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PREFACE 

The purpose of this thesis is to investigate the idea 

of topological "connectedness" by presenting some of the 

basic ideas concerning connectedness along with several 

related concepts. There are three chapters in the thesis. 

In Chapter I, the idea of "connectedness" in general will 

be examined, while Chapter II will deal with the idea of 

"local connectedness" and the related ideas of "connectedness 

im kleincn," "property S," and "uniform local connectedness." 

In Chapter III, the concept of "path-connectedness" will be 

investigated. All of the elementary properties of topo-

logical spaces will be freely used without statement or 

proof. The notation used is elementary set notation as 

discussed in Elementary General Topology* by Theral 0. Moore. 
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CHAPTER I 

CONNEC TEDNE.SS 

1.1. Definition A topological space Y is connected if 

it is not the union of two nonempty, disjoint open sets. 

A subset B c I is connected if it is connected as a sub-

space of Y. 

1.2.Definition Two subsets A and B of a topological 

space Y are said to be separated if A /• 0, B / 0, and 

AflB " (j) ~ AflB, 

1.3.Definition A subset A of a set B is called a 

•proper subset of B if and only if A f 0 and A f B. 

1.4.Theorem Let A and B be nonempty, disjoint subsets 

of a topological space Y. Then, A and B are separated if 

and only if both A and B are open in AUB. 

Proof: 

Part 1 — Let A and B be separated. Thus, ZnB = 0 which 

implies that A is closed in AUB. Consequently, (AUB)-A = 3 

is open in AUB* Similarly, A is open in AUB. 

Part 2 — Let both A and B be open in AUB. There is an 

open set V <= Y such that VH(AUB) = B. How, suppose that 

VnA / 0. Then, there is a point p e VflA. Thus, p e (VnA) 

U(VHB) = Vn(AUB) = B. But this implies that p e AflB, a 



contradiction. Hence, VflA = 0, and., since V is open, 

VflA = 0. Therefore, BHA = 0. Similarly, AflB - 0. Thus, 

(by 1.2) A and B are separated. 

1.5.Theorem Let Y be a topological space. The follow-

ing five properties are equivalent: 

(1) Y is connected. 

(2) Y is not the union of two separated sets. 

(3) Y is not the union of two nonempty, disjoint 

closed sets. 

(4) Y contains no proper subset which is both open 

and closed. 

(5) No continuous mapping f:Y —> 2 is surjective, 

where 2 is the space consisting of the two points {0,1} 

with the discrete topology. 

Proof: 

Show that (l) implies (2). 

This follows directly from 1.1 and 1.4. 

Show that (2) implies (3). 

Assume that Y = AUB where A and B are nonempty, dis-

joint closed sets. Then, Y-A = B and Y-B = A are both 

open; and (by 1.4) A and B are separated, a contradiction. 

Show that (3) implies (4). 

Assume that Y contains a proper subset A, which is both 

open and closed. Thus, Y-A is nonempty and closed. Since 



Y = (Y-A)UA, then Y is the union of two nonempty, disjoint 

closed sets, namely A and Y-A, a contradiction. 

Show that (4) implies (5). 

Assume that there is a continuous f :Y—^ 2 which is 

surjective. Thus, f^CO) ̂  Y and f-1(0) / 0; consequently, 

f 1(0) is a proper subset of Y. Now, {0} is both open and 

closed in 2, and, since f is continuous, f*"̂ *(o) is both 

open and closed in Y, a contradiction. 

Show that (5) implies (l). 

Assume that Y is not connected. Then, (By 1.1) 

Y =AUB. where A and B are nonempty, disjoint open sets. 

Define 0 ^ - > 2 by CA(x) - {£ g | * ft. Since A 

is nonempty and B = Y-A is nonempty, then C^:Y — ^ 2 

is surjective. 

Now, the set {0,1} is open in 2, and CA~^({0,1)) = 

AUB = Y,which is open in Y. The set {1} is open in 2, and 

*(1) = A,which is open in Y. The set {0} is open in 2, 

and CA"
1(0) = B, which is open in Y. 

Thus, the inverse image of each set open in 2 is also 

open in Y. Thus, is continuous, a contradiction. 

1.6. Lemma Let A and B be separated subsets of a topo-

logical space X. If 0 and D are nonempty sets such that 

C c A and D c B, then 0 and D are separated. 

Proof: Now, C c A implies that (T <= A. Since A and B 

are separated, A fl B = 0. Thus, since D c: B, then A fl D = 0, 



and* since C cl, then C fl D = 0. Likewise, C fi D = 0. 

(Therefore (by 3..2), C and D are separated., 

1.7.Theorem Let A and B be separated subsets of a 

topological space X. If 0 is a connected subset of AUB, 

then C c A or C c B, 

Proof: Assume that C ?! A and 0 & B. Thus, G contains 

points in both A and B; so C = PUQ, where P = CfiA and 

Q = COB. Since A and B are separated, then (by 1.6) P and 

Q are separated, which implies (by 1.5) that C is not 

connected, a contradiction. 

1.8.Theorem Let C be a family of connected subsets 

of a topological space. If no Wo members of G are sepa-

rated, then UG is connected. 

Proof: Assume that UC is not connected. Then (by 1.5) 

UG = PUQ, where P and Q are separated sets. Let G^ s C. 

Then (by 1.7) C^ <= P or c: Q, Suppose that the lettering 

is chosen such that C]L c p. Since (by 1.2) Q is nonempty, 

there is an element Cg e C such that Og fl Q / 0, and 

(by 1.7) @2 c Q. However (by 1.6), and Gg are sepa-

rated, a contradiction. 

,1 ,,9. Corollary If C is a family of connected subsets 

of a topological space which have at least one point in 

common, then UC is connected. 



Proof: Since each two members of 0 have a point in 

common, (by 1.2) no two members of C are separated. Thus 

(by 1,8), UO is connected. 

1.10.Remark Let A and B be subsets of a topological 

space X such that A C B , Then, A is connected in X if and 

only if A is connected in B, 

1.11.Theorem The continuous image of a connected set 

is connected. That is, if X and Y axe topological spaces, 

if A is a connected subset of X^and if f:X—»Y is continuousJ 

then f(A) is connected. 

Proof: Assume that f(A) is not connected. Then 

(by 1.5), there is a proper subset P of f(A) such that P 

is both open and closed in f(A). Now, since f : X — Y is 

continuous, f jA:A—>-Y is continuous. Thus, it follows 

that f """*"(?) is a proper subset of A which is both open 

and closed in A. Therefore (by 1.5), A is not connected, 

a contradiction. 

1.12.Theorem Let {A^ : i e Z+ = {1,2,3,...}} be a 

family of connected sets of a topological space Y, with 

A^ n A^+^ f 0 for each i e Z
+. Then, U{A^ : i e Z+} is 

connected. 

Proof: Mathematical induction will be used. Let 

n e Z+ and let P(n) represent the statement "U{A^ : i e 

Z n
+ = {1,2,...,n}} is connected." 
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(1) P(l) is true since A^ is connected. 

(2) Assume that P(k) is true for some k e Z+. That is, 
k 

assume that UA. is connected. 
i=l 

(3) Show that P(k+1) is true. 

Since A^ fl A^+1 £ 0, then (AU.. .UÂ .) n A^+1 £ 0. 

k 
By (2), UA^ is connected, and, by the hypothesis, A^.+1 is 

i = 1 k k+I 
connected, so (by 1.9) ( UA^ U Ak+^ = UA^ is connected. 

i=l i=.l 

Therefore, U{A^ : i s Z+} is connected. 

1.13.Theorem If {A :a e T} is a family of connected 

subsets of a topological space Y such that there exists a 

connected set A with A fl A / 0 for each a e T, then AU 
a 

( UA ) is connected. 
asTa 

Proof: Consider the set {AUA : a e T}. Since for 
(X 

each a s CP, A is connected, A^ is connected, and AnA f 0, 
<x ' a 

then (by 1.9) AUA is connected. Also, A c: n{AUA :a e T}. 
U# 

Thus (by 1.9), U{AUA : a e T} = AU( UA ) is connected. 
a <xeTa 

.1. 14 JFhe orem If {A^ : a e T} is a family of connected 

sets such that any two of them have nonempty intersection, 
then UA is connected. 

asT 

Pro_of: Let A e {A : a e T}. Por axsy A e {A : 
P a ^ a 1 a 

a e T-{3}), ApnAa f 0. Thus (by 1.13), Ap U(U{Aa : a s 

®"*{^}}) = U(U{A : a e T}-A ) = UA is connected. 
p a p aeT 



Definition. Given two nonempty sets Ua and Ug 

of a topological space, a collection of sets ,...,Un 

is a chain from U. to U„ provided that U_ fl ^ ? 0, 
CX P CI 

Up n Un / 0, and M± fl U i + 1 / 0 for i=l,..„,n~l. 

1.16. Theorem A topological space Y is connected if 

and only if every open covering {Ua : a e T } of Y has 

the following property: for each pair U , U e {U :a£T }, 
p Cp (X 

there is a subcollection of {U^: a e T } which forms a 

chain from to U . 

Proof: 

Part 1 — Suppose that the given property holds, and 

assume that Y is not connected. Thus Y = AUB where A and 

B are nonempty, disjoint open sets. (Therefore, {A,B} is 

an open covering for Y, and, by the hypothesis, AHB ̂  0, 

which is a contradiction. 

Part 2 ~ Suppose that Y is connected. Let {Ua:a e T } 

be an open covering of Y. Let e {Ua:a sf }, and let C 

be the collection of sets consisting of together with 
all sets UR e {U :a e T } such that there is a chain con-o * a 
sisting of elements of {U :a e T } from U„ to U.. C is 

a p o 

nonempty,since s C . Therefore, UC is nonempty, and, 

since C is a collection of open sets, then UC is open. 

To show that UC is closed, let p e (UC )' . Then, 

p e Y = U {Uft:a e T }. This implies that p e U for some 

U e {U^ra e T }. Thus, U is an open set containing p, and, 
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since p s (UC) 1, then U fl(UG) / 0, which implies that 

there is some e C such that U (1 / 0. Since e C, 

there is a chain U^,.e.Un from to which consists 

of elements of {U^ia e T}. But, since U n / 0, the 

collection U^,...,Un,U^ is a chain from to U. Hence, 

U 6 0. Thus, p e U c UC which implies that UC is closed. 

Thus, UC is a nonempty set which is both open and 

closed in Y, and, since X is connected, (by 1.5) UC = Y. 

Let e {Ua:a e T}. Then U <= UC, which implies 

that there is some e C such that fl / 0. Since 

e C, there is a chain Un from to Uk con-

sisting of elements of {U :a e T}. Since IJm(llI,/ 0, 
CX Cp JcL 

the collection U^,...,,U^. is a chain from to U^. 

1.17.Theorem Let A be a connected subset of the 

topological space Y. Then, any set B satisfying A c B c I 

is also connected. In particular, the closure of a con-

nected set is connected. 

Proof; Assume that B is not connected. Then (by 

1.5)» B = PUQ where P and Q are separated. Since i c B 

and A is connected, then (by 1.7) either i c p or A c Q, 

Suppose that the labeling is chosen so that A c p. Thus, 

Q fi A = 0. Since Q c B c A, Q fl A = 0, and Q is nonempty, 

then Q contains a limit point of A. But, since A c P, 

then Q contains a limit point of P, which implies that P 

and Q are not separated, a contradiction. Thus, B is 

connected. 



In particular, if C is any connected set, then, since 

C c= 0 c C, 0 is connected. 

1*18.Theorem Let A and B be subsets of a topological 

space X. If A and B are closed in X, and AUB and AflB are 

connected, then A and B are connected. 

Proof: The conclusion is immediate if A c B or B c A, 

So, suppose that A-B ^ 0 and B-A ^ 0. 

Assume that A is not connected. Then A = PUQ where 

P and Q ere nonempty, disjoint open sets in A. Thus 

(by 1.4), P and Q are separated, and, since AflB c AUB and 

AflB is connected, then (by 1,7) either AflB c p or AflB <= Q. 

Suppose the labeling is chosen so that AflB e p. Then, 

A-B = A-(AflB) DA-P = Q, and, since A oA-B and Q is open 

in A, then Q is open in A-B. Also, since B is closed in 

AUB, then AUB-B = A-B is open in AUB. Thus, Q open in 

A-B and A-B open in AUB imply that Q is open in AUB. 

Also, since P is open in A, then A-P = PUQ-P = Q is 

closed in A, and, since A is closed in AUB, then Q is 

closed in AUB. Thus, Q is a proper subset of AUB which 

is both open and closed in AUB. Therefore (by 1.5), AUB 

is not connected, a contradiction. Thus, A is connected, 

and, similarly, B is connected. 

1.19.Theorem Let A be a connected subset of a con-

nected topological space X. If B is a subset of X--A which 

is both open and closed in X-A, then AUB is connected. 
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Proof: The proof is immediate if either B = X-A, 

B = 0, or A = 0. So, suppose that B ^ X-A, B ^ 0, 

and A. / 0. 

Let H = (X-A)--B. Since B is a proper subset of X-A 

which is both open and closed in X-A, then H is nonempty 

and open in X-A. Thus (by 1.4), H and B are separated. 

Assume that A LIB is not connected. Then (by 1.5)» 

A(JB «= RUS, where R and S are separated. But, since A is 

connected, (by 1.7) either A c R or i c S. Suppose that 

the labeling is chosen such that A c R. How, S c B for, 

if not, SflA £ 0 which implies that SHR / 0, a contradiction. 

Thus, since H and B are separated, (by 1.6) H and S are 

separated. Therefore, X = HU(AUB) = EU(RUS) = (HUR)US 

and since H and S are separated and R and S are separated, 

then HUR and S are separated. This implies (by 1.5) that 

X is not connected, a contradiction. 

1.20.Definition Let A be a subset of the topological 

space X. The boundary of A, written Fr(A), is X (1 Sc-'A". 

1.21.Theorem Let A be a subset of the space X. If 

p is a point in Fr(A), then each open set containing p 

contains at least one point in A and at least one point 

not in A. 

Proof; Let p e Fr(A) and let U be an open set con-

taining p. Since (by 1.20) Fr(A) = A fl X-A, then 

p e A n X-A. How, p e A or P e X-A. Suppose that p e A. 
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Then p i X-A, and, since p e X-A, then p e; (X--A)'. Thus, 

U contains a point in X-A, and, since p e A, then U con-

tains a point in A. Similarly, if p e X-A, then U contains 

points in A and points not in A. 

1»22. Definition Let A be a subset of the topological 

space X. The interior of A, written Int(A), is the largest 

open set contained in A. 

The following properties will be assumed without 

proof. 

1.23. Theorem Let A be a subset of the topological 

space S. Then: 

(1) Fr (A) = A - Int(A) 

(2) Fr (A) n Int(A) = 0 

(3) A = Int(A) U Fr(A) 

(4) X = Int(A) U Fr(A) U Int(X-A) is a pairwise 

disjoint union. 

1.24.Theorem Let A be a subset of a topological 

space Y. If C is a connected subset of X which contains 

points of A and points not in A, then C must contain 

points of the boundary of A. 

Proof: The set C contains points of A and points 

not in A , so AflC / 0 and C - A / 0 . But, C = ( A n C ) U ( C - A ) 

and since C is connected (by 1 . 5 ) ( A n C ) n ( C - A ) ' ^ 0 or 

(Af lC) ' n ( C - A ) jt 0. 



a 

12 

Case 1 — Suppose (AflC)' fl(C-A) f 0. Thus, there is 

point x such that x e (AflC) 1 and. x e (C--A). But since 

AflC <= A, x s (ADC)' implies that x e A <= A. Also, since 

x e C-A cr Y-A, then x e Y^A. Thus, x s A fl I-A = F r W , 

which implies that C contains points in Fr(A). 

Case 2 — Suppose (ARC)n(C-A)' / 0. Thus, there is 

a point x such that x e (AflC) and x e (C-A)'. But, x e 

(AflC) implies that x e AcJ. Also, since x e (C-A)' and 

C-A c Y-A, then x e (Y-A)' c (Y-A). Thus, x s A n C^A) = 

Fr (A),which implies that C contains points in Fr(A). 

1.23.Theorem Let A and B be subsets of a topological 

space X, each of which is closed in AUB. If AUB is con-

nected and AflB contains at most two points, then A is 

connected or B is connected. 

Proof: Assume that both A and B are not connected. 

Then A = ̂ 1^2 v;^ere snd. P2 are nonempty, disjoint open 

sets in A. Likewise, B = P^UP^,where P̂ - and P^ are non-

empty, disjoint open sets in B. Thus, A ^ = P 2 and 

A~P2 = P1 are closed in A, and, likewise * B-P^ = and 

B-P^ = P^ are closed in B. Since A and B are closed in 

AUB, then P^, P2, Pj, and P^ are closed in AUB. 

Case 1 - Suppose that (AnB)fiPi = 0 for some i e 

{1,2,3,4-}. Thus, P. c: A-B or P. c: B-A. If P cr A-B, 

then P± c A, and, since A-B c A and PjL is open in A, then 

P± is open in A-B. But, since B is closed in AUB. A-B is 
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open in AUB. Thus, P^ is open in AUB, and, since P^ is 

also a proper subset of AUB which is closed in AUB, then 

(by 1.5) AUB is not connected, a contradiction. Similarly, 

if P^ <= B-A, a contradiction is obtained. 

Case 2 — Suppose that (AflB) n ^ 0 for all i e 

{1,2,5,4}. Thus, AflB ̂  0. Suppose that there is a point 

p e X such that AflB = {p}. Then, (AflB) n = {pJnP^ ={p}, 

and (AflB) f) Pg = {p} n Pg = {p}. Thus, p e P^ and p e Pg, 

which implies that P^ and P 2 are not disjoint, a contra-

diction. Thus, AflB = {p,q} where p,q e X and p ^ q. This 

implies that P^ or P 2 intersects P^ or P^„ Let the label-

ing be chosen such that P 1 fl P^ ^ 0. Suppose that P^ fi P^ 

= (p,q). Since {p,q} fl Pg = (AflB) n P 2 / 0, then P 2 con-

tains either p or q, implying that P x fl P 2 ^ 0, a contradiction. 

Thus, P 1 fl P^ contains only one point, say p. Consequently, 

*2 n *4 = T h u s» pi u P3 and- P 2 U P^ are disjoint, 

and, since each is closed in AUB, then each is open in 

AUB. Finally, since AUB = (P1 U Pg) U (P^ U P^) = (P^ U Pj)U 

(^2 ^ ^4)» "then (by 1.1) AUB is not connected, a contra-

diction. 

1.26. Definition A subset C of a topological space 

Y is called a component of Y if C is a maximal connected 

set in Y; that is, there is no connected subset of Y that 

properly contains C. 
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1.27.Theorem Let X be a topological space and p e X, 

Then the component C of X containing p is the union of 

all connected subsets of X that contain p. 

Proof: Let {A 7a e 5?} be the family of all con-

nected subsets of X that contain p. Then (by 1.9) 

U{Aa :a e T} is connected. But, since C is connected 

and contains p, then C s {A :a e T}, and, thus, 0 <= 

U{A :a e T}. However (by 1.26), C is a maximal con-
CI 

nected set; so U{A :oc e T} c: c . Thus C = U{A :a e T}. 
o* ct 

1.28.Definition If {A^ : a e T} is a covering of 

a topological space Y, and, if A fiA = 0 whenever <x,£ s T 
<X p 

and a ̂  3, then the family {A : a e T} is called a 

-partition of Y. 

1.29.Theorem The set of all distinct components of 

a topological space Y forms a partition of Y. 

Proof: For each point y e Y, there is a component 

containing y. Thus, if S is the set of all distinct 

components of Y, then S is a covering for Y. Let 0^, 

Cg e S such that f C£, and suppose that Ĉ flCg / 0. 

Then (by 1.9)» ^2U^2 "̂s connec'ke<l» Since , then 

0 1 is properly contained in O^UCg , thus implying that 

is not a component. This is a contradiction, and, there-

fore, = 0. Hence, S is a partition of Y. 

1.30.Theorem Each component C of a topological 

space Y is closed. 
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Proof; Sine© C is a component, 0 is connected, and, 

thus (by 1.17) CJ is connected. Also, since C is a maximal 

connected set, then C* c: c . However, C c C, and, thus, 

C = C, which implies that C is closed. 

1.31.Theorem If X and Y are topological spaces and 

f:X—5*Y is continuous, then the image of each component of 

X must lie in a component of Y. 

Proof: Let 0 be. a component of X, and let x e C. 

Since f is continuous and C is connected, (by 1.11) f(0) 

is connected. Also, since x e C, then f(x) e f(C). Thus, 

if D is a component of Y containing f(x) then f(C) <= D, 

since D is a maximal connected set in Y containing f(x). 

1.32.Theorem Let B be a connected subset of a topo-

logical space Y. If B is both open and closed, then B is 

a component of Y. 

Proof: Assume that B is not a component of Y. Then 

there is a connected subset C of Y which properly contains 

B. But, since B is both open and closed in Y, B is both 

open and closed in C. Thus (by 1.5), C is not connected, 

a contradiction. 

1.33.Theorem Let A be a subset of a topological space 

Y, where both A and Y are connected. If C is a component of 

Y-A, then Y-C is connected. 

Proof; Assume that Y-C is not connected. Then Y-C = 

PUQ, where P and Q are nonempty, disjoint sets each of which 
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is open in Y-C. Thus, (Y-C) - P = Q and (I-C) - Q = P are 

both closed in Y-C. Also, since C is connected in Y-A c: Y, 

then C is connected in Y. Thus (by 1.19), CUQ and CUP are 

both connected. 

Now, since C <= Y-A, then A c= Y-C. However (by 1.4-), 

P and Q are separated so (by 1.6) A c p or A <= Q. Suppose 

A cr p. Now, PflQ = 0 implies that AnQ = 0. Thus, Q cr Y-A, 

and, since C c Y-A, then CUQ e Y-A. But Q e Y-C, so 

QflC = 0, and, since Q is nonempty, then CUQ is a connected 

subset of Y-A which properly contains C, a contradiction 

of the fact that C is a component of Y—A. Similarly, if 

A t= Q, a contradiction is reached. Therefore, Y-C is connected. 

JL-3i!:«Coro 11 ary If Y is a connected topological space 

of at least two points, then there exist two connected 

subsets M and N, of Yr which are distinct from Y and such 

that MUN = Y and MflH =0. 

Ptoof: Since any set consisting of a single point is 

connected, then Y contains a connected subset A such that 

A is distinct from Y. Let M be a component of Y—A and 

let N = Y-M. Thus, MUN = Y, MflN = 0, M is connected, and 

(by 1.35) N is connected. 

1.35.Definition Let X be a topological space and 

x e X. Then the quasicom-ponent of X containing x is the 

set consisting of x together with all points y of X such 

that X is not the union of two disjoint open sets, one of 

which contains x, and the other y. 
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1.56.Lemma Let X be a topological space, and. let Q 

be a quasicomponent of X. If X - MUN, where M and N are 

nonempty, disjoint open sets, then Q is a subset of either 

H o r N. 

Proof: Assume that Q N and Q 9* N. Then QflM ? 0 

and QflN f 0, which implies that there is a point p e QflM 

and a point q e QflN. Thus, p,q e Q and p e M and q e N, 

which implies (by 1.55) that Q is not a quasicomponent of 

X, a contradiction. 

1.57.Theorem If Q is a quasicomponent of a topo-

logical space X, then Q is closed. 

Proof: Let x e Q and assume that Q is not closed. 

Then Q has a limit point p such that p £ Q. Thus (by 

1.35)i there are two disjoint open sets M and IT such that 

X = MUN and x e M and p e N. But, since p e Q', then N 

contains a point q e Q. Now (by 1.36), Q <= M or Q c: N. 

However, since x s Q and x e M, then Q <= M. Thus, q s M 

and q e N which implies that M and N are not disjoint, 

a contradiction. 

1.58.Theorem Let X be a topological space and x e X. 

If Q is a quasicomponent containing x, then Q is the 

intersection of all sets which are both open and closed 

and contain x. 

Proof: Let {A^ : a £ T} be the family of all sets 

which are both open and closed and contain x. The set 

{A^ : a e T} is nonempty for X e {A^ : a s T}. 
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Part 1 — Let p £ Q. Assume that p fi f) {A : a £ T}. 
U< 

Thus, for some A e (A : a £ T}, p ^ A. This implies 

that p £ X-A, and, since A is closed, X-A is open. Thus, 

X = AU(X-A), where A and X-A are disjoint open sets such 

that x £ A-and p £ X-A. But this implies that Q is not 

a quasicomponent, a contradiction. Thus p e fl{A : a £ T}. 
\A* 

Part 2 — Let p e n{A : a £ T}. Assume that p & Q. 
u» 

Thus, X = MUN, where M and N are disjoint open sets such 

that x e M and p £ N. Now, since N is open, X-N = M is 

closed. Thus, since x e M and M is both open and closed, 

then M e {A : a £ T}. But since p e F, and M and N are 
ct 

disjoint, then p ft M. Thus, p # fl{A : a e T}, which is a 

contradiction. Therefore, peQ. It follows that Q=n{A :asT}. 

1.39.Theorem Each component C of a topological space 

X is a subset of some quasicomponent. 

Proof: Let x £ C, and let Q be a quasicomponent 

containing x. If C = {x}, then immediately 0 <= Q. Suppose 

that y e C, where y / x. Assume that y t Q. Thus (by 1.35)* 

there are two disjoint open sets A and B such that X = AUB 

and x £ A and y £ B. Since A is open, X-A = AUB-A = B is 

closed. Now, y £ BflC, and, since B is both open and closed 

in X, then BHC is both open and closed in C. Also, since 

x ^ B, then x & BflG, which implies that BflO f C. Thus, BHC 

is a proper subset of C, which implies (by 1.5) that 0 is 

not connected. This is a contradiction, since C is a 

component. Thus, y £ Q. It follows that C <= Q. 
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The proof of the next theorem will depend upon the 

maximal principle, which will be stated for reference, and 

also upon a lemma which will follow the statement of the 

maximal principle. 

Maximal Principle Let A be a set partially-ordered 

by a relation <. Let B be a subset of A and assume that 

B is simply-ordered by <. Then there is a subset M of 

A that is simply-ordered by <, contains B, and is not a 

proper subset of any other subset of A with these properties. 

1.40.Lemma Let a and b be points of a compact 

Hausdorff space X, and let {Ha : a e T} be a collection 

of closed sets, and suppose that {Ha : a s 1} is simply-

ordered by inclusion. If each H contains both a and b 
Uf 

and is not the union of two separated sets, one containing 

a and the other containing b, then the intersection 

n { H a : a e T} also has this property. 

Proof: Let H = n : a e T} and assume that H = AUB 

where a e A, b s B and A and B are separated. Thus, A and 

B are closed in H, and, since H is closed, then A and B are 

closed. Therefore, since X is compact, A and B are compact. 

This implies that since AflB = 0, there are two disjoint open 

sets U and V such that A <= u and B <= v. Since a £ A and 

b e B, then a s U and b e Y. Thus, for each a s T, 

a e H HU and b e H flV. 
a a 
Nov/ , let R = H nfi-(UUV)! for each a e T. Since H 

_Ct a Jr cx 

is closed and £x-(UUY)J is closed, then is closed. 
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Assume that R0 = 0 for some M !. Then, HQ = HQ n(UUV) = 

(HQnU) U (HgflV), and, since U and V are disjoint open sets, 

then (HQriU) and (H^nV) are disjoint and open in H0. Thus 

(by 1.4), (H0nV) and (H0nU) are separated, a contradiction. 

(therefore, R / 0 for all a e T. 

Consider any two distinct sets RQ, R s {R : a e T}. 
p q> a J 

Then, Rp = Hp fl [x-(UUV)J, and R^ = H njfc-(UUV)]. Since 

{Ha : a e T) is simply-ordered by inclusion, given 

and H^, one is a subset of the other. Supposing that 

is a subset of H^, then H3 n t-CUUV)] is a subset of 

Hcp H f%~(UUV)Jimplying that {R& : a e 1} is simply-

ordered by inclusion. Therefore, the intersection of any 

finite number of elements of {R : a e T} is an element 
a J 

of {R : a e T} and, consequently, nonempty. Thus, {R : 
** 01 

a e T} satisfies the finite intersection hypothesis, and, 

since X is compact, fl{R : a e T} f 0. But, n{R : a s T} = 

n{Ha n [l-(UUV)J : a e T} = n{Ha : a e T} fl / x-(UUV)J = 
H n [x-(UUY)J. Thus, H fl £x-(UUV)J / 0, which implies that 
H (UUY), a contradiction. 

1.4-1. The or em In a compact Hausdorff space X, every 

quasicomponent is a component. 

Proof: Let Q, be a quasicomponent of X, let q e Q, 

and let C be a component of X containing q. Assume that 

Q f 0. Since (by 1.39) C cr then there must be a point 

x e Q such that x £ C. Now, let {Aft : a e T} be the 
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collection of all closed subsets of X, each of which 

contains both q and x but none of which is the union of 

two separated sets, one containing q and the other con-

taining x. Now, since q,x e Q, X cannot be the union of 

two separated sets, one containing q and the other 

containing x. Thus, X e {A^: a e T}. Let {A^: a e T} 

be partially-ordered by inclusion. By the maximal prin-

ciple, there is a maximal, simply-ordered subcollection 

{Bp: a e S} of {Aa: a e T}. Thus, K = n{Bg: p s S} 

is closed, and (by 1.40) K e {A : a s T}. Assume that 
vX 

K is not connected. Then K = where and are 

separated sets. Since K e {A^ : a e T}, then either 

or must contain both q and x. Suppose q,x e Now, 

is closed in K and since K is closed in X, then is 

closed in X, Also, q and x cannot be separated in 

because, if so, they could be separated in K. Thus, s 

{A : a s T} and K, is a proper subset of K, implying that 
Cu 

{Bp : p s S} is not maximal, a contradiction. Hence, K 

must be connected. But, since q e C and q e K, then (by 1.9) 

CUE is connected. Also, since x e CUE and x ^ C, then CUE 

properly contains C, implying that C is not a maximal 

connected set, a contradiction. Thus, Q = C. 



CHAPTER II 

LOCAL CONNECTEDNESS 

2.1.Definition A topological space Y is locally 

connected if for each point p e X and each neighborhood 

U of p there is a connected neighborhood V" of p such that 

Y <= u. A subset A of Y is locally connected if it is 

locally connected as a subspace of Y. 

2.2„Definition Let Y be a topological space and let 

B be a collection of open sets in Y. Then B is a basis 

for Y if for each open set U and each point x e U there 

is a set V e B such that x e V c: u. 

2.3.Theorem Let Y be a topological space. The 

following three properties are equivalent; 

(1) Y is locally connected 

(2) The components of each open set in Y are open 
t 

sets. 

(3) Y has a basis consisting of connected sets. 

Proof: 

Show that (1) implies (2). 

Let U be open in Y, C be a component of U, and y s C, 

Thus, y s U, and, since Y is locally connected (by 2.1) 

there is a connected neighborhood V of y such that V c u. 

22 
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However, since C is a maximal connected set in U which 

contains y, then V c c . Thus, C is open. 

Show that (2) implies (3). 

Let B be the family of all components of all open 

sets in Y. Let U be open in Y and x e U. If C is a 

component of U containing x, then 0 is open and C e B. 

Thus (by 2.2), is a basis for Y, and B consists of 

connected sets. 

Show that (3) implies (l). 

Let B be a basis for Y, where B consists of connected 

sets. Let x e Y and U be a neighborhood of x. Then (by 2.2) 

there is a Y e B such that x s V c: u. This implies that 

Y is locally connected. 

2.4.Theorem Let X be a locally connected topological 

space. If A is an open subset of X, then A is locally 

connected. 

Proof: Let p e A, and let U be a neighborhood of p 

in A. Since U is open in A and A is open in X, then U is 

open in X. Since X is locally connected, (by 2.1) there 

is a connected neighborhood V of p such that V u. Thus, 

V is also connected and open in A. This implies that A 

is locally connected. 

2.5.Theorem Local connectedness is a topological 

invariant. 
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Proof: Let X and Y be topological spaces where X 

is locally connected, and let f;X —>T be a homeomorphism. 

Let y e Y, and let U be a neighborhood of y in Y. (Chen 

f-^Cy) e f^OJ), and, since fjX-^Y is a homeomorphism, 

then is open in X. Since X is locally connected, 

there is a connected neighborhood V c X such that f (y) e 

V c f~1(U). Thus, f(f"1(y)) s f(V) c: f(f-1(U)),which 

implies that y e f(V) c u. But (by 1.11), f (V) is connected, 

Also, since f:X—^Y is a homeomorphism and V is open in 

X, then f (V) is open in Y. Thus (by 2.1),Y is locally 

connected. 

2.6. Theorem If X is a locally connected Hausdorff 

space, then every quasicomponent is a component. 

Proof; Let Q be a quasicomponent of X, let q e Q, 

and let C be a component containing q. Thus (by 1.39), 

C c Q. Also, since C is a component, (by 1.30) C is 

closed. Thus, X-C is open. Since X is locally connected, 

(by 2.3) C is open. Hence, X = CU(X-C) where C and X-C 

are disjoint, open sets. Therefore (by 1.36), Q c c or 

Q c: X-C. Since QflC f 0, then Q c c. Thus, Q = C. 

2.7.Theorem Let Y be a locally connected topological 

space. If U is a component of the open set G c I, then 

GflFr(U) = 0. 

Proof; Assume that GflFr(U) f 0. Then, there is a 

point x e G n Fr(TJ) = G (1 (U fl Y-U). 
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Suppose x e U. Thus, x t Y-U, and, since x e Y-U, 

then x e (Y-U) . But, since Y is locally connected, 

(by 2.3) U is open and, thus, U contains a point of Y-U, 

a contradiction. 
^ t 

Suppose x & U. Since x e U, then x e U . How, G 

is a neighborhood of x, and, since Y is locally connected, 

(by 2.1) there is a connected neighborhood V of x such 
t 

that V <= G. Thus, since x e U , V contains a point of U 

different from x, and (by 1.9) VUU is connected. But, 

since VUU properly contains U, then U cannot be a component 

of G, a contradiction. Therefore, G n Fr(U) = 0. 

2.8.Theorem Let Y be a locally connected topological 

space, let A <= Y, and let C be a component of A. (Then 

the following properties hold: 
(1) Int(O) = C n Int(A) 

(2) Fr(C) e Fr(A) 

(3) If A is closed, then Fr(C) = 0 0 Fr(A). 

Proof of (1): 

Since C c A, then Int(C) <= Int(A). Thus, since Int(C) 

c= C, then Int(O) «= (C fl Int(A)). Now, to show that C fl 

Int(A) cr Int(C), let y e C n Int(A). Since Int(A) is open 

in Y and Y is locally connected, there is a connected 

neighborhood U of y such that U <= Int(A). This implies 

that y e U <=• A, and, since y s C and 0 is a component of 

A , then U c: C. But U is open,so U <=• Int(C). Thus, y s 

Int(C),implying that C n Int(A) cz Int(C). 
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Proof of (2): 
m*mw inwllw 

Assume that Fr(C) & Fr(A). Then there is a point 

x e Fr(C) such that x 0 Fr(A). This implies (by 1.21) 

that there is a neighborhood U of x such that UnA = 0, or 

U n (Y-A) = 0. Now, x e Fr(C); so UflC / 0, and, since 

O c A , then UflA ? 0. Thus, Ufl(Y-A) = 0. Since Y is 

locally connected, there is a connected neighborhood V of 

x such that V c u. Thus, Vfl(Y-A) = 0, which implies that 

V c A. Now, since x e Fr(C) and x £ V, then V contains 

points in C and points not in C. Thus (by 1.9)? VUC is 

connected. Also, V U C c A and VUC properly contains C, 

which implies that 0 is not a component of A, a contradiction. 

Proof of (3); 

Part i — Let x e Fr(C)„ By part (2), Fr(C) cz Fr(A), 

implying that x s Fr(A). Now, x e Fr(C) = ̂  (1 (I'-C), which 

implies that x e (J. But, since G is a component of A, 

(by l.JO) C is closed in A, and, since A is closed in Y, 

then C is closed in Y, implying that 0 = 0 . Thus, x c 

C n Fr(A). 

Part ii — Let x e C fl Fr(A), and let U be a neighbor-

hood of x. Since x e Fr(A) (by 1.21), U contains a point 

p e A and a point q £ A. Since 0 c A, then q f£ C0 Thus, 

x e C, q 0, and x,q s U, which implies that x e Fr(C). 

Thus, it follows that Fr(C) = C fl Fr(A). 

2.9.Theorem Let Y be a locally connected topological 

space and A c y. If S c A is connected and open in A, 

then S = A fl Cj where C is connected and open in Y. 
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Proof: Since A cz Y and S is open in A, then there 

is an open set U such that S = AMJ. Let p e S and C be 

the component of U containing p. Since p e S c: u and S 

is connected, then S c: C <=• U,which implies that since 

S = AflU,then S = AflC. Finally, since Y is locally connected, 

(by 2.5) C is open. 

2.10.theorem Let Y be a locally connected topological 

space which is not connected. Then, a decomposition of Y 

into two nonempty, disjoint open sets can always be accom-

plished by taking any component as one of the sets, and 

all the rest as the other set. 

Proof; Let C be the collection of all components of 

Y. Let A e 0, and let K = C-{A}. The set K is nonempty 

since Y is not connected, and Y = AU(UK). Since Y is 

locally connected and Y is open, (by 2.3) each component 

in Y is open. Thus, A is open, and UK is open. 

Now, for each B e K, AflB = 0, since A and B are maximal 

connected sets. Thus, A n (UK) = 0. Hence, A and UK are 

nonempty,disjoint open sets that decompose Y. 

2.11<> Theorem Let X be a connected, locally connected 

topological space. If A is a nonempty, closed subset of X, 

then the closure of each component of X-A meets A. 

Proof; Assume that there is a component 0 of X-A 

such that CflA = 0. If X-A = 0, then the proof is trivial. 

Suppose that X-A / 0. Then 0 f 0, and, since A is nonempty 

and C c= X-A, then C/X. Thus, 0 is a proper subset of X. 



28 

Now, since A is closed, X-A is open. Thus, since X 

is locally connected, (by 2.3) 0 is open. Also, since C 

is a component of X-A, then (by 1.30) C is closed in X-A. 

Thus, 0 n (X-A-C) = 0, and, since CDA = 0, then 0 = Cfl 

ĵ (X-A-C)UAj = Cfj(X-C). This implies that C is closed in 

X. Therefore, C is a proper subset of X which is both 

open and closed in X,implying (by 1.5) that X is not 

connected, a contradiction. 

2.12.Theorem Let X be a connected, locally connected 

topological space. If A and B are two disjoint, closed 

subsets of X, then X-(AUB) has a component whose closure 

meets both A and B. 

Proof: If X-(AUB) = 0, the proof is trivial. So, 

suppose that X-(AUB) jt 0. Since A and B are closed, AUB 

is closed, and, thus, (by 2.11) the closure of each com-

ponent of X-(AUB) meets AUB. Assume that if 0 is a 

component of X-(AUB),then either CftA = 0 or CflB « 0. Let 

J and K be the sets of all components of X-(AUB) whose 

closures meet A and B respectively. Let J* = UJ and K*=UK. 

Thus, X—(AUB) — J UK , and, since X—(AUB) 0, either 

J j* 0 or K* / 0. Let the labeling be chosen such that 

J* / 0. 

Now, assume that Bn(J*)' / 0. Thus, there is a point 

p € Bfi(J )1 * Since AflB = 0 and A and B are closed, then 

p £ A . Thus, there is a neighborhood U of p such that 

UflA = 0. Let V be a component of U which contains p. Since 
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X is locally connected, (by 2.3) V is open. Since p e (J')1, 

V contains a point q e J . Thus, q is a point in some 

element C of J, and (by 1.9) VUG is connected. Also, since 

both V and 0 are open, then VUG is open. Therefore, since 

X is locally connected, (by 2.4) TUG is locally connected. 

Also, since B is closed, then Bfl(VUC) is closed in VUC. 

Now, since 0 is a component of X-(AUB) and 0 <= (VUG) 

-B er X-(AUB), then G is a component of (VUG)-B. Thus 

(by 2.11), C f) ĵ n(VUG)~J •/ 0, implying that G f) B f 0, a 

contradiction, since G e J implies that CflA / 0. Thus, 

Bfl(J*)' = 0. Likewise, if K* ̂  0, then Afl(K*)' = 0. 

Now, if K* = 0, then X-(AUB) = J*, and X = (AUJ*)UB. 

Since A and B are disjoint and closed, then A and B are 

separated. Also, since Bn(J')' = 0, Bfl(J'v) = 0, and B = B, 

then Bn(J*) = 0 = B n (J*), implying that B and J* are 
% 

separated. Thus, AUJ' and B are separated, which implies 

(by 1.5) that X is not connected, a contradiction. Like-

wise, if J = 0, a contradiction is reached. 

Suppose that J* / 0 and K* * 0. Then, X = (AUJ*) U 

(BUK ). Assume that J" and K are not separated. Then 

either J (IK / 0 or J n K ' / 0 . Let the labeling be 

chosen such that J* n K* ̂  0. Since J* n K* = 0, then 

(J'f)'nE £ 0. Let p e (J*)'OK*. Thus, p belongs to some 

C s K. Since 0 is open and p s (J )•, then C contains a 
•Sj£ 

point q e J . Thus, q belongs to some D e J. Therefore, 

(by 1.9) CUD is connected, and, since C ̂  D, then C c CUD, 
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^ Jjj£, 

contradicting the maximality of C. Thus, J and K are 

separated. Consequently, (AUJ ) and (BUJ ) are separated^ 

implying (by 1.5) that X is not connected, a contradiction. 

Hence, X-(AUB) has a component whose closure meets 

both A and B. 

Closely related to local connectedness is the idea 

of "connected Jm kleinen." 

2.13-Definition A topological space X is connected 

.in kleinen at a point x provided that for each open set 

U containing x there is an open set V containing x such 

that V c u and, if y is any point in V, then there is a 

connected subset of U containing x and y. 

2.14-.theorem If X is a topological space which is 

locally connected at a point x, then X is connected im 

kleinen at x. 

Proof: Let U be a neighborhood of x. Since X is 

locally connected at x, there is a connected neighborhood 

V of x such that V c u. Thus, if y e V, then V is a 

connected subset of U which contains x and y. This implies 

that X is connected im kleinen at x. 

2.15-Theorem If X is a topological space which is 

connected im kleinen at each point, then X is locally 

connected. 

Proof: Let U be an open set in X, let C be a com-

ponent of U, and let x 6 C. Thus (by 2.13),there is 
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an open set V <= u containing x such that if p e V ? then 

there is a connected subset IL of U,which contains p and 
p ? * 

x. (Thus, V c: u{D : p e V} , and since (by 1.9) U{D : 
P P 

p € V} is connected, then V <= U{D^ : p s V ) cr c . This 

implies that C is open, and (by 2.3) X is locally connected. 

2.16.Theorem Let Y be a topological space such that 

Y = AUB?where A and B are closed. If Y is locally con-

nected and AHB is locally connected, then both A and B 

are locally connected. 

Proof: If either AflB = 0, A «= B, or B c A, then the 

theorem is trivial. Therefore, suppose that AflB ̂  0, A & B, 

and B & A. Let x e A and let U be an open set containing 

x. Since A is closed, A = A = Int(A) U Fr(A). Thus, 

x e Int(A) or x e Fr(A). 

Suppose that x e Int(A). Then x e Ufllnt(A). Since 

U fl Int(A) is open and Y is locally connected, there is a 

connected neighborhood V of x such that V c: u n Int(A). 

Thus, V c= UflA, and, if y e V then x,y e V <= UHA where V 

is connected. 

Suppose that x e Fr(A). Now, Fr(A) <= AflB,for, if 

not, there is a point p s Fr(A) such that p jzf AflB. Thus, 

either p s A-B or p e B-A. If p e A-B, then p e Int(A), 

a contradiction. If p e B-A, then, since p s Fr(A), 

(by 1.21) (B-A) fl A / 0, a contradiction. Thus, x e AflB. 

Since AnB is locally connected, (by 2.14-) AflB is connected 

im kleinen at x. Therefore, there is an open set W c u 
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conta in ing x such t h a t i f y e Wfl(AflB), then the re i s a 

connected s e t M(x,y) <= un(AflB) which conta ins x and y . 

Since Y i s l o c a l l y connected (by 2 .14) Y i s connected 

im k le inen a t x . Thus» the re i s an open s e t V <= V con-

t a i n i n g x such t h a t i f y e V f then the re i s a connected s e t 

N(x,y) c= w which conta ins x and y . 

Now, consider the se t VflA = Vfl[lnt(A) U Fr(A)J = JVfl 

In t (A)J U [v fl Fr(A)J . The s e t VflA i s nonempty,since 

x e VflA. Let t s VflA. Then, e i t h e r t e V n Int(A) or 

t e V n Fr(A). 

Suppose t h a t t s V fl Fr(A). Thus, t e W (1 Fr(A). 

Since Fr(A) c= ATIB, then t s W fl (AflB). Thus, the re i s a 

connected s e t M(x, t ) Ufl(AfiB) c= UflA which conta ins x 

and t . 

Suppose t h a t t e V fl In t (A) . Since t e V, t he r e i s 

a connected s e t N(x , t ) <= w which conta ins x and t . Let C 

be a component of W fl Int(A),which conta ins t . Since 

V fl Int(A) i s open and Y i s l o c a l l y connected } then (by 2 .5 ) 

0 i s open. 

Let K = N(x , t ) fl C and l e t H = [ N ( x , t ) fl Int(A)J-K. 

Now, i t w i l l be shown t h a t Cd[Fr(A) fl N ( x , t ) ] f 0 . Assume 

t h a t Cfl[Fr(A) fl N ( x , t ) ] = 0 . C lea r ly , N(x , t ) = EUHU 

|jKF(x,t) fl F r (A) j U ^N(x , t ) fl (B-A)J. 

Now C <= Wfilnt(A). Since N(x , t ) c w, then N(x , t ) fl 

Int (A) cz Vfllnt(A). Thus, H <= Vnint(A), and CUH «= Vnint(A). 

Now, C i s open i n Wfllnt(A), and, s ince C i s a component 
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of W 0 Int(A), then (by 1.50) C is closed in W fl Int(A). 

Thus, C is both open and closed in CUH,which implies 

(by 1.4-) that C and H are separated. Since K c C, then 

(by 1.6) K and H are separated. 

Now, Cfl["Fr(A) fi N(x,t)J = 0, and, since 0 is open, 

O n Fr(A) fl N(x,tjj = 0. Thus, C and jjFr(A) fl N(x,t)] are 

separated. Since K c C , then (by 1.6) K and ^Fr(A) n N(x, 

t)J are separated. 

Now, C c= w n Int(A) <= int(A) <= A which implies that 

C and B-A are disjoint. Also, C and B-A are both open. 

Thus (by 1.4),C and B-A are separated. Since K c C, then 

(by 1.6) K and B-A are separated. Thus, K and j^(B-A) fl 

N(x,t)] are separated. 

From the above three paragraphs, it is concluded that 

K and HU^N(x,t) fl Fr(A)J U |jCT(x,t) fl (B-A)J are separated. 

Thus, N(x,t) is not connected, a contradiction. Therefore, 

Cfl^Fr(A) fl N(x,t)J j- 0. Let p e Cfl^Fr(A) n N(x,t)J. Since 

N(x,t) <= V, then p e [ w fl Fr(A)] c= [ w fl (AflB)]. Then, 

there is a connected set M(x,p) containing x and p such 

that M(x,p) c: U n ( A r i B ) . Now, C c W fl Int(A) c: U fl Int(A) <= 

UflA. Thus, CUM(x,p) <= UflA. Since p e ( J , p e M(x,p), and 

0 and M(x,p) are connected, then (by 1.8) CUM(x,p) is 

connected. Also, CUM(x,p) contains both x and t. There-

fore, A is connected im kleinen at x, and (by 2.15) A is 

locally connected. Similarly, B is locally connected. 



54 

2.17 Theorem Let T be a locally connected topological 

space, and let A be a subset of Y. If Fr(A) is locally 

connected, then X is locally connected. 

Proof: The space Y = I U and both X and Y~X 

are closed. Also, A fl Y-A = Fr(A),which is locally con-

nected. .Thus (by 2.16) T is locally connected. 

2.18.Theorem A metric space (X,d) is connected im 

kleinen at a point x if and only if, given e > 0, there 

is a number 6 > 0 such that if d(x,y) < 6, then x and y 

lie in a connected set of diameter less than e. 

Proof: 

Part 1 — Let x e X. Suppose that, given e > 0, there 

is a number 6 > 0 such that if d(x,y) < 6, then x and y 

lie in a connected set of diameter less than e. Let U be 

an open set containing x. Then, there is an open set 

W - B(x,e^) such that W <= u. Since e^ > 0, there is a 

number 6^ > 0 such that if d(x,y) < 6^, then x and y 

lie in a connected set of diameter less than e^. 

Let V = B(x,5^), and let p e V. Thus, d(x,p) < 6^, 

and x,p e C^where is a connected set of diameter less 

than e^. Thus, c w c u. 

Assume that V V. Then, there is a point q. e V such 

that q. & W. This implies that d(x,q) < 5^ and d(x,q) > e^. 

Since d(x,q) < 5^, then x,q e where is a connected 

set of diameter less than e^. Thus, d(x,q) < e^, a contra-

diction. Hence, V cr w c U, and (by 2.15) X is connected 

im kleinen at x. 
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Part 2 — Suppose that X is connected in. kleinen at 
e 

x. Let e > 0, and let U = B(x, 3 ). Then, (by 2.13), 

there is an open set V containing x such that V c: u and, 

if y e V, then there is a connected subset of U containing 

x and y. 

Now, there is a 6 > 0 such that the open set W = B(x,6) 

is a subset of V. Let p e W. Then, p e V, and d(x,p) < 6. 

Also, there is a connected subset C of U which contains x 
e 

and p. Since the diameter of U = 2( 3 ) < e and C c U , 

then the diameter of C < e. 

Thus, for e > 0, there is a number 6 > 0 such that if 

d(x,p) < 6, then x and p lie in a connected set C where 

the diameter of C < e. 

\ 

Another concept which is related to local connectedness 

but used only in metric spaces is "property S." 

2.19.Definition A metric space M has property S if 

for every e > 0, M is the union of a finite number of 

connected sets, each of diameter less than e. 

2.20.Theorem If (X,d) is a metric space having property 

S, then X is connected im kleinen at each of its points 

and, hence, is locally connected. 

Proof: Let x s X and let U be an open set containing 

x. There is an open set G = B(x,e) such that G c: u. Since 

X has property S, X = LKCL: i = 1, ..., n} where { C i = 1, 

n} is a collection of connected sets each of diameter 
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e. 
less than 3. Let C be the collection of all elements of 

{CL : i = 1,...,n} whose closure contains x. Now, x e C & 

where C e C. Thus, if CL e C, then x e C OCT, which a d a o 

implies (by 1.8) that is connected. Hence, UC is 

connected. Now, to show that UC c: u, let y £ l)C. Then, 

y e some C. e C, which implies that x s C^. Thus, d(x,y) < 
e, 

3 < e implying that UC c G c u. 

Now, consider the collection D = {C^ : i = 1,...,n}-C. 

Thus, if C. e D, then x £ <37. It follows that x $ U{UT : 
0 * u v 

0. e D}. Hence, x e X-U{C7 : C. e D}, which is open, since 
t) V J 
U{CT : C. e D} is closed. 

V V 
Next, it will be shown that X-U{CT : C. e D} «= UC. 

u U 
Let p e X-U{c7 : C. e D}. Thus, p f£ U{CT : C. e D} s> 

tJ t) O O 
U{Ĉ j : C^ e D} » UD. Since p e X = U{C^: i = l,...,n} = 

(UC) U (UD) and p £ UD, then p e UC. Hence, X-U{C7:C. s D} UC. 
tJ d 

In summary, X-U{C7 : C. e D} is an open set containing 
U u 

x, and X-U{C7 : C. e D} <= UC cr u where UC is connected. 
%J U 

Thus X is connected im kleinen at x and hence (by 2.3) 

is locally connected. 

2.21.Theorem If X is a compact, locally connected 

metric space, then X has property S. 
e. 

Proof: Let e > 0,.let x e X, and let U = B(x,3). 
JL 

Since X is locally connected, there is a connected neigh-

borhood V of x such that V <= U . Thus, the diameter of 
•in. A A 

V is less than or equal to the diameter of U , which is 
x 2 x 

less than or equal to $ e. The collection {V : p e X} 
r 
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of all such connected neighborhoods forms an open cover 

for X, and, since X is compact, {Vp : p s X} has a finite 

subcover for X. Thus, X has property S. 

2.22.Theorem Let (X,d) be a metric space and let M 

be a subset of X such that M has property S. If IT is a 

subset of X such that M c N <= H, then N has property S. 

Proof: Let e > 0. Then M = U ^ : i = 1,... ,n}, where 

{C^: i=l,...,n} is a collection of connected sets, each 

of diameter less than e. Consider the set U{NflC^:i=l, 

...,n}. Clearly, U{NfiC^: i = l,...,n} c N. Now, if p e N, 

then, since N <= M = U{C^: i = l,...,n}, p e for some 

1 < k < n. Thus, p e U{NflC^: i = 1,... ,n}, which implies 

that u{NflĈ ": i = 1,...,n}. Therefore, N = U{Nflc7: i = 

1,... ,n}. Next, it will be shown that c (jJnN <= "SJ for 

each 1 < o < n. To show this, let p e C.. Thus, p e C.. 

Also, p e M, since M = U ^ : i = 1,... ,n}, and this implies 

that p e N, since M «= N. Thus, p e Cj fl N, implying that 

C. C CT (1 N, and, clearly, C7 fl N c= c7. Thus (by 1.17). 
0 D 3 « 
CT n N is connected. Also, since the diameter of C. < e, 
0 « 
then the diameter of C. < e, which implies that the diameter 

J 
of cT fl N < e. Thus, N has property S. 

0 

Another concept relating to local connectedness which 

applies only to metric spaces is "uniform local connectedness." 

2.23.Definition A metric space (X,d) is uniformly 

locally connected provided that, given e > 0, there is a 



38 

number 6 > 0, independent of position, such that any two 

points x and y with d(x,y) < 6, lie in a connected set of 

diameter less than e. 

2.24.Theorem If (X,d) is a compact, locally connected 

metric space, then (X,d) is uniformly locally connected. 

Proof: Let e > 0. Since X is compact and locally 

connected, (by 2.21) X has property S. Thus, X = U{Ci : 

i = 1,,..,n},where {C. : i = 1,...,n) is a finite collection 
e. 

of connected sets, each of diameter less than 3* If for 

each pair (Ĉ .,0̂ ),,where Ĉ .,Ĉ  e {0̂  : i = 1,... ,n} , fl 

f£ 0, then the proof is immediate. Therefore, assume 

that the collection D = £(0^,0^) : C^,C^ e {Ĉ :i=l,...,n} 

and C£ fl = 0] is nonempty. Thus, if 6^^ = dCG^C^) 

for all (G^cp e D, then 6k ̂  > 0. Since D is finite, 

the collection of all such is finite. Let 6 be one 

half the minimum of this collection. Thus, 6 > 0. How, 

let x,y be any two points in X such that d(x,y) < 6. Since 

X = u(Ci: i=l,...»n}, then there are a Ga>
c
b e {Ĉ jisl,...,n} 

such that x e C& and y e Cb. If c a =
 c
b> then, clearly, 

x and y lie in a connected set of diameter less than e . 

Suppose that C& 7* Cfe. Since d(x,y) < 6, then d(Ca,Cb) < 6. 

This implies that (G
a>

c
b) ̂  D,which, in turn, implies that 

C°~ fl CT ̂  0. Since C and C, are connected, (by 1.17) 
& D 8. D 

C~ and <5̂  are connected. Thus, (by 1.9),CaUCb is connected. 

Also, since the diameters of CR and < 3, the diameters 
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_ _ _ _ _ e _ _ e, ©. 
of 0 and C. < Thus, the diameter of C UC. < 5 + 3 
2e a 

5 < e. Hence, X is uniformly locally connected. 



CHAPTER III 

PATH-CONHECTEDNESS 

5.1.Definition A path in a topological space Y is 

a continuous mapping f:I ^Y, where I is the unit interval. 

The point f(0) e Y is called the initial (or starting) 

point, and f (l) s Y, the terminal (or end) point of the 

path f, and f is said to run from f(0) to f(l), or (join 

f(0) to f(l). 

It will be noted that if f is a path running from f(0) 

to f(l), then the mapping g:I-**Y defined by g(t) = f(l-t), 

where t 6 I, is a path running from f(l) to f(0). 

5.2.Definition A topological space Y is path-connected 

if each pair of its points can be joined by a path. 

5.Theorem Let Y be a topological space, and let 

yQ e Y. Y is path-connected if and only if each y e Y can 

be joined to yQ by a path. 

Proof: 

Part 1 — Let Y be path-connected. Thus, each y e Y 

can be joined to yQ by a path. 

Part 2 — Suppose that each y e Y can be joined to yQ 

by a path. Let a,a' e Y. Then, there is a path f : I — Y 

joining a to yQ. Thus, f(0) = a, and f(l) = yQ. Also, there 

40 
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is a path joining a* to yQ, which implies there is a path 

Y joining yQ to a
f. Thus, g(0) = yQ, and g(l) = a'. 

Now, let A = {t: 0 < t < 1/2}, B = {t: 1/2 < t < 1} 

and h(t) = I * T h u s' h m a p s 1 i n t° Y' 

h(0) = f(0) '» a, and h(l) = g(l) = a'. 

Next, it will be shown that h is continuous. Let 

q s K(I), and let U be a closed set containing q. Since 

(hjA)(t) = f(2t) for all t e A and (h|B)(t) = g(2t~l) for 

all t e B, then hjA and h|B are continuous on A and B 

respectively. Now, h""1(U)nA / 0 or h (̂U)flB ̂  0 . Let the 

labeling be chosen such that h ^(U)nA £ 0 . Clearly, 

h""1(U)nA = (h|A)~1(U)flA = (hjA)"1 [ u fl (h|A)(A)] . Since 

(h|A)(A) c T and U is closed in T, then UD(h|A)(A) is 

closed in (h|A)(A). Since hiA is continuous, then 

(hlA)" 1 [un(h |A)(A)] is closed in A. But, since A is 

closed in X, then (hjA)""1 [un(h!A)(A)] is closed in I. 

Thus, h""1(U)flA is closed in I. 

Suppose that h ^(U)nB = 0 . Then, h " (̂U) = h (U)flA, 

which is closed in I. 

Suppose that h (̂U)flB ̂  0. Then, h "̂(U)nB = (h|B) 

[un(h|B)(B)] , which is closed in I. Thus, h" 1^) = [h"1 

(U)nA] U [h""1(U)flB], implying that h~̂ (TJ) is closed, since 

h~1(U)nA and h~1(U)nB are both closed. Consequently, h 

is continuous. 

Therefore, h is a path joining a to a', implying that 

X is path-connected. 
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The union of any family of path-connected 

spaces having a point in common is path-connected. 

Proof: Let {Y^; a e T} be a family of path-connected 

spaces so that .for each a e T, yQ e Y^. Thus, yQ e
 u( Y

a
: 

a e T} „ How, let y e U{Y : a e T} . Thus, for some s e T, 
u» 

y e Yp, and, since yQ e Y^ and Y^ is path-connected, there 

is a path joining y to y . Therefore (by 3.3)»U{Y :a s T} 
^ oc 

is path-connected. 

3>5.Definition A subset C of a topological space Y 

is called a path component of Y if 0 is a maximal path-

connected set in Y'. 

3.6.Theorem Each path-connected topological space Y 

is connected. 

Proof; Let yQ e Y. Now, if y e Y, then, since Y is 

path-connected, y can be joined to y by a path f :I Y. 
y 

Thus, yc»y
 e fy(I). Also, since fy.il Y is continuous 

and I is connected, then (by 1.11) f (I) is connected. 
v 

Thus, yQ e fx(I) for all x e Y, and (by 1.9) U{fx(I):x e Y} 

= Y is connected. 

?«,Corollary Each path component is connected. 

3.8.Theorem The following two properties of a topo-

logical space Y are equivalent: 

(1) Each path component is open (and, therefore, 

also closed). 

(2) Each point of Y has a path—connected neighborhood. 



43 

Proof: 

Part 1 — Suppose that each path component is open. 

Then, if y e Y and C is a path component containing y, then 

C is a path-connected neighborhood of y. 

Part 2 — Suppose that each point of Y has a path-

connected neighborhood. Let C be a path component in X, 

and let x e C. Thus, x has a path-connected neighborhood 

U, and, since C is a maximal path-connected set containing 

x, then x e U c= c , which implies that C is open. 

Since X-C is the union of the remaining path components 

in Y, each of which is open, then X-C is open implying 

that C is closed. 

3.9.Theorem If each path component of a topological 

space Y is open and closed, then the path components of Y 

coincide with the components of Y, 

Proof: 

Part 1 — Let C be a path component of Y. Thus, C is 

open and closed, and (by 3.7) C is connected. Then (by 1.4) 

there is no connected set which properly contains C, implying 

that C is a component of Y. 

Part 2 — Let 0 be a component of Y, let y e C, and let 

D be a path component of Y containing y. Since D is path-

connected, (by 3.6) D is connected, and, thus, D <= c since 

C is a maximal connected set containing y. But D is both 

open and closed, so (by 1.4) D = C. 
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5.10.Theorem A topological space Y is path-cormected 

if and only if it is connected, and each y e Y has a 

path-connected neighborhood. 

Proof: 

Part 1 — Suppose that Y is path-connected. Then 

(by 3»6) Y is connected. Also, if y s Y, then Y is a path-

connected neighborhood of y. 

Part 2 — Suppose that Y is connected and each y s Y 

has a path-connected neighborhood. Then (by 3.8), each 

path component C is both open and closed. If C ̂  Y, then 

C is a proper subset of Y, which implies (by 1.4) that Y 

is not connected, a contradiction. Thus, Y = C, implying 

that Y. is path-connected. 

3.11.Theorem The continuous image of a path-connected 

topological space is path-connected. 

Proof: Let X and Y be spaces where X is path-

connected, and let f : X — Y be continuous. Thus, f:X~*~f(X) 

is continuous. Let yQ,y1 e f(X). Thus, f*"1^) and 

f"*1(yi) are nonempty subsets of X. Let p e f"*'J"(y0) and 

q e f (y^). Since X is path-connected, there is a path 

g:I-*~X joining p to q. Therefore, g is continuous, 

g(0) = p and g(l) = q, which implies that (f«g)(0)~f(g(0))= 

f(p)=yD and (f"g)(l) = f(g(l)) = f(q) 

= y-̂ . Also, since 

and f:X—5»-f(X) are continuous, then (f«g) :I—»-f (X) 

is continuous, and, therefore, is a path which joins yQ to 

yx• Thus, f(X) is path-connected. 
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