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This thesis deals with electrical conductivity in thin 

films# Classical and quantum size effects in conductivity 

are discussed including some experimental evidence of quan-

tum size effects. The component conductivity along the 

applied electric field of a thin film in a transverse mag-

netic field is developed in a density matrix method. 

Classical size effects are discussed for the cases of 

random and partially specular surface scattering. Fuchs' 

expression for the conductivity of a thin film with random 

scattering, Sondheimer1s form of Fuchs' results for partially 

specular scattering, and Cottey's approximation for almost 

wholly specular scattering are discussed. Appropriate approx-

imations to the cases of random and partially specular scat-

tering are given. Two cases of the conductivity of films 

in magnetic fields are discussed, i.e. the case of a magne-

tic fields transverse to the film and the case of the magne-

tic field parallel to the applied electric field. 

Sandomirskii's theory for quantum size effects in semi-

metal films is briefly reviewed. This theory predicts an 

oscillatory nature for the conductivity with a constant period 

on the order of half of the electron de Broglie wavelength 

in certain cases. The number density of charge carriers is 

also oscillatory. 

The experiments by Orgen et el, Garcia, and Duggal and 
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Hup dealing with quantum size effects in thin bismuth films 

are reviewed. These experiments shewed oscillatory elec-

trical properties for films in and out of magnetic fields. 

The experiments of Komnik and Bukshtab dealing with quantum 

size effects in metal films are discussed. These showed 

oscillations with a very short period (7 to 8 A in tin and 

28 A in antimony)# 

The componet of electrical current density along the 

direction of the applied electric field in a thin film in a 

transverse magnetic field is developed through a density 

matrix method reviewed by Kahn and Frederiske. The film 

surfaces are treated as an infinite square well. *fhe free 

electron model is used. Wave functions and energy levels 

are calculated along with appropriate matrix elements of a 

velocity component. The density matrix method is shown and 

modified to apply to the thin film current density component. 

Scattering is approximated as &-function potentials. This 

is averaged spacially. 

Through these considerations an expression for the cur-

rent density component is developed. This expression is non-

ohmic. It goes to zero as either the electric field or the 

thickness goes to sero. It may be oscillatory. A method 

for extension of this development to the case of Semimetals 

and semiconductors is mentioned. Further areas of investi-

gation are suggested. These include more experimental in-

vestigation, other surface potentials, and specularity 
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CHAPTER I 

CLASSICAL AND QUANTUM SIZE EFFECTS IN THIN FIIMS 

Introduction 

This thesis deals with quantum size effects in thin 

films. The major purpose of the thesis is a non-relaxation 

time, quantum mechanical development of the current density 

of a thin film in the direction of the electric field, while 

the film is in a transverse magnetic field. The thesis also 

contains introductory material concerning classical size ef-

fects, Sandomirskii's relaxation time development of quantum 

size effects in thin films, and a summary of several exper-

iments concerning quantum size effects in thin films. 

For this purpose there is an introductory chapter con-

taining the material on the classical size effects, the 

relaxation time development of quantum size effects, and the 

experimental material concerning quantum size effects. There 

then follows a chapter for the theoretical development of the 

quantum size effects of the current density component. 

Classical Size Effects 

It is well known that in large bulk samples of materials, 

the conductivity is not a function of the dimensions of the 

sample. However, if the size of the sample is restricted in 

any direction, size effects begin to appear. This was first 

1 
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noticed in thin plates during 1898 by ,T. J. Thompson, who 

suggested that this effect was due to restriction of the 

mean free path of charge carriers. Both Thompson and 

A. B. C. Love11^ did classical calculations of this effect. 

In both of these calculations statistical velocity distri-

butions for the electrons envoived were ignored. And Thompson's 

calculation also did not include electrons starting from the 

surfaces of the plate, Fuchs^^ derived the form 

7T ] Ei(-K-)--fn [l ~ 6 j 

( 1 ) 

7 ~ - K 

where r . - t 
e £ M - -i r e d t . 

Ju. 

And where T" is the conductivity of the film along the dir-

ection of theelectric field, and where "r; is the bulk con-

ductivity of the material. This equation is deriver under 

the assumption of a spherical Fermi surface, random surface 

scattering, an isotropic mean free path, and the Bolt zm an 

transport equation. The quantity K is the ratio of the 

film thickness to the mean free path of the electrons. Ap-

proximations to Fuchs1 equation are 

= 3 - £ [ j U ( i ) + 0 . 4 2 3 ] t o r K « l (2J 

45> 
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and 

^ - I - for K » I - <3) 

Also for a larger range of K , the equation 

= I +• ̂ for K >. I - W 

is a better approximation to the inverse of Fuchs' equation 

( equation (1) ), than is the inverse of equation (3)• Thus 

for numerical calculations of the resistivity or its 

reciprocal the conductivity <r, equation (!}.) is superior to 

equation (3) for film thicknesses of the order of the con-

duction electron mean free path. 

Fiichs also developed an expression for the conductivity 

of a film with partially specular scattering at the surfaces 

of the film. This development requires a specularity para-

meter P , which is the fraction of electrons incident upon 

a surface which are scattered in a specular manner. The 

remaining electrons are assumed to be scattered randomly• 

When both surfaces have the same specularity parameter, 

E, H. Sondheimer expressed Fuchs' result as either^ 

I-A 



or in another interesting form 

Z 
n = | 

fir)„ = o-ff £"f~"(^L,p-- •" 

The quantity l~̂ r)ri&y=c> i s s a m e as equation (1 ) with Y\ K 

substituted for • Useful expressions for numerical work are 

- £ = 2L = for K » l (7) 

and for very thin films 

A - 3 -4. i-r 
'3 I 4? J)Ci»(Tc) 

for K « I . (8) 

A. A. Cotteyk also developed an approximate closed 

expression for equations (5) or (6) using a periodic boundry 

condition on the mean free path. This expression is 

*(i-S)Mi*r)l 
'* A (9) 

where jx ~ K / ( l . 

This expression is good in the region of P~ / and has a 

closed fornix 

It should be noted that both surfaces of a film need 

not have the same specularity parameter, Cottey derives an 

expression for this case using his technique. Also 

H. J. Juretschke^ derives expressions for the thick and thin 



limits using the Fuchs-Sondheimer technique. Juretschke also 

puts limits on an- effective specularity parameter for this 

case which he claims works well for the thick limit. 

There are three cases of films in magnetic fields in the 

classical study viz. 1) the magnetic field parallel to the 

current density, 2) the magnetic field perpendicular to the 

current density and parallel to the plane of the filraa and 

3) the magnetic field perpendicular to the current density 

and perpendicular to the plane of the film. Sondheimer® dis-

cussed the latter case„ He found theoretically that 

J2L - R e <&(S) 

^ K 
(10) 

where S = K •+ L/& and 

oo cf 

J - - - U p 
tf>CS) ~ s SS1 2 S l j J V ts) 

(id 

This is just an integral expression of equation (1) divided 

by K and with K replaced by S . The quantity jB is related 

to the magnetic field H and the film thickness CL by 

R s — — (12) 
' r m or c 

where JyJr is the mean velocity of a conduction electron. 
Also for partially specular surface scattering 



(2L\ - £§JKLIL M ) 
I t /k.p K 

where 

I J 3 
, 1 l t ) 

This is similar to equation ($) with £ replaced by S • These 

expressions, (10) and (13), for the conductivity of a film 

have an interesting consequence vis;, the conductivity has an 

oscillatory nature as a function of the magnetic field. How-

ever the oscillations are not of uniform amplitude. 

D. K. C. MacDonald and K. Sargenson^ discussed the clas-

sical effects of a magnetic field on a conducting film when 

the field is perpendicular to the current density but in.the 

plane ofthe film. They found two expressions for J~/jl » the 

ratio of the current density to the bulk current density. One 

expression applies when (X> 2. R where O- is the film 

thickness and f is the radius of the path of unscattered 

elecrtons in a bulk sample when the bulk sample is in the mag-

netic field. Thus this expression applies to thicker films or 

stronger fields. The other expression to the case of (X <2T* • 

That is thinner films or weaker fields. An interesting point 

concerning this case of magnetic field orientation, is that 

the Hall electric field is across the thin dimension of the 
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film. Therefore the Hall field is a quickly varying field, 

This concludes the discussion of classical size effects in 

films. 

A Quantum Size Effects Theory for Semimetals 

Quantum size effects are those properties of materials 

which are dependent upon a material's dimensions being of the . 

order of the de Broglie wavelength of particles or excitations 

within the material. V. B. Sandoaiirskii' ® discussed theo-

retically the quantum size effects in the electrical properties 

of semimetal films. His development of these effects was done 

in the relaxation time approximation. Sandomirskii used ran-

domly distributed & -function potential scattering centers. 

A critical parameter in his formulation is the quantity CL, 

the thickness of the film when the hole and electron bands 

change from overlapping to nonoverlapping. In cases where_the 

hole effective mass greatly exceeds the electron effective 

mass CL corresponds to half of the de Broglie wavelength of 

the electron, and vice versa. Sandomirskiifs expressions for 

the conductivity of a thin semimetal film are 

3Z - M:. JLp/D- for CL>a. (15) 
~r„ a 2A + I 

and . 

-T- r 1 /z -
i _ s J T m . t W f Q2k-T f 0 P OL < a. . (16) 
To A L M -f 
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The electron and hole effective masses are and /v]p respec- -

tively. The inverse of the sum of the inverse effective 

masses is . The energy band overlap in the bulky semimetal 

is A • While k T is the product of the Boltzraan constant 

and the absolute temperature. The integer part of Oi/ct is 

A • The quantity £3 is the energy band gap which exist in 

extremely thin semimetal films. The number density of con-

duction band electrons is n , while that in a bulky semi-

metal is H\,0 . Note that both arid ^ are functions of the 

semimetal film thickness 0- . Saridomirskii derived expressions 

for the ratio Kl/n.o through the density of states. By 

assuming the conduction electrons to be a degenerate gas 

for CL< (X he found the expressions 

J ! - J. 
ru 4 {"a.) A[Mtc) ~(A + l)(<2A+ 1)1 f1^) 

for D> (X , and 

n _ 3 k T f m n ± B £ . f z i e " ^ " (18, 

r. - " A " L k J a e (18) 

for Q < OC . Both of these expressions are continuous. But 

the derivative of equation (17) is discontinuous at each-

integer value of (X/OL • Also equation" (17) has a relative 

maximum in each interval S Q-/CL ( S W where ^ i s an 

integer. Thus in this formulation both the conductivity and 

the number density of charge carriers are oscillatory 
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functions of GL with period OL. Sandomirskii also stated 

results for the Hall constant said magnetoresistance. These 

are also oscillatory in thickness with period (Xm 

Experimental Evidence of Quantum Size Effects 

The above work done by Sandomirskii was prompted by 

1 1 

experimental work done by Orgin et al . This was the first 

observation of quantum size effects. The work was done with 

bismuth films at 300, 78, and l+,2 K. The films were produced 

by sputtering bismuth onto a mica substrate heated to 70 to 

80 C .at a rate of about 50 A/min. Measurements of the resis-

tivity, Hall constant, and magnetoresistance were taken for 

film thicknesses of 200 A to greater than l|000 A. The resis-

tivity, transverse magnetoresistance, Hall constant, and 

Hall mobility were found to have a periodic thickness 

dependence with a period of l|00 to 500 A for the 78 and l±,2 E 

cases. The series of measurements at 300 K shower very little 

if any oscillatory behavior. All three cases showed a sharp 

rise in resistivity below !|00 A. These results are in fair 

agreement with Sandomirskii' s theory since using a represen-

tative electron effective mass of .01 t*\e yields a thickness 

— * 
parameter CL of 390 A. 

Other experimental work has been done with thin bismuth 
1 ? 

films. Two instances of interest are the work of N. Garcia 

and that of V. P. Duggal and R. Rup^3. Garcia grew his bis-

muth films epitaxially on a mica substrate by evaporation. 

The substrate was heated to a temperature of 100 C during 
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growth and annealing. Measurements were made at 12, 77* and 

391+ K. The growth rate was 60 A/min. Garcia was careful to 

use a sequential growth and measurement procedure in order to 

prevent extreme structural changes in the film between mea-

surements, Measurements were made for the resistivity, Hall 

effect, and transverse magnetoresistance. Garcia found oscil-

latory behavior with thickness variation only at 12 K, An 

electron micrograph of a film "when $00 A thick shows that 

the film is mot a single crystal, though an x-ray diffraction 

pattern does show that the orientation of the erystalites 
o 

were quite similar# An electron micrograph of a film 1000 A 

thick also shows a similar pattern, though the erystalites 

were somewhat larger. 

Duggal and Rup also grew their bismuth films epitaxi ally 

by evaporation onto a mica substrate at 130 C. The evaporation 

rate here ranged from ij.00 to 600 A/min. Measurements of the 

resistivity and Hall constant were taken at 90 and 300 K for 

films varying in thickness from 2f>0 to 1700 A. The major dif-

ference between this work and that of Garcia is that the resis-

tivity and the Hall constant were periodic in thickness 

even at 300 K. Duggal and Rup also did an x-ray analysis and 

made an electron micrograph study of their films. The electron 

micrograph study revealed that these films had grains with 

widths of one to three microns. They also discovered voids in 

films thinner than 600 A. Furthermore the density of voids 

increased with decreasing film thickness. Thus quantum size 
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effects have been observed in the semimetal bismuth in the 

thickness range of ij.00 to I4.OOO A* They have also been observed 

in the temperature range of lj.,2 to 300 K. 

Yu. F. Koranik and E. I. Bakhshtab have also observed 

quantum size effects in metals. They observed conductivity 

oscillations with a period of 28 A in antimony films, Quan~ 

turn size effects were also observed in tin films. Komnik and 

Bukhshtab made electron microscopic and electron miorographic 

studies of their tin films. They found that a temperature 

dependent critical thickness exists. At this thickness the 

deposited tin changes from an amorphous structure to a crys-

taline structure. They observed that sharp channels or laby-

rinths exist in the crystal near this thickness. The critical 

thickness for tin is 200 to 2J?0 A at room temperature. Tin 

was found to have a weak oscillatory thickness dependence in 

its conductivity. And a stronger oscillatory thickness depen-

dence was found in the critical transition temperature asso-

ciated with superconductivity. The oscillatory dependence in 

both cases has a double period. There are weaker oscillations 

with a period of 7 to 8 A and stronger oscillations with a 

period of 1$ A. The smallness of the oscillatory periods in 

tin and antimony films illustrates well why most experiments 

dealing with quantum size effects have involved simimetals. 



CHAPTER II 

CURRENT DENSITY IN THIN FILMS 

Introduction 

This chapter contains a quantum derivation of the com-

ponent of current density in a thin film along the direction 

of the applied electric field, when the thin film is in a 

magnetic field which is perpendicular to both the applied 

electric field and the plane of the film. The chapter,also 

contains a discussion of the results of the derivation. 

The model used here is the free electron model. As in 

Figure 1, the thin dimension of the film is along the z di-

rection. The magnetic field is also along the z direction. 

The electric field is along the x direction. The plane of the 

thin film is along the x and y directions. The dimensions of 

IE-L 

Pig. 1—Thin film orientation 
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the film along the x and y directions are considered to be 

almost infinite. The electrons encounter random scattering 

centers which are assumed to have S -function potentials. And 

the sursaces of the film are approximated by an infinite 

square well at z=0 and z= [_ . 

Wave Functions and Energies 

In order to solve for single particle wave functions, 

the gauge of the magnetic field is chosen to be ( 0, 3 X , 0). 

This vector potential yields a magnetic field of magnitude 

3 along the z direction. With this gauge the Hamiltonian 

is 

M - j j f [ P/ x^ + P t ] + e X <19) 

where tJ is the cyclotron frequency 

to - • (20) 
Mc. 

When solving the stationary state Schrodinger equation, the 

z dependence seperates immediately as the infinite square 

well problem. The x and y dependencies can be seperated if 

a free particle wave function is tried for the y direction. 

The remaining dependence is 



r . i l i l + J i a / x + ii- 4 -£-£« ' t i s fx) 

I 2ft J** 2- \ |v\ui fV\ ufJ J T^> 
- fp _ e . _ Jla (£JL + e J * Y 1 I60 . 
- [ w. -Z 2. ^ U 5 !̂\ ioz ' J ' 

{21} 

This is the Schrodinger equation of a harmonic oscillator. 

The point of equilibrium for this oscillator is 

• - £ & _ ejL* * (22) 
x iiw rt»l 

Thus the complete normalized wave function is 

U> - - / I X T (k( x + K k Siirv~-2(23) 
< n fc *\ / Lj L- »A f/l M / L. 

where is the normalized harmonic oscillator wave function. 

The energy is 

E w H m " ( n * 2 rtu,- iM*>z <2l»> 

V\ - O, I } 2., « • • fA. — I •) 2., 3 j . . -

When the electric field is not turned on, the energy is 

*>l * 
irJlJTV (25) 

= C " - * * ) * 1 0 + 2 F m 
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The matrix element ft R m ( aTx be needed to 

calculate the current density. Since has no y or z depen-

dence, 

{nfem|/irx | n k'my - <nl AJvln><k Ik'Xivil /*'>. (26) 

Using the canonical momentum p = M (U/and the harmonic os-

i 
cillator creation and destruction operators OL and (X. re-

spectively, one obtains 

< n l i ^ U ' > = L ("2m)Z <"-i a l n ' > 

, (27) 

= l [<n|a +|^>-<n|a|n>j. 

This yields 

< k 1 a * I r O = i ( ^ ) V V . <28> 

Thus the entire matrix element is 

< " k * | * r , l «Sk'k 

X [ y F + ' 4n) «•< J • 

(29) 
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A Density Matrix Method 

The method used at the begining of this development for 

a current density component of a thin film in a transverse 

magnetic field is similar to that reviewed by A. H. Kahn and 

1 

H. P. R. Frederiske in their treatment of transport effects 

in bulk conducting materials in magnetic fields. Thus the 

equation of motion of the density operator is 

~ L/5/ NKlH •+ ekxX+VJ (30) 

where is the Hamilton!an of an electron including the 

magnetic field but excluding the electric field. The total' 

scattering potential is V • 

Now a device employed by Kohn and Luttinger1? is used. 

It entails "switching on" the electric field adiabatically 

by replacing E* by . The switching parameter S is 

positive. Thus when the time *t = - o* the electric field is 

completely off and when t = O the electric field is com-

pletely on. The abruptness of the switching is controled by 

the switching parameter. Later the limit as 5 changes from 

a small positive number to zero will be taken. This same 

device is used to describe the density operator. Therefore 

r s-t 
p - ̂  + 7 G (31) 
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where g is the density operator for the film at t - in 

the magnetic field and in thermal equilibrium. Its matrix 

elements are 

ft - [ e " * - r + IJ 4 4 ' * < v v . (32) 

Substitution of equation (31) into equation (30), the 

density operator equation of motion, yields 

- i k s e ^ f Hk.m + e x £„ e5* ] 

(33) 

+ [yO + f e 5
/ \/J-

Talcing the matrix elements of this at t - 0 with respect to 

the final state of the system gives 

^ ^hKmnfcm' 

(3k) 

~~ t-/o " f t ^(vKw;nkm 

One can see from equation (29) that one needs matrix elements 

which are diagonal in k and YA , yet off diagonal in ft. . That 

is 
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i 

•+ [y»fe„^ l£»'"«] \/nfcl>i 

The lowest order approximation in scattering which gives rise 

to a net current is now taken. To accomplish this the 

commutator in equation (3^) is set to zero# Thus to the 

lowest order a general off diagonal matrix element of the 

correction to the density operator is 

-f , , - ytK.m , . 
Jn*«s**v* r [tiS 

*-"• A Kirn n It 

This matrix element is put into the commutator to solve for 

the matrix elements of the correction to the density operator 

which gives rise to a net current. One gets 

t - I y \ PMn" S) 
n'v»lfcK1, -f ... « 5 * 

l»n km (37) 

K Yn h" K m" k"1^' * K -

" ft fejialL 

P • \ — P "J' «»"" i 
t-hkm En 

One now takes the limit as the switching parameter 

approaches zero# Again as in Kohn and Luttinger^? one can use 

the relation 
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V i T o T ^ - P t e V l i r 5 0 e ) ,36) 

where indicates the principal part of U. • With this 

the needed matrix element of the correction to the density 

operator becomes 

i t r . j j i — - y v - » » V „ 
J itj(n-h) 4~l *. vn K w* n k >* ''nkmnKm n k M 

X { ~yf C € ^ m ) ] <$ E n ^ 1 ) (39) 

-4 vv^ ~~ f i ^ 0^- "" fc mO^ • 

Note that energy is conserved during collisions because of 

<5-function dependence on total energy. 

It is at this point that this derivation begins to di-

verge more radically from the bulk problem. The above is now 

applied to the present goal of finding an expression for the 

x component of the current density. This is done by taking 

J , = - ( m f ) . (k0) 

Next expand this in terms of final states at time \ - O 



20 

-J% - 2 ] < n U lnrx [ n k'm ><nk.m|y?| nk m > 
n^m,L 

(i41 ) 

4 ^nkynl^* I r\ km^-C ftfc'mj } \n k.m^. 

The sum over the first product of matrix elements is zero 

since < iV k; W\po ( ft le w\ y envoive s Sn' n k while 

<v\Kh\| envoives ̂  and n4l« Therefore putting 

the matrix elements into equation (I4/I ) and summing over the 

primed indicies yields 

"T - J- TT..r--r "J ' [/ft*? Vn4iK>^A^'
rn h R m 

J * - jnL(*r\*«o)* nkvw„ 
W fe* ** 

X {I 

+ 'P. ^ ^ ^ J tU2» 

+ ̂  V," ,v>V fcw [t? ten-, 

X ^ *' r" m ) + 7? ^fiw^ 

The index n is changed to n- I in the first term of the 

summation above. The range of summation remains the same how-

ever. Also because the scattering potential V is Hermitian, 

one has 



at 

"f i * 
n w. yy> *" Vn" k m" n H. m * n nvn m'V yn ' (1+3) 

Thus one writes equation (I4.2) as 

n" k" m 

x ^ £ n K B , - £ ^ i ' r f ) ] R e t C n - K » ' V r « ^ J -

Scattering 

Calculations of the current density made from the above 

equation, however, depend upon the exact locations of the 

scattering centers. A more useful quantity is the current 

density component for a randomly distributed set of scattering 

centers. Thus the quantity one seeks is 

J , = S F £ V - C e - - ) 

*1 

x < K £ „ - v * ~ - { k 5 ) 

x J O w - E B % v ) } < P * 



22 

where the brackets indicate a statistical average 

over the scattering center locations. 

It is now time to consider specifically the nature of 

the scattering. Since $-function potential scattering is 

being used, the total scattering potential is 

V - ( 2 i r ) A C Z 

- cz 
(U6) 

Thus the product of matrix elements is 

Vn )t vy\ n'fc'W Va" K."wVn-\ K w - iC /V, "0 ^ ^ ^ 
J U 

i f f ( W 

X h m I 6 |nf! w" )(h k I r\ - \ k i 

Note that the scattering center position; dependence has been 

isolated. To average over the scattering centers one needs to 

average only over the quantity 

S = Z 

Thus the average of ^ for randomly distributed scattering 

centers is 
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e l W ' W A A - • J%. (W) 

J ij 

where Nl is the total number of scattering centers. One 

assumes an equal probability of any scattering center being 

anywhere within the film. Seperating the sum into the cases 

I = j and W j » °ne obtains 

- [ e - '
r l x *f ̂  j'/f, J'&-

(50) 

Hence in the sense of box normalization 

<S > = N S_t j M J j , . & ; . . <*1 > 

The second terra here does not contribute to a net current 

since it corresponds to a potential which is constant through-

out the film. Substituting < S > into equation (i|7) one gets 



2k 

/ V " " « V "" " u — [<l) CxJv.)i>,.(x+&) 
\ 'hltwtn Rtn V n fc r* *v-i J* to/ if J n 

* f i f - W ) 
* H 

(52) 

X S C K ( ^ P ) S U ^ ) 

where 

(53) 
M _ i i . + e £ « * _ + %£*. • 

' Mui 

Next, doing the ^ and integrations yields 

< = T C ^ L / + ^ 4 " ^ 

i , x .,'t kn + t ̂  H 
e J O - ? ' ) (sit) 

^ s u ( i B j p ) sinls
2^) s t n l ^ ) su(rr- £) d V d V . 

When the integration over ~r' is done, the averaged scattering 

matrix element product becomes 



^ n (̂"yyv VnVViVn-ifcYfl^) j7- ŷyf* & fyjJ 

X S i h V ^ S u C n f ^ c / K 

(55) 

The integration over z gives 

„~L 

^O 

And since the harmonic oscillator wave functions are real, 

one has 

/ D-, V \ - 1cV*ft/ n , I r „\ 
\ n e VnityTV f\*h\ *nR.w n-iuny* ^ 12" om,»* ' 

15 (57) 

X j (f>n(xf«) <$,(*+£) <fnjx+«)<ix. 

for the scattering dependence of the x component of the cur-

rent density. 

With the above considerations for scattering, the x com-

ponent of current density of a thin film, in a transverse mag-

netic field is 
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J . = - f r S f s a 1 " i l " 
•v. 

-M ^ V— ' .. „ .. 
•> n &. iw 

X £ - / ? « . . . » • ) ] (SB) 

X<$(S„kk-EAw")} dx. 

The thin film Is large in the y direction, thus the quantum 
It 

numbers k and k quasi-continuous# Hence one can replace 
ft I f / tf 

the sum over K by Jk and change the explicit de-
/ I 

pendence of the <§ -functions from energy to fc • With these 

considerations the x component of the current density after 
H . . 

integration over M is 

X'-fgQtfoSHZfi'O'M 
H k w 
n" * 

L/3 fen-lfj <f>it(jf-f K )<Ji 6^*)d}C 
-)-o£> 1 H " 

where 

^ E " 4 L W h - » - ) + «§L (60, 



I 

and 

To facilitate further simplification one makes the 

change of variables x+ot=y. Thus the first integral over x in 

equation (5>9) becomes 

I = (62) 

A similar change occurs in the second integral with re- « 

placed by where 

2 t (63) 

i = _L t* „c« - »•-/) + j g - o j -

Note that neither nor are dependent on k • Expressing 

the harmonic oscillator wave functions directly in terms of 

the Hermite polynomials, /-jj (b) , one finds 

X d-s 

(61+) 
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where 

C.-N*/ • (W) 
There are several methods of doing this integral. The most 

obvious is to express the Hermite polynomials as a series or 

perhaps to use a generating series. A more direct method is 

to use an integral representation. Use the integral repre-

sentation 

P* J - S l 

H j ( u ) ~ J (u>4-£$) 0 J S • ( 6 6 ) 

Thus one has 

, --"t1 Y\ , . \M 
X 6 (a<j+is) ( a ^ a ^ i t ) 

" l t 

X +*>l+ i u ) n / a y Hv)n~0.d$ J i c j u a v a<j • 

Expanding the algebraic terms in the integrand in a binomial 

expansion will facilitate the integration over y. Also make 

the change of variables Q^CL^j . Therefore 

(67) 
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*L *» t i< 
u - n n n < T =. Cn U" £»-* "C V V V D / "' ) ( " )ln~ 1 

1 a ^ ^ n j : r X ^ 1 L L ( j / ( i / A p J ( J / 
XJ(itf'Ho-l +'i)"'J!(a.>i + iu)n f 

X 0 J + J ^ JeJsJUu jv. 

(68) 

Once the integration over © is done and the dependencies on 

1ft 
S , t , u. , and V are examined one sees that 

I - e " ^ 2 ] H n M 

(69) 

0.Z 'i ' -

-b 
'J, « !•»..) 

where ^.(u) is the integer part of U- , 

Because ^ and do not depend on j( , the summation 

over k simply involves an integration . The limits of 

this integration are not however infinite. The center of the 

harmonic oscillator wave function are dependent upon k • 

(TfW £ mm 4» *•*.«! «i «+• V\A i.r? fVinw 4*̂0, film o-i nr* A 4-h Anrrftsnonds to 
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the most probable position of electrons. The quantum number 

k is subject to condition1^ 

-U i ~ ( kr • "0) 2- \A «*> H u>u £ 

With this the k summation is performed as 

M e_i' 

j ft* * 10 t f^\ to L * L-y 
± 1 dk - (71) 
lV LiimL'.di' 

2. ti 

With the considerations of the previous paragraphs the 

x component of the current density of a thin film in a trans-

verse magnetic field is 

T - TT^C'mV Al ̂  n!"'( / . , i. C „\ 
J * " L'-aE,*- Z. U * ~m> 

*. «* : * *~ 
1% »>» 

V V* V V Hr>~j{o) .. . 
X k k h> ^ ! J! />! ? ! 

y [ [/»c« « v i ft B .1 J e ^ ( - «-lf m H „ ^ ( 7 2 ) 

N-i> n , 

xlW»f£'««Wtail+•**** 
1 

£ 0 ^ ) , r , _ 
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Conclusions 

This result for the x component of the current density, 

which is based on the method reviewed by Kahn and Frederiske, 

has several interesting aspects. First, all of the explicit 

temperature dependence is contained in the two terras which 

are the differences of Fermi distributions. This does not ap- • 

pear to be a simple temperature dependence however because 

all values of the quantum numbers n , n" , m , and m" are 

summed over. 

Second, if the method reviewed by Kahn and Frederiske 

is applicable to thin films it certianly indicates a non-ohmic 

dependence upon the applied electric field. The quantities 
I 

and ^ both contain inverse elecrtic field dependence. 

Thus the current density component does go to zero at zero 
t 

electric field due to the exponential involving ^ and ̂  

squared. However this elecrtic field dependence deserves fur-

ther study, which we hope to consider in the future. 

Third, the thickness dependence of the x component of 

the current density is rather complex. The current density 

goes to zero as the thickness goes to zero. Yet each term in-

volving either temperature or electric field is also thickness 

dependent. The sum over Hermite polynomials suggests that the"' 

current density may be oscillatory with respect to film thick-

ness. But the nature of these oscillations is not obvious. It 

should be noted that the experimental situation with respect 

to these oscillations of magnetoresistance is ill-defined at 



present. Many experimenters have claimed a regular period to 

these oscillations. However Garcia*s experiments tend to 

throw some doubt on this. Additional experiments are required 

to clarify the nature of these oscillatory quantum size 

effects. 

The expression developed here for the x component of the 

current density is directly applicable only to metals. It can 

be extended to semimetals and semiconductors by adding a sim-

ilar expression for holes and replacing the mass by hole and 

electron effective masses. The two parts of the extended 

current density expression will have to be connected by the 

neutrality condition. 

Finally, the surface conditions existing at the film sur-

faces have certainly been highly idealized in this development 

by use of an infinite square well. The finite square well and 

the harmonic oscillator potentials deserve consideration. 

Also the question of specular versus partially specular scat-

tering needs consideration. 
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