CONNECTEDNESS AND SOME CONCEPTS RELATED TO COMMECTEDEESS OF A TOPOLOGICAL SPACE

APPROVED:

James E. Hadesh

Ed Allen Mih

partment of Nathematics!

 40 chers Toulous

Doan of the Graduate School

CONNECTEDNESS AND SOME CONCEPTS RELATED TO CONNECTEDNESS OF A TOPOLOGICAL SPACE

 \sim

THESIS

 \sim

 ϵ

 \cdot

Presented to the Graduate Council of the North Texas State University in Partial. Fulfillment of the Requirements

For the degree of

MASTER OF ARTS

By

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

Michael A. Wallace, B.A. Denton, Texas August, 1969

PREFACE

The purpose of this thesis is to investigate the idea **of topological** "connectedness" by **presenting some** of **the** basic ideas concerning connectedness **along with** several related concepts. **There are** three chapters in the thesis. **In** Chapter I, **the** idea of "connectedness" in general **will be** examined, **while** Chapter II **will** deal **with** the idea of "local connectedness" and the related ideas of "connectedness **im kleincn,**" "property S," and "uniform local connectedness." **In Chapter III, the concept of "path-connectedness" will be investigated. All of the elementary properties of topological spaces will be freely used without statement or proof. The notation used is elementary set notation as discussed in Elementary** General **Topology* by Theral 0. Moore.**

TABLE OF CONTENTS

 \sim \sim

 \sim \sim

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 \mathcal{L}

CHAPTER I

CONNECTEDNESS

1.1. Definition A topological space Y is connected if it is not the union of two nonempty, disjoint open sets. A subset $B \subseteq Y$ is connected if it is connected as a subspace of Y.

1.2. Definition Two subsets A and B of a topological space Y are said to be <u>separated</u> if $A \neq \emptyset$, $B \neq \emptyset$, and $A \cap \overline{B} = \emptyset = \overline{A} \cap B$.

1.3.Definition A subset A of a set B is called a proper subset of B if and only if $A \neq \emptyset$ and $A \neq B$.

1.4.Theorem Let A and B be nonempty, disjoint subsets of a topological space Y. Then, A and B are separated if and only if both A and B are open in AUB.

Proof:

Part $1 -$ Let A and B be separated. Thus, $\overline{A} \cap B = \emptyset$ which implies that A is closed in AUB. Consequently, $(AUB) - A = B$ is open in AUB. Similarly, A is open in AUB.

Part 2 — Let both A and B be open in AUB. There is an open set $V \subseteq Y$ such that $V \cap (A \cup B) = B$. Now, suppose that VnA \neq \emptyset . Then, there is a point p ε VnA. Thus, p ε (VnA) $U(VAB) = V\Omega(AUB) = B$. But this implies that p ε AAB, a

 \mathbf{I}

contradiction. Hence, $V \cap A = \emptyset$, and, since V is open, $V \cap \overline{A} = \emptyset$. Therefore, $B \cap \overline{A} = \emptyset$. Similarly, $A \cap \overline{B} = \emptyset$. Thus, (by 1.2) A and B are separated.

1.5.Theorem Let Y be a topological space. The following five properties are equivalent:

(1) Y is connected.

(2) Y is not the union of two separated sets.

(3) Y is not the union of two nonempty, disjoint closed sets.

(4) Y contains no proper subset which is both open and closed.

(5) No continuous mapping $f:Y \rightarrow Z$ is surjective, where 2 is the space consisting of the two points ${0,1}$ with the discrete topology.

Proof:

Show that (l) implies (2).

This follows directly from 1.1 and 1.4.

Show that (2) implies (3).

Assume that $Y = AUB$ where A and B are nonempty, disjoint closed sets. Then, $Y-A = B$ and $Y-B = A$ are both open; and (by 1.4) A and B are separated, a contradiction.

Show that (3) implies (4) .

Assume that Y contains a proper subset A, which is both open and closed. Thus, Y-A is nonempty and closed. Since

 $Y = (Y-A) \cup A$, then Y is the union of two nonempty, disjoint closed sets, namely A and Y-A, a contradiction.

Show that (4) implies (5).

Assume that there is a continuous $f:Y\rightarrow Z$ which is surjective. Thus, $f^{-1}(0) \neq Y$ and $f^{-1}(0) \neq \emptyset$; consequently, $f^{-1}(0)$ is a proper subset of Y. Now, $\{0\}$ is both open and closed in 2, and, since f is continuous, $f^{-1}(0)$ is both open and closed in Y, a contradiction.

Show that (5) implies (1) .

Assume that Y is not connected. Then, (By 1.1) Y =AUB. where A and B are nonempty, disjoint open sets.

Define $C_{\Lambda}: Y \longrightarrow 2$ by $C_{\Lambda}(x) = \begin{cases} 0 & \text{if } x \notin A \\ 1 & \text{if } x \in A \end{cases}$. Since A is nonempty and B = Y-A is nonempty, then $C_A:Y \longrightarrow 2$ is surjective.

Now, the set ${0,1}$ is open in 2, and $C_A^{-1}({0,1})$ = $AUB = Y$, which is open in Y. The set $\{1\}$ is open in 2, and $C_A^{-1}(1) = A$, which is open in Y. The set $\{0\}$ is open in 2, and $C_A^{-1}(0) = B$, which is open in Y.

Thus, the inverse image of each set open in 2 is also open in Y. Thus, C_A is continuous, a contradiction.

1.6. Lemma Let A and B be separated subsets of a topological space X. If 0 and D are nonempty sets such that $C \subset A$ and $D \subset B$, then C and D are separated.

Proof: Now, $C \subset A$ implies that $\overline{C} \subset \overline{A}$. Since A and B are separated, $\overline{A} \cap B = \emptyset$. Thus, since $D \subset B$, then $\overline{A} \cap D = \emptyset$, and, since $\overline{C} \subset \overline{A}$, then C \cap D = \emptyset . Likewise, C \cap \overline{D} = \emptyset . Therefore (by 1.2), C and D are separated.

1.7. Theorem Let A and B be separated subsets of a topological space X. If 0 is a connected subset of AUB, then $C \subset A$ or $C \subset B$.

Proof: Assume that $C \not\subset A$ and $C \not\subset B$. Thus, C contains points in both A and B; so $C = PUQ$, where $P = CA$ and $Q = C \cap B$. Since A and B are separated, then $(by 1.6)$ P and Q are separated, which implies (by 1.5) that C is not connected, a contradiction.

1.8.Theorem Let C be a family of connected subsets of a topological space. If no two members of C are separated, then UG is connected.

Proof: Assume that UC is not connected. Then (by 1.5) $UC = PUQ$, where P and Q are separated sets. Let $C_1 \in C$. Then (by 1.7) $C_1 \subset P$ or $C_1 \subset Q$. Suppose that the lettering is chosen such that $C_1 \subset P$. Since (by 1.2) Q is nonempty, there is an element $C_2 \in C$ such that $C_2 \cap Q \neq \emptyset$, and (by 1.7) $C_2 = Q$. However (by 1.6), C_1 and C_2 are separated, a contradiction.

1.9. Corollary If C is a family of connected subsets of a topological space which have at least one point in common, then UC is connected.

4

Proof: Since each two members of 0 have a point in common, (by 1.2) no two members of C are separated. Thus (by 1,8), UO is connected.

1.10. Remark Let A and B be subsets of a topological space X such that $A \subset B$. Then, A is connected in X if and only if A is connected in B,

1.11. Theorem The continuous image of a connected set is connected. That is, if X and Y axe topological spaces, if A is a connected subset of X, and if $f:X\rightarrow Y$ is continuous, then $f(A)$ is connected.

Proof: Assume that $f(A)$ is not connected. Then (by 1.5), there is a proper subset P of $f(A)$ such that P is both open and closed in $f(A)$. Now, since $f:X\rightarrow Y$ is continuous, $f | A: A \rightarrow Y$ is continuous. Thus, it follows that $f^{-1}(P)$ is a proper subset of A which is both open and closed in A. Therefore (by 1.5), A is not connected, a contradiction.

1.12. Theorem Let $\{A^{\ }$: i ϵ Z⁺ = {1,2,3,...}} be a family of connected sets of a topological space Y, with A^{\bullet} \cap $A^{\bullet}_{i+1} \neq \emptyset$ for each i ϵ \mathbb{Z}^+ . Then, $\mathbb{U}\{\mathbb{A}^{\bullet}_{i}: i \in \mathbb{Z}^+\}$ is connected.

Proof: Mathematical induction will be used. Let \mathtt{n} \mathtt{s} \mathtt{Z}^+ and let P(n) represent the statement "U{A₁ : i \mathtt{s} Z_{n} ⁺ = {1,2,...,n}} is connected."

- **(1) P(l) is true since A^ is connected.**
- **(2) Assume that P(k) is true for some k e Z ⁺. That is, k assume that UA. is connected. i=l**
- **(3) Show that P(k+1) is true.**

Since A_k $A_{k+1} \neq \emptyset$, then $(AU_{\cdot\cdot\cdot}, UA_k)$ $A_{k+1} \neq \emptyset$. **k By (2), UA^ is connected, and, by the hypothesis, A^.+1 is i = ¹ k k+I connected, so (by 1.9)** $(\begin{bmatrix} \n\mathsf{U}\mathsf{A}_i \n\end{bmatrix}) \mathsf{U} \mathsf{A}_{k+1} = \mathsf{U}\mathsf{A}_i$ is connected. $i=1$ ¹ **i**=1¹ **Therefore,** $U\begin{pmatrix} A^1 \\ A_1 \end{pmatrix}$ **i** S Z^+ **j** is connected.

1.13. Theorem **If** $\{A_{\alpha} : \alpha \in \mathbb{T}\}$ is a family of connected **subsets of a topological space Y such that there exists a connected** set **A** with **A** \cap **A**_{α} \neq \emptyset for each α ϵ T, then AU **a (UA) is connected.** α eT $^\alpha$

 $\frac{\text{Proof:}}{\text{Consider the set }\{A\cup A\}}$: $\alpha \in \mathbb{T}\}$. Since for **each** $\alpha \in \mathbb{T}$, A is connected, A_{α} is connected, and $A \cap A_{\alpha} \neq \emptyset$, <x ' a **then** (by 1.9) AUA_{α} is connected. Also, $A \subseteq \Pi\{AUA_{\alpha} : \alpha \in \mathbb{T}\}.$ U# **Thus (by 1.9), U{AUA : a e T} = AU(UA) is connected.**

1.14. Theorem If $\{A^{\alpha} : \alpha \in \mathbb{P}\}\$ is a family of connected **sets such that any two of them have nonempty intersection, then UA is connected. asT**

^a <xeT^a

Proof: Let A_β ϵ $\{A_\alpha$: $\alpha \in \mathbb{T}\}$. For any A_α ϵ $\{A_\alpha$: **a e T**-{ β }), $A_{\beta} \cap A_{\alpha} \neq \emptyset$. Thus (by 1.13), A_{β} U(U{ A_{α} : α ϵ $\mathbb{P}^{-}\{\hat{P}\}\}) = A_{\mathbf{e}}$ $\mathsf{U}(\mathsf{U}\{\mathbf{A}_{\alpha} : \mathbf{a} \in \mathbb{P}\}-\mathbf{A}_{\mathbf{e}}) = \mathsf{U}\mathbf{A}_{\alpha}$ is connected. **p ^a ^p aeT**

1.15. Definition. Given two nonempty sets U_α and U_β of a topological space, a collection of sets U_1, \ldots, U_n is a chain from U to U_e, provided that U an U₁ $\neq \emptyset$, **CX P CI** \mathbb{U}_{8} \cap \mathbb{U}_{n} \neq \emptyset , and \mathbb{U}_{1} \cap \mathbb{U}_{1+1} \neq \emptyset for $i=1,\ldots,n-1$.

1.16. Theorem A topological space Y is connected if and only if every open covering $(U_\alpha : \alpha \in \mathbb{T})$ of Y has the following property: for each pair U_{α} , $U_{\alpha} \in \{U_{\alpha} : \alpha \in T\}$, **p Cp (X** there is a subcollection of $\{U^{\dagger}_{\alpha}: \alpha \in \mathbb{T} \}$ which forms a chain from U_g to U_{ϕ} .

Proof:

Part $1 -$ Suppose that the given property holds, and assume that Y is not connected. Thus $Y = AUB$ where A and B are nonempty, disjoint open sets. Therefore, $\{A, B\}$ is an open covering for Y, and, by the hypothesis, AAB \neq \emptyset , which is a contradiction.

Part 2 - Suppose that Y is connected. Let $\{U_{\alpha}:\alpha \in \mathbb{T}\}\$ be an open covering of Y. Let $U_g \in \{U_{\alpha} : \alpha \in T\}$, and let C be the collection of sets consisting of U_g together with all sets $U_{\delta} \in \{U_{\alpha} : \alpha \in \mathbb{T} \}$ such that there is a chain consisting of elements of $(U_{\kappa}:\alpha \in \mathbb{T}$ } from U_{α} to U_{κ} . C is α or β or β nonempty, since $U_{\rho} \in C$. Therefore, UC is nonempty, and, since C is a collection of open sets, then UC is open.

To show that UC is closed, let $p \in (UC)^{!}$. Then, $p \in Y = 0$ { $U_{\alpha} : \alpha \in T$ }. This implies that $p \in U$ for some U ϵ {U_a: α ϵ T }. Thus, U is an open set containing p, and,

since $p \in (UC)^+$, then U $n(UC) \neq \emptyset$, which implies that there is some $U_{\lambda} \varepsilon C$ such that U \cap $U_{\lambda} \neq \emptyset$. Since $U_{\lambda} \varepsilon C$, there is a chain U_1,\ldots,U_n from U_8 to U_8 which consists of elements of $\{U^{\alpha}:\alpha \in \mathbb{T}\}$. But, since U \cap $U^{\alpha}_{\lambda} \neq \emptyset$, the collection U_1,\ldots,U_n,U_λ is a chain from U_β to U . Hence, U ϵ C. Thus, $p \epsilon$ U ϵ UC which implies that UC is closed.

Thus, UC is a nonempty set which is both open and closed in Y, and, since X is connected, (by **1.5)** UC = Y.

Let $U_{\alpha} \in \{U_{\alpha} : \alpha \in \mathbb{T}\}\right)$. Then $U_{\alpha} \subset U$ C, which implies that there is some $U_k \in C$ such that $U_{\infty} \cap U_k \neq \emptyset$. Since $\boldsymbol{\mathrm{U}}_{\mathbf{k}}$ $\boldsymbol{\varepsilon}$ C, there is a chain $\boldsymbol{\mathrm{U}}_{1}$,..., $\boldsymbol{\mathrm{U}}_{\mathbf{n}}$ from $\boldsymbol{\mathrm{U}}_{8}$ to $\boldsymbol{\mathrm{U}}_{\mathbf{k}}$ consisting of elements of $\{U_{\alpha}:\alpha \in \mathbb{T}\}$. Since $U_{\phi} \cap U_{\kappa} \neq \emptyset$, C
Company of the Company of the Compa
Company of the Company of the Comp the collection U_1,\ldots,U_n,U_k is a chain from U_0 to U_{σ} .

1.17.Theorem Let A be a connected subset of the topological space Y. Then, any set B satisfying $A \subset B \subset \overline{A}$ is also connected. In particular, the closure of a connected set is connected.

Proof: Assume that B is not connected. Then (by 1.5), $B = PUQ$ where P and Q are separated. Since $A \subset B$ and A is connected, then (by 1.7) either $A \subset P$ or $A \subset Q$. Suppose that the labeling is chosen so that $A \subset P$. Thus, Q \cap A = \emptyset . Since $Q = B = \overline{A}$, Q \cap A = \emptyset , and Q is nonempty, then Q contains a limit point of A. But, since $A \subset P$, then Q contains a limit point of P, which implies that P and Q are not separated, a contradiction. Thus, B is connected.

 $\frac{1}{2} \frac{1}{2} \frac{$

In particular, if C is any connected set, then, since $C \subset \overline{C} \subset \overline{C}$, C is connected.

1*18.Theorem Let A and B be subsets of a topological space X. If A and B are closed in X, and AUB and AflB are connected, then A and B are connected.

Proof: The conclusion is immediate if $A \subset B$ or $B \subset A$. So, suppose that $A-B \neq \emptyset$ and $B-A \neq \emptyset$.

Assume that A is not connected. Then A = PUQ where P and Q ere nonempty, disjoint open sets in A. Thus $(by 1.4)$, **P** and Q are separated, and, since $A \cap B = A \cup B$ and A nB is connected, then (by 1.7) either $A \cap B$ $\subset P$ or $A \cap B$ $\subset Q$. Suppose the labeling is chosen so that $A \cap B \subset P$. Then, $A-B = A-(A \cap B) \supseteq A-P = Q$, and, since $A \supseteq A-B$ and Q is open **in A, then Q is open in A-B. Also, since B is closed in AUB, then AUB-B = A-B is open in AUB. Thus, Q open in A-B and A-B open in AUB imply that Q is open in AUB. Also, since P is open in A, then A-P = PUQ-P = Q is closed in A, and, since A is closed in AUB, then Q is closed in AUB. Thus, Q is a proper subset of AUB which is both open and closed in AUB. Therefore (by 1.5), AUB is not connected, a contradiction. Thus, A is connected, and, similarly, B is connected.**

1.19.Theorem Let A be a connected subset of a connected topological space X. If B is a subset of X--A which is both open and closed in X-A, then AUB is connected.

Proof: The proof is immediate if either $B = X-A$, $B = \emptyset$, or $A = \emptyset$. So, suppose that $B \neq X-A$, $B \neq \emptyset$, and $A \neq \emptyset$.

Let $H = (X-A)-B$. Since B is a proper subset of $X-A$ which is both open and closed in X-A, then H is nonempty and open in X-A. Thus (by 1.4), H and B are separated.

Assume that AUB is not connected. Then $(by 1.5)$, $AUB = RUS$, where R and S are separated. But, since A is connected, (by 1.7) either $A \subseteq R$ or $A \subseteq S$. Suppose that the labeling is chosen such that $A \subseteq R$. Now, $S \subseteq B$ for, if not, SAA \neq Ø which implies that SAR \neq Ø, a contradiction. Thus, since H and B are separated, (by 1.6) H and S are separated. Therefore, $X = HU(A \cup B) = HU(R \cup S) = (H \cup R) \cup S$ and since H and S are separated and R and S are separated, then HUR and S are separated. This implies (by 1.5) that X is not connected, a contradiction.

1.20.Definition Let A be a subset of the topological space X. The boundary of A, written $Fr(A)$, is $\overline{A} \cap \overline{X-A}$.

1.21. Theorem Let A be a subset of the space X. If p is a point in Fr(A), then each open set containing p contains at least one point in A and at least one point not in A.

Proof: Let $p \in Fr(A)$ and let U be an open set containing p. Since (by 1.20) $Fr(A) = \overline{A} \cap \overline{X-A}$, then p e A **ⁿ** X-A. How, p e A or P e X-A. Suppose that p e A.

Then p $\notin X-A$, and, since $p \in \overline{X-A}$, then $p \in (X-A)^{\dagger}$. Thus, U contains a point in X-A, and, since p e A, then U contains a point in A. Similarly, if p e X-A, then U contains points in A and points not in A.

1.22 Definition Let A be a subset of the topological space X . The interior of A, written $Int(A)$, is the largest open set contained in A.

The following properties will be assumed without proof.

1.23. Theorem Let A be a subset of the topological space S. Then:

- (1) $Fr (A) = \overline{A} Int(A)$
- (2) Fr $(A) \cap Int(A) = \emptyset$
- (3) \overline{A} = Int(A) U Fr(A)
- (4) $X = \text{Int}(A) \cup \text{Fr}(A) \cup \text{Int}(X-A)$ is a pairwise disjoint union.

1.24.Theorem Let A be a subset of a topological space Y. If C is a connected subset of X which contains points of A and points not in A, then C must contain points of the boundary of A.

Proof: The set C contains points of A and points not in A, so AnC \neq Ø and C-A \neq Ø. But, C = $($ AnC $)U(C-A)$ and since C is connected (by 1.5) $($ AnC $)$ n $($ C-A $)$ ^{\uparrow} \neq Ø or $(4AC)'$ \cap $(C-A)' \neq \emptyset$.

والهوابس الداريات

a point x such that $x \in (A \cap C)^{n}$ and $x \in (C-A)$. But since Case 1 - Suppose $(AMC)'$ $n(C-A) \neq \emptyset$. Thus, there is ANC \subset A, x ε (ANC)['] implies that x ε A \subset \overline{A} . Also, since $x \in C-A \subset Y-A$, then $x \in \overline{Y-A}$. Thus, $x \in \overline{A}$ \cap $\overline{Y-A}$ = $F_{\mathbf{r}}(A)$, which implies that C contains points in $Fr(A)$.

Case 2 – Suppose $(AMC)\n(C-A)' \neq \emptyset$. Thus, there is a point x such that $x \in (A \cap C)$ and $x \in (C-A)^{+}$. But, $x \in$ (AAC) implies that x ε A $\subset \overline{A}$. Also, since x ε (C-A)['] and $C-A = Y-A$, then $x \in (Y-A)^{T} = (\overline{Y-A})$. Thus, $x \in \overline{A} \cap (\overline{Y-A}) =$ Fr (A) , which implies that C contains points in $Fr(A)$.

1.23.Theorem Let A and B be subsets of a topological space X, each of which is closed in AUB. If AUB is connected and AAB contains at most two points, then A is connected or B is connected.

Proof: Assume that both A and B are not connected. Then $A = P_1UP_2$ where P_1 and P_2 are nonempty, disjoint open sets in A. Likewise, $B = P_3UP_4$, where P_3 and P_4 are nonempty, disjoint open sets in B. Thus, $A - P_1 = P_2$ and $A-P_2 = P_1$ are closed in A, and, likewise, $B-P_3 = P_4$ and $B-P_4 = P_5$ are closed in B. Since A and B are closed in AUB, then P_1 , P_2 , P_3 , and P_4 are closed in AUB.

Case 1 - Suppose that (AB) n P_i = \emptyset for some i ε ${1,2,3,4}$. Thus, $P_i \subset A-B$ or $P_i \subset B-A$. If $P_i \subset A-B$, then $P_i \subset A$, and, since $A-B \subset A$ and P_j is open in A, then P_i is open in A-B. But, since B is closed in AUB, A-B is

open in AUB. Thus, P^ is open in AUB, and, since P^ is also a proper subset of AUB which is closed in AUB, then (by 1.5) AUB is not connected, a contradiction. Similarly, if $P_i \subseteq B-A$, a contradiction **is** obtained.

Case $2 - \text{Suppose that } (A \cap B) \cap P_i \neq \emptyset \text{ for all } i \in \mathbb{R}$ $\{1,2,3,4\}$. Thus, $A \cap B \neq \emptyset$. Suppose that there is a point $p \in X$ such that $A \cap B = \{p\}$. Then, $(A \cap B) \cap P_1 = \{p\} \cap P_1 = \{p\}$, **and** (AnB) **n** $P_2 = \{p\}$ **n** $P_2 = \{p\}$. Thus, $p \in P_1$ and $p \in P_2$, **which implies that P^ and P² are not disjoint, a contradiction.** Thus, $ADB = \{p,q\}$ where $p,q \in X$ and $p \neq q$. This implies that P^1 or P^2 intersects P^2 or P^1 . Let the label**ing** be chosen such that $P_1 \cap P_3 \neq \emptyset$. Suppose that $P_1 \cap P_3$ $=$ $\{p,q\}$. Since $\{p,q\}$ \cap P_2 = $(A \cap B)$ \cap $P_2 \neq \emptyset$, then P_2 con**tains either p** or **q**, **implying** that $P_1 \cap P_2 \neq \emptyset$, a contradiction. **Thus, P¹ fl P^ contains only one point, say p. Consequently,** P_2 \cap P_4 = {q}. Thus, P_1 U P_3 and P_2 U P_4 are disjoint **and, since each is closed in AUB, then each is open in AUB. Finally, since** $AUB = (P_1 \cup P_2) \cup (P_3 \cup P_4) = (P_1 \cup P_3) \cup (P_4 \cup P_5) \cup (P_5 \cup P_6)$ $(P_2 \cup P_4)$, then $(by 1.1)$ AUB is not connected, a contra**diction.**

1.26. Definition A subset C of a topological space Y is called a component of Y if C is a maximal connected set in Y; that is, there is no connected subset of Y that properly contains C.

1.27. Theorem Let X be a topological space and $p \in X$. Then the component C of X containing p is the union of all connected subsets of X that contain p.

Proof: Let $\{A_{\alpha} : \alpha \in \mathbb{T}\}$ be the family of all connected subsets of X that contain p. Then (by **1.9)** $U(A_{\alpha} : \alpha \in \mathbb{T})$ is connected. But, since C is connected and contains p, then C ϵ {A_{α} : $\alpha \in \mathbb{T}$ }, and, thus, C = $U{A_\alpha : \alpha \in \mathbb{T}}$. However (by 1.26), C is a maximal con-C**I** nected set; so $\mathsf{U}\{\mathsf{A}_{\sim} : \alpha \in \mathbb{T}\}\subset \mathsf{C}$. Thus $\mathsf{C} = \mathsf{U}\{\mathsf{A}_{\sim} : \alpha \in \mathbb{T}\}$. α ct α ct α ct α

1.28. Definition If $\{A^{\alpha} : \alpha \in \mathbb{T}\}\$ is a covering of a topological space Y, and, if $A_{\omega} \cap A_{\omega} = \emptyset$ whenever $\alpha, \beta \in \mathbb{T}$ α p and $\alpha \neq \beta$, then the family ${A_{\alpha}} : \alpha \in T$ is called a partition of Y.

1.29.Theorem The set of all distinct components of a topological space Y forms a partition of Y.

Proof: For each point y e Y, there is a component containing y. Thus, if S is the set of all distinct components of Y, then S is a covering for Y. Let 0^, C_2 **e S** such that $C_1 \neq C_2$, and suppose that $C_1 \cap C_2 \neq \emptyset$. **Then** (by 1.9), C_1UC_2 is connected. Since $C_1 \neq C_2$, then C_1 is properly contained in $C_1 \cup C_2$, thus implying that C_1 **is not a component. This is a contradiction, and, therefore,** $C_1 \cap C_2 = \emptyset$. Hence, S is a partition of Y.

1.30.Theorem Each component C of a topological space Y is closed.

Proof; Sine© C is a component, 0 is connected, and, thus (by 1.17) \overline{C} is connected. Also, since C is a maximal **connected** set, then $\overline{C} \subset C$. However, $C \subset \overline{C}$, and, thus, **C = C, which implies that C is closed.**

1.31.Theorem If X and Y are topological spaces and f:X—5*Y is continuous, then the image of each component of X must lie in a component of Y.

Proof: Let 0 be. a component of X, and let x e C. Since f is continuous and C is connected, (by 1.11) f(0) is connected. Also, since $x \in C$, then $f(x) \in f(C)$. Thus, **if** D **is a component of Y containing** $f(x)$ **then** $f(C) \subset D$ **, since D is a maximal connected set in Y containing f(x).**

1.32.Theorem Let B be a connected subset of a topological space Y. If B is both open and closed, then B is a component of Y.

Proof: Assume that B is not a component of Y. Then there is a connected subset C of Y which properly contains B. But, since B is both open and closed in Y, B is both open and closed in C. Thus (by 1.5), C is not connected, a contradiction.

1.33.Theorem Let A be a subset of a topological space Y, where both A and Y are connected. If C is a component of Y-A, then Y-C is connected.

Proof; Assume that Y-C is not connected. Then Y-C = PUQ, where P and Q are nonempty, disjoint sets each of which

and a contract

 $\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right)^{2}$

is open in Y-C. Thus, $(Y-C) - P = Q$ and $(Y-C) - Q = P$ are both closed in Y-C. Also, since C is connected in Y-A \subset Y, then C is connected in Y. Thus (by 1.19), CUQ and CUP are both connected.

Now, since $C \subset Y-A$, then $A \subset Y-C$. However (by 1.4), P and Q are separated so (by 1.6) $A \subset P$ or $A \subset Q$. Suppose $A \subset P$. Now, PnQ = \emptyset implies that $A \cap Q = \emptyset$. Thus, $Q \subset Y-A$, and, since $C = Y-A$, then $CUQ = Y-A$. But $Q = Y-C$, so QnC = \emptyset , and, since Q is nonempty, then CUQ is a connected subset of Y-A which properly contains C, a contradiction of the fact that C is a component of Y—A. Similarly, if $A \subset Q$, a contradiction is reached. Therefore, Y-C is connected.

1.34. Corollary If Y is a connected topological space of at least two points, then there exist two connected subsets M and N , of Y , which are distinct from Y and such that MUN = Y and M $\cap N = \emptyset$.

Proof: Since any set consisting of a single point is connected, then Y contains a connected subset A such that A is distinct from Y. Let M be a component of Y—A and let $N = Y-M$. Thus, MUN = Y, MAN = \emptyset , M is connected, and (by 1.35) N is connected.

1.35.Definition Let X be a topological space and $x \in X$. Then the quasicomponent of X containing x is the set consisting of x together with all points y of X such that X is not the union of two disjoint open sets, one of which contains x , and the other y .

1.56.Lemma Let X be a topological space, and. let Q be a quasicomponent of X. If X - MUN, where M and N are nonempty, disjoint open sets, then Q is a subset of either H o r N.

Proof: Assume that $Q \notin M$ and $Q \notin N$. Then $Q \cap M \neq \emptyset$ **and** $Q \cap N \neq \emptyset$, which implies that there is a point $p \in Q \cap M$ **and a** p oint $q \in Q_0N$. Thus, $p, q \in Q$ and $p \in M$ and $q \in N$, **which implies (by 1.55) that Q is not a quasicomponent of X, a contradiction.**

1.57.Theorem If Q is a quasicomponent of a topological space X, then Q is closed.

Proof: Let x e Q and assume that Q is not closed. Then Q has a limit point p such that p £ Q. Thus (by 1.35)i there are two disjoint open sets M **and** IT **such that** $X = MUN$ and $x \in M$ and $p \in N$. But, since $p \in Q'$, then N **contains a** point **q** $\epsilon \neq 0$. Now (by 1.36), $Q \subset M$ or $Q \subset N$. However, since $x \in Q$ and $x \in M$, then $Q \subset M$. Thus, $q \in M$ **and q e N which implies that M and N are not disjoint, a contradiction.**

1.58.Theorem Let X be a topological space and x e X. If Q is a quasicomponent containing x, then Q is the intersection of all sets which are both open and closed and contain x.

Proof: Let $\{A^{\bullet}_{\alpha} : \alpha \in \mathbb{T}\}$ be the family of all sets **which are both open and closed and contain x. The set** ${A^{\bullet}}$ $\mathbf{a} \in \mathbb{T}$ is nonempty for $X \in {A^{\bullet}}$: $\mathbf{a} \in \mathbb{T}$.

Part $1 -$ Let $p \in Q$. Assume that $p \notin \Pi\{A_{n} : \alpha \in \mathbb{T}\}\.$ α Thus, for some A ϵ $\{A_{\alpha} : \alpha \in \mathbb{T}\}, p \not\in A$. This implies that $p \in X-A$, and, since A is closed, $X-A$ is open. Thus, $X = AU(X-A)$, where A and X-A are disjoint open sets such that $x \in A$ and $p \in X-A$. But this implies that Q is not a quasicomponent, a contradiction. Thus $p \in \mathbb{R} \{A_{\alpha}: \alpha \in \mathbb{T}\}.$

Part 2 – Let $p \in \Lambda\{A_{\infty} : \alpha \in \mathbb{T}\}\$. Assume that $p \notin \mathbb{Q}$. u» Thus, $X = MUN$, where M and N are disjoint open sets such that $x \in M$ and $p \in N$. Now, since N is open, $X-N = M$ is closed. Thus, since x **e** M and M is both open and closed, then M ϵ {A_{α} : α ϵ T}. But since p ϵ N, and M and N are m
tale disjoint, then p ft α is a flat α e α contradiction. Therefore, pag. It follows that $Q = n\{A_{\alpha} : \alpha \in T\}$.

1.39.Theorem Each component C of a topological space X is a subset of some quasicomponent.

Proof: Let $x \in C$, and let Q be a quasicomponent containing x. If $C = \{x\}$, then immediately $C = Q$. Suppose that $y \in C$, where $y \neq x$. Assume that $y \neq Q$. Thus (by 1.35), there are two disjoint open sets A and B such that $X = AUB$ and $x \in A$ and $y \in B$. Since A is open, $X-A = AUB-A = B$ is closed. Now, $y \in BnC$, and, since B is both open and closed in X, then BAC is both open and closed in C. Also, since $x \notin B$, then $x \notin B$ nC, which implies that BnC \neq C. Thus, BnC is a proper subset of C , which implies (by 1.5) that C is not connected. This is a contradiction, since C is a component. Thus, $y \in Q$. It follows that $C \subset Q$.

The proof of the next theorem will depend upon the maximal principle, which will be stated for reference, and also upon a lemma which will follow the statement of the maximal principle.

Maximal Principle Let A be a set partially-ordered by a relation <. Let B be a subset of A and assume that B is simply-ordered by <. Then there is a subset M of A that is simply-ordered by <, contains B, and is not a proper subset of any other subset of A with these properties.

1.40.Lemma Let a and b be points of a compact Hausdorff space X , and let $\{H_{\alpha} : \alpha \in \mathbb{T}\}$ be a collection **of** closed sets, and suppose that $\{H_{\alpha} : \alpha \in \mathbb{T}\}$ is simply**ordered by inclusion. If each H contains both a and b Uf and is not the union of two separated sets, one containing a and the other containing b, then the intersection** $n(H_{\alpha} : \alpha \in \mathbb{T})$ also has this property.

Proof: Let $H = \bigcap \{H_{\alpha} : \alpha \in \mathbb{T}\}\$ and assume that $H = AUB$ **where a e A, b s B and A and B are separated. Thus, A and B are closed in H, and, since H is closed, then A and B are closed. Therefore, since X is compact, A and B are compact. This implies that since** $A \cap B = \emptyset$ **, there are two disjoint open** $sets$ **U** and **V** such that $A \subset U$ and $B \subset V$. Since $a \in A$ and $b \in B$, then $a \in U$ and $b \in V$. Thus, for each $a \in T$, $a \in H_a$ N and $b \in H_a$ N .

Now, let $\mathbf{R}_{\alpha} = \mathbf{H}_{\alpha} \mathbf{I} \left[\mathbf{X} - (\mathbf{U} \mathbf{U} \mathbf{V}) \right]$ for each $\alpha \in \mathbf{T}$. Since \mathbf{H}_{α} is **closed** and $\left[\text{X} - (\text{UUV}) \right]$ is **closed**, then R_{α} is **closed**.

Assume that $R_{\theta} = \emptyset$ for some $\theta \in \mathbb{T}$. Then, $H_{\theta} = H_{\theta}$ n(UUV) = $(H_{\beta} \cap U)$ U $(H_{\beta} \cap V)$, and, since U and V are disjoint open sets, then (H_{$_{\theta}$} $($ U) and (H_{$_{\theta}$} \cap V) are disjoint and open in H_{$_{\theta}$}. Thus (by 1.4), $(H_{0} \cap V)$ and $(H_{0} \cap U)$ are separated, a contradiction. Therefore, $R_{\alpha} \neq \emptyset$ for all $\alpha \in \mathbb{T}$.

Consider any two distinct sets R_{β} , R_{φ} ϵ $\{R_{\alpha}$: α ϵ T}. \overline{p} \overline{q} \overline{q} $\phi = \phi, F$ fl $\phi = \phi, F$ (uniform ϕ), ϕ ${H_\alpha : \alpha \in \mathbb{T}}$ is simply-ordered by inclusion, given H_8 and H_{ϕ} , one is a subset of the other. Supposing that H_{β} $\frac{1}{\pi}$ a subset of $\frac{1}{\pi}$, $\frac{1}{\pi}$ (bot)] is a subset of H_{ϕ} n \overline{X} -(UUV) implying that ${R_{\alpha} : \alpha \in \mathbb{T}}$ is simplyordered by inclusion. Therefore, the intersection of any finite number of elements of ${R_{\alpha} : \alpha \in \mathbb{T}}$ is an element ly, nonemm of ${R_{\alpha}}: \alpha \in T$ and, consequently, nonempty. Thus, ${R_{\alpha}}:$ $\alpha \in \mathbb{T}$ satisfies the finite intersection hypothesis, and, since X is compact, $n{R_{\alpha} : \alpha \in \mathbb{T}} \neq \emptyset$. But, $n{R_{\alpha} : \alpha \in \mathbb{T}}$ = $n\left(\mathbf{H}_{\alpha} \cap \left[\mathbf{X}-(\mathbf{U}\mathbf{U}\mathbf{V})\right] : \alpha \in \mathbb{T}\right) = n\left(\mathbf{H}_{\alpha} : \alpha \in \mathbb{T}\right) \cap \left[\mathbf{X}-(\mathbf{U}\mathbf{U}\mathbf{V})\right] =$ H $\bigcap_{\alpha=1}^{\infty}$ $\bigcap_{\alpha=1}^{\infty}$. Thus, H $\bigcap_{\alpha=1}^{\infty}$ $\bigcap_{\$ $H \not\subset (UUV)$, a contradiction.

1.41. Theorem In a compact Hausdorff space X, every quasicomponent is a component.

Proof: Let Q be a quasicomponent of X, let $q \in Q$, and let C be a component of X containing q. Assume that $Q \neq 0$. Since (by 1.39) $C \subset Q$, then there must be a point $x \in Q$ such that $x \notin C$. Now, let $\{A_{\alpha} : \alpha \in T\}$ be the

collection of all closed subsets of X, each of which contains both q and x but none of which is the union of two separated sets, one containing q and the other containing x. Now, since $q, x \in Q$, X cannot be the union of two separated sets, one containing q and the other containing x. Thus, $X \in {A_{\alpha}: \alpha \in \mathbb{T}}$. Let ${A_{\alpha}: \alpha \in \mathbb{T}}$ be partially-ordered by inclusion. By the maximal principle, there is a maximal, simply-ordered subcollection ${B_g: \beta \in S}$ of ${A_g: \alpha \in T}$. Thus, $K = \theta{B_g: \beta \in S}$ is closed, and (by 1.40) K ϵ $\{A_{\alpha}: \alpha \in \mathbb{T}\}$. Assume that K is not connected. Then $K = K_1 \cup K_2$ where K_1 and K_2 are separated sets. Since K ϵ {A_{α} : α ϵ T}, then either K₁ or K_p must contain both q and x. Suppose $q, x \in K_q$. Now, K_1 is closed in K and since K is closed in X, then K_1 is closed in X. Also, q and x cannot be separated in K_1 because, if so, they could be separated in K. Thus, K_1 s ${A_{\alpha} : \alpha \in \mathbb{T}}$ and K_1 is a proper subset of K, implying that ${B}_{\rho}$: $\beta \in S$ is not maximal, a contradiction. Hence, K ${\bf S}$ is not maximal, a contradiction. Hence, ${\bf S}$ is not maximal, a contradiction. Hence, ${\bf S}$ must be connected. But, since \mathcal{L}_max and \mathcal{L}_max and \mathcal{L}_max and \mathcal{L}_max and \mathcal{L}_max CUE is connected. Also, since x e CUE and x ^ C, then CUE properly contains C, implying that C is not a maximal connected set, a contradiction. The contradiction of \mathcal{C}

CHAPTER II

LOCAL CONNECTEDNESS

2.1.Definition A topological space Y is locally connected if for each point p e X and each neighborhood U of p there is a connected neighborhood V of p such that $V \subseteq U$. A subset A of Y is locally connected if it is locally connected as a subspace of Y.

2.2. Definition Let Y be a topological space and let B be a collection of open sets in Y. Then B is a basis for Y if for each open set U and each point $x \in U$ there is a set $V \in B$ such that $x \in V \subset U$.

2.3.Theorem Let Y be a topological space. The following three properties are equivalent;

(1) Y is locally connected

(2) The components of each open set in Y are open **t** sets.

(3) Y has a basis consisting of connected sets. Proof:

Show that (1) implies (2).

Let U be open in Y, C be a component of U, and $y \in C$. Thus, $y \in U$, and, since Y is locally connected (by 2.1) there is a connected neighborhood V of y such that $V = U$.

22

However, since C is a maximal connected set in U which contains y, then $V \subset C$. Thus, C is open.

Show that (2) implies (3).

Let B be the family of all components of all open sets in Y . Let U be open in Y and $x \in U$. If C is a component of U containing x , then C is open and C ϵ B. Thus (by 2.2), is a basis for Y, and B consists of connected sets.

Show that (3) implies (1) .

Let B be a basis for Y, where B consists of connected sets. Let $x \in Y$ and U be a neighborhood of x . Then (by 2.2) there is a V ϵ B such that $x \epsilon$ V ϵ U. This implies that Y is locally connected.

2.4.Theorem Let X be a locally connected topological space. If A is an open subset of X , then A is locally connected.

Proof: Let p *e* A, and let U be a neighborhood of p in A. Since U is open in A and A is open in X, then U is open in X. Since X is locally connected, (by 2.1) there is a connected neighborhood V of p such that $V \subset U$. Thus, V is also connected and open in A. This implies that A is locally connected.

2.5.Theorem Local connectedness is a topological invariant.

Proof: Let X and Y be topological spaces where X is locally connected, and let f;X — >T be a homeomorphism. Let $y \in Y$, and let U be a neighborhood of y in Y . Then $f^{-1}(\gamma)$ **e** $f^{-1}(U)$, and, since $f:X\rightarrow Y$ is a homeomorphism, **then** $f^{-1}(U)$ is open in X. Since X is locally connected, **there** is a connected neighborhood $V \subset X$ such that $f^{-1}(y)$ \in $V = f^{-1}(U)$. Thus, $f(f^{-1}(y)) \in f(V) = f(f^{-1}(U))$, which **implies** that $y \in f(V) \subset U$. But $(by 1.11), f(V)$ is connected. **Also, since f:X—^Y is a homeomorphism and V is open in X, then f (V) is open in Y. Thus (by 2.1),Y is locally connected.**

2.6. Theorem If X is a locally connected Hausdorff space, then every quasicomponent is a component.

Proof: Let Q be a quasicomponent of X , let $q \in Q$, **and let C be a component containing q. Thus (by 1.39),** $C \subset Q$. Also, since C is a component, $(by 1.30)$ C is **closed. Thus, X-C is open. Since X is locally connected,** $(\text{by } 2.3)$ C is open. Hence, $X = CU(X-C)$ where C and $X-C$ **are** disjoint, open sets. Therefore $(y, 1.36), Q \subset C$ or $Q \subset X - C$. Since $Q \cap C \neq \emptyset$, then $Q \subset C$. Thus, $Q = C$.

2.7.Theorem Let Y be a locally connected topological space. If **U** is a component of the open set $G \subset Y$, then G A $\text{F}_r(U) = \emptyset$.

Proof: Assume that $G(\text{Ff}(U)) \neq \emptyset$. Then, there is a **point** $x \in G \cap Fr(U) = G \cap (\overline{U} \cap \overline{Y-U}).$

Suppose $x \in U$. Thus, $x \notin Y-U$, and, since $x \in \overline{Y-U}$, **then x e (Y-U) . But, since Y is locally connected, (by 2.3) U is open and, thus, U contains a point of Y-U, a contradiction.**

Suppose $x \notin U$. Since $x \in \overline{U}$, then $x \in U'$. Now, G is a neighborhood of x, and, since Y is locally connected, $\left(\begin{array}{ccc} \mathbf{b} & \mathbf{y} & \mathbf{z} \end{array}\right)$ there is a connected neighborhood V of x such **(by 2.1) there is a connected neighborhood V of x such t different from x, and (by 1.9) VUU is connected. But, since VUU** properly contains U, then U cannot be a component **of** G, a contradiction. Therefore, G θ Fr(U) = \emptyset .

2.8.Theorem Let Y be a locally connected topological space, let $A \subseteq Y$, and let C be a component of A . Then **the following properties hold:**

of G, a contradiction. Therefore, G n Fr(U) = 0.

(1) **Int(O) =** C n **Int(A)**

(2) Fr(C) e Fr(A)

(3) If A is closed, then Fr(C) = 0 0 Fr(A). Proof of (1):

Since $C \subset A$, then $Int(C) \subset Int(A)$. Thus, since $Int(C)$ \subset **C**, then $\text{Int}(\mathbb{C}) \subset (\mathbb{C} \cap \text{Int}(\mathbb{A}))$. Now, to show that $\mathbb{C} \cap \mathbb{C}$ $\text{Int}(A) \subset \text{Int}(C)$, let $y \in C \cap \text{Int}(A)$. Since $\text{Int}(A)$ is open **in Y and Y is locally connected, there is a connected neighborhood U** of **y** such that $U \subset Int(A)$. This implies **that** $y \in U \subseteq A$, and, since $y \in C$ and C is a component of **A** , then $U \subseteq C$. But **U** is open, so $U \subseteq \text{Int}(C)$. Thus, $y \in C$ $Int(C),$ **implying** that $C \cap Int(A) \subset Int(C)$.

$Proof of (2) :$

Assume that $\text{Fr}(C) \notin \text{Fr}(A)$. Then there is a point $\mathbf{x} \in \text{Fr}(C)$ such that $\mathbf{x} \notin \text{Fr}(A)$. This implies (by 1.21) **that** there is a neighborhood **U** of x such that $\text{UnA} = \emptyset$, or **U n** $(Y-A) = \emptyset$. Now, $x \in Fr(C)$; so UnC $\neq \emptyset$, and, since $C \subset A$, then $U \cap A \neq \emptyset$. Thus, $U \cap (Y-A) = \emptyset$. Since *Y* is **locally connected, there is a connected neighborhood V of x** such that $V \subseteq U$. Thus, $V \cap (Y-A) = \emptyset$, which implies that $V \subset A$. Now, since $x \in Fr(C)$ and $x \in V$, then V contains **points in C and points not in C. Thus (by 1.9)? VUC is connected. Also, V U C c A and VUC properly contains C, which implies that 0 is not a component of A, a contradiction.**

Proof of (3);

Part $i - \text{Let } x \in Fr(C)$. By part (2) , $Fr(C) \subset Fr(A)$, **implying that** $x \in Fr(A)$. Now, $x \in Fr(C) = \overline{C} \cap (\overline{Y-C})$, which **implies** that $x \in \overline{C}$. But, since C is a component of A, **(by l.JO) C is closed in A, and, since A is closed in Y, then C** is closed in Y, implying that $\overline{C} = C$. Thus, $x \in C$ **C n Fr(A).**

Part ii $-$ Let $x \in C \cap Fr(A)$, and let U be a neighbor**hood of x. Since x e Fr(A) (by 1.21), U contains a point** $p \in A$ and a point $q \notin A$. Since $0 \subset A$, then $q \notin C$. Thus, $x \in C$, $q \notin C$, and $x, q \in U$, which implies that $x \in Fr(C)$. **Thus, it follows that** $\text{Fr}(C) = C \cap \text{Fr}(A)$ **.**

2.9.Theorem Let Y be a locally connected topological space and $A \subseteq Y$. If $S \subseteq A$ is connected and open in A , **then** $S = A \cap C_1$ where C **is connected and open in** Y **.**

Proof: Since $A \subseteq Y$ and S is open in A, then there is an open set U such that $S = AMU$. Let $p \in S$ and C be the component of U containing p. Since $p \in S \subseteq U$ and S is connected, then $S \subset C \subset U$, which implies that since $S = AMU$, then $S = ANC$. Finally, since Y is locally connected, (by 2.5) C is open.

2.10. Theorem Let Y be a locally connected topological space which is not connected. Then, a decomposition of Y into two nonempty, disjoint open sets can always be accomplished by taking any component as one of the sets, and all the rest as the other set.

Proof: Let C be the collection of all components of Y. Let $A \in C$, and let $K = C - \{A\}$. The set K is nonempty since Y is not connected, and $Y = AU(UK)$. Since Y is locally connected and Y is open, (by 2.3) each component in Y is open. Thus, A is open, and UK is open.

Now, for each $B \in K$, ANB = \emptyset , since A and B are maximal connected sets. Thus, $A \cap (UK) = \emptyset$. Hence, A and UK are nonempty,disjoint open sets that decompose Y.

 2.11 . Theorem Let X be a connected, locally connected topological space. If A is a nonempty, closed subset of X, then the closure of each component of X-A meets A.

Proof: Assume that there is a component C of $X-A$ such that \overline{C} \cap A = \emptyset . If X-A = \emptyset , then the proof is trivial. Suppose that $X-A \neq \emptyset$. Then $C \neq \emptyset$, and, since A is nonempty and $C = X-A$, then $C \neq X$. Thus, C is a proper subset of X.

Now, since A is closed, X-A is open. Thus, since X is locally connected, (by 2.3) 0 is open. Also, since C is a component of $X-A$, then (by 1.30) C is closed in $X-A$. Thus, \overline{C} n (X-A-C) = \emptyset , and, since $\overline{C} \cap A = \emptyset$, then $\emptyset = \overline{C} \cap A$ $\left\lceil$ (X-A-C)UA $\right\rceil$ = \overline{C} \cap (X-C). This implies that C is closed in X. Therefore, C is a proper subset of X which is both open and closed in X,implying (by 1.5) that X is not connected, a contradiction.

2.12.Theorem Let X be a connected, locally connected topological space. If A and B are two disjoint, closed subsets of X , then $X-(AUB)$ has a component whose closure meets both A and B.

Proof: If $X-(AUB) = \emptyset$, the proof is trivial. So, suppose that $X-(AUB) \neq \emptyset$. Since A and B are closed, AUB is closed, and, thus, (by 2.11) the closure of each component of X-(AUB) meets AUB. Assume that if C is a component of X-(AUB), then either $\overline{C} \cap A = \emptyset$ or $\overline{C} \cap B = \emptyset$. Let J and K be the sets of all components of $X-(AUB)$ whose closures meet A and B respectively. Let $J^* = UJ$ and $K^* = UK$. Thus, $X-(AUB) = J^*UX^*$, and, since $X-(AUB) \neq \emptyset$, either $J^* \neq \emptyset$ or $K^* \neq \emptyset$. Let the labeling be chosen such that $J^* \neq \emptyset$.

Now, assume that $Bn(J^*)' \neq \emptyset$. Thus, there is a point $p \in BD(J^*)$ '. Since AAB = \emptyset and A and B are closed, then $p \notin A'$. Thus, there is a neighborhood U of p such that U $nA = \emptyset$. Let V be a component of U which contains p. Since X is locally connected, (by 2.3) V is open. Since $p \in (J^*)^T$, V contains a point $q \in J^*$. Thus, q is a point in some element C of J, and (by 1.9) VUG is connected. Also, since both V and C are open, then VUC is open. Therefore, since X is locally connected, (by 2.4) TUG is locally connected. Also, since B is closed, then BA(VUC) is closed in VUC.

Now, since C is a component of $X-(AUB)$ and $C \subset (VUC)$ $-B = X-(AUB)$, then C is a component of (VUC)-B. Thus (by 2.11), \overline{C} f $\left[\text{Bn(VUC)}\right] \neq \emptyset$, implying that \overline{C} f $B \neq \emptyset$, a contradiction, since $C \in J$ implies that $\overline{C} \cap A \neq \emptyset$. Thus, $Bn(J^*)' = \emptyset$. Likewise, if $K^* \neq \emptyset$, then $An(K^*)' = \emptyset$.

Now, if $K^* = \emptyset$, then $X-(AUB) = J^*$, and $X = (AUJ^*)UB$. Since A and B are disjoint and closed, then A and B are separated. Also, since $Bn(J^*)' = \emptyset$, $Bn(J^*) = \emptyset$, and $B = \overline{B}$, then $Bn(\overline{J^*}) = \emptyset = \overline{B} n(\overline{J^*})$, implying that B and $\overline{J^*}$ are separated. Thus, $A\cup J^*$ and B are separated, which implies (by 1.5) that X is not connected, a contradiction. (by 1.5) that X is not connected, a contradiction. Like-
wise, if $J^* = \emptyset$, a contradiction is reached.

Suppose that $J^* \neq \emptyset$ and $K^* \neq \emptyset$. Then, $X = (A \cup J^*)$ U (BUK*). Assume that J^* and K^* are not separated. Then either $\overline{J^*}$ n $K^* \neq \emptyset$ or J^* n $\overline{K^*} \neq \emptyset$. Let the labeling be chosen such that $\overline{J^*}$ \cap $K^* \neq \emptyset$. Since $J^* \cap K^* = \emptyset$, then chosen such that John Since John S
The state John Since J $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ are $\frac{1}{\sqrt{2}}$ or $\frac{1}{\sqrt{2}}$. Thus, p belongs to some point $0 \in \tilde{J}^*$, ^{phys}, a belongs to some $D \in \tilde{J}$, whenefore (by 1.9) CUD is connected, and, since C \neq D, then C \subset CUD, contradicting the maximality of C . Thus, J^* and K^* are **separated.** Consequently, (AUJ^{*}) and (BUJ^{*}) are separated, **implying (by 1.5)** that X is not connected, a contradiction.

Hence, X-(AUB) has a component whose closure meets **Hence, X-(AUB) has a component whose closure meets**

Closely related to local connectedness is the idea of "connected Jm kleinen."

2.13-Definition A topological space X is connected .in kleinen at a point x provided that for each open set U containing x there is an open set V containing x such that $V \subset U$ and, if y is any point in V , then there is a **connected subset of U containing x and y.**

2.14-.theorem If X is a topological space which is locally connected at a point x, then X is connected im kleinen at x.

Proof: Let U be a neighborhood of x. Since X is locally connected at x, there is a connected neighborhood V of x such that $V \subset U$. Thus, if $y \in V$, then V is a **connected subset of U which contains x and y. This implies that X is connected im kleinen at x.**

2.15-Theorem If X is a topological space which is connected im kleinen at each point, then X is locally connected.

Proof: Let U be an open set in X, let C be a component of U, and let x 6 C. Thus (by 2.13),there is

an open set $V \subseteq U$ **containing x such** that if $p \in V$, then **there** is a connected subset D_n of U , which contains p and **p ? * x.** Thus, $V \subset U[D] : p \in V$, and since $(by, 1.9) U[D] :$ **P P p** ϵ **V**) is connected, then $V = U(D^0, \cdot, \mathbf{p}) = C$. This **implies that C is open, and (by 2.3) X is locally connected.**

2.16.Theorem Let Y be a topological space such that $Y = AUB$, where A and B are closed. If Y is locally con**nected and AHB is locally connected, then both A and B are locally connected.**

Proof: If either $\text{A} \cap \text{B} = \emptyset$, $\text{A} \subset \text{B}$, or $\text{B} \subset \text{A}$, then the **theorem** is **trivial.** Therefore, suppose that $A \cap B \neq \emptyset$, $A \neq B$, **and** $B \not\subset A$. Let $x \in A$ and let U be an open set containing **x.** Since **A** is closed, $A = \overline{A} = \text{Int}(A) \cup \text{Fr}(A)$. Thus, $\mathbf{x} \in \text{Int}(\mathbf{A})$ or $\mathbf{x} \in \text{Fr}(\mathbf{A})$.

Suppose that $x \in \text{Int}(A)$. Then $x \in \text{UnInt}(A)$. Since **U fl Int(A) is open and Y is locally connected, there is a connected neighborhood V** of **x** such that $V \subset U \cap \text{Int}(A)$. **Thus,** $V \subseteq$ UAA, and, if $y \in V$ then $x, y \in V \subseteq$ UAA where V **is connected.**

Suppose that $x \in Fr(A)$. Now, $Fr(A) \subset ARB$, for, if **not, there is a point** $p \in Fr(A)$ **such that** $p \notin A \cap B$ **.** Thus, **either** $p \in A-B$ or $p \in B-A$. If $p \in A-B$, then $p \in Int(A)$, **a** contradiction. If $p \in B-A$, then, since $p \in Fr(A)$, (by 1.21) $(B-A)$ $A \neq \emptyset$, a contradiction. Thus, $x \in A \cap B$. **Since AnB is locally connected, (by 2.14-) AflB is connected im kleinen at x. Therefore, there is an open set W c** u

containing x such that if $y \in W_n($ AnB), then there is a connected set $M(x,y)$ \subset Un(AAB) which contains x and y.

Since Y is locally connected (by 2.14) Y is connected im kleinen at x. Thus, there is an open set $V \subset W$ containing x such that if $y \in V$, then there is a connected set $N(x,y) \subset W$ which contains x and y.

Now, consider the set V $nA = Vn[\text{Int}(A) \cup \text{Fr}(A)] = \text{V}n$ Int(A)] $U \nvert V \nvert n \nvert Fr(A)$. The set VnA is nonempty, since $x \in \texttt{VNA}$. Let t ε VnA. Then, either t ε V \cap Int(A) or t e V n Fr(A).

Suppose that $t \in V \cap Fr(A)$. Thus, $t \in W \cap Fr(A)$. Since $Fr(A) \subset A \cap B$, then t $\epsilon \vee n$ (A $\cap B$). Thus, there is a connected set $M(x,t) \subset UN(AMB) \subset UNA$ which contains x and t.

Suppose that $t \in V$ Ω Int(A). Since $t \in V$, there is a connected set $N(x,t)$ \subset W which contains x and t. Let C be a component of W n Int(A), which contains t. Since W \cap Int(A) is open and Y is locally connected, then (by 2.3) 0 is open.

Let $K = N(x,t)$ and let $H = \lceil N(x,t) \rceil$ int(A) $\lceil -K \rceil$. Now, it will be shown that $\overline{C} \cap \left[\text{Fr}(A) \cap N(x,t) \right] \neq \emptyset$. Assume that \overline{C} n $\left[\overline{Fr}(A)$ n N(x,t) = \emptyset . Clearly, N(x,t) = KUHU $\lceil N(x,t) \cap Fr(A) \rceil$ U $\lceil N(x,t) \cap (B-A) \rceil$.

Now $C \subset \text{WnInt}(A)$. Since $N(x,t) \subset W$, then $N(x,t)$ fl $Int(A) \subset W\cap Int(A)$. Thus, $H \subset W\cap Int(A)$, and CUH $\subset W\cap Int(A)$. Now, C is open in $W(At)$, and, since C is a component

of ^W 0 Int(A), then (by 1.50) C is closed in W fl Int(A). Thus, C is both open and closed in CUH,which implies $(by 1.4)$ that **C** and **H** are separated. Since $K \subset C$, then **(by 1.6) K and H are separated.**

Now, $\overline{C} \cap [\overline{F}r(A) \cap N(x,t)] = \emptyset$, and, since 0 is open, $\text{C}\big[\text{F}_\text{F}(A) \cap \text{N}(x,t)\big] = \emptyset$. Thus, C and $\left[\text{F}_\text{F}(A) \cap \text{N}(x,t)\right]$ are **separated. Since** $K \subset C$, then (by 1.6) **K** and $\int \mathrm{Fr}(\Lambda) \cap N(x)$, **t)J are separated.**

Now, $C \subseteq W \cap \text{Int}(A) \subseteq \text{Int}(A) \subseteq A$ which implies that **C and B-A are disjoint. Also, C and B-A are both open. Thus** $(by 1.4)$, C and B-A are separated. Since $K \subset C$, then (by 1.6) **K** and B-A are separated. Thus, **K** and $\left[\text{(B-A)} \cap \text{C}\right]$ **N(x,t)] are separated.**

From the above three paragraphs, it is concluded that K and $\text{HU}\left[N(x,t) \cap \text{Fr}(A)\right]$ **U** $\left[N(x,t) \cap \text{Br}(B-A)\right]$ are separated. **Thus, N(x,t) is not connected, a contradiction. Therefore,** $\overline{C} \cap \left[\text{Fr}(A) \cap \text{N}(x,t) \right] \neq \emptyset$. Let $p \in \overline{C} \cap \left[\text{Fr}(A) \cap \text{N}(x,t) \right]$. Since $N(x,t) \subset W$, then $p \in [W \cap Fr(A)] \subset [W \cap (A \cap B)]$. Then, **there is a connected set M(x,p) containing x and p such that** $M(x, p) \subset \text{Un(AAB)}$. Now, $C \subset W \cap \text{Int}(A) \subset U \cap \text{Int}(A) \subset$ $\texttt{UMA.}$ Thus, $\texttt{CUM}(x, p) \subset \texttt{UNA.}$ Since $p \in \overline{C}$, $p \in M(x, p)$, and **0** and $M(x, p)$ are connected, then (by 1.8) $CUM(x, p)$ is **connected. Also, CUM(x,p) contains both x and t. Therefore, A is connected im kleinen at x, and (by 2.15) A is locally connected. Similarly, ^B is locally connected.**

2.17 Theorem Let T be a locally connected topological space, and let A be a subset of Y. If Fr(A) is locally connected, then X is locally connected.

Proof: The space $Y = \overline{A}$ U $\overline{Y-A}$, and both \overline{A} and $\overline{Y-A}$ are **closed.** Also, A θ Y-A = $\text{Fr}(A)$, which is locally con**nected.** Thus $(by 2.16)$ **X** is locally connected.

2.18.Theorem A metric space (X,d) is connected im kleinen at a point x if and only if, given e > 0, there is a number $\delta > 0$ such that if $d(x,y) < \delta$, then **x** and **y lie in a connected set of diameter less than e.**

Proof:

Part $1 - \text{Let } x \in X$. Suppose that, given $e > 0$, there **is** a number $\delta > 0$ such that if $d(x,y) < \delta$, then x and y **lie in a connected set of diameter less than e. Let U be an open set containing x. Then, there is an open set** $W = B(x, e^1)$ such that $W \subset U$. Since $e^1 > 0$, there is a **number** δ ² **b c such** that if $d(x,y) < \delta$ ³, then x and y **lie in a connected set of diameter less than e^.**

Let $V = B(x, \delta_1)$, and let $p \in V$. Thus, $d(x, p) < \delta_1$, and $\mathbf{x}, \mathbf{p} \in C^{\mathbf{p}}_{\mathbf{p}}$, where $C^{\mathbf{p}}_{\mathbf{p}}$ is a connected set of diameter less than e_1 . Thus, $C_p \subset W \subset U$.

Assume that $V \not\subset V$. Then, there is a point $q \in V$ such **that q** $\cancel{\epsilon}$ **W**. This implies that $d(x,q) < \delta_1$ and $d(x,q) \geq e_1$. Since $d(x,q) < \delta_1$, then $x,q \in C_q$ where C_q is a connected set of diameter less than e_1 . Thus, $d(x,q) < e_1$, a contra**diction.** Hence, $V \subset W \subset U$, and $(by 2.13)$ X is connected **im kleinen at x.**

Part 2 – Suppose that X is connected im kleinen at e x_* let $e > 0$, and let $v = B(x, 0)$. Then, $(y) \in L(y)$, there is an open set V containing x such that $V \subset U$ and, if y e V, then there is a connected subset of U containing x and y.

Now, there is a $\delta > 0$ such that the open set $W = B(x, \delta)$ is a subset of V. Let $p \in W$. Then, $p \in V$, and $d(x,p) \leq \delta$. Also, there is a connected subset C of U which contains x and p. Since the diameter of $U = 2(\frac{e}{3}) < e$ and $C = U$, and p. Since the diameter of U $_{2}$, which is a since the diameter of U $_{2}$, which is a since the diameter of U $_{2}$

Thus, for $e > 0$, there is a number $\delta > 0$ such that if Thus, for each ϵ of each that if a number ϵ of ϵ d(x, then α and p lie in a connected set α and p lie in a connected set C where α

Another concept which is related to local connectedness but used only in metric spaces is "property S."

2.19.Definition A metric space M has property S if for every $e > 0$, M is the union of a finite number of connected sets, each of diameter less than e.

 2.20 . Theorem If (X,d) is a metric space having property S, then X is connected im kleinen at each of its points and, hence, is locally connected.

Proof: Let $x \in X$ and let U be an open set containing x. There is an open set $G = B(x,e)$ such that $G \subset U$. Since X has property S, $X = U\{C_i : i = 1, ..., n\}$ where $\{C_i : i = 1,$..., n} is a collection of connected sets each of diameter

e. less than 3. Let C be the collection of all elements of ${C_i : i = 1,...,n}$ whose closure contains x. Now, x ϵC_{α} where C_{a} ϵ C. Thus, if C_{b} ϵ C, then x ϵ C_{a} \cap C_{b} , which implies (by 1.8) that C_gUC_b is connected. Hence, UC is connected. Now, to show that $UC = U$, let $y \in UC$. Then, $y e$ some $C_k e C$, which implies that $x e C_k$. Thus, $d(x,y) \le$ e,

 \mathcal{S} and \mathcal{S} are \mathcal{S} and \mathcal{S} control \mathcal{S} Now, consider the collection $D = \{C_j : i = 1,...,n\} - C$. Thus, if $C_j \in D$, then $x \notin \overline{C_j}$. It follows that $x \notin U(\overline{C_j})$: Hence, x $\mathrm{\epsilon}$ $\mathrm{X\text{-}U} \{ \overline{\mathrm{C}_{z}} \; : \; \mathrm{C}_{z} \; \mathrm{\epsilon}$ D}, which is open, s: $\frac{1}{C}$. Hence, x e $\frac{1}{C}$, which is open, since $\frac{1}{C}$ $\{\overline{\mathbb{C}_x} : \mathbb{C}_x \in \mathbb{D}\}\$ is closed. U_{j} : C_{j} is denoted.

Next, it will be shown that $X-U(\overline{C_1} : C_1 \in D) = UC$. u U Let $p \in X-U(\overline{C_1} : C_1 \in D)$. Thus, $p \notin U(\overline{C_1} : C_1 \in D) \supset$ tJ t) O O $U\{C^i_j : C^i_j \in D\} = UD.$ Since $p \in X = U\{C^i_i : i = 1,...,n\} =$ (UC) U (UD) and p $\not\in$ UD, then p ε UC. Hence, X-U $\{\overline{C_A}:C_j \in D\}$ UC. tJ d

In summary, X-U $(\overline{C_{4}} : C_{1} \in D)$ is an open set containing $J = J$ x, and X-U $\{\overline{C_1} : C_1 \in D\} \subset UC \subset U$ where UC is connected. %J **^U** Thus X is connected im kleinen at x and hence (by 2.3) is locally connected.

2.21.Theorem If X is a compact, locally connected metric space, then X has property S.

e. Proof: Let $e > 0$, let $x \in X$, and let $U_x = B(x, \overline{5})$. \mathbf{x} Since X is locally connected, there is a connected neighborhood V_x of x such that $V_x \n\subset U_x$. Thus, the diameter of V_x is less than or equal to the diameter of U_x , which is \sim 2 less than or equal to $\overline{5}$ e. The collection $\{ {\tt V_{p}}:\; p\;\in\;{\tt X}\}$

of all such connected neighborhoods forms an open cover for X, and, since X is compact, {V^p : p s X} has a finite subcover for X. Thus, X has property S.

2.22.Theorem Let (X,d) be a metric space and let M be a subset of X such that M has property S. If IT is a subset of **X** such that $M \subset N \subset \overline{M}$, then **N** has property **S**.

Proof: Let $e > 0$. Then $M = U(C_i : i = 1,...,n)$, where **{C^: i=l,...,n} is a collection of connected sets, each of** diameter less than **e.** Consider the set $U\{Nn\overline{C_i}:i=1,$ **...,n**}. Clearly, $U\{Nn\overline{C_1}: i = 1,...,n\} \subset N$. Now, if $p \in N$, **then, since** $N \subset M = U\{\overline{C_1}: i = 1,...,n\}$, $p \in \overline{C_K}$ for some $1 \leq k \leq n$. Thus, $p \in U\{Nn\overline{C_i}: i = 1,...,n\}$, which implies $\textrm{that } N \subset U\{Nn\overline{C_i}: i = 1,...,n\}.$ Therefore, $N = U\{Nn\overline{C_i}: i =$ **1,...,n**}. Next, it will be shown that $C_j \subset \overline{C_j} \cap N \subset \overline{C_j}$ for **each** $1 \leq j \leq n$. To show this, let $p \in C_j$. Thus, $p \in \overline{C_j}$. Also, $p \in M$, since $M = U$ $(C_i : i = 1,...,n)$, and this implies **that** $p \in N$, since $M \subseteq N$. Thus, $p \in \overline{C}$ if N , implying that $C_1 \subset \overline{C_1}$ **(1)** N , and, clearly, $C_2 \cap N \subset C_3$. Thus $(by 1.17)$, $0 \quad 0 \quad 0 \quad 0$ **CT n N is connected. Also, since the diameter of C. < e, 0 « then the diameter of C. < e, which implies that the diameter J** $f{c}$, $f{d}$ **N** $f{d}$, $f{d}$ **has** property $f{d}$. **0**

Another concept relating to local connectedness which applies only to metric spaces is "uniform local connectedness."

2.23.Definition A metric space (X,d) is uniformly locally connected provided that, given e > 0, there is a number 6 > 0, independent of position, such that any two points x and y with $d(x,y) < \delta$, lie in a connected set of diameter less than e.

2.24.Theorem If (X,d) is a compact, locally connected metric space, then (X,d) is uniformly locally connected.

Proof: Let e > 0. Since X is compact and locally connected, (by 2.21) X has property S. Thus, $X = U(C_i :$ $i = 1,...,n$, where $\{C_i : i = 1,...,n\}$ is a finite collection e. of connected sets, each of diameter less than 3. If for each pair $(c_k^{},c_1^{})$, where $c_k^{},c_1^{} \in {c_i^{} : i = 1,...,n}$, $\overline{c_k^{} }$ \cap $\overline{c}_1 \neq \emptyset$, then the proof is immediate. Therefore, assume that the collection $D = \left[(C_k, C_k) : C_k, C_1 \in (C_i:i=1,\ldots,n) \right]$ and $\overline{C_{k}}$ \cap $\overline{C_{1}}$ = \emptyset is nonempty. Thus, if $\delta_{k,1}$ = d(C_{k},C_{1}) for all (C_k, C_1) \in D, then $\delta_{k,1} > 0$. Since D is finite, the collection of all such $\delta_{k,1}$ is finite. Let δ be one half the minimum of this collection. Thus, $\delta > 0$. Now, let x,y be any two points in X such that $d(x,y) < \delta$. Since $X = U(C_i: i=1,...,n)$, then there are a C_a, C_b ε $(C_i: i=1,...,n)$ such that $x \in C_{\underline{a}}$ and $y \in C_{\underline{b}}$. If $C_{\underline{a}} = C_{\underline{b}}$, then, clearly, x and y lie in a connected set of diameter less than **e.** Suppose that $C_{a} \neq C_{b}$. Since $d(x,y) < \delta$, then $d(C_{a},C_{b}) < \delta$. This implies that $(\mathtt{C}_{\mathtt{a}},\mathtt{C}_{\mathtt{b}})$ ℓ D,which, in turn, implies that $\overline{C_{R}}$ \cap $\overline{C_{D}}$ \neq \emptyset . Since C_{R} and C_{D} are connected, (by 1.17) \overline{c}_a and \overline{c}_b are connected. Thus (by 1.9), $\overline{c}_a \cup \overline{c}_b$ is connected. ϵ and ϵ are connected. Thus, ϵ ^{are connected.} ϵ Also, since the diameters of C^R and < **3,** the diameters

____ _ e _ _ e, ©. σ **c** and $\overline{C}_n \leq \overline{C}_n$ Thus, the diameter of $C_nUC_n \leq \overline{C}_n + \overline{C}_n$ **2e a 5 < e. Hence, X is uniformly locally connected.**

CHAPTER III

PATH-CONHECTEDNESS

5.1.Definition A path in a topological space Y is a continuous mapping f:I ^Y,where I is the unit interval. The point f(0) e Y is called the initial (or starting) point, and f (l) s Y, the terminal (or end) point of the path f, and f is said to run from f(0) to f(l), or (join f(0) to f(l).

It will be noted that if f is a path running from f(0) t_0 **f(1)**, then the mapping $g: I \rightarrow Y$ defined by $g(t) = f(1-t)$, **where t 6 I, is a path running from f(l) to f(0).**

5.2.Definition A topological space Y is path-connected if each pair of its points can be joined by a path.

5.Theorem Let Y be a topological space, and let y^Q e Y. Y is path-connected if and only if each y e Y can be joined to y_0 by a path.

Proof:

Part $1 - \text{Let } Y$ be path-connected. Thus, each $y \in Y$ **can be joined to y^Q by a path.**

Part $2 - \text{Suppose that each } y \in Y \text{ can be joined to } y_0$ **by a path. Let a,a' e Y. Then, there is a path f:I— Y joining a** to y_o . Thus, $f(0) = a$, and $f(1) = y_o$. Also, there

40

is a path joining a! to y_o , which implies there is a path Y joining y_{α} to a'. Thus, $g(0) = y_{0}$, and $g(1) = a'$.

Now, let $A = \{t: 0 \le t \le 1/2\}$, $B = \{t: 1/2 \le t \le 1\}$ and $h(t) = \begin{cases} 1 < t \\ 0 < t-1 \end{cases}$, $t \in \frac{1}{t}$, Thus, h maps I into $h(0) = f(0) = a$, and $h(1) = g(1) = a'$.

Next, it will be shown that h is continuous. Let $q \epsilon$ $h(I)$, and let U be a closed set containing q . Since (hjA)(t) = f(2t) for **all t** e A and (h|B**)(t)** = g(2t~l) for all $t \in B$, then $h | A$ and $h | B$ are continuous on A and B \mathbf{r} are spectively. Now, $\mathbf{h}^{-1}(\mathbf{U})$ nA $\neq \emptyset$ or $\mathbf{h}^{-1}(\mathbf{U})$ nB $\neq \emptyset$. Let the labeling be chosen such that $h^{-1}(U)$ nA $\neq \emptyset$. Clearly, $h^{-1}(U)$ nA = $(h|A)^{-1}(U)$ nA = $(h|A)^{-1}[U \cap (h|A)(A)]$. Since $(h|A)(A) \subset Y$ and U is closed in Y, then $Un(h|A)(A)$ is closed in $(h|A)(A)$. Since h|A is continuous, then $(h|A)^{-1}$ $\lceil \text{Un}(h|A)(A) \rceil$ is closed in A. But, since A is closed in I, then $(h|A)^{-1}$ $|$ Un $(h|A)(A)$ is closed in I. Thus, $h^{-1}(U)$ A is closed in I .

Suppose that $h^{-1}(U)$ $nB = \emptyset$. Then, $h^{-1}(U) = h^{-1}(U)$ nA , which is closed in I.

Suppose that $h^{-1}(U)$ nB $\neq \emptyset$. Then, $h^{-1}(U)$ nB = $(h|B)^{-1}$ $\left[\text{Un(h|B)(B)} \right]$, which is closed in I. Thus, $h^{-1}(U) = \left[h^{-1} \right]$ (U)nA] $U\left[n^{-1}(U)\cap B\right]$, implying that $h^{-1}(U)$ is closed, since $h^{-1}(U)$ nA and $h^{-1}(U)$ nB are both closed. Consequently, h is continuous.

Therefore, h is a path joining a to a', implying that X is path-connected.

The union of any family of path-connected spaces having a point in common is path-connected.

Proof: Let $\{Y_\alpha: \alpha \in \mathbb{T}\}$ be a family of path-connected **spaces** so that for each $\alpha \in \mathbb{T}$, $\mathbb{y}_{\alpha} \in \mathbb{Y}_{\alpha}$. Thus, $\mathbb{y}_{\alpha} \in \mathbb{U}\{\mathbb{Y}_{\alpha}\}$ **a e T} " How, let y e U{Y : a e T} . Thus, for some s e T, u»** $y \in Y_g$, and, since $y_o \in Y_g$ and Y_g is path-connected, there **is a path joining y to y . Therefore (by 3.3)»U{Y :a s T} b b b c o c c c c c c c is path-connected.**

3>5.Definition A subset C of a topological space Y is called a path component of Y if 0 is a maximal pathconnected set in Y'.

3.6.Theorem Each path-connected topological space Y is connected.

Proof: Let $y_0 \in Y$. Now, if $y \in Y$, then, since Y is **path-connected, y can be joined to y by a path f :I Y. y Thus, yc»y ^e fy(I). Also, since fy.il Y is continuous and I is connected, then (by 1.11) f (I) is connected. v Example f fx** $\mathbf{y} = \mathbf{y}$, $\mathbf{y} = \mathbf{y}$ **= Y is connected.**

?«,Corollary Each path component is connected.

3.8.Theorem The following two properties of a topological space Y are equivalent:

- **(1) Each path component is open (and, therefore, also closed).**
- **(2) Each point of Y has a path—connected neighborhood.**

Proof:

Part 1 — Suppose that each path component is open. Then, if y e Y and C is a path component containing y, then C is a path-connected neighborhood of y.

Part 2 — Suppose that each point of Y has a pathconnected neighborhood. Let C be a path component in X, and let x e C. Thus, x has a path-connected neighborhood U, and, since C is a maximal path-connected set containing x , then $x \in U \subset C$, which implies that C is open.

Since X-C is the union of the remaining path components in Y, each of which is open, then X-C is open implying that C is closed.

3.9.Theorem If each path component of a topological space Y is open and closed, then the path components of Y coincide with the components of Y,

Proof:

Part $1 - \text{Let } C$ be a path component of Y . Thus, C is **open and closed, and (by 3.7) C is connected. Then (by 1.4) there is no connected set which properly contains C, implying that C is a component of Y.**

Part $2 - \text{Let } 0$ be a component of Y , let $y \in C$, and let **D be a path component of Y containing y. Since D is pathconnected,** (by 3.6) D is connected, and, thus, $D \subset C$ since **C is a maximal connected set containing y. But D is both open** and **closed**, so $(by 1.4) D = C$.

5.10.Theorem A topological space Y is path-cormected if and only if it is connected, and each y e Y has a path-connected neighborhood.

Proof:

Part 1 – Suppose that Y is path-connected. Then (by 5.6) Y is connected. Also, if $y \in Y$, then Y is a pathconnected neighborhood of y.

Part 2 – Suppose that Y is connected and each $y \in Y$ has a path-connected neighborhood. Then (by 3.8), each path component C is both open and closed. If $C \neq Y$, then C is a proper subset of Y, which implies (by 1.4) that Y is not connected, a contradiction. Thus, $Y = C$, implying that Y. is path-connected.

3.11.Theorem The continuous image of a path-connected topological space is path-connected.

Proof: Let X and Y be spaces where X is pathconnected, and let $f: X \longrightarrow Y$ be continuous. Thus, $f: X \longrightarrow f(X)$ is continuous. Let $y_0, y_1 \in f(X)$. Thus, $f^{-1}(y_0)$ and $f^{-1}(y_1)$ are nonempty subsets of X. Let $p \in f^{-1}(y_0)$ and $q \in f^{-1}(y_1)$. Since X is path-connected, there is a path $g:I \rightarrow X$ joining p to q. Therefore, g is continuous, $g(0) = p$ and $g(1) = q$, which implies that $(f \cdot g)(0) = f(g(0)) =$ $f(p)=y_0$ and $(f \circ g)(1) = f(g(1)) = f(q) = y_1$. Also, since $g:I \rightarrow X$ and $f:X \rightarrow f(X)$ are continuous, then $(f \circ g): I \rightarrow f(X)$ is continuous, and, therefore, is a path which joins y_0 to y_1 . Thus, $f(X)$ is path-connected.

BIBLIOGRAPHY

- **Bourbaki, Nicolas, Elements of Mathematics* Part 1. General Topology. Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1966.**
- **Dugundji, James, To-poloecy. Boston, Allyn and Bacon, Inc., 1966.**
- **Hocking, John G. and Gail S. Young, TopoIort, Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1961.**
- **Moore, Theral 0., Elementary General topology, Englewood Cliffs, Hew Jersey, Prentice-Hall, Inc., 1964.**
- **Whyburn, Gordon Thomas, Topological Analysis, Princeton, New Jersey, Princeton University Press, 1964.**