## ABRAHAM MODEL CORRELATIONS FOR TRANSFER OF NEUTRAL MOLECULES

 AND IONS TO SULFOLANETimothy W. Stephens ${ }^{\text {a }}$, Nohelli E. De La Rosa ${ }^{\text {a }}$, Mariam Saifullah ${ }^{\text {a }}$, Shulin Ye ${ }^{\text {a }}$, Vicky Chou ${ }^{\text {a }}$, Amanda N. Quay ${ }^{\text {a }}$, William E. Acree, Jr. ${ }^{\text {a }^{*}}$ and Michael H. Abraham ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, 1155 Union Circle \# 305070, University of North Texas, Denton, TX 76203-5017 (U.S.A.)
${ }^{\mathrm{b}}$ Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (U.K.)


#### Abstract

Data have been compiled from the published literature on the partition coefficients of solutes and vapors into anhydrous sulfolane. The logarithms of the water-to-sulfolane partition coefficients, $\log P$, and gas-to-sulfolane partition coefficients, $\log K$, were correlated with the Abraham solvation parameter model. The derived correlations described the observed $\log P$ and $\log K$ values for solutes dissolved in sulfolane to within average standard deviations of 0.14 log units or less. The $\log P$ correlation was extended to include the partition of ions by inclusion of a cation-solvent and an anion-solvent term.


## Key words and phrases

Partition coefficients, sulfolane, nonelectrolyte solutes, ionic solutes, Abraham model correlations
*To whom correspondence should be addressed. (E-mail: acree@unt.edu)

## 1. Introduction

Removal of aromatic hydrocarbons (benzene, methylbenzene, ethylbenzene and dimethylbenzenes) from aliphatic hydrocarbon mixtures (hexanes, heptanes and octanes) is a challenging chemical separation problem encountered in petrochemical processing. Distillation is often not a viable separation method due to the narrow range covered by the boiling point temperatures of the mixture components. Moreover, several combinations of aromatic and aliphatic hydrocarbons form azeotropic mixtures. Liquid-liquid extraction has proved to be a convenient means for aromatic hydrocarbon removal from such mixtures containing up to $65 \%$ aromatic hydrocarbon content by mass. Extractive distillation is used for mixtures containing 65 $\%$ to $90 \%$ aromatic hydrocarbon content, and for larger amounts of aromatic compounds, one employs methods based on azeotropic distillation. Sulfolane, N-methylpyrrolidin-2-one, ethylene glycol, propylene carbonate and other polar organic solvents have served as the extraction solvent or as an additive to prevent azeotrope formation. The published chemical and engineering literature [1-14] report experimental liquid-liquid equilibrium data for ternary, quaternary and quinary aromatic hydrocarbon(s) + aliphatic hydrocarbon(s) + polar organic solvent mixtures to facilitate the design of extraction processes for aromatic hydrocarbon removal. Choice of the extraction solvent is an important design consideration.

The solvation parameter model of Abraham [15-17] is an useful approach for quantifying the solubilizing ability of organic solvents. The method relies on two linear free energy relationships (LFERs); the first for describing the solute water-to-organic solvent partition coefficient, P ,

$$
\begin{equation*}
\log P=\mathrm{c}+\mathrm{e} \cdot \mathbf{E}+\mathrm{s} \cdot \mathbf{S}+\mathrm{a} \cdot \mathbf{A}+\mathrm{b} \cdot \mathbf{B}+\mathrm{v} \cdot \mathbf{V} \tag{1}
\end{equation*}
$$

and the second for describing the solute partition coefficient into the organic solvent from the gas phase, K,

$$
\begin{equation*}
\log K=\mathrm{c}+\mathrm{e} \cdot \mathbf{E}+\mathrm{s} \cdot \mathbf{S}+\mathrm{a} \cdot \mathbf{A}+\mathrm{b} \cdot \mathbf{B}+\mathrm{l} \cdot \mathbf{L} \tag{2}
\end{equation*}
$$

The independent variables, or solute descriptors, in Eqns. 1 and 2 are properties of the neutral solutes as follows: $[9,10] \mathbf{E}$ is the solute excess molar refraction in $\mathrm{cm}^{3} \mathrm{~mol}^{-1} / 10, \mathbf{S}$ is the solute dipolarity/polarizability, $\mathbf{A}$ is the overall solute hydrogen bond acidity, $\mathbf{B}$ is the overall solute hydrogen bond basicity, $\mathbf{V}$ is McGowan's characteristic molecular volume in $\mathrm{cm}^{3} \mathrm{~mol}^{-1} / 100$ and L is the logarithm of the gas to hexadecane partition coefficient measured at 298 K . The regression coefficients and constants (c, e, s, a, b, vand l) are obtained by multiple linear regression analysis of experimental partition coefficient data for a specific biphasic system. For any fully characterized partitioning system (those with calculated values for the equation coefficients), further values of $\log P$ and $\log K$ can be estimated with known values for the solute descriptors. To date, we have reported equation coefficients for more than 70 different organic solvents [17], including several of the polar organic solvents (ethylene glycol [18], propylene carbonate [18], N -methylpyrrolidin-2-one [19] and N -formylmorpholine [19]) in the separation of aromatic hydrocarbons from aliphatic hydrocarbons.

We recently extended our Abraham model $\log P$ equations to include partition coefficients of ions and ionic species [18, 20-24]:

$$
\begin{equation*}
\log P=\mathrm{c}+\mathrm{e} \cdot \mathbf{E}+\mathrm{s} \cdot \mathbf{S}+\mathrm{a} \cdot \mathbf{A}+\mathrm{b} \cdot \mathbf{B}+\mathrm{v} \cdot \mathbf{V}+\mathrm{j}^{+} \cdot \mathbf{J}^{+}+\mathrm{j}^{-} \cdot \mathbf{J}^{-} \tag{3}
\end{equation*}
$$

we use the latter term to describe anions derived from acids by loss of a proton, and cations derived from bases by acceptance of a proton. The descriptors for anions and cations are $\mathbf{E}, \mathbf{S}, \mathbf{A}$, $\mathbf{B}$, and $\mathbf{V}$ on exactly the same scales as for neutral molecules together with an additional descriptor, $\mathbf{J}^{\mathbf{}}$, for anions and an additional descriptor, $\mathbf{J}^{+}$, for cations. The complementary
solvent coefficients in Eqn. 3 are $\mathrm{j}^{-}$and $\mathrm{j}^{+}$. For anions $\mathrm{j}^{+}=0$, for cations $\mathrm{j}^{-}=0$, and for neutral solutes $\mathrm{j}^{+}=\mathrm{j}^{-}=0$ so that Eqn 3 then reverts to Eqn 1 . Note that the coefficients $\mathrm{c}, \mathrm{e}, \mathrm{s}, \mathrm{a}, \mathrm{b}$ and v in Eqn 3 are taken to be exactly the same as the coefficients in the corresponding Eqn 1, so that only one new coefficient, $\mathrm{j}^{+}$, has to be determined for cations and only one new coefficient, $\mathrm{j}^{-}$, has to be determined for anions. Numerical values of $\mathrm{j}^{+}$and $\mathrm{j}^{-}$have been determined for the partition of ions from water to the solvents methanol, ethanol, 1-propanol, 1-butanol, 1-hexanol, 1-octanol, 2-propanol, tert-butanol, ethylene glycol, 1,2-dichloroethane, tetrahydrofuran, propylene carbonate, propanone, dimethyl sulfoxide, formamide, N-methylpyrrolidin-2-one, acetonitrile, and nitrophenyl octyl ether so far [18, 20-24]. Anion coefficients have been reported also for $\mathrm{N}, \mathrm{N}$-dimethylformamide, $\mathrm{N}, \mathrm{N}$-dimethylacetamide, nitrobenzene and nitromethane. [20]

Sulfolane is an important extraction solvent for which we have now developed an Abraham model correlation. The aim of the present work is to collect experimental data from the published literature on the partition coefficients of neutral solutes from water and from air into sulfolane, and to derive Abraham model $\log P$ and $\log K$ correlations. As part of the present work we have calculated the $\mathrm{j}^{+}$and $\mathrm{j}^{-}$equation coefficients for sulfolane from published single ion transfer properties computed from electrochemical measurements and solubility data.

## 2. Data Sets and Computation Methodology

Most of the experimental data that we were able to retrieve from the published literature pertained to the Raoult's law infinite dilution activity coefficient, $\gamma_{\text {solute }}{ }^{\infty}$, for solutes dissolved in anhydrous sulfolane [25-31]. The activity coefficients were determined by an inverse gas chromatographic method from retention time measurements of solutes on a liquid sulfolane stationary phase. Measurements were performed at 298 K or at slightly higher temperatures. In
the latter case, each research group made measurements at two or more column temperatures. The measured $\gamma_{\text {solute }}{ }^{\infty}$ values were extrapolated back to 298 K assuming a $\ln \gamma_{\text {solute }}{ }^{\infty}$ versus $1 / \mathrm{T}$ linear relationship. Henry's law constants were also found for carbon dioxide [32, 33], nitrous oxide [32], sulfur dioxide [34], ethane [35] and hydrogen sulfide [33] in sulfolane.

In order to apply the Abraham model, the infinite dilution activity coefficients and Henry's law constants needed to be converted to $\log K$ values through Eqns. 4 and 5

$$
\begin{align*}
& \log K=\log \left(\frac{R T}{\gamma_{\text {solute }}^{\infty} P_{\text {solute }}{ }^{o} V_{\text {solvent }}}\right)  \tag{4}\\
& \log K=\log \left(\frac{R T}{K_{\text {Henry }} V_{\text {solvent }}}\right) \tag{5}
\end{align*}
$$

or to $\log P$ values for partition from water to solvent through Eqn. 6 where $K w$ is the gas to water partition coefficient.

$$
\begin{equation*}
\log P=\log K-\log K w \tag{6}
\end{equation*}
$$

In Eqns. 4 and 5, R is the universal gas constant, T is the system temperature, $\mathrm{P}_{\text {solute }}{ }^{\circ}$ is the vapor pressure of the solute at T , and $\mathrm{V}_{\text {solvent }}$ is the molar volume of the solvent. The calculation of $\log$ $P$ requires knowledge of the solute's gas phase partition coefficient into water, $K_{w}$, which is available for all of the solutes being studied [36-38]. The experimental $\log K$ and $\log P$ values at 298 K for anhydrous sulfolane are listed in Table 1, along with the corresponding literature references. As an informational note, the calculated $\log P$ values for anhydrous sulfolane refer to a hypothetical partition coefficient. Even though hypothetical, these $\log P$ correlations are still quite useful in that predicted $\log P$ values can be used to estimate the solute's infinite dilution activity coefficient or molar solubility in anhydrous sulfolane for those solutes for which the solute descriptors are known

During our search of the published literature we also found experimental solubility data for several crystalline carboxylic acid solutes (benzoic acid, 2-methylbenzoic acid, 3methylbenzoic acid, 2-chlorobenzoic acid, 4-chlorobenzoic acid, 2-nitrobenzoic acid, 4nitrobenzoic acid and 4-aminobenzoic acid) dissolved in both anhydrous sulfolane and in water [39]. In the case of crystalline solutes, the partition coefficient between water and the anhydrous organic solvent is calculated as a solubility ratio

$$
\begin{equation*}
P=C_{\mathrm{S}} / C_{\mathrm{W}} \tag{7}
\end{equation*}
$$

of the solute's molar solubilities in the organic solvent, $C_{\mathrm{S}}$, and in water, $C_{\mathrm{w}}$. The calculated $\log$ $P$ value is converted to $\log K$ through Eqn. 6 .

Molecular descriptors for all of the compounds considered in the present study are also tabulated in Table1. The tabulated values came from our solute descriptor database, and were obtained using various types of experimental data, including water-to-solvent partitions, gas-tosolvent partitions, solubility and chromatographic data. [15-19]

## 3. Results and Discussion

We have assembled in Table $1 \log K$ and $\log P$ values for the partitioning of 77 solutes between the gas phase and sulfolane, and between water and sulfolane. The solutes considered are mostly simple volatile aliphatic compounds, plus eight substituted benzoic acid derivatives. Numerical values of the solute descriptors covered by the data set range from: $\mathbf{E}=-0.060$ to $\mathbf{E}=$ 1.075; $\mathbf{S}=0.000$ to $\mathbf{S}=1.650 ; \mathbf{A}=0.000$ to $\mathbf{A}=0.940 ; \mathbf{B}=0.000$ to $\mathbf{B}=0.600 ; \mathbf{V}=0.281$ to $\mathbf{V}=$ 1.518; and $\mathbf{L}=-0.836$ to $\mathbf{L}=5.916$. Regression analysis of the tabulated experimental values in Table 1 gave the following two mathematical expressions:
$\log P=0.147(0.123) \mathbf{E}+0.601(0.106) \mathbf{S}-0.318(0.112) \mathbf{A}-4.541(0.116) \mathbf{B}+3.290(0.065) \mathbf{V}$

$$
\begin{equation*}
\left(\mathrm{N}=77, \mathrm{SD}=0.140, \mathrm{R}^{2}=0.989, \mathrm{~F}=1269\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\log K= & -0.414(0.040)+0.084(0.109) \mathbf{E}+2.396(0.085) \mathbf{S}+3.144(0.093) \mathbf{A}+0.420(0.095) \mathbf{B} \\
& +0.684(0.014) \mathbf{L}  \tag{9}\\
& \left(\mathrm{N}=77, \mathrm{SD}=0.115, \mathrm{R}^{2}=0.997, \mathrm{~F}=4486\right)
\end{align*}
$$

The c-coefficient in the $\log P$ correlation was found to be negligible $(\mathrm{c}=-0.008)$, and was removed from the final correlation. All regression analyses were performed using SPSS statistical software. The standard errors in the calculated coefficients are given in parenthesis. Here and elsewhere, N corresponds to the number of solutes, R denotes the correlation coefficient, SD is the standard deviation and F corresponds to the Fisher F-statistic. Both correlations describe the experimental water-to-sulfolane partition coefficient data (Eqn. 8) and gas-to-sulfolane partition coefficient data (Eqn. 9) to within a standard deviation of $\mathrm{SD}=0.14$ $\log$ units for experimental values that cover ranges of about 6.0 and $11.2 \log$ units, respectively. Graphical comparisons of predicted versus observed values are given in Figures 1 and 2.

We note that the descriptor $\mathbf{E}$ plays little part in the analyses in the two correlations, and the major cross-correlation amongst the other descriptors is that between $\mathbf{S}$ and $\mathbf{A}$ with $\mathrm{R}^{2}=$ 0.472. In the correlation for $\log \mathrm{K}$, when the term $\mathrm{s} \cdot \mathbf{S}$ or $\mathrm{a} \cdot \mathbf{A}$ is removed the equation collapses and the F-statistic decreases from 4486 to 466 or 323 . Hence both $\mathbf{S}$ and A must be retained. The situation is different for the correlation for $\log \mathrm{P}$. If the term $\mathrm{s} \cdot \mathbf{S}$ is removed, the F-statistic decreases from 1262 to 1094 , but if the term a $\cdot \mathbf{A}$ is removed the F-statistic increases to1421; then if the term e•E is also left out, F increases to 1918 , the resulting equation being,
$\log \mathrm{P}=0.022(0.060)+0.585(0.059) \mathbf{S}-4.614(0.100) \mathbf{B}+3.288(0.064) \mathbf{V}$
$\mathrm{N}=76, \mathrm{SD}=0.152, \mathrm{R}^{2}=0.987, \mathrm{~F}=1918.2$

Although this is statistically the best equation for $\log \mathrm{P}$, as judged by the F -statistic, it is very useful to retain all five descriptors for purposes of comparison with equations for other processes.

In order to assess the predictive ability of Eqns. 8 and 9 we divided the data points into a training set and a test set by allowing the SPSS software to randomly select half of the experimental data points. The selected data points became the training sets and the remaining compounds that were left served as the test sets. Analysis of the experimental data in the $\log P$ and $\log K$ training sets gave:
$\log P=0.113(0.184) \mathbf{E}+0.742(0.162) \mathbf{S}-0.397(0.169) \mathbf{A}-4.634(0.172) \mathbf{B}+3.286(0.042) \mathbf{V}$

$$
\begin{equation*}
\left(\mathrm{N}=39, \mathrm{SD}=0.144, \mathrm{R}^{2}=0.997, \mathrm{~F}=189.0\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\log K= & -0.435(0.050)+0.233(0.153) \mathbf{E}+2.290(0.141) \mathbf{S}+3.182(0.135) \mathbf{A}+0.467(0.135) \mathbf{B} \\
& +0.694(0.017) \mathbf{L}  \tag{12}\\
& \left(\mathrm{N}=39, \mathrm{SD}=0.110, \mathrm{R}^{2}=0.997, \mathrm{~F}=2484\right)
\end{align*}
$$

There is little difference in the equation coefficients for the full dataset and the training dataset correlations, thus showing that both training sets of compounds are representative samples of the total $\log P$ and $\log K$ data sets. The derived training set equations were then used to predict the respective partition coefficients for the compounds in the test sets. For the predicted and experimental values, we found $\mathrm{SD}=0.141$ (Eqn. 11) and $\mathrm{SD}=0.136$ (Eqn. 12), AAE (average
absolute error $)=0.115($ Eqn. 11 $)$ and $\mathrm{AAE}=0.101($ Eqn. 12 $)$, and $\mathrm{AE}($ average error $)=-0.045$ (Eqn. 11) and $\mathrm{AE}=-0.037$ (Eqn. 12). There is therefore little bias in using Eqns. 11 and 12 with AE equal to -0.045 and -0.037 log units. The training and test set analyses were performed three more times with similar results.

Now that we have the coefficients in Eqn 8 for partition between water and sulfolane of neutral solutes, we can attempt to fit $\log P$ values for single ions to an extension of Eqn 8 using just the two additional terms $\mathrm{j}^{+} \cdot \mathbf{J}^{+}$and $\mathrm{j}^{-} \cdot \mathbf{J}^{-}$in Eqn 3. Single ion values based on the convention that $\log P\left(\mathrm{Ph}_{4} \mathrm{P}^{+}\right.$or $\left.\mathrm{Ph}_{4} \mathrm{As}^{+}\right)=\log P\left(\mathrm{Ph}_{4} \mathrm{~B}^{-}\right)$have been determined by Cox et al. [40] and reviewed by Marcus [41]. The former are the more consistent and are the ones we shall use. These single ion values refer to 303 K rather than to 298 K [42]. Single ion enthalpies of transfer are no more than about $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$ [40], and our inclusion of the 303 K data in the data set should lead to an error of no greater than 0.06 in $\log P$, probably less than the experimental error. Ludwig et al. [43] have determined $\mathrm{pK}_{\mathrm{a}}$ values for a large number of benzoic acids in sulfolane and in water. These can be used to calculate values of $\log P$ for the benzoate ions, $\log \mathrm{P}\left(\mathrm{A}^{-}\right)$, through Eqn 13,
$\log P\left(\mathrm{~A}^{-}\right)=\log P(\mathrm{HA})-\log P\left(\mathrm{H}^{+}\right)+\mathrm{pK}_{\mathrm{a}}(\mathrm{aq})-\mathrm{pK}_{\mathrm{a}}(\mathrm{s})$

In Eqn 13, $P(\mathrm{HA})$ and $P\left(\mathrm{H}^{+}\right)$are the water to sulfolane partition coefficients of the neutral benzoic acid and of $\mathrm{H}^{+}, \mathrm{pK}_{\mathrm{a}}(\mathrm{aq})$ is the acid dissociation constant in water, and $\mathrm{pK}_{\mathrm{a}}(\mathrm{s})$ is the acid dissociation constant in sulfolane. $\log P(\mathrm{HA})$ can be estimated from Eqn 8 and known descriptors for the neutral benzoic acids, but $\log P\left(\mathrm{H}^{+}\right)$is not well established. We therefore
used $\log P\left(\mathrm{H}^{+}\right)$as a fitting parameter, and with $\log P\left(\mathrm{H}^{+}\right)=-11.55$ we obtained the results shown in Table 2. With $\mathrm{j}^{+}=-1.200$ and $\mathrm{j}^{-}=-0.792$ we could fit $41 \log P$ values for ions with $\mathrm{SD}=0.225$ log units; as noted above, all the other coefficients are the same as those in Eqn 9. Of the 33 benzoic acids studied by Ludwig et al. [43], we left out benzoic acid itself and 4-nitrobenzoic acid which were outliers by 0.84 and $0.80 \log$ units respectfully. Our fitted value of -11.55 for $\log P\left(\mathrm{H}^{+}\right)$compares reasonably well with the only literature value available of $-12.08 \log$ units [43]. Use of the latter would not affect the results significantly. For the five anions (other than the benzoates) in Table 2, the standard deviation between observed and calculated values is 0.29 with $\log P\left(\mathrm{H}^{+}\right)=-11.55$ and 0.50 with $\log P\left(\mathrm{H}^{+}\right)=-12.08$. We use our fitted value to get the final result for transfer of neutral molecules, ions and ionic species from water to sulfolane,
$\log P=0.147 \mathbf{E}+0.601 \mathbf{S}-0.318 \mathbf{A}-4.541 \mathbf{B}+3.290 \mathbf{V}-1.200 \mathbf{J}^{+}-0.792 \mathbf{J}^{-}$

The present study shows that the correlations derived from the Abraham solvation parameter model describe the transfer of neutral molecules and ions into sulfolane from both water and from the gas phase to within standard deviations of $0.14 \log$ units (neutral molecules) and $0.22 \log$ units (ions), respectively. The derived correlations are expected to provide reasonable predictions of $\log P$ and $\log K$ for those solute molecules and ions for which Abraham solute descriptors are known, provided that the molecule's (or ion's) solute descriptors fall within the range of values used in deriving Eqns. 8, 9 and 14.

## References

[ 1] J. Mahmoudi, M. N. Lotfollahi, J. Chem. Thermodyn. 42 (2010) 466-471.
[2] D. C. Chen, H. Q. Ye, H. Wu, J. Chem. Thermodyn. 39 (2010) 1571-1577.
[ 3] D. C. Chen, H. Q. Ye, H. Wu, J. Chem. Thermodyn. 39 (2007) 1182-1188.
[ 4] D. C. Chen, H. Q. Ye, H. Wu, Fluid Phase Equilibr. 255 (2007) 115-120.
[ 5] J. Mahmoudi, M. N. Lotfollahi, J. Chem. Thermodyn. 42 (2010) 466-471.
[ 6] R. S. Santiago, M. Aznar, Fluid Phase Equilibr. 259 (2007) 71-76.
[ 7] R. S. Santiago, M. Aznar, Fluid Phase Equilibr. 253 (2007) 137-141.
[ 8] I. Ashour, S. I. Abu-Eishah, J. Chem. Eng. Data 51 (2005) 1717-1722.
[ 9] R. Rappel, L. M. Nelson de Gois, S. Mattedi, Fluid Phase Equilibr. 202 (2003) 263-276.
[10] A. B. S. H. Salem, E. Z. Hamad, Fluid Phase Equilibr. 108 (1995) 231-241.
[11] A. B. S. H. Salem, E. Z. Hamad, M. A. Al-Naafa, Ind. Eng. Chem. Res. 33 (1994) 689692.
[12] A. S. Al-Jimaz, M. S. Fandary, J. A. Al-Kandary, M. A. Fahim, J. Chem. Eng. Data 51 (2006) 1026-1030.
[13] M. Saha, B. S. Rawat, M. K. Khanna, B. R. Nautiyal, J. Chem. Eng. Data 43 (1998) 422426.
[14] T. M. Letcher, P. K. Naicker, J. Chem. Eng. Data 43 (1998) 1034-1038.
[15] M. H. Abraham, Chem. Soc. Rev. 23 (1993) 73-83.
[16] M. H. Abraham, A. Ibrahim, A. M. Zissimos, J. Chromatogr. A 1037 (2004) 29-47.
[17] M. H. Abraham, R. E. Smith, R. Luchtefeld, A. J. Boorem, R. Luo, W. E. Acree, Jr., J. Pharm. Sci. 99 (2010) 1500-1515.
[18] M. H. Abraham, W. E. Acree, Jr., New J. Chem. 34 (2010) 2298-2305.
[19] M. H. Abraham, W. E. Acree, Jr., J. E. Cometto-Muniz, New J. Chem. 33 (2009) 20342043.
[20] M. H. Abraham, W. E. Acree, Jr., J. Org. Chem., 75 (2010) 1006-1015.
[21] M. H. Abraham, W. E. Acree, Jr., J. Org. Chem. 75 (2010) 3021-3026.
[22] M. H. Abraham, W. E. Acree, Jr., Phys. Chem. Chem. Phys. 12 (2010) 13182-13188.
[23] Abraham, M.H., Acree, W.E. Jr.: New J. Chem. 34 (2010) 2298-2305.
[24] M. Saifullah, S. Ye, L. M. Grubbs, N. E. De La Rosa, W. E. Acree, Jr., M. H. Abraham, J. Soln. Chem. accepted for publication (2011).
[25] C. Moellmann, J. Gmehling, J. Chem. Eng. Data 42 (1997) 35-40.
[26] T. M. Letcher, P. G. Whitehead, J. Chem. Thermodyn. 28 (1976) 843-849.
[27] Y.-X. Yu, Q. Gong, L.-L. Huang, J. Chem. Eng. Data, 52 (2007) 1459-1463.
[28] B. S. Rawat, I. B. Gulati, K. L. Mallik, J. Appl. Chem. Biotechnol. 26 (1976) 247-252.
[29] B. S. Rawat, K. L. Mallik, I. B. Gulati, J. Appl. Chem. Biotechnol. 22 (1972) 1001-1006.
[30] H. Gedan, A. Sarius, D. Lempe, H. J. Bittrich, Zeitschrift Chem. 17 (1977) 425-426.
[31] L. Rohrschneider, Anal. Chem. 45 (1973) 1241-1247.
[32] S. Xu, Y. W. Wang, F. D. Otto, A. E. Mather, J. Chem. Technol. Biotechnol. 51 (1991) 197-208.
[33] F. Murrieta-Guevara, A. Romero-Martinez, A. Fluid Phase Equilibr. 44 (1988) 105-115.
[34] R. L. Benoit, E. Milanova, Can. J. Chem., 57 (1979) 1319-1323.
[35] O. R. Rivas, J. M. Prausnitz, AIChE J. 25 (1979) 975-984.
[36] Sprunger, L. M., Proctor, A., Acree, W. E., Jr., Abraham, M. H., Benjelloun-Dakhama, N., Fluid Phase Equilibria 270 (2008) 30-44.
[37] Sprunger, L. M., Achi, S. S., Acree, W. E. Jr., Abraham, M. H., Leo, A. J., Hoekman, D., Fluid Phase Equilibria 281 (2009) 144-162.
[38] Abraham, M. H., Acree, W. E., Leo, A. J., Hoekman, D., New Journal of Chemistry 33 (2009) 568-573.
[39] El-Harakany, A.A., El-Dessouky, M.A., Taha, A.A., Bassiony, A.F.: Egyptian J. Chem. 45 (2002) 1-32.
$[40]$ B. G. Cox, G. R. Hedwig, A. J. Parker, D. W. Watts, Aust. J. Chem. 27 (1974) 477-501.
[41] Y. Marcus, Rev. Anal. Chem. 53 (1980) 55-137.
[42] R. Alexander, A. J. Parker, J. H. Sharp, W. E. Waghorne, J. Am. Chem. Soc. 94 (1972) 1148-1158.
[43] M. Ludwig, V. Baron, K. Kalfus, O. Pytela, M. Večeřa, Coll. Czech. Chem. Commun. 51 (1986) 2135-2142.

Table 1. Solute Descriptors and Experimental $\log P$ and $\log K$ Data for Solutes Dissolved in Sulfolane at 298 K

| Solute | $\mathbf{E}$ | $\mathbf{S}$ | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{L}$ | $\mathbf{V}$ | $\log K_{\text {obs }}$ | $\log P_{\text {obs }}$ | Ref |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon dioxide | 0.000 | 0.280 | 0.050 | 0.100 | 0.058 | 0.2809 | 0.474 | 0.554 | 32,33 |
| Nitrous Oxide | 0.068 | 0.350 | 0.000 | 0.100 | 0.164 | 0.2810 | 0.346 | 0.576 | 32 |
| Sulfur dioxide | 0.370 | 0.660 | 0.280 | 0.100 | 0.778 | 0.3465 | 2.401 | 0.871 | 34 |
| Hydrogen sulfide | 0.350 | 0.310 | 0.100 | 0.070 | 0.723 | 0.2721 | 1.173 | 0.773 | 33 |
| Ethane | 0.000 | 0.000 | 0.000 | 0.000 | 0.492 | 0.3904 | -0.248 | 1.092 | 35 |
| Butane | 0.000 | 0.000 | 0.000 | 0.000 | 1.615 | 0.6722 | 0.590 | 2.110 | 30 |
| Pentane | 0.000 | 0.000 | 0.000 | 0.000 | 2.162 | 0.8131 | 1.020 | 2.720 | 25 |
| Hexane | 0.000 | 0.000 | 0.000 | 0.000 | 2.668 | 0.9540 | 1.414 | 3.234 | 25 |
| Heptane | 0.000 | 0.000 | 0.000 | 0.000 | 3.173 | 1.0949 | 1.817 | 3.777 | 25,27 |
| Octane | 0.000 | 0.000 | 0.000 | 0.000 | 3.677 | 1.2358 | 2.000 | 4.110 | 27 |
| Nonane | 0.000 | 0.000 | 0.000 | 0.000 | 4.182 | 1.3767 | 2.340 | 4.490 | 27 |
| Decane | 0.000 | 0.000 | 0.000 | 0.000 | 4.686 | 1.5176 | 2.713 | 5.051 | 27 |
| 2,2,4-Trimethylpentane | 0.000 | 0.000 | 0.000 | 0.000 | 3.106 | 1.2358 | 1.706 | 3.826 | 28 |
| Cyclohexane | 0.305 | 0.100 | 0.000 | 0.000 | 2.964 | 0.8454 | 1.805 | 2.705 | 25 |
| Cycloheptane | 0.350 | 0.100 | 0.000 | 0.000 | 3.704 | 0.9863 | 2.302 | 2.882 | 26 |
| Cyclooctane | 0.413 | 0.100 | 0.000 | 0.000 | 4.329 | 1.1272 | 2.796 | 3.426 | 26 |
| Methylcyclopentane | 0.225 | 0.100 | 0.000 | 0.000 | 2.907 | 0.8454 | 1.618 | 2.788 | 28 |
| Methylcyclohexane | 0.244 | 0.060 | 0.000 | 0.000 | 3.319 | 0.9863 | 1.977 | 3.227 | 25 |
| 1-Butene | 0.100 | 0.080 | 0.000 | 0.070 | 1.529 | 0.6292 | 0.903 | 1.913 | 29 |
| Isobutene | 0.120 | 0.080 | 0.000 | 0.080 | 1.579 | 0.6292 | 0.930 | 1.790 | 29 |
| trans-2-Butene | 0.126 | 0.080 | 0.000 | 0.050 | 1.664 | 0.6292 | 0.993 | 1.973 | 29 |
| cis-2-butene | 0.142 | 0.080 | 0.000 | 0.050 | 1.737 | 0.6292 | 1.085 | 2.075 | 29 |
| 1,3-Butadiene | 0.320 | 0.230 | 0.000 | 0.100 | 1.543 | 0.5862 | 1.324 | 1.774 | 29 |
| 1-Hexene | 0.078 | 0.080 | 0.000 | 0.070 | 2.572 | 0.9110 | 1.527 | 2.687 | 26 |
| 1-Heptene | 0.092 | 0.080 | 0.000 | 0.070 | 3.063 | 1.0520 | 1.899 | 3.119 | 26 |
| 1-Octene | 0.094 | 0.080 | 0.000 | 0.070 | 3.568 | 1.1930 | 2.251 | 3.661 | 26 |
| Cyclohexene | 0.395 | 0.280 | 0.000 | 0.090 | 2.952 | 0.8024 | 2.201 | 2.471 | 25 |


| 1-Hexyne | 0.166 | 0.220 | 0.100 | 0.120 | 2.510 | 0.8680 | 2.402 | 2.612 | 26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1-Heptyne | 0.160 | 0.230 | 0.090 | 0.100 | 3.000 | 1.0090 | 2.867 | 3.307 | 26 |
| 1-Octyne | 0.155 | 0.220 | 0.090 | 0.100 | 3.521 | 1.1500 | 3.089 | 3.609 | 26 |
| Dichloromethane | 0.387 | 0.570 | 0.100 | 0.050 | 2.019 | 0.4943 | 2.703 | 1.743 | 25 |
| Chloroform | 0.425 | 0.490 | 0.150 | 0.020 | 2.480 | 0.6167 | 3.035 | 2.245 | 25 |
| Carbon tetrachloride | 0.458 | 0.380 | 0.000 | 0.000 | 2.823 | 0.7391 | 2.569 | 2.759 | 25 |
| Chloroethane | 0.227 | 0.400 | 0.000 | 0.100 | 1.678 | 0.5128 | 1.789 | 1.329 | 30 |
| 1,2-Dichloroethane | 0.416 | 0.640 | 0.100 | 0.110 | 2.573 | 0.6352 | 3.346 | 2.076 | 25 |
| Trichloroethene | 0.520 | 0.370 | 0.080 | 0.030 | 2.997 | 0.7146 | 2.901 | 2.581 | 25 |
| Acetonitrile | 0.237 | 0.900 | 0.070 | 0.320 | 1.739 | 0.4042 | 3.307 | 0.457 | 25 |
| Diethyl ether | 0.041 | 0.250 | 0.000 | 0.450 | 2.015 | 0.7309 | 1.740 | 0.570 | 25 |
| Diisopropyl ether | -0.060 | 0.160 | 0.000 | 0.580 | 2.530 | 1.0127 | 1.946 | 0.896 | 25 |
| Methyl tert-butyl ether | 0.024 | 0.210 | 0.000 | 0.590 | 2.380 | 0.8718 | 2.025 | 0.405 | 25 |
| Ethyl tert-butyl ether | 0.000 | 0.160 | 0.000 | 0.570 | 2.652 | 1.0127 | 2.077 | 0.897 | 25 |
| Methyl tert-amyl ether | 0.050 | 0.250 | 0.000 | 0.540 | 2.799 | 1.0127 | 2.422 | 1.112 | 25 |
| Tetrahydrofuran | 0.289 | 0.520 | 0.000 | 0.480 | 2.636 | 0.6223 | 2.710 | 0.160 | 25 |
| Dioxane | 0.329 | 0.750 | 0.000 | 0.640 | 2.892 | 0.6810 | 3.444 | -0.266 | 25 |
| Methyl formate | 0.192 | 0.680 | 0.000 | 0.380 | 1.285 | 0.4648 | 2.366 | 0.326 | 25 |
| Methyl acetate | 0.142 | 0.640 | 0.000 | 0.450 | 1.911 | 0.6057 | 2.668 | 0.368 | 25 |
| Ethyl acetate | 0.106 | 0.620 | 0.000 | 0.450 | 2.314 | 0.7466 | 2.871 | 0.711 | 25 |
| Propyl acetate | 0.092 | 0.600 | 0.000 | 0.450 | 2.819 | 0.8875 | 3.173 | 1.123 | 25 |
| Butyl acetate | 0.071 | 0.600 | 0.000 | 0.450 | 3.353 | 1.0284 | 3.533 | 1.593 | 25 |
| Acetaldehyde | 0.208 | 0.670 | 0.000 | 0.450 | 1.230 | 0.4061 | 2.143 | -0.427 | 25 |
| Isobutyraldehyde | 0.144 | 0.62 | 0.00 | 0.45 | 2.120 | 0.6879 | 2.670 | 0.570 | 25 |
| Acetone | 0.179 | 0.700 | 0.040 | 0.490 | 1.696 | 0.5470 | 2.712 | -0.078 | 25 |
| Butanone | 0.166 | 0.700 | 0.000 | 0.510 | 2.287 | 0.6879 | 3.031 | 0.311 | 25 |
| 4-Methyl-2-pentanone | 0.111 | 0.650 | 0.000 | 0.510 | 3.089 | 0.9697 | 3.421 | 1.181 | 25 |
| Methanol | 0.278 | 0.440 | 0.430 | 0.470 | 0.970 | 0.3082 | 2.803 | -0.937 | 25 |
| Ethanol | 0.246 | 0.420 | 0.370 | 0.480 | 1.485 | 0.4491 | 2.975 | -0.695 | 25 |
| Butan-1-ol | 0.224 | 0.420 | 0.370 | 0.480 | 2.601 | 0.7309 | 3.707 | 0.247 | 25 |


| 2-Propanol | 0.212 | 0.360 | 0.330 | 0.560 | 1.764 | 0.5900 | 2.964 | -0.516 | 25 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-Methyl-1-propanol | 0.217 | 0.390 | 0.370 | 0.480 | 2.413 | 0.7309 | 3.576 | 0.276 | 25 |
| Allyl alcohol | 0.342 | 0.46 | 0.38 | 0.48 | 1.951 | 0.5470 | 3.698 | 0.008 | 25 |
| Nitromethane | 0.313 | 0.950 | 0.060 | 0.310 | 1.892 | 0.4237 | 3.870 | 0.920 | 31 |
| Benzene | 0.610 | 0.520 | 0.000 | 0.140 | 2.786 | 0.7164 | 2.936 | 2.306 | 25,27 |
| Toluene | 0.601 | 0.520 | 0.000 | 0.140 | 3.325 | 0.8573 | 3.273 | 2.623 | 25,27 |
| Ethylbenzene | 0.613 | 0.510 | 0.000 | 0.150 | 3.778 | 0.9982 | 3.570 | 2.990 | 25,27 |
| $o-$-Xylene | 0.663 | 0.560 | 0.000 | 0.160 | 3.939 | 0.9980 | 3.738 | 3.078 | 27 |
| $m$-Xylene | 0.623 | 0.520 | 0.000 | 0.160 | 3.839 | 0.9980 | 3.564 | 2.954 | 27 |
| $p-$ Xylene | 0.613 | 0.520 | 0.000 | 0.160 | 3.839 | 0.9980 | 3.523 | 2.933 | 27 |
| Chlorobenzene | 0.718 | 0.650 | 0.000 | 0.070 | 3.657 | 0.8388 | 3.768 | 2.948 | 25 |
| Pyridine | 0.631 | 0.840 | 0.000 | 0.520 | 3.022 | 0.6753 | 3.830 | 0.390 | 25 |
| Benzoic acid | 0.730 | 0.900 | 0.590 | 0.400 | 4.657 | 0.9317 | 6.991 | 1.891 | 39 |
| 2-Methylbenzoic acid | 0.730 | 0.840 | 0.420 | 0.440 | 4.677 | 1.0726 | 6.514 | 2.214 | 39 |
| 3-Methylbenzoic acid | 0.730 | 0.890 | 0.600 | 0.400 | 4.819 | 1.0726 | 7.240 | 2.260 | 39 |
| 2-Chlorobenzoic acid | 0.840 | 1.010 | 0.680 | 0.400 | 4.840 | 1.0541 | 7.692 | 2.192 | 39 |
| 4-Chlorobenzoic acid | 0.840 | 1.020 | 0.630 | 0.270 | 4.947 | 1.0540 | 7.488 | 2.688 | 39 |
| 2-Nitrobenozic acid | 0.990 | 1.480 | 0.820 | 0.530 | 5.900 | 1.1059 | 9.751 | 1.661 | 39 |
| 4-Nitrobenzoic acid | 0.990 | 1.520 | 0.680 | 0.400 | 5.770 | 1.1059 | 9.636 | 2.736 | 39 |
| 4-Aminobenzoic acid | 1.075 | 1.650 | 0.940 | 0.600 | 5.916 | 1.0315 | 10.953 | 1.523 | 39 |

Table 2. Descriptors for ions ${ }^{\mathrm{a}}$, and calculated and observed $\log P$ values.

| Ion | E | S | A | B | V | $\mathbf{J}^{+}$ | $\mathrm{J}^{-}$ | $\log P$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Calc | Obs |
| Na+ | -0.02 | 2.31 | 1.22 | 0.00 | 0.0330 | 0.316 | 0.000 | 0.72 | 0.51 |
| K+ | 0.00 | 2.56 | 1.21 | 0.00 | 0.0920 | 0.358 | 0.000 | 1.02 | 0.73 |
| Rb+ | 0.02 | 2.55 | 1.05 | 0.00 | 0.1300 | 0.477 | 0.000 | 1.05 | 1.54 |
| Cs+ | 0.10 | 2.60 | 1.17 | 0.00 | 0.1770 | 0.438 | 0.000 | 1.25 | 1.76 |
| $\mathrm{Ph}_{4} \mathrm{As}+$ | 2.22 | 3.15 | 0.07 | 0.88 | 2.8110 | 0.630 | 0.000 | 6.69 | 6.23 |
|  |  |  |  |  |  |  |  |  |  |
| C | 0.10 | 3.52 | 0.00 | 2.32 | 0.2280 | 0.000 | 2.363 | -9.53 | -9.24 |
| Br - | 0.17 | 2.74 | 0.00 | 1.82 | 0.3070 | 0.000 | 1.567 | -6.83 | -6.96 |
| I- | 0.38 | 3.52 | 0.00 | 1.33 | 0.4080 | 0.000 | 1.231 | -3.51 | -3.59 |
| $\mathrm{N}_{3}{ }^{-}$ | 0.16 | 3.04 | 0.00 | 1.82 | 0.2820 | 0.000 | 1.718 | -6.85 | -6.96 |
| $\mathrm{Ph}_{4} \mathrm{~B}-$ | 1.95 | 2.72 | 0.18 | 1.15 | 2.7000 | 0.000 | -0.188 | 5.67 | 6.23 |
| Benzoate | 0.88 | 3.64 | 0.00 | 2.88 | 0.9102 | 0.000 | 2.395 | -9.67 | $-8.83{ }^{\text {b }}$ |
| 3-Methylbenzoate | 0.88 | 3.25 | 0.00 | 2.85 | 1.0511 | 0.000 | 2.228 | -9.17 | -9.10 |
| 4-Methylbenzoate | 0.88 | 3.10 | 0.00 | 2.88 | 1.0511 | 0.000 | 2.167 | -9.35 | -9.37 |
| 4-tertButylbenzoate | 0.88 | 3.16 | 0.00 | 2.88 | 1.4738 | 0.000 | 2.229 | -7.97 | -8.04 |
| 3-CF3-benzoate | 0.45 | 2.99 | 0.00 | 2.52 | 1.1042 | 0.000 | 2.119 | -7.63 | -7.69 |
| 3-Cyanobenzoate | 1.01 | 3.70 | 0.00 | 2.82 | 1.0649 | 0.000 | 2.192 | -8.67 | -8.74 |
| 4-Cyanobenzoate | 1.01 | 3.96 | 0.00 | 2.78 | 1.0649 | 0.000 | 2.248 | -8.38 | -8.49 |
| 3-Acetylbenzoate | 1.09 | 3.66 | 0.00 | 3.04 | 1.2077 | 0.000 | 2.201 | -9.22 | -9.25 |
| 4-Acetylbenzoate | 1.09 | 3.99 | 0.00 | 3.02 | 1.2077 | 0.000 | 2.280 | -9.00 | -9.14 |
| Terephthalic acid ${ }^{\text {c }}$ | 1.25 | 3.90 | 0.41 | 2.92 | 1.1255 | 0.000 | 2.323 | -9.01 | -9.01 |
| 4-Aminobenzoate | 1.23 | 4.07 | 0.25 | 3.26 | 1.0100 | 0.000 | 2.357 | -10.81 | -10.60 |
| 3-HO-benzoate | 1.06 | 3.65 | 0.13 | 3.07 | 0.9689 | 0.000 | 2.344 | -10.31 | -10.81 |
| 4-HO-benzoate | 1.08 | 3.78 | 0.04 | 3.05 | 0.9689 | 0.000 | 2.382 | -10.14 | -10.44 |
| 3-MeO-benzoate | 0.98 | 3.32 | 0.00 | 3.00 | 1.1098 | 0.000 | 2.254 | -9.63 | -9.44 |
| 3-PhO-benzoate | 1.54 | 3.54 | 0.00 | 2.78 | 1.5767 | 0.000 | 2.088 | -6.74 | -6.70 |
| 4-PhO-benzoate | 1.54 | 3.91 | 0.00 | 2.61 | 1.5767 | 0.000 | 2.108 | -5.77 | -5.80 |
| 3-SH-benzoate | 1.37 | 3.36 | 0.01 | 2.77 | 1.0737 | 0.000 | 2.227 | -8.60 | -8.46 |
| 4-SH-benzoate | 1.37 | 3.44 | 0.00 | 2.85 | 1.0737 | 0.000 | 2.191 | -8.88 | -8.79 |
| 4-SMe-benzoate | 1.33 | 3.37 | 0.00 | 2.90 | 1.1946 | 0.000 | 2.215 | -8.78 | -8.84 |
| 3-SO2 ${ }_{2} \mathrm{Me}$-benzoate | 1.21 | 4.00 | 0.00 | 3.23 | 1.3320 | 0.000 | 2.121 | -9.39 | -9.38 |
| 4-SO2 ${ }_{2} \mathrm{Me}$-benzoate | 1.21 | 4.15 | 0.00 | 3.26 | 1.3320 | 0.000 | 2.188 | -9.49 | -9.53 |
| $\text { 3- } \mathrm{SO}_{2} \mathrm{NH}_{2}-$ <br> benzoate | 1.50 | 3.99 | 0.04 | 3.39 | 1.2909 | 0.000 | 2.205 | -10.30 | -10.14 |
| $4-\mathrm{SO}_{2} \mathrm{NH}_{2}-$ <br> benzoate | 1.50 | 3.65 | 0.15 | 3.38 | 1.2909 | 0.000 | 2.102 | -10.41 | -10.19 |
| 3-Fluorobenzoate | 0.95 | 2.96 | 0.00 | 2.73 | 0.9279 | 0.000 | 2.175 | -9.16 | -9.06 |
| 4-Fluorobenzoate | 0.95 | 2.82 | 0.00 | 2.82 | 0.9275 | 0.000 | 2.174 | -9.65 | -9.58 |
| 3-Chlorobenzoate | 0.99 | 3.13 | 0.00 | 2.57 | 1.0326 | 0.000 | 2.034 | -7.87 | -8.16 |


| 4-Chlorobenzoate | 0.99 | 3.37 | 0.00 | 2.60 | 1.0326 | 0.000 | 2.179 | -7.97 | -8.03 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3-Bromobenzoate | 1.15 | 3.47 | 0.00 | 2.56 | 1.0852 | 0.000 | 2.197 | -7.55 | -7.53 |
| 4-Bromobenzoate | 1.15 | 3.25 | 0.00 | 2.60 | 1.0852 | 0.000 | 2.148 | -7.82 | -7.67 |
| 3-Iodobenzoate | 1.46 | 3.31 | 0.00 | 2.57 | 1.1684 | 0.000 | 2.082 | -7.28 | -7.07 |
| 4-Iodobenzoate | 1.46 | 3.29 | 0.00 | 2.61 | 1.1684 | 0.000 | 2.059 | -7.45 | -7.42 |
| 3-Nitrobenzoate | 1.14 | 3.60 | 0.00 | 2.79 | 1.0844 | 0.000 | 2.217 | -8.53 | -8.47 |
| 4-Nitrobenzoate | 1.14 | 3.50 | 0.00 | 2.79 | 1.0844 | 0.000 | 2.212 | -8.59 | $-7.79^{\text {b }}$ |

${ }^{\mathrm{a}}$ Solute descriptors for the ions were taken from Abraham and Acree [20]. ${ }^{\mathrm{b}}$ Not used. ${ }^{\mathrm{c}}$ Monoanion.

Figure 1


Figure 1. Comparison of the experimental $\log P$ data for solutes dissolved in sulfolane against calculated values based on Eqn. 8.

Figure 2


Figure 2. Comparison of the experimental $\log K$ data for solutes dissolved in sulfolane against calculated values based on Eqn. 9.

