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PREFACE

The purpose of this thesis is to iavestigate the idea
of topological "connectedness™ by presenting some of the
basic ideas concerning connectedness along with several
related concepts., There are tThree chapters in the thesis.
In Chapter I, the idea of "connectedness" in general will
be examined, while Chapter IT¥ will deal with the idea of
"local connectedness” and the related ideas of "connectedness
im kleinen,” "property S5," and "uniform local comunectedness.”
In Chapter III, the concept of "path-connectedness" will be
investigated. All of the elementary properties of topo-
logical spaces will be freely used without statement or
proof. The notation used is elementary set notation as

discussed in Elementary General Topology, by Theral O, lMoore.
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CHAPTER T
CONNECTEDNESS

1.}.Definition A topological space ¥ ig conneched if

At A

it is not the union of two nonenpbty, disjoint open sets,
A subset B« Y is connected if it is connectad &35 a sub-—

space of Y.

l.2.Pefinition Two subsets A and B of a topologicel

space Y are said bo be senarated if A # @, B Z P, and

ANB = ¢ = EnB.

l.%,.Definition A subset A of a get P is called a

proper gsubset of B if and only if A # ¥ and A # B.

1.4, Theorem Tet A and B be nonenpty, digjoint subsets

of a topological space Y. Then, A and B are separated if
and only if both A and B are open in AUB,

Froof:

Part 1 — Let A and B be sepavated. Thus, ANB = @ which
implies that A is closed in AUB, Consequently, (AUR)-A = B
is open in AUB, Similarly, A is open in AUB.

Part 2 — Let both A and B be open in AUB. There is an
open set V& Y such that VN(AUB) = B, Now, suppose that
VnA # g. Then, there is a point p € VAA, fThus, p € {(Vha)
u(vnB) = Vn(AUB) = B, But +this implies that p € ANB, a
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contradiction. Hence, VNA = @, and, since V is open,
VA = g. Therefore, BNA = %, Similarly, ANB = #. Thus,
(by 1.2) A and B are soparated.

1.5.Theorem Let Y be a teopological space. The follow-—

ing five properties are equivalent:

(1) Y is comnected, |

(2) Y is not the union of two separated sets.

(3) Y is not the union of two nonempty, disjoint
¢losed sets,

(#) Y contains no proper subsel which ié both open
and closed.

(5) TNo continuous mapping £:¥ — 2 is surjective,
where 2 is the space consisting of the two points {0,1)
with the discrete topology.

Xroof:

Show that (1) implies (2).

Thig follows directly from 1.1 and 1.4,

Show that (2) implies (3).
Asgume that Y = AUB where A and B are nonempty, dis-
Jjoint closed sets. Then, Y-A = B and Y-B = A are both

open; and (by 1.4) 4 and B ere separated, a contradiction.

Show that (3) implies (4).
Assume that Y contains a proper subset A,which is both

open and c¢losed, Thus, T-A is nonempty and closed. Since
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Y = (Y~A)UA, then Y is the union of twe nonempty, disjoint

closed sets, namely A and Y-A, a contradiction.

Show that (4) implies (5).

Assume that there ig a continuous f£:Y > 2 which is
surjective, Thus, £ %(0) # Y and £7+(0) ¥ @#; consequently,
f—l(o) is a proper subset of Y. Now, {0} is both open and
closed in 2, and, since f is continuous, £ 1(0) is both

open and closed in Y, a contradiction.

Show that (5) implies (1).

Assume that Y is not connected., Then, (By 1.1)
Y =AUB where A and B are ncnempty, disjoint open sets.

Define C,:Y—> 2 by €,(x) = {g ig i g i]. Since A
is nonempty and B = ¥~A is nonempty, then CA:Y*“ﬁ* 2
is surjective,

Now, the set {0,1} is open in 2, and Cﬂnl({o,l}) =
AUB = Y which is open in Y. The set {1} is open in 2, and
Cﬁhl(l) = A,which is open in Y. The set {0} is open in 2,
and Cﬂnl(o) = B,which is open in Y.

Thus, the inverse image of each sel open in 2 is also

open in Y, Thus, C, is continuous, a contradiction,

1l.6.Lemma Let A and B be separated subsets of a topo-
logical space X, If C and D are nonempty sets such that
C< A and D B, then ¢ and D are separated,

Proof: Now, C < A implies that C < A, Since A and B
are separated, AN B = g, Thus, since D<= B, then A 1 D = @,



and, since Cc 4, then C N D = @. Likewise, ¢ N D = g,

Therefore (by 1.2), C and D are separated,

1.7.Theorem et A snd B be separated subsets of a

topological space X. If C is a connected subset of AUB,
then C < A or C < B,

Proof: Assume that C & A and C ¢ B, Thus, C conbains
points in both A and Bj so C = PUY, where P = Cnd and
Q = CnB, Since A and B are separated, then (by 1.6) P and
Q are separated, vhich implies (by 1.5) that C is not

connected, a conbtradiction.

1.8.Theorem Tet C be a family of connected subsets

of o topological space. If no two members of C are sepa;
rated, then UC is connecled.

Proof: Assume that UC is not comnected. Then (by 1.5)
UC = PUQ, where P and Q are separated sets. ILet Cl e C.
Then (by 1.7) ¢ cPor () = Q. Suppose that the lettering
is chosen such that C; = P. Since (by 1.2) Q is nonempty,
there is an element C, & C such that C, N Q # &, and |
(by 1.7) C, = Q. However (by 1.6), C; and C, are sepa-

rated, & contradiction.

1.9.Corollary If C is a family of connected subsets

of a topological space which have at least one point in

common, then UC is connected.,



Proof: Since each two neubers of C heve a point in
common, (by 1.2) no two nembers of ¢ arve separated. Thus

(by 1.8), UC is connected.

1.10.Remavix Let A and B be subsets of a topological
space X such that A « B, Then, 4 igs conuected in X if and

only if A is connected in B,

1.)1.Theoren The continuous inage of a connected set

is comnected, That is, if X and Y are topological spaces,
if A is a connected subset of X,and if f:X-->Y is continuousj
then £(A) is connected,
Proof: Assume that £(A) is not connected. Then
(by 1.5), there is a proper subset P of £(4) such that P
is both open and closed in £(4), Now, since £:X—>Y is
continuous, flA:A—>Y is continuous. Thus, it follows
that £71(P) is a proper subset of A which is both open
and closed in A, Therefore (by 1.5), 4 ig not conneched,

a contradiction.

. 1.12.Theoren Let {Ai : 162t = {1,2,3,...}) be a
family of connected sets of a topological space Y, with
Ai N A4 7% for each i & z¥. Then, U{Ai : 16 2% is
connected,

Proof: Mathematical induction will be used. Let
n & 27 and let P(n) represent the statement "U{Ai S >

Z+

n = {1,2,...,n}} is comnected.”
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(1) PQ) iz true since 4., is connected.

1
(2) Assume that P(k) is true for some k € %27. That is,
k
assume that UAj is connected.
i=1"

(3) Show that P(k+l) is true.
Since Ak n Ak+1 # @, then (AU,..UAk) n Ak+l # @,

k
By (2), UAi is conﬂectcd and, by the hypothesis, 4, ., 1
i=1l

k+1
connected, so (by 1.9) ( Eil) Udp = UA is comnected.

Therefore, U{Ai : 1 & 27} is connected.

1.1%2.Theorem If {Ad:a e T} is a family of counnected

subsets of a topological space Y such that there exists a
connected set A with A N Aa # @ for each o € T, then AU
( va ) is connected.
0.e®
Proof: Consider the set {AUACL : ¢ € T}, Since for
each ¢ € T, A is connected, Aa is connected, and Aﬂﬁa 0,
then (by 1.9) AUA is comnected. Alsc, A < N{AUA,:q & T}.

Thus (by 1.9), U[AUAa: a € T) = AU( U% ) is comnected.
[o &

l.14. Theoren If {Aa : o € T} is a family of connected
sets such that eny two of them have nonempty intersection,

then UA_ is connected.
aSTa

Proof: ILet AB 2 {Aa : a € T}, For any A € {Aa :
« E T“{B}}, ABnAQ f @. Thus (by 1.15), A U(U{A L ¢ A

-{B}}) = A U(U{A : g € T}-A_) = UA is connected.
B a e ae T



1.15.Definition Given two nonempty sets Ua and UB

of a topological space, a collection of sets Ul""’Un

is a c¢hain from Uato UB,provided that Ua n Uy £ g,

UB nu, # @, and U; N Ui+l # ¢ for i=1,...,n~1.

1.16, Theorem A topological space Y is connected if

and only if every open covering [Ua :aef } of ¥ has
‘the following property: for each pair U, Ucp e {U a8 },
there is a subcollection of {Ua= o € T } which forms a
chain from U8 to U¢.

Proof:

Part 1 —~ Suppose that the given property holds, and
assume that Y is not connccted. Thus Y = AUB where A and
B are nonempty, disjoint open sets. Therefore, {A,B} is
an open covering for Y, and, by the hypothesis, ANB ¥ &,
which is a contradiction. _

Part 2 — Suppose that Y is connected. Iet {U :a €T}
be an open covering of Y. Let U, ¢ {Ua:a T}, and let C

B

be the collection of sets consisting of U, together with

8
all sets Uy ¢ {Ua:a € T } such that there is a chain con-

sisting of elements of {Ua:a eT } from UB to Uy, C 1is
nonenpty ,since UB ¢ C. Therefore, UC is nonempty, and,
since C is a collection of open sets, then UC is open.
To show that UC is closed, let p € (UC ). Then,
peEY=uU {Ua:a e T }. This implies that p € U for some

U e {Ua:a e T }. Thus, U is an open sebt containing p, and,



since p € (UC)', then U n(UC) # &, which implies that
there is some Uk e C such that U n Ul # ¢. Since U, € C,
there is a chain Ul"“‘Un from UB to U, which consists
of elements of (Ua:a ¢ T}. But, since U n U, # &, the
collection Ul""*Uﬁ'Ul is a chain from UB to U. Hence,
U e C, Thus, p € U« UC which iuplies that UC iz closed.
Thus, UC is a nonempty set which ig both open and
closed in ¥, azrd, since Y is conmected, (by 1.5) UC = Y,
. TLet Uy € {U,:0 € 7). Then U, = UC, which implies
that there is some Uy € C such that U@ n Uy, # @. Since
Uk e C, there is a chain Uysees,Uy, from UB to U con-
sisting of elements of {Ua:a € T}. Since Uw nU # &,

the collection UyseesU,,Up is a chain from U, to U,.

B P

- 1.17.Theorem Let A be a comnected subset of the
topological space Y. Then, any set B satisfying Ac Bc &
is alsoc connected. In particular, the closure of a con-
nected set is connected.

Proof: Assume that B is not connected. Then (by
1.5), B = PUQ where P and Q are separated. Since A c B
and A is connected, then (by 1.7) either Ac P or A ¢ Q.
Buppose that the labeling is chosen so that A « P, Thus,
QNA=g, Since Q=Bc A, QN A =g, and Q is nonenmpty,
then Q contains a limit point of A. But, since A « P,
then Q contains a limit point of P, which implies that P
and Q are not separated, a contradiction. Thus, B is

connected.
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In particuler, if C is any coanected set, then, since

¢CeCeC, Cis connected.,

1.18.Theorem Let A and B be subsets of a topological

space X, If A snd B are closed in X, and AUB and ANB are
connected, then A and B are connected,

Yroof: The counclusion is immediate if A < B or B « A,
So, suppose that A-B # @ and B-A # (.

Assume that A is not connected. Then A = PUR where
P aﬁd Q are nonempty, disjoiht open sets in A, Thus |
(by 1.4), P and Q are separated, and, since ANB < AUB and
ANB is connected, then (by 1.7) either ANB = P or ANB < Q.
Suppose the labeling is chosen so that ANB < P. Then,
A~B = A-(ANB) > A-P = Q, and, since A =>A-B and Q is open
in &, then Q is open in A-B. Also, since B is c¢closed in
AUB, then AUB~B = A-B is opsn in AUB., Thus, @ open in
A-B and A-B open in AUB imply that Q is open in AUB,
Also, since P is open in A, then A-P = PUR-P = Q is
closed in A, and, since 4 is closed in AUB, then Q is
closed in AUB. Thus, Q is a proper subset of AUB which
is both open and closed in AUB. Therefore (by 1.5), AUB
is not connected, a contradiction. Thus, A isg connected,

and, similarly, B is connected,

1.39.Theorem Let A be a connected subset of a con-

nected topological space X. If B is a subset of X~A which

is both open and closed in X-A, then AUB is connected.
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Proof: The proof is imnediaste if either B = X-4,
B=@g, or A=@. So, suppose that B # X-A, B # ¢,
and & # @, |

Let H = (X-A)-B. Since B is a proper subset of X-4
which is both open and closed in X-A, then H is nonemply
and open in X-4, Thus (by 1.4), H and B are separated.

Assume that AUB is not connected. Then (by 1.5),
AUB = RUS, where R and 8 are separated., But, since A is
connected, (by 1.7) either A« R or A c S5, Suppose that
the labeling is chosen such that A « R, Now, S5 < B for,
if not, SNA # @ vhich inplies that SOR # #, a contradiction,
Thus, since H and B ave separated, (by 1.6) H and S are
separated, Therefore, X = HU(AUB) = HU(RUS) = (HUR)US
and since H and S are separated and R and S sre separated,
then HUR and S are separated. This implies (by 1.5) that

X is not connected, a contradiction.

1.20.Definition Iet A be a subset of the topological

gspace X. The boundary of A, written Fr(4), is ¥ n XA,

1.21.Theorem Let A be a subset of the space X, If

'p is a point in Fr(4), then each open set containing p
contains at least one point in A and at least one point
not in A,

Proof: Xet p € Fr(A) and let U be an open set con-
taining p. Since (by 1.20) Fr(A) = 2 n X-A, then
peEnTE. Yow,peAor?Pe X-A. Suppose that p € A,
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Then p £ X-A, and, since p € X-4, then p ¢ (¥-A)'. Thus,
U contains a point in X~-A, and, since p € A, then U con-
tains a point in A. Similarly, if p € X-4, then U conbains

points in A and points not in A.

1.22. Definition Tet & be a subset of the btopologicel

space X, The interior of A, written Int(A), is the largest

open set contained in A.

The following properties will be assumed without

proof,

1.2%.Theorem ILet A be a subset of the topological

space S. Then:
(1) Fr (A) = & - Int(a)
(2) Pr (A) n Int(Aa) = @
(3) & = Int(a) U Fr(4) |
(4) X = Int(A) U Fr(4) U Int(X-A) is a pairwise

disjoint union.

1.24,Theoren Let A be a subset of a topological

space Y. If C 1s a connected subset of Y which contains
points of A and points not in A, then C must contain
points of the boundary of A.

Froof: The set C contains points of A and points
not in A, so ANC # ¥ and C-4 # @, Bubt, C = (ANCHU(C-A4)
and since C is connected (by 1.5) (AnC)ﬂ(C—A)j # 3 or
(AnC)' n(C-A) # &. |



12

Case 1 — Suppose (ANC)' n(CG-4) # . Thus, there is
a point x such that x € (AﬂC)] sand x € (C-A), But since
ARG < A, x & (ANC)' implies that x € & < A, Also, since
x € C-A = Y-A, then x € T-A, Thus, x ¢ £ n T-4 = Fr(4),
which implies that C contains points in Fr(a),

Case 2 — Suppose (ANCHN(C-4)" # #. Thus, there is
a point x such that x € (ANC) and x & (C-A)'. But, x ¢
(AnC) implies that x & ASK. Also, since x € (C-4)' and
C-A.c Y-A, then x & (Y-A)' < (TK). Thus, x ¢ 4 n (¥-4) =

Fr (A),which implies that C conbains points in Fr(4).

1.25,.Theorem Let A and B be subsets of a topological

gpace X, each of which is closed in AUB, If AUB is con-
nected and ANB contains at most two points, then A is
connected or B is connected.

Proof: Assume that both A and B are not connecthed.
Then A = P1UP2 where Pl and F, are nonenmpty, disjoint open
sets in A, ILikewise, B = PEUPq,where Pa-and P, are non-
eupty, disjoint open sets in B. Thus, AvPi = P, and
A-P,

]

P, are closed in A, and, likewise, B-—P5 = P, and
B-F, = P5 are closed in B. Since A and B are closed in
AUB, then Pl’ Pé, PB’ and P4 are closed in AUB,

Case 1 — Suppose that (AnB)nPi'= g for some i ¢
(1,2,3,4). Thus, P, © A-B or P, © B-A. If P, © A-B,
then Pi < A, and, since A~B « A and Pi is open‘in A, then

Pi is open in A-B. But, since B is closed in AUB, A-B is
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open in AUB, Thus, Pi is open in AUB, and, since Pi is
also a proper subset of AUB which is c¢losed in AUB, then
(by 1.5) AUB is not connected, a contradiction. Similarly,

if Pi < B~A, a contradiction is obtained.

Case 2 - Suppose that (4NB) 0 P; £ for all i ¢
{1,2,3,4}. Thus, ANB # . Suppose that there is a point
p € X such that AnB = {p}. Then, (4NB) n P, = {p]nPl ={p},
and (ANB) N P, = {p} n P, = {p}. Thus, p ¢ P, and p & Py,
which implies that Pl and P2 are not disjoint, a contra-
diction. Tbus, ANB = {p,q} where p,q € X and p # q. This
implies that Pl or P, intersects P5 or Py. ILet fhe label-
ing be chosen such that PN P3 # #. BSuppose that Py N P5
= {p,q}. Since {p,a} n P, = (ANB) 0 P, # @, then P, con-
tains either p or q,implying that Pl N P2 # @, a contradiction.
Thus, Pl n P3 contains only one point, say p. Conseguently,
P, N P, = {a}. Thus, P) U Py and P, U P, are disjoint,
and, since each is closed in AUB, then each is open in
AUB, Finally, since AUB = (Pl {! Pa) U (P3 {] P4) = (Pl ] PB)U
(P, U P,), then (by 1.1) AUB is not connected, a contra-

diction.

1.26.Definition A subset C of a topological space
Y is called a component of Y if C is a maximal connected
set in Y; that is, there is no connected subset of Y that

properly contains C.
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1.27.-Theorem Iet X be a topological space and p € X,

Then the component C of X containing p is the union of
all connected subsets of X that contain p.

Proof: Tet {A a € T} be the family of all con-
nected subsets of X that contain p. Then (by 1.9)
U{Aa ta € T} is connected. But, since C is connected
and contains p, then C ¢ {Aa :a € T}, and, thus, C &
U{AOL ra € T}. However (by 1.26), C is a maxinzal con-

nected set; sc U{Am tg € T} « C, Thus C = U{Aa ta € T},

1.28.Definition If {Aa : o € T} is a covering of

a topological space Y, and, if AanA = @ whenever g,p £ T

B
and a # B, then the fanily {Aa : ¢« € T} is called a

partition of Y,

1.29.Theoren The set of all distinct components of

a topological space Y forms a partition of Y.

Proof: For each point y € Y, there is a component
containing y. Thus, if S is the sebt of all distinct
components of ¥, then S is a covering for Y. ILet Cl’

02 € S such that Cy # C,, and suppose that Can2 ¥ P

Then (by 1.9), C,UC, is connected. Since Cq # C5 , then
C1 is properly contained in 01U02 s thus implying that Cl
is not a component, This is a contradiction, and, there-

fore, 01002 = . Hence, S is a partition of Y.

1.20.Theoren Kach component C of a topological

space Y is8 closed.
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Procf: Since C is a component, C is connected, and,
thus (by 1.17) C is connected. Also, since € is a maximal
connected set, then C < C. However, C < C, and, thus,

C = C, which implies that C is closed.

1.31.Theorem if X and Y are topological spaces and
£f:X—= 7Y is continuvous, then the image of each component of
X must lie in a component of Y,

Proof: Let C be a component of X, and let x ¢ C,
Since f is continuous and C is conmected, (by 1.11) £(C)
is connected. Also, since x € C, then f(x) € £(C). Thus,
if D is a component of ¥ containihg £f(x) then £(C) < D,

since D is a maximal connected set in Y containing f(x).

1.52.Theorem Iet B be a connected subset of a topo-—

logical space Y. If B is both open and closed, then B is
a component of Y.

Proof: Assume that B is not a component of Y. Then
there is a connected subset C of Y which properly contains
B, But, since B is both open arnd closed in Y, B is both
open and closed in C, Thus (by 1.5), C is not comnnected,

a contradiction.

1.22.Theorem Let A be a subset of a topological space

Y, where both A and Y are connected. If C is a component of
Y-A, then Y-C is connected.
Proof: Assume that Y-C is not connected. Then Y-C =

PUQ, where P and @ are nonempty, disjoint sets each of which
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is open in Y~-C. Thus, (¥-C) -~ P = Q and (Y-C) = Q = P are
both closed in ¥Y-C. Also, since C is conmected in Y-A < ¥,
then C is connected in Y. Thus (by 1.19), CUQ and CUP are
both connected.

Now, since C < Y-A, then A © Y-C. However (by 1.4),
P and Q are separated so (by 1.6) Ac P or A = Q. Suppose
A < P. Now, PAQ = £ implies that AnNQ = ¢. Thus, Q « YA,
and, since C = Y-A, then CUQ « Y-A. But Q « Y-C, so
QNC = @, and, since Q is ronempty, then CUQ is a connected
subset of Y-A which properly contains C, a contradiction
of the fact that C is a component of Y-A. Similarly, if

A« Q, a contradiction is reached. Therefore, ¥-C is connected.

1.24.Corollary If Y is a connected topological space

of at least two points, then there exist two comnected
subsets 11 and N,of Y, which are distinct from Y and such
that MUN = Y and MON = 4.

Froof: Since any set consisting of a single point is
connected, then Y contains a connected subset 4 guch that
A is distincet from Y. ILet M be a component of ¥Y-A and
let N = Y-M. Thus, MUN =Y, MAN = &, M is connected, and
(by 1.33) N is connected.

1.32.Definition Tet X be a topological space and

x € X, Then the gquagicomponent of X containing x is the

set consisting of x together with all points ¥y of X such
that X is not {he union of two disjoint open sets, one of

which contains x, and the other y.
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1.36.Lemma  Tet X be a topological space, and let Q

be a quasicomponent of X, If X = MUN, where M and N are
nonempty, disjoint open sets, then @ is a subset of either
M or N.

Proof: Assume that Q ¥ M and Q ¢ N. Then QNM # &
and QNN # @, which implies that there is a point p € QNI
and a point q € QNN., Thus, p,g € @ and p € M and g € N,
which implies (by 1.%5) that & is not a quasicouponent of

X, a contradiction.

1.37.Theorem If Q is a quasicomponent of a topo-

logical space X, then @ is closed.

Proof: Let x ¢ Q and agsume that Q is not closed.
Then Q has a linit point p such that p £ Q. Thus (by
1.35), there are two disjoint open sets M and N such that
X =MUN and x € Mand p € N. But, since p € Q', then N
contains a point @ € Q. Now (by 1.36), Q= Mor Q « N,
However, since x € Q and x € M, then Q @ M., Thus, Qq ¢ M
and ¢ € N which implies thet M and N are not disjoint,

a contradiction.

1.38.Theorem Tet X be a topological space and x € X,

If Q@ is a quasicomponent containing x, then Q is the
intersection of all sets which are both open and closed
and contain X.

Proof: Let {Aa : ¢« € T} be the family of all sets
which are both open and closed and contain x. The set

{Aa : o € T} is nonempty for X € {Aa : o € T},
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Part 1 — Let p € Q. Agsume that p # ﬂ{Aa : a £ T},
Thus, for some A € {Aa : 08 T}, p g A. This implies
that p € X-A, and, since A is closed, X-A is open. Thus,
X = AU(X-4), where A and X-A are disjoint open sets such
that x € A-and p ¢ X-A, But this implies that @ is not
a qQuasicomponent, a contradiction. Thus p € R{Aa: a € T}.

Part 2 —Let p ¢ n{Aa : o & T}. Assume that p £ Q.
Thug, X = MUN, where M and N are disjoint open sets such
that x ¢ M and p € N. Now, since N is open, X-N = M is
closed. Thus, since x € M and M is both open and closed,
then M € {Aa : a € T}, Bubt since p € N, and M and N are
disjoint, then p £ M. Thus, p # n{Aa : & € T}, which is a
contradiction. Therefore, pel. It follows that an{A“:asT}.

1.39.Theorem EXach component C of a topological space

X is a subset of some quasicomponent.

Proof: let x € C, and let Q be a guasicomponent
containing x. If C = (x}, then immediately C = Q. Suppose
that y € C, where y # x. Assume that y # Q. Thus (by 1.35),
there are two disjoint open sets A and B such that X = AUB
‘and x € A and y € B, DSince A is open, X-A = AUB-A = B is
closed. Now, y € BNC, and, since B is both open and closed
in X, then BNC is both open and closed in C. Also, since
x £ B, then x £ BNC, which implies that BnC # C. Thus, BAC
is a proper subset of C, which implies (by 1.5) that C is
not connected. This is a contradiction, since C is a

component, Thus, y € Q. It follows that C < Q.
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The proof of the next theorem will depend upon the
raximal principle, which will be stated for reference,and
glso upon & lemma which will follow the statement of the

maximal principle.

Maximal) Principle Let 4 be a set partlally-ordered

by & relation <. Let B be a subset of A and assume that
B is simply-~ordered by <. Then there is a subset M of
A that is simply-ordered by <, contains B, and is not{ a

proﬁer subset of any other subset of A with these propérties.

1.40.Iemma Yet a and b be points of a compact
Hausdorff space X, and let {HcrL : o € T} be a collection
of closed sets, and suppose thatb {Ha : o € T} is simply-
ordered by inclusion, If each Ha contains both a and b
snd is not the union of two separated sets, one conbaining
a and the other containing b, then the intersection
n{HOL : a« £ T} also has this property.

Proof: ILet H = n{Ha : & € T} and assume that H = AUB
where a € A, b £ B and A and B are sepasrated. Thus, A and
B are closed in H, and, since H is closed, then A and B are
closed. Therefore, since X is compact, A and B are compact.
This implies that since ANB = @, there are two disjoint open
sets U and V such that A = U and B« V, Since a € A and
be B, then a € U and b € V. Thus, for each a € T,

a & HanU and b € Hanv.
Now, let Ra = Han[?—(UUV)] for each ¢ € T. Since Ha

is closed and X—(UUV)] is closed, then Ra is closed.
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Assume that Ry = @ for some 6 € T, Then, H, = Hy n(ouv) =

8
(HenU) U (Heﬂv), and, since U and V are disjoint open sets,

then (HgnU) and (Henv) are disjoint and open in H Thus

5
(by 1.4), (HBHV) and (HenU) are separated, a contradiction.
Therefore, Ra # @ for all a € T,

Consider any two distinct sets RB‘ Rw € {ROL : 0 & T},
‘Then, Ry = Hy 0 [X-(0un)],ana R, = 1w a[x-(0uv)].  Since
{Ha : a € T} is simply-ordered by inclusion, given HB
and Hm, one is a subset of the other. Supposing that HB

o» then Hy 0 [X—(UUV_)] is a subset of
Hy ﬂ[%~(UUVi]implying that {Ra : ¢« &8 T} is simply-

ig & subsct of H

ordered by inclusion. Therefore, the intersection of any
finite number of elements of {RCL : o € T} is an element

of {Ra : a € T} and, consequently, nonempty. Thus, {Ra :

o &€ T} satisfies the finite intersection hypothesis, and,
since X is compact, n{Ra : a0 € T} #@. But, n{Ru tae T} =
ﬂ{Ha nfx-(uuv)j taeT) =n{H_ :aoel)n [x-(uuv)j =

Hn [—Xw(UUV?]. Thus, H 0 [X-»(quﬂ # @, which implies that
H & (UUV), a contradiction.

1.41.Theorem In a compact Hausdorff space X, every
guasicomponent is a component.

Proof: Let Q be a quasicomponent of X, let q € Q,
and let C be a component of X containing q. Assume that
Q # C. Since (by 1.39) C © Q, then there must be a point
x € Q such that x £ C. Now, let {Aa : a € T} be the
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collection of all closed subsets of X, each of which
contains both g and x but none of which is the uwnion of
two separated sets, one containing q and the other con-
taining x. Now, since q,x € Q, X cannot be the union of
two separated sets, one containing ¢ and the other
containing x. Thus, X ¢ (Aa: a € T}, Let {Aa: a € T}
be partially-ordered by inclusion. By the maximal prin-
ciple, there is a maximal, simplyhordered subcollection
{BB:
is closed, and (by 1.40) K € {Aa: o € T}, Assume that

B € S} of {Aa: ¢ € T}. Thus, K = ﬂ{BB: B g S}

K is not connected. Then K = KlUK2 where Kl and K, are
separated sets. Since K € {Aa : @ € T}, then either Ky

or K2 must contain both ¢ and x. Suppose gq,x € Kl. Now,
Kl is closed in K and since X is closed in X, then Kl is
closed in X, Also, q and x cannot be separated in Kl
because, if so, they could be separated.in K. Thus,_Kl €
{Aa : a € T} and K; is a proper subset of K, implying that

{B, : # £ 8} is not maximal, a contradiction. Hence, X

B
must be conmnected. But, since g € C and q &€ K, then (by 1.9)
CUK is connected., Also, since x € CUK and x ¢ C, then CUK
properly contains C, implying that C is not a maximal

connected set, a contradiction., Thus, Q = C,.



CHAPTER XI
LOCAL CONNECTEDNESS

2.)..Definition A topological space Y is locally

connected if for each point p € Y and each neighborhood
U of p there is a connected neighborhood V of p such that
Ve U, A subsebt A of ¥ is locally connected if it is

locally connected as a subspace of Y.

2.2.Definition Let Y be a topological space and let

B be a collection of open sets in Y. Then B is a basis
for Y if for each open set U and each point x € U there

is a set V € B guch that x ¢ V< U,

2.3.Theorcm Tet Y be a topological space. The

following three properties are equivalent:

(1) Y is locally connected

(2) The components of each open set in Y are open

sets. | |

(3) Y has a basis consisting of connected sets.

Eroof:

Show that (1) implies (2).

Let U be open in Y, C be a component of U, and y & C.
Thus, y € U, and, since Y is locally connected (by 2.1)

there is a connected neighborhood V of y such that V < U,
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However, since C jig a maximal connected set in U which
contains y, then V< C, Thus, C is open.

Show that (2) implies (3).

Let B be the family of all components of all open
sets in Y. Let U be open in Y and x € U. If C is a
conponent of U containing x, then C is open and C € B,
Thus (by 2.2), is & basis for Y, and B consists of

connected sets.

Show that (3) implies (1).

Let B be a basis for Y, where B consists of connected
sets. Let x € Y and U be a neighborhood of x. Then (by 2.2)
there is a V € B such that x € V = U, This implies that
Y isg Jocally connected.

2.4, Theorenn Let X be a locally connected topological

gpace, If A is an open subset of X, then A is locally
connected,

Proof: Let p € A, and let U be a neighborhood of p
in A. Since U is open in A and A is open in X, then U is
open in X, Since X is locally conneéted, (by 2.1) there
is a conunected neighborhood V of p such that V & U, Thus,
V is also connected and open in A, This implies that A

is locally connected.

2.5.Theoren Local connectedness is a topological

invariant.
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Proof: Let X and Y be topological spaces where X
is locally connected, and let £:X->Y be a homeomorphisum.
let y € ¥, and let U be a neighborhood of y in Y. Then
f_l(y) > f“l(U), and, since f:X—>7Y is a homeoumorphisnm,
then £ 1(U) is open in X. Since X is locally connected,
there is a connected neighborhood V « X such that f_l(y) £
Ve 3. Thus, £ () & £(V)  £(£1(U)), which
implies that y € £(V) = U. But (by 1.11),f(V) is connected.
Also, since f£:X—>Y is a homeomorphism and V is open in
X, then £(V) is open in Y. Thus (by 2.1),Y is locally

connected.

2.6, Theorem If X is a locally connected Hausdorff

space, then every quasicomponent is a component.

Proof: Let Q be a quasicomponent of X, let q & Q,
and let C be a component containing ¢. Thus (by 1.29),
C « Q. Also, since C is a component, (by 1.30) C is
closed. Thus, X-C is open. Since X is locally connected,
(by 2.3) C is open., Hence, X = CU(X-C) where C and X-C
are disjoint, open sets. Therefore (by 1.36),Q < C or
Q « X-C, Since QNC # @, then Q@ <« ¢, Thus, @ = C.

2.7.Theorem Let Y be a locally connected topological

space. If U is a component of the open set G < Y, then
Gnrr(U) = 4.

Proof: Assume that GNFr(U) # #. Then, there is a
point x € G n Fr(U) = ¢ n (U n ¥-0).
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vanaanian

Suppose x € U, Thus, x g ¥-U, and, since x & Y-U,
then x € (Y—U)'. But, since Y is locally connected, ‘
(by 2.3) U is open and, thus, U contains a point of Y-U,

a contradiction. ‘

Suppose x £ U, Since x & U, then x € u'. Now, G
is a neighborhood of x, and, since Y is locally connected,
(by 2.1) there is a connected neighborhood V of x such
that V< G. Thus, since x £ U , V contains a point of U
different from x, and (by 1.9) VUU is connected. But,
since VUU properly contains U, then U cannot be a component

of G, a contradiction., Therefore, G n Fr(U) = 4.

2.8.Theorem ILet Y be a locally connected topological

gspace, let Ac ¥, and let C be a component of A. Then
the following properties hold:
(1) Int(C) = C n Int(a)
(2) Fr(C) = Fr(a)
(3) If A is closed, then Fr(C) = ¢ n Fr{a).
Proof of (1): '
Since C « A, then Int(C) « Int(A). Thus, since Int(C)

< C, then Int(C) = (C n Int(A)). Now, to show that C n
Int(A)  Int(C), let y € C n Int(A). BSince Int(A) is open
in ¥ and Y is locally connected, there is a connected
neighborhood U of y such that U « Int(A). This implies
that y e U« A, and, since y € C and C is a component of
A, then Uc C, But U is open,so U c Int(C). Thus, y €
Int(C),implying that C N Int(A) < Int(C).
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Proof of (2):

Assume that Fr(C) & Fr(A). Then there is a point
x € Fr{C) such that x £ Fr(4). This implies (by 1.21)
that there is a neighborhood U of x such that UndA = g, or
Un (Y-A) = g. Now, x € Fr(C); so UnC # @, and, since
C <« A, then UnA # @#. Thus, Un(¥-A) = g, Since Y is
locally connected, there is a comnected neighborhcod V of
x such that V < U, Thus, Vn(¥-A) = @, which implies that
V<A, Now, since x € Fr{C) and x € V, then V contains
points in C and points not in C. Thus (by 1.9), VUC is
connected, 4lso, V U C < A and VUC properly contains C,
which implies that C is not a component of A, a contradiction.

Proof of (3):

Part i — Let x € Fr(C). By part (2), Fr(C) < Fr(4A),
inplying that x € Fr(4). Now, x € Fr(C) = C n (¥-C), which

implies that x € C, But, since C is a component of 4,
(by 1.30) C is closed in A, and, since A is closed in Y,
then C is closed in Y, implying that C = C. Thus, x ¢
¢ n Fr(d).

Part ii — Let x € C n Fr(A), and let U be a neighbor-
hood of x. 8ince x € Fr(4) (by 1.21), U contains alpoint
p € A and a point q £ A, Since C <« A, then ¢ £ C, Thus,
xeC, g C, and x,q € U, which implies that x & Fr(C).
Thus, it follows that Fr{(C) = C n Fr(a).

2.9.Theorem Let Y be a locally connected topological
space and A < ¥, If Sc A is connected and open in 4, |

then S = A n C,wvhere C is connected and open in Y.
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Proof: OSince A« Y and S is open in A, then there
is an open set U such that S = ANU. Let p € § and C be
the component of U containing p. Since p € S« U and S
is connected, then S ©¢ C « U,vhich implies that since
8 = AnU,then S = ANC. Finally, since Y is locally connected,
(by 2.3) C is open.

2,10.Theorem Let Y be a locally connected topological
space which is not connected. Then, a decomposition of Y
intb two nonempty, disjoint cpen sets can always be accom-
plished by taking any component as one of the sets, and
all the rest as the other set.

Proof: Let C be the collection of all couponents of
Y. iet A € C, and 1let K = C-{A}. The set K is nonempty
since Y is not connected, and Y = AU(UK). Since Y is
locally comnected and Y is open, (by 2.3) each component
in Y is open, Thus, A is open, and UK is open.

Now, for each B € K, ANB = @,since A and B are maximal
connected sets. Thus, A n (VK) = @, Hence, A and UK are

nonenpty,disjoint open sets that deconpose Y.

2.1l.Theorem Let X be a conmnected, locally connected
topological space. If A is a nonempty, closed subset of X,
then the closure of each component of X-A meets A,

Proof: Assume that there is a component C of X-A
such that ChA = g. If X-A = @, then the proof is trivial.
Suppose that X-A # . Then C # @, and, since A is nonempty
and C © X~-A, then C#X, Thus, C is a proper subset of X.
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Now, since A is closed, X-A is open. Thus, since X
is locally connected, (by 2.3) € is open. Also, since C
is a component of X-4, then (by 1.30) C is closed in X-A.
Thus, C 0 (X-A-C) = @, and, since GNA = @, then @ = ON
[(X—A-G)UA] = On(X-C). This implies that C is closed in
X. Therefore, C is a proper subset of X which is both
open and closed in X,implying (by 1.5) that X is not

connected, a contradiction.

2.12.Theoren ILet X be a connected, locally connected

topological space. If A and B asre two disjoint, closed
subsets of X, then X-(AUB) has = component whose closure
meets both A and B,

Proof: If X-(AUB) = @, the proof is trivial. So,
suppose that X-(AUB) # @#. Since A and B are closed, AUB
is closed, and, thus, (by 2.11) the closure of each com-
ponent of X-(AUB) meets AUB. Assume that if C is a
component of Kf(AUB),then either CNA = @& or CNB = &. lLet
J and K be the sets of all components of X-(AUB) whose
closures meet A and B respectively. ILet ¥ = UJ and K*=UK.
Thus, X-(AUB) = J¥UK*, and, since X-(AUB) # &, either
J* # ¢ or KX # $. Let the labeling be chosen sﬁch that
> # 9. -

Now, assume that Bn(J*)' # $. Thus, there is a point
D E Bn(J*)'. Since ANB = @ and A and B are closed, then
D E A'. Thus, there is a neighborhood U of p such that

UnA = g, Let V be a component of U which contains p. Since
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X is locally connected, (by 2.3) V is open. Since p ¢ (J*)',
V contains a point g & J*. Thus, g is 2 point in sone
element C of J, and (by 1.9) VUC is connected. Also, since
béth V and C are open, then VUC is open. Therefore, since
X is locally connected, (by 2.4) VUC is locally comnnected,
Also, since B is closed, then BN{VUC) is closed in VUC.

Now, since C is a component of X~(AUB) and C < (VUC)
-B = X-(AUB), then C is & component of (VUC)-B. Thus
(by 2.11), Tn [%n(vuci] # @, implying that Cn B # @, a
contradiction, since C € J implies that ChA # @¥. Thus,
Bn(a*)t = g, TLikewise, if K¥ # @, then An(X™)' = g,

Now, if K' = @, then X-(AUB) = J¥, ana X = (AUTF)UB.
A

Since A and B are disjoint and closed, then A snd B are

separated. Also, since Bn(J*)' = @, Bn(J%) %, and B = B,
then BN(I™) = § = B n (3%), implying that B and ¥ ave
separated. Thus, AuT® and B are separated, which implies
(by 1.5) that X is not connected, a contradiction. ILike-
wise, if 7 = #, a contradiction is reached.

Suppose that J° # @ and K' # @. Then, X = (AUJ) U
(BUK™). Assume that J% and K* are not separated. Then
" either Egln K% g or 3 n E; # $. Let the labeling be
chosen such that Eg nK #@. Since ¥ n x* = @, then
(Jﬁ)'nK* # @g. Let p s (J*)'HK*. Thus, p belongs to some
C € K. Since C is open and p € (J*)', then C contains a
point q € J*. Thus, g belongs to some D € J, Therefore,

(by 1.9) CUD is connected, and, since C # D, then C CuD,
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separated. Consequently, (AUJ*) and (BUJ*) are separated3

implying (by 1.5) that X is not conmected, a contradiction.
Hence, X-(AUB) has a component whose closure meets

both A and B.

Closely related to local connectedness is the idea

of Yconnected im kleinen.,"

2,13 . Definition A topological space X is connected

3m kKleinen at a point x provided that for each open set
U containing x there is an open set V containing x such
that V< U and, if y is any point in V, then there is a

connected subset of U containing x and y.

2,34 ,Theorem If X is a topological space which is

locally éonnected at a point x, then X is connected im
kleinen at x.

Proof: Tet U be a neighborhood of x. Since X is
locally connected et x, there is a connected neighborhood
V of x such that VcU, Thus, if y € V, then V is a
~connected subset of U which contains x and y. This implies

that X is comnected im kleinen at x.

2.12.Theorem If X is a topological space which is

connected im kleinen at each point, then X is locally
connected. |
Proof: Let U be an open set in X, let C be a com-

‘ponent of U, and let x € C. Thus (by 2.13),there is



an open set V < U containing x such that if p € V,then
there is a connected subset Dp of U?which contains p and
X. Thus, V<« U[Dp : p e V), and since (by 1.9) U{Dp :
p € V} is connected, then V c U{Dp : p eV} eC, This

implies that C is open, and (by 2.3) X is locally connected.

2,16 Theorem Iet Y be a topological space such that

Y = AUB,where A and B are closed. If Y is locally con-
nected and ANB is locally connected, ther both 4 and B
are locally connected.

Proof: If either ANB = g, A< B, or B < A, then the
theorem is trivial. Therefore, suppose that ANB # g, A & B,
and B¢# A, Let x € A and let U be an open set containing
x. Since A is closed, A = & = Int(A) U Fr(4). Thus,

x € Int(A) or x € Fr(A).

Suppose that x & Int(A). Then x € UnInt(4). Since
U n Int(A) is open and Y is locally connected, there is a
connected neighborhood V of x such that Ve U n Int(A).
Thus, V< UnA, and, if y € V then x,y € V © UnA where V
is connected.

Suppose that x € Fr(A). Now, Fr(4) < AnB,for, if
not, there is a point p € Fr(A) such that p £ ANB. Thus,
either p € A-B or p € B-A., If p & A-B, then p € Int(A),

a contradiction. If p € B-A, then, since p € Fr(d),
(by 1.21) (B-A) n A # @, a contradiction. Thus, x € ANB.
Since ANB is locally connected, (by 2.14) ANB is connected

im kleinen at x. Therefore, there is an open set Wc U
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conbaining x such that if y € Wn(AnB), then there is a
connected set M(x,y) < UN(ANB) which contains x and y.

Since Y is Jocally comnected (by 2.14) Y is connected
ir kleinen at x., Thus, there is an open set Vo W con—-
taining x such that if y € V,then there is & connected set
N(x,y) © W vhich contains x and y.

Now, consider the set VA = Vn[Int(A) U Fr(A)] = [vn
Int(4) ] U [V n Fr(a)]. The set VnA is nonempty,since
x € VNA, Let t € VnA., Then, either t € V n Int(4A) or
t € Vn Fr(d).

Suppose that t € V n Fr(A)., Thus, t ¢ W n Fr(a).
Since Fr(A) « ANB, then t € W N (ANB). Thus, there is a
connected set M{(x,t) < Un(AnB) < UNA which containg x
and t. |

Suppose that t+ € V it Int(A). BSince t € V, there is
a connected set N(x,t) « W which contains x and t. ILet C
be a component of W N Int(A),which contains t. Since
VW n Int(4) is open and Y is locally connected,then (by 2.3)
C is open.

Let K = N(x,t) 0 C and let H = [N(x,t) N Int(A) K.
Now, it will be shown that ﬁh[Fr(A) N N(x,t)] # . Assune
that Ch[Fr(A) n N(x,%) ] = g. Clearly, N(x,) = KUHU
[NGe,8) 0 Fr(a) ] u [WGx,6) 0 (8-0)].

Now C = WnInt(A). Since N(x,t) « W, then N(x,t) n
Int(A) < WnInt(A). Thus, H « WnInt(A), and CUH < WaInt(4).

Now, C is open in WNInt(4), and, since C is a component
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of W n Int(a), then (by 1.30) C is closed in W n Int(4).
Thus, C is both open and closed in CUH,which implies
(by 1.4) that C and K are separated., Since K « C, then
(by 1.6) K and H are separated. ‘

Now, Eh[Fr(A) N N(x,t)] = ¢, and, since C is open,
on[ FETEY T N(x,5)| = . Thus, C and [Fr(4) n N(x,t) | are
separated. Since K c C, then (by 1.6) K and [Fr(A) n N(x,

t)] are separabed.

Fow, C « W n Int(a) ¢ Int(4) < 4 which implies that
C and B~A are disjoint. Also, C and B-A are both open.
Thus (by 1.4),C and B-A are separated. Since K« C, thén
(by 1.6) X and B-A are separated. Thus, X and [(B~A) n
N(x,t)] are separated.

From the above three paregraphs, it is concluded that
X and HU[N(x,$) 0 Fr(a)] u [N(x,t) n (B-A) ] are separated.
Thus, N(x,t) is not connected, a contradiction. Therefore,
Ca[Fr(A) n N(x,8) | # 6. Let p € On[Fr(A) n N(x,t) ]. Since
N(x,t) © W, then p & [W n Fr(a) | c [V n (anB)]. Then,
there is a connected set M(x,p) containing x and p such
that M(x,p) < Un(AnB). Now, C < W n Int(4) « U n Int(d) <
UniA. Thus, CUM(x,p) < UnA. Since p € €, p € M(x,p), and
0 and M(x,p) are connected, then (by 1.8) CUM(x,p) is
connected. Also, CUM(x,p) contains both x and t. There-
fore, A is connected im kleinen at x, and (by 2.15) A is

locally connected. Similarly, B is locally connected.
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2.17 Theorem Let ¥ be a locally connected topological

space, and let A be a subset of Y. If Fr(A) is locally
connected, then A is locally connected.

Proof: The space Y = & U Y-k, snd both X and ¥-A
are closed. A4lso, A N Y-A = Fr(d),which is locally con-
nected. Thus (by 2.16) & is locally connected.

2.18, Theorem A metric space (X,d) is connected im
kleinen at & point x if and only if, given e > 0O, there
is a number & > O such that if d(x,y) < 6§, then x and y

lie in a connected set of diameter less than e.
Proof:

Part 1 -~ Let x € X, Suppose that, givén e > 0, there
is a number & > O such that if a(x,y) < 8, then x and ¥y
lie in a connected set of diameter less than e. Let U be
an open set containing x. Then, there is an open set
W= B(x,el) such that W < U, Since ey > 0, there is a
number &, > O such that if dlx,y) < 8y, then x and y
lie in a connected set of diameter less than €.

Let V = B(x,&l), and let p € V. Thus, d(x,p) < 8,
and x,p € Cp1where Gp is a connected set of diasmeter less
than - Thus, Gp o Wcl,

Assume that V ¢ W. Then, there is a point ¢ € V such
that q ¢ W. This implies that d(x,q) < 8, end alz,q) 2. 8.
Since d(x,q) < 6;, then x,q € Cq where Gq is a connected
set o? diameter less than €. Thus, d(x,q) < e, a contra-

diction. Hence, VeWe U, and (by 2.13) X is connected

im kleinen at x.



Part 2 — Suppose that X is connected im kleinen at
X. Let e > 0, and let U = B(x,—%_ ). Then. (by 2.13),
there is an open set V containing x such that V< U and,
if y € V, then there is a connected subset of U containing
x and y. |

Now, there is a & > O such that the open set W = B(x,$)
is a subset of V. Let p € W, Then, p € V, and d(x,p) < 6.
Algo, there is a connected subset C of U which contains x
and p. Since the diameter of U = 2(_%_) < e and Cc U,
then the diameter of C < e,

Thus, for e > 0, there is 2 number & > O such that if
a(x,p) < &, then x and p lie in a connected set C where

the diameter of C < e,

3

Another concept which is related to local connectedness

but used only in metric spaces is “"property S."

2,19, Definition A metric space M has property S if

for every e > 0, M is the union of a finite number of

conmnected sets, each of diameter less than e,

2.20,Theorem If (X,d) is a metric space having property

S, then X is connected im kleinen at each of its points
and, hence, is locally connected,

Proof: Iet x € X and let U be an open set containing
¥. There is an open set G = B(x,e) such that ¢ — U, Since
X has property S, X = U{Ci: i=1, ..., n} where {Ci: i=1,

eesy N} is a collection of connected sets each of diameter
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e
less than 3. Let C be the collection of all elements of
1

{Ci : i =

where Ca € C, Thus, if Ob

implies (by 1.8) that CaUCb is connected. Hence, UC is

y+++,n} whose closure contains x. Now, x & C,

& C, then x € canﬁg} which

comnected. Now, to show that UC < U, let y € UC, Then,
y € some O & C, which implies that x & Cy. Thus, alx,y) <
% < e implying that UC < G <« U,

Now, consider the collection D = {Ci :i=1,...,n}-C.
Thus, if cj g D, then x}ﬁ 652 It follows that x £ U[@E':
Cd e D}. Hence, x € X—U{ﬁg : Cj e D}, which is open, since

U{EE': Cj £ D} is closed.

Next, it will be shown that x—u{ﬁg : G, € D} = uC.

J

Let p € X~U{5§ i Cy & D}. Thus, p £ U{EE': c, g D}

U{CJ : Cj € D} = UD., Since p e X = U{Ci: i=1,.e.,n) =

(UC) U (UD) and p £ UD, then p € UC. Hence, X—U{EE:CJ e D} UC,
In summary, X*U{Eg : 03 € D} is an open set containing

¥, and X-U{ﬁg : Cj g D} « UC « U where UC is connectéd.

Thus X is connected im kleinen at x and hence (by 2.3)

is locally connected.

2.2 . Theorem If X is a compact, locally connected

netric space, then X has property S.

Proof: TLet e > 0, let x € X, and let U = B(x,%d.
Since X is locally connected, there is a connected neigh-
borhood Vx of x such that V# < Ux‘ Thus, the diameter of
?x is less than or equal to the diameter of Uﬁ, which is

2
less than or equal to 3 e. The collection [Vp: p € X}
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of all such connected neighborhoods forms an open cover
for X, and, since X is compact, {Vé : p € X} has a finite

subcover for X. Thus, X has property S.

2.22.Theorem Let (X,d) be a metric space and let M

be a subset of X such that M has property S, If N is a

subset of X such that M © N « M, then N has property S.
Proof: Let e > O, Then M = U{Ci: i=1,...,n}, where

{Oi: i=l,...,0} is a collection of connected sets, each

of diameter less than e. Consider the set U{NnC,:i=1,

eessn}. Clearly, U{Nﬂﬁz: i=1y4..,n} <N, Now, if p € N,
then, since No M = U{ﬁg: i=1,.ee4}, PE ﬁ; for some
1<k <n. Thus, p € U{Nﬂﬁzz i = 1,...,n)}, which implies
that N < u{NnE;: i =1,...,n}. Therefore, N = U{NnC,: i =
l,...,0}. Next, it will be sghown that cj < EEhN = EE for
each 1 < J £ n. To show this, let p € Cj. Thus, p € Gj.
Also, p € M, since M = U{Ci: i=1,...,n}, and this implies

that p € N, since M« N, Thus, p € Oj N N, inplying that
o —

< T, n N, and, clearly, E; N NeC.., Thus (by 1.17),

J J J

Eg N N is connected. Also, since the diameter of Gj < e,
then the diameter of Eg < e, which implies that the diameter

of EE N N<e. Thus, N has property S.

Another concept relating to local connectedness which

applies only to metric spaces is "uniform local connectedness."

2.2%.Definition A metric space (X,d) is uniformly

locally connected provided that, given e > 0, there is a
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number & > O, independent of position, such that any two
points x and y with d(x,y) < &, lie in a connected set of

diameter less than e,

2.24,Theorem If (X,d) is a compact, locally connected

metric space, then (X,d) is uniformly locally connected.
Proof: Let e > 0. Since X is compact and locally

connected, (by 2.21) X has property 8. Thus, X = U{Ci :

i = 1l,...,n},where {C 11 =1,...,n) is a finite collection

of connccted sets, each of diameter less than 3. If for

each pair (Ck,Cl),where CsCy € {€; + i =1,...51), E; n

ﬁ; # ¢, then the proof is immediate. Therefore, assume

that the collection D = [(C,Cy) : €y iCy & (Gg:i=l,...,n)

and Ck n G Q] is nonempty. Thus, if ak 17 d(Gk,Cl)

for all (Ck,cl) g D, then Gk,l > 0. Since D is finite,

the collection of all such 6k,1 is finite. Let & be one

half the minimum of this collection. Thus, &6 > 0. Now,

let x,y be any two points in X such that d(x,y) < 5. Since

X = U{Cy: i=1,...,n}, then there are a C,:Cp € {Oi:izl,...,n}

such that x € Ca and y € Cb' it Ga = Cb’ then, clearly,

x and y lie in a connected set of diameter less than e.

Suppose that C, # C.. Since d(x,y) < §, then d(Ca,O ) < &,

This implies that (ca,cb) £ D,which, in turn, implies that

T. nT, #@. Since C, and Cp are connected, (by 1.17)

C, and C_ are connected. Thus. (by 1.9),Eghﬁg is connected.

Also, since the diameters of C, and Cp < %, the diameters
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and Cb < 3., Thus, the diameter of CaU

€.

— &
Cb £ 3+

Hence, X is uniformly locally connected.
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CHAPTER III

PATH-CONNECTEDNESS

3.1.Definition A path in a topological space Y is
a continuous mapping f£:I—>Y,where I is the unit interval.
The point £(0) € Y is called the initial (or starting)
point, and £(1) & Y, the terminal (or end) point of the
path £, and £ is said to run from £(0) to £(1), or join
£(0) to £(1).

It will be noted that if £ is a path running from £{0)
to £(1), then the mapping g:I~> Y defined by g(t) = £(1-%),
where t £ I, is a path running from £(1) to £(0).

% .2.Definition A topological space Y is path—~connected

if each pair of i%s points can be joined by a path.

3,%,Theoren Let ¥ be a topological space, and leb
Jo € Y. Y is path-connected if and only if each y € ¥ can
be joined %o Yo by a path.

Proof :

Part 1 — Let Y be path-connected. Thus, each y € ¥
can be joined to Yo by a path.

Part 2 -~ Suppose that each y € Y can be jJoined to Yo
by a path. Let a,a’ € Y. Then, there is a path f:I—> 7Y
joining a to y,. Thus, £(0) = a, and £(1) = y_ . Also, there

40
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is a path joining a' to ¥, which implies there is a path
g:I—>Y joining y, to a'. Thus, g(0) = y,, and g(l) = a'.

‘Now, let A = {t: 0< t<1/2)}, B={t: 1/2< %< 1)

ma 1(6) = (g03i0))% ¢ B

‘b(0) = £(0) = a, and K(1) = g(1) = a’.

Thus, h maps I into ¥,

Next, it will be shown that h is continuous. Let
q € h(I), and let U be a closed set containing q. Since
(h18)(5) = £(26) for all t & 4 and (n|B)(t) = g(2t-1) for
a1l t € B, then h|A and h|B are continuous on A and B
respectively. Now, hfl(U)nA # 0 or h“l(U)nB # ¢. Let the
labeling be chosen such that h_l(U)nA # ¢g. Clearly,
Bl = (1) 1(na = (nia) T (U n (mla)(a)]. Since
(n|A)(A) = ¥ and U is closed in Y, then Un(nia)(A) is
closed in (hIA)(A); Since h|A is continuous, then
(hIA)—l[:Un(hIA)(Ai] is closed in A, But, since A is
closed in I, then (nlA)t [Un(nla)(a)] is closed in I.
Thus, hoL(U)NA is closed in I.

Suppose that hfl(U)nB = ¢, 'Then, hﬁl(U) = h-l(U)nA,
vhich is closed in I.

Suppose that h™X(UINB # . Then, b *(U)NB = (nlB)~t
[un(alB)(B)] , which is closed in I. Thus, h™>(U) = [n71
(U)QAJ U [h"l(U)nB], implying that h“l(U) is closed, since
n~1(U)na and KL(U)NB are both closed. Consequently, h
is continuous.

Therefore, h is a path joining a to a', implying that
Y is path-connected.
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Z.4.Theorem The union of any family of path-connected
spaces having a point in common is path-connected.

Proof: Let {Ya: « € T} be a family of path-connected
spaces so that for each ¢ € T, y, & Y . Thus, y, ¢ U{Ya:
a € T}. Now, let y ¢ U{Ya: o € T}, Thus, for some & & T,

y&eY,, and, since Yo € Y, and Y, is path-connected, there

B’ 8 8
is a path joining y to y, . Therefore (by 3.5),U{Ya:a e T}

is path-connected.

2.2.Definition A subset C of a topological space Y

is called a path component of Y if C is a maximal path-

connected set in Y.

5.6.Theoren Each path-comnected topological space Y
is connected.

Proof: Let Yo € Y, Now, if y € Y, then, since Y is
path-connected, y can be joined %o Yo by a path fy:I*ﬁ* Y.
Thus, ¥,,¥ € fy(I). Also, since fy:I"*‘Y is continuous
and I is conuected, then (by 1.11) fy(I) ig connected.
Thus, y, € £.(I) for all x € Y, and (by 1.9) U{£,(1):x € Y}

= Y is connected.

2.7.Corollary Each path component is connected.

3.8.Theorem The following two properties of a topo-

logical space Y are equivalent:
(1) Each path component is open (and, therefore,

also closed).

(2) Each point of Y has a path-connected neighborhood.
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Part 1 — Suppose that each path component is open.
Then, if y € Y and C is a path component containing y, then
C is a path-connected neighborhood of y.

Part 2 — Suppose that each point of Y has a path-
connected neighborhood. ILet C be a path component in ¥,
and let x € C. Thus, x has a path-connected neighborhood
U, and, since C is a maximal paﬁh—connected set containing
x, then x € U « C, which implies that C is open.

Since X-C is the union of the remaining path components
in Y, each of which is open, then X~C is open implying

that C is closed.

2.9.Theorem If each path component of a topological

space Y is open and closed, then the path components of Y
coincide with the components of Y, |

Eroof:

Part 1 — Let C be a path component of Y. Thus, C is
open and closed, and (by 3.7) C is connected. Then (by 1.4)
there is no connected set which properly contains C, implying.
- that C is a component of Y,

Pért 2 ~ Let C be a component of Y, let y € C, and let
D be a path component of Y containing y. Since D is path-
connected, (by 3.6) D is connected, and, thus, D = C since
C is a maximal connected set containing y. But D is both
open and closed, so (by 1.4) D = C,
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32.10.Theorem A topological space Y is path-connected
if and only if it is connected, and each y € ¥ has a
path~connected neighborhood.

 Xroof:

Part 1 - Suppose that Y is path-connected. Then
(by 3.6) Y is conmected., Also, if y € Y, then Y is a path-
connected neighborhood of y.

Part 2 — Suppose that ¥ is cornected and each y € Y
has a path-connected neighborhood. Then (by 3.8), each
path component C is both open and closed. If C # Y, then
C is a proper subset of Y, which implies (by 1.4) that Y
is not connected, a contradiction. Thus, Y = C, implying

that Y is path-connected.

3.31.Theorem The continuous image of a path-connected

topological space is path-connected.

Proof: TLet X and Y be spaces where X is path-
connected, and let f:X—= ¥ be continuous. Thus, £:X~>1(X)
is continuous. ILet Tor¥y € £f(X). Thus, f-l(yo) and.
fﬂl(yi) are nonempty subsets of X. Let p ¢ f"l(yo) and
q € f“l(yl). Since X is path-commected, there is a path
g:I—=X joining p to q. Therefore, g is continuous,

g(0) = p andlg(l)lz q, which implies that (£-g)(0)=f(g(0))=
f(p):yo and (fog)(1) = £(g(1)) = £(q) = ¥1- Also, since
g:I— X and £:X—>1(X) are continuous, then (feg):T—>£(X)
is continuous, and, therefore, is a path which joins Yo to

¥p- Thus, £(X) is path-connected.
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