative is always positive; while the numerator 

depends on both r and z, where z depends on the critical ratio. To simplify the terms, Let  

F = σ (1−2J+J2+Jr−J2r)
2�((−1+J)(1−ρ)+J(1−r)(1+(−1+J)ρ))

 . Now, ∂y
∂ρ

∗
 becomes F*z. F*z has nine possible combinations, 

called outcomes. These outcomes are tabulated in Table 4-5.   

Table 4-5 Possible Outcomes of F*z 

r Greater than  (J-1)/J Equal to (J-1)/J Less than (J-1)/J 
F – 0 + 
z – 0 + – 0 + – 0 + 
F*z + 0 – 0 0 0 – 0 + 
Outcome 1 2 3 4 5 6 7 8 9 
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Among the nine outcomes, the derivative ( ∂y
∂ρ

∗
) of five of them (2, 4, 5, 6, 8) results in 

zero; two of them (3 and 7), negative; two of them (1 and 9), positive. When the derivative is 

zero, the optimal order size is independent of ρ; when negative, optimal order size is decreasing 

in ρ and when positive, optimal order size is increasing in ρ.  

To illustrate the impact of ρ, I consider the parameters of numerical example 3 introduced 

in §4.3. Let the unknown demand of fourth location be 270 (i.e., θ4) . In complete forecasting, 

for ρ=0, critical ratio =0.35, z < 0, and r=0.3, the optimum order size starts at 937.441 and 

decreases to 930.209 when ρ=1.This is analogous to outcome 7. In this combination r is less than 

((J-1)/J< (4-1)/4=0.75). For ρ=0, critical ratio =0.35, z < 0, and r=0.90, the optimum order size 

starts at 941.79 and increases to 946.252 when ρ=1. This mimics outcome 1. In this combination 

r is less than ((J-1)/J> (4-1)/4=0.75).  For ρ=0, critical ratio =0.50, z =0 and r=0.75, the optimum 

order size starts at 956 and remains at 956 when ρ=1. This satisfies outcome 5. In this 

combination r is less than ((J-1)/J= (4-1)/4=0.75). The analyses show that when the agency 

places an order equal to the mean of the demand distribution, the quality of information makes 

no difference. When the order size differs from the mean, information becomes important. 

 

Figure 4-1 Impact of Correlation Coefficient on Optimal Order Size 
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The optimal order size of partial information scenario is 

y∗ = Jµ + 1+(J−1)ρ
1+(n−1)ρ

�∑ θj − nµJ
j=1 � + Ф−1(. )��(1 − ρ)(J − 1) + n(1 + (J − 1)ρ)(1 − r)� σ  

Taking partial derivative of this  𝑦∗ with respect to ρ yields  

∂y
∂ρ

∗
= (J−n)

(1+(n−1)ρ)2 �∑ θj − nµJ
j=1 � − Ф−1(. ) (J−Jn+Jnr−1)

2�(−1+J+ρ−Jρ+n(1−r)(1+(−1+J)ρ))
σ . Among the three terms, 

the derivative of the pooled mean � (J−n)
(1+(n−1)ρ)2 �∑ θj − nµJ

j=1 �� is always positive; whereas both z 

and derivative of pooled standard deviation depends respectively on critical ratio and quality of 

information.  The standard normal z is positive when critical ratio > 0.5, negative when critical 

ratio < 0.5, and zero when z = 0.5. The derivative of pooled standard deviation becomes zero 

when r = 1+J(n−1)
Jn

, negative when r < 1+J(n−1)
Jn

, and positive when r > 1+J(n−1)
Jn

.  Similar to the 

outcomes of complete information scenario, I will also have outcomes in partial information. 

However, in partial information case, the magnitude of derivative of the mean is much higher 

than that of the terms involving z and pooled standard deviation. The derivative becomes 

negative when both z > +2 & r ≥ 1+J(n−1)
Jn

 and when both z < -2 & < 1+J(n−1)
Jn

 . In partial 

information, the optimal order size is 881.88 when ρ=0. When ρ increases from 0 to 1, the 

optimal order size monotonically increases from 881.88 to 910.08. Figure 4-1 depicts the impact 

of ρ on partial forecasting and three scenarios of full forecasting. The term “cr” denotes critical 

ratio.  

Proposition 4.6: 

a) In both partial and full information, when the critical fractile is 0.50, the optimal order 

sizes are independent of r.  
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b) In partial information, when the critical fractile is strictly less than 0.50, optimal order 

size is increasing in r;whereas,in full information when the critical fractile is strictly less 

than 0.50, the optimal order size is decreasing in r. 

c)  In partial information, when the critical fractile is strictly more than 0.50,the optimal 

order size is decreasing in r; whereas,in full information when the critical fractile is 

strictly more than 0.50,  the optimal order size is increasing in r.  

Proof: Partial differentiation of equation 16 (i.e., 𝑦∗ of partial forecasting) results in  

∂y∗

∂r
= −Ф−1(. ) (n−nρ+Jnρ)σ

2  ��(−1+J)(1−ρ)+n(1−r)(1+(−1+J)ρ)�
 . When critical ratio = 0.5, z = 0 (i.e., 

Ф−1(cr)), and  ∂y
∗

∂r
= 0. This zero (i.e., constant) slope implies that optimum order size and  

quality of information are independent. Because of this constant slope, when critical ratio =0.5, 

the optimum order size remains a constant (i.e., equal to the pooled 

mean,   Jµ + 1+(J−1)ρ
1+(n−1)ρ

�∑ θj − nµJ
j=1 � = 907.5) . When critical ratio <0.5 and z<0.5,   ∂y∗

∂r
 is greater 

than 0. This positive derivative implies that when 𝑧 < 0, the optimum order size is increasing in r. 

However, When 𝑧 >0,  ∂y
∗

∂r
 < 0 and the optimum order size is decreasing in r. 

For the given parameter of numerical example 3, the critical fractile is 0.4607 and the 

optimum order size is 903 units. The pooled variance is calculated as 45.17 for r=0. When r 

increases from 0, the variance decreases from 45.17 and hence the order size increases. This 

reducing variance is reflected by the narrowing gap between the horizontal line (line for cr=0.5) 

and the bottom curve as shown in Figure 4-2. In full information scenario, differentiation of 

expression 21 with respect to r yields ∂y
∗

∂r
= −Ф−1(. ) (J−Jρ+J2ρ)σ

2  �((−1+J)(1−ρ)+J(1−r)(1+(−1+J)ρ)) 
. This term 

�∂y
∗

∂r
 � is positive when critical ratio < 0.5, zero when critical ratio = 0.5, and negative when 
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critical ratio > 0.5. This shows that in both the scenarios, the quality of information reduces the 

variance. In partial information, when ∂y
∗

∂r
 is positive when critical ratio >0.5; however, in full 

information ∂y
∗

∂r
 is positive when critical ratio <0.5. When critical ratio =0.5, ∂y

∗

∂r
= 0, irrespective 

of information scenarios.  

 

Figure 4-2 Impact of Quality of Information on Optimal Order Size 

Proposition 4.7: 

a) The optimum cost is decreasing in the quality of information (r), irrespective of partial or 

full information. 

b) In full information, the optimal cost is increasing in ρ for the outcomes 3and 7 (refer 

Table 4-5),  decreasing in  ρ for the outcomes 1and 9 and independent of ρ for the 

remaining outcomes.In partial information optimum cost is increasing in ρ except case by 

case extreme z values 
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Proof of 4.7a and 4.7b are straight forward. These can be proven from  ∂TC
∗

∂ρ
 and ∂TC

∗

∂r
 .  

Relief agencies can considerably reduce their cost by improving the quality of information by 

adopting appropriate demand assessment techniques. 

4.6 Flexibility of My Models 

Now, I discuss the flexibility of my models. The models introduced in this chapter offer 

several flexibilities to accommodate numerous operational and logistical issues associated with 

the humanitarian relief operations. Some of these flexibilities are listed below. 

 Suppliers may impose a minimum purchase quantity constraint at the first instance in 

order to comply with contractual requirements of costs. Such a constraint can be 

incorporated. 

 Products with different shelf lives can be modeled by ordering durable products twice at 

both instances and perishable products only once at the second instance. 

 Capacities of warehouses at different locations can be included. 

 Suppliers may offer quantity discounts when the order size exceeds certain threshold 

agreed by suppliers and agencies. Some donors may supply products free of cost to 

agencies. Some donors may donate products to specific locations. All these issues can be 

incorporated in my models. 

 Quality issues of supplies can be included. For example, some portion of supplies may 

get spoiled during transportation; these fractions can be included either product-wise, 

location wise, supplier wise, or any combination of these.  

 Costs such as transportation, holding and inspection can be integrated into my models.  
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 Suppliers may opt for buy-back option in their contracts. As per such contracts, a specific 

unit or entire surplus units can be returned to the supplier. Such option(s) can be modeled 

using models 1-4. 

 Some products may have disposal costs (also negative salvage cost). These costs can also 

be modeled. 

 Though all my models consider decision making at the strategic level, my models are 

equally applicable while making tactical decisions. For example, my preliminary model 

captures single location demand and enriched to multiple locations. Instead, if an agency 

wants to plan for various issues involved in a single location, such issues can be 

incorporated. 

In this chapter, I have extended the preliminary model to capture several issues. Some of 

the assumptions introduced in the previous chapter have been relaxed to make the model more 

realistic. In addition to analytical results, numerical problems have been solved, and their results 

analyzed to derive numerical insights.  A numerical problem generated from HAZUS software 

has been also solved and its results have been analyzed. The concluding section of this chapter 

has included the flexibility of my models 1-4.  
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CHAPTER 5  

RISK PROPENSITIES IN DISASTER MODELING 

Models introduced in the previous chapters use expected value criterion. However, 

managers of firms and agencies prefer a profit above a target value or a cost below a target value. 

Since the objective of relief managers is to reduce cost, these managers attempt to avoid higher 

costs. Such a behavior is called risk-averse behavior. In this chapter, I formulate and solve 

models, using RA approach and provide analytical and numerical insights. 

5.1 Overview of Risk-Averse Perception 

Optimum cost and optimum profit are endogenous in the expected value approach. 

However, supply chain managers prefer these to be exogenous.  These managers prefer to avoid 

profits below a specific value in case of profit maximization objective; while they prefer to avoid 

costs above a specific value in case of cost minimization objective (Gotoh and Takano, 2007; 

Wu et al., 2010).  CVaR method enables these managers choose such objectives. Modeling RA 

behavior necessitates an approach different from the expected value approach. Using modified 

expected value approach, CVaR models provide solution to RA decision makers. Some other 

risk measures widely used for modeling risk propensities of decision makers include expected 

regret, CVaR, expected shortfall, tail conditional expectation and tail mean, worst conditional 

expectation and spectral risk measures (Szego, 2002). Though some of these risk measures such 

as variance and VaR are applicable under certain conditions, they are not coherent risk measures. 

A coherent risk measure has to satisfy certain properties (Szego, 2002) – positive homogeneity, 

subadditivity, monotonicity and transitional invariance. When a risk measure violates any of 

these conditions, it provides multiple local minima that are difficult to interpret (Rockafellar and 

Uryasev, 2000). Furthermore, such violations lead to lack of convexity. Therefore, it is 
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unsuitable to use such non-coherent risk measures. Since CVaR is one of the coherent risk 

measures, I use CVaR concepts in my models to capture risk-averse behavior. This chapter 

examines the impact of RA perspective on the optimum order size as well as optimum cost. In 

the following section, I review the definition of CVaR.  

5.2 Conditional Value at Risk 

CVaR in the context of cost minimization objective can be defined as the expected value 

of the cost, conditioned on the costs being in excess of VaR (see Jobst and Zenios., 2001). 

Expected value and CVaR approaches differ from their calculation approaches. For example, 

expected value approach considers the entire support of the demand distribution; whereas, RA 

criterion (CVaR) considers a specific portion of the demand distribution. CVaR focuses on the 

right tail of the cost distribution for cost minimization objective and left tail for the profit 

maximization objective. The reason for choosing the right tail for cost minimization is to avoid 

very high costs; whereas, choosing the left tail for profit maximization is to avoid very low 

profits.  In the humanitarian context, consideration of the expected value criterion is appropriate 

if disasters cause more or less similar level of damage in the long run. However, in reality, some 

less frequently occurring disasters cause great impacts, for example hurricane Katrina. Managing 

such worst disasters need additional consideration while planning and responding to such worst 

events. Such circumstances compel the attention of relief agencies on certain percentage of right 

tailed (1-β) region (i.e., higher cost region) of the cost distribution. Mathematically, CVaR is 

expressed by Rockafellar and Uryasev (2000) as  

Min CVaR = α + 1
1−β ∫ (TC(y, ξ) − α)+φ(ξ)∞

0 dξ     (22) 

The term α in expression 22 represents VaR.  This means that β percent of the time, the 

cost of relief operation is within α. CVaR is the average cost incurred in (1-β) percent of the 
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time. Note that expression 22 captures the cost distribution in terms of demand distribution (see 

Jammernegg and Kischka, 2007). Gotoh and Takano (2007) provide solution to expression 22 as 

 y∗ = c2−v
p−v

Ф−1 �p−c2 (1−β)
p−v

�+ p−c2
p−v

Ф−1 �(c2 −v)β+p−c2 )
p−v

�    (23) 

The corresponding VaR is  

α∗ = (c2−v)(p−c2)
p−v

�Ф−1 �(c2 −v)β+p−c2 )
p−v

� − Ф−1 �p−c2 (1−β)
p−v

��   (24) 

The objectives of all these risk models are to find optimal order quantities and optimal 

costs. In the expected value criterion case, I find the optimal cost; whereas, in the CVaR case  

I find the optimal CVaR, which is also a form of cost (Cheng. et al., 2009). I apply these 

concepts to my models developed in the previous chapters. Note that I do not use forecast 

updating in my RA models. However, if the demand distribution parameters are based on 

forecast information, these models become equivalent to forecast updating models. 

5.3 Single Product Single Location and Single Order Model 

In this section I model distribution of a single product to each affected person in a single 

neighborhood. The objective function (22) of the single location single product model is 

equivalent to  

Min TC(y, ξ) = cy + p∫ (ξ − y)φ(ξ)∞
y dξ − v ∫ (y − ξ)φ(ξ)y

−∞ dξ   (25) 

The optimal CVaR can be calculated by substituting the optimal order quantity obtained 

from expression 23 in expression 25 (Cheng. et al., 2009). Note that the objective (25) function 

does not have any explicit constraints except non-negativity of the decision variable (y). In 

contrast, CVaR models set an implicit target value for the cost or profit. Though this target value 

is not explicitly imposed on the unconstrained CVaR objective function, the constraint is 

explicitly imposed on discrete linear programming based CVaR models. However, the implicit 

target cost is imposed in the form of α.  
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Proposition 5.1 

a) The optimal CVaR is increasing in β 

b) Risk-neutral optimum order size is the lower bound for RA optimal order size 

The proof of proposition 5.1a is straight forward.  Proposition 5.1b, the optimal order size 

of risk-neutral model is the lower bound for RA model, is shown by comparing the optimal 

solution of risk neutral (RN) model with RA model. When a decision maker is risk neutral β=0. 

Substituting β=0 in expression 23, I get y∗ = Ф−1 �p−c2
p−v

� (26). Expression 26 is the optimal order 

size of risk neutral model. I show this by a numerical illustration. Assume a numerical instance 

with the following parameters: c2 = $16, p = $23 and v = $8. Gotoh and Takano (2007) does not 

recommend normal distribution to model the demand because its cumulative distribution is 

above zero at zero (i.e., F (0) > 0). However, for deriving insights, they recommend normal 

distribution. Considering this argument, I assume that the demand distribution is exponential 

with λ=0.01. I calculate optimal order size, VaR, and CVaR. I analyze the impact of β on these 

three results. 

 

Figure 5-1 Risk-aversion Versus CVaR  
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For a given β, expression 23 yields the optimum order size; expression 24 yields VaR; 

expression 22 provides CVaR. For a given β=0.90, the optimal order size, VaR and CVaR are 

calculated respectively as 139.34 units, $1076.47, and $2287.06. In contrast, if the risk-neutral 

approach is used, then the corresponding optimal order size and cost are respectively 62.86 units 

and $ 2102.89. Compared to the risk-neutral order size, RA order size is higher when I minimize 

costs.  Figure 5-1 shows the impact of β on the optimal CVaR. Note that when β is zero, the 

optimal cost of both the risk-neutral and RA models converge at $2102.89. When β increases 

from 0, the optimal cost also increases from $2102.89. This illustrates that optimal CVaR is 

increasing in β. In addition, this trend also shows that a RN decision maker incurs lesser cost 

than RA decision maker. Furthermore, if a RA decision wants to avoid risk completely, he has to 

incur very high cost. Relief agencies as decision makers have to assess additional constraints if 

any besides the above insights, before choosing their order size; otherwise, agencies cost will 

increase more than 200%. 

Proposition 5.2 

a) The optimal order quantity is increasing in risk-aversion β  

b) The optimal order quantity is decreasing in c2 

c) The optimal order quantity is increasing in p 

d) The optimal order quantity is increasing in v 

The proof is straightforward from the first order conditions of the respective parameters. 

Figure 5-2 depicts the impact of β on the optimal order quantity. Note that when β is zero, both 

the risk perceptions provide the same optimal order size, 62.86 units. The optimal order size is 

increasing in β. When β increases from zero, the optimal order size also increases from its 

current value of 62.86. As mentioned in the previous section, this risk-neutral order size acts as a 
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lower bound for RA order size. This justification also holds for optimal cost. As explained earlier 

for the total cost, the non- linearly increasing trend causes higher order size for higher risk-

aversion. An agency exhibiting no risk orders just 62.86 units; whereas, another one exhibiting 

85% risk aversion orders 125 units. This 85% risk aversion results in more than 200% increase in 

the overall cost. Ordering large order sizes not only leads to increased cost but also to increased 

transportation and holding costs.  Evaluation of all these factors is vital before making a 

decision. The increasing trend of order size and cost are also reported by Gotoh and Takano, 

(2007), when they use normal distribution. Therefore, the results are applicable to normally 

distributed demand. 

 

Figure 5-2 Risk-aversion Versus Optimal Order Size 

Figure 5-3 illustrates the impact of marginal changes of 𝑐2 on optimal order size. For a 
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optimum order size decreases to 22.31. This shows that the rate of decrease is higher in risk-

averse order size than risk neutral order size for a given 𝑐2.  

 

Figure 5-3 Impact of c2 on Optimal Order Size 

   

Figure 5-4 Impact of p on Optimal Order Size 
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and risk neutral optimum order size is 55.96 units. When p increases to 28, the risk averse 

optimum order size increases to 195.61 and risk neutral optimum order size also increases to 

91.63. This shows that for a given p, the rate of increase is higher in risk-averse order size than 

risk neutral order size. Figure 5-4 explains proposition 5.1c. 

Similar to the trend of p, the optimal order size is also increasing in salvage value as 

shown in Figure 5-5. For v = $8, the risk-averse optimum order size is 139.34 units and risk 

neutral optimum order size is 62.86 units. When v increases to 14, the risk averse optimum order 

size increases to 297.87 and risk neutral optimum order size also increases to 120.34. Though 

optimal order size is increasing in p and v, the increasing p exhibits a diminishing trend; 

whereas, increasing v exhibits an increasing trend. 

 

Figure 5-5 Impact of v on Optimal Order Size  
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products. For example, when a victim needs two products, for example water and shelter, 

providing water is more important than providing shelter if the agency is able to offer only one. 

Under such a circumstance, water becomes more critical product than shelter. Many practical 

circumstances force agencies take such decisions, for instance, during lack of funds, shortage of 

supplies, shortage of volunteers, contamination of supplies, etc. Such situations demand a model, 

which classify products exclusively as either the most critical or the least critical. Products 

identified as the most critical need RA perspective while the least critical ones need risk-neutral 

perspective. This model considers only two products; one is identified as the most critical and the 

other is the least critical one. Before formulating the model, I define the following notion. 

Parameters  

:pN Expected spot market price of a RN product   

:cN
2

 Second instance cost of one unit of a RN product  

:vN Salvage value of a RN product,  

Nξ : Random demand of RN product, i.e., people affected by the disaster  

Nμ : Mean demand of the risk-neutral product 

Nσ : Standard deviation of the of the risk-neutral product  

:pA
i Expected spot market price of a RA product  

:cA
2

 Second instance cost of one unit of a RA product  

:vA Salvage value of a RA product,  

Aξ : Random demand, i.e., people affected by the disaster  

Aμ : Mean demand of RA product 
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Aσ : Standard deviation of RA product  

Since minimizing the cost is the objective of relief agencies, I consider only RN and RA 

perspectives in this section.  The dual risk model is formulated as  
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Though I consider only one product of each risk type in expression 27, this model can be 

scaled up to include more than one product. Expression 28 yields the optimum order size for the 

least critical product; while, expression 29 yields the optimum order size for the most critical 

product. Equation 30 gives the total cost of these products. Equation 29 becomes 28 if β becomes 

zero. The only difference then is the cost structures. 

Expressions 27‒30 represent the model for dual risk perspective products.  The objective 

function (27) minimizes the cost. The dual risk model (27) differs from the models introduced in 

the previous chapters in three respects. First, the risk neutral models of previous chapters are not 

decomposable; whereas, the dual risk model is decomposable to individual products. Second, the 
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risk neutral model uses a single demand distribution; whereas, the demand distribution of dual 

risk model need not be the same. Third, I can get the solution of risk neutral model by solving 

the problem once; whereas, dual risk models need to be solved multiple times equivalent to the 

number of products involved. 

In order to compare the costs of the most and the least critical products, I have solved a 

numerical problem with the following parameters: c2 = $16, p = $23 and v = $8 and λ = .01   

I further assume that cost structures of both the products are the same. The risk aversion 

parameter (β) reflects the degree of criticality of a product. Higher values of β indicate that the 

product is more critical one. While comparing the optimal order sizes of both the risk 

perceptions, the optimum order size of the most critical product is greater than or equal to the 

least critical product. Figure 5-6 explains the optimum order size of these perceptions versus the 

risk aversion. 

 

Figure 5-6 Optimal Order Size of RA and RN Products 
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remains the same for all values of β. Note that β and the total cost of the risk-neutral solution are 

independent. In contrast, β and the total cost of RA approach are dependent; therefore, the total 

cost of the most critical product increases with β. 

 

Figure 5-7 Cost of RA and RN Components 
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When p is replaced by 2 c2 − v in the above expression 23, expression 23 becomes 

expression 26. In other words, RA optimal order size and RN optimal order size becomes equal. 

Note that expression 26 is the expression to calculate optimal order size of risk- neutral model. 

Note that when p ≥ 2 c2 − v, the critical fractile is greater than 0.5. In other words, I can 

alternatively state that when the critical fractile is greater than 0.5, a RA decision maker orders 

more than a risk-neutral decision maker. Figure 5-8 shows that when p = 2c2 − v,  the order 

sizes of RN and RA decision makers coincide. The resulting order size is equal to RN order size 

and the corresponding order size is the mean of the distribution.  

 

Figure 5-8 Impact of Price (p) on RA and RN Order Sizes 
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maintaining the pivot at p=24 and  µ = 200.  Knowing that the spot market price is higher, RA 

decision maker orders more to reduce the under ordering cost. 

Observation 5.2: A RA decision maker orders less than the risk-neutral decision maker if 

c2 ≥
p+v

2
 and vice versa. 

The proof is straight forward. When c2 is replaced by p+v
2

 in RA optimal order size, RA 

optimal order size becomes equal to RN order size. For various values of c2,  Figure 5-9 depicts 

the order sizes of RA and RN. Note that when  p+v
2

= 15.5, the order sizes of RA and RN 

becomes equal and coincide at the mean of the distribution. Since c2 of the problem is 16 (i.e., 

above 15.5), RA order size is lower than the RN one. For any c2 above 15.5, the observation 5.2 

holds true.  

 

Figure 5-9 Impact of Cost c2 on RA and RN Order Sizes 
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sizes for various values of salvage values ranging from 5 to 15. Similar to what has been 

observed in case of p and c2, when v ($8) is greater than 2 c2 − p = 9, RA decision maker orders 

more than the RN decision maker. Since the salvage value of my problem is $8, at $8, RA 

decision maker orders less than RN one. What this means to relief agencies is that when a RA 

decision maker knows that the salvage value is less, ordering more units may lead to higher over 

ordering cost. In order to avoid such over ordering costs, RA decision maker orders less.  

 

Figure 5-10 Impact of Salvage Value on RA and RN Order Sizes 

5.5 Limitations 

The parameters such as price, cost, and salvage value of the relief products under 

consideration are assumed deterministic. In reality, these parameters are stochastic. However, by 

signing contracts with suppliers, cost at both instances can me made deterministic. Since the 

leftover units are salvaged at the local market, salvage value is stochastic and its estimation 

becomes difficult. Further, the spot market price is also stochastic contrary to its deterministic 

consideration in this study. In this study, the first instance order quantity is fixed arbitrarily. 

However, by considering various constraints of relief agencies, this first order size can be 

calculated objectively. My models are not validated using real post disaster data. Validating and 

6 8 10 12 14
180

190

200

210

220

230

v in dollars

Op
tim

al
or

de
rs

iz
e

RN
RA

63 



refining the model on the basis of post disaster data will improve the applicability of the model. 

In addition, classification of relief supplies –as most or least critical– is also difficult in most of 

the real contexts. 

5.6 Conclusion 

In the first part of this dissertation, I have formulated the preliminary model, which 

subsequently becomes building block for other enriched models. The basic model examines 

procurement of a single product at dual instances. Besides these instances, an emergency 

purchase is initiated if the realized demand exceeds the available inventory. The preliminary 

model has been extended to incorporate several real issues such as distribution of multiple 

products to a single site. Moreover, the model has been extended to capture different mixes and 

volumes of these life-saving products. Comparative statics analyses have been performed for 

deriving insights. When more than two products with different cost structures are procured as 

bundles, the cost of the bundle is found to be higher than that of when these products are 

purchased independently. The practical issues of independent procurement of products are 

analyzed.  

The second set of models has considered planning for multiple sites. I have used MMFE 

to estimate the pooled demand and variance of affected sites. This pooling has reduced the 

bullwhip effect of the demand. These models infer that when the standard deviation of the 

assumed demand distribution decreases, the total cost decreases. These models have pooled the 

demand arising at several locations in the aftermath of disasters. However, this pooling of 

demand may not be realistic when the affected areas are inaccessible due to breakage of physical 

and communication links. This will result in incomplete demand information. Under such 

circumstances, I assign a correlation coefficient. This correlation relates two locations, one with 
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known demand and another with unknown demand.  The second set of models considered both 

partial and complete demand information. These models have also considered the quality of 

information. Sometimes, due to the skill of the assessor or the techniques one employs, the 

quality of the information may not be perfect. The second set of models has analyzed the impact 

of quality of demand data on the optimal order quantity and order cost. I have analyzed the 

second set of models using HAZUS generated data. I have found that the increasing quality of 

information leads to higher order size but results in lower cost. For a given level of information, 

the optimal cost of complete demand information is less than that of the partial information.  I 

have also listed several potential incorporations of realistic issues such as constraints specific to 

locations, suppliers, and products. Moreover, I have discussed the applicability of these models 

at the tactic levels to plan for a single location besides their applicability in a strategic level to 

plan for a region. These models are capable of capturing discounts on products and buy-back 

options of surplus products among other issues. 

Finally, I have introduced models based on CVaR. These models include RA and RN 

perceptions of the decision makers. Comparative statics has been performed to analyze the 

directional relationships between the relevant parameters and the optimal order size and cost. 

The relief supplies are classified into two categories as the most and the least critical ones. The 

cost differences between these two categories have been analyzed for a given degree of risk 

aversion.  A numerical problem has been solved to evaluate the magnitude of cost differences 

between RN and RA decision approaches.  

5.7 Scope for Further Research 

There are several potential extensions of this paper. For example, my models do not 

impose any constraints on order sizes and lead times. Such constraints can be imposed. Current 
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models group products to locations. Instead, if products are grouped to suppliers, agencies can 

compare suppliers’ quotes and choose cost effective suppliers. Further issues such as quantity 

discounts on order sizes, transportation and warehousing costs, supply and warehousing 

capacities and buy-back options can be included. In addition, instead of risk-neutral approach, 

risk seeking and/or risk-averse perspectives may be considered. Besides forecast information, 

information from the site volunteers, satellite images and other sources can be integrated. 
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