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Texts and images provide alternative, yet orthogonal views of the same underlying 

cognitive concept. By uncovering synergistic, semantic relationships that exist between 

words and images, I am working to develop novel techniques that can help improve tasks in 

natural language processing, as well as effective models for text-to-image synthesis, image 

retrieval, and automatic image annotation. Specifically, in my dissertation, I explore the 

interoperability of features between language and vision tasks. In the first part, I show how it 

is possible to apply features generated using evidence gathered from text corpora to solve the 

image annotation problem in computer vision, without the use of any visual information. In 

the second part, I address research in the reverse direction, and show how visual cues can be 

used to improve tasks in natural language processing. Importantly, I propose a novel metric to 

estimate the similarity of words by comparing the visual similarity of concepts invoked by 

these words, and show that it can be used further to advance the state-of-the-art methods that 

employ corpus-based and knowledge-based semantic similarity measures. Finally, I attempt 

to construct a joint semantic space connecting words with images, and synthesize an 

evaluation framework to quantify cross-modal semantic relationships that exist between 

arbitrary pairs of words and images. I study the effectiveness of unsupervised, corpus-based 

approaches to automatically derive the semantic relatedness between words and images, and 

perform empirical evaluations by measuring its correlation with human annotators. 
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CHAPTER 1

“MEN ARE FROM MARS, WOMEN ARE FROM VENUS”: INTRODUCTION TO

LANGUAGE AND VISION

Both the Martians and Venusians forgot that they were from different planets and
were supposed to be different. In one morning everything they had learned about
their differences was erased from their memory. And since that day men and women
have been in conflict.

John Gray

Since the time of existence, human beings communicate with one another by making sense

of perceiving their surrounding environment. Arguably, among the five prevalent senses of sight,

hearing, touch, smell and taste, it is vision that we afford the most attention. We see at all times

except when we are at rest, at which point we do not consciously hear, nor feel, nor smell, nor

taste. Where we perceive, we gain information in relation to how we think, speak and behave. It

affects our decision, our mood and at the crux of it all, determines how we live.

The ability to make sense of what we see, coupled with the fact that we can visualize

concepts and reproduce them in pictorial forms, bears huge promises as an effective medium for

communication. Perhaps not surprisingly, the coexistence of linguistic and pictorial elements in

human communication was dated as far back as one could imagine. In fact, before any verbal

communication was established, man had used proto-linguistic or non-linguistic means to make

himself understood. This evidence suggests that visual representations of information is very help-

ful to a non-negligible extent, and they require minimal learning in most instances. In addition,

studies [3] have shown that only up to an estimated ten percent of our communication is verbal. The

unspoken language is our body language. This refers to our behaviors while making the speech,

such as smile, gaze, attention span, attitude, arms movement, head shaking etc, all perceived by

our listener through their visual system.
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Do we then argue that visual representations of information are vastly better than their

corresponding linguistic counterparts ? Take, for instance, the image of an apple. The concept, i.e.,

“fruit with red or yellow or green skin and sweet to tart crisp whitish flesh”1 is clearly understood

and conveyed effectively by a single pictorial representation, as opposed to a multitude of linguistic

representations that might have been needed, where one is required for each language available in

the world. Enabling images for the purpose of communicating such concrete, picturable concepts

pose many advantages. Essentially, it is universal, minimally supervised and effective.

However, our interaction with others on a daily basis deals with more perplexities than just

communicating simple nouns. Fostering a deeper understanding of a topic requires more substan-

tive expression of meanings that is better achieved by using languages. Overall, is language better

then ? If a picture speaks a thousand words, how many pictures is a word worth ? Mastering a lan-

guage may take years of effort, not just in absorbing a significant part of the available lexicon, but

also in acquiring grammar rules that allow one to express herself clearly, by grounding the proper

semantics on legal syntactic structure of uttered words. But it is exactly this learned permutation

of a limited set of vocabulary words that accounts for a language’s rich and accurate expressive

power of the speaker’s intentions.

For years, the supplementary and complementary advantages of using images with text

have been recognized and exploited in virtually every domain. In fact, much less would remain

without the introduction of visually stimulating imagery entities such as icons, cliparts, signs,

logos, pictures and the like. The existence of them in newspapers, books, television, web pages,

and all other media help us to understand the communicated subject quicker and better. Whatever

our preference for it, they exist ubiquitously around us.

However, from a computational point of view, visual cues promise much but delivers little.

Despite the large amount of information captured by our visual system, automatic translation of

visual content to knowledge-bases for yielding innovation applications has been stifled by two fac-

tors, namely, the ineffectiveness of computer-based systems to see naturally like humans see, and a

lack of unified framework for grounding image meanings. While word meanings can be acquired

11st sense of the noun in WordNet 3.1
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and disambiguated using dictionaries, the meaning of an image in isolation is not well-defined and

it is mostly task-specific. A given image, for instance, may be simultaneously labelled by a set

of words using an automatic image annotation algorithm, or classified under a different set of se-

mantic tags in the image classification task, or simply draw its meaning from a few representative

regions following image segmentation performed in an object localization framework.

This dissertation attempts to revisit an old problem that is gaining daily importance, by

providing computational approaches to explore and exploit the synergistic relationships between

the visual and textual modalities, and to further stretch the boundaries of their applicability in gen-

erating novel solutions to existing problems. Specifically, I seek to find answers to the following

research questions :

1. Is it possible to decode information in one modality to help tasks existing in the other modality

?

Traditionally, tasks in Computer Vision or Natural Language Processing (NLP) are per-

formed using features obtained exclusively within the domain without regard for cues present in

the other modality. Given that languages and vision are both manifestations of human cognitive

concepts, is it possible to use information encoded exclusively in the visual modality to benefit

tasks in the textual modality, and vice versa?

2. Considering the supplementary and complementary advantages of each modality over the other,

can we integrate both image and word features into a unified framework for the construction of a

richer semantic space ?

To date, a sizeable number of solutions to problems in NLP are based on models con-

structed using lexical semantic ontologies such as WordNet, FrameNet or VerbNet, or corpus-

based resources such as Wikipedia. Can we augment the usefulness of these resources by adding

a layer of visual modality ? Specifically, are we able to generate a richer semantic space that en-

codes not only knowledge induced by words, but also leverage on information available in images ?
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3. Can we formalize the meaning of images by using words in languages?

One of the long-standing problems in computer vision is to formalize ground-truth seman-

tics of a given image. Given the subjective nature of interpreting the meaning of an image, is there

a way to close this semantic gap by obtaining closer correspondences to the the meaning of words

in the multimodal semantic space that we seek to construct?

The dissertation is organized as follows. Chapter 2 provides an overview of the state-of-the-

art research in domains concerned with words and images, including fields related, but not limited

to, natural language processing and computer vision. Throughout the thesis, a number of recurrent

resources are used in experiments, and the introduction to each of them is given in Chapter 3.

In alignment with my pursuit for answers to the first research question, I choose a repre-

sentative task in Computer Vision, namely, the task of automatic image annotation, and support

our hypothesis that information drawn exclusively from textual knowledge-bases can be used to

construct an image annotation model that is competitive to the sate-of-the-art, using both image

and text features. The experiments and findings are reported in Chapter 4.

In a similar spirit, I perform an investigation in the reverse direction, by using visual in-

formation as a clue to devise a new metric for measuring semantic relatedness between words and

texts. Through the use of this new metric, either standalone or in combination with other textual

metrics, it is possible to achieve the state-of-the-art in the relatedness task as evaluated on stan-

dard datasets used by the research community. The details of the experiments and discussions are

contained in Chapter 5.

In response to the second and third research questions, I create unsupervised methods to

model the synergistic relationships between words and images in a unified semantic framework.

I establish a set of guidelines, based on known heuristics, to measure cross-modal semantic rela-

tionship between pairs of word and image, and perform a comparative study between automatic

derivations of such a relatedness metric in correlation to that of human judgements, as measured

on a standard dataset. The details of the experiments and discussions are contained in Chapter 6.
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Finally, in Chapter 7, the conclusions for our work are summarized before I draw up some

final thoughts for additional work that builds on the current foundations and findings.
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CHAPTER 2

“ARE MEN REALLY FROM MARS, AND WOMEN REALLY FROM VENUS ?”:

SYNERGISM BETWEEN LANGUAGE AND VISION

The Venusians welcomed the Martians with open arms. They had intuitively known
that this day would come. Their hearts opened wide to a love they had never felt
before.

John Gray

This chapter serves to provide a sufficiently broad-based overview of previous work that

simultaneously address both words and images1, with the intention to situate our work in context.

The literature review provided herein is of a generic nature. More related work specific to ideas

we proposed, if relevant, would be detailed individually in the ensuing chapters.

2.1. Cognitive Science, Psychology and Neuroscience

The meaning of a sentence is encoded in each of its component words. In order to un-

derstand a sentence, all meanings of the individual words must be retrieved and combined. Do

humans achieve this retrieval of meaning through a lexicon that is part of a linguistic system, or is

the meaning stored as part of a general conceptual system in the brain ?

Early research efforts in cognitive science and psychology [67] have proposed two such

similar hypotheses to empirically determine how word meanings are processed. The authors used

rebus sentences in which a concrete noun is replaced by a pictured object. Such sentences consists

of 10 to 15 words each, picture(s) inclusive. They are shown using rapid serial visual presentation

(RSVP) to forty subjects. The rationale of using RSVP at a rate of 10 or 12 words per second is to

present sentences so quickly that a delay in encoding the picture into a required form (e.g. silently

naming it to help establish semantic link between the word before and after) would be highly dis-

ruptive to the subjects, and hence producing results that bias towards either of the hypotheses.

1Throughout the dissertation, the terms image and picture are used interchangeably, and may jointly refer to any visible
representation of an entity, such as person, plant, animal, building, landscape etc, or an event depicting interaction
between them.
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In all experiments performed, there was no significant delay in understanding of rebus sentences

compared to all-words sentences. Accuracy wise, there was no consistent deficit in their interpre-

tations. In fact, the speed of understanding and accuracy of comprehension or immediate recall

remains the same regardless of the position of the picture (front, middle or end of the sentence),

nor did it matter whether there was one picture or two pictured object replacing concrete nouns.

The conclusive evidence from these experimental results do not support theories that sug-

gest word meanings are placed in a specialized lexical entry. On the contrary, the lexical repre-

sentation of a noun merely points to a general, non-linguistic conceptual system in human brains

where the meaning of a sentence is constructed. This finding points to a truth that our compre-

hension of real-world entities is not restricted by information encoded in any language system. It

also opens up a possibility that humans can communicate with one another through non-linguistic

means. These findings have also recently found support in cross-cultural studies which showed that

children from different countries, not speaking each other’s language, were able to communicate

about children’s stories just by using drawings and pictures [43].

In neuroscience, concerns were raised that hypothesized whether the human brain process

sensory inputs differently, or there exists a general programming of the cerebral cortex that allows

for a unilateral manner of information processing through different senses. In a revelatory study

[74, 82], researchers produced a “rewired” version of the brain in ferrets to explore the influences of

environmental factors on brain cortical development, where visual signals perceived from the retina

are directed to the auditory cortex instead of the visual cortex, and therefore enabling animals to

“see” with their “hearing” cortex. This discovery not only highlights the adaptability of the cerebral

cortex in its development course to achieve specialization in processing a particular sensory input,

but also bears important implications, such as the ability to perform constructive restructuring of

neural prosthesis for restoring functions in the brain after it suffers from a damaging encounter,

such as a stroke.

Importantly, given that the cerebral cortex in mammals is central to memory, thought, lan-

guage and maintaining consciousness, this study provides an indirect evidence for the interoper-

ability between different cortical signal processing, yet lends a strong motivation to suggest that
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our brain is highly capable to re-conciliate discrepancies in information representation by different

modalities, such as words and images.

2.2. Computer Vision and Image Processing

Currently, the best search engines on the Internet (Google, Bing, Yahoo) thrive on a high precision

and recall of information requested by Web users. However, this success has been largely limited to

Information Retrieval (IR) in the natural language domain, while searching for pictures still gives

relatively low precision and poor recall. The reason behind this limitation is that most pictures

are processed using the captions that label them. Since these captions are almost always packed

with a high degree of noise, better searches can only result from searching beyond the captions.

The content of each picture must be analysed meaningfully, then tagged with correct words that

describe it, before it can be retrieved using traditional textual IR methods.

To alleviate this problem, several Web-based projects attempt to bridge concepts and im-

ages through manual image annotations. The first project, known as PicNet [9], is a knowledge-

base consisting of dual visual-linguistic representations for words and phrases: seen as the small-

est units of communication that carry meaning. Starting with a machine-readable dictionary, i.e.

WordNet [63], that defines the words in the common vocabulary and their possible meanings,

PicNet seeks to add visual representations to the dictionary entries, with the aim of building a

knowledge-base that combines both verbal and visual representations of these basic concepts. Pic-

Net relies on a Web-based system for validating associations between the words and pictures.

Given a word and its possible meanings, as defined by a comprehensive dictionary, Web users

participate in a variety of game-like activities targeting the association of pictures with words.

The second project, called the ESP game [81], is an online system that collects labels

associated with images. The system is set up as a game, where the goal is to assign as many labels

as possible to a given image. When two players concurrently assign a label, the label is considered

correct and stored in the set of tags associated with the image. Unlike PicNet, which targets the

assignment of pictures to words, the ESP game collects words (labels) for pictures. Most of the

pictures labelled by the ESP game consist of entire scenes, which often refer to several concepts.

For instance, an ESP-annotated image could have the following label assignments: car, person,
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tree, house, road. While it is possible that a multiple-object scene could be used to describe a

unique concept, the ESP game does not have any constraints concerning the number of concepts

associated with an image, and there are often multiple salient concepts associated with an image

in the ESP database.

Yet another related project is the Google Image Quiz2. Provided with a set of images

returned by a search performed against the Google Image search engine, the goal is to guess the

keyword that was used in the search. Similar to the ESP game, the Google Image Quiz assigns

labels (words) to images, and not images to words, and thus it can often be the case that an image

will refer to several salient concepts that are associated with it.

There is also a large body of work concerning with automatic relation of words to pictures.

In [4], the authors presented a novel approach for modeling multi-modal sets, using segmented

images with associated text. By learning from the joint distribution of image regions and words,

many applications can be yielded. These include predicting words associated with whole image

(auto-annotation) and corresponding to particular image regions (region naming). Due to the dif-

ficult nature of applying data mining methods to collections of images, learning the relationships

between image regions and its semantic correlates (words) proves to be an alternative method of

multi-modal data mining. This initiative has arguably been followed with growing interest and

enthusiasm, leading to several state-of-the-art generative models for automatic image annotation

and classification. [12, 20, 24, 25, 26, 28, 33, 38, 51, 56]

In another effort to improve object recognition [1], researchers successfully showed that

by automatic captioning using a novel graph-based approach (GCap), words may be reliably pre-

dicted from images. The assessment was done on the “standard” Corel image database where GCap

outperforms recent, successful automatic captioning methods by up to 10 percentage points in cap-

tioning accuracy. This method is fast and scales well with its training and testing with time linear

to the data set size. Besides, it requires no user-defined parameters, nor other tuning, which is in

contrast to linear/polynomial/ kernel SVMs, k-means clustering etc. These advances in words and

2http://www.gamesforthebrain.com/game/imagequiz
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images research can lead to better image recognition, and hence produces higher image retrieval

accuracy.

2.3. Natural Language Processing and Computational Linguistics

Traditionally, word sense disambiguation (WSD) has been a well-studied problem in computa-

tional linguistics. Given a word in a sentence, the task is to determine which sense of the word

(with multiple senses) is used in the context of that sentence. Consider the word bank. Examples

of different senses include piggy bank (a container for keeping money), river bank (a slope of

land besides a body of water), Wells Fargo Bank (a financial institution), snow bank (a long ridge

or pile) etc. Picking the correct sense can be potentially challenging because of metaphorical or

metonymic meanings that makes discrimination of closely related senses difficult. Also, there is

the issue of inter-annotator variance. WSD systems are usually compared to a benchmark sense-

tagged corpora by humans. However, even when creating this benchmark, decisions to arrive on

which sense to use for a given word varies across human judges.

With the same spelling for each word to be disambiguated, it is hard to adopt a purely

natural language based approach and expect a very good result over the “most common sense”

method (which selects the most frequently used sense), usually used as a base line. In an innovative

effort [5], experiments revealed that using pictures can actually help disambiguate words, while the

reverse is also true. Starting from a learned set of pictures associated with words, co-constructed

meanings can be established from these two different representations of the same entity. The

images are then combined with sophisticated text based word sense disambiguation methods to

perform disambiguation tasks over a subset of Corel image database with three to five keywords

per image. The results show that this technique is superior to using pictures or text based methods

alone for disambiguation. The hypothesis governing this observation is that properties implicit in

one representation may be more explicit in another and therefore, more extractable. Given a large

corpora for training, the relationships between these two can be learned, and hence pictures can be

used to provide a non-negligible improvement over WSD tasks.

Some interest has also been followed in language processing to automatically generate cor-

responding pictorial representations. The WordsEye project [17] targets the generation of scenes
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starting with an input text, where the system gradually builds a scene by adding objects identi-

fied from the text. Essentially, it is built as a support tool for graphic designers. In fact, although

WordsEye’s database consists of thousands of object models, the system works only for descriptive

sentences of collated objects, and so it cannot generate scenes for prototypical sentences such as

“The house has four bedrooms and one kitchen”.

Other related projects along similar lines are SPRINT [86], where geometric models are

created from natural language descriptions of a scene, using spatial constraints extracted from

the text; Put [15], which identifies the placement of objects in a scene using an interactive natural

language interface; and CarSim [41]3, which converts narratives about car accidents into 3D scenes

by using techniques for information extraction coupled with a planning and a visualization module.

More recently, the Text-to-Picture (TTP) system for augmentative communication [89] was used

to synthesize a picture from natural language text by finding the important concepts in the text and

merging the pictorial representations of these concepts.

2.4. Visual Languages, Alternative and Augmentative Communication and Education

Visual Language is an expression system involving the use of visual objects to express our

thinking and feeling. It stems from the pioneering work of Rudolf Arnheim to studies by Robert

Horn and includes the use of a visualizing method called active imagination developed by Carl

Jung [80]. Built on the proposition that we can “draw” our thinking as well as verbalize it, a Visual

Language may contain words, images, and shapes.

Particularly, there is a branch of visual languages called iconic languages, whose visual

sentences consist of a spatial permutation of icons. Each icon bears a unique (or sometimes mul-

tiple) meaning in the vocabulary set of icons used in Iconic Language. In human-computer inter-

action, the iconic language normally has a limited vocabulary set with specific application domain

such as database access, form manipulation and image processing. To facilitate the design of such

iconic languages, a design methodology was devised [14] based on upon the theory of icon algebra,

allowing for a flexible derivation of the meaning of iconic sentences.

3http://www.carsim.com
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In the human-human interaction, there are also iconic languages used, especially in aug-

mentative communication by people with speech disabilities. Much work also has been done in

the area of augmentative and alternative communication regarding the use of visual-graphic symbol

acquisition by pre-school age children with developmental and language delays. In their findings,

the authors [2] concluded that the acquisition of a language requires an individual to organize the

world into a system of symbols and referents. However, learning the relationship between a symbol

and referent can be difficult for a child with serious intellectual disability and language delays. The

complexity and iconicity of a symbol becomes an important issue in the decision of what medium

to use for teaching languages. By using an observational experiential language intervention, they

are able to study the effects of four pre-schoolers with developmental and language delays to ac-

quire the meanings of Blissymbols4 and lexigrams. The results confirmed the findings that even

children with such disabilities are able to acquire language skills through visual representations,

although performance varies according to the participants’ comprehension skills.

Commercial products with visual interfaces5 have also been marketed with success. They

are used for augmentative communication for people with physical limitations or speech imped-

iments, with iconic keyboards that can be touched to produce a voice output for communication

augmentation. Also related to some extent is the work done in visual programming languages,

where visual representations such as graphics and icons are added to programming languages to

support visual interactions and to allow for programming with visual expressions. Additionally,

there are also many pictorial dictionaries6 that boost the quick acquisition of a new language skill,

through the use of word/image associations. Specific pictorial references based on medical do-

mains7 are also available; these are excellent learning aids for the various professionals in their

fields.

4Blisssymbols is a symbolic, graphical language that is currently composed of over 3,000 symbols
5http://www.amdi.net/
6http://www.pdictionary.com/, http://web.mit.edu/21f.500/www/vocab-photo/
7http://www.nlm.nih.gov/medlineplus/encyclopedia.html

12



CHAPTER 3

BACKGROUND ON RESOURCES

In this chapter, we introduce several resources that are recurrently employed for the development

and evaluation of our proposed ideas throughout the dissertation. We also explain the “Bag of

Visual Codewords” algorithm, which is a widely adopted method to characterize image effectively

for the purpose of image or scene classification and retrieval [87].

3.1. Wordnet

Wordnet1 [61] is an online semantic lexicon for English language, its creation being inspired by

current psycholinguistic theories of human lexical memory. Wordnet is distinctively different from

a dictionary or a thesaurus. In a dictionary, words are ordered according to an alphabetical order,

while their meanings are scattered randomly throughout. In a thesaurus, words are grouped to-

gether semantically at the expense of their alphabetical order. Wordnet attempts to combine the

best of both worlds with the construction of a highly searchable lexical list with each entry belong-

ing to a synset, which is a set of synonymous words or collocations (a collocation is a sequence of

words often used together to show a specific meaning e.g. “car pool”). The meaning of a synset is

further clarified with a short defining gloss. Each synset with its set of words and gloss represents

a single conceptual entity and forms the most basic constructing unit for Wordnet.

In reality, Wordnet is not just seen as a vast collection of synsets. Semantically, there exists

meaningful links between synsets. One example is the important antonym relationship which

denotes a synset as having opposite meaning to another. These relationships are modeled in a way

that reflects the organization of a lexicon in the human memory. Together, their existence form

a web of semantics where there is a pointer from each synset (a meaning, or a single conceptual

entity) to another governing the type of relationship held. This richness of information and its

semantic links imply the suitability of Wordnet for use in NLP and AI applications.

1Wordnet online lexical reference system, Princeton University, NJ, http://wordnet.princeton.edu/
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WordNet also provides the polysemy count of a word, which is the number of synsets that

contain the word. When a word appears in more than one synset (i.e. more than one sense, or

meaning, or conceptual entity), it implies that some senses are much more common than others.

Wordnet uses frequency scores to quantify this phenomenon. In a sample corpus, all words are

semantically tagged with the corresponding synset, after which a count was given on how often a

word appeared in a specific sense.

As of 2011, Wordnet database contains more than 150,000 words organized over 115,000

synsets for a total of 206,941 word-sense pairs. Table 3.1 shows the number of nouns, verbs, ad-

jectives, and adverbs defined in Wordnet 3.0, and the number of synsets for each of these parts of

speech.

Part of Speech Words Synsets
Noun 117,798 82,115
Verb 11,529 13,767
Adjective 21,479 18,156
Adverb 4,481 3,621
TOTAL 155,287 117,659

TABLE 3.1. Words and synsets in Wordet 3.0.

3.1.1. Semantic Relationships between Noun Synsets

Of two important relationships among noun synsets are the inheritance and part-whole

relationships. The inheritance relationship simply means features are inherited from one word to

the other. Figuratively speaking, words with inheritance links are ordered on a hierarchical basis,

with the lower levels inheriting from the higher levels. Wordnet classify this type of relationship

into the hypernym relationship, which states that X is a kind of Y if Y is a hypernym of X, and

conversely, the hyponym relationship, which states that Y is a kind of X if Y is a hyponym of X.

When two words share a common hypernym, we call them coordinate terms. Hence Inheritance

can also be thought of as “IS A” relationship. For instance, a “dog” is a “canine”, a “canine” is in

turn a “carnivore”, a “carnivore” is in turn a “placental” and so on. This is shown in Figure 3.1.
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FIGURE 3.1. A Wordnet “is a” relationship for dog.

Note that the hypernym-hyponym relationship is transitive, meaning that a “dog” inherits

from “mammal” i.e. a “dog” is also a “mammal” if Y is a hyponym of X. Also, the relationship

is one-to-many, meaning that a “dog” can only be a “mammal”, not a “reptile” at the same time,

but besides “dog”, a “cat”, a “pig”, a “duck” can all be “mammals”. They are coordinate terms.

Part-whole relationship indicates a “PART OF” relationship. Intuitively, a “hand” is a part of a

“body”, and hence qualify for the part-whole relationship. We call the “hand” a meronym of the

“body”, and conversely, the “body” is a holonym of the “hand”.

Part-whole relationships are similar to Inheritance relationships in their hierarchical struc-

ture and transitivity. The two type of relationships can be combined to form a composite relation-

ship, as in if X is a hyponym of Y, and W is meronym X, and Z is a meronym of Y, then W can be

a hyponym of Z.
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3.1.2. Semantic Relationships between Verb Synsets

Verb synsets also exhibit hypernym-hyponym relationships between them. A clear instance

of such a relationship is the verb “walk.” “stagger,” “trudge,” “stride” are all hyponyms of the

hypernym “walk.”

A relationship exclusive to verb synsets would be troponym. To understand troponymy, we

first visit entailment, a concept well-defined for propositional logic. When X entails Y, we state that

under no conceivable state of affairs, there exists a situation of X is true Y is false, and vice-versa.

Now, if we say “snore” entails “sleep,” there is no way whatsoever to state confidently that “sleep”

entails “snore” too, and hence the relationship is unilateral. Troponymy, thus, specify every verb X

entails a more general verb Y, if X is a troponym of Y. The causative relation relates the “cause” (in

the word “display”) to “effect” (in the word “see”). This type of relation is transitive; if X causes

Y, Y causes Z, then we conclude that X causes Z.

Besides having semantic relations in a category, there are also semantic relations connect-

ing different categories. For instance, an adjective modifies an attribute, resulting in a link between

the adjective to the synset containing the attribute. An adverb may link to an adjective from which

it is derived.

3.2. ImageNet

The ImageNet database [18] is an ontology of images developed for advancing content-

based image search algorithms, and serving as a benchmarking standard for various visual recog-

nition tasks, such as object recognition, image classification and object recognition. At its core,

ImageNet exploits the hierarchical structure of WordNet by attaching relevant images to each ,

hence providing pictorial illustrations of the concept associated with the synset. On average, each

synset contains 500-1000 images that are carefully audited through a stringent quality control

mechanism, one in which annotators from Amazon Mechanical Turk2 are asked to verify the in-

clusion of objects from synsets in candidate images.

2https://www.mturk.com/mturk/welcome
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FIGURE 3.2. A subset of images associated with a node in ImageNet. The Word-
Net synset illustrated here is {Dog, domestic dog, Canis familiaris} with the gloss:
A member of the genus Canis (probably descended from the common wolf) that has
been domesticated by man since prehistoric times; occurs in many breeds; “the dog
barked all night”

The long standing goal of ImageNet project is to construct a large-scale, accurate and

diverse image database, one based on a well-established semantic ontology. Starting from 27 high-

level categorical synsets, images are grouped according to the hierarchical structure of WordNet

via the hypernym-hyponym semantic relationship. The end result is a large network of trees, each

connecting pictorially-illustrated sysnets. The current 27 subtrees consists of 14 million images

spread over 21841 categorical synsets. Figure 3.2 shows a example of illustrated synset in Ima-

geNet, while Figure 3.3 depicts snapshots of two root-to-leaf branches of two ImageNet trees.

To date, ImageNet is the largest image database to be constructed, in terms of the number

of categories, number of images per category and the total number of images. As an illustration,

at the time of its creation, no other image dataset offers illustration of 147 categories [18]. A

comparative study made between ImageNet and the ESP data [81] reveals the former to possess

larger and denser network of interconnected nodes, even when observing the same sub-trees of

images.

Due to its image collection policy which is not biased toward any specific positioning, pose,

appearance, background clutter or occlusions, there exists a rich diversity of images qualifying

under the same sysnset. This is confirmed by measuring the lossless JPG file size of the average of
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each image, where a smaller file size corresponds to a blurrier image of higher gray scaled patches,

which is consistent and characteristic of commonly pooled images covering a greater diversity in

their appearances.

Due to the varying degrees of specificity of synsets under a tree, obtaining a clean dataset

overall is challenging. Such an intuition is justified by the observation that images of a “working

dog” is harder to collect than a “dog”. To quantify the accuracy of images present in ImageNet, a

total of 80 synsets are randomly sampled at different levels tree depth and judged by an independent

group of subjects. On average, a precision of 99.7% is achieved for each synset.

FIGURE 3.3. Illustrations of illustrated synsets in within two trees in ImageNet.

3.3. Bag of Visual Codewords using Shift-Invariant Feature Transform

Inspired by the bag-of-words approach employed in information retrieval, the “bag of visual code-

words” is a similar technique used mainly for scene classification [87]. Starting with an image

collection, visual features are first extracted as data points from each image, characterizing its ap-

pearance. By projecting data points from all the images into a common space and grouping them

into a large number of clusters such that similar data points are assigned to the same cluster, we

can treat each cluster as a “visual codeword” and express every image in the collection as a “bag

of visual codewords”. This representation enables the application of methods used in text retrieval

to tasks in image processing and computer vision.

Typically, the type of visual features selected can be global – suitable for representing an

entire image, or local – specific to a given region in the image, depending on task requirement.
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For a global representation, features are often described using a continuous feature space, such as

a color histogram in three different color spaces (RGB, HSV and LAB), or textures using Gabor

and Haar wavelets [56]. Likewise, local descriptors such as key points [24] can also adopt such a

representation. Regardless of the features used, visual codeword generation involves the following

three important phases.

(1) Feature detection: The image is divided into partitions of varying degrees of granularity

from which features can be extracted and represented. Typically, we can employ nor-

malized cuts to divide an image into irregular regions, or apply uniform segmentation to

break it into smaller but fixed grids, or simply locate information-rich local patches on the

image using interest point detectors.

(2) Feature description: A descriptor is selected to represent the features that are being ex-

tracted from the image. Typically, feature descriptors (global or local) are represented as

numerical vectors, with each vector describing the feature extracted in each region. This

way, an image is represented by a set of vectors from its constituent regions.

(3) Visual codeword generation: Clustering methods are applied to group vectors into clus-

ters, where the center of each cluster is defined as a visual codeword, and the entire

collection of clusters defines the visual vocabulary for that image collection. Each image

region or patch abstracted in feature detection is now represented by the visual codeword

mapped from its corresponding feature vector.

The process of visual codeword generation is illustrated in Figure 3.4. [24] has shown that, unlike

most previous work on object or scene classification that focused on adopting global features,

local features are in fact extremely powerful cues. In this dissertation, we use the Scale-Invariant

Feature Transform (SIFT) introduced by [55] to describe distinctive local features of an image in

the feature description phase. SIFT descriptors are selected for their invariance to image scale,
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FIGURE 3.4. An illustration of the process of generating “Bag of Visual Codewords”

rotation, differences in 3D viewpoints, addition of noise, and change in illumination. They are also

robust across affine distortions.
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CHAPTER 4

“MEN CAN BE FROM VENUS, WOMEN CAN BE FROM MARS”: INTEROPERABILITY

OF FEATURES BETWEEN LANGUAGE AND VISION TASKS (I) – TEXT MINING FOR

AUTOMATIC IMAGE TAGGING

Martians value power, competency, efficiency, and achievement. They are always
doing things to prove themselves and develop their power and skills. Their sense of
self is defined through their ability to achieve results. They experience fulfilment
primarily through success and accomplishment.

John Gray

In this chapter1, we attempt to bridge the gap between textual features engineering and vi-

sion tasks, by showing that it is possible to apply features generated using evidence gathered from

text corpora directly for solving a selected task in computer vision. We first outline the motivation

for making automatic image tagging as the selected vision task. Next, we propose a new evalua-

tion framework for image tagging, which is based on an analogy drawn between the tasks of image

labeling and lexical substitution. We then present three extractive approaches for the task of image

annotation. The methods proposed are based only on the text surrounding an image, without the

use of image features. Finally, by combining several orthogonal methods through machine learn-

ing, we show that it is possible to achieve a performance that is competitive to a state-of-the-art

image annotation system that relies on visual and textual features, thus demonstrating the effec-

tiveness of text-based extractive annotation models.

4.1. Motivation

With continuously increasing amounts of images available on the Web and elsewhere, it is impor-

tant to find methods to annotate and organize image databases in meaningful ways. Tagging images

with words describing their content can contribute to faster and more effective image search and

1published in [50]
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classification. In fact, a large number of applications, including the image search feature of current

search engines (e.g., Yahoo!, Google) or the various sites providing picture storage services (e.g.,

Flickr, Picasa) rely exclusively on the tags associated with an image in order to search for relevant

images for a given query.

However, the task of developing accurate and robust automatic image annotation mod-

els entails daunting challenges. First, the availability of large and correctly annotated image

databases is crucial for the training and testing of new annotation models. Although a number

of image databases have emerged to serve as evaluation benchmarks for different applications, in-

cluding image annotation [20], content-based image retrieval [51] and cross language information

retrieval [32], such databases are almost exclusively created by manual labeling of keywords, re-

quiring significant human effort and time. The content of these image databases is often restricted

only to a few domains, such as medical and natural photo scenes [32], and specific objects like

cars, airplanes, or buildings [28]. For obvious practical reasons, it is important to develop models

trained and evaluated on more realistic and diverse image collections.

The second challenge concerns the extraction of useful image and text features for the

construction of reliable annotation models. Most traditional approaches relied on the extraction of

image colors and textures [51], or the identification of similar image regions clustered as blobs [20]

to derive correlations between image features and annotation keywords. In comparison, there

are only a few efforts that leverage on the multitude of resources available for natural language

processing to derive robust linguistic-based image annotation models. One of the earliest efforts

involved the use of captions for face recognition in photographs through the construction of a

specific lexicon that integrates linguistic and photographic information [77]. More recently, several

approaches have proposed the use of WordNet as a knowledge-base to improve content-based

image annotation models, either by removing noisy keywords through semantic clustering [40] or

by inducing a hierarchical classification of candidate labels [78].

In this chapter, we explore the use of several natural language resources to construct image

annotation models that are capable of automatically tagging images from unrestricted domains with

22



Normal Image Mode Image

Gold standard czech (5), festival (5), Oklahoma
(4), yukon (4), october (4), web
page (2), the first (2), event (2), suc-
cess (1), every (1), year (1)

train (5), station (4), steam (4), trans
siberian (4), steam train (4), travel
(3), park (3), siberian (3), old (3),
photo (1), trans (2), yekaterinburg
(2), the web (2), photo host (1)

TABLE 4.1. Two sample images. The number besides each label indicates the
number of human annotators agreeing on that label. Note that the mode image has
a tag (i.e.“train”) in the gold standard set most frequently selected by the annotators

good accuracy. Unlike traditional image annotation methodologies that generate tags using image-

based features, we propose to extract them in a manner analogous to keyword extraction. Given a

target image and its surrounding text, we extract those words and phrases that are most likely to

represent meaningful tags. More importantly, we are interested to investigate the potential of such

linguistic-based models on image annotation accuracy and reliability. Our work is motivated by

the need for annotation models that can be efficiently applied on a very large scale (e.g. harvesting

images from the web), which are required in applications that cannot afford the complexity and

time associated with current image processing techniques.

4.2. Dataset

As the methods we propose are extractive, standard image databases with no surrounding text such

as Corel [20] are not suitable, nor are they representative for the challenges associated with raw

data from unrestricted domains. We thus create our own dataset using images randomly extracted

from the Web.

To avoid sparse searches, we use a list of the most frequent words in the British National

Corpus as seed words, and query the web using the Google Image API. A webpage is randomly

selected from the query results if it contains a single image in the specified size range (width and
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height of 275 to 1000 pixels2) and its text contains more than 10 words. Next, we use a Document

Object Model (DOM) HTML parser3 to extract the content of the webpage. Note that we do not

perform manual filtering of our images except where they contain undesirable qualities (e.g. porn,

corrupted or blank images).

In total, we collected 300 image-text pairs from the web. The average image size is 496

pixels width and 461 pixels height. The average text length is 278 tokens and the average document

title length is 6 tokens. In total, there are 83,522 words and the total vocabulary is 8,409 words.

For each image, we also create a gold standard of manually assigned tags, by using the

labels assigned by five human annotators. The image annotation is conducted via Amazon Me-

chanical Turk, which was shown in the past to produce reliable annotations [76]. For increased

annotation reliability, we only accept annotators with an approval rating of 98%.

Given an image, an annotator extracts from the associated text a minimum of five words

or collocations.Annotators can choose words freely from the text, while collocation candidates are

restricted to a fixed set obtained from the n-grams (n ≤ 7) in the text that also appear as article

names or surface forms in Wikipedia. Moreover, when interpreting the image, the annotators are

instructed to focus on both the denotational and conotational attributes present in the image4.

4.3. A New Evaluation Framework: Image Tagging as Lexical Substitution

While evaluations of previous work in image annotation were often based on labels provided with

the images, such as tags or image captions, in our dataset such annotations are either missing or

unreliable. A random sampling of 15 images reveal that 7 lack captions. Some images have empty

ALT tag, while others are labeled with non-useful information such as DSN0001.jpg, 4x400.png

etc. We rely instead on human-produced extractive annotations (as described in the previous sec-

tion), and formulate a new evaluation framework based on the intuition that an image can be

substituted with one or more tags that convey the same meaning as the image itself. Ideally, there

2Empirically determined to filter advertisements, banners and undersized images.
3http://search.cpan.org/dist/HTML-ContentExtractor/
4Annotation instructions, dataset and gold standard can be downloaded at
http://lit.csci.unt.edu/index.php/Downloads
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is a single tag that “best” describes the image overall (i.e. the gold standard tag agreed by the ma-

jority of human annotators), but there are also multiple tags that describe the fine-grained concepts

present in the image. Our evaluation framework is inspired by the lexical substitution task [57],

where a system attempts to generate a word (or a set of words) to replace a target word, such that

the meaning of the sentence is preserved.

Given this analogy, the evaluation metrics used for lexical substitution can be adapted to

the evaluation of image tagging. Specifically, we measure the precision and the recall of a tagging

method using four subtasks: best normal: provides precision and recall for the top-ranked tag

returned by a method; best mode: provides precision and recall only if the top-ranked tag by a

method matches the tag in the gold standard that was most frequently selected by the annotators;

out of ten (oot) normal: provides precision and recall for the top ten tags by the system; and out

of ten (oot) mode: similar to best mode, but it considers the top ten tags returned by the system

instead of one. Table 4.1 show examples of a normal and a mode image.

Formally, let us assume that H is the set of annotators, namely {h1, h2, h3, ...}, and I,

{i1, i2, i3, ...} is the set of images for which each human annotator provide at least five tags.

For each ij, we calculate mj, which is the most frequent tag for that image, if available. We also

collect all rkj, which is the set of tags for the image ij from the annotator hk.

Let the set of those images where there is a tag agreed upon by the most annotators (i.e.

the images with a mode) be denoted by IM, such that IM ⊆ I. Also, let A ⊆ I be the set of images

for which the system provides more than one tag. Let the corresponding set for the images with

modes be denoted by AM, such that AM ⊆ IM. Let aj ∈ A be the set of system’s extracted tags for

the image ij.

Thus, for each image ij, we have the set of tags extracted by the system, and the set of tags

from the human annotators. As the next step, the multiset union of the human tags is calculated,

and the frequencies of the unique tags is noted. Therefore, for image ij, we calculate Rj, which

is
∑

rkj, and the individual unique tag in Rj, say res, will have a frequency associated with it,

namely freqres.
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Given this setting, the precision (P ) and recall (R) metrics we use are defined below.

Best measures:

(1) P =

∑
aj :ij∈A

∑
res∈aj

freqres

|aj |

|Rj |

|A|

(2) R =

∑
aj :ij∈I

∑
res∈aj

freqres

|aj |

|Rj |

|I|

(3) modeP =

∑
bestguessj∈AM(1if best guess = mj)

|AM |

(4) modeR =

∑
bestguessj∈IM(1if best guess = mj)

|IM |

Out of ten (oot) measures:

(5) P =

∑
aj :ij∈A

∑
res∈aj

freqres

|Rj |

|A|

(6) R =

∑
aj :ij∈I

∑
res∈aj

freqres

|Rj |

|I|

(7) modeP =

∑
aj :ij∈AM(1if any guess ∈ aj = mj)

|AM |
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(8) modeR =

∑
aj :ij∈IM(1if any guess ∈ aj = mj)

|IM |

As a simplified example (with less tags), consider ij showing a picture of a Chihuahua being la-

beled by five annotators with the following tags, shown in Table 4.2 :

Annotator Tags
1 dog,pet
2 chihuahua
3 animal,dog
4 dog,chihuahua
5 dog

TABLE 4.2. Example of tags provided by 5 independent annotators for an image
depicting the dog “Chihuahua”

In this case, r1j = {dog,pet}, r2j = {chihuahua}, r3j = {animal,dog} and so on. The tag “dog”

appears the most frequent among the five annotators, hence mj = {dog}. Rj={dog, dog, dog,

dog, chihuahua, chihuahua, animal, pet}. The res with associated frequencies would be dog

4, chihuahua 2, animal 1, pet 1. If the system’s proposed tag for ij is {dog, animal}, then the

numerator of P and R for best subtask would be
4+1
2
8 = 0.313. Similarly, the numerator of P and R

for oot subtask is 4+1
8 = 0.625.

4.4. Extractive Image Annotation

The main idea underlying our work is that we can perform effective image annotation using infor-

mation drawn from the associated text. Following [26], we propose that an image can be annotated

with keywords capturing the denotative (entities or objects depicted) and connotative (semantics or

ideologies interpreted) attributes in the image. For instance, a picture showing a group of athletes

and a ball may also be tagged with words like “soccer,” or “sports activity.” Specifically, we use

a combination of knowledge sources to model the denotative quality of a word as its picturability,

and the connotative attribute as its saliency. The idea of visualness and salience as textual features
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for discovering named entities in an image was first pursued by [19], using data from the news

domain. In contrast, we are able to perform annotation of images from unrestricted domains using

content words (nouns, verbs and adjectives). In the following, we first describe three unsupervised

extractive approaches for image annotation, followed by a supervised method using a re-ranking

hypothesis that combines all the methods.

Flickr Picturability

Featuring a repository of four billion images, Flickr (http://www.flickr.com) is one of the most

comprehensive image resources on the web. As a photo management and sharing application,

it provides users with the ability to tag, organize, and share their photos online. Interestingly,

an inspection of Flickr tags for randomly selected images reveal that users tend to describe the

denotational attributes of images, using concrete and picturable words such as cat, bug, car etc.

This observation lends evidence to Flickr’s suitability as a resource to model the picturability of

words.

Algorithm 1 Flickr Picturability Algorithm
Start : L[]=ϕ , TF[]=tf of each word in T
for each word in T do

if length(word) ≥ α then
RelatedTags=getRelatedTags(word);
if size(RelatedTags) > 0 then

L[word]+=β*TF[word]
for each tag in RelatedTags do

if exists TF [tag] then
L[tag]+=TF[tag]

end if
end for

end if
end if

end for

Given the text (T ) of an image, we can use the getRelatedTags API to retrieve the most

frequent Flickr tags associated with a given word, and use them as corpus evidence to filter or

promote words in the text. In the filtering phase we ignore any words that return an empty list
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of Flickr’s related tags, based on the assumption that these words are not used in the Flickr tags

repository. We also discard words with a length that is less than three characters (α=3). In the

promotion phase, we reward any retrieved tags that appear as surface forms in the text. This

reward is proportional to the term frequency of these tags in the text. Additionally, we also include

in the final label set any word that returns a non-empty related tags set with a discounted weight

(β=0.5) of its term frequency, to the end of enriching our labels set while assuring more credit are

given to the picturable words. The algorithm is described in Algorithm 1.

To extract multiword labels, we locate all n-grams formed exclusively from our extracted

set of possible labels. The subsequent score for each of these n-grams is:

(9) L[wi..wi+k] = (

j=i+k∑
j=i

L[wj])/k

By reverse sorting the associative array in L, we can retrieve the top K words to label the image.

For illustration, let us consider the following text snippet.

On the Origin of Species, published by Charles Darwin in 1859, is considered to be

the foundation of evolutionary biology.

After removing stopwords, we consider the remaining words as candidate labels. For each of these

candidates wi (i.e. origin, species, published, charles, darwin, foundation, evolutionary, and

biology), we query Flickr and obtain their related tag set Ri. origin, published, and foundation

return an empty set of related tags and hence are removed from our set of candidate labels, leaving

species, charles, darwin, evolutionary, and biology as possible annotation keywords with the

initial score of 0.5. In the promotion phase, we score each wi based on the number of votes it

receives from the remaining wj (Figure 4.1). Each vote represents an occurrence of the candidate
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tag wi in the related tag set Rj of the candidate tag wj . For example, darwin appeared in the Flickr

related tags for charles, evolutionary, and biology, hence it has a weight of 3.5. The final list of

candidate labels are shown in Table 4.3.

... Species, published by Charles Darwin … founda!on of evolu!onary biology

FIGURE 4.1. Flickr picturability labels

Label S(wi)
darwin 3.5
charles darwin 2.5
charles 1.5
biology 1.5
evolutionary biology 1.0
evolutionary 0.5
species 0.5

TABLE 4.3. Candidate labels obtained for a sample text using the Flickr model

Wikipedia Salience

We hypothesize that an image often describes the most important concepts in the associated text.

Thus, the keywords selected from a text could be used as candidate labels for the image. We use

a graph-based keyword extraction method similar to [60], enhanced with a semantic similarity

measure. Starting with a text, we extract all the candidate labels and add them as vertices in the

graph. A measure of word similarity is then used to draw weighted edges between the nodes.

Using the PageRank algorithm, the words are assigned with a score indicating their salience within

the given text.

To determine the similarity between words, we use a directed measure of similarity. Most

word similarity metrics provide a single-valued score between a pair of words w1 and w2 to in-

dicate their semantic similarity. Intuitively, this is not always the case, as w1 may be represented
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by concepts that are entirely embedded in other concepts, represented by w2. In psycholinguistics

terms, uttering w1 may bring to mind w2, while the appearance of w2 without any contextual clues

may not associate with w1. For example, Obama brings to mind the concept of president, but

president may trigger other concepts such as Washington, Lincoln, Ford etc., depending on

the existing contextual clues. Thus, the degree of similarity of w1 with respect to w2 should be sep-

arated from that of w2 with respect to w1. Specifically, we use the following measure of similarity,

based on the Explicit Semantic Analysis (ESA) vectors derived from Wikipedia [30]:

(10) DSim(wi, wj) =
Cij

Ci

∗ Sim(wi, wj)

where Cij is the count of articles in Wikipedia containing words wi and wj , Ci is the count of arti-

cles containing words wi, and Sim(wi, wj) is the cosine similarity of the ESA vectors representing

the input words.The directional weight (Cij/Ci) amounts to the degree of association of wi with re-

spect to wj . Using the directional inferential similarity scores as directed edges and distinct words

as vertices, we obtain a graph for each text. The directed edges denotes the idea of “recommenda-

tion” where we say w1 recommends w2 if and only if there is a directed edge from w1 to w2, with

the weight of the recommendation being the directional similarity score. Starting with this graph,

we use the graph iteration algorithm from [60] to calculate a score for each vertex in the graph.

The output is a sorted list of words in decreasing order of their ranks, which are used as candidate

labels to annotate the image. This is achieved by using Cj instead of Ci for the denominator in the

directional weight. Table 4.4 shows the directional similarity for some words.

To illustrate with an example, consider the text snippet :

Microsoft Corporation is a multinational computer technology corporation that de-

velops, manufactures, licenses, and supports a wide range of software products for
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wi wj DSim(wi,wj)
broadband Internet 0.797

Internet broadband 0.032
Ipod apple 0.792
apple Ipod 0.076
Bush president 0.385

president Bush 0.072
Microsoft software 0.550
software Microsoft 0.231

TABLE 4.4. Directional similarity scores for some words

computing devices

after stopword removal, the list of nouns extracted is Microsoft, computer, corporation, devices,

products, technology, software. Note that the top-ranked word must infer some or all of the words

in the text. In this case, the word Microsoft infers the terms computer, technology and software.

To calculate the semantic relatedness between two collocations, we use a simplified version

of the text-to-text relatedness technique proposed by [36] and [58] that incorporate the directional

inferential similarity as an underlying semantic metric.

Formally, let Ta and Tb be two text fragments of size a and b respectively. After removing

all stopwords, we first determine the number of shared terms (ω) between Ta and Tb. Second, we

calculate the semantic relatedness of all possible pairings between non-shared terms in Ta and Tb.

We further filter these possible combinations by creating a list φ which holds the strongest seman-

tic pairings between the fragments’ terms, such that each term can only belong to one and only one

pair.

(11) Sim(Ta, Tb) =
(ω +

∑|φ|
i=1 φi)× (2ab)

a+ b
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where ω is the number of shared terms between the collocations and φi is the similarity score for

the ith pairing.

Topical Modeling

Intuitively, every text is written with a topic in mind, and the associated image serves as an illus-

tration of the text meaning. In this work, we investigate the effect of topical modeling on image

annotation accuracy directly. We use the Pachinko Allocation Model (PAM) [53] to model the

topics in a text, where keywords forming the dominant topic are assumed as our set of annotation

keywords. Compared with previous topic modeling approaches, such as Latent Dirichlet alloca-

tion (LDA) or its improved variant Correlated Topic Model (CTM) [8], PAM captures correlations

between all the topic pairs using a directed acyclic graph (DAG). It also supports finer-grained

topic modeling, and has state-of-the-art performance on the tasks of document classification and

topical keyword coherence. Given a text, we use the PAM model to infer a list of super-topics and

sub-topics together with words weighted according to the likelihood that they belong to each of

these topics. For each text, we retrieve the top words belonging to the dominant super-topic and

sub-topic. We use 50 super-topics and 100 sub-topics as operating parameters for PAM, since these

values were found to provide good results in previous work on topic modeling. Default values are

used for other parameters in the model.

4.5. Supervised Learning

The three tagging methods target different aspects of what constitutes a good label for an image.

We use them as features in a machine learning framework, and introduce a final rank attribute S(tj),

which is a linear combination of the reciprocals of the rank of each tag as given by each method,
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(12) S(tj) =
∑

m∈methods

λm
1

rmtj

where rmtj is the rank for tag tj given by method m. The weight of each method λm is estimated

from the training set using information gain values. Since our predicted variable (mode precision or

recall) is continuous, we use the Support Vector Algorithm (nu-SVR) implementation of SVM [13]

to perform regression analysis on the weights for each method via a radial basis function kernel. A

ten-fold cross-validation is applied on the entire dataset of 300 images.

4.6. Experiments and Evaluations

We evaluate the performance of each of the three tagging methods separately, followed by an

evaluation of the combined method. Each system produces a ranked list of K words or collocations

as tags assigned to a given image. A system can discretionary generate less (but not more) than K

tags, depending on its confidence level.

For comparison, we implement three baselines: tf*idf, Doc Title and Random. For tf*idf,

we use the British National Corpus to calculate the idf scores, while the frequency of a term is

calculated from the entire text associated with an image. The Doc Title baseline is similar, except

that the term frequency is calculated based on the title of the document. The Random baseline

randomly selects words from a co-occurrence window of size K before and after an image as its

annotation. Following other tagging methods, we apply a pre-processing stage, where we part-

of-speech tag the text (to retain only nouns), followed by stemming. We also determine an upper

bound, which is calculated as follows. For each image, the labels assigned by each of the five

annotators are in turn evaluated against a gold standard consisting of the annotations of the other

four annotators. The best performing annotator is then recorded. This process is repeated for each

of the 300 images, and the average precision and recall are calculated. This represents an upper

bound, as it is the best performance that a human can achieve on this dataset. Table 4.5 shows our

experimental results.
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Best out-of-ten (oot)
Normal Mode Normal Mode

Models P R P R P R P R
Flickr picturability 6.32 6.32 78.57 78.57 35.61 35.61 92.86 92.86
Wikipedia Salience 6.40 6.40 7.14 7.14 35.19 35.19 92.86 92.86
Topic modeling 5.99 5.99 42.86 42.86 37.13 37.13 85.71 85.71
Combined (SVM) 6.87 6.87 67.49 67.49 37.85 37.85 100.00 100.00
Doc Title 6.40 6.40 75.00 75.00 18.97 18.97 82.14 82.14
tf * idf 5.94 5.94 14.29 14.29 38.40 38.40 78.57 78.57
Random 3.76 3.76 3.57 3.57 30.20 30.20 50.00 50.00
Upper bound (human) 12.23 12.07 81.48 81.48 82.44 81.55 100.00 100.00

TABLE 4.5. Results obtained on the Web dataset

Among the individual methods, the method implementing Flickr picturability has the high-

est individual score for best and oot modes, yielding a precision and recall of 78.57% and 92.86%

respectively. The Wikipedia Saliency method also scores the highest (jointly with Flickr) in the

oot mode, but for the best mode achieves a score only marginally better than the random baseline.

A plausible explanation is that it tends to favor “all-inferring” over-specific labels, while the most

frequently selected tags in mode pictures are typically more “picturable” than being specific (e.g.

“train” for the mode picture in Table 4.1). The topic modeling method has mixed results: its scores

for oot normal and mode are somewhat competitive with tf*idf, but it scores consistently lower than

the DocTitle in the best subtask, possibly due to the absence of a more sophisticated re-ranking al-

gorithm tailored for the image annotation task other than the intrinsic ranking mechanism in PAM.

It is worth noting that the combined supervised system provides the overall best results (6.87%)

on the best normal, and achieves a perfect precision and recall (100%) for oot mode, which means

perfect agreement with the human tagging.

4.7. Related Work

We also compare our work against [26] as it allows for a direct comparison with models using both

image and textual features under a standard evaluation framework. We obtained the BBC dataset

used in their experiments, which consists of 3121 training and 240 testing images. In this dataset,

images are implicitly tagged with captions by the author of the corresponding BBC article. The

evaluations are run against these captions.
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Top 10 Top 15 Top 20
Models P R F1 P R F1 P R F1
tf*idf 4.37 7.09 5.41 3.57 8.12 4.86 2.65 8.89 4.00
DocTitle 9.22 7.03 7.20 9.22 7.03 7.20 9.22 7.03 7.20
Lavrenko03 9.05 16.01 11.81 7.73 17.87 10.71 6.55 19.38 9.79
ExtModel 14.72 27.95 19.82 11.62 32.99 17.18 9.72 36.77 15.39
Flickr picturability 12.13 22.82 15.84 9.52 26.82 14.05 8.23 29.80 12.90
Wikipedia Salience 11.63 21.89 15.18 9.28 26.20 13.70 7.81 29.41 12.35
Topic Modeling 11.42 21.49 14.91 9.28 26.20 13.70 7.86 29.57 12.42
Combined (SVM) 13.38 25.17 17.47 11.08 31.29 16.37 9.50 35.76 15.01

TABLE 4.6. Results obtained on the BBC dataset used in [26]

In their experiments, Feng and Lapata created four annotation models. The first two

(tf*idf and Document Title) are the same as used in our baseline experiments. The third model

(Lavrenko03) is an application of the continuous relevance model in [38], trained with the BBC

image features and captions. Finally, the forth (ExtModel) is an extension of the relevance model

using additional information in auxiliary texts. Briefly, the model assumes a multiple Bernoulli dis-

tribution for words in a caption, and generates tags for a test image using a weighted combination

of the accompanying document, caption and image features learned during training.

The experimental setup is similar to the earlier section, but a few modifications are made

for a fair and direct comparison. First, we extend our models coverage to include content words

(i.e. nouns, verbs, adjectives) determined using the Tree Tagger [73]. Second, no collocations

are used. Third, we adopt the evaluation framework used by Feng and Lapata to extract the top

10, 15 and 20 tags. Note that in our methods, the extraction of tags for a test image is only done

on the document surrounding the image, after excluding the caption. As the number of negative

examples (words not present in the caption) greatly outnumber the positive instances, we employ

an undersampling method [44] to balance the dataset for training.

The results are shown in Table 4.6. Interestingly, all our unsupervised extraction-based

models perform consistently above the supervised Lavrenko03 model, indicating that textual fea-

tures are more informative than captions and image features taken together. Comparing with mod-

els using significantly less document information (tf*idf and Doc title), our models gain even
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greater advantage. Note that the title of any BBC article does not exceed 10 words, hence compar-

ison is only meaningful given the top 10 tags retrieved.

Feng and Lapata used LDA to perform reranking of final candidates in their ExtModel.

However, when used as a model alone, the PAM topic model achieved promising scores in all the

categories, performing best for top 10 keywords (F1 of 14.91%). Flickr picturability stands out as

the best performing unsupervised method, scoring the highest precision (12.13%, top 10), recall

(29.80%, top 20) and F1 (15.84%, top 10).

Overall, this comparative evaluation yields some important insights. First, our combined

model using SVM is statistically better (p<0.1 for top 10, 15, 20) than the Laverenko03 model, but

not statistically different from the ExtModel. This demonstrates the effectiveness of textual-based

models over traditional models trained with image features and captions. While it is intuitively

clear that image features help in improving tagging performance, we show that mining only the

text surrounding an image, where it exists, can yield a performance that is comparable to a state-

of-the-art system that uses both textual and visual features. Moreover, an increase in complexity

of a model by using more features may hinder its applicability to large datasets, but not necessarily

improving annotation performance [56]. On this, text-based annotation models can provide a de-

sirable compromise. For instance, our unsupervised models implementing Flickr picturability and

Wikipedia Salience are able to extract annotations from a BBC article (average 133.85 tokens) in

approximately 1 second and 20 seconds respectively.

Other Related Work

Several online systems have sprung into existence to achieve annotation of real world images

through human collaborative efforts (Flickr) and stimulating competition [81]. Although a large

number of image tags can be generated in short time, these approaches depend on the availability

of human annotators and are far from being automatic. Similarly, research in the other direction via

text-to-image synthesis [52, 16, 59] has also helped to harvest images, mostly for concrete words,

by refining image search engines.
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Most approaches to automatic image annotation have focused on the generation of image

labels using annotation models trained with image features and human annotated keywords [6,

38, 56, 83]. Instead of predicting specific words, these methods generally target the generation

of semantic classes (e.g. vegetation, animal, building, places etc), which they can achieve with

a reasonable amount of success. Recent work has also considered the generation of labels for

real-world images [51, 26]. To our knowledge, we are unaware of any other work that performs

extractive annotation for images from unrestricted domains through the exclusive use of textual

features.
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CHAPTER 5

“MEN CAN BE FROM VENUS, WOMEN CAN BE FROM MARS”: INTEROPERABILITY

OF FEATURES BETWEEN LANGUAGE AND VISION TASKS (II) – AN IMAGE-BASED

APPROACH FOR MEASURING WORD RELATEDNESS

Venusians have different values. They value love, communication, beauty, and rela-
tionships. They spend a lot of time supporting, helping, and nurturing one another.
Their sense of self is defined through their feelings and the quality of their relation-
ships. They experience fulfilment through sharing and relating.

John Gray

This chapter continues to explore the interoperability of features between language and

vision tasks, by performing research in the reverse direction to exploit visual information for im-

proving tasks in NLP. We select the semantic relatedness problem as the representative task to eval-

uate our hypothesis. Traditional approaches to the semantic relatedness task are often restricted

to text-based methods with little regard for other multimodal evidence. Here, we propose a novel

metric to estimate the similarity of words by comparing visual similarity of concepts invoked by

these words. We demonstrate the promise of such a method through comparative evaluations on

three standard datasets. Furthermore, by using the correct combination function to integrate image

information with other similarity metrics, it is possible to attain the state-of-the-art, confirming the

applicability of visual cues as a possible orthogonal information source in measuring similarity

between words.

5.1. Motivation

Measuring the semantic relatedness of words is an important task with applications in information

extraction and retrieval, query reformulation, word sense disambiguation, plagiarism detection

and textual entailment. Owing mainly to the nature of this task, research efforts in the past have

typically centered around methodologies employing the use of knowledge-based or corpus-based

textual resources, with only little (if any) work paying attention to evidence provided by other
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multimodal sources, such as visual cues presented by the images that are associated with a given

word. While it can be shown that the human cognitive system is sensitive to visual information, and

incorporating a dual linguistic-and-pictorial representation of information can actually enhance

knowledge acquisition [66], the use of visual information to improve tasks in natural language

processing has been largely unexplored.

In this chapter1, we hypothesize that the relatedness between the visual representations of

a pair of words can be effectively used to gauge their similarity. We employed the “bag of visual

words” technique, widely used in computer vision and discussed in 3.3, to show how distinctive

features of an image can be harvested. The main resource for our experiments is ImageNet, dis-

cussed in 3.2, which is used in our work to bridge the semantic gap between words and images.

Finally, we show how a new relatedness metric based exclusively on visual information can be con-

structed for the semantic relatedness task. We evaluate this metric alongside existing corpus-based

[79] and knowledge-based metrics [65] either in a standalone or combined setting and present our

findings.

5.2. Dataset

Given the maturity of techniques used to extract visual content from images, it is possible to study

the synergistic relationships between semantic representations of words and images given the avail-

ability of a large lexical resource with associated relevant images. For such a resource, we turn to

the ImageNet, a visual-linguistic resource outlined and discussed in 3.2.

Compared to other image databases with keyword annotations, we believe that ImageNet

is suitable for evaluating our hypothesis for two important reasons. First, by leveraging on reliable

semantic annotations in WordNet (i.e., words in the synset), we can effectively circumvent the

propagation of errors caused by unreliable annotations, and consequently hope to reach more con-

clusive results for this study. Second, unlike other image databases, ImageNet consists of millions

of images, and it is a growing resource with more images added on a regular basis. This aligns

with our long-term goal of extending our image-based similarity metric to cover more words in the

lexicon.

1A part or whole of the work documented here has been published in [48]
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To evaluate the effectiveness of our image-based model for measuring word-to-word relat-

edness, we selected three datasets widely used in the past:

Rubenstein and Goodenough (RG65) consists of 65 word pairs ranging from synonymy pairs

(e.g., car - automobile) to completely unrelated terms (e.g., noon - string). The 65 noun pairs were

annotated by 51 human subjects. All the nouns pairs are non-technical words scored using a scale

from 0 (not-related) to 4 (perfect synonymy).

Miller-Charles (MC30) is a subset of the Rubenstein and Goodenough dataset, consisting of 30

word pairs, whose relatedness was rated by 38 human subjects, using a scale from 0 to 4.

WordSimilarity-353 (WS353), also known as Finkelstein-353, consists of 353 word pairs an-

notated by 13 human experts, on a scale from 0 (unrelated) to 10 (very closely related). The

Miller-Charles set is a subset in the WordSimilarity-353 data set. Unlike the Miller-Charles data

set, which consists only of single generic words, the dataset also includes proper names and tech-

nical terms, therefore posing an additional degree of difficulty for any relatedness metric.

5.3. Experiments

In our experiments, we seek answers to the following questions. First, what is the effectiveness

of our image-based method in measuring word-to-word relatedness, as compared to existing text-

based methods? Second, can our image-based method complement these text-based methods via a

combination of their outputs ?

Note that as ImageNet is still a resource under development, not all word pairs in the

datasets presented in section 5.2 are covered. To level the playing field, in our experiments we

only select those pairs of words of which both words would appear as surface forms in the synsets

of ImageNet with validated images. Our trimmed dataset consists of 19 word-pairs from the Miller-

Charles dataset (MC19), 39 word-pairs from the Rubenstein-Goodenough dataset (RG39) and 160
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word-pairs from the Word Similarity dataset (WS160) respectively. However, due to coverage is-

sues, an anomaly exists in situations such as monk − slave, where both words may appear in

single-candidate synsets, i.e., {monk,monastic} and {slave ant} respectively, but are represented

using fundamentally different images (person vs animal). Arguably, allowing semantic related-

ness comparison of such a word-pair is meaningless. To prevent this, we further constrain the

selection of word pairs of which at least a pair of candidate synsets each representing a word

in the pair belong to the same high level category, using the ImageNet Applicability Test algo-

rithm, explained in Algorithm 2. Note that both selection steps are performed automatically, and

thus the identification of the word pairs that can be used in conjunction with the image-based ap-

proach can be effectively applied to any dataset, regardless of size. From this, the further trimmed

dataset consists of 10 word-pairs from the Miller-Charles dataset (MC10), 18 word-pairs from

the Rubenstein-Goodenough dataset (RG18) and 56 word-pairs from the Word Similarity dataset

(WS56).

Algorithm 2 ImageNet Applicability Test

Start : CImgNet = {c1,..,cn}, W = {w1,w2}
for each wi in W do
Si = {all synsets in ImageNet containing wi}
HSi

= {all hypernyms of s such that s ∈ Si }
Ci = {HSi

∩ CImgNet}
end for
if C1 ∩ C2 ̸= ∅ then

apply ImageNet as a metric for w1,w2

end if

For each word in a pair, we randomly select 50 images from the validated image pool of its

associated synset2, and extract all the visual codewords from all such images, using the technique

explained in section 3.3. Each image is first pre-processed to have a maximum side length of 300

pixels. Next, SIFT gray-scale descriptors are obtained by densely sampling the image on 20x20

overlapping patches spaced 10 pixels apart using a publicly available image-processing toolkit.3

K-means clustering is applied on a random subset of 10 million SIFT descriptors to derive a visual

2Note that a word may appear as surface forms across multiple synsets. In such cases, we randomly sample 50 images
from each of the synsets
3http://www.image-net.org/challenges/LSVRC/2011
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vocabulary of 1,000 codewords. Each descriptor is then quantized into a visual codeword by as-

signing it to the nearest cluster. As such, each image J can now be expressed as a vector < tfi.wi

>, where i=1:1000 and tfi is the frequency of occurrence of visual codeword wi in image J . For

each synset, we sum the vectors of all 50 images and normalize each wi by its total frequency in

the synset.

Image Metric: Given a word pair wi and wj , let Si = {vik} and Sj = {vjm} be their set of candi-

date visual vectors respectively. Then, computing the semantic relatedness of two words amounts

to finding the maximum visual relatedness between all the possible pairings of synsets representing

both words, using the cosine similarity between the visual vectors of the synsets, given below. The

dimensionality of the vector, n, is set to 1000, which is the size of the visual codeword vocabulary.

(13) Simimg(wi, wj) = max
vk∈Si,vm∈Sj

∑n
p=1 v

p
kv

p
m√∑n

p=1(v
p
k)

2
√∑n

p=1(v
p
m)2

Text Metric: For a comparative study, we evaluate several knowledge-based methods, includ-

ing Roget and WordNet Edges [37], H&S [35], L&C [47], J&C [39], LIN [54], RES [68], and

two corpus-based methods Latent Semantic Analysis (LSA) [46] and Explicit Semantic Analysis

(ESA) [30].

Combined Metric: In the combined setting, we attempt to integrate the output of our image-based

metric with that of existing text-based metrics in a pairwise manner via two combination functions,

which were previously noted for their effectiveness in Information Retrieval systems [29]. Specif-

ically, we combine the text-based and image-based metrics by summing their relatedness figures

(COMBSUM) and by calculating their F-measure (F) defined as the harmonic mean of the two input

metrics. The combination functions are shown in Table 5.1. Intuitively, the function CombSUM
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ID Name Combination Function
1 CombSUM M1+M2

2 F-measure (1 + β2) M1M2

β2M1+M2

TABLE 5.1. Pairwise combination functions of outputs from any two metrics M1

and M2. We set β = 0.5,1,1.5 for three further variants of the F-measure function.

serves to augment evidence lacking in either scores. For F-measure, a lower β value would place

a higher weight on M1 while a higher β value would emphasize M2 more. In our experiments,

we set M2 to be our image-based metric. Because the similarity scores are differently distributed

across various methods, we apply a normalization step within each metric to assert the same lower

and upper-bound prior to the combination:

(14) Scorenorm = (Scoreoriginal − Scoremin)/(Scoremax − Scoremin)

For each dataset and metric, we obtain the Spearman rank correlation of the automatically

generated similarity scores with the ground-truths by human subjects.

5.4. Discussion

The results in Table 5.2 show that our image-based metric can be an effective metric on its

own, scoring a competitive Spearman correlation of 0.669 on the MC19 dataset, and reasonably

well-correlated (0.547) to human ratings on the RG39 dataset. Perhaps not surprisingly, these two

datasets consists mainly of words such as car, forest, bird, furnace etc which are picturable,

concrete entities that possess distinctive and unambiguous visual representations. Its performance,

however, degrades on the WS160 dataset with a somewhat low correlation rating of 0.300, mainly

due to presence of more broadly defined words lacking a visual identity (e.g. equipment in the

word pair phone − equipment), or the word appears as a surface form in the synset but does not

constitute a noun entity represented by a validated image pool in ImageNet (e.g. glass in the
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synset {glass lizard, glass snake, joint snake}). After applying the ImageNet Applicability Test

(Algorithm 2), the correlation figures, based on the image-based metric obtained from the second

trimmed set of datasets MC10, RG18 and WS56, expectedly show greater improvements. In fact,

constraining the MC10 dataset further to a subset consisting of synonymous/near-synonymous

word pairs enables our image-based method to outperform all other metrics, suggesting its promise

for use as a high-precision, low coverage metric for detecting picturable, synonymous word pairs.

Table 5.3 shows the correlation for the combined and single metric settings for the datasets

MC10, RG18 and WS56. As a means to show the improvement of adding visual information to

the text-based metrics, Figure 5.1 shows the differential correlation figures between the combined

and single text-based metric correlation for the datasets MC10, RG18 and WS56.

Regardless of the performance of the individual image-based metric, the hybrid image-text

approach improves over the standalone text-based metric in almost all cases, and this holds for

both knowledge-based and corpus-based methods, with few exceptions (e.g WNE in WS56 under

F-measure, β = 1.5). The RES metric benefits the most from the combinations e.g. it scores a

differential correlation consistently over 0.5 in the MC10 dataset under all combination scenarios,

probably because it presents only a rough gauge of similarity [65] that is now supplemented by

visual cues. The combination function with the most consistent improvement in all scenarios is

F-measure, β = 0.5, which relatively favors text-based methods more, and in a scenario where the

image-based method is orthogonal can lead to state-of-the-art in all except in one case (MC10,

H&S).
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MC19 RG39 WS160 MC10 RG18 WS56
WNE 0.625 0.722 0.432 0.846 0.867 0.482
H&S 0.780 0.794 0.434 0.883 0.775 0.453
J&C 0.770 0.816 0.421 0.685 0.828 0.454
L&C 0.625 0.722 0.409 0.846 0.867 0.515
LIN 0.650 0.737 0.403 0.685 0.820 0.496
RES 0.560 0.659 0.392 0.328 0.580 0.469
LSA 0.691 0.582 0.612 0.867 0.546 0.520
ESA 0.632 0.661 0.540 0.515 0.611 0.453
Image Metric 0.669 0.547 0.300 0.851 0.820 0.404

TABLE 5.2. Table showing Spearman correlation of similarity scores generated
using different metrics with human judgements, repeated for each of the 6 trimmed
datasets

Text-based measures Image
WNE H&S J&C L&C LIN RES LSA ESA metric

MC10
STANDALONE 0.846 0.883 0.685 0.846 0.685 0.328 0.867 0.515 0.851
SUM 0.879 0.927 0.830 0.855 0.806 0.842 0.915 0.842
F(0.5) 0.855 0.867 0.745 0.879 0.830 0.855 0.891 0.782
F(1) 0.855 0.855 0.806 0.855 0.842 0.891 0.927 0.782
F(1.5) 0.855 0.855 0.830 0.855 0.855 0.867 0.915 0.782

RG18
STANDALONE 0.867 0.775 0.828 0.867 0.820 0.580 0.546 0.611 0.820
CombSUM 0.887 0.826 0.867 0.887 0.863 0.813 0.728 0.827
F(0.5) 0.907 0.796 0.833 0.907 0.861 0.732 0.609 0.625
F(1) 0.893 0.796 0.833 0.907 0.869 0.793 0.607 0.627
F(1.5) 0.869 0.807 0.842 0.907 0.862 0.850 0.617 0.649

WS56
STANDALONE 0.482 0.453 0.454 0.515 0.496 0.469 0.520 0.453 0.404
CombSUM 0.457 0.474 0.471 0.507 0.523 0.524 0.538 0.440
F(0.5) 0.515 0.561 0.473 0.620 0.565 0.553 0.563 0.469
F(1) 0.453 0.583 0.513 0.546 0.520 0.570 0.588 0.475
F(1.5) 0.444 0.578 0.530 0.470 0.479 0.508 0.582 0.485

TABLE 5.3. Results obtained with individual knowledge-based and corpus-based
text-based measures, with our image measure, and with two combination functions
(COMBSUM and F, with 3 variants). The bold correlation numbers represents the
highest among all metrics per text-based measure per dataset.

5.5. Further Investigation

5.5.1. Coverage Expansion and Scalability Effectiveness

We have demonstrated the promise of an image-based word relatedness metric through

initial evaluation experiments on standard datasets. Since application coverage of this metric for
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FIGURE 5.1. Graph showing differential correlation against different metrics,
grouped by different datasets and combination functions. Any bar below zero indi-
cates worse performance after combination with the image-based metric.

words in those datasets is limited, whether such a metric is simply ideological or feasible in practice

requires deeper insights. In this section, there are two questions that we wish to address. First, can

we integrate existing lexical resources into our image-based metric so that its application coverage

can be improved ? Second, in the light of such an improved coverage, can it still yield an accurate

semantic relatedness measure between words that correlates well to human ratings, as evaluated

on standard datasets ?

An important assumption in using our image-based metric is that there is a direct corre-

spondence between the words in a synset and the set of images illustrating that synset. The words

in the synset form an equivalent semantic class where entries are semantically synonymous to each

other, and each image can be used to pictorially describe the meaning of each of those words.

The challenge involved in extending the coverage for more vocabulary implies that expansion of

synsets is a necessary step.

This can be achieved in two ways. Firstly, we can relax the assumption that images asso-

ciated with a synset are good visual descriptors only for the words in the synsets. Words in the

associated gloss of the synset are necessarily related to the synset. By transitivity, the correspond-

ing set of images is related to the words contained in the gloss as well. As an initial step, these

gloss words are appended to the synset. Next, as previously done in work on word to word similar-

ity [64], we also include words in the direct hypernyms and hyponyms of the target synset, as well
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FIGURE 5.2. Schematic diagram depicting our proposed system

as their glosses, in the expanded bag of words. Note that the decision not to pursue other semantic

links or those hypernyms/hyponyms not directly related to the synset is motivated on grounds of

decreasing semantic relatedness between those candidate words and words in the synset [11], and

increased computational complexity due mainly to the large number of associated images.

Secondly, we perform the mapping of synsets to entries in another resource, namely Wikipedia,

so that lexical coverage may be increased using another lexical resource both supplementing and

complementing Wordnet. Alternatively, efforts to pursue additional visual coverage can also be

performed through images associated with named entities and concrete nouns in Wikipedia pages.

However, it is not the focus of the work here, and shall be left to future exploits. Using the head

word of the target synset, we query the Wikipedia database using an API4 that returns a list of

related Wikipedia articles that are not necessarily disambiguated, but are related to the head word.
4http://en.wikipedia.org/w/api.php
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#Word pairs covered Avg #synset pairings/word pair
MC30 RG65 WS353 MC30 RG65 WS353

Synsets 19 39 158 161 106 151
+Glosses 23 51 269 8654 4437 2403
+Hype/Hypo and glosses 24 54 278 21841 10751 5869
+Wikipedia abstracts 29 62 337 32428 16979 29832

TABLE 5.4. Table showing the word pairs coverage statistics and synset pairings
per word pair for each of the three standard evaluation datasets. Each number re-
ported is cumulative i.e. +glosses is the expansion method using glosses + synset

The set of words in the abstracts for each of these Wikipedia articles are again included into the ex-

panded bag of words. Our proposed system is shown in Figure 5.2. Lemmatization and stopword

removal are both applied in our lexical expansion process using Wordnet and Wikipedia.

Table 5.4 shows the improvement in words coverage when each of the methods outlined

above is employed. As observed, there is a significant increase in words coverage for all datasets

(+4 word pairs for MC30, +12 pairs for RG65 and +111 pairs for WS353) when all words in the

associated gloss of the target synset are considered. Further addition of words from the direct hy-

pernyms and hyponyms and their glosses improves coverage marginally (+1 word pairs for MC30,

+3 word pairs for RG65, and +9 word pairs for WS353). A plausible explanation for this obser-

vation is that words in direct hypernyms/hyponyms and their glosses tend to have more overlap

with those in the target synset and gloss, due to the structure of the concept hierarchy. Finally, the

increase in words coverage is also significant (+5 word pairs for MC30, +8 word pairs for RG 65

and +59 word pairs for WS353). Since Wikipedia abstracts are more verbose in their discussion

about any subject matter, this is somewhat expected.

An obvious drawback of coverage expansion via the generation of “bag of words” is that

some words may be more related than others to the target synset images. A possible way to ex-

pand coverage without losing accuracy is to model graded membership of words belonging to a

synset, such that the final image-based metric would only consider words that are reasonably re-

lated to the original target synset. This task can be perceived differently and solved using different

approaches. For instance, through Chi square (x2) statistics, we can compute the (in)dependence
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relation between any given synset s and a word w using its frequency counts, and any word with

x2(s, w) below a threshold can be discarded from the synset. Alternatively, the association strength

of a given word with the target synset can be estimated using pointwise mutual information (PMI)

between the word and each of the words in the synset using corpus evidence, and averaged over

the size of the synset. As before, words below a threshold would be discounted and removed. In-

vestigation of such term weighting or class membership discounting techniques are well-discussed

in the literature [87]. In our work, we employ the use of the simple, yet effective, term-weighting

method tfidf, with a focus to develop a lightweight system capable of scaling up efficiently.

We are interested to perform further experiments on the WS353 dataset, since it is the most

challenging of the three datasets. The main intention of our study is to perform filtering of irrele-

vant words from each synset so that coverage can be maintained while reducing the average synset

pairings. Specifically, tfidf is computed for each word in the expanded set of words for each synset.

Next, we drop the lowest k% of words in each synset after the tfidf scores are sorted in reverse or-

der. We apply this method in cases where coverage has seen a sudden increase i.e. the expansion

of synsets by using its gloss, henceforth refered to as LexExpGloss, and the expansion of synsets

using all lexical resources (Wordnet and Wikipedia), henceforth refered to as LexExpAll. Table

5.5 and 5.6 shows the results of our approach. In each case, a similar trend is observed. As more

words are dropped, the number of synset pairings required for the image-based metric decreases.

As observed, the maximum word pairs coverage for LexExpGloss is 269 and stays constant up

to dropping 30% of the words in each synset. Likewise, the maximum word pairs coverage for

WordNetGlosses stays at 337 up to dropping 60% of the words in each synset. Not surprisingly,

as we expand more words using more lexical resources, the more we can drop. Since our inten-

tion is to maximize coverage and minimize synset comparisons, in an effort to derive an efficient,

maximum-coverage similarity metric, we performed re-runs of the experiment on these two sub-

sets of LexExpGloss and WordNetGlosses respectively. These posthoc analysis results are shown

in Tables 5.8 and 5.9 respectively.
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% of dropped words #Word pairs covered Avg #synset pairings/word pair
0% 269 2404

10% 269 904
20% 269 453
30% 269 209
40% 268 104
50% 267 64
60% 245 35
70% 200 23
80% 138 15
90% 102 12

TABLE 5.5. LexExpGloss : Table showing the word pairs coverage statistics and
synset pairings per word pair for WS353 dataset, plotted against the percentage of
dropped words (reverse sorted using tfidf ). The expanded bag of words is formed
by synsets + glosses only

% of dropped words #Word pairs covered Avg #synset pairings/word pair
0% 337 29832

10% 337 17091
20% 337 9343
30% 337 5350
40% 337 3041
50% 337 1849
60% 337 1186
70% 331 668
80% 295 400
90% 256 166

TABLE 5.6. LexExpAll : Table showing the word pairs coverage statistics and
synset pairings per word pair for WS353 dataset, plotted against the percentage of
dropped words (reverse sorted using tfidf ). The expanded bag of words is formed
by synsets + glosses + hype/hypo and glosses + Wikipedia abstracts

As it turns out, adding more words to each synset causes the probability of a given word

associated with more than one synset to increase. Recall from Equation 13 that the semantic simi-

larity between between a pair of words is defined as the maximum visual similarity computed over

all pairs of synsets in a complete bipartite graph, where each partition of the graph contains candi-

date synsets for each word in the word pair. A small increase in number of words coverage tend to
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Image Difference Detection
Image 1 Image 2 Difference Image

TABLE 5.7. Image difference detection using the Absolute Error (AE) metric in
ImageMagick. Given two images, the algorithm gives an absolute count of pixels
that are different, with the fuzz factor set at 20%. Only pixels changed by more than
the fuzz factor are considered different. These different pixels are marked in red in
the newly composed ’difference’ image formed by overlaying the two images.

cause the number of synset pairings between a word pair to increase significantly. This evidence

is provided in Table 5.4 in terms of the number of synset pairings per word pair. Computing the

visual similarity between a given pair of synsets takes approximately 1 second, which amounts

to 116 days just to compute the similarity between 337 word pairs in the WordSim 353 dataset5.

Fortunately, this step needs to be computed only once and stored in hashes6, and future retrieval

of visual similarity between the same synset pairing takes constant time. Regardless, assuming

that accuracy must be maintained, using the appropriate term weighting techniques to retain only

the most relevant keywords per synset is extremely important to scalability of the proposed image-

based metric. Future work would investigate the applicability of other measures besides tfidf for

keyword filtering.

5.5.2. Informed Baselines

An interesting question to ask is whether we can adopt an effective visual-based relatedness

metric using other resources and computer vision techniques that are readily available and equally

efficient. To this end, we implement two baselines. For the first baseline, instead of using images in

ImageNet, we use the Google Image Search API to download the top 50 images for each word in a

5Assuming non-parallelized, Perl implementation on a 2.83 GHz quad-core CPU with 8GB RAM. However, using full
matrix multiplication for computing synset similarity in MATLAB decreases the time taken significantly to a couple
of hours.
6Still, hashes required to store the visual similarity for 8683x8683 synset pairings amounts to 8GB alone
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given word pair. Since the image search does not perform distinction of word senses e.g. a search

using “apple” would return images of the Apple company logo and the fruit apple together, we

have no easy way to automatically classify them. Doing so also results in additional work beyond

constructing a simple and efficient baseline as we would have liked. Therefore, the set of 50 images

are sense-lumped and SIFT-processed together. Apart from this, other aspects of our image-based

metric remain the same. The second baseline operates on the images downloaded for the first

baseline, but instead of using SIFT as our image descriptor and using the metric in Equation 13,

we gauge the similarity between a given word pair as the maximum pairwise similarity between

the two sets of Google images downloaded for each of the two words, where visual similarity

between any two images is performed using a publicly available toolkit counting the normalized

number of unchanged pixels7. This approach is illustrated in Table 5.7. Intuitively, the first baseline

represents the advantage (if any) of a manually constructed database such as ImageNet over simply

retrieving images from a major search engine like Google. In the same spirit, the second baseline

represents the difference of using a sophisticated image descriptor i.e. SIFT over a simple method

i.e. Absolute Error in pixels in the implementation of our image-based word relatedness metric.

Given that our coverage for word pairs has been increased using the system proposed in

Figure 5.2, it is important to validate our image-based metric through its accuracy on the larger

subsets of WordSim 353 data. Tables 5.8 and 5.9 show the results of using the standalone text-

based metrics, our novel image-based metric and their hybrids.

First, simply augmenting synsets with gloss words and dropping up to 30% increases cov-

erage, yet retaining competitiveness of our visual metric, which scores a Spearman correlation

of 0.342. Using the hybrid metrics results in improvement in 81% (26/32) of the times when

compared against the standalone text-based measures. By expanding coverage even further using

Wordnet hypernyms/hyponyms and Wikipedia, we see an even greater improvement in accuracy

7http://www.imagemagick.org/script/index.php
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figures. As it turns out, our standalone image-based metric scoring a correlation 0.345 even out-

performs three of the text-based measures (WNE (0.335), J&C (0.328) and L&C (0.328)). Fur-

thermore, employing the hybrid metrics now results in 97% (31/32) of the times in comparisons

with corresponding text-based metrics.

Second, the above results confirm the effectiveness of a simple metric like tfidf in improv-

ing both coverage and accuracy of our image-based metric. Specifically, it can be easily applied

within the expanded dataset itself, noting that our tf and idf are derived using the synsets as

pseudo-documents. A plausible reason for tfidf being so effective is due to the redundancy of

synset headwords in synergism with other content words featuring lower tf but high idf . Consider

again our running synset example i.e. {dog, domestic dog, Canis familiaris}. The headword “dog”

appears at least once in each of the successive expansion steps, through its direct hyponym :

“puppy (a young dog)”

and also at least once in the Wikipedia abstract :

The domestic dog (Canis lupus familiaris), is a subspecies of the gray wolf (Canis

lupus), a member of the Canidae family of the mammalian order Carnivora).

Though having a low idf , its continued appearance in successive expansion steps leads to a com-

pensating effect in the overall reranking. On the other hand, any other word that is reranked highly

but having a low tf must be rare (high idf ) to the point that its association with the synset be

retained e.g. “Canis”.

Third, the benefits of using clean annotations from a manually constructed image database

in ImageNet bears great significance in the implementation of our visual metric. As seen, the max-

imum difference between visual metrics constructed using ImageNet and Google images is close

to a Spearman correlation of 0.300 (Table 5.9 : Image metric (0.345) vs Baseline (Google+SIFT)

(0.079)). This difference is enormous in the semantic relatedness task where systems outperform-

ing each other by even 0.100 or less are publishable results [34]. Our choice of using SIFT turns

out to be a good choice. In the same vein, using a good visual descriptor over a simple baseline

results in consistent advantage, as seen in the two baselines Google+SIFT vs Google+AE in Tables

5.8 and 5.9.

54



Text-based measures Image
WNE H&S J&C L&C LIN RES LSA ESA metric

WS353
STANDALONE 0.365 0.389 0.356 0.356 0.384 0.388 0.611 0.481 0.342
CombSUM 0.396 0.430 0.443 0.419 0.428 0.416 0.556 0.465
F(0.5) 0.382 0.401 0.385 0.380 0.389 0.396 0.585 0.504
F(1) 0.376 0.401 0.385 0.380 0.388 0.392 0.583 0.504
F(1.5) 0.376 0.398 0.387 0.382 0.382 0.387 0.583 0.504
Basline (Google+SIFT) 0.126
Basline (Google+AE) 0.088

TABLE 5.8. Results obtained for WS353 dataset by dropping the lowest 30% (re-
verse sorted by tfidf ) of expanded set of words formed by synsets/glosses. Figures
in bold represent hybrid image-text metrics that are score better correlation than the
individual standalone text-based metrics

Text-based measures Image
WNE H&S J&C L&C LIN RES LSA ESA metric

WS353
STANDALONE 0.335 0.361 0.328 0.328 0.358 0.364 0.612 0.514 0.345
CombSUM 0.385 0.438 0.453 0.402 0.410 0.424 0.639 0.480
F(0.5) 0.366 0.375 0.356 0.358 0.368 0.379 0.626 0.516
F(1) 0.371 0.375 0.356 0.363 0.367 0.381 0.626 0.515
F(1.5) 0.372 0.375 0.356 0.368 0.368 0.380 0.628 0.515
Basline (Google+SIFT) 0.079
Basline (Google+AE) 0.056

TABLE 5.9. Results obtained for WS353 dataset by dropping the low-
est 60% (reverse sorted by tfidf ) of expanded set of words formed by
synsets/glosses/hype/hypo/Wikipedia. Figures in bold represent hybrid image-text
metrics that are score better correlation than the individual standalone text-based
metrics.

5.5.3. Picturability Study

In light of the effectiveness of our proposed image-based metric, it is helpful to characterize

as an additional insight how and when we can employ such a metric. Specifically, we are interested

to see how different data sets modeled on a criteria of choice correlates with human ratings when

evaluated using the visual metric. The picturability of a given word [90] is defined as the ability

of a human being to draw or find a good image to substitute for the word itself, given its meaning.
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Conversely, a word’s picturability can also be defined as the ease with which a human being is

able to guess it correctly when shown an image closely associated to its meaning. Following [90],

we employ a picturability logistic regression model based on raw counts of Web pages and Web

images retrieved when the target word is queried using a search engine. In this model, training

was performed on a manually-labeled set of 500 randomly chosen words from a large vocabulary,

where 5 human annotators were requested to independently label each word as picturable (y = 1)

or non-picturable (y = 0). The model is shown in Equation 15.

(15) p(y = 1|x) = 1

1 + exp(−(2.78x+ 15.40))

where

(16) x = log((c1 + 10−9)/(c2 + 10−9)))

Word Pair Average Human Rating
secretary, senate 5.06

Harvard, Yale 8.13
lawyer, evidence 6.69
medium, trade 3.88
medium, gain 2.88

calculation, computation 8.44
profit, warn 3.88

investor, earn 7.13

TABLE 5.10. Table showing word pairs with their averaged human ratings of sim-
ilarity from S2
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American, 0.998983779 
Arafat, 0.976711616 
Brazil, 0.999320543 CD, 0.999501295 

FBI, 0.925092006 

Freud, 0.956490535 

Harvard, 0.897774145 

Israel, 0.993329431 Jackson, 0.996657403 Japanese, 0.998851373 Jerusalem, 0.994049502 Maradona, 0.999814143 Mars, 0.998926593 Mexico, 0.999847907 

OPEC, 0.503768405 

Palestinian, 0.957999292 

Wednesday, 0.999581916 

Yale, 0.826427297 

abuse, 0.995209221 accommodation, 0.986736008 activity, 0.99605174 

admission, 0.930708694 

airport, 0.998173226 alcohol, 0.997525802 aluminum, 0.996982524 animal, 0.999961149 announcement, 0.991375218 antecedent, 0.984062294 

anxiety, 0.827937282 

approach, 0.943562468 

architecture, 0.99997477 archive, 0.999941125 area, 0.998643151 arrangement, 0.997790907 

arrival, 0.967800465 

article, 0.999730868 artifact, 0.997096443 

association, 0.970941362 

astronomer, 0.998640863 asylum, 0.99383004 atmosphere, 0.988687415 

attempt, 0.933294597 

attitude, 0.982680609 
autograph, 0.996990938 automobile, 0.999856992 
avenue, 0.984448326 
baby, 0.999763741 
bank, 0.98603396 
baseball, 0.998964132 basketball, 0.999874712 bed, 0.994043235 
benchmark, 0.970720344 

bird, 0.999608948 

bishop, 0.836757043 

block, 0.990572557 board, 0.998264745 book, 0.999006184 boxing, 0.999608404 boy, 0.999042044 
brandy, 0.980450744 bread, 0.987926712 brother, 0.992199233 

buck, 0.868539664 

butter, 0.991930964 
cabbage, 0.980108231 

calculation, 0.755102177 

canyon, 0.997081327 car, 0.99999997 card, 0.998457283 carnivore, 0.998522089 

cash, 0.916361783 

cat, 0.999711754 category, 0.999909511 cell, 0.997349411 
cemetery, 0.978610577 
center, 0.999999893 century, 0.997791017 
challenge, 0.984507228 
championship, 0.996386106 
chance, 0.982053217 
change, 0.998217787 
chemistry, 0.978359978 
children, 0.99891192 chord, 0.997120996 

citizen, 0.935760107 
clinic, 0.950695318 

closet, 0.996942726 clothes, 0.997415618 coast, 0.995657291 cock, 0.999438447 coffee, 0.995717524 

cognition, 0.871712569 

collection, 0.999845167 combination, 0.993887069 
communication, 0.980925342 
company, 0.999982851 competition, 0.996102527 

computation, 0.781347701 

computer, 0.999760335 concert, 0.998939665 

conclusion, 0.911037654 
confidence, 0.929079709 

constellation, 0.99865912 

consumer, 0.952591096 
cord, 0.940102131 

country, 0.998441874 
crane, 0.974957374 

credibility, 0.664684079 

credit, 0.998974619 crew, 0.99794094 
crisis, 0.984702244 

criterion, 0.858324899 

critic, 0.987924172 

cucumber, 0.820882595 

culture, 0.999008091 cup, 0.998336625 currency, 0.99407036 
cushion, 0.98275573 
dawn, 0.997214707 day, 0.999681147 death, 0.997828116 decoration, 0.999943527 

defeat, 0.926858491 
defeating, 0.9124074 
delay, 0.93634372 departure, 0.940280929 
deployment, 0.963472463 deposit, 0.970872744 depression, 0.974776605 
development, 0.996023776 direction, 0.997144921 

disability, 0.715828024 

disaster, 0.985679989 

discipline, 0.758345266 

discovery, 0.985754257 

dividend, 0.587707411 

doctor, 0.986433638 dollar, 0.977565472 
drink, 0.996135634 
drought, 0.983844562 

drug, 0.940534819 

ear, 0.999807908 

earning, 0.881967029 

eat, 0.994374822 ecology, 0.989697619 

effort, 0.959896903 

egg, 0.994781438 

emergency, 0.960775026 

energy, 0.99272055 

entity, 0.878391744 

environment, 0.993319306 

equality, 0.848267222 

equipment, 0.98822963 

evidence, 0.892478997 

example, 0.997207922 exhibit, 0.993247331 experience, 0.988667278 eye, 0.998173277 family, 0.998669307 fauna, 0.999768319 fear, 0.997515554 feline, 0.994898753 

fertility, 0.917254576 

fighting, 0.998626072 film, 0.999858358 fingerprint, 0.992696236 five, 0.993823107 flight, 0.996507532 

flood, 0.95960143 

focus, 0.994644106 food, 0.999491369 football, 0.999894924 
forecast, 0.985822978 
forest, 0.99900356 fruit, 0.998552682 fuck, 0.999539948 

furnace, 0.901235364 gain, 0.897896299 

galaxy, 0.999682953 game, 0.999819348 
gem, 0.985412423 gender, 0.98073296 
gin, 0.956244144 

girl, 0.99992235 glass, 0.998525293 
government, 0.984178254 

governor, 0.912983067 

graveyard, 0.991926409 grin, 0.988333596 

grocery, 0.717303137 

group, 0.999086877 hardware, 0.992355071 health, 0.997006249 hike, 0.987832413 hill, 0.986904505 
history, 0.999345724 holy, 0.99604483 
hospital, 0.98256838 
hotel, 0.999388426 

hundred, 0.960948713 hypertension, 0.951030455 

image, 0.999999611 

impartiality, 0.239832691 

implement, 0.884264758 

importance, 0.954937651 

index, 0.999404247 industry, 0.9930092 information, 0.998926692 

infrastructure, 0.945621396 

inmate, 0.843814144 
institution, 0.823945956 

insurance, 0.986742484 
interest, 0.971939707 

internet, 0.999414864 interview, 0.996972013 

investigation, 0.84636382 

investor, 0.362098785 

isolation, 0.965589059 

issue, 0.994662243 jaguar, 0.999985978 jazz, 0.991576523 jewel, 0.984810655 
journal, 0.997647623 journey, 0.994121007 keyboard, 0.999546642 
kilometer, 0.98446914 
kind, 0.994675437 king, 0.997862961 

laboratory, 0.960968293 

lad, 0.986803152 
landscape, 0.999985871 

laundering, 0.750402758 

law, 0.98621949 

lawyer, 0.862942463 

lesson, 0.988808684 

liability, 0.891609279 

library, 0.996222461 life, 0.999688365 line, 0.998282986 
liquid, 0.979382307 
listing, 0.991752295 live, 0.999180256 
lobster, 0.976872868 
loss, 0.989378312 
love, 0.999896608 lover, 0.995298171 luxury, 0.999616028 madhouse, 0.995913663 

magician, 0.980599233 
maker, 0.994097884 mammal, 0.999936264 man, 0.999404406 

manslaughter, 0.941725783 

marathon, 0.977733232 
market, 0.995253201 marriage, 0.998060337 match, 0.997489149 medal, 0.994491426 media, 0.999958966 memorabilia, 0.997815297 metal, 0.998586905 

midday, 0.905857422 

mile, 0.977072175 
mind, 0.997359857 
minister, 0.978232402 
ministry, 0.988908965 

minority, 0.795435753 

money, 0.993381615 
monk, 0.976612418 
month, 0.998294445 moon, 0.998971299 

morality, 0.818225827 

mother, 0.998241285 

motto, 0.948440669 

mound, 0.867577201 

mouth, 0.974349843 

movie, 0.999984256 

murder, 0.957268886 

museum, 0.99949321 music, 0.999949791 
nation, 0.986802473 
nature, 0.999968257 network, 0.998469049 news, 0.999922883 

noon, 0.966821446 

number, 0.99999959 

nurse, 0.954285566 

object, 0.99499159 

observation, 0.961311825 

office, 0.994729079 oil, 0.997577137 opera, 0.996673099 

operation, 0.970298478 

oracle, 0.900120391 

organism, 0.984357362 
paper, 0.999809863 party, 0.999042856 
payment, 0.981694647 peace, 0.991052248 people, 0.999666179 
percent, 0.979313937 
performance, 0.997486236 

personnel, 0.964584089 

phone, 0.999987648 
physics, 0.980761542 pillow, 0.986240003 
place, 0.999085022 plan, 0.999244897 plane, 0.998475957 planet, 0.998557888 planning, 0.994410234 popcorn, 0.996230237 population, 0.993019821 

possession, 0.858381809 possibility, 0.858236624 

potato, 0.986571367 
practice, 0.973341993 

precedent, 0.999945475 

prejudice, 0.87006225 

preparation, 0.964051223 

preservation, 0.930708694 

president, 0.990821585 price, 0.999465147 problem, 0.991090434 production, 0.997807549 professor, 0.992558639 

profit, 0.85737719 

project, 0.998402149 

prominence, 0.947059469 

property, 0.998654784 proton, 0.999889884 

proximity, 0.912761294 

psychiatry, 0.824962536 

psychology, 0.94844968 

quarrel, 0.682937996 

queen, 0.996761532 

rabbi, 0.957473361 racism, 0.953254141 
racket, 0.973289054 

radio, 0.998783204 
reason, 0.988413506 

recess, 0.905309385 

recognition, 0.954409727 recommendation, 0.945965797 

record, 0.992735232 

recovery, 0.949929581 

registration, 0.997873943 report, 0.999445066 
reservation, 0.97645051 
rock, 0.998763458 

rook, 0.883793538 

rooster, 0.991410514 round, 0.995854228 row, 0.989018561 
sage, 0.964769452 

school, 0.999999729 science, 0.998452548 

scientist, 0.968723157 

sea, 0.999710191 

seafood, 0.965559422 

season, 0.99926951 secret, 0.996375848 

secretary, 0.548604783 

seepage, 0.9492149 

senate, 0.766390705 

serf, 0.885944758 

serial, 0.997100081 series, 0.999777948 seven, 0.99570522 sex, 0.999844827 
shore, 0.98310289 
shower, 0.999156523 sign, 0.999794931 signature, 0.994483329 
similarity, 0.970235674 

situation, 0.931329694 

size, 0.999993296 skin, 0.997601526 

slave, 0.899507132 

smart, 0.999209653 smile, 0.998983402 

soap, 0.874360023 

soccer, 0.999879967 software, 0.998543695 space, 0.999901264 sprint, 0.991549739 star, 0.999791326 start, 0.997149014 stock, 0.999750824 

stove, 0.934492921 

street, 0.998279235 
string, 0.982840336 stroke, 0.990159683 student, 0.992743541 stupid, 0.983474084 

substance, 0.850603499 

sugar, 0.993507155 summer, 0.999475074 sun, 0.9979714 surface, 0.995395793 tableware, 0.999590939 team, 0.998108844 telephone, 0.988330411 
television, 0.999338589 tennis, 0.999072916 term, 0.994821153 territory, 0.984843276 

terror, 0.999697292 
theater, 0.981768781 
thunderstorm, 0.997615209 
ticket, 0.982731453 
tiger, 0.999530742 tool, 0.990639833 tournament, 0.992829974 
trading, 0.978375653 
train, 0.996832563 travel, 0.999900787 
treatment, 0.981770374 troops, 0.99076744 tumbler, 0.988199901 
type, 0.99962142 valor, 0.999712776 

victim, 0.929147103 

victory, 0.990275822 video, 0.99999994 viewer, 0.9996591 

virtuoso, 0.946087867 

vodka, 0.996843256 
volunteer, 0.978881008 
voyage, 0.999577455 war, 0.999251955 
warning, 0.987946343 
water, 0.999149599 

wealth, 0.89861492 

weapon, 0.997650672 weather, 0.994752655 wine, 0.988613686 

withdrawal, 0.644960788 

wizard, 0.997340527 woman, 0.999609499 wood, 0.99899768 

woodland, 0.970303755 

word, 0.999962349 world, 0.999865601 year, 0.999551002 

yen, 0.973508161 
zoo, 0.998018097 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ic

tu
ra

b
il

it
y

 S
co

re
 

FIGURE 5.3. Scatter plot of picturability scores of all 447 vocabulary words in the
three datasets

Text-based measures Image
WNE H&S J&C L&C LIN RES LSA ESA metric

S1 0.370 0.391 0.340 0.361 0.369 0.378 0.627 0.507 0.362
S2 1.000 0.949 1.000 1.000 0.949 0.738 0.800 0.800 0.311

TABLE 5.11. Spearman correlation figures obtained for S1 and S2 using the text-
based and image-based methods

is the log ratio between smoothed counts c1 (Image hits) and c2 (Web hits). 10−9 is a smooth-

ing constant to prevent zero counts, and 2.78 and 15.40 are constant parameters derived from the

training data using L2-regularized logistic regression model. As an example, querying the word

’CD’ through Bing Web Search API retrieved 1330,000,000 Web hits and 80,500,000 image hits,
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achieving a score of 0.99, indicating that it is highly picturable. In another case, the word ’divi-

dend’ brought 49,300,000 Web hits and 220,000 Image hits, resulting in a score of 0.59, suggesting

it is not that picturable. Here, we performed a picturablity analysis of all 447 words formed by the

union of the vocabulary of the three datasets, where the results are shown in Figure 5.3. Though

unreadable, it can be easily infered from the the scatter plot than a vast majority of the union vocab-

ulary are scored above the 0.9 threshold, and somewhat considered as picturable using the metric

proposed. To observe the performance of our visual metric in the face of varying picturability of

words, we divide the covered WS353 dataset into two disjoint sets, namely, S1, which contain 277

pairs of words, each of which has picturability score of more than or equal 0.90, and S2, which

contains 8 pairs of words, each with a picturability score of less than 0.90. The latter is shown in

Table 5.10, while Spearman correlation of the text-based and image-based methods with human

judgments on the same dataset is shown in Table 5.11. Not surprisingly, the performance of our

image-based metric for low picturable word pairs (S2) is much inferior to those of other text-based

methods. However, note that these word pairs only constitute a small portion of the dataset (8/337).

When evaluating our image-based metric on S1, it is clear that such a metric is competitive with

existing text-based metrics.

5.6. Related Work

Research on images and texts in cognitive science are grounded on perceptual representa-

tion and understanding of words, while most models in computer vision are tasked with discover-

ing correlations between image features and words to enable applications such as automatic image

annotation, search and retrieval. Even so, to our knowledge, very few work has applied visual

representation models to the semantic relatedness task in NLP. Recently, some attention has been

given to modelling synergistic relationships between the semantics of words and images [49, 10].

The research that is most closely related to ours is the work of [27], where it has been shown

that it is possible to combine visual representations of word meanings into a joint bimodal repre-

sentation constructed by using probabilistic generative latent topic models. Unlike our approach,

however, [27] relied on a news corpus where images and words in a document are assumed to be

generated by a set of latent topics, rather than a lexical resource such as ImageNet. Moreover,
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in their work, no attempt has been made to evaluate the image-based models independently, or

to combine image models with previously proposed knowledge-based and corpus-based measures

of relatedness. While they provided a proof-of-concept that using the visual modality leads to an

improvement over their purely text-based model (an increase of Spearman correlation of 0.071 on

a 254-pairs subset of WordSim353 dataset), no attempt has been made to evaluate the image-based

models independently, or to combine image models with previously proposed knowledge-based

and corpus-based measures of relatedness.
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CHAPTER 6

“MEN ARE FROM MARS AND VENUS, SO ARE WOMEN”: BUILDING A MULTIMODAL

SEMANTIC SPACE USING WORDS AND IMAGES

The love between the Venusians and Martians was magical. They delighted in be-
ing together, doing things together, and sharing together. Though from different
worlds, they revelled in their differences. They spent months learning about each
other, exploring and appreciating their different needs, preferences, and behaviour
patterns. For years they lived together in love and harmony.

John Gray

Regardless of the differences between language and vision, research performed at the joint

language-vision interface has started to grow due to a number of favorable factors. The construc-

tion of a joint semantic space connecting words with images is a task that is very challenging but at

the same time highly desirable for a number of applications. We posit that an image, like a word,

presents meaning that can be harvested under a generic framework. The proposition is challenging

due to the well-known semantic gap problem, first put forward by [88], which indicates that it is

difficult to identify meaningful entities in an image by exclusively using its low level features like

color and texture. The focus of this chapter, however, is not to predict which objects are present in

an image, as in entity recognition, but rather to perform an analysis of the complete image to derive

its relation to one or more semantic concepts. Specifically, we test the effectiveness of our multi-

modal semantic space model by evaluating it using a cross-modal semantic relatedness framework,

for which we provide the motivation in the next section.

6.1. Motivation

Traditionally, a large body of research in natural language processing has focused on formaliz-

ing word meanings. Several resources developed to date (e.g., WordNet [63]) have enabled a

systematic encoding of the semantics of words and exemplify their usage in different linguistic

frameworks. As a result of this formalization, computing semantic relatedness between words has
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been possible and has been used in applications such as information extraction and retrieval, query

reformulation, word sense disambiguation, plagiarism detection and textual entailment.

In contrast, while research has shown that the human cognitive system is sensitive to visual

information and incorporating a dual linguistic-and-pictorial representation of information can ac-

tually enhance knowledge acquisition [66], the meaning of an image in isolation is not well-defined

and it is mostly task-specific. A given image, for instance, may be simultaneously labeled by a set

of words using an automatic image annotation algorithm, or classified under a different set of se-

mantic tags in the image classification task, or simply draw its meaning from a few representative

regions following image segmentation performed in an object localization framework.

Given that word meanings can be acquired and disambiguated using dictionaries, we can

perhaps express the meaning of an image in terms of the words that can be suitably used to describe

it. Specifically, we are interested to bridge the semantic gap [75] between words and images

by exploring ways to harvest the information extracted from visual data in a general framework.

While a large body of work has focused on measuring the semantic similarity of words,(e.g., [62]),

or the similarity between images based on image content [31, 69, 70], very few researchers have

considered the measure of semantic relatedness1 between words and images.

But, how exactly is an image related to a given word? In reality, quantification of such

a cross-modal semantic relation is impossible without supplying it with a proper definition. Our

work seeks to address this challenge by constructing a standard evaluation framework to derive a

semantic relatedness metric for arbitrary pairs of words and images. In this chapter, we explore

methods to build a representation model consisting of a joint semantic space of images and words

by combining techniques widely adopted in computer vision and natural language processing, and

we evaluate the hypothesis that we can automatically derive a semantic relatedness score using this

joint semantic space.

1In this chapter, we are concerned with semantic relatedness, which is a more general concept than semantic similarity.
Similarity is concerned with entities related by virtues of their likeness, e.g., bank-trust company, but dissimilar entities
may also be related, e.g., hot-cold. A full treatment of the topic can be found in [11].
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Importantly, we acknowledge that it is significantly harder to decode the semantics of an

image, as its interpretation relies on a subjective and perceptual understanding of its visual compo-

nents [7]. Despite this challenge, we believe this is a worthy research direction, as many important

problems can benefit from the association of image content in relation to word meanings, such as

automatic image annotation, image retrieval and classification (e.g., [50]) as well as tasks in the

domains of of text-to-image synthesis, image harvesting and augmentative and alternative com-

munication. Arguably, this is also true for tasks that address the reverse direction of text-to-image

synthesis [59, 52, 16].

The chapter2 proceeds as follows. We first provide a brief overview of the semantic vecto-

rial models used in natural language processing. In section 6.3, we provide motivations and details

for implementing the cross-modal semantic relatedness evaluation framework. Next, we conduct

an empirical evaluation of our hypothesis using the bag-of-visual codewords and semantic vector

models to build a joint semantic space of words and images. followed by discussions in section 6.6.

Finally, we experiment with augmented multimodal spaces, constructed using visual attributes, to

observe if such an enriched version of semantic representation would further lead to improvements

in correlation ratings. An overview of related work is provided in section 6.8.

6.2. Semantic Vector Models

The underlying idea behind semantic vector models is that concepts can be represented as points

in a mathematical space, and this representation is learned from a collection of documents such

that concepts related in their meanings are near to one another in that space. In the past, seman-

tic vector models have been widely adopted by natural language processing researchers for tasks

ranging from information retrieval and lexical acquisition, to word sense disambiguation and doc-

ument segmentation. Several variants have been proposed, including the original vector space

model [72] and the Latent Semantic Analysis [46]. Generally, vector models are attractive because

they can be constructed using unsupervised methods of distributional corpus analysis and assume

2A part or whole of the work documented here has been published in [49]
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little language-specific requirements as long as texts can be reliably tokenized. Furthermore, var-

ious studies [42] have shown that by using collaborative, distributive memory units to represent

semantic vectors, a closer correspondence to human cognition can be achieved.

While vector-space models typically require nontrivial algebraic machinery, reducing di-

mensions is often key to uncover the hidden (latent) features of the terms distribution in the corpus,

and to circumvent the sparseness issue. There are a number of methods that have been developed

to reduce dimensions – see e.g., [85] for an overview. Here, we briefly describe one commonly

used technique, namely the Latent Semantic Analysis (LSA), noted for its effectiveness in previous

works for reducing dimensions.

In LSA, term co-occurrences in a corpus are captured by means of a dimensionality re-

duction operated by a Singular Value Decomposition (SVD) on the term-by-document matrix T

representing the corpus. SVD is a well-known operation in linear algebra, which can be applied to

any rectangular matrix in order to find correlations among its rows and columns. SVD decomposes

the term-by-document matrix T into three matrices T = UΣkVT where Σk is the diagonal k×k ma-

trix containing the singular k values of T, σ1 ≥ σ2 ≥ ... ≥ σk and U and V are column-orthogonal

matrices. When the three matrices are multiplied together the original term-by-document matrix is

re-composed. Typically we can choose k′ ≪ k obtaining the approximation T ≃ UΣk′VT .

6.3. Semantic Relatedness between Words and Images

Although the bag of visual codewords 3.3 has been extensively used in image classification and

retrieval tasks, and vector-space models are well explored in natural language processing, there has

been little connection between the two streams of research. Specifically, to our knowledge, there

is no research work that combines the two techniques to model multimodal meaning relatedness.

Since we are exploring new grounds, it is important to clarify what we mean by computing the

semantic relatedness between a word and an image, and how the nature of this task impacts our

hypothesis. The assumptions below are necessary to validate our findings:
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(1) Computing semantic relatedness between a word and an image involves comparing the

concepts invoked by the word and the salient objects in the image as well as their inter-

action. This goes beyond simply identifying the presence or absence of specific objects

indicated by a given word. For instance, we expect a degree of relatedness between an im-

age showing a soccer ball and the word “jersey,” since both invoke concepts like {sports,

soccer, teamwork} and so on.

(2) The semantics of an image is dependent on the focus, size and position of distinct objects

identified through image segmentation. During labeling, we expect this segmentation to

be performed implicitly by the annotators. Although it is possible to focus one’s attention

on specific objects via bounding boxes, we are interested to harvest the meaning of an

image using a holistic approach.

(3) In the case of measuring the relatedness of a word that has multiple senses with a given

image, humans are naturally inclined to choose the sense that provides the highest relat-

edness inside the pair. For example, an image of a river bank expectedly calls upon the

“river bank” sense of the word “bank” (and not “financial bank” or other alternative word

senses).

(4) A degree of semantic relatedness can exist between any arbitrary word and image, on a

scale ranging from being totally unrelated to perfectly synonymous with each other. This

is trivially true, as the same property holds when measuring similarity between words and

texts.

Next, we evaluate our hypothesis that we can measure the relatedness between a word and an image

empirically, using a parallel corpus of words and images as our dataset.
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Joint Semantic Space of Words and Images
Synsets 167
Images 230,864
Words 1144

Nouns 783
Verbs 140
Adjectives 221

Image:Words ratio 202:1

TABLE 6.1. A table showing statistical information on our joint semantic space model

6.4. Dataset

As before, we turn to ImageNet 3.2. Besides the motivations for choosing this resource as listed

in section 5.1, we believe we can provide an additional utility to ImageNet through this research

work. Although we can search for relevant images using keywords in ImageNet, there is currently

no method to query it in the reverse direction. Given a test image, we must search through millions

of images in the database to find the most similar image and its corresponding synset. A joint

semantic model can hopefully augment this shortcoming by allowing queries to be made in both

directions.

For our experiments, we randomly select 167 synsets3 from ImageNet, covering a wide

range of concepts such as plants, mammals, fish, tools, vehicles etc. We perform a simple pre-

processing step using Tree Tagger [73] and extract only the nouns. Multiwords are explicitly

recognized as collocations or named entities in the synset. Not considering part-of-speech distinc-

tions, the vocabulary for synset words is 352. The vocabulary for gloss words is 777. The shared

vocabulary between them is 251. Table 6.1 shows the statistical information on our joint semantic

space model.

There are a total of 230,864 images associated with the 167 synsets, with an average of

1383 images per synset. We randomly select an image for each synset, thus obtaining a set of 167

test images in total. The technique explained in Section 3.3 is used to generate visual codewords

3Not all synsets in ImageNet are annotated with images. We obtain our dataset from the Spring 2010 version of
ImageNet built around Wordnet 3.0.
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Synset {sunflower, he-
lianthus}

Synset {oxygen-mask} Synset {submarine , pigboat ,
sub , U-boat}

Gloss any plant of the genus
Helianthus having large
flower heads with dark disk
florets and showy yellow rays

Gloss a breathing device that
is placed over the mouth and
nose; supplies oxygen from
an attached storage tank

Gloss a submersible warship
usually armed with torpedoes

Relatedness Scores Relatedness Scores Relatedness Scores
color (5.13) dog (0.53) basketball (0.20) central (1.53) africa (0.80) brass (1.73)
floret (6.53) flower (9.67) device (5.47) family (0.80) door (1.67) good (2.40)
freshwater (2.40) hair (1.00) iron-tree (0.47) mouth (5.13) pacific (2.40) pigboat (6.47)
garden (6.60) head (3.80) oxygen-mask (7.73) tank (4.47) sub (8.20) submarine (9.67)
plant (8.47) ray (3.67) storage (3.07) supply (5.20) tail (0.93) torpedo (7.60)
sunflower (9.80) reed (2.27) nose (6.20) time (1.13) u-boat (7.47) warship (8.73)

TABLE 6.2. A sample of test images with their synset words and glosses : The
number in parenthesis represents the numerical association of the word with the
image (0-10). Human annotations reveal different degree of semantic relatedness
between the image and words in the synset or gloss.

for each image in this dataset.4 Each image is first pre-processed to have a maximum side length

of 300 pixels. Next, SIFT descriptors are obtained by densely sampling the image on 20x20 over-

lapping patches spaced 10 pixels apart. K-means clustering is applied on a random subset of 10

million SIFT descriptors to derive a visual vocabulary of 1,000 codewords. Each descriptor is then

quantized into a visual codeword by assigning it to the nearest cluster.

To create the gold-standard relatedness annotation, for each test image, six nouns are ran-

domly selected from its associated synset and gloss words, and six other nouns are again randomly

selected from the shared vocabulary words.5 In all, we have 167 x 12 = 2004 word-image pairs as

our test dataset. Similar to previous word similarity evaluations [62], we ask human annotators to

rate each pair on a scale of 0 to 10 to indicate their degree of semantic relatedness using the evalu-

ation framework outlined below, with 0 being totally unrelated and 10 being perfectly synonymous

4For our experiments, we obtained the visual codewords computed a priori from ImageNet. Test images are not used
to construct the model
512 data points are generally considered sufficient for reliable correlation measures (Vania Kovic, p.c.).
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with each other. To ensure quality ratings, for each word-image pair we used 15 annotators from

Amazon Mechanical Turk.6 Finally, the average of all 15 annotations for each word-image pair

is taken as its gold-standard relatedness score7. Note that only the pairs of images and words are

provided to the annotators, and not their synsets and gloss definitions.

The set of standard criteria underlying the cross-modal similarity evaluation framework

shown here is inspired by the semantic relations defined in Wordnet. These criteria were provided

to the human annotators, to help them decide whether a word and an image are related to each other.

(1) Instance of itself: Does the image contain an entity that is represented by the word itself

(e.g. an image of “Obama” vs the word “Obama”) ?

(2) Member-of Relation: Does the image contain an entity that is a member of the class

suggested by the word or vice versa (e.g. an image of an “apple” vs the word “fruits”) ?

(3) Part-of Relation: Does the image contain an entity that is a part of a larger entity repre-

sented by the word or vice versa (e.g. an image of a “tree” vs the word “forest”) ?

(4) Semantically Related: Do both the word and the image suggest concepts that are related

(e.g. an image of troops at war vs the word “peace”) ?

(5) Semantically Close: Do both the word and the image suggest concepts that are not only

related but also close in meaning? (e.g. an image of troops at war vs the word “gun”) ?

Criterion (1) basically tests for synonym relation. Criteria (2) and (3) are modeled after the

hyponym-hypernym and meronym-holonym relations in WordNet, which are prevalent among

6We only allowed annotators with an approval rating of 97% or higher. Here, we expect some variance in the degree
of relatedness between the candidate words and images, hence annotations marked with all 10s or 0s are discarded due
to lack of distinctions in similarity relatedness
7Annotation guidelines and dataset can be downloaded at http://lit.csci.unt.edu/index.php/Downloads
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nouns. Note that none of the criteria is preemptive over the others. Rather, we provide these

criteria as guidelines in a subjective evaluation framework, similar to the word semantic similarity

task in [62]. Importantly, criterion (4) models dissimilar but related concepts, or any other relation

that indicates frequent association, while criterion (5) serves to provide additional distinction for

pairs of words and images on a higher level of relatedness toward similarity. In Table 6.2, we show

sample images from our test dataset, along with the annotations provided by the human annotators.

6.5. Experiments

Following [21], who argued that word meanings are graded over their senses, we believe that the

meaning of an image is not limited to a set of “best fitting” tags, but rather it exists as a distribution

over arbitrary words with varying degrees of association. Specifically, the focus of our experiments

is to investigate the correlation between automatic measures of such relatedness scores with respect

to human judgments.

To construct the joint semantic space of words and images, we use the SVD described in

Section 6.2 to reduce the number of dimensions. To build each model, we use the 167 synsets

from ImageNet and their associated images (minus the held out test data), hence accounting for

167 latent dimensions. We first represent the synsets as a collection of documents D, each docu-

ment containing visual codewords used to describe their associated images as well as textual words

extracted from their gloss and synset words. Thus, computing a cross-modal relatedness distance

amounts to comparing the cosine similarity of vectors representing an image to the vector rep-

resenting a word in the term-document vector space. Note that, unlike textual words, an image

is represented by multiple visual codewords. Prior to computing the actual cosine distance, we

perform a weighted addition of vectors representing each visual codeword for that image.

To illustrate, consider a single document di, representing the synset “snail,” which con-

sists of {cw0, cw555, cw23, cw124, cw876, snail, freshwater, mollusk, spiral, shell}, where cwX

represents a particular visual codeword indexed from 0-9998, and the textual words are nouns

extracted from the associated synset and gloss. Given a test image I , it can be expressed as

a bag of visual codewords {cw1, ..., cwk}. We first represent each visual codeword in I as a

8For simplicity, we only show the top 5 visual codewords
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vector of length |D| using term-frequency inverse-document-frequency (tfidf ) weighting, e.g.,

cwk =< 0.4 ∗ d1, 0.2 ∗ d2, ..., 0.9 ∗ dm >, where m=167, and perform an addition of k such vectors

to form a final vector vi. To measure the semantic relatedness between image I and a word w, e.g.,

“snail,” we simply compute the cosine similarity between vi and vw, where vw is also a vector of

length |D| calculated using tfidf .

This work seeks answers to the following questions. First, what is the relation between

the discriminability of the visual codewords and their ability to capture semantic relatedness be-

tween a word and an image, as compared to the gold-standard annotation by humans? Second,

given the unbalanced dataset of images and words, can we use a relatively small number of visual

codewords to derive such semantic relatedness measures reliably? Third, what is the efficiency of

an unsupervised vector semantic model in measuring such relatedness, and is it applicable to large

datasets?

Analogous to text-retrieval methods, we measure the discriminability of the visual code-

words using two weighting factors. The first is term-frequency (tf), which measures the number

of times a codeword appears in all images for a particular synset, while the second, image-term-

frequency (itf), captures the number of images using the codeword in a synset. For the two weight-

ing schemes, we apply normalization by using the total number of codewords for a synset (for tf

weighting) and the total number of images in a synset (for itf weighting).

We are interested to quantify the relatedness for pairs of words and images under two

scenarios. By ranking the 12 words associated with an image in reverse order of their relatedness

to the image, we can determine the ability of our models to identify the most related words for a

given image (image-centered). In the second scenario, we measure the relatedness of words and

images regardless of the synset they belong to, thus evaluating the ability of our methods to capture

the relatedness between any word and any image. This allows us to capture the correlation in an

(arbitrary-image) scenario. For the evaluations, we use the Spearman’s Rank correlation.

To place our results in perspective, we implemented two baselines and an upper bound

for each of the two scenarios above. The Random baseline randomly assigns ratings to each word-

image pair on the same 0 to 10 scale, and then measures the correlation to the human gold-standard.
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Spearman’s Rank Coefficient (image-centered)
Top K codewords 100 200 300 400 500 600 700 800 900 1000
LSA tf 0.228 0.325 0.273 0.242 0.185 0.181 0.107 0.043 -0.018 0.000
LSA tf (norm) 0.233 0.339 0.293 0.254 0.202 0.180 0.124 0.047 -0.012 0.000
LSA tf*itf 0.268 0.317 0.256 0.248 0.219 0.166 0.081 -0.004 -0.037 0.000
LSA tf*itf (norm) 0.252 0.327 0.257 0.246 0.211 0.153 0.097 0.002 -0.042 0.000
VB tf 0.243 0.168 0.101 0.055 -0.021 -0.084 -0.157 -0.210 -0.236 -0.332
VB tf (norm) 0.240 0.181 0.110 0.062 -0.010 -0.082 -0.152 -0.204 -0.235 -0.332
VB tf*itf 0.262 0.181 0.107 0.065 -0.019 -0.081 -0.156 -0.211 -0.241 -0.332
VB tf*itf (norm) 0.257 0.180 0.116 0.068 -0.014 -0.079 -0.150 -0.250 -0.237 -0.332
Random 0.001 0.018 0.016 -0.008 0.008 0.005 -0.001 0.014 -0.035 0.012
IHA 0.687

Spearman’s Rank Coefficient (arbitrary-image)
Top K codewords 100 200 300 400 500 600 700 800 900 1000
LSA tf 0.236 0.341 0.291 0.249 0.208 0.183 0.106 0.033 -0.039 0.000
LSA tf (norm) 0.230 0.353 0.301 0.271 0.220 0.186 0.115 0.032 -0.029 0.000
LSA tf*itf 0.291 0.332 0.289 0.262 0.235 0.172 0.092 0.008 -0.041 0.000
LSA tf*itf (norm) 0.277 0.345 0.292 0.269 0.234 0.164 0.098 0.015 -0.046 0.000
VB tf 0.272 0.195 0.119 0.059 -0.012 -0.088 -0.164 -0.218 -0.240 -0.339
VB tf (norm) 0.277 0.207 0.130 0.069 -0.003 -0.083 -0.160 -0.215 -0.242 -0.339
VB tf*itf 0.287 0.206 0.127 0.062 -0.008 -0.085 -0.161 -0.214 -0.241 -0.339
VB tf*itf (norm) 0.286 0.212 0.132 0.071 -0.005 -0.081 -0.158 -0.214 -0.241 -0.339
Random -0.024 -0.014 0.015 -0.015 -0.004 -0.014 0.024 -0.009 -0.007 0.007
IHA 0.764

TABLE 6.3. Correlation of automatically generated scores with human annotations
on cross-modal semantic relatedness, as performed on the ImageNet test dataset
of 2004 pairs of word and image. Correlation figures scoring the highest within
a weighting scheme are marked in bold, while those scoring the highest across
weighting schemes and within a visual vocabulary size are underlined.

The Vector-Based (VB) method is a stronger baseline aimed to study the correlation performance

in the absence of dimensionality reduction. As an upper bound, the Inter-Human-Agreement (IHA)

measures the correlation of the rating by each annotator against the average of the ratings of the

rest of the annotators, averaged over the 167 synsets (for the image-centered scenario) and over the

2004 word-image pairs (for the arbitrary-image scenario).

6.6. Discussion

Our experimental results are shown in Table 6.3. A somewhat surprising observation is the con-

sistency of correlation figures between the two scenarios. In both scenarios, a representative set of

200 visual codewords is sufficient to consistently score the highest correlation ratings across the 8
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weighting schemes. Intuitively, based on the experimental results, automatically choosing the top

10% or 20% of the visual codewords seems to suffice and gives optimal correlation figures, but

requires further justification. Conversely, the relatively simple weighting scheme using tf (normal-

ized) produces the highest correlation in six visual codeword sizes (K=200,300,400,700,800,900)

for the image-centered scenario, as well as in another six visual codeword sizes (K=200 , 300,

400, 600, 700, 900) for the arbitrary-image scenario. Unlike stopwords in text retrieval accounting

for most of the highest tf scores, visual codewords weighted by the same scheme tf and a similar

tf (normalized) scheme seem to be the most discriminative. Note that the higher the discrimi-

native power of a set of visual codewords for a synset9, the more representative they are able to

visually describe the synset. As the discriminability of the codewords decreases, the composite

vector representation of an image deviates from the same direction as the vector representing a

word in a word-image pair judged to be similar. This translates directly to a lower cosine simi-

larity score, and consequently, an inverse monotonic relationship with human judgments. For this

reason, we observe a phenomenon of decreasing correlation scores into the negative region as the

visual codeword size increases for the vector based model. The correlation for including the entire

visual vocabulary set (1000) produces identical results for all vector-based and LSA weighting

schemes, as images across synsets are now encoded by the same set of visual codewords without

discrimination between them.

Dimensionality reduction using SVD gains an advantage over the vector-based method for

both scenarios, with the highest correlation rating in LSA (200 visual codeword, tf(norm)) achiev-

ing 0.077 points better than the corresponding highest correlation in Vector-based (100 visual code-

word, tf*itf ) for the image-centered scenario, representing a 29.3% improvement. Similarly, in the

arbitrary-image scenario, the increase in correlation from 0.287 (VB tf*itf at 100 visual code-

word) to 0.353 (LSA tf(norm) at 200 visual codeword) underlines a gain of approximately 23.0%.

Overall, the arbitrary-image scenario also scores consistently higher than the image-centered sce-

nario under similar experimental conditions. For instance, for the top 200 visual words, the same

weighting schemes produce consistently lower correlation figures for the image-centered scenario.

9It is important to realize that for any top K visual codeword size, the actual codewords used for different synsets may
be very different, i.e., a specific subset of 1000C200 codeword combinations, where K=200
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This is also true for the Inter-Human-Agreement score, which is higher in the arbitrary-image sce-

nario (0.764) compared to the image-centered scenario (0.687). Note that for all the experiments,

the semantic relatedness scores generated from the semantic vector space are significantly more

correlated with the human gold-standard than the random baselines.

FIGURE 6.1. Spearman correlation performance with human annotations against
number of synsets used

6.6.1. Scalability Effectiveness

To investigate the effectiveness of the model when scaling up to large datasets, we employ

the best combination of weighting scheme and vocabulary size shown in Table 6.3, i.e., a visual

vocabulary size of 200 and tf (normalized) weighting for LSA, and vocabulary size of 100 and

tf*itf weighting for the vector-based model, and incrementally construct models ranging from 167

synsets to 800 synsets (all randomly selected from ImageNet). We then measure the correlation of

relatedness scores generated using the same test dataset with respect to human annotations. The
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FIGURE 6.2. Classification accuracy, as more data is added to construct the seman-
tic space model.

dataset was randomly selected to increase by approximately five times, from a total of 230,864

images with 878 words to a total of 1,014,528 images with 3887 words. Furthermore, for each

unseen test image taken from Synset Si and the associated 12 candidate words, we evaluate the

ability of the model to identify which of the candidate words actually appear in the gloss or the

synset of Si, in a task we term as word classification. Here, the top six words are predictably

classified as those appearing in Si while the last six are classified as outside of Si , after all 12

words are ranked in reverse order of their relatedness to the test image. We measure the accuracy

of the word classification task using TP+TN
2004

, where TP is the number of words correctly classified

as synset or gloss words, and TN is the number of words correctly classified as outside of synset

or gloss, both summed over the 2004 pairs of words and images.
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As shown in Figure 6.1, when a small number of synsets (33) was added to the original se-

mantic space, correlation with human ratings increased steeply to around 0.45 and higher for LSA

in both scenarios, while the vector-based method suffers a slight decrease in correlation ratings

from 0.262 to 0.251 (image-centered) and from 0.287 to 0.278 (arbitrary-image). As more images

and words are added, correlation for the vector-based model continues to decrease markedly. Com-

paratively, LSA is less sensitive to data scaling, as correlation figures for both scenarios decreases

slightly but stays within a 0.40 to 0.45 range. Additionally, we infer that LSA is consistently more

effective than the vector-based model in the words classification task (as seen in Figure 6.2). Even

with more data added to the semantic space, word classification accuracy stays consistently at 0.7

for LSA, while it drops to 0.535 for the vector-based model at a synset size of 800.

For both LSA and vector-based baseline models, as the size of the semantic space increases

(via adding more synsets), there is an initial and significant increase in the performance on both

the semantic relatedness and word classification tasks. This is perhaps due to the introduction of

additional and ‘informative’ dimensions into the semantic space. Note that each successive sysnset

that is randomly selected for constructing the semantic space is not necessarily closely related to

previously selected synsets in the WordNet concept hierarchy. Rather, it could be any one of a

diverse set of synsets covering different topics, as long as each of them can be illustrated with

images. However, as more synsets are added, the probability of a given textual word being in

more than one sysnet increases. On the other hand, the same set of visual codewords describing

an image, which is initially associated with the textual word, may not always be present in each

additional synset containing the latter. This decreasing dissociation between the image-word pair

probably causes the slow but steady decrease in performance of both tasks, as more and more

synsets are added.

6.7. Extended Study : Using Image Attributes for Measuring Cross-Modal Semantic Relatedness

While advances in computer research have seen a maturity in the detection of object cate-

gories (such as cars, trees, persons etc) and even object parts (e.g. “leg” or “wheel”), recent inter-

ests have shifted to the modeling of visual attributes that arise from semantic description of objects

[45, 23, 22]. For instance, besides training an object classifier to recognize the presence or absence
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FIGURE 6.3. Examples of object attributes taken directly from ImageNet website,
which are present in our dataset

of a “dog” in an image, there is a growing effort to extract object attributes, e.g., automatically

describing the dog as “black” or “furry”. Figure 6.3 illustrates some objects with their extracted

attributes. Attribute learning like this bears important implications. It not only enriches the set of

semantic tags for the object, but it also eases the construction of large-scale image databases and

image ontologies. As the number of object categories increases to thousands and millions, training

of individual classifiers for each object is impractical. Instead, the acquisition of new images for

each category or the recognition of image categories can be performed by employing sufficiently

large set of attributes via transfer learning [71]. Indeed, it has been shown that combining ver-

bal descriptions of attributes with just a few training images, or even the exclusive use of verbal

descriptions, leads to more efficient and effective image categorization [23].
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In this section, we present an extended study on solving the cross-modal semantic relat-

edness problem by combining visual codeword and visual object attributes, using unsupervised

corpus-based approaches. As mentioned, visual object attributes learning or modeling is a rela-

tively new research area in computer vision, where efforts have focused on modeling different types

of attributes that are appearance-based [45, 23, 22], object parts-based [45, 22] or attributes exhibit-

ing similarity between objects [45] . Of particular interest to us is the detection of appearance-based

attributes that are semantic in nature, i.e., the attribute is visual and can be described sufficiently

using natural language.

This section addresses the following research questions. First, is it possible to augment the

bag-of-visual codewords approach with learned visual attributes in a corpus-based representation

? Second, given such a augmented multimodal semantic representation, can we derive a seman-

tic relatedness measure between arbitrary pairs of words and images that achieves an improved

correlation rating with respect to human judgments on the same evaluation dataset ?

6.7.1. Dataset

To our knowledge, semantic, appearance-based visual attributes have not been employed

in any previous work related to measuring semantic relatedness between words and images. An

intuitive approach to acquire a suitable dataset for evaluation is to perform data mining on any

available image database consisting of paired word and images, according to a list of desirable

attributes. However, datasets constructed in this way often tend to be overly sparse and unbalanced

in the attribute space [71]. Furthermore, due to its infancy, the extraction of semantic, appearance

based attributes suffers from low accuracy [71], and is not suitable for evaluating our hypothesis

due to the percolation of noise. Since we have shown previously that deployment of low-level

descriptors such as SIFT is promising for solving the cross-modal semantic relatedness problem,

our goal here is to look forward in other orthogonal directions for exploitation of image-based

information cues. For this reason, acquiring a dataset of clean annotations of visual attributes is

important to establish our hypothesis about their applicability to solve our task at hand. For our

dataset, we use the ground-truth annotated 384 synsets from ImageNet collected for attribute learn-

ing in large-scale datasets in [71]. The dataset contains 9600 images covering 384 synsets, each
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annotated by 3 annotators from Amazon Mechanical Turk. For each of the 25 selected attributes,

each annotator indicated on each image the presence/absence of the attribute. Overall, the image

is marked as (+1) if all three annotators agree about its presence, (-1) if all agree on its absence, or

otherwise ambiguous (0) if there is a lack of consensus. Table 6.4 shows the categorized attributes

found in our dataset10

CATEGORY ATTRIBUTES
Color black, blue, brown, gray, green, orange, pink, red, violet, white, yellow
Pattern spotted, striped
Shape long, round, rectangular, square
Texture furry, smooth, rough, shiny, metallic, vegetation, wooden, wet

TABLE 6.4. Table showing high-level categories and the corresponding attributes

As before, we employ the bag-of-visual codewords extraction procedure outlined in 3.3

to represent each image in our dataset, using a subset of the visual codeword vocabulary. For

each synset, we processed its associated images to derive a representative set of visual codewords,

which is appended to all its synset and gloss words. In order to incorporate our newly acquired

attributes in this bag-of-words representation, mapping from the former to the latter is necessary.

Formally, let Is = {i1, ..., ik} be the set of images associated with synset s, A = < aj|j = 1, ..., N >

be the N (25) semantic, appearance-based attributes from above. For each image i ∈ Is, Li =

< lki |k = 1, .., N >, where Label(aj) = lki , and lki ∈ {0, 1,−1}. We seek to find function

g : Li → {0, 1}|Li|, where 0 indicates the absence of the attribute, and 1 indicates its presence.

In other words, we are trying to find a mapping function from a ternary-valued attribute label to a

binary-valued visual attribute codeword. Trivially, it may seem that we can discard the ambiguous

label where lki = 0, however, note that the same set of visual attributes is extracted from all images

in all 384 synsets. In some cases, a clear establishment of an attribute in some synsets may be

unclear, as positive instances are rare for discrimination purposes. Indeed, a close examination of

the data confirms this intuition. Instead, g is determined for each synset based on a majority vote

10http://www.image-net.org/download-attributes
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from labels from its member images. An attribute label from Li is mapped only if is demonstrated

in more than half of the synset images in the process of constructing the semantic space. In case

of a tie, i.e., the attribute is established in half of the synset images, then we are unsure of its

representativeness of the synset entity. In this case,we perform mapping to attribute codewords

both binary co-dominant attribute values. For instance, if only half of the training images for

synset {dog, domestic dog, Canis familiaris} consists of dogs in black, while the color of the dog

in the other half of the images could be all ambiguous e.g. gray, or all non-black e.g. brown, then

we append to the synset both attribute codeword BLACK and NOT BLACK, since it is uncertain

that the color black is a representative attribute of dog.

Consequently, the final composition of our appended synsets can be summarized as follows.

Suppose TC, V C and AC are the vocabulary of textual words, visual codewords and attribute

codewords respectively, then any synset s = {ti, vj, ak|ti ∈ TC, vj ∈ V C, ak ∈ AC}. Specifically,

we set j=1 to 200 for the visual codeword size based on optimal performance using the LSA model

from the work performed earlier, while k = 1 to 25.

For evaluation, we randomly select 150 synsets from the 384 synsets annotated with visual

attributes. A randomly selected image from each of these 150 synsets is set aside for testing, while

the rest of images are used to build the multimodal semantic space. As before, for each test image,

we randomly selected 6 words from the synset and gloss, and another 6 words elsewhere. For each

pair of image and word, we invited 15 annotators with at least 97% approval rating from AMT to

rate their association from 0 to 10 using the cross-modal evaluation framework explained earlier.

Altogether, we obtained 150x12 = 1800 annotated pairs of word and image. For each pair, we

computed the average score from the 15 annotations. Table 6.5 shows examples of test image and

word pairs.

Following earlier work, we again compute the upper bound Inter-Human-Agreement (IHA),

which measures the correlation of the rating by each annotator against the average of the ratings

of the rest of the annotators, averaged over the 150 synsets (for the image-centered scenario) and

over the 1800 word-image pairs (for the arbitrary-image scenario). Since the focus here is on

improvement in correlation, not error reduction, baselines are not necessary.
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Synset {silverback} Synset {cross} Synset {tiramisu}
Gloss an adult male gorilla
with grey hairs across the
back

Gloss a wooden struc-
ture consisting of an up-
right post with a trans-
verse piece

Gloss an Italian dessert con-
sisting of layers of sponge
cake soaked with coffee and
brandy or liqueur layered
with mascarpone cheese and
topped with grated chocolate

Relatedness Scores Relatedness Scores Relatedness Scores
adult (8.07) deep (2.27) consist (0.87) cross (10.00) cake (9.27) chocolate (7.67)
gorilla (9.93) grey (5.33) fleet (0.53) habit (0.33) dessert (8.27) grate (2.60)
hair (5.33) male (7.13) hoof (1.13) hungarian (0.47) hinny (0.27) italian (4.93)
oil (1.00) herbivorous (6.47) hunting (0.80) post (5.20) low (1.00) mixture (3.93)
muzzle (2.93) neck (4.13) structure (6.80) upright (5.93) ridge (0.80) rum (2.53)
horse (0.20) silverback (6.87) wild (0.87) wooden (7.60) soak (1.93) toe (0.27)
Visual Attributes Visual Attributes Visual Attributes

black (color) black (color) black (color)
furry (texture) long (shape) brown (color)

rectangular (shape)
smooth (texture)

TABLE 6.5. A sample of test images with their synset words and glosses, human
annotations : The number in parenthesis represents the numerical association of the
word with the image (0-10). All content words are considered. The visual attributes
agreeable by all annotators are listed for each image

6.7.2. Experiments

Our extended study involving semantic, appearance-based attributes is to observe if an

augmented multimodal semantic space that includes visual attribute codewords can lead to im-

provements in measuring cross-modal semantic relatedness over the previously employed best-

performing system i.e. vector space model using LSA (VSM-LSA) to reduce dimensionality.

Upon this basic multimodal semantic space constructed using the 150 synsets, we further made

three enhancements. First, in order to investigate the effect of adding each individual attribute

to the basic model, we constructed 25 augmented semantic spaces, each using VSM-LSA and
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mapped codewords belonging to one and only one of the 25 visual attributes. Second, we in-

vestigate addition of categorized attributes to the basic model, by constructing another four aug-

mented semantic spaces, each integrating mapped codewords belonging to all related attributes

within a high-level attribute category i.e. color (CLR-VSM-LSA), pattern (PTT-VSM-LSA),

shape (SHP-VSM-LSA), and texture (TXT-VSM-LSA). Finally, we want to observe the perfor-

mance by incorporating all 25 attributes in a composite semantic space, COMB-ATT-VSM-LSA,

by augmenting VSM-LSA using all codewords belonging to all attributes. For each of the seman-

tic spaces constructed above, we compute the Spearman correlation of the automatically generated

semantic relatedness scores between the 1800 pairs of word and image under both image-centered

and arbitrary-image scenarios. Note that tf-normalized weighting (tf (norm)) is used for selecting

the top K visual codewords for constructing all the semantic spaces, where K = 200, as this was

the the visual codeword size resulting in the highest performance for VSM-LSA in Table 6.3.

Arbitrary Image-Centered
CLR-VSM-LSA 0.348 0.361
PTT-VSM-LSA 0.342 0.363
SHP-VSM-LSA 0.348 0.366
TXT-VSM-LSA 0.351 0.366
COMB-ATT-VSM-LSA 0.369 0.378
VSM-LSA 0.344 0.364
Upperbound (Humans) 0.613 0.523

TABLE 6.6. Spearman correlation performance of augmented VSM-LSAs using
visual attributes and their integration within high level categories

6.7.3. Discussion

The results for the semantic spaces enhanced with individual visual attributes are shown in

Figure 6.4. Across both arbitrary-image and image-centered scenarios, attributes scoring consis-

tent improvements over the basic VSM-LSA are green (color), white (color), yellow (color), rect-

angular (shape), round (shape), smooth (texture), shiny (texture), vegetation (texture) and wooden
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(texture). For the rest of the attributes, findings are largely inconclusive. Furthermore, even the

highest improvement scored, i.e., white (color) for image-centered scenario, is within a margin

of 0.01. These marginal improvements can be attributed to the inherent nature of our dataset. A

simple analysis reveals that out of 9600 annotated images, approximately 8% of the attributes are

labeled as positives, while 80% are negatives, and 12% are ambiguously labeled. The unbalanced

labels constituted a challenging scenario for effective discrimination between object classes based

on appearance-based attributes, and therefore, translates indirectly to loose association between

visual words in one synset and textual words in another synset, resulting in little or no improve-

ment over the basic VSM-LSA. Given that the labels are already human-labeled ground truths, it is

worth trying to explore other directions, such as weighing in on attributes that are better represented

across diverse object categories.

The results for semantic spaces constructed by using integrated codewords within high-

level categories are shown in Table 6.6. Overall, compared to our basic VSM-LSA semantic space,

all enhanced versions score improvements in either arbitrary-image or image-centered scenarios,

or both, with the exception of PTT-VSM-LSA. The highest improvement from the four seman-

tic spaces is represented by TXT-VSM-LSA (0.351 for arbitrary-image, and 0.366 for image-

centered). A closer examination reveals perhaps a correlation between the number of attributes

contained in the high-level category and its performance. This is especially true for PTT-VSM-

LSA where there exists only two pattern attributes. However, combining all 25 visual attributes

together into a single composite semantic space yields the highest performance of all systems we

experimented with, scoring a Spearman correlation of 0.369 for the arbitrary-image and 0.378 for

the image-centered scenarios respectively. Note that the correlation upperbounds for human on

this dataset are lower than the ones computed for earlier work, most likely due to the inclusion

of content words of all part-of-speech i.e. nouns, adjectives and adverbs. This presents signifi-

cant difficulties in quantifying relation between an image and a non-noun in its synset, e.g., the

word-image pair of ‘consist’ and the image depicting ‘cross’ in Table 6.5, because the former is
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FIGURE 6.4. Spearman correlation performance of VSMs augmented with indi-
vidual attributes

arguably much more general than concrete nouns in its semantics, but represents our first-cut ap-

proach at building a multimodal semantic space covering all words and images, instead of focusing

exclusively on nouns.

6.8. Related Work

Despite the large amount of work in computing semantic relatedness between words or similarity

between images, there are only a few studies in the literature that associate the meaning of words

and pictures in a joint semantic space. The work most similar to ours was done by [84], who

employed LSA to combine textual words with simple visual features extracted from news images

using colors and textures. Although it was concluded that such a joint textual-visual representation

model was promising for image retrieval, no intensive evaluation was performed on datasets on a

large scale, or datasets other than the news domain. Similarly, [33] compared different methods
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such as LSA and probabilistic LSA to construct joint semantic spaces in order to study their effects

on automatic image annotation and semantic image retrieval, but their evaluation was restricted

exclusively to the Corel dataset, which is somewhat idealistic and not reflective of the challenges

presented by real-world, noisy images.

Another related line of work by [6] used a generative hierarchical model to learn the asso-

ciative semantics of words and images for improving information retrieval tasks. Their approach

was supervised and evaluated again only on the Corel dataset.

More recently, [27] showed that it is possible to combine visual representations of word

meanings into a joint bimodal representation constructed by using latent topics. While their work

focused on unifying meanings from visual and textual data via supervised techniques, no effort

was made to compare the semantic relatedness between arbitrary pairs of word and image.
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CHAPTER 7

CONCLUSION

Language and vision endure together, or perish alone. The goal of this dissertation is to provide

empirical evidence in further support of the synergism between language and vision. Specifically,

we are interested to provide computational approaches to explore and exploit the synergistic rela-

tionships between the visual and textual modalities, and to further stretch the boundaries of their

applicability in generating novel solutions to existing problems.

7.1. Research Questions Revisited

1. Is it possible to decode information in one modality to help tasks existing in the other modality

?

With regards to interoperability of textual features for tasks in vision, we introduced several

text-based extractive approaches for the selected task of automatic image annotation and showed

that they compare favorably with the state-of-the-art model using both text and image features. We

believe our work has practical applications in mining and annotating images over the Web, where

texts are naturally associated with images, and scalability is important. Our next direction seeks

to derive robust annotation models using additional ontological knowledge-bases. We would also

like to advance the the state-of-the-art by augmenting current textual models with image features.

Research in the other direction also shows a lot of promise, as we are able to exploit the

visual information presented by images in a parallel corpora containing words and images, and

devise a new image-based metric for measuring word relatedness. Using pair-wise combination of

the outputs from several text-based metric and this new image-based metric, we are able to obtain

the state-of-the-art for the relatedness, as measured on three standard evaluation datasets. For im-

proving coverage, we bridged the gap between WordNet and a corpus-based resource, Wikipedia,
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for further validating the promise of our approach, and outline circumstances when such an image-

based metric should be used.

2. Considering the supplementary and complementary advantages of each modality over the other,

can we integrate image and word features into a unified framework for the construction of a richer

semantic space ?

The meaning of words are represented by discrete lexical units, each of which is defined

according to a dictionary. On the contrary, the meaning of an image is not determined a priori,

but rather depends on the vision task required at hand to justify for its semantics. The first step

in constructing a multimodal semantic space requires quantization of an image into discrete units,

termed as visual codewords. By using simple statistical relationships between words and images

mined from a large parallel corpora, we are able to employ semantic vectorial models used in

natural language processing to construct a joint semantic space.

The construction of such a joint multimodal semantic space bears huge promises, such as

its ability to measure relatedness between pairs of words, a word and an image, and pairs of images

directly using a concept-based distributional semantics framework.

3. Can we formalize the meaning of images by using words in languages?

We provided a proof of concept in quantifying the semantic relatedness between words and

images through the use of visual codewords and textual words in constructing a joint semantic

vector space. Our experiments showed that the relatedness scores have a positive correlation to

human gold-standards, as measured using a novel evaluation framework devised to quantify cross-

modal semantic relatedness, which is inspired by the semantic relations in WordNet.

We believe many aspects of this work can be explored further. For instance, other visual

codeword attributes, such as pixel coordinates, can be employed in a structured vector space along

with the existing model for improving vector similarity measures.
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MC30 Dataset

WORD WORD SCORE
asylum madhouse 3.610
bird cock 3.050
bird crane 2.970
boy lad 3.760
brother monk 2.820
car automobile 3.920
cemetery woodland 0.950
chord smile 0.130
coast forest 0.420
coast hill 0.870
coast shore 3.700
crane implement 1.680
food fruit 3.080
food rooster 0.890
forest graveyard 0.840
furnace stove 3.110
gem jewel 3.840
glass magician 0.110
journey car 1.160
journey voyage 3.840
lad brother 1.660
lad wizard 0.420
magician wizard 3.500
midday noon 3.420
monk oracle 1.100
monk slave 0.550
noon string 0.080
rooster voyage 0.080
shore woodland 0.630
tool implement 2.950
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RG65 Dataset

WORD WORD SCORE
gem jewel 3.940
midday noon 3.940
automobile car 3.920
cemetery graveyard 3.880
cushion pillow 3.840
boy lad 3.820
cock rooster 3.680
implement tool 3.660
forest woodland 3.650
coast shore 3.600
autograph signature 3.590
journey voyage 3.580
serf slave 3.460
grin smile 3.460
glass tumbler 3.450
cord string 3.410
hill mound 3.290
magician wizard 3.210
furnace stove 3.110
asylum madhouse 3.040
brother monk 2.740
food fruit 2.690
bird cock 2.630
bird crane 2.630
oracle sage 2.610
sage wizard 2.460
brother lad 2.410
crane implement 2.370
magician oracle 1.820
glass jewel 1.780
cemetery mound 1.690
car journey 1.550
hill woodland 1.480
crane rooster 1.410
furnace implement 1.370
coast hill 1.260
bird woodland 1.240
shore voyage 1.220
cemetery woodland 1.180
food rooster 1.090
forest graveyard 1.000
lad wizard 0.990
mound shore 0.970

Continue on the next page
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WORD WORD SCORE
automobile cushion 0.970
boy sage 0.960
monk oracle 0.910
shore woodland 0.900
grin lad 0.880
coast forest 0.850
asylum cemetery 0.790
monk slave 0.570
cushion jewel 0.450
boy rooster 0.440
glass magician 0.440
graveyard madhouse 0.420
asylum monk 0.390
asylum fruit 0.190
grin implement 0.180
mound stove 0.140
automobile wizard 0.110
autograph shore 0.060
fruit furnace 0.050
noon string 0.040
rooster voyage 0.040
cord smile 0.020
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WS353 Dataset

WORD WORD SCORE
admission ticket 7.69
alcohol chemistry 5.54
aluminum metal 7.83
announcement effort 2.75
announcement news 7.56
announcement production 3.38
announcement warning 6.00
arafat jackson 2.50
arafat peace 6.73
arafat terror 7.65
architecture century 3.78
arrangement accommodation 5.41
arrival hotel 6.00
asylum madhouse 8.87
atmosphere landscape 3.69
attempt peace 4.25
baby mother 7.85
bank money 8.12
baseball season 5.97
bed closet 6.72
benchmark index 4.25
bird cock 7.10
bird crane 7.38
bishop rabbi 6.69
board recommendation 4.47
book library 7.46
book paper 7.46
boxing round 7.61
boy lad 8.83
bread butter 6.19
brother monk 6.27
calculation computation 8.44
canyon landscape 7.53
car automobile 8.94
car flight 4.94
cell phone 7.81
cemetery woodland 2.08
century nation 3.16
century year 7.59
championship tournament 8.36
chance credibility 3.88
change attitude 5.44

Continue on the next page
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WORD WORD SCORE
chord smile 0.54
closet clothes 8.00
coast forest 3.15
coast hill 4.38
coast shore 9.10
company stock 7.08
competition price 6.44
computer internet 7.58
computer keyboard 7.62
computer laboratory 6.78
computer news 4.47
computer software 8.50
concert virtuoso 6.81
consumer confidence 4.13
consumer energy 4.75
country citizen 7.31
crane implement 2.69
credit card 8.06
credit information 5.31
cucumber potato 5.92
cup article 2.40
cup artifact 2.92
cup coffee 6.58
cup drink 7.25
cup entity 2.15
cup food 5.00
cup liquid 5.90
cup object 3.69
cup substance 1.92
cup tableware 6.85
currency market 7.50
day dawn 7.53
day summer 3.94
death inmate 5.03
death row 5.25
decoration valor 5.63
delay news 3.31
delay racism 1.19
deployment departure 4.25
deployment withdrawal 5.88
development issue 3.97
direction combination 2.25

Continue on the next page
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WORD WORD SCORE
disability death 5.47
disaster area 6.25
discovery space 6.34
dividend calculation 6.48
dividend payment 7.63
doctor liability 5.19
doctor nurse 7.00
doctor personnel 5.00
dollar buck 9.22
dollar loss 6.09
dollar profit 7.38
dollar yen 7.78
drink car 3.04
drink ear 1.31
drink eat 6.87
drink mother 2.65
drink mouth 5.96
drug abuse 6.85
energy crisis 5.94
energy laboratory 5.09
energy secretary 1.81
environment ecology 8.81
equipment maker 5.91
exhibit memorabilia 5.31
experience music 3.47
family planning 6.25
fbi fingerprint 6.94
fbi investigation 8.31
fertility egg 6.69
fighting defeating 7.41
five month 3.38
focus life 4.06
food fruit 7.52
food preparation 6.22
food rooster 4.42
football basketball 6.81
football soccer 9.03
football tennis 6.63
forest graveyard 1.85
fuck sex 9.44
furnace stove 8.79
game defeat 6.97

Continue on the next page
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WORD WORD SCORE
game round 5.97
game series 6.19
game team 7.69
game victory 7.03
gem jewel 8.96
gender equality 6.41
glass magician 2.08
glass metal 5.56
government crisis 6.56
governor interview 3.25
governor office 6.34
grocery money 5.94
harvard yale 8.13
holy sex 1.62
hospital infrastructure 4.63
hotel reservation 8.03
hundred percent 7.38
image surface 4.56
impartiality interest 5.16
investigation effort 4.59
investor earning 7.13
jaguar car 7.27
jaguar cat 7.42
japanese american 6.50
jerusalem israel 8.46
jerusalem palestinian 7.65
journal association 4.97
journey car 5.85
journey voyage 9.29
king cabbage 0.23
king queen 8.58
king rook 5.92
lad brother 4.46
lad wizard 0.92
law lawyer 8.38
lawyer evidence 6.69
liability insurance 7.03
life death 7.88
life lesson 5.94
life term 4.50
line insurance 2.69
liquid water 7.89

Continue on the next page
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WORD WORD SCORE
listing category 6.38
listing proximity 2.56
lobster food 7.81
lobster wine 5.70
love sex 6.77
lover quarrel 6.19
luxury car 6.47
magician wizard 9.02
man governor 5.25
man woman 8.30
maradona football 8.62
marathon sprint 7.47
mars scientist 5.63
mars water 2.94
media gain 2.88
media radio 7.42
media trading 3.88
mexico brazil 7.44
midday noon 9.29
mile kilometer 8.66
minister party 6.63
ministry culture 4.69
minority peace 3.69
money bank 8.50
money cash 9.15
money currency 9.04
money deposit 7.73
money dollar 8.42
money laundering 5.65
money operation 3.31
money possession 7.29
money property 7.57
money wealth 8.27
money withdrawal 6.88
monk oracle 5.00
monk slave 0.92
month hotel 1.81
morality importance 3.31
morality marriage 3.69
movie critic 6.73
movie popcorn 6.19
movie star 7.38

Continue on the next page
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WORD WORD SCORE
movie theater 7.92
murder manslaughter 8.53
museum theater 7.19
music project 3.63
nature environment 8.31
nature man 6.25
network hardware 8.31
news report 8.16
noon string 0.54
observation architecture 4.38
oil stock 6.34
opec country 5.63
opec oil 8.59
opera industry 2.63
opera performance 6.88
peace atmosphere 3.69
peace insurance 2.94
peace plan 4.75
phone equipment 7.13
physics chemistry 7.35
physics proton 8.12
plane car 5.77
planet astronomer 7.94
planet constellation 8.06
planet galaxy 8.11
planet moon 8.08
planet people 5.75
planet space 7.92
planet star 8.45
planet sun 8.02
population development 3.75
possibility girl 1.94
practice institution 3.19
precedent antecedent 6.04
precedent cognition 2.81
precedent collection 2.50
precedent example 5.85
precedent group 1.77
precedent information 3.85
precedent law 6.65
prejudice recognition 3.00
preservation world 6.19

Continue on the next page
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WORD WORD SCORE
president medal 3.00
problem airport 2.38
problem challenge 6.75
production crew 6.25
production hike 1.75
professor cucumber 0.31
professor doctor 6.62
profit loss 7.63
profit warning 3.88
psychology anxiety 7.00
psychology clinic 6.58
psychology cognition 7.48
psychology depression 7.42
psychology discipline 5.58
psychology doctor 6.42
psychology fear 6.85
psychology freud 8.21
psychology health 7.23
psychology mind 7.69
psychology psychiatry 8.08
psychology science 6.71
reason criterion 5.91
reason hypertension 2.31
record number 6.31
registration arrangement 6.00
report gain 3.63
rock jazz 7.59
rooster voyage 0.62
school center 3.44
seafood food 8.34
seafood lobster 8.70
seafood sea 7.47
secretary senate 5.06
seven series 3.56
shore woodland 3.08
shower flood 6.03
shower thunderstorm 6.31
sign recess 2.38
situation conclusion 4.81
situation isolation 3.88
size prominence 5.31
skin eye 6.22

Continue on the next page
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WORD WORD SCORE
smart student 4.62
smart stupid 5.81
soap opera 7.94
space chemistry 4.88
space world 6.53
start match 4.47
start year 4.06
stock cd 1.31
stock egg 1.81
stock jaguar 0.92
stock life 0.92
stock live 3.73
stock market 8.08
stock phone 1.62
street avenue 8.88
street block 6.88
street children 4.94
street place 6.44
stroke hospital 7.03
student professor 6.81
sugar approach 0.88
summer drought 7.16
summer nature 5.63
telephone communication 7.50
television film 7.72
television radio 6.77
tennis racket 7.56
territory kilometer 5.28
territory surface 5.34
theater history 3.91
tiger animal 7.00
tiger carnivore 7.08
tiger cat 7.35
tiger fauna 5.62
tiger feline 8.00
tiger jaguar 8.00
tiger mammal 6.85
tiger organism 4.77
tiger tiger 10.00
tiger zoo 5.87
tool implement 6.46
train car 6.31

Continue on the next page
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WORD WORD SCORE
travel activity 5.00
treatment recovery 7.91
type kind 8.97
victim emergency 6.47
video archive 6.34
viewer serial 2.97
vodka brandy 8.13
vodka gin 8.46
volunteer motto 2.56
war troops 8.13
water seepage 6.56
weapon secret 6.06
weather forecast 8.34
wednesday news 2.22
wood forest 7.73
word similarity 4.75
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Word Picturablity Scores (Vocabulary words of MC30, RG65 and WS353)

WORD SCORE
American 0.99898
Arafat 0.97671
Brazil 0.99932
CD 0.99950
FBI 0.92509
Freud 0.95649
Harvard 0.89777
Israel 0.99333
Jackson 0.99666
Japanese 0.99885
Jerusalem 0.99405
Maradona 0.99981
Mars 0.99893
Mexico 0.99985
OPEC 0.50377
Palestinian 0.95800
Wednesday 0.99958
Yale 0.82643
abuse 0.99521
accommodation 0.98674
activity 0.99605
admission 0.93071
airport 0.99817
alcohol 0.99753
aluminum 0.99698
animal 0.99996
announcement 0.99138
antecedent 0.98406
anxiety 0.82794
approach 0.94356
architecture 0.99997
archive 0.99994
area 0.99864
arrangement 0.99779
arrival 0.96780
article 0.99973
artifact 0.99710
association 0.97094
astronomer 0.99864

Continue on the next page
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WORD SCORE
asylum 0.99383
atmosphere 0.98869
attempt 0.93329
attitude 0.98268
autograph 0.99699
automobile 0.99986
avenue 0.98445
baby 0.99976
bank 0.98603
baseball 0.99896
basketball 0.99987
bed 0.99404
benchmark 0.97072
bird 0.99961
bishop 0.83676
block 0.99057
board 0.99826
book 0.99901
boxing 0.99961
boy 0.99904
brandy 0.98045
bread 0.98793
brother 0.99220
buck 0.86854
butter 0.99193
cabbage 0.98011
calculation 0.75510
canyon 0.99708
car 1.00000
card 0.99846
carnivore 0.99852
cash 0.91636
cat 0.99971
category 0.99991
cell 0.99735
cemetery 0.97861
center 1.00000
century 0.99779
challenge 0.98451
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WORD SCORE
championship 0.99639
chance 0.98205
change 0.99822
chemistry 0.97836
children 0.99891
chord 0.99712
citizen 0.93576
clinic 0.95070
closet 0.99694
clothes 0.99742
coast 0.99566
cock 0.99944
coffee 0.99572
cognition 0.87171
collection 0.99985
combination 0.99389
communication 0.98093
company 0.99998
competition 0.99610
computation 0.78135
computer 0.99976
concert 0.99894
conclusion 0.91104
confidence 0.92908
constellation 0.99866
consumer 0.95259
cord 0.94010
country 0.99844
crane 0.97496
credibility 0.66468
credit 0.99897
crew 0.99794
crisis 0.98470
criterion 0.85832
critic 0.98792
cucumber 0.82088
culture 0.99901
cup 0.99834
currency 0.99407
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WORD SCORE
cushion 0.98276
dawn 0.99721
day 0.99968
death 0.99783
decoration 0.99994
defeat 0.92686
defeating 0.91241
delay 0.93634
departure 0.94028
deployment 0.96347
deposit 0.97087
depression 0.97478
development 0.99602
direction 0.99714
disability 0.71583
disaster 0.98568
discipline 0.75835
discovery 0.98575
dividend 0.58771
doctor 0.98643
dollar 0.97757
drink 0.99614
drought 0.98384
drug 0.94053
ear 0.99981
earning 0.88197
eat 0.99437
ecology 0.98970
effort 0.95990
egg 0.99478
emergency 0.96078
energy 0.99272
entity 0.87839
environment 0.99332
equality 0.84827
equipment 0.98823
evidence 0.89248
example 0.99721
exhibit 0.99325

Continue on the next page
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WORD SCORE
experience 0.98867
eye 0.99817
family 0.99867
fauna 0.99977
fear 0.99752
feline 0.99490
fertility 0.91725
fighting 0.99863
film 0.99986
fingerprint 0.99270
five 0.99382
flight 0.99651
flood 0.95960
focus 0.99464
food 0.99949
football 0.99989
forecast 0.98582
forest 0.99900
fruit 0.99855
fuck 0.99954
furnace 0.90124
gain 0.89790
galaxy 0.99968
game 0.99982
gem 0.98541
gender 0.98073
gin 0.95624
girl 0.99992
glass 0.99853
government 0.98418
governor 0.91298
graveyard 0.99193
grin 0.98833
grocery 0.71730
group 0.99909
hardware 0.99236
health 0.99701
hike 0.98783
hill 0.98690
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WORD SCORE
history 0.99935
holy 0.99604
hospital 0.98257
hotel 0.99939
hundred 0.96095
hypertension 0.95103
image 1.00000
impartiality 0.23983
implement 0.88426
importance 0.95494
index 0.99940
industry 0.99301
information 0.99893
infrastructure 0.94562
inmate 0.84381
institution 0.82395
insurance 0.98674
interest 0.97194
internet 0.99941
interview 0.99697
investigation 0.84636
investor 0.36210
isolation 0.96559
issue 0.99466
jaguar 0.99999
jazz 0.99158
jewel 0.98481
journal 0.99765
journey 0.99412
keyboard 0.99955
kilometer 0.98447
kind 0.99468
king 0.99786
laboratory 0.96097
lad 0.98680
landscape 0.99999
laundering 0.75040
law 0.98622
lawyer 0.86294
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WORD SCORE
lesson 0.98881
liability 0.89161
library 0.99622
life 0.99969
line 0.99828
liquid 0.97938
listing 0.99175
live 0.99918
lobster 0.97687
loss 0.98938
love 0.99990
lover 0.99530
luxury 0.99962
madhouse 0.99591
magician 0.98060
maker 0.99410
mammal 0.99994
man 0.99940
manslaughter 0.94173
marathon 0.97773
market 0.99525
marriage 0.99806
match 0.99749
medal 0.99449
media 0.99996
memorabilia 0.99782
metal 0.99859
midday 0.90586
mile 0.97707
mind 0.99736
minister 0.97823
ministry 0.98891
minority 0.79544
money 0.99338
monk 0.97661
month 0.99829
moon 0.99897
morality 0.81823
mother 0.99824
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WORD SCORE
motto 0.94844
mound 0.86758
mouth 0.97435
movie 0.99998
murder 0.95727
museum 0.99949
music 0.99995
nation 0.98680
nature 0.99997
network 0.99847
news 0.99992
noon 0.96682
number 1.00000
nurse 0.95429
object 0.99499
observation 0.96131
office 0.99473
oil 0.99758
opera 0.99667
operation 0.97030
oracle 0.90012
organism 0.98436
paper 0.99981
party 0.99904
payment 0.98169
peace 0.99105
people 0.99967
percent 0.97931
performance 0.99749
personnel 0.96458
phone 0.99999
physics 0.98076
pillow 0.98624
place 0.99909
plan 0.99924
plane 0.99848
planet 0.99856
planning 0.99441
popcorn 0.99623
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WORD SCORE
population 0.99302
possession 0.85838
possibility 0.85824
potato 0.98657
practice 0.97334
precedent 0.99995
prejudice 0.87006
preparation 0.96405
preservation 0.93071
president 0.99082
price 0.99947
problem 0.99109
production 0.99781
professor 0.99256
profit 0.85738
project 0.99840
prominence 0.94706
property 0.99865
proton 0.99989
proximity 0.91276
psychiatry 0.82496
psychology 0.94845
quarrel 0.68294
queen 0.99676
rabbi 0.95747
racism 0.95325
racket 0.97329
radio 0.99878
reason 0.98841
recess 0.90531
recognition 0.95441
recommendation 0.94597
record 0.99274
recovery 0.94993
registration 0.99787
report 0.99945
reservation 0.97645
rock 0.99876
rook 0.88379
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WORD SCORE
rooster 0.99141
round 0.99585
row 0.98902
sage 0.96477
school 1.00000
science 0.99845
scientist 0.96872
sea 0.99971
seafood 0.96556
season 0.99927
secret 0.99638
secretary 0.54860
seepage 0.94921
senate 0.76639
serf 0.88594
serial 0.99710
series 0.99978
seven 0.99571
sex 0.99984
shore 0.98310
shower 0.99916
sign 0.99979
signature 0.99448
similarity 0.97024
situation 0.93133
size 0.99999
skin 0.99760
slave 0.89951
smart 0.99921
smile 0.99898
soap 0.87436
soccer 0.99988
software 0.99854
space 0.99990
sprint 0.99155
star 0.99979
start 0.99715
stock 0.99975
stove 0.93449
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WORD SCORE
street 0.99828
string 0.98284
stroke 0.99016
student 0.99274
stupid 0.98347
substance 0.85060
sugar 0.99351
summer 0.99948
sun 0.99797
surface 0.99540
tableware 0.99959
team 0.99811
telephone 0.98833
television 0.99934
tennis 0.99907
term 0.99482
territory 0.98484
terror 0.99970
theater 0.98177
thunderstorm 0.99762
ticket 0.98273
tiger 0.99953
tool 0.99064
tournament 0.99283
trading 0.97838
train 0.99683
travel 0.99990
treatment 0.98177
troops 0.99077
tumbler 0.98820
type 0.99962
valor 0.99971
victim 0.92915
victory 0.99028
video 1.00000
viewer 0.99966
virtuoso 0.94609
vodka 0.99684
volunteer 0.97888
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WORD SCORE
voyage 0.99958
war 0.99925
warning 0.98795
water 0.99915
wealth 0.89861
weapon 0.99765
weather 0.99475
wine 0.98861
withdrawal 0.64496
wizard 0.99734
woman 0.99961
wood 0.99900
woodland 0.97030
word 0.99996
world 0.99987
year 0.99955
yen 0.97351
zoo 0.99802
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