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This study examined the bias and precision of four residualized variable validity 

estimates (C0, C1, C2, C3) across a number of study conditions. Validity estimates that 

considered measurement error, correlations among error scores, and correlations between error 

scores and true scores (C3) performed the best, yielding no estimates that were practically 

significantly different than their respective population parameters, across study conditions.  

Validity estimates that considered measurement error and correlations among error scores (C2) 

did a good job in yielding unbiased, valid, and precise results. Only in a select number of study 

conditions were C2 estimates unable to be computed or produced results that had sufficient 

variance to affect interpretation of results. Validity estimates based on observed scores (C0) 

fared well in producing valid, precise, and unbiased results.  Validity estimates based on 

observed scores that were only corrected for measurement error (C1) performed the worst. Not 

only did they not reliably produce estimates even when the level of modeled correlated error was 

low, C1 produced values higher than the theoretical limit of 1.0 across a number of study 

conditions. Estimates based on C1 also produced the greatest number of conditions that were 

practically significantly different than their population parameters. 
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CONVERGENT VALIDITY OF VARIABLES RESIDUALIZED BY A SINGLE 

COVARIATE: THE ROLE OF CORRELATED ERROR IN  

POPULATIONS AND SAMPLES 

 Controlling variance is a critical aspect of quantitative research design and analysis. One 

of the most powerful forms of control is the process of random assignment of individuals to 

groups. However, in much behavioral science research, random assignment is not possible, does 

not completely control for between group differences, and may not control for nuisance 

variables. Researchers may, therefore, employ statistical methods to control for variance in 

dependent and/or independent variables. 

 It is not uncommon for researchers to invoke statistical procedures that attempt to 

statistically control for variance in a dependent variable. Analysis of covariance (ANCOVA), for 

example, is one such procedure that may be employed to partial out variance in the dependent 

variable that is attributable to covariates (e.g., variables that may explain group differences prior 

to intervention) before examining the effect of the intervention or treatment.  A researcher may 

not be able to randomly assign treatment groups and, therefore, uses a pretest of the dependent 

variable as a covariate in the analysis. These covariance correction analyses have the generally 

common goal of refining the analysis to evaluate intervention effects or relationships after 

having statistically controlled for other potential influences.   

 It is also not uncommon for researchers to invoke statistical procedures that attempt to 

statistically control for variance in an independent variable. Hierarchical multiple regression, for 

example, is one such procedure that may be employed to remove variance from one independent 

variable that is shared with others in a set. A researcher may observe that a sample has dissimilar 

characteristics (i.e., demographics) that are extraneous to the relations under study. Including 
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such characteristics as independent variables has the goal of isolating the effect of the 

independent variable of interest after having statistically controlled for influences associated with 

the extraneous variables. 

 What is less understood is the nature of variables after such controls have been employed 

(Lynam, Hoyle, & Newman, 2006; Thompson, 1992; Tracz, Nelson, Newman, & Beltran, 2005). 

To be clear, the dependent variable used in covariance-corrected analyses such as ANCOVA has 

first been residualized by the covariate (e.g., pretest), which removes all variance explainable by 

the covariate and leaves all remaining (residual) variance to be predicted by group membership 

or other variables. As described by Tracz et al. (2005), “This residualized or adjusted dependent 

variable is no longer the same as the original dependent variable” (p. 17). Similarly, partialled 

independent variables used in analyses such as hierarchical multiple regression only retain 

variance that is unique and not in common with others in a set. As described by Lynam et al. 

(2006), "The crux of the problem identified by almost all critics is that it is difficult to know 

what construct an independent variable represents once the variance shared with other 

independent variables is removed" (p. 329).  

 

Validity of a Variable Residualized by a Single Covariate 

 In the case of a single covariate, the validity of a residualized variable (𝜌𝑅𝑍) can be 

assessed by computing a part correlation [𝜌𝑍(𝑌.𝑋)], where the criterion variable (Z) is correlated 

to the unresidualized variable (Y) after removing the effects of the covariate (X) from Y as 

denoted by Williams and Zimmerman (1982): 

𝜌𝑅𝑍 =  
𝜌𝑌𝑍 − 𝜌𝑋𝑌𝜌𝑋𝑍
�(1 − 𝜌𝑋𝑌2 )

 (1) 
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Williams and Zimmerman's formula assumes population data with infallible measures and is 

therefore practically limited to true score correlations or correlations between observed scores 

with the statistical assumption of error-free data. Nonetheless, applying their formula across a 

wide range of correlations provides fundamental insights into understanding the validity of a 

variable that has been residualized by a single covariate (see Figure 1).  

 
Figure 1. 𝜌𝑇𝑍(𝑇𝑌.𝑇𝑋)as a function of 𝜌𝑇𝑋𝑇𝑌, 𝜌𝑇𝑋𝑇𝑍, and 𝜌𝑇𝑌𝑇𝑍 . Decimals for 𝜌𝑇𝑋𝑇𝑍values are 

omitted. 
  

As illustrated in Figure 1, the validity of a residualized variable is not substantially 

different than the validity of the unresidualized variable given small amounts of residualization 

(𝜌𝑇𝑋𝑇𝑌= .10). However, with higher amounts of residualization, the validity of the residualized 

variable is impacted by the amount of multicollinearity between the covariate and criterion 

variable such that the impact of the covariate-criterion relationship increases as the magnitude of 
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the XY relationship increases. While higher degrees of multicollearity result in lower 

residualized coefficients, residualized validity coefficients are not always smaller than 

unresidualized validity coefficients. When a covariate serves to suppress irrelevant variance in 

the unresidualized variable, the validity of the residualized variable will be greater than the 

validity of the unresidualized variable.  

 

Contemporary Validity Studies 

 Although the reporting of residualized validity coefficients is not commonplace in 

contemporary behavioral science literature, at least two studies have recently considered the 

validity of residualized variables. While both studies took a nomological approach to 

establishing the validity of a variable that had been residualized by a single covariate, they 

differed in their focus and analytic approach. Nimon and Henson (2010) considered the validity 

of a dependent variable that had been residualized by a procedure such as ANCOVA and 

compared unresidualized validity coefficients to residualized validity coefficients. Lynam et al. 

(2006) considered the validity of several independent variables that had been residualized 

through multiple regression and compared unstandardized regression coefficients. 

 

Nimon and Henson (2010) 

 Using an established nomological network for the Beck's Depression Inventory-II (BDI-

II; Beck, 1996)  and the pretest-posttest design as a general framework, Nimon and Henson 

(2010) examined the validity of BDI-II posttest scores (Y) before and after they were regressed 

by BDI pretest scores (X), for the case 𝑟𝑋𝑌 = .79. They considered scores from four scales as 

criterion variables (Z): (a) Beck Anxiety Inventory (Beck, 1990), (b) Center for Epidemiologic 

Studies Depression Scale (Radloff, 1977), (c) Solitude subscale from Beck's Sociotropy-
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Autonomy Scale (Clark, Steer, Beck, & Ross, 1995), and (d) Trait scale of the State Trait 

Anxiety Inventory (Spielberger, 1977). The dependent-criterion variable correlations (𝑟𝑌𝑍[1,4]) 

reported were .65, .77, .75, and .37 respectively.   

 Residualized validity coefficients were computed via Eq. 1. The resulting residualized 

validity coefficients  (𝑟𝑅𝑍[1,4]) reported were .33, .45, .35, and .17 respectively. Comparing 

𝑟𝑌𝑍[1,4] to  𝑟𝑅𝑍[1,4], the authors concluded that the residualized dependent variable was measuring 

a different construct than the unresidualized dependent variable. 

 Two comments regarding Nimon and Henson's (2010) study are pertinent to the present 

study. First, the degree of overlap between the covariate and four criterion variables 

approximately mirrored the relationship between the dependent and criterion variables. Second, 

the analyses were based on the statistical assumption that the variables were measured without 

error. However, given prior reliabilities reported (e.g., Beck, 1996; Beck, 1990; Radloff, 1977; 

Spielberger, 1977; Clark et al., 1995), such an assumption seems untenable. 

 

Lynam, Hoyle, and Newman (2006)  

 Using agression and psychopathy measures, Lynam et al. (2006) examined the relations 

(i.e., slopes) of three pairs of subscale scores, before and after partialling a relevant subscale, to 

fourteen variables comprising a theoretical nomological network. With each of the three 

measures containing two subscales, each subscale served to residualize the other subscale within 

a measure. Given that the context of the analysis was multiple regression, each subscale also 

served to residualize the nomological variable with which the residualized subscale was being 

related. Therefore, instead of comparing zero-order and part correlations as in Nimon and 
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Henson (2010), Lynam et al. compared zero-order and partial relations to determine if raw and 

residualized independent variables were measuring different constructs.  

 Unstandardized regression coefficients were used to compare the validity of 

unresidualized and residualized measures. Coefficients for unresidualized measures were taken 

from regression analyses in which the given subscale was the only predictor. Coefficients for 

residualized measures were taken from regression analyses in which both subscales were entered 

as predictors. Statistically significant changes between the unresidualized and residualized 

coefficients were determined by examining the differences as a function of the standard error for 

the third variable effect (see MacKinnon, Krull, & Lockwood, 2000).  For the first measure 

where the correlation between scales score was .80, 60.7% (17) of the 28 coefficients underwent 

statistically significant change following partialling. Of the 17, 10 (58.8%) represented 

significant decreases, 3 (17.7%) represented significant increases, and 4 (23.5%) represented 

changes in direction. For the second and third measures where the correlation between scale 

scores was .50, 71% of the 56 coefficients underwent significant change following partialling. Of 

the 40, 25 (62.5%)  represented significant decreases, 10 (25%) represented significant increases, 

and 5 (12.5%) represented changes in direction.  

 Differences between the nomological networks of the unresidualized and residualized 

scores were assessed by computing similarity coefficients. Similarity coefficients were 

operationalized as intraclass correlation coefficients that indexed the similarity between groups 

of unstandardized regression coefficients.  Higher degrees of similarity were reported for within-

measure unresidualized subscale scores (Intra Class Correlations (ICCs) = .98, .94, .51) than 

within-measure residualized subscale scores (ICCs = .02, .53, -.46).  
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 Based on statistically significant differences in pairs of unstandardized regression 

coefficients and low ICCs for within-measure residualized subscale scores, the authors 

concluded the unresidualized and residualized independent variables were measuring different 

constructs. They further indicated the three scales provided likely candidates for high levels of 

discrepancy given that within measure correlations ranged between .5 and .8 and coefficient 

alphas ranged between .47 and .89. 

 Three comments regarding Lynam's et al. (2006) study are pertinent to the present study. 

First, the process of using unstandardized regression coefficients to examine the construct 

validity of residualized variables warrants caution. Given that unstandardized regression 

coefficients are based on residualized dependent and residualized independent variables, using 

partial relations to validate a residualized independent variable seems to introduce additional 

interpretation issues given the construct of a residualized dependent variable is just as 

questionable as the construct of a residualized independent variable. Second, although the 

authors considered the correlation between the independent variable (X1) and its covariate (X2) 

in explaining differences between zero-order and partial relations, it appears they neglected to 

consider other factors including the relationship between the covariate and dependent variable 

and the relationship between the dependent variable and the independent variable. Figure 2 

represents standardized regression coefficients for a number of conditions consistent with 

Lynam's et al. study (i.e., 𝑟𝑋1𝑋2=.50, .80). The figure demonstrates that deviances between zero-

order and partial relations are impacted by more than the relationship between the independent 

variable and its covariate. One can also see that by mapping Lynam's et al. findings to Figure 2  

the study included conditions where the covariate served to suppress irrelevant variance in the 

independent variable being residualized. Third, although the authors considered the reliability of 
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the independent variables in explaining differences between zero-order and partial relations, the 

estimated unresidualized and residualized relations were based on the statistical assumption that 

the data were error-free.  

 
Figure 2. β𝑋1 when Y is regressed on X1 and X2 as a function of 𝑟𝑋1.𝑋2, 𝑟𝑋2.𝑍, and 𝑟𝑋1.𝑍. 
Decimals for 𝑟𝑋2.𝑍, values are omitted. 
 

 
Conclusions from Contemporary Validity Studies 

 The validity studies reviewed inform the present study in several ways. First, they 

identify a void in understanding how error impacts the validity of residualized variables. 

Quantifying the error in sample-based unresidualized validity coefficients (i.e., zero-order 

correlations) across a number of conditions has recently been examined by Zimmerman (2007). 

However, extensions to residualized validity coefficients have yet to be considered; 

consequently, this is the focus of the present study. Second, the present study considers the 
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Williams and Zimmerman (1982) formula the appropriate foundation for computing the validity 

of a dependent or independent variable that has been residualized by a single covariate. Although 

Lynam et al. (2006) employed a partial relations approach using unstandardized regression 

coefficients, support for correlating residualized independent variables to nonresidualized 

nomological variables can be found in Winne (1983).  Not only does the latter approach 

eliminate the confounding factor of a residualized nomological variable, it also yields correlation 

coefficients that are more readily interpretable than unstandardized regression coefficients. 

Third, the studies reviewed provide insight into the extent of residualization and the 

multicollinearity between the criterion and nomological variable that should be considered in the 

present study.  The Lynam et al. study indicates a need for a range of multicollinearity that is 

broader than simply mirroring the level of residualization reported in Nimon and Henson (2010). 

 

Sources of Error in Residualized Validity Coefficients  

 There are several potential sources of error that can bias residualized validity coefficients. 

In population data, error is introduced when the assumptions of perfect reliability and 

experimental independence are not met. In general, unreliability of data stems from the limited 

psychometric capacity of inventories (e.g., Wechsler Adjust Intelligence Scale) to perfectly 

assess underlying constructs (e.g., intelligence). Experimental dependence results when common 

factor or systemic error occurs in a repeated measures design. For example, when individuals are 

given parallel forms of a measure that has a common response bias, the assumption of 

experimental independence is violated and correlation between errors results. In the case of 

population data, the bias associated with measurement and correlated error in residualized 

validity coefficients can be corrected by applying Zimmerman and Williams' (1997) general 

correction for attenuation at the population level to each observed-score correlation in Eq. 1: 
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ρ(TXTY) =
ρXY

�ρXX΄ρYY΄
−
ρ(EXEY)�(1 − ρXX΄)(1− ρYY΄

�ρXX΄ρYY΄
 

(2) 

Zimmerman and Williams's formula is based on the expected-value true-score theory without the 

assumption of experimental independence (Winne & Belfry, 1982). Winne and Belfry 

demonstrated that when the term for correlated error scores is subtracted from the classical 

correction for attenuation, Zimmerman and Williams's formula result yields lower estimates 

when error scores are positively correlated, and higher estimates when error scores are negatively 

correlated, as compared to estimates from Spearman’s (1904) formula. Figure 3 demonstrates the 

magnitude of the term for correlated error scores across a range of correlated error and reliability 

parameters. The role correlated error plays in attenuating or disattenuating a correlation 

coefficient increases as reliability decreases. Note that when reliability is .5, the term for 

correlated error scores equals the magnitude of the correlated error. 

 

Figure 3. Overcorrection in Spearman's (1904) correlation as a function of correlated error 
ρ(EXEY) and reliability (ρXX = ρYY). 
 
 While applying Eq. 2 to the correlations in Eq. 1 accounts for error in population-based 

residualized variable validity coefficients, it does not consider all sources of error in samples. 
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Sample-based residualized variable validity estimates have two additional sources of error. In 

addition to sample error associated with each of the correlations in Eq. 1 (cf. Wang & 

Thompson, 2007), spurious correlations between true and error scores introduce error into 

sample-based residualized validity coefficients. The error imposed by correlations between true 

and error scores is unique to samples given that classical test theory regards an individual's 

observed score as the sum of a true and error score. Recently, Zimmerman (2007) adapted the 

general correction for attenuation at the population level formula (Eq. 2) for sample data: 

𝑟𝑇𝑋𝑇𝑌 = (
𝑟𝑋𝑌 − 𝑟𝐸𝑋𝐸𝑌�1 − 𝑟𝑋𝑋΄�1 − 𝑟𝑌𝑌΄

√𝑟𝑋𝑋΄𝑟𝑌𝑌΄
−
𝑟𝑇𝑋𝐸𝑌�1 − 𝑟𝑋𝑋΄ 

√𝑟𝑋𝑋΄
−
𝑟𝑇𝑌𝐸𝑋�1 − 𝑟𝑌𝑌΄

√𝑟𝑌𝑌΄
)  

(3) 

Eq. 3 not only corrects for unique and common measurement error, it also corrects for 

correlations between true and error scores. Applying Eq. 3 to the correlations in Eq. 1 provides a 

theoretical model for sample-based residualized validity coefficients. Although such a derivation 

of Eq. 1 may not be practical if only observed scores are available, it clarifies the role error plays 

in residualized validity coefficients. By means of simulations, all the quantities in such a 

derivation can be given explicit values, and the resulting effect of error can be observed across 

multiple study conditions. Such simulations build on the work of Zimmerman (2007) who 

investigated the effect of correlated error in bivariate sample correlations.  

 

Effect of Correlated Error in Bivariate Sample Correlations 

 Using Monte Carlo methods, Zimmerman (2007) examined properties of the Spearman 

(1904) correlation formula under conditions in which correlations between error scores exist as a 

population parameter as well as when correlated errors occur by chance in random samples. 

Zimmerman also investigated the properties of the sample form of the correction for attenuation 
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formula that models correlated errors (Eq. 3) under simulated correlated error conditions and 

compared the results to observed score correlations and Spearman correlations. 

 Zimmerman found that while increasing sample size reduces the values of correlations 

between errors scores that arise randomly in samples, increasing sample size does not reduce the 

effect of correlated error at the population level. Confirming the relationships depicted in Figure 

3, Zimmerman found that the effect of correlated error on Spearman's (1904) correlation as 

applied to sample data was close to zero when ρ(EXEY) was equal to zero and became larger as 

ρ(EXEY) increased and ρXX decreased independent of sample size. He also demonstrated the bias 

and precision of estimating the effect of correlated error on Spearman's correlation using the 

right-hand term of Eq. 2 across a number of study conditions (ρTXTY = .60; ρXX = .75, .95; 

ρEYEZ= 0, .10, .20; n = 25, 100, 400). His findings indicated the estimated discrepancy becomes 

more accurate and precise as sample size increases. With a sample size of 400, there was 

virtually no difference between the simulated and predicted results for the conditions reported. 

When considering variability, his study showed the effect of correlated error was less dependent 

on 𝜌(𝐸𝑋𝐸𝑌) and 𝜌𝑋𝑋 and more dependent on sample size. Consistent with the distribution of 

correlations among error score components, the standard deviations of the effect were close to 

1/√𝑛 − 1 for the study conditions reported.   

 Zimmerman simulated a number of study conditions (ρTXTY = .70, .90; ρXX=.70, .95; 

ρEYEZ= 0, .10, .20; n = 25, 50) to investigate the properties of the sample form of the correction 

for attenuation formula that models correlated errors (Eq. 3). Means and standard deviations of 

sample correlations between observed scores were computed and compared to correlations based 

on Spearman's (1904) formula and Eq. 3. Across the study conditions reported, both corrected 

correlations came closer to true score population correlations than observed score correlations. 
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Within the limits of rounding error, the two corrected correlations performed comparably when 

being compared to true score correlations for the condition of uncorrelated error. However, 

correlations based on Eq. 3 had less variability than Spearman correlations. In the case of 

correlated error, correlations based on Eq. 3 had less bias and were more precise than 

correlations based on Spearman's formula. 

 

Purpose 

 This study extends research concerning the validity of residualized variables to determine 

which correction formulas provide the most precise and least biased estimates, in the presence of 

correlated error in population and sample data.  Such information is critical if researchers are to 

parsimoniously and accurately assess the validity of residualized variables. Therefore, this study 

investigated the bias and precision of sample-based residualized variable validity estimates (rRZ) 

under conditions where correlated errors exist in the population as well as by chance in random 

samples. The estimates were compared to true score population values (ρTRTZ) to identify cases 

in which rRZ estimates lead to incorrect conclusions regarding the true magnitude of the 

relationship between the criterion variable (𝑍) and the residualized variable (𝑌 − 𝑌�). 

Recognizing the value of assessing the convergent validity of a residualized variable, the study 

focused on conditions in which validity values based on population true scores were 

approximately between .3 and .9.  

 This study considers four rRZ estimates. The first is an uncorrected estimate based on 

Williams and Zimmerman's formula (1982) as applied to sample data: 

𝑟𝑅𝑍:𝐶0 =  
𝑟𝑌𝑍 − 𝑟𝑋𝑌𝑟𝑋𝑍
�(1 − 𝑟𝑋𝑌2 )

 C0 
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As noted by Williams and Zimmerman, the formula is a simple part correlation [i.e., 𝑟𝑍(𝑌.𝑋)], 

where Z is correlated to Y after removing the effects of X from Y.  

 The second applies Spearman's (1904) correction for attenuation based on reliability 

coefficients formula to each observed-score correlation in Eq. C0. Assuming independence of 

errors, Spearman's formula corrects for uncorrelated measurement error by dividing the observed 

score coefficient by the square root of the product of reliabilities (Wetcher-Hendricks, 2006). 

Spearman's correction as applied to 𝑟𝑅𝑍:𝐶0 takes the form: 

𝑟𝑅𝑍:𝐶1 =  
𝑟𝑋𝑋΄𝑟𝑌𝑍 − 𝑟𝑋𝑌𝑟𝑋𝑍

√𝑟𝑍𝑍΄𝑟𝑋𝑋΄�𝑟𝑌𝑌΄𝑟𝑋𝑋΄−𝑟𝑋𝑌2
 C1 

 The third applies Zimmerman and Williams' (1997) general correction formula for 

attenuation at the population level to each observed-score correlation in Eq. C0. In contrast to 

Spearman's (1904) formula, Zimmerman and Williams’ formula does not assume independence 

of errors. In addition to dividing the observed score coefficient by the square root of the product 

of reliabilities, Zimmerman and Williams' formula corrects for correlated error. Zimmerman 

(2007) indicated the formula cannot be applied to sample data because it does not correct for 

correlations among true and error score components that can occur in sample data. It is included 

in the present study based on prior work (Wetcher-Hendricks, 2006) that adapted Zimmerman 

and Williams' formula to estimate corrected part correlations on sample data. Zimmerman and 

Williams' correction for attenuation as applied to 𝑟𝑅𝑍:𝐶0takes the form: 

𝑟𝑅𝑍:𝐶2 =  

𝑟𝑋𝑋′(𝑟𝑌𝑍−𝑟𝐸𝑌𝐸𝑍�1 − 𝑟𝑌𝑌΄�1 − 𝑟𝑍𝑍΄)
−(𝑟𝑋𝑌−𝑟𝐸𝑋𝐸𝑌�1 − 𝑟𝑋𝑋΄�1 − 𝑟𝑌𝑌΄) 
∗ (𝑟𝑋𝑍−𝑟𝐸𝑋𝐸𝑍�1 − 𝑟𝑋𝑋΄�1 − 𝑟𝑍𝑍΄)

√𝑟𝑍𝑍΄𝑟𝑋𝑋΄�𝑟𝑌𝑌′𝑟𝑋𝑋΄ − (𝑟𝑋𝑌 − 𝑟𝐸𝑋𝐸𝑌�1 − 𝑟𝑋𝑋′�1 − 𝑟𝑌𝑌΄)2
 

C2 
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 The fourth applies Zimmerman's (2007) general correction for attenuation at the sample 

level to each observed-score correlation in Eq. C0. In addition to correcting for measurement 

error without assuming independence of errors, the formula corrects for spurious correlations 

among true and error score components that can occur in sample data. Zimmerman's correction 

for attenuation as applied to 𝑟𝑅𝑍:𝐶0takes the form: 

𝑟𝑅𝑍:𝐶3 =  

𝑟𝑌𝑍 − 𝑟𝐸𝑌𝐸𝑍�𝑒𝑌𝑌΄√𝑒𝑍𝑍΄
√𝑟𝑌𝑌΄𝑟𝑍𝑍΄

−
𝑟𝑇𝑌𝐸𝑍√𝑒𝑌𝑌΄ 

√𝑟𝑌𝑌΄
−
𝑟𝑇𝑍𝐸𝑌√𝑒𝑍𝑍΄
√𝑟𝑍𝑍΄

 

−(
𝑟𝑋𝑌 − 𝑟𝐸𝑋𝐸𝑌√𝑒𝑋𝑋′√𝑒𝑌𝑌΄

√𝑟𝑋𝑋΄𝑟𝑌𝑌΄
−
𝑟𝑇𝑋𝐸𝑌√𝑒𝑋𝑋΄ 

√𝑟𝑋𝑋΄
−
𝑟𝑇𝑌𝐸𝑋√𝑒𝑌𝑌΄
√𝑟𝑌𝑌΄

)  

∗ (
𝑟𝑋𝑍−𝑟𝐸𝑋𝐸𝑍√𝑒𝑋𝑋΄√𝑒𝑍𝑍΄

√𝑟𝑋𝑋΄𝑟𝑍𝑍΄
−
𝑟𝑇𝑋𝐸𝑍√𝑒𝑋𝑋΄ 

√𝑟𝑋𝑋΄
−
𝑟𝑇𝑍𝐸𝑋√𝑒𝑍𝑍΄
√𝑟𝑍𝑍΄

)

�1 − (
𝑟𝑋𝑌 − 𝑟𝐸𝑋𝐸𝑌√𝑒𝑋𝑋′√𝑒𝑌𝑌΄

√𝑟𝑋𝑋΄𝑟𝑌𝑌΄
−
𝑟𝑇𝑋𝐸𝑌√𝑒𝑋𝑋΄ 

√𝑟𝑋𝑋΄
−
𝑟𝑇𝑌𝐸𝑋√𝑒𝑌𝑌΄
√𝑟𝑌𝑌΄

)2

 

C3 

Zimmerman (2007) noted that equations based on true and error scores could not be used 

for practical purpose since only observed scores are available. Whereas true score equivalents 

and error scores are usually unknown without the aid of structural equation modeling on item 

level data, studies conducted by Wetcher-Hendricks (2006) are notable exceptions. Wetcher-

Hendricks used historical data (weather records and baseball statistics) as true score equivalents 

and derived error scores by subtracting true scores from sample data.  Her study demonstrated 

that part correlations based on the equivalent of formula C2 were closer to true score part 

correlations when compared to part correlations based on formulas C0 and C1.  Noting that 

covariances may also exist between true scores and error scores, she identified the need for 

future research to expand formula C2 to make it applicable to situations in which covariances 

exist between error and true scores. Formula C3 is such a derivation. Formula C3 is therefore 

included in the current study to examine the precision and variability of residualized  variable 
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validity estimates after they have been corrected for measurement error, correlations between 

errors, and spurious correlations among true and error score components. 

 

Methods 

 A program was written in R to generate simulated data across a set of study conditions to 

examine the bias and precision of a set of residualized  variable validity estimates.  True score 

population validity coefficients were compared to uncorrected estimates based on formula C0  in 

addition to the corrected estimates based on formulas C1, C2, and C3. Bias and precision were 

compared by study condition (see Table 1). 

Table 1  
 
Study Conditions 

ρTRTZ   Correlated 
Errorb 

Error Condition  Sample 
ρTRTZ: ρTXTY ρTXTZ ρTYTZ Reliabilitya ρEXEY  ρEXEZ  ρEYEZ   n 
.27  .8 .8 .8 .6 .1 Yes No No  25 
.53  .8 .6 .8 .7 .3 No Yes No  100 
.93  .8 .3 .8 .8 .6 No No Yes  400 
.40 .6 .8 .8 .9  Yes Yes Yes   
.55 .6 .6 .8        
.78 .6 .3 .8        
.59 .3 .8 .8        
.65 .3 .6 .8        
.74 .3 .3 .8        
Note. aρXX΄ = ρYY΄ = ρZZ΄. bρEXEY = ρEXEZ = ρEYEZ . 

 

Residualized Variable Validity Coefficients 

 Consistent with the aim of the study, the study simulated conditions of  ρTRTZ  range 

between .27 and .93.  Nine true score residualized  variable validity coefficients were simulated 

based on a moderately high level of convergent validity between the unresidualized and criterion 

variable (ρTYTZlevel of .8), three levels of covariate adjustment (ρTXTYlevels of .3, .6, and .8), 
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and three levels of multicollinearity between the covariate and criterion variables (ρTYTZlevels of 

.3, .6, and .8).  Correlations of .3, .6, and .8 approximate an equidistance of shared variance with 

the unresidualized variable (9%, 36%, 64%) and represent a broad range of covariate adjustment 

and multicollinearity.  

 

Reliability 

 Four  levels of score reliability were modeled (.9, .8, .7, .6). A reliability value of .90 is  

considered a cutoff value when scores are used for important clinical and/or educational 

decisions; .8 is considered a minimally accepted value for general research (Henson, 2001). 

Reliabilities of .7 and .6 were also considered given the former is often considered a lower bound 

of acceptable reliability (Henson, 2001) and the latter is not unusual in early research 

(Zimmerman, 2007).  For the purpose of parsimony, the reliability of the unresidualized, 

covariate, and criterion variables were modeled as equal.  

 

Correlated Error and Error Condition  

 Three levels of correlated errors were modeled (.1, .3, .6). The three levels are 

respectively considered weak, moderate, and strong levels of correlated error (Herting, 2002). 

Four correlated error conditions were modeled: (a) correlated error between covariate (X) and 

unresidualized variable (Y) only, (b) correlated error between covariate (X) and criterion 

variable (Z) only, (c) correlated error between unresidualized (Y) and criterion variable (Z) only, 

(d) correlated error between X and Y, X and Z, and Y and Z.  

 

Sample Size 

 Three levels of sample size were simulated (ns = 25, 100, 400). The levels were selected 
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for three reasons. First, the three levels are consistent with Zimmerman (2007) and provide the 

potential for comparisons to be made between the results of the present study and Zimmerman's 

work. Second, the sample sizes represent a broad range of theoretical distributions of sample 

correlation coefficients among error score components. Based on sampling theory (Fisher, 1915) 

and Zimmerman's (2007) simulation results, the distribution of sample correlation coefficients 

among error score components (e.g., 𝑟𝐸𝑋𝐸𝑌 ,  𝑟𝑇𝑋𝐸𝑋 ,  𝑟𝑇𝑌𝐸𝑌 , 𝑟𝑇𝑋𝐸𝑌 ,  𝑟𝑇𝑌𝐸𝑋), is expected to yield 

approximate standard deviations of 1/√𝑛 − 1. For this study, it is anticipated that the 

correlations among error components will yield standard deviations of ~.20, ~.10,  ~.05  as a 

function of increasing sample size. Third, the median sample size of 100 is consistent with the 

median subject-to-variable ratio in social science research as reported by Kieffer, Reese, and 

Thompson (2001). 

 

Simulation 

 The fully nested combination of the study's conditions is 1,296 (i.e., 9 x 4 x 3 x 4 x 3 or 

432 [9 x 4 x 3 x 4] populations x 3) Code was written in R (see appendix) to generate the implied 

covariance matrix for each of the study's conditions. Values for the covariance matrix were based 

on study parameters as indicated in Table 2. In order to not confound the magnitude of error 

variance with the magnitude of observed score variance, the study was designed such that the 

variance of population observed scores was 1.0 (cf. Corder-Bolz, 1978). Consistent with classical 

test theory, correlations between population true and error scores were designed to be 0 (cf. 

Croker & Algina, 1986).  
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Table 2 

Population Covariance Matrix 

 TX TY TZ EX EY EZ 

TX ρXX  ρTXTYσTXσTY  ρTXTZσTXσTZ  0 0 0 

TY ρTXTYσTXσTY  ρYY ρTYTZσTYσTZ 0 0 0 

TZ ρTXTZσTXσTZ  ρTYTZσTYσTZ  ρZZ 0 0 0 

EX 0 0 0 1 −  ρXX ρEXEYσEXσEY  ρEXEZσEXσEZ  

EY 0 0 0 ρEXEYσEXσEY  1 −  ρYY ρEYEZσEYσEZ  

EZ 0 0 0 ρEXEZσEXσEZ  ρEYEZσEYσEZ  1 −  ρZZ 

 
 The covariance matrix was passed to the function mvrnorm (Venables & Ripley, 2000) 

to generate population data. Resulting true and error scores were added to form population 

observed scores. To minimize the standard error of simulation, a population the size of 5,000 x n  

(i.e., 25, 100, 400) was generated for each of the study's conditions (cf. Wang & Thompson, 

2007). The resulting dataset was randomly divided into 5,000 samples in preparation for 

analyses.  

 

Analyses 

 Across the 1,296 conditions, validity estimates based on formulas C0, C1, C2, and C3 

were computed for each of the samples. Bias was computed by subtracting the true score 

population value ρTRTZfrom the sample estimate. Positive discrepancies reflect validity estimates 

that overestimate population parameters, while negative discrepancies reflect sample values that 

underestimate population parameters (cf. Wang & Thompson, 2007). Precision was determined 

19 



by calculating the Standard Deviation (SD) of the four validity estimates across the 1,296 study 

conditions. 

  An analysis of variance (ANOVA) was used to provide information regarding the effect 

of each condition on the mean bias and mean precision of the validity estimates. The independent 

variables included: (a) level of covariate adjustment, (b) level of multicollinearity between the 

covariate and criterion variable, (c) level of reliability, (d) level of correlated error, (e) correlated 

error conditions, and (f) level of sample size.  Estimated marginal means (EMMs) and η2 were 

computed using main and interaction effects in the simulation design to predict bias and 

precision in the estimates. 

 

Results 

 Analyses of the 432 (9 x 4 x 3 x 4) populations revealed the populations yielded the 

desirable population parameters. Analyses of the correlations between true scores and error 

scores (e.g., 𝑟𝑇𝑋𝐸𝑋 , 𝑟𝑇𝑋𝐸𝑌 , 𝑟𝑇𝑋𝐸𝑍) revealed these so-called nuisance correlations were normally 

distributed with a M of 0 and a SD of 1/√𝑛 − 1, as expected (cf. Charles, 2005; Zimmerman, 

2007). Analyses of the differences between the 𝑟𝑅𝑍:𝐶3 validity estimates and the corresponding 

𝑟𝑇𝑅𝑇𝑍 values had a M and SD of 0, as expected (cf. Zimmerman). As authors (e.g., Nimon, 

Zientek, & Henson, 2012; Charles, 2005; Zimmerman, 2007) have noted that Spearman’s 

correction for attenuation sometimes produces values greater than 1.00, the number of values for 

the four validity estimates were also examined. In the case of 𝑟𝑅𝑍:𝐶0and 𝑟𝑅𝑍:𝐶3, each of the 1,296 

study conditions yielded the full number of estimates (i.e., 5,000).  However, in the case of 

𝑟𝑅𝑍:𝐶1and 𝑟𝑅𝑍:𝐶2, a number of impossible values (i.e., NAs) were generated when the correction 

for attenuation for 𝑟𝑋𝑌 produced a value greater than 1.00. The NA values resulted in unequal 
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cell sizes across the study conditions and an in-balanced design, as some study conditions 

resulted in no validity estimates. 

For 𝑟𝑅𝑍:𝐶2, the study conditions that appeared to affect the number of NA values were n, 

ρTRTZ , reliability, and related interactions (see Table 3). The EMMs for the main effects showed 

that across the study conditions, the greatest number of NA values involved conditions where:    

n = 25, reliability = .60, and 𝜌𝑇𝑋𝑇𝑌 = .80 (see Table 4). In analyzing the main effects within the 

context of the related interactions, the EMMs for the n x ρTRTZ  x reliability interaction produced 

findings consistent with the main effects. The interaction EMMs also showed that when n = 25 

and ρTXTY = .80, the range of number of NA values dropped nearly in half when reliability 

increased from .60 to .70, and even further when reliability increased to .80. The remaining 

EMMs revealed little to no occurrence of NA values (see Figure 4).  

For 𝑟𝑅𝑍:𝐶1, the study conditions that appeared to affect the number of NA values were 

reliability, ρTRTZ , correlated error location (CEloc), level of correlated error (CElev), n, and 

related interactions (see Table 3). The EMMs for the main effects show that across the study 

conditions, the greatest number of NA values involved conditions where: reliability = .60, ρTXTY 

= .80, correlated error existed between EX and EY (either solely or when all error components 

were similarly correlated), CElev = .60, and n = 25 (see Table 4). However, these main effects 

should be interpreted within the context of related interaction effects (see Figures 5a, 5b, 5c).  

According to the interaction effects, the largest number of NA values occurred in study 

conditions where reliability = .60,  ρTXTY = .80, correlated error existed between EX and EY, 

CElev = .60, and n = 400. These study conditions resulted in no valid estimates being provided 

for 𝑟𝑅𝑍:𝐶1 (see Figure 5c). Therefore, in order to provide a balanced design, analyses on the bias 
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and precision of the four validity estimates were modeled omitting the study condition where 

CElev = .60, resulting in a fully crossed design of 864 study conditions (9 x 4 x 2 x 4 x 3). 

Table 3 

Statistics for Number of  𝑟𝑅𝑍:𝐶1 and 𝑟𝑅𝑍:𝐶2 NA Values within the 1296 Study Conditions 

Statistic/source   𝑟RZ:C1 𝑟RZ:C2 
Descriptive Statistics   

Median 0.00 0.00 
M 298.85 28.79 
SD 850.03 96.14 
Skewness 3.79 4.42 
Kurtosis 14.68 20.35 

η2 for study condition factors   
ρTR.TZ 10.73% 9.84% 
Reliability (rel) 10.98% 8.09% 
CE Level (CElev) 6.10% 0.28% 
CE Location (CEloc) 7.60% 0.57% 
n 1.46% 17.01% 
ρTR.TZ x rel 7.64% 7.70% 
ρTR.TZ x CElev 4.44% 0.28% 
rel x CElev 4.87% 0.22% 
ρTR.TZ x CEloc 6.42% 0.52% 
rel x CEloc 6.78% 0.38% 
CElev x CEloc 6.09% 0.28% 
ρTR.TZ x n 0.46% 18.30% 
rel x n 0.60% 14.88% 
CElev x n 0.03% 0.52% 
CEloc x n 0.06% 1.03% 
ρTR.TZ x rel x CElev 3.79% 0.20% 
ρTR.TZ x rel x CEloc 4.63% 0.29% 

   ρTR.TZ x CElev x CEloc 4.44% 0.30% 
rel x CElev x CEloc 4.86% 0.23% 
ρTR.TZ x rel x n 0.21% 13.74% 

(table continues) 
ρTR.TZ x CElev x n 0.26% 0.50% 
rel x CElev x n 0.25% 0.41% 
ρTR.TZ x CEloc x n 0.10% 0.90% 
rel x CEloc x n 0.08% 0.65% 
CElev x CEloc x n 0.03% 0.53% 
ρTR.TZ x rel x CElev x CEloc 3.80% 0.21% 
ρTR.TZ x rel x CElev x n 1.08% 0.36% 
ρTR.TZ x rel x CEloc x n 0.61% 0.47% 
𝜌𝑇𝑅.𝑇𝑍 x CElev x CEloc x n 0.27% 0.54% 
rel x CElev x CEloc x n 0.25% 0.41% 
ρTR.TZ x rel x CElev x CEloc x n 1.08% 0.37% 

Note. Because there is only one case (i.e., the number of estimates) per cell, the factorial analysis of variance 
degrees of freedom error is 0, and the η2 values sum to 100%, within rounding error. 
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Table 4 

Estimated Marginal Means for Main Effects and Theoretical Distribution (TD) of r 

 NAsa  Biasb  Precisionb  
Factor/level   𝑟RZ:C1 𝑟RZ:C2    𝑟RZ:C0 𝑟RZ:C1    𝑟RZ:C0 𝑟RZ:C1   𝑟RZ:C2 𝑟RZ:C3 TD 
ρTR.TZ            

.27 682.57 70.10  0.02 -0.01  0.08 0.28 0.18 0.07  

.40 188.25 13.72  -0.03 -0.01  0.08 0.18 0.13 0.06  

.53 680.63 72.08  -0.12 0.05  0.09 0.33 0.19 0.07  

.55 188.36 13.71  -0.10 0.01  0.08 0.19 0.14 0.07  

.59 27.34 1.95  -0.11 0.00  0.07 0.14 0.10 0.06  

.65 26.35 1.80  -0.13 0.01  0.08 0.13 0.11 0.06  

.74 27.25 1.65  -0.17 0.02  0.08 0.13 0.10 0.06  

.78 188.32 13.74  -0.20 0.05  0.08 0.22 0.12 0.05  

.93 680.61 70.39  -0.33 0.16  0.07 0.49 0.17 0.04  
rel            

.60 724.10 71.58  -0.20 0.06  0.09 0.43 0.21 0.06  

.70 376.98 32.81  -0.15 0.04  0.08 0.26 0.15 0.06  

.80 89.44 10.08  -0.11 0.02  0.08 0.16 0.11 0.06  

.90 4.88 0.69  -0.06 0.00  0.07 0.09 0.08 0.06  
CElev            

.10 89.56 34.54  -0.14 0.02  0.08 0.20 0.14 0.06  

.30 221.33 29.66  -0.13 0.05  0.08 0.26 0.13 0.06  

.60 585.67 22.18  NA NA  NA NA NA NA  
CEloc            
ρEY.EZ 65.06 36.13  -0.09 0.10  0.08 0.19 0.14 0.06  
ρEX.EZ 64.16 35.96  -0.16 -0.06  0.08 0.18 0.14 0.06  
ρEX.EY 533.41 21.54  -0.15 0.02  0.08 0.28 0.14 0.06  
All 532.78 21.54  -0.12 0.05  0.08 0.27 0.13 0.06  

n            
25 442.56 84.83  -0.14 0.03  0.14 0.42 0.27 0.10 0.20 
100 244.62 1.55  -0.13 0.03  0.07 0.19 0.10 0.05 0.10 
400 209.38 0.00  -0.13 0.03  0.03 0.10 0.04 0.02 0.05 

Note. aStudy Conditions = 1,296. bStudy Conditions = 864. TD = Theoretical distribution of  r 
(i.e., 1 / [n - 1].5).  
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Figure 4. EMMs for number of NA nalues for 𝑟RZ:C2 across select study conditions. 

 
Figure 5a. EMMs for number of NA values for 𝑟RZ:C1 across select study conditions when 
correlated error = .1.   
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Figure 5b. EMMs for number of NA values for 𝑟RZ:C1 across select study conditions when 
correlated error = .3.   
 

 
Figure 5c. EMMs for number of NA values for 𝑟RZ:C1 across select study conditions when 
correlated error = .6. 
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Bias 

 Table 5 presents descriptive statistics and η2 values across the study’s factors. The 

greatest grand mean bias was in 𝑟𝑅𝑍:𝐶0 followed by 𝑟𝑅𝑍:𝐶1, while 𝑟𝑅𝑍:𝐶2 and 𝑟𝑅𝑍:𝐶3 demonstrated 

virtually no discernible grand mean bias. Across the study conditions, 𝑟𝑅𝑍:𝐶1 demonstrated the 

most variance in mean bias followed by 𝑟𝑅𝑍:𝐶0. There was little variability in the mean bias of 

𝑟𝑅𝑍:𝐶2 and 𝑟𝑅𝑍:𝐶3 across the study conditions. The distribution of mean bias across the study 

conditions appeared to be negatively skewed and normal for 𝑟𝑅𝑍:𝐶0 and 𝑟𝑅𝑍:𝐶3, while positively 

skewed and non-normal for 𝑟𝑅𝑍:𝐶1 and 𝑟𝑅𝑍:𝐶2. Study conditions respectively explained 62.72%, 

14.20%, .50%, and .83% of the variance in the bias of 𝑟𝑅𝑍:𝐶0, 𝑟𝑅𝑍:𝐶1, 𝑟𝑅𝑍:𝐶2, and 𝑟𝑅𝑍:𝐶3. Given the 

amount of bias detected and variance explained, only the bias of 𝑟𝑅𝑍:𝐶0 and 𝑟𝑅𝑍:𝐶1 were further 

investigated (cf. Thompson, 2006). 

For 𝑟𝑅𝑍:𝐶0, the study conditions that appeared to affect bias were ρTRTZ , reliability, 

CEloc, and the interaction between ρTRTZ  and reliability (see Table 5). The EMMs for the main 

effects show that across the study conditions, the greatest bias involved conditions where: 

ρTRTZ= .93, reliability = .60, and correlated error existed between EX and EZ or between EX and 

EY (see Table 4). The EMMs for the ρTRTZ  and reliability interaction effect produced findings 

consistent with the main effects and revealed that while reliability did not play a role in the bias 

of 𝑟𝑅𝑍:𝐶0 when ρTRTZwas small (i.e., .27), the amount of negative bias increased as reliability 

decreased and ρTRTZincreased (see Figure 6).  
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Table 5 

Statistics for Bias of the 4 Validity Estimates across 864 Study Conditions 

Statistic/Factor   𝑟RZ:C0 𝑟RZ:C1   𝑟RZ:C2 𝑟RZ:C3 
Descriptive Statistics     

Median -.11 <.01 <-.01 <-.01 
M -.13 .04 <-.01 <-.01 
SD .12 .16 .01 < .01 
Skewness -.84 5.00      3.45 -1.43 
Kurtosis .89 44.91 18.04 .79 
η2 for study condition factors     
ρTR.TZ 39.74% 2.75% .16% .15% 
Reliability (rel) 12.38% .72% .02% .00% 
CE Level (CElev) .13% .34% .00% .00% 
CE Location (CEloc) 3.97% 2.96% .01% .00% 
n .14% .00% .00% .52% 
ρTR.TZ x rel 4.17% 1.36% .07% .00% 
ρTR.TZ x CElev .04% .76% .00% .00% 
rel x CElev .29% 2.33% .00% .00% 
ρTR.TZ x CEloc .01% .02% .16% .13% 
rel x CEloc .03% .21% .00% .00% 
CElev x CEloc .60% 1.11% .00% .00% 
ρTR.TZ x n .00% .02% .02% .00% 
rel x n .98% .79% .00% .00% 
CElev x n .00% .01% .00% .00% 
CEloc x n .00% .02% .01% .00% 
ρTR.TZ x rel x CElev .00% .47% .00% .00% 
ρTR.TZ x rel x CEloc .01% 1.15% .00% .00% 

  ρTR.TZ x CElev x CEloc .00% .25% .06% .00% 
rel x CElev x CEloc .07% .91% .00% .00% 
ρTR.TZ x rel x n .00% .11% .00% .00% 
 ρTR.TZ x CElev x n .00% .13% .00% .00% 
rel x CElev x n .15% .32% .00% .00% 
ρTR.TZ x CEloc x n .00% .04% .00% .00% 
rel x CEloc x n .00% .05% .00% .00% 
CElev x CEloc x n .00% .02% .00% .00% 
ρTR.TZ x rel x CElev x CEloc .00% .52% .00% .00% 
ρTR.TZ x rel x CElev x n .00% .22% .00% .00% 
ρTR.TZ x rel x CEloc x n .00% .30% .00% .00% 
ρTR.TZ x CElev x CEloc x n .00% .12% .00% .00% 
rel x CElev x CEloc x n .00% .05% .00% .00% 
ρTR.TZ x rel x CElev x CEloc x n .00% .23% .00% .00% 
Full Model 62.72% 14.20% .50% .83% 
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Figure 6. EMMs for bias of 𝑟RZ:C0 across select study conditions.   

 
For 𝑟𝑅𝑍:𝐶1, the study conditions that appeared to affect bias were the main effects of 

CELoc and 𝜌𝑇𝑅𝑇𝑍 as well as interaction effects involving ρTRTZ , reliability, CELoc, and CElev 

(see Table 3). The EMMs for the main effects show that across the study conditions, the greatest 

bias involved conditions where: correlated error was isolated to EY and EZ  and  ρTRTZ  = .93 (see 

Table 4). To analyze the main effects with the context of relevant interactions, the EMMs 

associated with the four-way interaction involving ρTRTZ, reliability, CELoc, and CElev were 

plotted (see Figure 7).  The EMMs for the four-way interaction effect produced findings 

somewhat inconsistent with the main effects, revealing that the greatest bias involved conditions 

where: correlated error existed between EX and EY,  ρTRTZ = .93, and CElev = .30. The EMMs 

also revealed that decreases in reliability tended to increase the amount of positive bias except in 

the case where the correlated error was isolated to ρEXEZ . In the latter case, decreases in 
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reliability tended to increase the amount of negative bias. When the correlated error condition 

was isolated to ρEYEZ  or ρEXEZ , the amount of bias tended to be more pronounced when ρTXTY = 

.80. When the correlated error condition included ρEXEY , the amount of bias was most 

pronounced when ρTRTZ= .53 | .93. The patterns of bias for the condition when CElev = .10 

mirrored those when CElev = .30. However, when CElev = .10, the magnitude of bias was not as 

great. 

 

Precision  

 Table 6 presents descriptive statistics and η2 values across the study’s factors. The 

greatest variability was found in 𝑟𝑅𝑍:𝐶1, followed by 𝑟𝑅𝑍:𝐶2,  𝑟𝑅𝑍:𝐶0 and 𝑟𝑅𝑍:𝐶3. The distribution of 

precision estimates across the study conditions appeared to be minimally skewed and slightly 

non-normal for 𝑟𝑅𝑍:𝐶0 and 𝑟𝑅𝑍:𝐶3, while positively skewed and non-normal for 𝑟𝑅𝑍:𝐶1 and 𝑟𝑅𝑍:𝐶2.  

For 𝑟𝑅𝑍:𝐶0, the study conditions that appeared to affect precision were n,  reliability, and 

the interaction between n and reliability (see Table 6). The EMMs for the main effects show that 

across the study conditions, the greatest variability involved conditions where: n = 25 and 

reliability = .60 (see Table 4). The EMMs for the n x reliability interaction effect produced 

findings consistent with the main effects and revealed a slight interaction between n and 

reliability and indicated that lower levels of reliability had an increasingly negative effect on 

precision as n decreased (see Figure 8). 
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Figure 7. EMMs for bias of 𝑟RZ:C1 across select study conditions.   
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Table 6 

Statistics for Precision of the 4 Validity Estimates across 864 Study Conditions 

Statistic/Factor   𝑟RZ:C0 𝑟RZ:C1   𝑟RZ:C2 𝑟RZ:C3 
Descriptive Statistics     

Median .07 .13 .08 .05 
M .08 .23 .14 .06 
SD .05 .30 .13 .03 
Skewness .54 3.17 2.23 .59 
Kurtosis -1.17 14.74 5.83 -1.08 
η2 for study condition factors     
ρTR.TZ 0.95% 14.91% 5.57% 9.04% 
Reliability (rel) 3.38% 19.24% 13.57% 0.00% 
CE Level (CElev) 0.08% 1.13% 0.04% 0.00% 
CE Location (CEloc) 0.28% 2.36% 0.18% 0.00% 
n 93.24% 20.86% 53.45% 88.35% 
ρTR.TZ x rel 0.29% 9.38% 2.83% 0.00% 
ρTR.TZ x CElev 0.00% 1.71% 0.07% 0.00% 
rel x CElev 0.01% 0.99% 0.02% 0.00% 
ρTR.TZ x CEloc 0.07% 3.70% 0.35% 0.00% 
rel x CEloc 0.05% 2.17% 0.16% 0.00% 
CElev x CEloc 0.07% 0.97% 0.08% 0.00% 
ρTR.TZ x n 0.26% 1.74% 5.75% 2.57% 
rel x n 1.01% 3.98% 10.13% 0.00% 
CElev x n 0.02% 0.00% 0.02% 0.00% 
CEloc x n 0.08% 0.05% 0.13% 0.00% 
ρTR.TZ x rel x CElev 0.00% 1.42% 0.20% 0.00% 
ρTR.TZ x rel x CEloc 0.00% 2.93% 0.62% 0.00% 

  ρTR.TZ x CElev x CEloc 0.02% 1.72% 0.28% 0.00% 
rel x CElev x CEloc 0.01% 0.79% 0.09% 0.00% 
ρTR.TZ x rel x n 0.07% 1.78% 2.72% 0.00% 
ρTR.TZ x CElev x n 0.00% 0.39% 0.09% 0.00% 
rel x CElev x n 0.00% 0.10% 0.02% 0.00% 
ρTR.TZ x CEloc x n 0.02% 0.87% 0.43% 0.00% 
rel x CEloc x n 0.01% 0.15% 0.17% 0.00% 
CElev x CEloc x n 0.02% 0.02% 0.11% 0.00% 
ρTR.TZ x rel x CElev x CEloc 0.00% 1.32% 0.36% 0.00% 
ρTR.TZ x rel x CElev x n 0.00% 0.85% 0.31% 0.00% 
ρTR.TZ x rel x CEloc x n 0.01% 2.39% 1.02% 0.01% 
ρTR.TZ x CElev x CEloc x n 0.01% 0.41% 0.44% 0.00% 
rel x CElev x CEloc x n 0.00% 0.28% 0.13% 0.00% 
ρTR.TZ x rel x CElev x CEloc x n 0.01% 1.41% 0.70% 0.01% 
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Figure 8. EMMs for precision of 𝑟RZ:C0 across select study conditions. 

 
For 𝑟𝑅𝑍:𝐶1, the study conditions that appeared to affect precision were the main effects of 

n, reliability, ρTRTZ , CElev, CELoc, as well as interaction effects involving ρTRTZ , reliability, 

CELoc, and n (see Table 6). The EMMs for the main effects show that across the study 

conditions, the greatest bias involved conditions where: n = 25, reliability = .60, and ρTRTZ= .93, 

CElev = .30, and correlated error included EX and EY (see Table 4). To analyze the main effects 

with the context of relevant interactions, the EMMs associated with the four-way interaction 

involving 𝜌𝑇𝑅𝑇𝑍, reliability, CELoc, and n were plotted (see Figure 9). The EMMs for the ρTRTZ  

x reliability x CELoc x n interaction effect produced findings somewhat consistent with the main 

effects, revealing that the greatest variability involved conditions where: ρTRTZ  = .93, reliability 

= .60, correlated error existed between EX and EY, and n = 400. 
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Figure 9. EMMs for precision of 𝑟RZ:C1 across select study conditions.   
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For 𝑟𝑅𝑍:𝐶2, the study conditions that appeared to affect precision were n,  reliability, 

ρTRTZ , and related interactions (see Table 6). The EMMs for the main effects show that across 

study conditions, the greatest variability involved conditions where: n = 25, reliability = .60, and 

ρTXTY = .80 (see Table 4). The EMMs for n x reliability x 𝜌𝑇𝑅𝑇𝑍interaction effect produced 

findings consistent with the main effects and also revealed that the interaction between reliability 

and ρTRTZ was most evident in conditions where n = 25. For n = 25, the effect that ρTRTZ  had on 

precision was strongest when reliability = .60 and weakest when reliability = .90 (see Figure 10).  

For 𝑟𝑅𝑍:𝐶3, the study conditions that appeared to affect precision were n,  ρTRTZ , and the 

interaction between n and ρTRTZ  (see Table 6). The EMMs for the main effects show that across 

the study conditions, the greatest variability involved conditions where: n = 25 and ρTRTZ  = .27 | 

.53 | .55 (see Table 4). The EMMs for the interaction effect produced findings consistent with the 

main effects and also indicated that the effect ρTRTZ  had on precision was strongest when n = 25 

and weakest when n = 400 (see Figure 11).  

 

Discussion 

Synthesis of Findings  

To synthesize the results of the study, it is helpful to consider differences in bias or 

precision that are large enough to make a practical difference in the interpretation of validity 

estimates.  The benchmark used for identifying practical differences in bias and precision was 

.20 and is supported by literature that considers the magnitude of r when interpreting its 

meaning.  For example, Cohen (1998) interpreted rs of .10, .30, and .50 as small, medium and 

large, respectively.  When considering convergent validity levels, Ward, Fischer, Lam, and Hall 
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(2009) drew distinctions between correlations greater than .70, those that ranged between .30 and 

.50, and those that ranged between .10 and .20.  

 
Figure 10. EMMs for precision of 𝑟RZ:C2 across select study conditions. 
 

 
Figure 11. EMMs for precision of 𝑟RZ:C3 across select study conditions. 
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 𝑟𝑅𝑍:𝐶3. Validity estimates based on Eq. C3 yielded values that were not practically 

significantly different than their respective population parameters, across the study conditions. 

This finding should not be surprising given that the derivation of 𝑟𝑅𝑍:𝐶2 stems from 

Zimmerman’s formula (2007, Eq. 6) which accurately yields sample correlations among true 

scores. Although Eq. C3 may not be used when only observed scores are available, the findings 

indicate that unbiased and precise estimates for 𝑟𝑅𝑍may be obtained when the reliability of data, 

correlations among error scores, and correlations between error and true scores are 

simultaneously modeled.  

 𝑟𝑅𝑍:𝐶2. Validity estimates based on Eq. C2, that is similar to C3 but does not model 

correlations between error and true scores, yielded unbiased values. However, due to the role that 

sample size played in the variability of correlations between error and true scores, the variability 

in 𝑟𝑅𝑍:𝐶2 estimates were large enough to be practically significantly different than their respective 

population parameters, particularly when sample sizes were small (n = 25) and reliability was 

low (.60 | .70) or when reliability was moderate (.80) and the level of co-variation was high (.80).  

𝑟𝑅𝑍:𝐶1. Validity estimates based on Eq. C1, that is similar to C2 but does not model 

correlations between error scores, yielded values that were practically significantly different than 

their respective population parameters under a number of conditions. Particularly when the level 

of correlated error was moderate (.30), reliability was low (.60), and the level of co-variation was 

high (.80), biased estimates occurred. If the correlated error was isolated to the covariate and 

criterion, as might occur if the covariate and criterion were measured at the same time but at a 

different time than the outcome, the bias was negative; otherwise, positive bias occurred when 

correlated error was isolated to the outcome and criterion, or involved the covariate and outcome.  

In addition, when reliability was low (.60) and the level of co-variation was high (.80), 
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variability in 𝑟𝑅𝑍:𝐶1 estimates was large enough to be practically significantly different than their 

respective population parameters.  The exception to this finding was when sample sizes were 

large and when correlated error was isolated to the outcome and criterion or the covariate and 

criterion.  In the latter case, there was no practically significant variability in 𝑟𝑅𝑍:𝐶1 estimates. 

𝑟𝑅𝑍:𝐶0. Validity estimates based on Eq. C0, that is similar to C1 does not model 

reliability, yielded values that were sufficiently precise to be not practically significantly 

different than their respective population parameters. However, under a number of conditions,  

𝑟𝑅𝑍:𝐶0 estimates were sufficiently biased to affect the interpretation of results. Particularly when: 

(a) ρTRTZ ≥ .65 and reliability = .60, (b) ρTRTZ ≥ .74 and reliability = .70, and (c) ρTRTZ = .93 

and reliability = .80, there was a practically significant amount of negative bias in 𝑟𝑅𝑍:𝐶0 

estimates. 

 

Conclusions 

 Based on the study’s findings, it can be concluded that the performance of four equations 

ranked from best to worst is as follows: C3, C2, C0, and C1.  Eq. C3 performed the best, yielding 

no estimates that were practically significantly different than their respective population 

parameters, across study conditions.  Eq. C2 did a good job in yielding unbiased, valid, and 

precise results. Only in a select number of study conditions were estimates unable to be 

computed or produced results that had sufficient variance to affect interpretation of results. Eq. 

C0 fared well in producing valid, precise, and unbiased results.  Although C0 suffered from bias 

under a number of study conditions, the variability of results were not sufficiently large to affect 

interpretation of results. Eq. C0 also reliably produced estimates across all study conditions (i.e., 

no NA values). Eq. C1 performed the worst. Not only did C1 not reliably produce estimates even 

when the level of modeled correlated error was low (.10), C1 produced values higher than the 
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theoretical limit of 1.0 across a number of study conditions. Estimates based on C1 also 

produced the greatest number of conditions that were practically significantly different than their 

population parameters.  

 The study’s findings support the benefits of using structural equation modeling (SEM) in 

to accurately assess the validity of a residualized variable. Presuming that equivalent SEM 

models can be built to model the correlated error in Eq. C2, researchers can expect such models 

to generally yield unbiased, valid, and precise validity estimates. However, based on the findings 

of this study, it seems possible that constraining nuisance correlations between error scores to 

zero could yield correlation coefficients greater than 1.0. It is possible that SEM models could 

yield a closer fit of the data if nuisance correlations were freely estimated, similar to how 

nuisance correlations are modeled in Eq. C3.  Alternatively, such correlations might be truncated 

to unity or perhaps another value such as the observed score correlation.  

 In the event that SEM cannot be applied to a dataset for any number of reasons (e.g., 

insufficient sample size, lack of item level data), researchers must then choose between C0 and 

C1 when assessing the validity of a residualized variable. Eq. C0 would seem to be the most 

parsimonious choice when: (a) ρTRTZ < .65 and reliability ≥ .60, (b) ρTRTZ ≤ .74 and reliability 

≥.70, or (c) ρTRTZ < .93 and reliability ≥ .80, as this study found a practically insignificant 

amount of bias in the associated 𝑟𝑅𝑍:𝐶0 estimates.  In the absence of such conditions, a post hoc 

analyses of the related EMMs revealed that C1 usually outperformed C0 in producing less biased 

estimates, except in select conditions (see Table 7). However, in the absence of the 

aforementioned conditions, C1 always produced less precise estimates than C0 (see Table 7). 

These findings have implications for analyses (e.g., meta-analyses) that rely on validity estimates 

that have been corrected by C1.  Unless researchers are confident there is no correlated error 
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among the variables, they must give careful consideration to the: (a) level of correlation between 

a residualized variable and criterion, (b) level of reliability in the data, and (c) potential source of 

correlated error before selecting a validity estimate that has been corrected for attenuation by C1 

over a validity estimate based on observed score correlations (i.e., C0). Without such 

consideration, resulting estimates may be actually further away from population parameters than 

estimates based on observed data. 

Table 7 

EMMs of Bias and Precision for  𝑟RZ:C0 and  𝑟RZ:C1 across Select Conditions 

    Bias  Precision  
ρTR.TZ rel CElev CEloca   𝑟RZ:C0   𝑟RZ:C1    𝑟RZ:C0   𝑟RZ:C1 

0.65 0.6 0.1 ρEYEZ -0.20 0.07  0.09 0.18 
0.65 0.6 0.1 ρEXEZ -0.24 -0.03  0.09 0.20 
0.65 0.6 0.1 ρEXEY -0.25 -0.03  0.09 0.19 
0.65 0.6 0.1 All -0.21 0.02  0.09 0.20 
0.65 0.6 0.3 ρEYEZ -0.11 0.22  0.08 0.19 
0.65 0.6 0.3 ρEXEZ -0.25 -0.07  0.09 0.20 
0.65 0.6 0.3 ρEXEY -0.27 -0.07  0.09 0.24 
0.65 0.6 0.3 All -0.18 0.04  0.08 0.22 
0.74 0.6 0.1 ρEYEZ -0.26 0.07  0.09 0.19 
0.74 0.6 0.1 ρEXEZ -0.30 -0.02  0.09 0.18 
0.74 0.6 0.1 ρEXEY -0.30 0.00  0.09 0.21 
0.74 0.6 0.1 All -0.27 0.05  0.09 0.19 
0.74 0.6 0.3 ρEYEZ -0.18 0.22  0.08 0.19 
0.74 0.6 0.3 ρEXEZ -0.32 -0.07  0.09 0.19 
0.74 0.6 0.3 ρEXEY -0.30 0.02  0.09 0.27 
0.74 0.6 0.3 All -0.22 0.14  0.08 0.27 
0.74 0.7 0.1 ρEYEZ -0.19 0.04  0.08 0.13 
0.74 0.7 0.1 ρEXEZ -0.23 -0.02  0.09 0.14 
0.74 0.7 0.1 ρEXEY -0.23 -0.01  0.09 0.13 
0.74 0.7 0.1 All -0.20 0.02  0.08 0.13 
0.74 0.7 0.3 ρEYEZ -0.13 0.14  0.07 0.21 
0.74 0.7 0.3 ρEXEZ -0.24 -0.05  0.09 0.14 
0.74 0.7 0.3 ρEXEY -0.23 0.00  0.09 0.16 
0.74 0.7 0.3 All -0.17 0.08  0.08 0.15 
0.78 0.6 0.1 ρEYEZ -0.29 0.10  0.09 0.26 
0.78 0.6 0.1 ρEXEZ -0.35 -0.04  0.09 0.24 

(table continues) 
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    Bias  Precision  
𝜌𝑇𝑅.𝑇𝑍 rel CElev CEloca   𝑟RZ:C0   𝑟RZ:C1    𝑟RZ:C0   𝑟RZ:C1 

0.78 0.6 0.1 ρEXEY -0.34 0.06  0.10 0.46 
0.78 0.6 0.1 All -0.31 0.10  0.09 0.45 
0.78 0.6 0.3 ρEYEZ -0.21 0.28  0.08 0.31 
0.78 0.6 0.3 ρEXEZ -0.38 -0.15  0.10 0.29 
0.78 0.6 0.3 ρEXEY -0.33 0.26  0.09 0.86 
0.78 0.6 0.3 All -0.26 0.31  0.09 0.73 
0.78 0.7 0.1 ρEYEZ -0.23 0.06  0.08 0.16 
0.78 0.7 0.1 ρEXEZ -0.28 -0.03  0.09 0.17 
0.78 0.7 0.1 ρEXEY -0.26 0.03  0.09 0.22 
0.78 0.7 0.1 All -0.24 0.05  0.08 0.20 
0.78 0.7 0.3 ρEYEZ -0.16 0.18  0.07 0.21 
0.78 0.7 0.3 ρEXEZ -0.30 -0.10  0.09 0.17 
0.78 0.7 0.3 ρEXEY -0.26 0.11  0.09 0.30 
0.78 0.7 0.3 All -0.21 0.17  0.08 0.48 
0.93 0.6 0.1 ρEYEZ -0.45 0.19  0.09 0.62 
0.93 0.6 0.1 ρEXEZ -0.51 -0.04  0.10 0.49 
0.93 0.6 0.1 ρEXEY -0.49 0.25  0.09 0.79 
0.93 0.6 0.1 All -0.47 0.29  0.09 0.91 
0.93 0.6 0.3 ρEYEZ -0.36 0.45  0.08 0.74 
0.93 0.6 0.3 ρEXEZ -0.56 -0.23  0.10 0.50 
0.93 0.6 0.3 ρEXEY -0.48 1.19  0.09 2.12 
0.93 0.6 0.3 All -0.42 1.18  0.08 1.95 
0.93 0.7 0.1 ρEYEZ -0.37 0.12  0.08 0.36 
0.93 0.7 0.1 ρEXEZ -0.43 -0.02  0.09 0.33 
0.93 0.7 0.1 ρEXEY -0.40 0.16  0.08 0.47 
0.93 0.7 0.1 All -0.39 0.17  0.08 0.55 
0.93 0.7 0.3 ρEYEZ -0.30 0.27  0.07 0.36 
0.93 0.7 0.3 ρEXEZ -0.47 -0.15  0.09 0.30 
0.93 0.7 0.3 ρEXEY -0.38 0.63  0.08 1.12 
0.93 0.7 0.3 All -0.34 0.65  0.08 1.10 
0.93 0.8 0.1 ρEYEZ -0.28 0.07  0.07 0.20 
0.93 0.8 0.1 ρEXEZ -0.33 -0.01  0.07 0.23 
0.93 0.8 0.1 ρEXEY -0.30 0.08  0.07 0.29 
0.93 0.8 0.1 All -0.29 0.09  0.07 0.24 
0.93 0.8 0.3 ρEYEZ -0.23 0.16  0.06 0.22 
0.93 0.8 0.3 ρEXEZ -0.36 -0.08  0.08 0.21 
0.93 0.8 0.3 ρEXEY -0.28 0.26  0.07 0.51 
0.93 0.8 0.3 All -0.26 0.28  0.06 0.46 

Note. Estimates with less bias and variability are bolded.   
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Limitations 

 The study’s findings must be taken within the context of the study’s limitations and 

delimitations. First,  the study only considered moderately high level of convergent validity 

between the outcome and criterion variable (𝜌𝑇𝑌𝑇𝑍= .80), equal levels of reliability across the 

outcome, covariate, and criterion variables, and four correlated error conditions, where correlated 

error was isolated to one of three pairs of variables as well as across all variables. No conclusions 

can be made, therefore, regarding the performance of C0, C1, and C2, across study conditions 

with lower levels of convergent validity, disparate levels of reliability across the outcome, 

covariate, and criterion variables, and other correlated error conditions. Second, given that C1 

was unable to reliably provide estimates when the level of correlated error = .60, it is not clear 

how C0, C1, and C2 will compare in the presence of a strong amount of correlated error, beyond 

understanding the conditions when estimates based on C1 and C2 cannot be computed. Third, 

this study only considered a single covariate, where in practice researchers may use multiple 

covariates in their analyses. Fourth, the study was limited by the performance of the equations 

which included in the case of C1 and C2 yielding estimates that were greater than theoretical 

limits. It is possible that C1 and C2 might have performed better had components of the formula 

been forced within theoretical bounds (e.g, 𝑟𝑋𝑍
√𝑟𝑍𝑍𝑟𝑋𝑋

). However, the findings from this study are 

nonetheless useful as they help identify cases when such estimates may occur. 

 

Recommendations for Future Research 

Beyond considering conditions that were not simulated in the study, the findings from 

this study present a number of recommendations for future research. The first recommendation 
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relates to corrected correlations that yield values beyond ± 1. The second recommendation 

considers what data should be included in research reports.  

First, further research is needed to determine how best to handle corrected correlations 

that result in values greater than or less than their theoretical limit. While conventional wisdom 

(e.g., Onwuegbuzie et al., 2004) suggests that such values should be truncated to unity, Nimon et 

al. (2012) found that a “truncated correlation of 1.00 may be a less accurate estimate of the true 

score correlation than its observed course counterpart” (p. 3). It would, therefore, be helpful to 

empirically define the conditions when a corrected correlation coefficient should be truncated to 

unity or its observed course counterpart. Future research could then use such knowledge to create 

variants of C1 and C2 that force components of the equations (e.g, 𝑟𝑋𝑍
√𝑟𝑍𝑍𝑟𝑋𝑋

). to be within 

theoretical bounds (i.e., ± 1).   

Second, the findings of the study demonstrated the impact correlated error has on 

residualized validity estimates that result from C1. It would help inform future research if reports 

based on SEM analyses would identify the amount of correlated error between variables.  While 

this would necessitate researchers conducting additional analyses (e.g., creating phantom 

variables to model correlated error at the scale level, analyzing residual correlations), such 

knowledge would help begin to build a body of knowledge regarding the level of correlated error 

that exists across sources of data.  This recommendation builds on the work of Zientek and 

Thompson (2009) that recommends that correlation matrices be provided to help improve 

research reports and allow for secondary analyses. Given the findings from this study as well as 

Fan’s (2003) who demonstrated that OLS and SEM approaches to correcting for measurement 

error yield nearly identical results, it would also seem advantageous for researchers to report 

both observed score correlations and correlations that have been corrected for measurement error 
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(either via SEM or Eq. C1) so that comparisons could be made between the sets. As noted by 

Zimmerman, if a correlation that has only been corrected for measurement error is much greater 

than a correlation resulting from observed scores, it is probably inaccurate as it does not consider 

correlated error or nuisance correlations between true and error scores.  

Implications for Applied Research 

 The results from this study provide two helpful data points for applied researchers. First, 

in the event that a corrected correlation results in a value greater than unity or the calculation of 

residualized validity coefficient results in an impossible value, the researcher should consider the 

role that correlated error may be playing in their analyses and investigate means (e.g., SEM) to 

model the correlated error. Second, the study demonstrates that in the presence of highly reliable 

data, the validity of a residualized variable may be accurately and parsimoniously modeled with 

observed score data, even in the presence of correlated error.  
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APPENDIX 
 

SIMULATION CODE 
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library(MASS) 
library(corpcor) 
 
path<-"C:/Users/nimonmedia/My Documents/Dissert/" 
 
#Study Conditions 
 
pops<-1000000 
iter<-5000 
 
ptxty<-c(.8, .6, .3) 
ptxtz<-c(.8, .6, .3) 
ptytz<-c(.8) 
rel<-c(.6, .7, .8, .9) 
ce<-c(.1, .3, .6) 
ss<-c(25, 100, 400) 
ec<-matrix(c(1,0,0,0,1,0,0,0,1,1,1,1),byrow=TRUE,nrow=4,ncol=3) 
sc1<-expand.grid(ptxtz,ptxty,ptytz,rel,ce,ec[1,1],ec[1,2],ec[1,3]) 
sc2<-expand.grid(ptxtz,ptxty,ptytz,rel,ce,ec[2,1],ec[2,2],ec[2,3]) 
sc3<-expand.grid(ptxtz,ptxty,ptytz,rel,ce,ec[3,1],ec[3,2],ec[3,3]) 
sc4<-expand.grid(ptxtz,ptxty,ptytz,rel,ce,ec[4,1],ec[4,2],ec[4,3]) 
sc<-rbind(sc1,sc2,sc3,sc4) 
ptrtz<-rep(c(.27, .53, .93, .40, .55, .78, .59, 
.65,.74),length(rel)*length(ce)*nrow(ec)) 
sc<-cbind(ptrtz,sc) 
id<-1:nrow(sc) 
sc<-cbind(id,sc) 
colnames(sc)<-
c("id","ptrtz","ptxtz","ptxty","ptytz","rel","ce","pexey","pexez","peyez") 
sc$pexey<-sc$pexey*sc$ce 
sc$pexez<-sc$pexez*sc$ce 
sc$peyez<-sc$peyez*sc$ce 
outp<-matrix(nrow=nrow(sc)  ,ncol=44) 
colnames(outp)<-
c("id","ss","k","txty","txtz","tytz","trtz","oxoy","oxoz","oyoz","oroz", 
"eyez","exey","exez","txey","txez","tyex","tyez","tzex","tzey", 
"txex","tyey","tzez","rxx","ryy","rzz","rxxc","ryyc","rzzc","exx","eyy", 
"ezz”,"ztxty","ztxtz","ztytz","ztrtz","stxty","stxtz","stytz","strtz", 
"wtxty","wtxz","wtytz","wtrtz")  
 
outp<-data.frame(outp) 
 
outs<-matrix(nrow=iter,ncol=108) 
 
colnames(outs)<-c(colnames(outp),"btxty","btxtz","btytz","btrtz", 
                 "boxoy","boxoz","boyoz","boroz", 
                 "beyez","bexey","bexez", 
                 "brxx","bryy","brzz", 
                 "brxxc","bryyc","brzzc", 
                 "bexx","beyy","bezz", 
                 "bztxty","bztxtz","bztytz","bztrtz", 
                 "bstxty","bstxtz","bstytz","bstrtz", 
                 "bwtxty","bwtxtz","bwtytz","bwtrtz", 
                 "abtxty","abtxtz","abtytz","abtrtz", 
                 "aboxoy","aboxoz","aboyoz","aboroz", 
                 "abeyez","abexey","abexez", 
                 "abrxx","abryy","abrzz", 
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                 "abrxxc","abryyc","abrzzc", 
                 "abexx","abeyy","abezz", 
                 "abztxty","abztxtz","abztytz","abztrtz", 
                 "abstxty","abstxtz","abstytz","abstrtz", 
                 "abwtxty","abwtxtz","abwtytz","abwtrtz") 
 
outs<-data.frame(outs) 
 
outmean<-matrix(nrow=nrow(sc)*length(ss),ncol=123) 
colnames(outmean)<-c(colnames(outs), 
                 "cp2trtz","cp2oroz","cp2ztrtz","cp2strtz","cp2wtrtz", 
                 "cn2trtz","cn2oroz","cn2ztrtz","cn2strtz","cn2wtrtz", 
                 "cnatrtz","cnaoroz","cnaztrtz","cnastrtz","cnawtrtz") 
outmean<-data.frame(outmean) 
outsd<-outmean 
  
for (i in 1:nrow(sc)){ 
 
  set.seed(1234+i) 
  pcov<-matrix(0,nrow=6, ncol=6) 
  colnames(pcov)<-rownames(pcov)<-c("tx","ty","tz","ex","ey","ez") 
  pcov["tx","tx"]<-pcov["ty","ty"]<-pcov["tz","tz"]<-sc$rel[i] 
  pcov["ex","ex"]<-pcov["ey","ey"]<-pcov["ez","ez"]<-1-sc$rel[i] 
  pcov["ty","tx"]<-sc$ptxty[i]*sc$rel[i] 
  pcov["tz","tx"]<-sc$ptxtz[i]*sc$rel[i] 
  pcov["tz","ty"]<-sc$ptytz[i]*sc$rel[i] 
  pcov["ey","ex"]<-sc$pexey[i]*(1-sc$rel[i]) 
  pcov["ez","ex"]<-sc$pexez[i]*(1-sc$rel[i]) 
  pcov["ez","ey"]<-sc$peyez[i]*(1-sc$rel[i]) 
  
  ct<-nrow(pcov) 
  for (j in 1:ct){ 
    for (k in 2:ct){ 
      pcov[j,k]<-pcov[k,j] 
    } 
  } 
  pcov<-make.positive.definite(pcov) 
  data1<-mvrnorm(n=pops,rep(0,ct),pcov,empirical=TRUE) 
  data1<-data.frame(data1) 
  ox<-data1$tx+data1$ex 
  oy<-data1$ty+data1$ey 
  oz<-data1$tz+data1$ez 
  data1<-cbind(data1,ox,oy,oz) 
 
  outp$k[i]<-0 
  outp$id[i]<-i 
  outp$oxoy[i]<-cor(data1$ox,data1$oy) 
  outp$oxoz[i]<-cor(data1$ox,data1$oz) 
  outp$oyoz[i]<-cor(data1$oy,data1$oz) 
  outp$oroz[i]<-part(outp$oxoy[i],outp$oxoz[i],outp$oyoz[i]) 
  outp$txty[i]<-cor(data1$tx,data1$ty) 
  outp$txtz[i]<-cor(data1$tx,data1$tz) 
  outp$tytz[i]<-cor(data1$ty,data1$tz) 
  outp$trtz[i]<-part(outp$txty[i],outp$txtz[i],outp$tytz[i]) 
  outp$eyez[i]<-cor(data1$ey,data1$ez) 
  outp$exey[i]<-cor(data1$ex,data1$ey) 
  outp$exez[i]<-cor(data1$ex,data1$ez) 
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  outp$txey[i]<-cor(data1$tx,data1$ey) 
  outp$txez[i]<-cor(data1$tx,data1$ez) 
  outp$tyex[i]<-cor(data1$ty,data1$ex) 
  outp$tyez[i]<-cor(data1$ty,data1$ez) 
  outp$tzex[i]<-cor(data1$tz,data1$ex) 
  outp$tzey[i]<-cor(data1$tz,data1$ey) 
  outp$txex[i]<-cor(data1$tx,data1$ex) 
  outp$tyey[i]<-cor(data1$ty,data1$ey) 
  outp$tzez[i]<-cor(data1$tz,data1$ez) 
  outp$rxx[i]<-var(data1$tx)/var(data1$ox) 
  outp$ryy[i]<-var(data1$ty)/var(data1$oy) 
  outp$rzz[i]<-var(data1$tz)/var(data1$oz) 
  outp$rxxc[i]<-var(data1$tx)/(var(data1$tx)+var(data1$ex)) 
  outp$ryyc[i]<-var(data1$ty)/(var(data1$ty)+var(data1$ey)) 
  outp$rzzc[i]<-var(data1$tz)/(var(data1$tz)+var(data1$ez)) 
  outp$exx[i]<-var(data1$ex)/var(data1$ox) 
  outp$eyy[i]<-var(data1$ey)/var(data1$oy) 
  outp$ezz[i]<-var(data1$ez)/var(data1$oz) 
   
  outp$ztxty[i]<-zim(outp$oxoy[i],outp$rxx[i],outp$ryy[i], 

outp$exey[i],outp$exx[i],outp$eyy[i],outp$txey[i],outp$tyex[i]) 
  outp$ztxtz[i]<-zim(outp$oxoz[i],outp$rxx[i],outp$rzz[i], 

outp$exez[i],outp$exx[i],outp$ezz[i],outp$txez[i],outp$tzex[i]) 
  outp$ztytz[i]<-zim(outp$oyoz[i],outp$ryy[i],outp$rzz[i], 

outp$eyez[i],outp$eyy[i],outp$ezz[i],outp$tyez[i],outp$tzey[i]) 
  outp$ztrtz[i]<-part(outp$ztxty[i],outp$ztxtz[i],outp$ztytz[i]) 
  
  outp$stxty[i]<-spear(outp$oxoy[i],outp$rxxc[i],outp$ryyc[i]) 
  outp$stxtz[i]<-spear(outp$oxoz[i],outp$rxxc[i],outp$rzzc[i]) 
  outp$stytz[i]<-spear(outp$oyoz[i],outp$ryyc[i],outp$rzzc[i]) 
  outp$strtz[i]<-part(outp$stxty[i],outp$stxtz[i],outp$stytz[i]) 
 
  outp$wtxty[i]<-wet(outp$oxoy[i],outp$rxxc[i],outp$ryyc[i],outp$exey[i]) 
  outp$wtxtz[i]<-wet(outp$oxoz[i],outp$rxxc[i],outp$rzzc[i],outp$exez[i]) 
  outp$wtytz[i]<-wet(outp$oyoz[i],outp$ryyc[i],outp$rzzc[i],outp$eyez[i]) 
  outp$wtrtz[i]<-part(outp$wtxty[i],outp$wtxtz[i],outp$wtytz[i]) 
 
  for (j in 1:length(ss)){ 
    for (k in 1:iter){ 
 
      s<-sample(1:pops,ss[j],replace=F) 
      datas<-data1[s,] 
      datas<-data.frame(datas) 
      outs$ss[k]<-ss[j] 
      outs$k[k]<-k 
      outs$id[k]<-i 
      outs$oxoy[k]<-cor(datas$ox,datas$oy) 
      outs$oxoz[k]<-cor(datas$ox,datas$oz) 
      outs$oyoz[k]<-cor(datas$oy,datas$oz) 
      outs$oroz[k]<-part(outs$oxoy[k],outs$oxoz[k],outs$oyoz[k]) 
      outs$txty[k]<-cor(datas$tx,datas$ty) 
      outs$txtz[k]<-cor(datas$tx,datas$tz) 
      outs$tytz[k]<-cor(datas$ty,datas$tz) 
      outs$trtz[k]<-part(outs$txty[k],outs$txtz[k],outs$tytz[k]) 
      outs$eyez[k]<-cor(datas$ey,datas$ez) 
      outs$exey[k]<-cor(datas$ex,datas$ey) 
      outs$exez[k]<-cor(datas$ex,datas$ez) 
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      outs$txey[k]<-cor(datas$tx,datas$ey) 
      outs$txez[k]<-cor(datas$tx,datas$ez) 
      outs$tyex[k]<-cor(datas$ty,datas$ex) 
      outs$tyez[k]<-cor(datas$ty,datas$ez) 
      outs$tzex[k]<-cor(datas$tz,datas$ex) 
      outs$tzey[k]<-cor(datas$tz,datas$ey) 
      outs$txex[k]<-cor(datas$tx,datas$ex) 
      outs$tyey[k]<-cor(datas$ty,datas$ey) 
      outs$tzez[k]<-cor(datas$tz,datas$ez) 
      outs$rxx[k]<-var(datas$tx)/var(datas$ox) 
      outs$ryy[k]<-var(datas$ty)/var(datas$oy) 
      outs$rzz[k]<-var(datas$tz)/var(datas$oz) 
      outs$rxxc[k]<-var(datas$tx)/(var(datas$tx)+var(datas$ex)) 
      outs$ryyc[k]<-var(datas$ty)/(var(datas$ty)+var(datas$ey)) 
      outs$rzzc[k]<-var(datas$tz)/(var(datas$tz)+var(datas$ez)) 
      outs$exx[k]<-var(datas$ex)/var(datas$ox) 
      outs$eyy[k]<-var(datas$ey)/var(datas$oy) 
      outs$ezz[k]<-var(datas$ez)/var(datas$oz) 
       

outs$ztxty[k]<-zim(outs$oxoy[k],outs$rxx[k],outs$ryy[k], 
outs$exey[k],outs$exx[k],outs$eyy[k],outs$txey[k],outs$tyex[k]) 

      outs$ztxtz[k]<-zim(outs$oxoz[k],outs$rxx[k],outs$rzz[k], 
outs$exez[k],outs$exx[k],outs$ezz[k],outs$txez[k],outs$tzex[k]) 

      outs$ztytz[k]<-zim(outs$oyoz[k],outs$ryy[k],outs$rzz[k], 
outs$eyez[k],outs$eyy[k],outs$ezz[k],outs$tyez[k],outs$tzey[k]) 

      outs$ztrtz[k]<-part(outs$ztxty[k],outs$ztxtz[k],outs$ztytz[k]) 
 
      outs$stxty[k]<-spear(outs$oxoy[k],outs$rxxc[k],outs$ryyc[k]) 
      outs$stxtz[k]<-spear(outs$oxoz[k],outs$rxxc[k],outs$rzzc[k]) 
      outs$stytz[k]<-spear(outs$oyoz[k],outs$ryyc[k],outs$rzzc[k]) 
      outs$strtz[k]<-part(outs$stxty[k],outs$stxtz[k],outs$stytz[k]) 
 
      outs$wtxty[k]<-wet(outs$oxoy[k],outs$rxxc[k],outs$ryyc[k],outs$exey[k]) 
      outs$wtxtz[k]<-wet(outs$oxoz[k],outs$rxxc[k],outs$rzzc[k],outs$exez[k]) 
      outs$wtytz[k]<-wet(outs$oyoz[k],outs$ryyc[k],outs$rzzc[k],outs$eyez[k]) 
      outs$wtrtz[k]<-part(outs$wtxty[k],outs$wtxtz[k],outs$wtytz[k])  
 
      outs$btxty[k]<-outs$txty[k]-outp$txty[i] 
      outs$btxtz[k]<-outs$txtz[k]-outp$txtz[i] 
      outs$btytz[k]<-outs$tytz[k]-outp$tytz[i] 
      outs$btrtz[k]<-outs$trtz[k]-outp$trtz[i] 
 
      outs$boxoy[k]<-outs$oxoy[k]-outp$txty[i] 
      outs$boxoz[k]<-outs$oxoz[k]-outp$txtz[i] 
      outs$boyoz[k]<-outs$oyoz[k]-outp$tytz[i] 
      outs$boroz[k]<-outs$oroz[k]-outp$trtz[i] 
 
      outs$bexey[k]<-outs$exey[k]-outp$exey[i] 
      outs$bexez[k]<-outs$exez[k]-outp$exez[i] 
      outs$beyez[k]<-outs$eyez[k]-outp$eyez[i] 
 
      outs$brxx[k]<-outs$rxx[k]-outp$rxx[i] 
      outs$bryy[k]<-outs$ryy[k]-outp$ryy[i] 
      outs$brzz[k]<-outs$rzz[k]-outp$rzz[i] 
  
      outs$brxxc[k]<-outs$rxxc[k]-outp$rxx[i] 
      outs$bryyc[k]<-outs$ryyc[k]-outp$ryy[i] 
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      outs$brzzc[k]<-outs$rzzc[k]-outp$rzz[i] 
 
      outs$bexx[k]<-outs$exx[k]-outp$exx[i] 
      outs$beyy[k]<-outs$eyy[k]-outp$eyy[i] 
      outs$bezz[k]<-outs$ezz[k]-outp$ezz[i] 
 
      outs$bztxty[k]<-outs$ztxty[k]-outp$txty[i] 
      outs$bztxtz[k]<-outs$ztxtz[k]-outp$txtz[i] 
      outs$bztytz[k]<-outs$ztytz[k]-outp$tytz[i] 
      outs$bztrtz[k]<-outs$ztrtz[k]-outp$trtz[i] 
 
      outs$bstxty[k]<-outs$stxty[k]-outp$txty[i] 
      outs$bstxtz[k]<-outs$stxtz[k]-outp$txtz[i] 
      outs$bstytz[k]<-outs$stytz[k]-outp$tytz[i] 
      outs$bstrtz[k]<-outs$strtz[k]-outp$trtz[i] 
 
      outs$bwtxty[k]<-outs$wtxty[k]-outp$txty[i] 
      outs$bwtxtz[k]<-outs$wtxtz[k]-outp$txtz[i] 
      outs$bwtytz[k]<-outs$wtytz[k]-outp$tytz[i] 
      outs$bwtrtz[k]<-outs$wtrtz[k]-outp$trtz[i] 
  
      outs$abtxty[k]<- abs(outs$btxty[k]) 
      outs$abtxtz[k]<- abs(outs$btxtz[k]) 
      outs$abtytz[k]<- abs(outs$btytz[k]) 
      outs$abtrtz[k]<- abs(outs$btrtz[k]) 
 
      outs$aboxoy[k]<-abs(outs$boxoy[k]) 
      outs$aboxoz[k]<-abs(outs$boxoz[k]) 
      outs$aboyoz[k]<-abs(outs$boyoz[k]) 
      outs$aboroz[k]<-abs(outs$boroz[k]) 
 
      outs$abexey[k]<-abs(outs$bexey[k]) 
      outs$abexez[k]<-abs(outs$bexez[k]) 
      outs$abeyez[k]<-abs(outs$beyez[k]) 
 
      outs$abrxx[k]<-abs(outs$brxx[k]) 
      outs$abryy[k]<-abs(outs$bryy[k]) 
      outs$abrzz[k]<-abs(outs$brzz[k]) 
 
      outs$abrxxc[k]<-abs(outs$brxxc[k]) 
      outs$abryyc[k]<-abs(outs$bryyc[k]) 
      outs$abrzzc[k]<-abs(outs$brzzc[k]) 
  
      outs$abexx[k]<-abs(outs$bexx[k]) 
      outs$abeyy[k]<-abs(outs$beyy[k]) 
      outs$abezz[k]<-abs(outs$bezz[k]) 
 
      outs$abztxty[k]<-abs(outs$bztxty[k]) 
      outs$abztxtz[k]<-abs(outs$bztxtz[k]) 
      outs$abztytz[k]<-abs(outs$bztytz[k]) 
      outs$abztrtz[k]<-abs(outs$bztrtz[k]) 
 
      outs$abstxty[k]<-abs(outs$bstxty[k]) 
      outs$abstxtz[k]<-abs(outs$bstxtz[k]) 
      outs$abstytz[k]<-abs(outs$bstytz[k]) 
      outs$abstrtz[k]<-abs(outs$bstrtz[k]) 
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      outs$abwtxty[k]<-abs(outs$bwtxty[k])  
      outs$abwtxtz[k]<-abs(outs$bwtxtz[k]) 
      outs$abwtytz[k]<-abs(outs$bwtytz[k]) 
      outs$abwtrtz[k]<-abs(outs$bwtrtz[k]) 
    } 
  f<-paste("outs",i,sep="") 
  f<-paste(f,"ss",sep="") 
  f<-paste(f,ss[j],sep="") 
  f<-paste(f,".csv",sep="") 
  write.csv(file=paste(path,f,sep=""),outs,row.names=FALSE) 
  l<-(j-1)*nrow(sc)+i 
  outmean[l,c(1:108)]<-mean(outs[1:108],na.rm=TRUE) 
  outsd[l,c(1:108)]<-sd(outs[1:108],na.rm=TRUE) 
  outmean[l,"id"]<-outsd[l,"id"]<-i 
  outmean[l,"ss"]<-outsd[l,"ss"]<-ss[j] 
  outmean[l,"cp2trtz"]<-nrow(subset(outs,btrtz > .2)) 
  outmean[l,"cn2trtz"]<-nrow(subset(outs,btrtz < -.2)) 
  outmean[l,"cnatrtz"]<-iter-length(na.omit(outs$trtz)) 
 
  outmean[l,"cp2oroz"]<-nrow(subset(outs,boroz > .2)) 
  outmean[l,"cn2oroz"]<-nrow(subset(outs,boroz < -.2)) 
  outmean[l,"cnaoroz"]<-iter-length(na.omit(outs$oroz)) 
 
  outmean[l,"cp2ztrtz"]<-nrow(subset(outs,bztrtz > .2)) 
  outmean[l,"cn2ztrtz"]<-nrow(subset(outs,bztrtz < -.2)) 
  outmean[l,"cnaztrtz"]<-iter-length(na.omit(outs$ztrtz)) 
 
  outmean[l,"cp2strtz"]<-nrow(subset(outs,bstrtz > .2)) 
  outmean[l,"cn2strtz"]<-nrow(subset(outs,bstrtz < -.2)) 
  outmean[l,"cnastrtz"]<-iter-length(na.omit(outs$strtz)) 
 
  outmean[l,"cp2wtrtz"]<-nrow(subset(outs,bwtrtz > .2)) 
  outmean[l,"cn2wtrtz"]<-nrow(subset(outs,bwtrtz < -.2)) 
  outmean[l,"cnawtrtz"]<-iter-length(na.omit(outs$wtrtz)) 
  } 
} 
 
write.csv(file=paste(path,"outp.csv",sep=""),outp,row.names=FALSE) 
write.csv(file=paste(path,"outmean.csv",sep=""),outmean,row.names=FALSE) 
write.csv(file=paste(path,"outsd.csv",sep=""),outsd,row.names=FALSE) 
 
 
part<-function(rxy,rxz,ryz){ 
  if (rxy*rxy >= .9999) return(NA) 
  rrz<-(ryz-(rxy*rxz))/sqrt(1-rxy*rxy) 
  return(rrz) 
} 
 
zim<-function(roxoy,rxx,ryy,rexey,exx,eyy,rtxey,rtyex){ 
  ztxty<-roxoy/sqrt(rxx*ryy)-(rexey*sqrt(exx)*sqrt(eyy))/sqrt(rxx*ryy)-
rtxey*sqrt(eyy)/sqrt(ryy) -rtyex*sqrt(exx)/sqrt(rxx) 
  return(ztxty) 
} 
 
wet<-function(roxoy,rxx,ryy,rexey){ 
  wtxty<-roxoy/sqrt(rxx*ryy)-(rexey*sqrt(1-rxx)*sqrt(1-ryy))/sqrt(rxx*ryy) 
  return(wtxty) 
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} 
 
spear<-function(roxoy,rxx,ryy){ 
  stxty<-roxoy/sqrt(rxx*ryy) 
  return(stxty) 
} 
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