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O(N) real-space method forab initio quantum transport calculations:
Application to carbon nanotube—metal contacts
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We present amb initio O(N) method that combines an accurate optimized-orbital solution of the electronic
structure problem with an efficient Green'’s function technique for evaluating the quantum conductance. As an
important illustrative example, we investigate carbon nanotube—metal contacts and explain the anomalously
large contact resistance observed in nanotube devices as due to the spatial separation of their conductance
eigenchannels. The results for various contact geometries and strategies for improving device performance are
discussed.
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[. INTRODUCTION problem, combined with an efficient Green’s function—based
technique for the evaluation of the electron transmission
The study of the electrical properties of nanostructuregrobability. Both theab initio and the transport algorithms
has seen intense activity in the last decade, due to the prorcale essentially linearly with the size of the system, thus
ise of novel technological applications for nanoscale quanextending greatly the range of applicability of our method.
tum electronic devices. The theoretical study of quantumlhis method has been already successfully applied to de-
conductance in such structures has thus become of primafffibe quantum conductance in ideal and defective carbon
interest and has been addressed by a variety of techrﬁqueé‘.a”OIUbeé- Following a brief overview of the methodology,
Due to the complexity of describing an “open” system of a W& address the prc_)ble_m of contacts in a metal-ca_lrbon nano-
nanoscale device in contact with effectively infinite leads,!UP€ assembly, which is very important in the design of effi-

most of the current approaches rely on phenomenologicaj'em fn'\z;?lotubet-bz.iseltlj debwces. onntacttrefslitancets IOf t_helor-
tight binding models, which for many systems may not pro- ero are typically observed In m?s_ 8 € prototypica

; 2 ) - nanotube-based devices realized so*¥at® whereas from
vide a sufficiently reliable and accurate description.

S . simple band structure arguments one would expect resis-

There are only few examples ab initio calculations of tances of the order of a few tenths 02K because the
quantum conductance a.nd. the field is still in a critical phasg 2 mental resistance of a single ballistic channel is 12.9
of development. The existing methods are based on the S¢q) The results of our calculations provide an explanation
lution of the quantum scattering problem for the electronicyy, this pathologically high contact resistance and suggest
wave functions through the conductor using a number oyrategies to improve the performance of nanotube-metal
related techniques: Lippman-Schwinger and perturbativ@ontacts. It is important to stress that this problem requires

Green's function methods have been used to study conduggif-consistenab initio methodology, in order to accurately
tance in metallic nanowires and recently in small molecularyescribe the highly inhomogeneous environment of a

'3 . . . . . i N X

nanocontact® conduction in nanowires, junctions, and nanowire-metal junction and to account for the charge trans-

ina4 . : o
nanotubee systems has been addressed using”lamal fer occurring at the interface between the two dissimilar ma-
nonlocaf*® pseudopotential methods and through the solutioRgyig)s.

of the coupled-channel equations in a scattering-theoretic
approach® These methods are based on a plane wave rep- Il. METHODOLOGY
resentation of the electronic wave functions, which imposes '
severe restrictions on the size of the system because of the Our ab initio calculations of quantum conductance utilize
large number of basis functions necessary for an accuratn expansion of the Hamiltonian, the Green’s functions, and
description of the electron transmission process. Thereforeglated quantities in a basis of localized orbitdlét is then
structureless jellium leads, which do not provide a micro-possible to efficiently evaluate the quantum conductance of a
scopic description of the conductor-metal contact, had to béead-conductor-lead system @(N) steps, by dividing the
assumed in most cases for computational reasons. Only reystem into principal layers that interact only with their near-
cently have real-space approaches been considered foreat neighbors. In order to perform tlabd initio electronic
more efficient solution of the electronic transport problem.structure calculation, we use a real-space, optimized-orbital
They are based on the use of linear combination of atomienethod that attains essentially linear scaling by utilizing
orbitals® (LCAO) or Gaussiah orbital bases. These are atom-centered localized functions, while optimizing their
combined with either a scattering state solution for theshape'® Real-space grids are used throughout, which allows
transmissioff’ or Green’s function—based techniqués. for straightforward application of localization constraints and
In this paper we present an approach based on a redler multigrid convergence acceleration on all length scales.
space optimized-orbital solution of the electronic structureThe variational optimization of the orbitals leads to high ac-
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curacy while using only a minimal basisee below The 1

relatively low cost of the method allows fab initio treat- H=— §V2+Vion+ Vi(p) + pxc(p), (4)

ment of the infinite leads in full atomistic detail, and for a

complete and consistent description of the coupling of thavhereV,,,, Vg, and u,. represent the ionic pseudopoten-

conductor with the leads. tials, the Hartree potential, and the exchange-correlation po-
The conductanc& of the full open systentinfinite left  tential, respectively, we minimize the total energy functional

lead, conductor, infinite right leads evaluated via the trans-

mission function as?%2 ) 1 -
E[{pi}1]=2 Tr(H@p(9) _f PP 4
2 |r_rr|
2e?  2¢?
= 1= 77 Tr(TGcl'RGo), (1)
_J' Mxc(p)p(r)dr+E,dp] (5)

where G¢ is Green’s function of the conductdiC) and
'y ry are functions that describe the coupling of the conducfor a set of nonorthogonal orbitafsh Y, . Herep'® is the

tor to the left(L) and right(R) leads. Equatioril) is valid in  gensity matrix in the basip}. The electronic density is then
both the Landauer approach and in the noninteracting limigjven by

of the Keldysh nonequilibrium Green's function

formulation?! In a general nonorthogonal localized orbital N

scheme, the Green’s function of the whole system can be p(N=2 2 (p')cb;i(r) (r). (6)
explicitly written as k=1

The Nx N matrix H(#) is defined byH{?=(¢;|Hg). We

- CH_S v -1 ] i@
Ge=(eSc—He=2~2p) @ ais0 define the overlap matrs{”) = (¢;| ;).

where3,, and3 are the self-energy terms due to the semi-  The calculations use numerical orbitals defined on a uni-

infinite leads, anH andS¢ are the Hamiltonian and over- form grid in real space. They are centered on atoms and

lap matrices for the localized orbitals in the conductor. Thelocalized in spherical regions of radie around the respec-

coupling functionsI'y g, can be easily obtained once the tive atoms. The orbitals are variationally optimized using

self-energy functions are knowri#22.23 multigrid preconditioning techniques until they accurately
describe the ground state of the system. This procedure al-
F{L,R}:i[EEL,R}_E?L,R}]- lows us to use a small number of orbitals per atom, much

smaller than in LCAO or Gaussian-based calculations, be-

The expression of the self-energies can be deduced alorfguse the orbitals are optimized on the grid according to their
the lines of Ref. 18 using the formalism of principal layers in€nvironment. The size of the matrices that enter in the quan-
the framework of the surface Green’s function-matchingtum conductance calculation and the computational cost of

theory?? We obtain the whole procedure are thus minimized. In order to ensure
fast convergence and accuracy—even for metallic
_ _ t L _ gL L _yyL\fT 7-1 systems—we use both occupied and unoccupied orbitals.
1= (eSicmHic) TeSoo—Hogt (eSor—Hon) T The scaling of the most expengive parts of the cglculations is
X (€S c—HLo), still O(N) due to localization, but there is a smal(N®)
part, which is dealt with by effective parallelizatioh.
S r=(€Scr—Hcr[€Sh—Hi+ (eSH—HR) TRl 2 The matrices that enter in the electronic transport calcu-
lation are computed in two steps. In the first calculation, we
X (eScr—Hcr)", (3 compute the ground state of the bare leads in a supercell with
R periodic boundary conditions. From this calculation we ex-

L - - -
whereHyy, are the matrix elements of the Hamiltonian be- oot the real-space Hamiltonian and overlap matrices re-
tween layer orbitals of the left and right leads, respectivelyq ired for the computation of the self-energy operators. We
Snm are the corresponding overlap matrices @k and  then perform a second calculation in a supercell containing

T, r are the appropriate transfer matrices. The latter are eashe conductor and one principal layer of the leads. In this
ily computed from the Hamiltonian and overlap matrix ele- calculation, the orbitals in the leads are kept the same as in

ments via an iterative procedut&?® CorrespondinglyH, ¢,  the bare lead calculation, in order to extract the matrix ele-
Hcr, Sic, and Scg are the coupling and overlap matrices ments and overlaps needed in the definition of the conductor
for the conductor-lead assembly. region and to describe the coupling between the conductor

The procedure above requires the knowledge of theand the leads. This procedure accounts fully for the elec-
Hamiltonian and overlap matrix elements between layer ortronic structure of the conductor and the interaction between
bitals of the left and right leads, together with the matrixthe conductor and the leads, provided that the lead region is
elements describing the coupling in the conductor-lead adarge enough to avoid spurious interactions between periodic
sembly. To compute these matri?dab initio density- images of the contacts. In order to have interactions between
functional calculations are carried out using 1B¢éN)-like  the nearest-neighbor principal layers only, the width of the
algorithm described in Ref. 19. Briefly, given an atomic con-layers has to be sufficiently large compared to the localiza-
figuration and the corresponding Kohn-Sham Hamiltonian tion regions. On the other hand, the localization regions have
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to be large enough to ensure an accurate solution of the
density-functional equations. Moreover, in the Green’s
function—matching procedure one has to carefully align the
Fermi levels of both systems in order to avoid spurious bias
effects. (In this paper we will limit the discussion to the
linear response regime and thus to zero bias across the
conductor-lead junctions.Provided that in the conductor-
lead calculation the lead region is large enough to recover
bulklike behavior far from the interfaces, we align the mac- 0 e * . ® & & @
roscopic average of the electrostatic potentials in the bare -2-10 1 2

® L ] @ @ @
lead and in the conductor-lead geometry. This ensures a E (eV)
seamless conductor-lead geometry and prevents the spurious

bias. An equivalent procedure is often used to extract band F!G- 1. Left panel: The geometry and conductance spectrum of
offsets in superlattice calculatioRs2° an infinite (5,5 nanotube deposited on @AL1). Right panel: cross

section of the probability density of the electronic wave function
corresponding to the only open eigenchannel at the Fermi level that
1Il. RESULTS has a sizable component on the nanotube. The other wave functions
at the Fermi level are mostly localized on the metal.
The methodology above has been used to study electronic
transport in carbon nanotube—metal contacts. The metal coryt Fig. 1, in units of 22/h. The main effect observable in the
tacts are modeled as Al crystals oriented in [thel] direc-  gpectrum is the short plateau around the Fermi level with
tion. A (5,5 carbon nanotubédiameter~7 A) is deposited  ynit conductance. This is at variance with the ideal value of
on a metal surface, establishing an electrical contact on ongyo, which comes from the two electron bands of an isolated
side. In both the bare-lead and lead-nanotube calculations th§mchair nanotube that are available for transmission. Al-
simulation cells were chosen large enou@l.7 and 29.5 A, though the metal contact increases the resistance by a factor
respectively to be consistent with a relatively large localiza- of 2 \when compared to the ideal, isolated nanotube, it ap-
tion radius R ~5 A) for the orbitals, needed for an accu- pears that a sizable degree of electron transmission through
rate description of the metallic system. We use two optithe system should still occur.
mized orbitals per Al atom, and three per C atom. The total |n order to better understand the contrast between these
numbers of atoms in the two simulation cells are 220 angesults and the anomalously high resistance observed in
340, respectively,. These configurations have been extersperimentd?'%>*we analyze the total conductance in terms
sively tested to ensure full convergence of the electronigf ejgenchanneldor the transmissiof? by exploiting the
structure. A grid spacing of 0.18 A, corresponding to @ 45 Rylocalized orbital structure of our method to separate the in-
cutoff, is employed throughout. We use the local densitygiyidual (nanotube and metatontributions to conductance.
exchange-correlation functional and Hamann nonlocafrhe transmission eigenchannels are defined as the eigenvec-

pseudopo'gential%?.All_atomic geometries are fully relaxed. tors{U} that diagonalize the transmission matrix in Edj)
The resulting equilibrium distance between the nanotube ang the Landauer-Buttiker form®

the Al surface is 3.4 A and we observe an outward relaxation
of the (111) Al surface of~1.6%, in agreement with other U7 Ut=utt’u'=diag 7}, 7)
local-density calculation® The interaction between the two
systems is quite weak90 meV/atonm), and no major wheret is the left-to-right transmission amplitude matrix and
relaxation/reconstruction of the nanotube-metal complex is; are the eigenchannel transmissidhdhe eigenchannels
observed. Moreover, the choice of relatively long contactform a complete orthonormal basis of the subspace spanned
regions in the bare lead geometry ensures a minimal latticby the localized orbitals of the conductor. They have well-
mismatch between the nanotube and the Al surface. Givedefined transmissions, i.e., without interchannel scattering,
the weak interaction between the two, a smaH1(%) re- and their characteristics give direct information about the
sidual mismatch does not affect the electronic or transponproperties of the transmission process.
properties of the system. Among the conducting channgihose with nonvanishing
Turning to the results, we first discuss an ideal, infinitelytransmissionz;), we observe a clear distinction between
long nanotube deposited on a metal surface. The geometsigenchannels mainly localized in the metal region and those
considered here is shown in the inset of the left panel of Figon the nanotube. This result reflects the separation between
1. The main characteristic of the electronic response is @dividual electronic wave functions of the system.
marked charge transfer from the nanotube to the metal that In particular, the eigenchannel corresponding to the pla-
allows the valence band edge of the nanotube to align witlbeau of conductance around the Fermi energy corresponds to
the Fermi level of the metal electrod€This charge transfer, an individual wave function, reproduced in the right panel of
which has already been observed for other systems ifig. 1, that is almost fully localized on the nanotul®3%).
experiments*31and calculationé®2°3°leads to enhanced This implies that there is very little hybridization and inter-
conductivity along the tube axis and gives rise to a weakmixing between the nanotube and the metal in the channel
ionic bonding between the tube and the metal. The conduaesponsible for conduction at the Fermi level. Thus, the con-
tance spectrum for the nanotube is displayed in the left panaluction electron transfer between the tube and the metal in

G (2¢’/h)
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FIG. 2. The conductance spectrum of a periodic array of finite FIG. 3. The conductance spectrum of an ideal two-terminal de-
metallic nanocontacts, as shown in the inset. The Fermi level iwice shown in the inset. The Fermi level is taken as a reference.
taken as a reference.

throughout the system. It is important to note that the weak
the idealized side-contact geometry considered here is vefjanotube-metal interaction, responsible for the pathologi-
inefficient, which can explain the pathologically high contactcally high resistance of the nanotube-metal assembly, is not
resistance observed in nanotube-metal contacts®in par- strengthened. Both eigenchannels are highly localized on the
ticular, this example clearly demonstrates that the weakianotube, with a negligible fraction on the metal contacts,
nanotube-metal coupling is mostly responsible for the weal@nd closely resemble the charfledhown in the right panel
electron transport in the combined system, while wave vecto®f Fig. 1. Although the nanotube behaves as an ideal ballistic
conservation is not a significant factdr’® The weak distrib- ~ conductor, the bonding characteristics of the nanotube-metal
uted coupling is also the reason for the measured contaglystem prevent an efficient electron transfer mechanism from
resistance being inversely proportional to contactthe nanotube to the Al contact. Indeed, inducing defects in
length*36:37A conductance of one has also been observed ithe  contact region, e.g., by localized electron
an experiment that measured electron transfer between a ligombardment? would drastically increase the bonding
uid metal and a multiwalled nanotuB&but the conditions of ~ strength of the nanotube-metal assembly and greatly improve
this experiment allow for several alternative explanatiths. the performance of the device. Alternatively, we have found

The real-space, principal-layer formalism and the rapidthat mechanically pushing the nanotube closer to the Al sur-
screening of charge disturbances allow us to carry out relatef@ce by a small amount<{1 A, with an energy expense of
calculations with modest additional effort. Using the results~10 meV/atom) more than doubles the transmission effi-
of the first calculation, two other contact geometries wereciency between the metal and the nanotube. The mechanical
considered. The first is a periodimfinite) array of narrow deformation induces a small inward relaxation of the Al sur-
metallic wires crossing an infinite nanotube, with both con-face in the contact region, facilitating stronger hybridization
tacts and tube bridges being 1.5 nm wide. This configuratioetween the nanotube and the metal contact in the conduct-
and the resulting conductance spectrum are shown in Fig. #1g channels and thus contributing to a higher electron trans-
The main characteristic is an opening of a semiconductingnission rate between the two systems.
gap in the otherwise almost ideal nanotube spectrum. It is
induced by the breaking of the mirror symmetry of the nano- IV. SUMMARY
tube wave functions induced by the localized perturbation of
the nanocontacts. The gap in the electronic band structurefﬁ%
the Fermi energy is clearly reflected in the local density o
states computed from the Green’s functiGg. . A similar
result was previously obtained for a copper chain in contac

In summary, we have developed an efficiai initio
ethod to compute quantum conductances in nanostructures.
As a first application, the transport properties of carbon
anotube—metal contacts were investigated. The calculations
with a nanotub&® Erovide a clear interpretation of current experimental results
i f

Finally, we discuss the contact geometry shown in Fig 3or a vgriety of contacp geometries and suggest avenues for

(inset It, more closely resembles an experimental tW'()_lmproylng the properties of. nano;ube-metal assemt_)hes in
e : : D potential nanoscale electronic devices, such as rectifiers, ac-

terminal device, with two semi-infinite contacts ConneCtedtuators and nanoswitches
by a nanotube bridge, 1.5 nm long. In this geometry, the ' '
system recovers the ideal conductance of an isolated tube
with two conductance channels at the Fermi energy, as
shown in Fig. 3. This behavior is induced by the alignment It is a pleasure to thank Dr. Vincent Meunier for many
of the valence band edge of the nanotube with the Fermifruitful discussions. This work was supported by ONR,
energy of the metal contacts, triggered by the charge transf@OE, and NASA. A portion of the work was performed un-
in the lead regions. In this particular geometry, these condieer the auspices of the U.S. Department of Energy by Uni-
tions restore the two original eigenchannels of the nanotubeersity of California Lawrence Livermore National Labora-
and thus conserve the number of conducting channel®ry under Contract No. W-7405-Eng-48.
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