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This thesis dealz with elecsrical conductivity in thin
films., Classical and quantum size effects in conductivity
_are discussed including some experimental evidence of guan-
tum size effects., The component conductivity slong the
applied electric field of a thin film in a2 transverse mage
netic I'ield is developed in a density matrix method.

Classical size effects are discussed for the cases of
random end partially specular surface scattering.‘ Fuchs!
expression for the conductivity of a thin film with random
scettering, Sondheimer'ts form of Fuchs’ results for partially
specular scattering, asnd Cottey's approximation for almost
wnolly specular scattsring are discussed., Appropriate approx-
imations to the cases of random and partially specular scat-
tering are given. Two cases of the conductivity of films
in magnetic fields are discussed, i.e. the case of a magne-
tic fields transverse to the film and the case of the magne-
“ic field parallel to the applied electric fileld.

Sendomirskii's theory for guantum size effects in semi-
metal films is briefly reviewed., This theory oredicts an
oscillatory nature for the condvctivity with a cconstant period
on the order of nalf of the eleectron de Broglie wavelength
-in certain csases, The nmumber density of charge carriers is
~also oscililatory.

The experiments by Crgen st al, Garcia, and Duggal and



Rup dealing with quantum size gffects in thin bismuth films
are reviewed, These experiments showed osgcillatory elec-
trical properties for films in and out of magnetic fields,
The experimsnts of Komnik and Bukshtab dealing with guantum
size effects in metal films are discussed, These showed
oscillations with a very short period {7 to 8 A in tin and
28 A in antimony).

The componet of electrical current density along the
direction of the applied electric field in a thin film in a
transverss magnetic field is developed through a density
matrix method reviewed by Kahn and Frederiske. The film
surfaces are treated as an infinite square well. The free
electron model is used., Wave functions and energy levels
are caleulated elong with appropriate matrix elements of a
velocity component., Ths density matrix method is shown and
modified to apply to the thin film current density component.
Scattering is epproximated as § -function potentials. This
is averaged spacially.

Through these considerations an expression for the cur-
rent density component is developed, This expression is non-
ohmic, It goes to zero as either the electric field or the
thickness goes to zero. It may be cscillatory. A method
for extension of this development tc the case of semimetals
and semiconductors is mentioned. Further areas of investi-
gation are suggested, These inciude more experimental in-

vestigation, other surface potentials, and specularity
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CLASSICAL AND QUANTUM SIZE EFFECTS IN THIN FILMS

Intrcduction

This thesis deals with quantum size effects in thin
films, The major purpose of the thesis is a non-relaxation
time, quantum mechanical development of the current density
of a thin film in the direction of the electric field, while
the film is in a tranaverse magnetic fieid. The thesis also
contains introductory materiasl concerning classicﬁl size of-
fects, Sandomirskii's relaxation time deveiopment of quantum
size effects in thin filmas, and a swmary of several experw
iments concerning gquantum size effects in thin films,

For this purpose there is an introductory chapter con-
taining the material on the classical size effects, the
relaxation time develovment of quantum s=ize effects, and the
experimentsl material concerning quantum size effects, There
then follows a chapter for the theoretical development of the

guantum size effects of the current density component,

Classical Size Effects
It is well known that in large bulk samples of materials,
the conductivity is not a function of the dimensions of the
sample. However, if the size of the ssmple is restricted in

any direction, size effects begln to appear. This was first



noticed in thin plates during 1898 by J. J. Thompson1 who
suggested that thias effect was due to restriction ol the

mean free path of charge carriers. Both Thompson and

A. B. C. Lov9112 did classical calculations of this effect.

In both of these celculations statistical velocity distri-
butions for the electrons envolved were ignored. And Thompson's
calculation also did not include electrons starting from the

surfaces of the plate, F’ucbs3’u derived the form

3 X
= = 1 2-ElEco-&[1-€7]
(1)

>
mee Bl = o) e dt

L4,
And where ¢ 1s the conductivity of the film along the dir-
ection of theelectric field, and where w, 1is the bulk con-
ductivity of the materisl, This equation is deriver under
the assumption of & spherical Fermi surface, random surface
scattering, an isotroplc mean free path, and the Boltzman
trensport equation. The guantity K is the ratio of the
film thickness to the mean free patﬁ of the electrons. Ap-

proximations to Fuchs' equation are

%: %}-(-[,&1(%) —{-0.423] for K<< |

(2)



and

< 3
__|--¢3-E for K>> 1. (3)
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Also for a larger range of K , the equation

p . Ne 3

7T T for K2 | - ()
is a better approximation to the inverss of Fuchs'! equation
{ equation (1) ), than is the inverse of equation (3)}. Thus
for npmerical calculations of the resistivity'/o or its
reciprocal the conduetivity <, equation'(h) is =zuperior teo
equation (3) for film thicknesses of the order of the con-
duétion electron mean free path,

Fuchs also developred an expression for the conduétivity
of a film with partislly specular scattering at the surfaces
of the film, This develovment requires a specularity para-
meter P , which is the fraction of electrons incident upon
s surface which are scattered in a specular manner. The
remaining electrons are assumed to be scattered randomly.
When both ‘surfaces have the same specularity parametar,

E. H. Sondheimer expressed Fuchs! result as aither5

| -Ki‘.‘
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or in ancther intersating form

| - |
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The guantity ({;})RK?:O is the same as equatlon (1) with n K
L '

substituted for K . Useful expressions for numerical work are
£ <. 3 >7 |
— = $ = | — for K (7)
T | 3K (1-P)

and for very thin films

-—

L - S . :i.[I'iji-l l or K<
"‘3ll+PJx,ffM(-‘,z-) for K<< . (8)

A. A. Gottey6 also developed an approximate closed
expression for equations (5) or (6) using a periodic boundry

condition on the mean free path., This expression is
Y = jiéf[ -4 o4 -4;{) + *L-]
Lvﬁ.l‘ - 2 A3 L/ / *é; (/ /“a)

where /a:K/(/“P)

This expression is good in the region of F%=/ and has a

(2)

closed form.

It should be noted that both surfaces of a film need
not have the same specularity parameter, Cottey derives an
expression for this case using his technique. Also

H, J. Juretschke! derives expressions for the thick and thin



limits using the Fachs-3Sondheimer technigue, Juretschke also
puts limits on an-effective specularity parameter for this
case which he claims works well for the thick limit.

There are three cases of films in magnetie fields in the
classical study viz.1) the megnetic field parallel to the
current density, 2) the megnetic field perpendicular to the
current density and paraliel to the plane of the film, and
3) the magnetic fleld perpendicular to the current denszty
and perpendicular to the plare of the film, Sondheimera dia-
cussed the latter case., He found theoretically that

% . Re9(s) (10)

PRy

¥ K

where S = K-+95 and

) o “:::)——. “St
qu_s) = = 5 25 f(tsﬂ cH.’ (11)

This is just an integral expression of equation (1) divided
by ¥ and with K replaced by S . The quantity /5 is related
to the magnetic field H and the film thickness Q& by

Y mna C

where A7 is the meean veloclity of a conduction electron.

Also for partially specular surface scattering



where

| | 3 -5t
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This is similar to equation {5) with K replaced.by S « These
expressions, {10) and (13}, for the conduetivity of a film
have an interesting conseguence viz, the conductivity has an
oscillatory nature as a function of the magnetic field. How-
ever the osecillations are not of uniform amplitude,

D. XK. C. MacDonald and X. Sargenson9 discussed the clas-
sical effects of a magnetic field on a conducting film when
the field is perpendiculaf to the current density but in.the
plane ofthe film. They found two expressions for J:(:Z , the
ratio of the current density to the bulk current density. Cne
exprossion applies when Q& >21 where @& 1s the film
thickness and ¢ is the radius of the path of unscattered
elecrtons in a bulk sample when the buik sample is in the mag-
netic field, Thus thie expression applies to thicker films or
stronger fields. The other expression to the case of 2 <2).
That is thinner films or weaker fields. An interesting point
conéerning this case of magnetic field orientation is that

the Hall elsctric field is across t&e thin dimension of the



£i1m, Therefore the Hall ield iz au guickly varying field,
This concludes the discussion of clagsical size effects in

. films,

A Quantum Size Effects Theory for Semimetals

Quantum size effects are those properties of materials
which are dependent upon a material's dimensions being of the
order of the de Broglie wavelength of particles or excitations
within the materiasl, V, B. Sandomirskii1o discussed theo-
retically the quentum size effects in the electrical properties
of semimetal films. His development of these effects was done
in the relaxapion time approximation. Sandomirskii used ren-
domly distributed § -function potential scattering centers.
A eritical parameter in his formulation is the gquantity O,
the thickness of the film when the hole and electron bands
change from overlapping to nonover}apping. In cases wherqmthe
hole effective mass greatly exceeds the electron effective
mass. O corresponds to half of the de Broglie wavelength of

the electron, and vice versa. Sandomirskii's expressions for

the conductivity of a thin semimetal film are

= - a 2n/n. a>a '
= =5 Zhe] for (15)
and
kT T
< _ 3kT m___‘i'.mf] ; <A . a
< A [ M e for Q& (16)
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The electron and nole zffective musses are M, and Vi respec- -
tively. The inverse of the sum of the inverse oaffective
masses is M . The energy bend overlsp in the bulky semimetal
is A . While RT 1s the product of the Boltzman constant
and the absolute temperature. The integer part of 0_/6'?-: is

A + The quantity Ej is the energy band gap which exist in
extremely thin semimetal films. The number density of con-
duction band electrons is N , while that in a bulky semi-
metal is N, . Note that both EI and ™ are functions of the
semimetal film thickness (. ., Sandomirskii derived expressions
for the ratio n/n. through the density of states., By
assuming the conduction electrons to be a d.egenerate gas

for O.< Q. he found the expressions

& HEPALE (e )] e

for A Y2 , end

3k [ [mwmf_]% % é’-’z%“

- = (18)
for OL< O. . Both of these expressions are continuous. But

~ the derivative of equation (17) is discontinuous :at each-
integer value of Q./& . Also ecuation {17) has a relative
meximum in each interval S < A/& <S+/ where S is an
integer. Thus in this formulation both the conductivity and

the number density of charge carriers are oscillatory



functions of O with period @&. Sandomirskii also stated
results for the Hall constant and magnetoresistance, These

ere also oscillatory in thickness with period Q.

Experimental'Evidence of Quantum Size Effects

The above work done by Sandomirskii was prompted by
experimental work done by COrgin et a1'', This was the first
observation of quantum size effects, The work was done with
bismuth films at 300, 78, and 4.2 K. The films were produced
by sputtering bismuth onto a mica substrate heated to 70 to
80 C.at a rate of about 50 A/min. Measurements of the resis-
tivity; Hall constant, and magnetoresistance were taken for
film thicknesses of 200 £ to greater than AOOO‘E. The resis-
tivity, transverse magnetoresistance, Hsll constant, and
Hall mobility were found to have a periodic thickness
dependence with a period of HOO to 500 A for the 78 and L.2 XK
cases, The series of measurements at 300 X shower very little
if any oscillatory behavior. All thres cases showed a sharp
rise in resistivity below 400 A. These results are in fair
agreement with Sandomirskii's thecory since using a represen-
tative electron effective mass of ,01 mp yields a thickness
parameter & of 390 i.

Other experimental work has been done with thin bismuth
films. Two instances of interest are the work of N. Garcia'2
and that of V., P, Duggel end R, Rup!3, Garcia grew his bis-
muth films epitaxially on a mica substrsate by evaporation.

The substrate was heated to a temperaturs of 100 C during



growth eand emnealing. Measurements were made at 12, 77, and
394 K. The growth rate was 60 ﬁymin. Garcia was careful to
use a sequential growth and measurement procedure in order to
prevent extreme structural changes in the film between mea-
suréments. Measurements were made for the resistivity, Hall
effect, and transverse magnetoresistance. Garcla found oscil-
latory behavior with thickness variation only at 12 XK. 4n
electron micrograph of a film when 500 A thick shows that
the £ilm is mot a single crystal, though an x-ray diffraction
pattern does show that the orientation of bthe crystaiites
were quite similar, An electron micrograph of a £ilm 1000 E
thick alsc shows & similar pattern, though the crystalites
were somewhat largenr. |
Duggal and Rup alse grew their bismuth films epitaxislly
by evaporation onto a mica suvstrate at 130 C. The evapération
rate here ranged from 400 to 600 A/min. Measurements of the
resistivity and Hell constent were taken at 90 and 300 K for
films varying in thiekness from 250 to 1700 A. The mejor dif-
ference between this work snd that of Garcia is that the resis-
tivity and the Hall constant R, were periodic in thickness
even at 300 K. Duggal and Rup also did an x-ray analysis and
mede an eiectron micrograph study of their films. The electron
micrograph study revealed that these films had grains with
widths of one to three microns. They slso discovered voids in
£11ms thinner than 600 A. Furthermore the density of volds

increased with decreasing film thickness. Thus qguantum size

-l
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effects have been observed in the semimetal bismuth in the
thickness range of L00 to LU00 A, They have also been observed
in the temperature rangs of .2 to 300 XK.

Yu, P, Komnik.and E. I. Bakhshtab 515 nave also observed
quantunm size effects in metsls., They observed conductivity
oscillations with a period of 28 A in antimony films. Quand
tum size effects were also observed in tin films. Xomik and
Bukhshtab made electron microscopic and eleetron micrographie
studies of their tin films, They found that & temperature
dependent c¢ritical thickness exists., At this thickness the
deposited tin changes from an amorphous structurelto 8 Crys-

taline structure. They observed that shar» channels or laby-
rinths exist in the crystal near this thickness., The critical
thickness for tin is 200 to 250 A at room temperaturs, Tin
was found to have a weak oscillatory thiclness dependence in
its conductivity. 4nd & stronger oscillatory thickness deven-
dence was found in the critieal transition temperature asso-
ciated with superconductivity. The oscillatory dependence in
both cases has a double pericd. There are wesker oscillations
with a period of 7 to 8 A and stronger oscillations with a
period of 15 A, The smallness of the oscillabory periods in
tin and antimony films illustrates well why most experiments

dealing with quantum size effects have involved simimetals,



CHAFTER IX
CURRENT DENSITY IN TAIN FILM3

Introduction

This chapter conteins a quantum derivation of the com-
ponent of ourrent density in a thin film along the direction
of the applied electric field, when the thin film is in a
megnetic field which is perpendicular to both the applied
electric field and the plane of the film, The chapter. also
contains a discussion of the results of the derivation,

Tne model used here is the free electron model, 4s in
Figure 1, the thin dimension of the film is aleng the z“di- 
rection, The magnetic field is also along the z direction.
The electric field is along the X direction. The plane of the

thin film is along the x and y directions., The dimensions of

_m_¥/*L{

Ly

Fig. 1==Thin film orientation
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the film slong the x and y directions are considsred to be
almost infinite. The electrons sncounter random scattering
centers which ere assumed to have §-function potentials. And
the sursaces of the film are approximated by an infinite

square well at z=0 and z=] .

Weve Functions and Energies
In order to solve for single particle wave functions,
the gauge of the magnetic fisld is choszen to be { O, B x s 0},
This vector potential yields a magnetic field of magnitude
B along the z direction., With this gauge the Hamiltonian
is

H:Q”ML[RZ+(P1+MMXY+ P;]?LeExK (19)

where w is the cyclotron frequency

= {20)

Le .
Mc
When solving the stationary state Schrodinger equation, the
z dependence seperates immediately as the infinite square
well problem. The x end y dependencies can be seperated if

a free particle wave funciion is tried for the y direction.

The remaining dependence is



This is the Schrodinger equation of a harmonic oscillator.

The point of equilibrium for this oscillator is

.. _hk _ekx, (22
ST R T '

Thus the complete normalized wave function is

Pak m “71_ qgfx Mw /’%‘%)e ! sinFE 23

where (ﬁ is the normalized harmoniec oscillator wave function.
(4]

The energy is

o rhe' _ ebhk _ &L
Evxm= (N Ve + M pr Mt (2

n= O I

Z,-.. m=1,2,3,

!

When the electric field is not turned on, the energy is

L%frﬂf
£, = (N ) Rw +ﬁ2-—-l—_z-'ﬁ' (25)

1
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The metrix eiement < N .kml oy ink m} will be needed to
calenlate the current density. Since Wy has no y or z depen=-

dence,

{nk m]ru; In Km>= <nlaxiny<r K> mim?, {26)

Using the canonical momentum P =rqu§and the harmonic os-
X
cillator creation and destruction operators 2 and & re-

spectively, one obtains

ity iy = L(%ﬁ?<n| o'~ afny
y ' (27)
= L(E‘p\-’) [(nla*l&)-—(nla.ln’)_}.

This yields

nnt

Cnlad ma(ﬁf[ﬁgﬁ‘n_i T &) (28)

Thus the entire matrix element is

(nkwmlas W km' D= L(‘ztﬁ“)f Sk Snim

(29)

| X EIW an',n_l ~fh+? an;nu].



-
o

A Densgity Matriz Methed
The method used at the begining of this development for
a current density component of a thin film in & transverse
magnetic field is similar to that reviewed by A. H. Kahn and
H. P. R. Frederiske'® in their treatment of transport effects
in bulk conducting materials in magnetic fields, Thus the

equation of motion of the density operator is
R
hf = [_/a, Hye + € ExxtV] (30)

where Hglu is the Hamiltonian of an electron inclﬁding the
magnetic field buit excluding the electric fleld., The total®
scattering potential 1s V »

Now a device employed by Xohn and Ixzttinger1? is used.
It entails "switching on" the elsoiric field adiabatiéally
by replacing E.; vy Exes . The switching parameter S is
positive., Thus when the time + =-o2 the electric field is
completely off and when t = O the electric field is com-
pletely on., The abruptness of the switching is controled by
the switching parameter., Later the limit as S changes from

g small positive number to zero will be taken. This same

device is used to describe tne density operator. Therefore

t
/o:/g+fes (31)



where P is the density operator for the Iilm at t=-00 in
the maznetic field and in thermal eﬂa* iprius. Its matrix

elements are

Fn. IM"" EF

‘/enkm,n'k‘m [e"" T t l] ém.'m. (32)

Substitution of equation {31) into equation (30), the

density operator equation of motion, yields

ik ses{:-}' = [ﬁ-l' fe.yc, How+ @ x E, eSt ]

(33)

+ ﬁ + ;Ces{f V]

Teking the matrix elements of this at t= O with respect to

the final state of the system gives

(B~ Bt =0RS) Sy i
(3)

[p (e —p (€ \., ot #LEV] L oot

'j'“ ™ nkm'hgm

One can see from equation {29) that one needs matrix elements
which are disgonal in R andm , yet off diagonal in n . That
is

-3
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hkm,r{km

N (35)
4 [:ﬁ (énm\z Hﬁ (Chm] Vh Km,l’;km9

The lowest ﬁrder approximation in scattering which gives rise
to a net current is now taken. To accomplish this the
commitator in equation (34) is set to zero. Thus to the
lowest order a general off diagonal matrix element of the

correction to the density operator is

[[’Cem'\"#f)(c““)]vnnmvz ‘_’_l’l
Ennm_E ‘e m -iks

nx

Fun st

This matrix element is put inte the commutator to solve for
the matrix elements of the correction to the density operator

which gives rise to a net current, One gets

(- \ 5 P(@-m\ - plesw)
A, N Em - 'hm(n.—n'j—is'k N R r\krﬂ _E o ~1 St

(37)

_ pledn) - Alens ] .
Eirem - ..-Lsx Vi i Virkm v m
nEm n

One now takes the limit as the switcehing paremeter
approaches zero., Again as in XKohn and Luttinger17 one can use

the relation

o (36)

L



P(——) + LT cg(x)

(38)

where P('&\ indicates the principal part of W, With this
the needed matrix element of the correction to the density

operator becomes

jtnhrn,n'xm - hu(n n ) Z " nhmn ®om Vnk'nr nRm
X {Lplnm -pEen] S (En=Exit) 39
—~+ {./0 Cey\ m\ f) (én' “)l C'S(EHKW\ - 'n“ Kﬂn\“)}'

Note that energy is conserved dux-ihg collisions because of
a-function dependence on total energy.

It is et this peint that this derivaiion begins to di-
verge more radicelly from the bulk problem. The above is now
applied to the present goal of finding an expression for the

x component of the current density. This is done by taking

J=-=T (/'U',(f‘)). (140)

Next expand this in terms of finsl states =t time =0



e - A HE o
j - &S <nkm\ﬂ.~xlﬂhm><hle ,lhkm
* e ™ “'h'm'[ /D >
12) m
(1)

!

+<nkmlas | ki KEm| § [nkmY.

The sum over the first product of matrix elements is zero
{ :
since {nk K /0 [nk W\> envolves é SRK Cgmm while

]
<hkm\ n&lﬁftm) envolves én',n-t and éy; . Therefore putting

n+|
the metrix elements into equation {I41) and summing over the

primed indicies yields

J:C - _-‘—?LT Z [\’?": Vnu.mn’lt.'ﬂ\ \/r;'\'c'm“nxm

D (2MRw)E S
K

X {[ﬁ&w m\)'ﬁ(ér\“w’f] S(EﬂHKm "'E,‘ e
+ [fg(_’emj —-/e(e,.u,..")] g(gnw.ﬁ )} e

V AR AR “ Y " Rm E[fo (én m /0(6" ""“)J

X é(En-mm n' w."m)’*' [f(é’"") 7 (& )S(E"K\“ﬂ Eqs %:}-

The index n is changed to n-| in the first term of the
summation above. The range of summation remains the same how-
ever. Also because the scattering potential v is Hermitian,

ones has



o+ \
Vow n = *

nKm nRm \/n"h'wf'nkm - Vnnhnnm"- (L3)

Thus one writes equation (42} as

Jx '-;'“"I(—QC'EEW" nzn:mw {[/3(6"'* AC )

n R

X SEmium~ Eiir) +L9(é.m; REE ')] (4l4)

X é(Enuwf'EﬁEJ)kf2e[v M nR ﬁﬁﬁnkM]

Scattering -

Calculations of the current density made from the above
equation, however, depend upon the exact locations of the
seattering ‘centers. A ﬁbre useful quantity 1s the current
density component for a randomly distributed set of scattering

centers. Thus the quaritity one seeks is

J-;: “Jq_e(;gl\)ﬁmyfr. Z‘l {['P CFh-Im) /O(é' "}

\'\'&T\‘\

S(E am™ Eogoa)+ [ﬁ(e.m\--/efe:,;‘,;-J (45)

X "«S(Enum nE )}(Re n..m'mr\%'m nkmnkm>



- where the brackets <. . e > indleate a statistical average

over the scattering center locabicns,

It is now time to consider specifically the nature of
the scattering. Since &-functicn potential scattering is

being used, the total scattering potential is
L) -~
V=am 0N §(F-
¢
3 (F-R)
{ s
C_Zjﬁ?g “dy.
t

Thus the product of matrix elements is

(L&)

vnkmnkmv "Rl -t g m = C Z. L(gf+§l?)

i%* _‘}_.a.f (h’?)
X {nkmle Inkm S{nkmle ln—ikm‘}d}-slz
Note that the scattering center vosition depsndence has been
isolated, To average over the scattering centers one needs to

average only over the quantity
S=2 s G RGR) (48)
¢

Thus the average of E; for randomly distributed scattering

centers is_

S

fa
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where N is the total number of scattering centers., Ons

assumes an _equal probability of any scattering center being

anywhere within the film. Seperating the sum into the cases

l=j and ‘L#J , one obtains
N [ i FEOR
(=8 TTh JR
ey ) (50)
- '}J:(g!-’i)je“‘- (? l+? & clskl CFE’"

Hence in the sense of box normalization

(SyeNSgy NN S, o

The second term here does not contribute to a2 net current
aince it corresponds to a potential which is constant through-

out the film. Substituting < S> into equation {(47) one gets
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( sin(BE2) sin (573 Sin(BE2) 500 () Lo Sy o

where
_hk , ek« _ ik, eb |
Mo Mt F= Mo T Mot (53)

’
Next, doing the ':Z';; and “ﬁg integrations yields
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When the integration over 'Ff is done, the averasged scattering

matrix element product becomes
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The integration over z gives
2, m 1T
JSan (EEY sin(PTE) e =L (195 4,,). (56

And since the harmonic oscillator wave functions are real,

one has
<Re nern ¥ Vet am glf, f,fl (1+£8, m")

(57}
X jqﬁn(w'm) C#:, (x +£) é“_,()(+o£) dx .

for the scattering dependence of the x component of the cur-

rent density.

With the above considerations for scattering, the x com-

ponent of current denaity of a thin film in a transverse mag~

netic field is

Y51
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xS (€, m"Erz‘é‘w‘c)} ,Hi (x+e) cﬁns- (x+4) 92_} (x+a) dx.

The thin film is large in the y direction, thus the quantum
numbers K and kf are quasi-continuous, Hence one can replace
the sum over k" by‘é%ifgii‘ and change the expliéit de-
pendence of the §-~functions from energy to k". With these
considerations the x component of the current density alter

integration over R 1is

_-em’ 4N,
Je= Le_Trr?.‘%thu eEx ZF{ + 5 O
X {[ﬁ (Enmd-PLER )] ﬁ(xms{; (HK)QL (m (59)

+[p o) L (Eron)] gran b.(x+ K, (ee)dx

where
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and

K = Mw ELE [ﬁw(”"} ') + }‘z_’:ﬁ - 'Z)J'J'%é{'z.’ (61)

To facilitate further simplification onse makes the
change of variables x+wo=y, Thus the first integral over x in

equation (59) becomes

(b diepd fpdy

A similar change occurs in the second integral with r(_ TE- .

placed by r(_' where

L= dg LhuCnery T Ot ™)
(63)

{
Note that neither VL nor 1| are dependent on k . Expressing
the harmonic oscillator wave functions directly in terms of

the Hermite polynomials, HJ (!A) » one finds

* eyt z
T - G [y e an’ Yy

7 (61}
X H,;' (ay+2l) Hﬂ—{(dj) ‘J?
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There are several methods of deing this integral. The most
obvious is teo express the Hermite polynonmials as a series or
perhaps to use a generating series, A more direct method is

to use én integral representation, Use the integral repre-

sentation

> J -st _
Fz’,-(a) -“-/(u«»z'SJ e “ds. (66)
-0

Thus one has

2-;' --(QJZ}t 2 .
I = ZC‘?.nl‘*;n“-:‘EL - /eﬂzfdj“ ‘Zdzfj- AN

1 z_ 2 W
x et e (ajns)”{anm»zui) (67)
X (ag+ag+ i)' fag100)" pds didudvdy.

Expanding the algebraic terms in the integrand in a binomieal
expasnsion will facilitate the integration over y. Also make

the change of variables éa:ﬂ{j . Therefore
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Once the integration over & is done and the dependencies on

§, t , w, and V are examined one sees ‘t;hat18

I = Slbe (T 5 e

i1pg

X H,G 7)H.¢(Q'[)H3-,)( )( )()

J+13£i$) -b
-1 H.‘I*J*F* E( (2“’1)
X ( 7;)( F4 ) ; (J'+1+p+gf-zb7!b[

(69}

where E(U-) igs the integer part of W,

Because rL and rl do not depend on k , the summation
over kK simply involves an integration ; fdf The limits of
this integration are not however infinite. The center of the
narmonic oseillator weve function are dependent upon Kk . .

Ml m At me wvvmd ha il +hin +ho £11m eines 3+ correanonds to



the most probable position of sleactrons. The guantum numrber

h is subjsct to condition'’

Ly ¢ Bk ek o Ly (70)
z w o Mt 2

With this the K swmation is performed as

| M wle € |
Lq 2 ﬁ A dk - Ej_‘l_bd Ly_ L‘i‘
2Tl 2Th (71)
_Muly_ ek .
2k @

With the considerations of the previous paragraphs the
x component of the current density of a thin film in = trans-

verse magnetic field is

3,‘/1 2 Zt (] ul .
Je = T CEM:=N 2, —%l-’:—h- (1+%&nt)
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Cenelusions

Thie result for the x compuonent of the current density,
which is based on the method reviewed by XKahn and Prederiska,
has several interesting aspects. First, all of the explicit
temperature devendence is contained in the two terms which
are the differences of Fermi disiributions., This does not ap-
pear to be & simple Temperature dependence however because
a1l values of the quaritum numbers n, n , m s, and m' are
suymed over.

Second, if the method reviewed by Xahn and Frederiske
is spplicaeble to thin films it certianly indicateé a ncn-ohmice
dependence upon the applied electric field, The guantities

Q and qj both contain inverse elecrtiec flield dependence.

Thus the current density compcnent does go to zero at zero
electric field due to the exponential involving A and!{
sﬁuared. However this eiecrtic field dependence deserves fur~
ther study, which we hope to consider in the future.

Third, the thickness dependence c¢f the x component of
the current density is rather complex. The current density
goes to zero as the thickness goes to zero. Yet each term in-
volving either tempersture or electric field ;g also thickness
dependent. The sum over Hermite polynomials suggests that the -
current density may be osecillatory with respect to film thick-
ness. But the nature of these oscillations is not obvious. It
should be noted that the experimental situation with respect

to these oscillations of magnetoresistance is ill-defined at



present, HMany experimenters have claimed a regular pericd to
these oscillations. Howsver Garcia's experiments tend to
throw some doudbt on this., Additional exreriments are required
to clarify the nafture of these oscillatory quantum size
effects,

The expression developed here for the x component of the
current density is directly applicable only to metals. It can
be extended to semimetals and semiconductors by adding a sime
ilar expression for holes and replacing the mass by hole and
electron effective masses., The two parts of the extended
current density expression will have to be connected by the
neutrality condition,

Finally, the surface conditions existing at the film sur-
faces have certeinly been highly idealized in this development
by use of an infinite square well., The finite square well and
the harmonic osdillator potentials deserve consideration.,

Alsa the question of specular versus partially specular scat-

tering needs ccnsideration.
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