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Using the %igner method, it is shown that a classical-like equation of motion for a quasiprobability
distribution ptr can be built up, Bpg /Br =(E„+EQon )ps/ which is rigorously equivalent to the quan-

tum von Neumann-Liouville equation. The operator E,&
is equivalent to integrating classical trajec-

tories, which are then averaged over an initial distribution, broadened so as to fulfill the requirements of
the quantum uncertainty principle. It is shown that this operator produces semiclassical chaos and is re-

sponsible for quantum irreversibility and the fast growth of quantum uncertainty. Carrying out explicit
calculations for a spin-boson Hamiltonian, the joint action of f„and EQon is illustrated. It is shown

that the latter operator Zoon (where QGD stands for quantum generating diffusion), makes the —'-spin

system "remember" its quantum nature, and competes with the irreversibility induced by the former

operator. Some ambiguous aspects of "irreversibility" and "growth of quantum fluctuations" as indica-

tors of semiclassical chaos are discussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

The importance of chaos in describing the dynamical
behavior of classical systems has become increasingly im-
portant in the past decade [1]. Of course it has been
known since Poincare's analysis of the three-body prob-
lem [2] that certain deterministic equations of motion
have solutions that are so complex that they are indistin-
guishable from random [3]. This has resulted in the re-
cent application of the concept of chaos to everything
from weather prediction [4,5], to turbulence [6], to
condensed-matter physics [7]. During this latter period
investigators have also become concerned with how
chaos in the classical domain is indicative of the evolu-
tion of systems in the quantum domain [8]. The tradi-
tional argument of quantizing the classical equations of
motion in order to determine the evolution of the corre-
sponding quantum equations breaks down when the clas-
sical equations are nonintegrable, as pointed out by Ein-
stein in 1917 [9]. It has been argued by a number of in-
vestigators that the quantum manifestations of chaos are
inhibited by physical mechanisms and therefore quantum
phenomena should be less chaotic than their classical
counterparts. In this we concur, but in so doing we intro-
duce an argument more encompassing, to the authors'
knowledge, than those presented previously. A number
of such inhibitory mechanism have been identified and
each argument describes the circumstances under which
the classically observed effect of chaos is microscopically
suppressed.

Note that, although quantum mechanics is more fun-
damental than classical mechanics in that the latter is ob-
tained from the former in the domain where A is negligi-
ble compared with the typical action of the system, in the
literature the form of the arguments might suggest that
classical mechanics is the more fundamental. We believe
this confusion to be semantic and not physical. The roots
of classical chaos must be found in quantum mechanics
and traced from the microcosm to the macrocosm, and
one must not be misled by phrases such as "the quantum
suppression of chaos. " We are interested in those quan-
tum systems that manifest special properties in the pa-
rameter regimes where their semiclassical descriptions
are chaotic. These special properties need not involve
chaos explicitly, but the question is from where does
chaos emerge as Pi~0.

There exist at least four theoretical explanations of
what is called in the literature the "quantum suppression
of classical chaos. " The first [10] explanation relates this
suppression to the "dynamical localization of diffusive ex-
citation, "which in analogy to Anderson's argument for a
random potential relates classical chaos to wave-function
localization [11]. In the example of a high-intensity elec-
tric field applied to a Rydberg atom [12] this localization
process inhibits ionization [13]. In the second explana-
tion it was argued that there exists a border in parameter
space beyond which classical dynamics violates the quan-
tum uncertainty principle [14]. The third explanation
has to do with the number of quantum states coupled to
the external field in the case of the Rydberg atom men-
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tioned above. This number drops precipitously with in-

creasing frequency of the external field. Koch et al. [15]
explain that one may use a severely truncated
"quasiresonant" state basis [14] in which the effective
density of states is much smaller than one would estimate
at first, so that quantum effects become significant. Final-
ly, it has been demonstrated by Mackey and Meiss [16]
that classical chaos is suppressed when the phase-space
area escaping through classical cantori (holes broken in
Kolmogorov-Arnold-Moser surfaces) in each cycle of the
electric field, is small compared to Planck's constant.
Such cantori are opaque to quantum transport, but do
not significantly impede classical transport until the driv-
ing field is raised to sufficiently high levels [15].

Herein we introduce a fifth explanation in that we use
the Wigner pseudoprobability density [17]and a generali-
zation of the attendant formalism to establish that the dy-
namics of a microscopic system can be explicitly separat-
ed into two pieces [18,19]. The Liouvillian describing the
evolution of the Wigner density is E,i +L &oD,

' the first
operator E,i gives the exact semiclassical description of
the evolution of the system, i.e., the evolution in the A —+0
limit; the second operator L&GD is the quantum generat-
ing diffusion (QGD) mechanism which has been recently
shown to constrain the classical dynamics in such a way
that the quantization prescriptions of quantum mechan-
ics [20] are satisfied. If it were possible to ignore the ac-
tion of the QGD mechanism, then we would make the
following two predictions regarding the quantum effects
of semiclassical chaos.

(i) The quantum fiuctuations would undergo a massive
growth, unexpected on the basis of standard quantum
mechanics [21].

(ii) The time evolutions of the quantum expectation
values would become irreversible and dissipative [18,19].

Both property (i), which was recently pointed out by
Fox [21], and property (ii), more recently discussed by
Bonci et al. [18] and Roncaglia et al. [19], are immedi-
ately derived from the Wigner formalism. This is so be-
cause the adoption of the Wigner formalism supplement-
ed by the neglect of the QGD mechanism is equivalent to
the evaluation of the classical trajectories with a distribu-
tion of initial conditions. The initial distribution cannot
be a 5 function in the phase space variables in order to
satisfy the quantum uncertainty principle. In the case
where the classical approximation to the equation of
motion yields chaotic trajectories this initial uncertainty
is expected to grow exceptionally large, if not macroscop-
ic as it did in the Fox paper [21]. On the other hand,
since, according to the Wigner formalism, the time evolu-
tion of the expectation value of a quantum observable is
formally obtained as an average over the corresponding
classical trajectories, and these averages quickly lose their
correlations when the trajectories are chaotic, the result
is expected to be a relaxation. In other words, the time
evolution of a quantum expectation value would be
roughly equivalent to the correlation function of a ran-
dom process [18,19]. We use numerical techniques to
verify these theoretical expectations and to assess the role
of the QGD mechanism on both quantum irreversibility
and the growth of quantum fluctuations. We study these

properties with the help of a spin-boson model and exam-
ine the dynamics of the oscillator (boson field) as well as
that of the spin- —,

' system.
The outline of the paper is as follows. Section II is de-

voted to a brief review of the Wigner method. In Sec. III
we extend the Wigner formalism to include spin and to
initiate the study of the spin-boson Hamiltonian. The
quantum irreversibility triggered by semiclassical chaos
and its competition with the restraining role of the QGD
mechanism is illustrated in Sec. IV for the spin- —, system.
In Sec. V we show that the sudden growth of quantum
fluctuations is a manifestation of semiclassical chaos.
Another, less marked manifestation, is the increased rate
of the process of regression to equilibrium of the oscilla-
tor. It is also shown that the QGD mechanism markedly
enhances the growth of quantum fluctuations. Section VI
is devoted to concluding remarks.

II. THE WIGNER DISTRIBUTION

The Wigner distribution allows one to express
quantum-mechanical averages in the same form one
writes for classical averages. In this formalism every
operator in Hilbert space, corresponding to a physical ob-
servable, is associated, via the Weyl transformation [22],
to a function of suitable variables [17]. Consider a parti-
cle in one dimension with position operator Q and
momentum operator P such that the operator A (q,P ) has
the associated function A ii (q,p):

+ oo z ~ z
A~(q, p)= f dzexp i z q

——A q+—
00 2 2

where ps (q,p;t) is the Wigner pseudoprobability func-
tion associated with the density matrix p,

p~(q, p;r)= dz(q —z~p~q+z)exp 2iz

(2.3)

Note the similarity between (2.2) and the classical
definition of an average. For convenience, we shall refer
to p~ as the Wigner distribution or the Wigner density.

The most remarkable property of the Wigner distribu-
tion is its dynamical evolution, which also closely resem-
bles the classical situation. Let us suppose that the quan-
tum system is described by the following Hamiltonian:

A. 2 f2 Q2+ V(Q)= — + V(Q) .
2m 2m Qq

(2.4)

The evolution of pii, (q,p;t) is then determined by [17]

(2.1)

Equation (2.1) can be used to put the expectation value of
the operator A into the form

( A(t)) =Tr[Ap(t)]= Jdqdp As( qp)p i(iq p;t),
(2.2)
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a
&

pw(qp t)=Lpw(q p'r)
at

2' a2n+1 a2n+ j

&Pw} ~ (2 +1)( 2 ~ 2„+i 'q'
~

2„+iPwqtp~V( ) ( ~ th
n . i aq" ap

I.

(2.5)

where the curly brackets denote the Poisson brackets, H
is the c-number Hamiltonian, V(q) is the c-number po-
tential, and L is the Liouville operator implicitly defined
by (2.5). The main properties of the Wigner distribution
are reviewed by Hillery et al. [17].

The most important features of the above Wigner for-
malism are summarized as follows.

(i) The concept of a quantum phase space is introduced
in a natural way as the corresponding classical phase
space. On the other hand, the state of the quantum sys-
tem is not completely defined by its position in this phase
space. In fact, due to the intrinsically statistical nature of
quantum mechanics, even for a single quantum state, i.e.,
a pure state, the Wigner distribution cannot be a 5 func-
tion. Thus a pure quantum state is not a point in this
phase space, but is rather an ensemble of classical systems
distributed according to the Wigner density. However, if
this initial uncertainty undergoes a fast increase as an
effect of semiclassical chaos, the resulting enhanced
spreading must be interpreted as a quantum uncertainty
of a single quantum system (enhanced by truly quantum-
mechanical fiuctuations).

(ii) Equation (2.5) introduces another kind of dynami-
cal evolution for quantum systems. Following the stan-
dard treatment of statistical mechanics we define the
dynamical operator for the function A w(q, p; t) as

8 A w(q, p;t) = f'A w(q, p; t) .
at

The operator f' must satisfy the equation

( A (t) ) = f dq f dp A w[exp(Lt)pw]

=f dq fdp[exp(f't)Aw]pw

(2.6)

(2.7)

U:—hqhp )A/2, (2.8)

where Aq and hp are the root-mean-square quantities

~q(t)'=—&q(r)') —&q(r))',

&p(t)'=—(p(r)') —(p(r) )' .

(2.9)

(2.10)

where we have used (2.2). Note that in the limit R~O the
operator E recovers the exact classical result, i.e., it be-
comes the Poisson bracket with the Hamiltonian [cf.
(2.5)] which is just the classical Liouvillian.

Following the above procedure we have that (2.1) and
(2.6) give the phase-space equivalent of the Heisenberg
representation of quantum mechanics. The formalism is
our starting point in the analysis of the behavior of the
solutions to the Schrodinger (or Heisenberg) equation and
we find it to be singularly useful for study of the quantum
system whose classical limit is nonintegrable and chaotic.

Note that the average over the initial conditions must
satisfy the inequality

Equation (2.8) is one expression of the quantum uncer-
tainty principle (QUP), which within the Wigner formal-
ism results in a broadened classical distribution at all
times, including the initial one. Note that in the present
illustrative case, the classical approximation cannot re-
sult in chaos, due to the one-dimensional character of the
system under study, i.e., we have a single q and a single p.
However, one can easily imagine the generalization of
this approach to the n-dimensional case, where classical
chaos is admitted. In the chaotic case the initial broaden-
ing of the Wigner density forced by the QUP is expected
to increase at a rate determined by the Liapunov
coefficients and independently of the QGD mechanism
[21). However, as we show with numerical methods in

Sec. V, the growth of U is limited by the finite size of the
phase space available to a deterministic system, and the
quantum fluctuations becoming macroscopic according
to the prediction of Fox [21] are possible only if this
phase space region is macroscopic. On the other hand,
an expectation value is the average over many trajec-
tories, which quickly 1ose correlations with the initial
conditions and among themselves when the trajectories
are chaotic. Thus the time evolution of an expectation
value is expected to manifest the character of irreversibil-
ity.

Actually, these remarks do not take into account the
fact that, due to the presence of the QGD mechanism
quantum mechanics is not simply obtained by averaging
over classical trajectories. Due to the presence of a
derivative of order greater than unity in (2.6), unlike the
classical case, the operator f' is not deterministic, i.e.,

[exp( f't )( AB) ]A [exp( f't ) A ][exp( f't )8].
In the phase-space representation the evolution of

quantum systems is determined by the interplay of the
above two contributions, the classical Liouvillian and the
QGD mechanism: the first leads to an evolution of the
quantum system in a way completely equivalent to the
corresponding classical one, with initially broadened dis-

tributions mimicking the uncertainty principle. When
the classical or semiclassical approximation is affected by
chaos, it is expected to produce irreversibility and a rapid
increase in the strength of the quantum Auctuations; the
second operator modifies this evolution to take the con-
straints posed by quantization rules into account.

H= —
—,'co &, +0&„(b+b )+Q.b b,

&2n " (3.1)

III. SPIN-BOSON HAMILTONIAN

Let us examine the application of the Wigner forrnal-

ism to a quantum-mechanical system of suScient com-

plexity that its semiclassical equations of motion have

chaotic solutions. We investigate one of the simplest of
such systems, this being the spin-boson Hamiltonian:
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where b (b } is the annihilation (creation) operator with
commutation relation [b, b ]=1. The physical system
modeled by (3.1) is that of a spin- —, dipole interacting

with a magnetic field directed along the z axis and
modeled by an oscillator of frequency 0 with space
coordinate Q =(b+ b )Iv'2Q and momentum

P=i(b b)—&Q/2 N.ote that &„and &, are spin ma-

trices. Herein we study the dynamics of the spin-boson
system with the initial condition

O, i+) =+i+), (3.2)

where F(k, a, r;t) is the quantum characteristic function
defined by

F(k, a, r;r ) =Tr[exp[i(k, &„+kzo~+k3&, )]

Xexp[i(aq+Wp)]p(t) J, (3.4)

where p(t) is the density operator for the complete quan-
tum system. Note that (3.3) and (3.4) extend the usual
treatment of the Wigner distribution to include spin.

The variables x—= (x„x2,x3), p and q are the phase-
space variables associated, via a generalized Weyl rule of
the form (2.1), to the spin-boson operators: 0 ~x,
g —+q, P ~p. The quantum average values of these opera-
tors on the statistical system described by the density ma-
trix p(t) are given by

(& (t)) =f dxdq dp x pw( q,px;t), (3.5)

(q(r) ) fdx dq dp q pw(x~q~p ' r)~

The corresponding equation of evolution for the Wigner
distribution (3.3) is given by

a
pw(x~q~p r)=(Lcl+LQcD}pw(x~q~p't) ~at

(3.7)

where after some substantial algebra we obtain for the
spin-boson system [18,19]

and the boson field is in a state characterized by the aver-

age number of photons ( n ) .
A system of this kind has recently been studied by Gra-

ham and Hohnerbach [23] and Fox and Eidson [24].
They show that a semiclassical approximation of the sys-
tem with Hamiltonian (3.1) exhibits chaotic dynamics for
sufficiently strong coupling g when the system is in reso-
nance. Similar results have been previously found by
Belobrov, Zaslavskii, and Tartakovskii [25] and Milonni,
Ackerhalt, and Galbraith [26].

Further insight into the behavior of this system can be
obtained using the Wigner formalism. Let us extend the
arguments used earlier so as to be applicable to the spin-
boson problem. For this system the Wigner density reads

exp( —ik x)
p (wxq, p; t) =f dk

(2m )

X fdad ( + }F(k,a, r;t),
(2m. )

(3.3)

cl 0 1 g 2~ g9 3~Bx2 Bx ) Bx2 Bx3

2 a a a+0 g p +gx)
Bp Bq Bp

and

(3.8)

I qGD —g
Bx)

X ) X)X2 X)X3
Bx ) Bx2 Bx3

x3(t) =2gq(t)x2(t),
q(r) =p(&),
P(&)= —0'q(r) —gx, (r) .

(3.10)

(3.9)

The operator L„ is identical to the Liouvillian of a classi-
cal dipole interacting with a classical oscillator, i.e., this
term alone corresponds to the semiclassical set of equa-
tions discussed by various authors [23—26]. We refer to
the calculations based on the study of the single trajecto-
ry solutions of the nonlinear dynamical equations as the
semiclassical predictions. In this regard we point out a
significant feature of the analysis that was apparently
overlooked in previous investigations having to do with
chaotic trajectories [23—26]. These earlier studies fo-
cused on individual trajectories and gave them physical
meaning. However, from (3.5) and (3.6) we see that even
when L&GD is neglected, it is only the ensemble that has
physical significance not the individual trajectories [18].

The term L&oD in (3.9) has a number of significant im-

plications. It has a diffusionlike structure, but the state
dependence of the "diffusion coefficient" results in its not
being positive definite. It has recently been shown by
Roncaglia et al. [20] that if the oscillator is coupled to a
heat bath so as to transmit to the spin- —,

' dipole standard
thermal fluctuations, then this term results in the average
value of the z component of the dipole changing from a
Langevin (classical) function to the hyperbolic tangent
(quantum). In other words, this term was coined quanti-
zation generating diffusion by these authors [20], precise-
ly because it ensures that the dipole retains its quantum
nature. The operator E&GD acts as an antiduffusional
mechanism, it competes against thermal fluctuations and
constrains the dipole, which otherwise would freely
diffuse over all possible orientations, to vacillate between
two possible orientations. In Sec. V, however, we show
that the influence of the QGD mechanism on the motion
of the oscillator is qualitatively different from that exert-
ed on the spin- —, system. This is in part expected, since
there are no intuitive reasons why the state quantization
of an oscillator should impede diffusion. We shall see via
numerical calculation that both dissipation and the rate
of the growth of quantum fluctuations are enhanced by
the QGD mechanism. The quantitative account of this
effect is left as a subject for a future investigation.

In Ref. [19] it is shown in detail that if the QGD mech-
anism is neglected, then the solution of (3.7) is equivalent
to determining the trajectories described by the system of
equations

x, (t) =coox2(t),
x2(t) = —coax, (t) —2gq(t)x3(t),
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ointed out that the numerical solution of
(3.10) supplemented by averaging over t e ini ia
density is equivalent to solving (3.7) wi e
anism neglected.

p(0) =
I
+ ) ( +

I p (0), (4.1)

which means that the spin- —,
' dipole is initially polarized

d th boson field is initially in a state
characterized by the density matrix pii(0). We carry ou
our investigation wit e

'
h th following two distinct initial

conditions for the boson field.
(i) The boson field is in a coherent state with photon

number defined y nb ( ) =N. This is a state of minimum
uncertainty.

e I~n ) of the boson(") The boson field is in the eigenstate, n oii
Hamiltonian Qb b with n =N.

The calculation of the time evolution of, o (t) is car-
'

d out in two different ways. The ppfirst a roach con-rie ou in
sists in determining the single trajector'ries of (3.10) and

over the initial Wigner densi-then averaging these orbits ov
' ' ' '

si-
in to the state (4.1). As already sai, t is

iho h QGD h-equivalent to solving (3.7) without t e
f ~

is eq
nism. The second approach yields the exact resu t, in-

h ff ct of the QGD mechanism, and is ob-cluding t e e ec
solvin the von Neumann —Liouvil. e q

To demonstrate the irreversibility properties associa e
e an exact calculation towith classical chaos we also make a

determine the entropy for the p' -—,
' 'ps in- —'di ole system

IV. NUMERICAL RESULTS ON THE MOTION
OF THE SPIN-2 SYSTEM

We here study the time evolution of ( & (t) ) starting
from an initial condition described by

1.0 -)

05—

A

g" 0.0—
V

-0.5—

I

0.0
I

0.5
I

1.0
I

1.5
g (arb, umts)

I

2.0
I

2.5
I

3.0

aeter of the process when coo(&O. InIn this case the Lar-
eak as to roduce a negligible re-mor frequency coo is so wea as

field and a virtually deterministic semiclassicaaction e an a
=0, is reachedlimit. When the resonance condition coo=

the Liapunov coefficients become gme lar e and positive [19]
and correspon ing y,d' 1 the calculations ignoring t e

t e ofir-inAuence o t ef h ~GD mechanism result in a type o ir-

(& (t)) is a consequence of averaging the spin ma rix
over many trajectories, w ic,

uickl lose their correlations. Whereas on e
scale of the off-resonance case o ig. a,

f R f.(the exact calculation and the a y
'

nal tical theory o Re.
remarkably good agreement

with the result of the Wigner method without the QG
er, ' f Fi . 2(a) the Wigner method

out the QGD mechanism results in a more pro-h, h ...., ....„..1tion behavior t an e
treatment (which coincides with the resu t o e
method when t eh th ~GD mechanism is retained). is is

S (t) = —Tr, ;„[p,(t)lnp, (t)],
where

p, (t)=Trb„,„[p(t)] .

(4.2)

(4.3)

0.7—

0.6—

ection V will be devoted to the study of the motion ofSection wi e
with the initial condition (i).the oscillator subsystem wit e

'

ure state. Thus, accor ing oBoth conditions refer to a pure
orem b Araki and Lieb [27], the entropy of t e o-

son system must coincide wit t e en r
. Thus the numerical results conce

'
gmin the entro-system. us

ein an indication of the(4.2) can also be regarded as being an in
'

irreversibility affecting

c ec on eh k on the accuracy of our numerica ca cu a
'

ith the entropy of thefind it to virtually coincide with e p
ver hi h numericalspin- —' system, thereby employing a very 'gspin, sys em,

We see from Figs. 1(a) and a a2(a) that upon changing
ition co ((0, to the resonance conditionfrom the condition coo

t chan es its charac-=0 the time evolution of (o, (t) ) changes its c arac-
from the collapse-revival behavior

'
r into that of a dis-

linear theory ~2 ~ w ic~ 8~ h h emphasizes the reversible c ar-

03—

0.2—

0.1—

0.0—
I

0.()
I

0.5
I

1.0
I

1.5
t (arb. units)

I

2.0
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I
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I
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FIG. 1. Off-resonance dynamics o p -~ n allof the s in- —' system. In all

0=10 0=2~ and the initial condition (i) of
the coherent state, with

=20 coo=10
mel the oscillator in t e c

of( ( )). Th .o)d ~ a

'
h th "exact" numerical re-p n coincides wit t e exa

The dashed curve is obtained using t e igne
. (b) T ....l. i...fh. ---Q mechanism. b ime ev

~ The solid curve is ' exac npy S(t) of spin- —system. T
is the theoretical maximum value o t eresult. The dashed line is t e

entropy.
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consistent with the conclusion drawn in Ref. [20] that the
QGD mechanism counterbalances the action of diffusion.
It must be stressed that these remarks apply to the orien-
tational diffusion of the spin —,dipole. Quantization rules

imply that only two directions of this dipole are admit-
ted, and free diffusion away from these two admitted
orientations produced by E,&

must be inhibited in some

way.
The calculation of the entropy confirms the generation

of irreversibility triggered by semiclassical chaos [see
Figs. 1(b) and 2(b)]. It must be pointed out that this is
distinct from the behavior of the entropy of the same sys-

tem, studied under the rotating-wave approximation
(RWA) by Phoenix and Knight [29]. In their case [29]
the entropy is shown to exhibit a sort of overall increase,
though not as marked as in the case of Fig. 2. However,
this latter increase has to do with the fact that a coherent
state can mimic a bath with an infinite number of degrees
of freedom [18]. The collapses occur because of the many
different frequencies contributing to the time evolution of
the mean values of interest, one for each eigenstate

~
n ) of

the unperturbed Hamiltonian of the oscillator
(n =0, 1, . . . ) necessary to build a coherent state. The re-

vivals are not perfect because the frequency involved go
as n '~, not as an integer multiple of n [29]. As remarked
in Ref. [18], to make it clear that we are dealing with

another kind of irreversibility, it is convenient to reduce
the boson field to a single phonon as given by condition
(ii). In this case the RWA leads to reversible behavior,
whereas our exact calculations, with no RWA approxi-
mation, show that the entropy of the system exhibits a
behavior more and more distinctly irreversible upon in-

crease ofg (see Fig. 3).
Note that the behavior illustrated by the time evolu-

tion of the entropy S is the result of an exact calculation,
thereby including the effect of the QGD mechanism. We
see that the QGD mechanism does not completely des-

troy dissipation. The ghosts of reversible behavior are
manifest by dips at integer multiple of 0, which have,
however, a decreasing intensity as time increases, thereby
implying a global irreversibility for sufficiently large cou-
pling coefficient g.

V. NUMERICAL RESULTS ON THE MOTION
OF THE OSCILLATOR

1.0 -i
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eP 0.0—
V

-0.5—

I

0.0
I

0.5
I

1.0
I

1.5
t (arb. units)

I

2.0

(a)

I

2.5
I

3.0
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1.0
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1.5
t (arb. units)
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2.0
I

2.5
I
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FIG. 2. Resonance dynamics of the spin-2 system. In all

curves g=20, coo=Q=2m, and the initial condition (i) of Sec.
IV, namely the oscillator in the coherent state, with (n ) =10.
(a) Time evolution of (o,(t)). The solid curve is the "exact"
numerical result. The dashed curve is obtained using the
Wigner equation without the QGD mechanism. (b) Time evolu-
tion of the entropy S(t) of spin-2 system. The solid curve is
"exact" numerical result. The dashed line is the theoretical
maximum value of the entropy.

In this section we illustrate the results of calculations
on the dynamics of the oscillator utilizing the initial con-
dition (i) of Sec. IV. We also monitor the time evolution
of the corresponding uncertainty U [cf. Eq. (2.8)]. An ob-
servation of the same kind, on the oscillator rather than
on the spin- —,

' dipole system, was recently made by Miiller

et al. [30]. These authors used the Husimi [31] rather
than the Wigner density to build up the quantum Poin-
care maps for the oscillator. As correctly stated by these
authors, the Wigner density, due to violent oscillations
between positive and negative values, cannot be used for
this purpose. However, we want to stress that their study
of the quantum Poincare map did not lead them to real-
ize that the growth of the quantum uncertainty due to
semiclassical chaos persists until the maximum possible
value of U admitted by the finite size of the available
phase space is obtained.

It must be pointed out that since the region of phase
space available to the oscillator has a finite size, the
growth of U must be limited from above. Thus we expect
that the growth of U(t) is characterized by the attain-
ment of an asymptotic value for t going to infinity. If our
arguments on the growth of quantum fluctuations as a re-
sult of chaos are correct, we expect that the phenomenon
of the growth of fluctuations to be negligible when the
RWA is made since this approximation is known to be
incompatible with chaos [23—26].

These theoretical expectations are checked using both
the solution without the QGD mechanism and the exact
numerical solution of the quantum-mechanical Liouville
equation (i.e., the solution of the Wigner equation of
motion, also including the QGD mechanism).

Figure 4 shows that our theoretical expectation on the
semiclassical chaos as a source of fast growth of quantum
fluctuations is correct. In this figure we show the time
evolution of U ( t), as it results from an "exact" numerical
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FIG. 5. Time evolution of (q(t)). In all curves g=10,
coo=A=2m, and the starting point is condition (i) of Sec. IV,
namely the oscillator in the coherent state, with (n ) =10. The
full line is the result of the "exact" numerical calculation. The
dashed line denotes the result of averaging on the semiclassical
trajectories over the Wigner density corresponding to the above
condition (i). (a) refers to the complete Hamiltonian, with no
RWA and (b) to the RWA.

calculation, upon increasing the interaction strength g.
The Liapunov coeScients are not a monotonic function
of g [19]. However, for the five values of g chosen, larger
g's involve larger Liapunov coefficients. Curve (e) corre-
spond to a fully chaotic regime for the equation of
motion. We thus see that classical chaos is consistent
with the quantum-mechanical uncertainty quickly reach-
ing a fixed asymptotic value. This signals that quantum
fluctuations grow so fast as to quickly invade the whole
region of the available phase space.

Figure 5 illustrates the relaxationlike nature of the
time evolution of (q(t)). This character is more distinct
when the QGD mechanism is included. The comparison
with the RWA condition points out an element of ambi-
guity of "irreversibility" as a proper indicator of semi-
classical chaos. As mentioned earlier in this paper (see
the remarks in Sec. IV on the entropy of Ref. [29] con-
cerning the RWA Hamiltonian), the initial condition
with the oscillator in the coherent state supplemented by
the RWA can generate some degree of irreversibility.
This is due to the fact that the dynamics of the system de-

pends on an infinite number of eigenstates of the oscilla-
tor with incommensurate frequencies [29], and this is

reflected in a overa11 increase of the entropy of the oscil-
lator system. The results illustrated in Fig. 5(b) on the ir-
reversibility of (q(t) ) under the RWA reflects this prop-
erty. We see indeed that, whereas the averaging of the
RWA trajectories over the condition (i) of Sec. IV results
in a nondissipative motion, the full quantum-mechanical
RWA calculation exhibits some elements of dissipation,
albeit less marked than in case without RWA. We be-
lieve that semiclassica1 chaos is manifest in a relaxation
behavior of the oscillator, but this is mixed in this case
with the irreversibility stemming from the conventional
source of a heat bath played by the coherent state.

Figure 6 shows that the QGD mechanism increases the
rate of growth of quantum fluctuations. A quite surpris-
ing result illustrated in Fig. 6 is that of the quantum
RWA. The initia1 increase of U of this case is the most
violent. We see that it grows very quickly, much faster
than any other process; it reaches a maximum, then it un-

dergoes a fast decrease until it reaches a first minimum.
For simplicity of description, we are not taking into ac-
count the ultrafast oscillations of this curve. The process
is repeated over and over again with minima of ever in-

creasing value. The envelope of the maxima of this curve
would correspond to a process of growth for the uncer-
tainty U(t) comparable to that triggered by semiclassical
chaos. However, if we focus our attention on the en-
velope of the minima, we see that this turns out to be, as
must be, an increase faster than the semiclassical RWA
case, but slower than the predictions of both quantum-
mechanica1 calculations without RWA.

The reason why the actual increase of quantum uncer-
tainty is indicated by the envelope of the minima [curve
(e) of Fig. 6] is given by an interesting quantum-
mechanica1 property recently discovered by Eiselt and
Risken [31]. The Eiselt-Risk en effect is a quantum
phenomenon associated with the wel1-known quantum
effect of collapses and revivals [29]. The collapse process
is shown [32] to correspond to a splitting of the quantum
cloud into two distinct clouds. These two clouds quickly
move far apart, thereby provoking a fast increase of U.
The minima are easily explained by the fact that periodi-
cally, and precisely in the correspondence of the revivals,
the two distinct clouds merge again into a single cloud.
In conclusion, in this case U is not a reliable indicator of
the quantum uncertainty, since the splitting of the cloud
into two clouds results in a larger U, whereas the total
volume of the quantum cloud (the sum of the volumes of
the two single clouds) does not change appreciably com-
pared to the volume of the cloud before splitting. If we
replace the function U(t) with the envelope of its minima
[curve (e)], then we see that our theoretical expectations
[that for a case with semiclassical chaos the rate of in-
crease U(t) evaluated with the RWA is slower than
without RWA] are fulfilled.

VI. CONCLUDING REMARKS

Adopting the Wigner formalism we have established
two important quantum manifestations of semiclassical
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FIG. 6. The quantum uncertainty U(t) as a function of time. In all curves g= 10, coo=0=2~, and the starting point is condition
(i) of Sec. IV, namely the oscillator in the coherent state, with (n ) = 10. Curves (a) and (b) refer to the RWA approximation. (a) is
the result of a calculation without the QGD mechanism and (b) is the result of a fully quantum mechanical RWA treatment. Curve
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QGD mechanism, whereas (d) is the result of a calculation with no approximation.

chaos: these are irreversibility and unexpected growth of
quantum uncertainty. Surprisingly enough these quan-
tum manifestations of semiclassical chaos are accounted
for by using classical arguments, namely, the classical
contribution to the Wigner equation of motion, L,&

of
(3.8), and the sensitive dependence on initial conditions of
classical chaos. Quantum mechanics, though, is subtlety
involved, since the QUP sets a constraint on the initial
%igner density so that it cannot be a mere Dirac 6 func-
tion. Thus adopting classical arguments and the QUP,
one would be led to conclude with Fox [21] that "to
properly describe classical-mechanical chaos, one must
do quantum mechanics. " In conclusion, on the latter
property we substantially agree with the point of view of
Fox [21]. However, according to the theoretical analysis
of Fox, based on the adoption of arguments similar to the
expansion of the master equation in terms of the macro-
scopic volume (1/A' is the macroscopic parameter of his
analysis), the growth of quantum uncertainty is proved to
depend only on what we call L,&. In the spin-boson mod-
el here under study (it must be noticed that the Fox
analysis was applied in Ref. [21] to the multidimensional
version of the nonlinear oscillator studied for illustrative
purposes in Sec. IV, and not to the spin-boson model of
the present paper) we see, on the contrary, that also the
QGD mechanism contributes to the growth of quantum
uncertainty and makes it grow significantly faster than it
does with this rnechanisrn absent. In a future publication
we will give theoretical arguments to account for the

speeding up role of the QGD mechanism on the growth
of the quantum uncertainty of the oscillator. In the case
where the semiclassical equations of motion have chaotic
solutions, the quantum fluctuations that in Ref. [21] are
expected to become macroscopic, within the spin-boson
model of this paper are shown to quickly fill the phase
space which would be explored by the single semiclassical
and chaotic trajectory. This means an extended cloud of
quantum uncertainty the size of which is the available
phase space. The consequences of this property might be
quite remarkable, since distinct regions of the same quan-
tum cloud should bear precise phase relations (with the
capability of producing interference effects of a single
particle with itself), and this appears to conflict with the
fact that within the semiclassical approximation the same
phase-space region is the domain of randomness.

The former consequence of semiclassical chaos, quan-
tum irreversibility, is intimately connected to the latter,
but surprisingly it has been overlooked by the investiga-
tions carried out so far in the field of quantum chaos.
Quantum irreversibility as a manifestation of semiclassi-
cal chaos is distinct from the irreversibility generated by
the interaction of the system with a bath with many de-

grees of freedom. The assumption that the radiation
field, the oscillator of our model, is in a coherent state,
produces irreversibility features [29] which are reminis-
cent of those observed in this paper (see Fig. 2). It must
be noticed indeed that Phoenix and Knight study the
RWA approximation of the spin-boson model and thus in
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their case irreversibility is not &n any way related to semi-

classical chaos, since the RWA suppresses semiclassical
chaos [23—26]. However, in Fig. 3 we show that semi-

classical chaos and quantum irreversibility have the same
source even with a starting condition which would result
in reversible behavior within the RWA approximation.
This is clear evidence of the existence of the kind of ir-
reversibility provoked by chaos rather than by the action
of an infinite number of degrees of freedom in a heat
bath.

If we focus our attention on the oscillator dynamics,
we find that if the Eiselt-Risken effect [31] is properly
taken into account, then the growth of quantum fluctua-
tions turns out to be a more reliable indicator of serniclas-
sical chaos than is irreversibility. This is so again because
irreversibility is already manifest within the RWA [29].
Even in this case the effect of the QGD mechanism is to
make the relaxation rate larger. It must be remarked
that the QGD mechanism seems to exert on the oscillator
an effect different from that exerted on the spin- —,

' system.
The regression to equilibrium of the mean value ( &,(t) )
is characterized indeed by more marked revivals if the
QGD mechanism is taken into account. This can be in-

tuitively explained by noticing that the QGD mechanism
makes the system "remember" its quantum nature, there-
by limiting the diffusion processes [20]. This certainly
applies to the spin- —, dipole, which has only two possible
orientations and cannot freely diffuse as a result of chaos
(chaos-induced diffusion). No constraint of this kind is
set on the oscillator. The oscillator moves within an en-

ergy potential, which is left harmonic by its interaction
with the spin- —,

' system. The only remarkable effect of
this interaction is that the restoring center of the oscilla-
tions moves according to the chaotic dynamics of the
spin- —,

' system. This does not set any constraint on the os-

cillator diffusion. In conclusion, the numerical results of
this paper show that the QGD mechanism makes the dy-
namics of the spin- —,

' system "less dissipative" and the dy-

namics of the oscillator "more dissipative. " Roughly
speaking, we can say that the final result is that both sub-
systems are "equally dissipative, " since, according to a
theorem by Araki and Lieb [27] on the quantum entropy
of two subsystems, the choice of a pure state as the initial
condition of the whole system makes the entropy of the
oscillator coincide with the entropy of the spin- —, system.
It must be remarked that, as a check on our numerical
calculations, we evaluated both the entropy of the spin- —,

'

system and that of the oscillator separately, and found
that they virtually coincide with one another. The
theoretical reasons why the QGD mechanism makes the
oscillator "more dissipative" are planned to be explored
in a future publication.

We want to stress that both quantum "irreversibility"
and the growth of the quantum uncertainty are not com-
pletely unambiguous indicators of the underlying semi-
classical chaos. We have already remarked that the en-
tropy of the RWA system with the oscillator in a
coherent state exhibits elements of irreversibility [29].

The irreversibility manifested by semiclassical chaos on
the dynamics of the spin- —,

' system is, however, much

more marked than the irreversibility of the corresponding
RWA system. The problem posed by the growth of U
within the RWA seems to be a much more serious prob-
lem. U(t) exhibit larger oscillations, and the envelope of
the resulting maxima seems to be the fastest process for
the attainment of the saturation regime. However, this is

so for reasons which are well understood, i.e., the Eiselt-
Risken effect [32], and does not weaken the importance of
this interesting efFect of semiclassical chaos. Semiclassi-
cal chaos results in the fastest increase of the total
volume of the quantum cloud, in spite of the fact that
U(t) exhibits the fastest process of initial increase within
the quantum RWA treatment.

As a final remark, we again stress that we do not wish
to give the impression that we consider classical mechan-
ics more fundamental than quantum mechanics, since the
anomalous increase of quantum-mechanical uncertainty
and the irreversible nature of the time evolution of the
quantum mean value ( &,(t) ) is derived from the proper-
ties of the semiclassical approximation. This misinterpre-
tation might arise because, according to our derivation, if
the QGD term of (3.9) can be neglected, quantum
mechanics is obtained by making averages over the
chaotic semiclassical trajectories. This procedure leads
immediately to the prediction of irreversibility and the
anomalous growth of quantum uncertainty. It would be
much more difficult to make these predictions from
within the linear confines of quantum mechanics, even
though the latter is more fundamental than the former.
If we adopt the correct perspective of regarding classical
mechanics as derived from quantum mechanics, then the
formalism developed herein shows why the semiclassical
approximation leads to a chaotic behavior, not exhibited
by the linear equation of quantum physics. The semiclas-
sical approximation makes it possible to introduce the
concept of semiclassical trajectories and the semiclassical
equation of motions are nonlinear, whereas the corre-
sponding classical Liouvillian, as well as the complete
quantum Liouvillian, is linear. As a consequence in
quantum mechanics, chaos is destroyed in precisely the
same way as it would be in classical physics, if attention
were focused on the time evolution of the probability dis-
tribution rather than on single trajectories. We further
remark that if a classical system is chaotic, then the only
way to recover predictability, is to give a statistical mean-
ing to the classical density function. If we assume this
perspective, then the striking discrepancy between semi-
classical (or classical) chaos and quantum regularity is
drastically reduced, the only difference left being that
produced by the QGD term.
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