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Neural Dynamics: Criticality, Cooperation, Avalanches
and Entrainment between Complex Networks

P. Grigolini, M. Zare, A. Svenkeson, B. J. West

1.1
Introduction

The discovery of avalanches in neural systems [1] has aroused substantial inter-
est among neurophysiologists and, more generally, among researchers in complex
networks [2] as well. The main purpose of this chapter is to provide evidence in
support of the hypothesis that the phenomenon of neural avalanches [1] is generated
by the same cooperative properties as those responsible for a surprising effect that
we call cooperation-induced synchronization, illustrated in [3]. The phenomenon
of neural entrainment [4] is another manifestation of the same cooperative property.
We also address the important issue of the connection between neural avalanches
and criticality. Avalanches are thought to be a manifestation of criticality, and
especially self-organized criticality [5, 6]. At the same time, criticality is accom-
panied by long-range correlation [5] and a plausible model for neural dynamics
is expected to account for the astounding interaction between agents separated by
relatively large distances. General agreement exists in the literature that brain func-
tion rests on these crucial properties, and the phase transition theory for physical
phenomena [7] is thought to afford the most important theoretical direction for fur-
ther research work on this subject. In this theory criticality emerges at a specific
single value of a control parameter, designated by the symbol K.. In this chapter
we illustrate a theoretical model generating avalanches, long-range correlation and
entrainment, as a form of cooperation-induced synchronization, over a wide range
of values of the control parameter K, thereby suggesting that the form of criticality
within the brain is not the ordinary criticality of physical phase transitions but is
instead the extended criticality recently introduced by Longo and co-workers [8]
to explain biological processes.

Cooperation is the common effort of the elements of a network for their mutual
benefit. We use the term cooperation in the same loose sense as that adopted, for
instance, by Montroll [9] to shed light on the equilibrium condition realized by
the interacting spins of the Ising model. Although the term cooperation, frequently
used in this chapter, does not imply a network’s cognition, we follow the conceptual
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perspective advocated by Werner [10] that cognition emerges at criticality, with the
proviso that its cause may be extended criticality.

The term cooperation suggests a form of awareness that these units do not have
and must be used with caution especially because in this chapter we move from an
Ising-like model to a model of interacting neurons that seems to reproduce certain
experimental observations on neural networks that are thought to reflect important
properties of brain dynamics, including the emergence of cognition. This is done
along the lines advocated by Werner [10], who argues that consciousness is a phe-
nomenon of statistical physics resting on renormalization group theory [11]. We
afford additional support to this perspective, while suggesting that the form of crit-
icality from which cognition emerges may be more complex than renormalization
group criticality, thereby requiring an extension of this theory. All this must be
carried out keeping in mind Werner’s warning [12] against the use of metaphors
of Computation and Information, which would contaminate the observation with
meanings from the observer’s mind.

We move from an Ising-like cooperative model to one of interacting neurons
that, although highly idealized, serves very well the purpose of illustrating the
cooperative-induced temporal complexity of neural networks. The reason to spend
time with the Ising-like cooperative model, discussed in this Volume by West et
al. [3], is the fact that dealing first with this model clarifies the difference between
ordinary criticality, shared with this earlier model, and extended criticality.

The Ising-like model that we adopt is the decision making model (DMM) that has
been used to explain the scale-free distribution of neural links recently revealed by
the fMRI analysis of the brain [13, 14]. We examine two different weak-perturbation
conditions: (7) all the units are perturbed by an external low-intensity stimulus;
(7¢) a small number of units are perturbed by an external field of large intensity.
We show that the response of this cooperative network to extremely weak stimuli,
case (i), departs from the predictions of traditional linear response theory (LRT)
originally established by Green and Kubo [15] and widely applied by physicists for
almost 60 years. This deviation arises because cooperation generates phase transi-
tion criticality and at the same time it generates non-ergodic fluctuations, whereas
the traditional LRT is confined to the condition of ergodic fluctuations. Condition
(4) is the source of another surprising property: although a few units are strongly
perturbed, thanks to cooperation the stimulus affects the whole network, making
that response depart from either ergodic or non-ergodic LRT, thereby generating
what we call cooperation-induced (CI) response. This form of response is the
source of perfect synchronization between a complex network and the perturbing
stimulus generated by another complex network, a new phenomenon discovered by
Turalska et al [16] whose cooperative origin is illustrated in detail in this Chapter.
We term this effect CI synchronization. Condition (¢) yields the non-ergodic ex-
tension of stochastic resonance, and the CI synchronization of condition (i7) is the
cooperative counterpart of chaos synchronization.

The second step of our approach to understanding neural complexity and neu-
ral avalanches [17] rests on an integrate and fire model [18] where the firing of
one unit of a set of linked neurons facilitates the firing of the other units. We
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refer to this model as Neural Firing Cooperation (NFC). We find that in the case
where cooperation is established through NFC the emerging form of criticality is
significantly different from that of an ordinary phase transition. In the typical case
of phase transition temporal complexity is limited to a singular value of the con-
trol parameter, namely, of the cooperation strength in the cases examined in this
chapter. The NFC cooperation generates temporal complexity analogous to that
generated by the DMM, but this temporal complexity, rather than being limited
to a single value of the cooperation parameter, is extended to a finite interval of
critical values. As a consequence, the new ways of responding to external stimuli
are not limited to a singular value of the cooperation parameter either, but their
regime of validity is significantly extended suggesting this to be a manifestation of
the new form of criticality that Longo and co-workers [8] call extended criticality
(EC). Adopting the EC perspective we move within the extended critical range,
from smaller to larger values of the cooperation parameter K, and we find that
neural avalanches [17] emerge at the cooperation level making the system adopt
the CI response. When a neural network is driven by another neural network with
the same complexity, we expect that the response of the perturbed network obeys
the new phenomenon of CI synchronization. We notice that these theoretical pre-
dictions, of a close connection to neural avalanches and network entrainment, can
be checked experimentally through methods of the kind successfully adopted in the
University of North Texas laboratory of G.W. Gross [19].

Finally, although the emergence of consciousness remains a mystery, we note
that the assignment of cognition properties to cooperation [20] leads to temporal
complexity with the same power-law index as that revealed by the experimental
observation of active cognition [21], thereby supporting the conjecture [11] that
a close connection between cognition in action and a special form of temporal
complexity exists.

The connection between neural cooperation and cognition is certainly far beyond
our current understanding of emerging consciousness. Therefore, we limit ourselves
to showing that the cooperation between units generates global properties, some of
which are qualitatively similar to those revealed by recent analysis of the human
brain.

1.2
Decision Making Model (DMM) at Criticality

The DMM [16] is the Ising-like version of an earlier model [22] of a dynamic
complex network. The DMM is based on the cooperative interaction of N units,
each of which is described by the master equation
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The symbol N (*) denotes the number of nodes linked to the i-th node, with Nl(i)
and Nz(i) being those in the first and second state, respectively. Of course, N @) =
N 4 N,

The index 7 runs from 1 to N, where N is the total number of nodes of the
complex network under study, thereby implying that we have to compute N pairs
of equations of the kind of Eqs. (1.1) and (1.2) at each time step. The adoption of
an all-to-all coupling condition allows us to simplify the problem. In fact, in that
case all the N pairs of equations are identical to

%Pl(t) = —glé(t)Pl(t) + 9212(t)p2 (t) (1.5)

B oty = 2201y 4 220, ) (16
with

912 = goexp (K(MN;N”) (1.7)
and

g21 = goeap (KW) . (1.8)

Since normalization requires p1(t) + p2(¢) = 1, it is convenient to replace the
pair of Egs. (1.5) and (1.6) with a single equation for the difference in probabilities

1I(t) = p1(t) — p2(t), (1.9)

which after some simple algebra becomes

dpy_(921—g12)  (921+912) (1.10)

dt 2 2
It is important to stress that the equality

Ni — No

2o (1.11)



xx: XX — Chap. 1 — 2012/5/22 — 11:43 — page 5

1.0 : 0.004 :
\ 1]
\ 1
\ ,
\ ,
\ /
0.5 J \ /
- E
€ 0.0 1 S 0.002-
o
0.5 J
1.0 : - 0.000
0 1 2 K
K o

Figure 1.1 (Left panel) The equilibrium mean field for different values of the cooperation
parameter K. A bifurcation occurs at the critical point K = K. = 1. (Right panel)
Potential barriers for K subcritical (dashed line, K = 0.2), critical (solid line, K = 1.0),
and supercritical (dotted line, K = 1.8).

holds true only in the limiting case N — oco. In the case of a finite network,
N < oo, the mean field fluctuates in time forcing us to adopt

N1 — No

=L (112

where f(t) is a random fluctuation, which according to the Law of Large Numbers
has an intensity proportional to 1/+/N. Inserting Eq. (1.12) into Eq. (1.10) yields

il’[ =% (eKHer — efKHefo) _% (eKHer + eiKHefo> II (1.13)
dt 2 2

and in the limiting case N — oo the fluctuations vanish, f = 0, so that Eq. (1.13)

generates the well known phase transition prediction at the critical value of the

control parameter

Kc=1. (1.14)

Fig. 1.1 shows that for K < 1 the mean field has only one possible equilibrium
value, IIeq = 0. At the critical point K = K. = 1 this vanishing equilibrium
value splits into two opposite components, one positive and one negative. To
understand the important role of criticality, we notice that a finite number of units
generates the fluctuation f and, this, in turn, forces fluctuations in the mean field.
At criticality, the fluctuations induced in II(¢) have a relatively extended range of
free evolution, as made clear in Fig. 1.1. In fact, the separation between the two
repulsive walls is greatest at criticality. In between them, a free diffusion regime
occurs. The supercritical condition K > K. generates a barrier of higher and
higher intensity with the increase of K. At the same time the widths of the two
wells shrink, bounding the free evolution regime of the fluctuating mean field to a
smaller region.
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1.2.1
Intermittency

Considering a large but finite number of units and expanding Eq. (1.13) to the
lowest order contributions of IT and f, it is straightforward to prove that for ei-
ther K > 1 or K < 1, due to conditions illustrated in Fig. 1.1, the mean field
fluctuations are driven by an ordinary Langevin equation of the form

d
7= —Tx 4+ &(¢t). (L.15)

Note that when K > 1,
z(t) = 11(t) — Heq(K), (1.16)

where Ileq(K) denotes the equilibrium value for N = oco. Of course, at either
criticality or in the subcritical condition Il¢q(K) = 0, thereby making x(¢) coincide
with TI(¢).

At the critical point K = K. = 1, we find the time evolution of the mean field
to be described by a nonlinear Langevin equation of the form

L
T =% +&(t). (1.17)

The linear term that dominates in Eq. (1.15) vanishes identically, and the cooper-
ation between units at criticality displays a remarkable change in behavior which
is characterized by the weakly repulsive walls of Fig. 1.1.

If we interpret the conditions z > 0 and = < 0 as corresponding to the light
and dark states of blinking quantum dots [23] the DMM provides a satisfactory
theoretical representation of this complex intermittent process. It was, in fact
noticed [23] that if the survival probability ¥(¢), namely the probability that a given
state, either light or dark, survives for a time ¢ after its birth, is evaluated beginning
its observation at a time distance ¢, from its birth, then its decay becomes slower
(aging). Furthermore, this aging effect is not affected by randomly time-ordering
the sequence of light and dark states. Notice that the aged curves of Fig. 1.2 are
actually doublets of survival probabilities generated by shuffled and non-shuffied
sequences of states, thereby confirming the renewal nature of this process.

Fig. 1.2 shows that the inverse power law region of the survival probability,
corresponding to an inverse power law waiting time distribution density with power
law index p = 1.5, has a limited time range of validity. This limitation arises
because Eq. (1.17) has an equilibrium distribution, generated by the confining
action of the friction term. Thus, the upper time limit of the inverse power law
waiting time distribution density is determined by the relation ¢ < T, with

1\ 1/2
Teq ~ (TD) (1.18)

where the diffusion coefficient D is proportional to 1/N. This theoretical prediction
is obtained by means of straightforward dimensional arguments [24].



xx: XX — Chap. 1 — 2012/5/22 — 11:43 — page 7

Figure 1.2 The t,-aged survival probability of the mean field fluctuations z at criticality
K = 1for N = 1000 units and go = 0.01. (A) t, = 0, power index . — 1 = 0.5. (B)

te = 100. (C) tq, = 1000. The squares in (B) and (C) correspond to the ¢,-aged survival
probability of randomly shuffled sequences of waiting times. Their equivalence to the
non-shuffled aged survival probability indicates the fluctuations are renewal.

Notice that in the traditional case of the ordinary Langevin equation, the restor-
ing term —vz® of Eq. (1.17) is replaced by —yz and Teq ~ 1/, implying that
at criticality the transient regime is (y/D)'/? times larger than the conventional
transition to equilibrium. Remember that we have assumed the number of inter-
acting units to be large but finite, thereby generating small fluctuations under the
condition D < . As a consequence, the temporal complexity illustrated in Fig.
1.2 becomes ostensible only at criticality, while remaining virtually invisible in
both the subcritical and supercritical regimes.

Fig. 1.3 illustrates an important dynamical property of criticality concerning the
fluctuations emerging as a finite-size effect. We have to stress that the fluctuations,
bringing important information about the network’s complexity, are defined by Eq.
(1.16). We define the equilibrium autocorrelation function of the variate x, ®(7),
as

N i (z@)a(t)
(1) = 0(t,t) = ., (1.19)
with the time difference
r=t—t. (1.20)

Fig. 1.3 shows the important property that at criticality the equilibrium correla-
tion function is markedly slower than in both the supercritical and the subcritical
regimes. This property has to be kept in mind to appreciate the principal difference
between ordinary and extended criticality. In fact, this is an indication that with or-
dinary criticality the significant effects of cooperation correspond to a single value
of K, this being the critical value K = K. = 1.



xx: XX — Chap. 1 — 2012/5/22 — 11:43 — page 8

1.0 . ;
_ I K=0.8
=
5 05 1
D.o 1 u = m 3
0 1000 2000
1.0 ;
- I K=1.0
=
~ 0.5 -
e -
0_0 n 1 |
0 100000 200000
1.0 ;
_ A K=1.2
=
5 05 -
0.0 . hmomomomomomom -
0 1000 2000

Figure 1.3 The equilibrium correlation function for the fluctuations = in the subcritical (top
panel), critical (middle panel), and supercritical (bottom panel) cases, each considering
N = 1000 units with go = 0.01. The time scale of the exponential decay is increased by
two orders of magnitude at criticality.

1.2.2
Response to perturbation

As far as the response to an external perturbation is concerned, it is important to
address the issue of the connection with the phenomenon of complexity manage-
ment [25]. We have noticed that at criticality, the fluctuation in sign n = z/|z|
is not ergodic for ¢t < Teq, thereby implying that the transmission of information
from one network to another may require a treatment going beyond the traditional
Green-Kubo approach. To recover the important results of Ref. [25] we should
adopt a dichotomous representation fitting the nature of the DMM units that have
to choose between the two states + and —. To simplify the numerical calculations,
we assume that the influence of an external stimulus on the system is described by
Eq. (1.21). This is a simplified picture that does not take into account that in the
case of flocks of birds [26], for instance, the single units make a decision based on
the + or — sign of the stimulus rather than on its actual value. In other words, in
the case of flocks [26], this would imply that the external stimulus assigns to each
bird either the right or the left direction.
The perturbed time evolution of the mean field at criticality is described by

d .
7= —~ya3 + £(t) + eyF (1), (1.21)
where F'(t) is the external perturbation, and e a small dimensionless number that
will serve the purpose of ensuring the linear response condition. The factor of ~
is introduced for dimensional reasons.
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We note that in the diffusional transient regime, which is much more extended in
time than that generated by the traditional Langevin equation, Eq. (1.21) becomes

d

%x(t) =£(t) + evF (1), (1.22)

yielding the average response

t
(z(t)) = m/ F(tat', (1.23)
0
which, in the case where F'(t) = Acos(wt), becomes
(z(t)) = %sm(wt). (1.24)

Taking into account that during the transient regime (22 (t)) = 2Dt we immediately
obtain

(n(t)) o< tO%Ae’ysin(wt), (1.25)

in accordance with the experimental observation [27] that the response of a non-
ergodic system to harmonic perturbation generates damped oscillations.
The rigorous treatment would lead to

t

(n(t)) = e /O drx(t, ) F(r), (1.26)
where
x(t, ) = —%\D(t,r), (1.27)

and U(¢,7) is the aged survival probability [24].

As a consequence we predict that at criticality the complex network obeys the
principle of complexity management [25] when all the units are weakly perturbed
by an external stimulus. The chapter of West et al. [3] in this volume shows
that, due to cooperation, a strong perturbation on a limited number of units is the
source of the related phenomenon of cooperation-induced synchronization that in
this chapter we show to emerge also at the level of neural extended criticality, under
the form of neural network entrainment.

1.3
Neural Dynamics

The cooperation of units within the DMM at criticality generates the temporal
complexity illustrated by Fig. 1.2, which turns out to be a source of information
transport. This transfer of information is especially convenient as shown in the
recent work of Vanni et al. [26]. This cooperation property yields the surprising
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effect of the crucial role of committed minorities discussed in this volume by West
et al. [3].

In this section we illustrate a very similar property generated by a model of
neurophysiological interest, with the surprising discovery that these effects do not
rest on a single value of the cooperation strength, that is, on the magnitude of
the control parameter. This suggests the conjecture that a new form of criticality,
called extended may be invoked [8].

We show that the DMM leads to Plenz’s avalanches [17], which are now a
well established property of neural networks. The model proposed in this chapter
interprets the avalanches as a manifestation of cooperation. We also show that the
amount of cooperation generating avalanches is responsible for the phenomenon of
entrainment.

1.3.1
Mittag-Leffler function models cooperation

First of all, let us examine how the Mittag-Leffler function models relaxation.
Metzler and Klafter [28] explain the Mittag-Leffler function established a com-
promise between two apparently conflicting complexity schools, the advocates of
inverse power laws and the advocates of stretched exponential relaxation, see also
West et al. [34]. We denote with W(¢) the survival probability, i.e., the prob-
ability that no event occurs up to time ¢, and we assign to its Laplace trans-
form, W(u), the following form (we adopt the notation for the Laplace transform

flu) = [5° drexp(—ur)f (7))

- 1

U(u) = P T (1.28)

with @ < 1. In the case Iy = 0 this is the Laplace transform of the Mittag-
Leffler function [28], a generalization of the ordinary exponential relaxation which
interpolates between the stretched exponential relaxation exp(—(At)®), for t < 1/A
and the inverse power law behavior 1/t%, for ¢ > 1/\.

Recent work [29] has revealed the existence of quakes within the human brain,
and proved that the time interval between two consecutive quakes is well described
by a survival probability ¥(¢), whose Laplace transform fits very well the prescrip-
tion of Eq. (1.28). The parameter I'; > 0 has been introduced [29, 30] to take into
account the truncation thought to be a natural consequence of the finite size of the
time series under study. As a matter of fact, when 1/X is of the order of the time
step and 1/T"; is much larger than the unit time step, the survival probability turns
out to be virtually an inverse power law, whereas when 1/ is of the order of 1/T*;
and both are much larger than the unit time step, the survival probability turns out
to be a stretched exponential function.

Failli et al. [30] illustrate the effect of establishing a cooperative interaction
in the case of the random growth of surfaces. A growing surface is a set of
growing columns whose height increases linearly in time with fluctuations that, in
the absence of cooperation, would be of Poisson type. The effect of cooperative
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interaction is to turn the Poisson fluctuations into complex fluctuations, the interval
between two consecutive crossings of the mean value being described by an inverse
power law waiting time distribution v (t), corresponding to a survival probability
¥(t), whose Laplace transform is given by Eq. (1.28). In conclusion, according
to the earlier work [30], we interpret « < 1 as a manifestation of the cooperative
nature of the process.

In this Section we illustrate a neural model where the time interval between
two consecutive firings, in the absence of cooperation is described by an ordinary
exponential function, thereby corresponding to o = 1. The effect of cooperation is
to make o decrease in a monotonic way, when increasing the cooperation strength,
K, with no special critical value.

We note that Barabasi [31] stressed the emergence of the inverse power law be-
havior, properly truncated, as a consequence of the cooperative nature of human
actions. Here we interpret the emergence of the Mittag-Leffler function structure
as an effect of the cooperation between neurons. The emergence of a stretched ex-
ponential function confirms this interpretation, if we adopt an intuitive explanation
of it based on the distinction between the attempt to cooperate and to succeed. The
action generator is assumed to not be fully successful, and a success rate parameter
Pg < 1 is introduced with the limiting condition Ps = 1 corresponding to full
success. To turn this perspective into a theory, yielding the theoretical prediction of
Eq. (1.28), we assume that the time interval between two consecutive cooperative
actions is described by the function 1) (7), where the superscript (S) indicates
that from a formal point of view we realize a process corresponding to subordina-
tion theory [32, 33]. Here we make the assumption that the survival probability
for an action, namely the probability that no action occurs up to a time ¢ after an
earlier action has the form:

v (¢) = (%)a (1.29)
with

a=pg—1 (1.30)
and

g < 2. (131)

As a consequence, the time interval between two consecutive actions has the dis-
tribution density (% )(t) of the form

T.U«Sfl

WU = s =V (1.32)

Note that the distance between two actions is assumed to depart from the condition
of ordinary ergodic statistical mechanics. In fact, the mean time distance = between
two consecutive actions emerging from the distribution density of Eq. (1.32), is

Ts
T) = ,
) ps —2

(1.33)

11
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for ug > 2 and diverges for ug < 2. As a consequence this process shares the
same non-ergodic properties as those generated by human action [31].

It is evident that when Pg = 1 the survival probability ¥(7) is equal to () (1) =
[2° 9 (7')dr’. When, Ps < 1, using the formalism of the subordination ap-
proach [32, 30, 29], we easily prove that the Laplace transform of ¥(7) is given
by

- 1

v = 1.34
v u + Pg®(u) ’ (1.34)
where
. u)S) (u)
=T 7 1.
D(u - w(s)(u) (1.35)

To prove the emergence of the Mittag-Leffler function of Eq. (1.28), with I'; = 0,
from this approach let us consider for simplicity’s sake the case where » )(7-)
is not truncated. In the non-ergodic case pug < 2, using the Laplace transform
method [34], we obtain that the limiting condition v — 0 yields Eq. (1.28) with

Ps :|1/oz
) )

where I'(1 — «) is the Gamma function. Note that when Pg = 1, the Laplace
transform of Eq. (1.34) in the limit of v — 0 coincides, as it must, with the
Laplace transform of (%) (t). In conclusion, we obtain

R 1

V(u) = S Tl (1.37)
with
Y « Pg. (1.38)

In the neural model illustrated hereby, we define a parameter of cooperation effort,
denoted, as in the DMM case, by the symbol K. The success of cooperation effort
is measured by the quantity

g(K) = A(E)* ). (1.39)

We determine that the sign of success is given by the number of neurons firing
at the same time. We speculate that there is a connection with the dragon kings
[35, 36] and coherence potentials [6].

1.3.2
Cooperation effort in a fire and integrate neural model

The NFC model refers to the interaction between N neurons, each of which has a
time evolution described by

z(t+1)=(1—vy)x(t) + S+ g&(t), (1.40)
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where ¢ is a natural number, £(¢) is a variable getting either the value of 1 or of
—1, with equal probability, with no memory of the earlier values, and v < 1 so
as to make the integer time virtually continuous when ¢ ~ 1. The quantity o is
the noise intensity. The quantity S > 0 serves the purpose of making the potential
x essentially increase as a function of time. The neuron potential  moves from
the initial condition = 0, and through fluctuations around the deterministic time
evolution corresponding to the exact solution of the case o = 0 [37] reaches the
threshold value = 1. When the threshold is reached it fires and resets back to
the initial value x = 0. It is straightforward to prove that the variable x can reach
the threshold only when the condition

S >1 (1.41)

v
applies. In this case the time necessary for the neuron to reach the threshold, called
Tp, is given by

szlzn( ! ) (1.42)
v

-
l-3

In the absence of interaction, the motion of each neuron is periodic, and the interval
between two consecutive firings of the same neuron is given by Tp. The real
sequence of firings looks random, as a consequence of the assumption that the
initial conditions of N neurons are selected randomly. In this case the success rate
g is determined by the random distribution of initial conditions and can be very
small, as we subsequently show.

The cooperative properties of the networks are determined as follows. Each
neuron is the node of a network and interacts with all the other nodes linked to
it. When a neuron fires all the neurons linked to it make an abrupt step ahead of
intensity K. This is the cooperation parameter, or intensity strength. An inhibition
link is introduced by assuming that when one neuron fires all the other neurons
linked to it through inhibition links make an abrupt step backward.

This model is richly structured and may allow us to study a variety of interesting
conditions. There is widespread conviction that the efficiency of a network, namely
its capacity to establish global cooperative effects, depends on network topology,
as suggested by the brain behavior [29, 38]. The link distribution itself, rather than
being fixed in time, may change according to the Hebbian learning principle [39].
It is expected [39] that such learning generates a scale-free distribution, thereby
shedding light on the interesting issue of burst leaders [40].

All these properties are studied elsewhere. In this chapter we focus on coop-
eration by assuming that all the links are excitatory. To further emphasize the
role of cooperation we should make the all-fo-all (ATA) assumption adopted by
Mirollo and Strogatz [37]. This assumption was also made in earlier work [41].
In spite of the fact that the efficiency of the ATA model is reduced by the action
of the stochastic force £(t) that weakens the action of cooperation, thereby gen-
erating time complexity, the ATA condition generates the maximal efficiency and

13
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neuronal avalanches. However, this condition inhibits the realization of an impor-
tant aspect of cooperation, namely, locality breakdown. For this reason in addition
to the ATA condition, we also study the case of a regular, two-dimensional (2D)
network, where each node has four nearest neighbors and consequently four links.
It is important to stress that to make our model as realistic as possible, we should
introduce a delay time between the firing of a neuron and the abrupt step ahead of
all its nearest neighbors. This delay should be assumed to be proportional to the
Euclidean distance between the two neurons, and it is expected to be a property of
great importance to prove the breakdown of locality when the scale-free condition
is adopted. The two simplified conditions studied in this chapter, ATA and 2D,
would not be affected by a time delay that should be the same for all the links. For
this reason, we do not further consider time delay.
For the cooperation strength we must assume the condition

K<< 1 (1.43)

When K is of the order of magnitude of the potential threshold Vi = 1, the col-
lective nature of cooperation is lost because the firing of a few neurons causes an
abrupt cascade in which all the other neurons fire. Thus, we do not consider to
be important the non-monotonic behavior of network efficiency that our numeri-
cal calculations show to emerge by assigning K values of the same order as the
potential threshold.

We also note that in the case of this model the breakdown of the Mittag-Leffler
structure, at large times, is not caused by a lack of cooperation, but by the excess
of cooperation. To shed light on this fact, keep in mind that this model has been
solved exactly by Mirollo and Strogatz when ¢ = 0 [37]. In this case, even if
we adopt initial random conditions, after a few steps, all the neurons fire at the
same time, and the time distance between two consecutive firings is given by Tp
of Eq. (1.42). As an effect of noise the neurons can also fire at times ¢t < Tp,
and consequently, setting o > 0, a new, and much shorter time scale is generated.
When we refer to this as the time scale of interest, the Mirollo and Strogatz time
Tp plays the role of a truncation time and

1

'y~ —.
t o

(1.44)
To examine this condition let us assign to K a value very close to K = 0. In this
case even if we assign to all the neurons the same initial condition, x = 0, due
to the presence of stochastic fluctuations the neurons fire at different times thereby
creating a spreading on the initial condition that tends to increase in time, even if
initially the firing occurs mainly at times ¢ = nTp. The network eventually reaches
a stationary condition with a constant firing rate G given by

N
G=-—, (1.45)
(1)
where (7) denotes the mean time between two consecutive firings of the same
neuron. For ¢ <« 1, (1) = Tjsg. From the condition of a constant rate G we
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immediately derive the Poisson waiting time distribution
Y(1) = Gexp(—GT). (1.46)

Consequently, this heuristic argument agrees very well with numerical results.

We consider a set of N identical neurons, each of which obey Eq. (1.40) and
we also assume, with Mirollo and Strogatz [37], that the neurons cooperate. For
the numerical simulation we select the condition

GLIKNKLTp. (1.47)

As a consequence of this choice we obtain

1 Tp

—~ =T 1.48

N <Tp (1.48)
thereby realizing the earlier mentioned time scale separation. It is evident that this

condition of non-interacting neuron fits Eq. (1.28) with & = 1 and
MK =0)=G. (1.49)

In this case, the time truncation is not perceived, due to the condition 1/G < Tp.

In Fig. 1.4 we show that the 2D condition is essentially equivalent to the ATA
condition, provided that the cooperation strength is assumed to be an order of mag-
nitude larger than that of the ATA condition. This is an important result, because
in the case of a two-dimensional regular lattice, even though the neurons interact
only with their nearest neighbors, the entire network generates the same sequence
of bursts as in the ATA condition, provided that K is an order of magnitude larger.
This is an indication of the fact that when the critical values of K are used two
neurons become closely correlated regardless of the Euclidean length of their link,
a clear manifestation of locality breakdown.

As far as the Mittag-Leffler time complexity is concerned, we adopt the same
fitting procedure as that used in Ref. [41]. We evaluate the Laplace transform of
the experimental ¥(¢) and use as a fitting formula Eq. (1.28) with I'; = 0, to find
the parameter . Then we fit the short-time region with the stretched exponential

W(t) = exp (—(At)*) (1.50)

to find A. We determine that in the 2D condition as in the ATA condition, switching
on cooperation has the effect of generating the Mittag-Leffler time complexity.
From Fig. 1.5 we see that any non-vanishing value of K turns the Poisson condition
a = 1 into the Mittag-Leffler temporal complexity o < 1. The only remarkable
difference is that in the case of large cooperation strength, the value of « tends
to the limiting value of 0.2, whereas the ATA condition brings it to the limiting
value of 0.6. The statistical analysis of data from real experiments may use this
property to assess the topology of the neural network. It is expected, in fact, that
all network topologies generate the Mittag-Leffler time complexity, but the actual

15
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Figure 1.4 The number of neurons firing per unit of time in the ATA (A) and 2D (B)
conditions for K ranging from no cooperation to a high level. When increasing the value of
K the system immediately departs from a Poisson process at K = 0 to display complex
cooperative behavior that then becomes strongly periodic for K large. The 2D condition
shares the behavior of the ATA condition, only requiring more cooperation.
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Figure 1.5 The value of the Mittag-Leffler parameter « for different cooperation levels in
the ATA (A) and 2D (B) conditions. For any nonzero K, a < 1, signifying Mittag-Leffler

temporal complexity.

value of a depends on the network topology. Thus, the joint use of theory and
experiment may further our understanding of the neural network structure.

It is interesting to notice that Fig. 1.6, in accordance with our expectation, see
Eq. (1.39), shows that the success rate undergoes a significant increase at the
value of the cooperation parameter K at which a distinctly Mittag-Lefller survival

probability emerges.

0.00 |

0.08 |- u
r

0.07 - b

0.06 |- /.

0.05 | /-

0.04 | .

/

| |

0.03 |- /
-

0.02 ;"'..

0.01 -
Il Il Il Il Il Il

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Coupling Constant, K

0.10

0.08

0.06

0.04

0.02

0.00
0.00 0.05

010 0.15 020 025 030 0.35
Coupling Constant, K

Figure 1.6 The value of the Mittag-Leffler parameter A\ for different cooperation levels in
the ATA (A) and 2D (B) conditions. In both cases the success rate significantly increases
at the values of the cooperation strength making ¥ (¢) depart from the condition of

stretched exponential relaxation.
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1.4
Avalanches and Entrainment

Neurophysiology is a field of research making significant contributions to the
progress of the Science of Complexity. Sornette and Ouillon [35], who are propos-
ing the new concept of dragon kings to go beyond the power law statistics shared
by physical, natural, economic and social sciences, consider the neural avalanches
found by Plenz [17] to be a form of extreme events that are not confined to neu-
rophysiology and may show up also at the geophysical and economical level. The
increasing interest in neural avalanches is connected to an effort to find a proper
theoretical foundation, for which self-organized criticality [42] is a popular candi-
date, in spite of a lack of a self-contained theoretical derivation.

1E-3 L
2 10 100

Avalanche Size Probability Distribution Function

N(Number of neurons firing in an avalanche)

Figure 1.7 The avalanche size distribution in the 2D condition with cooperation
K = 0.125. The slope of the distribution is given by the power index oo = 1.5.

On the other hand, neurophysiology is challenging theoreticians with the well
known phenomenon of neural entrainment. At first sight, the phenomenon of neural
entrainment, interpreted as the synchronization of the dynamics of a set of neurons
with an external periodic signal, may be thought to find an exhaustive theoretical
foundation in the field of chaos synchronization [43]. This latter phenomenon has
attracted the attention of many scientists in the last 22 years since the pioneering
paper by Pecora and Carroll [44]. However, this form of synchronization seems
to be far beyond the popular chaos synchronization. According to the authors of
Ref. [45] the auditory cortex neurons, under the influence of a periodic external
signal, are entrained with the stimulus in such a way as to be in the excitatory
phase when the stimulus arrives, in order to process it in the most efficient way
[45]. The work of neurophysiologists [46] is, on the one hand, a challenge for
physicists because the experimental observation should force them to go beyond
the conventional theoretical perspective of coupled oscillators, combining regular
oscillations with irregular network activity while establishing a close connection
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with the ambitious issue of cognition [47]. Setting aside the latter we can limit
ourselves to noticing with Gross and Kowalski [4] that the entrainment between
different channels of the same networks is due to excitatory synapses and conse-
quently to neuron cooperation, rather than to the behavior of single neurons that
never respond in the same way to the same stimulus.
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Figure 1.8 The entrainment of the 2D neural network S (dashed lines) to an identical
neural network P (dotted lines) through the forced perturbation of 3% of the nodes of S.
The avalanches of the perturbed network S (solid lines) become synchronized to the
perturbing network P.

Neural entrainment, on the contrary, is a global property of the whole network
that is expected to generate the same response to the same stimulus. In this sense,
it has a close similarity with the phenomenon of chaos synchronization, insofar as
entrainment is a property of a single realization. The phenomenon of complexity
management [25], on the other hand, requires averages over many responses to the
same stimulus to make evident the correlation that an experimentalist may realize
between response and stimulus, after designing the stimulus so as to match the
complexity of the system.

Our theoretical model generates both avalanches and entrainment, thereby making
clear that the phenomenon of neural entrainment is quite different from that of
chaos synchronization, in spite of the fact that it shares with the latter the attractive
property of being evident at the level of single realizations. Fig. 1.7 depicts an
avalanche, with the typical power index of o = 1.5 generated by the theoretical

19
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model of this chapter, in the case of a two-dimensional regular lattice, with K =
0.125, a strong cooperation value, corresponding to the realization of a sequence
of well defined bursts, as illustrated in Fig. 1.4.

As a phenomenon of entrainment we have in mind that of the pioneering work
of Ref. [19]. These authors generated a condition of maximal cooperation by
chemically killing the inhibitory links, and using as a stimulus a periodic electrical
stimulation. The entrainment of two 2D neural network models is shown in Fig.
1.8. Here we replace the periodic external stimulation with a neural network P
identical to the perturbed neural network S. In addition, we assume that only 3%
of the nodes of S are forced to fire at the same time as the neurons of the network
P. This is a condition similar to that adopted elsewhere [26], with the 3% of nodes
of S playing the same roles as the lookout birds [26]. These “look out” neurons
are also similar to the committed minorities [3] used to realize the phenomenon of
cooperation-induced synchronization.

1.5
Concluding Remarks

There is a close connection between avalanches and neural entrainment. Criticality
plays an important role to establish this connection, because, as well known in the
field of phase transition, at criticality, as an effect of long-range correlation the lim-
iting condition of local interaction is lost, and an efficient interaction between units
that would not be correlated in the absence of cooperative interaction, is established.
This condition is confined to criticality thereby implying that “intelligent" systems
operate at criticality. Quite surprisingly, the model of neural dynamics illustrated
in this chapter generates long-range interactions, so as to realize entrainment, for
a wide range of values of K. This seems to be the extended criticality advocated
by Longo and co-workers [8].

What's the relation between these properties and the emergence of consciousness
that, according to Werner [10] must be founded on renormalization group theory
(RGT)? A theory as rigorous as RGT should be extended to the form of criticality
advocated by Longo and co-workers [8], and this may be a difficult issue making
it more challenging, but not impossible, to realize the attractive goal of Werner
[10]. Werner found very promising to move along the lines outlined by Allegrini
and co-workers [21] with their discovery that an intermittent behavior similar to
that of Fig. 1.2, with 1 = 2 may reflect cognition.

A promising, but quite preliminary result, is that of Ref. [20]. Making the
assumption that cognition enters into play, with the capability of making choices
generated by the intelligent observation of the decision made by the whole system,
and moving along the lines that led us to Eq. (1.17), the authors of Ref. [20] found
the following equation

L ) (1.51)
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which generates an intermittent process with o = 2, as illustrated in Ref. [20]. We
think that this results suggests two possible roads, both worthy of investigation.

The first way to realize this ambitious purpose is based on a model similar to the
DMM. The units cooperate through a structure similar to that of Egs. (1.1-1.4). A
given unit may make its decision on the basis of the history of the units linked to
it rather that on their state at the time at which it makes its decision. This may be
a dramatic change with the effect of generating complexity for an extended range
of the control parameter.

The second way is based on a model similar to the NFC model, namely the
cooperative neuron model, where each unit, in the absence of cooperation, is driven
by Eq. (1.40). In this model each unit has a time evolution that depends on the
earlier history of the units linked to it, thereby fitting the key condition of earlier
work [20]. To proceed along these lines we should settle a still open problem.
The condition o = 1, where the Mittag-Lefller function obtained from the inverse
Laplace transform of Eq. (1.37) becomes an ordinary exponential function, is a
singularity where the waiting time distribution density v (¢), with index p = 2, may
be abruptly replaced by a fast decaying function, an inverse power law with index
p > 2, and, in principle, also by an exponential function. From an intuitive point
of view, this weird condition may be realized by curves of the type of those of Fig.
1.5, with the parameter o = 1 (u = 2) remaining unchanged for an extended range
of K values. In other words, [(d/dK)a(K)]x=o = 0. It is important to notice
that the statistical analysis made by the authors of Ref. [48] to associate cognition
with p = 2 is based on observing the Rapid Transition Processes (RTP) occurring
in EEG monitoring different brain areas. These authors define the simultaneous
occurrence of two or more RTP as crucial events and determined that the waiting-
time distribution density (1), where 7 is the time interval between two consecutive
crucial events, is characterized by p =~ 2. This suggests that the authors [48] had
in mind a cooperation model similar to the NFC model of this chapter, thereby
making plausible our conjectures that a connection can be established between the
DMM and NFC models of this chapter and the cognition model [20].

In spite of conceptual and technical difficulties that must be surpassed to achieve
the important goal of Werner [10], we share his optimistic view [12] “On account
of this, self-similarity in neural organizations and dynamics poses one of the most
intriguing and puzzling phenomenon, with potentially immense significance for
efficient management of neural events on multiple spatial and temporal scales."
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