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In this article, I introduce a novel airborne network mobility model, called the Smooth 

Turn Mobility Model, that captures the correlation of acceleration for airborne vehicles across 

time and spatial coordinates. Effective routing in airborne networks (ANs) relies on suitable 

mobility models that capture the random movement pattern of airborne vehicles. As airborne 

vehicles cannot make sharp turns as easily as ground vehicles do, the widely used mobility 

models for Mobile Ad Hoc Networks such as Random Waypoint and Random Direction models 

fail. Our model is realistic in capturing the tendency of airborne vehicles toward making straight 

trajectory and smooth turns with large radius, and whereas is simple enough for tractable 

connectivity analysis and routing design.  
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CHAPTER 1

INTRODUCTION

1.1. Background of Mobility Models

The vast military and civilian applications of airborne networking have fostered dramati-

cally growing research efforts on airborne networks (ANs) over the years. Bolstered by the ad-

vances in sensing and wireless communication technologies, ANs hold promise in providing ef-

fective, wide-applicable, low-cost, and secure information exchange among airborne vehicles. For

instance, the in-f ight communication among commercial airlines can allow the sharing of adverse

weather conditions and emergency situations, which are of signif cant value especially when the

f ights are in areas outside the reach of ground controls. Similarly, unmanned airborne vehicles

may rely on reliable communication and networking schemes for safe maneuvering. It is antici-

pated that ANs will be the platform of information exchange among airborne vehicles and connect

with space and ground networks to complete the multiple-domain communication network in the

future [29].

In the study of ANs, signif cant efforts have been focused on the development of routing

protocols to minimize information package loss caused by link and path failures [29]. Designing

robust routing strategies is challenging due to the attributes of ANs such as high node mobility and

frequent topology changes. To give an example, the widely-used shortest-path routing algorithm

tends to f nd the path with relay nodes at the edges of transmission radius [20]. As such, even a

slight movement of such nodes can lead to link breakage and ultimately to path breakage. The

so-called “edge effect” is particularly eminent in highly varying networks such as ANs. Therefore,

we anticipate that designing reliable routing plans with reduced edge effects should rely upon the

knowledge of the statistical varying structure of ANs, such as the movement pattern of AN nodes,

the spatial distribution of them, and the network connectivity [8].

Mobility models commonly serve as the fundamental mathematical frameworks for net-

work connectivity studies, network performance evaluation, and eventually the design of reliable

routing protocols [12]. In particular, mobility models capture the random movement pattern of
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each network agent, based on which rich information related to the varying network structure can

be derived, such as node distribution and the statistics of link and path lifetime. Some mobility

models have received extensive studies in the literature. The most well-known models are ran-

dom direction (RD), and random waypoint (RWP) [4, 35, 7, 17]. The RWP model assumes that

an agent chooses a random destination (waypoint) and traveling speed; upon the arrival, it pauses

before traveling to the next destination. RD models assume that nodes travel between endpoints

located at region boundaries [16]. The extended version of the RD model assumes that an agent

randomly chooses a speed and direction after the completion of a randomly selected traveling time

[14, 13]. The stochastic properties of these common models such as their spatial distributions can

be found in e.g., [4, 24, 17, 7].

Developing suitable mobility models for ANs is no doubt the foundation for the design

of realistic networking strategies among airborne vehicles. I note that the widely-used RWP and

RD models are well suited to describe the random activity of mobile nodes in mobile ad hoc

networks (MANETs); however, they lack the capability to describe certain features specif c to

airborne vehicles. In particular, mobile nodes on ground can easily slow down, make sharp turns,

and travel in an opposite direction (see an enhanced random mobility model that captures such

movement [2]). However, airborne vehicles tend to maintain the same heading speed and change

direction through making turns with a large radius. This unique feature is caused by the mechanical

and aerodynamical constraints for airborne vehicles and ref ected in the correlation in acceleration

along spatial and temporal dimensions. My aim here is to develop realistic models that capture

such features unique to airborne networks, yet simple and tractable enough to facilitate connectivity

analysis and routing design.

1.2. AN Mobility Models

It is worthwhile to connect our modeling efforts with the very limited existing AN mobility

models [29, 32, 27]. I believe that AN mobility models need to be application-specif c, due to

the wide range of variability in their applications, and different movement patterns associated

with each application. Under this umbrella, let us summarize the three types of AN models in

the literature including our proposed model, by focusing on: 1) the specif c application for each
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model, and 2) the movement pattern associated with each. It is also worthwhile to note that these

three categories of AN mobility models are associated with different levels of randomness, which

I rigorously formulate and discuss in details in Chapter 4.

1) Semi-random circular movement (SRCM) mobility model for search and rescue appli-

cations. In this model, an unmanned airborne vehicle (UAV) moves around a f xed center with a

randomly selected radius; after it completes a round, it chooses another radius and circles around

the same center [32]. Although this model seems to be limited as the coverage is constrained by

the location of the f xed circling center, I envision that it captures very well the mobility of UAVs

in the search and rescue application. In search and rescue, some prior knowledge about the po-

tential location of the search target is usually available, and UAVs are dispatched to pinpoint the

exact location of the target of interest. As such, it is reasonable to use the potential target location

as the f xed center in the SRCM model, and have UAVs hover around the center. The knowledge

about the potential target (or equivalently, the f xed center in the SRCM model) provides extra

information for trajectory prediction and the understanding of connectivity structures in the AN.

2) Flight plan-based (FP) mobility model for cargo and transportation applications. Dra-

matically differently, in the f ight plan-based mobility model, a mobility f le is created using the

pre-def ned f ight plan, and is then converted into a time-dependent network topology map (TDNT)

for the design and update of routing protocols [29]. If the actual f ight status deviates from the pre-

described plan, the TDNT and the relevant routes are updated. The f ight plan-based model is well

suited for cargo and transportation purposes, in which the entire trajectory is usually planned in

advance. Although various uncertainties such as weather events, departure delays, etc., may effect

the adherence to the f ight plans [31, 30], the existence of a plan allows for a very good prediction

of f ight trajectories and hence the varying network topology beforehand [5, 18].

3) Smooth turn (ST) mobility model for patrolling applications. Both of the above two

AN mobility models assume the availability of abundant trajectory information. However, in AN

applications such as patrolling, a predef ned trajectory or a potential target location might not be

available; instead, airborne vehicles simply swarm in certain airspace. Such f exible movement

resembles the highly random RD and RWP models for MANETs. In this thesis, I present a novel
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mobility model named the smooth-turn mobility model ( see [34] for the publication paper) , which

allows f exible trajectories while also takes into account the features unique to airborne vehicles,

e.g., the preference toward smooth rather than sharp turns caused by mechanical and aerodynamic

constraints. Capturing such smooth-turn features in mobility models can better represent realistic

maneuvering of airborne vehicles. Also, it can signif cantly improve the capability of path esti-

mation and connectivity analysis for ANs. This new model is realistic in capturing the random

movement of airborne vehicles in favor of smooth turns, and yet analyzable for node distribution

and connectivity analysis. In the preparation of this thesis, I note a newly developed paper [27]

which may be also suited for patrolling applications. This paper is concerned with the use of

Gaussian Markov models to capture memory-equipped movement of airborne vehicles. As I dis-

cuss in Chapter 2.2 and which was also presented in [19, 23], these models do not ref ect the the

kinematics of turning objects, and therefore may not realistically capture the motion of high-speed

airborne vehicles.

My thesis contributes to the existing literature on mobility models in the following aspects:

• A novel AN mobility model that captures smooth turns.This mobility model resembles

the traditional RD model, but captures the temporal and spacial correlation specif c to

airborne vehicles. The model is well suited for patrolling applications, in complementary

to limited existing AN models in the literature. Also, a signif cant feature of the model

is that it is simple enough to serve as the framework for not only simulation studies, but

also tractable theoretical analysis.

• The stationary analysis and preliminary connectivity study of the model.I prove that the

stationary node distribution of this ST model is uniform. The nice uniformity directly

leads to a series of closed-form results for connectivity, such as the expected number of

neighbors, and the transition range and number of neighbors required for connectivity

[3, 33].

• The classification and comparison of different types of AN mobility models.I identify the

need to use different mobility models for different applications, and group AN mobility

models according to application categories. We also characterize each category according
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to the capability of predicting future trajectories. Specif cally, we def ne the predictability

of future trajectory based upon the concept of entropy, and calculate that for each mobility

model. We believe that this formal analysis of predictability can help better understand

the difference and applicability of AN (and more general) mobility models, and more im-

portantly, utilize the concept of predictability for the design of smart information routing

algorithms.

1.3. Overview of Thesis Content

The thesis is organized as follows. In Chapter 2, I describe the ST mobility model, and

Chapter 3 presents the basic analysis of its dynamics. In Chapter 3, I investigate the stationary

distribution of the model through both theoretical analysis and simulation studies. Chapter 5 con-

tains a brief summary of existing theoretical results on basic connectivity analysis. In Chapter 4,

I motivate and formulate the concept of predictability, and provide a formal comparison of our

model with three mobility models in the literature in terms of predicability. In Chapter 5, multiple

variants and enhanced versions of the ST mobility model are discussed/simulated. Finally, a brief

conclusion and discussion about future works is provided in Chapter 6.
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CHAPTER 2

SMOOTH-TURN MOBILITY MODEL

In this chapter, I f rst describe the basic mathematical smooth turn mobility model in Sec-

tion 2.1. I then discuss the roles of model parameters, and connect the model with related models

in the literature in Section 2.2. The consideration of movement at boundaries are also included.

2.1. Basic Model Description

I introduce the ST mobility model to describe the movement of airborne vehicles in highly

random airborne networks. The model captures the special feature of airborne vehicles—the tight

temporal and multi-dimensional correlation of speed and acceleration. Incorporating this special

feature into mobility models increases the predictability of a vehicle’s trajectory, which in turn,

provides useful information for connectivity analysis and the design of reliable information sharing

strategies for ANs.

The idea behind the ST random mobility model is simple. An airborne vehicle selects

a point in the space along the line perpendicular to its heading direction and circles around it

until the vehicle chooses another turning center. This perpendicularity is the key that ensures

the smoothness of f ight trajectories. Besides that, we assume the waiting time for the change of

turning centers to be memoryless, i.e., the timing of the center change does not depend on the

duration for which the UAV maintains its current center. The memoryless feature of waiting time

is typically used to model the occurrence of random events, and brings in the nice features of

renewable processes for a tractable analysis [25]. For instance, connectivity analysis can be taken

at any time instance without prior knowledge of the duration that a vehicle has kept its current

centripetal acceleration. Furthermore, since a vehicle commonly favors straight trajectory and

slight turns than very sharp turns, we model the inverse length of the circle radius to be Gaussian

distributed.

Now let me describe the mathematics of the ST mobility model. We use lx(t), ly(t), vx(t),

vy(t), w(t), and Φ(t) to describe the X coordinate, Y coordinate, velocity in X direction, velocity in

Y direction, angular velocity, and the heading angle of an airborne vehicle at time t. For simplicity,
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we assume that a vehicle has a constant forward speed V in a 2-D plane; therefore, the vehicle

has a tangential acceleration at(t) as 0 (see Equation (1)). This is reasonable for airborne vehicles,

especially jets and gliders, as they tend to maintain the same speed in f ight and “reduce speed”

through zigzagging and circling.

Furthermore, the vehicle changes its centripetal acceleration an(t) at randomly selected

time points T0, T1, T2, ...., with 0 = T0 < T1 < T2 < .... The duration for the vehicle to main-

tain its current centripetal acceleration τ(Ti) = Ti+1 −Ti follows exponential distribution as mo-

tivated by its memoryless property [25]. In particular, the probability density function of τi is

fτi(τi) = λe−λτ(Ti), where λ is the mean duration for a vehicle to maintain its current centripetal

acceleration.

Next, I describe how the new centripetal acceleration an(t) is selected at each time point Ti .

an(Ti) is determined by the turning radius r(Ti) according to an(Ti) =
V2

r(Ti)
(refer to Equation (2)).

The selection of r(Ti) also determines the new turning center with coordinates (cx(Ti)),cy(Ti)). In

particular, r(Ti) is the distance between the vehicle’s current location (lx(Ti), ly(Ti)) and the new

turning center. It is important to note that the new turning center (cx(Ti)),cy(Ti)) resides along the

line perpendicular to the heading of the vehicle at time Ti , (with heading angle denoted as Φ(Ti)),

to guarantee smoothness. Also of particular note, the random variable r(Ti) ∈ R allows turns to

both left and right. We assume that r(Ti)> 0 represents that the center is to the right of the heading

direction. 1
r(Ti)

is a random variable that follows normal distribution with zero mean and variance

σ 2. This distribution is selected so that smooth trajectories and large-radius turns are favorable

than sharp turns with small radius.

Finally, Equations (3), (4) and (5) describe the relationships between location, heading

angle, velocity, and angular velocity (see [19] for a review of dynamic models for moving aerial

objects). In summary, the dynamics of the basic ST mobility model during the time interval Ti ≤

t < Ti+1 is shown in Equation (1)-(5). Because a vehicle keeps its centripetal acceleration for a

duration of Ti before changing its centripetal acceleration, it is easy to see that during the interval

Ti ≤ t < Ti+1, r(t) = r(Ti), an(t)= an(Ti), cx(t)= cx(Ti), cy(t)= cy(Ti), and τ(t)= τ(Ti). A typical
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trajectory of the model is shown in Figure 2.1.

at(t) = 0(1)

an(t) =
V2

r(Ti)
(2)

Φ̇(t) = −w(t) =− V
r(Ti)

(3)

l̇x(t) = vx(t) =Vcos(Φ(t))(4)

l̇y(t) = vy(t) =Vsin(Φ(t))(5)

−100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

200

X

Y

FIGURE 2.1. A simulation of the trajectory of UAV in a 2-D domain. The trajectory
is shown in red. Green spots are the randomly chosen turn centers.

2.2. Further Discussions of the Model

The ST mobility model naturally captures the highly random movement patterns of ANs,

and the preference toward straight trajectory or large smooth turns with constant speed. In this
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section, let me f rst comment on the three parameters in the model, by focusing on their impacts on

the mobility of ANs. I then connect the model with the RD model and the rich literature on target

tracking models. Finally, I discuss two models capturing the movement at boundaries.

The f rst parameter is the vehicle speed V . ANs typically have high vehicle speed (in the

range of 50−500 miles per hour [29]), which causes highly varying connectivity structures. We

keep V constant in the basic model for both simplicity and realistic considerations. I discuss en-

hanced models with varying V in Chapter 5. The second parameter is the mean of the exponential

random variable Ti, λ . A small λ indicates that the airborne vehicle changes its turning center

frequently. This results in a more wavy trajectory. The last parameter is the variance of the Gauss-

ian variable 1
r(Ti)

, σ 2. σ 2 determines the preference between straight trajectory versus turns. In

particular, a small variance denotes a high possibility of very large turning radius, and therefore

a more straight trajectory. At the extreme, if the variance is close to 0, the ST mobility model

has very straight trajectories, which resemble those of the RD model without direction change, as

seen in Figure 2.2a. At the other extreme, a large σ 2, large V and small λ result in more curvy

trajectories (Figure 2.2b). Through choosing proper combinations of the parameters V , λ , and σ 2,

the model can capture a wide range of AN mobility patterns. The parameters to capture a specif c

AN mobility pattern can be estimated from the trajectory data.

It is worthwhile to connect my ST mobility model with two related categories of models

in the literature. First, as my model is so close to the RD model, I can phrase our model as the

RD model equipped with smooth trajectory. RD model chooses a random straight direction and

follows that until it chooses the next direction. Similarly, my model chooses a random turning

center and circles around it until it chooses the next center. We see in Chapter 4 that the node

distribution of our model also resembles that of the RD model. Second, our model is built upon the

abundant literature in the context of aerial target tracking (see e.g., [19] for a thorough review). Let

us brief y discuss the works in this f eld so as to point out the theoretical foundation of our model.

Early models in this f eld assume that the acceleration is uncorrelated in 2-D or 3-D space, and

abstract acceleration in one coordinate as a Markov process (e.g., random noise passing through

a linear system) [28, 15, 19]. The Gaussian-Markov model adopted in [27] is a variation of these
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FIGURE 2.2. Simulations of the smooth–turn mobility model to show the impact
of parameters on the trajectories: a) when σ 2 is close to 0; b) when σ 2 is large and
the ratio between V and σ 2 is large
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works. The latter models, known as the coordinated turn models, ref ect the physical laws of

airborne objects, see e.g., [19, 23], and therefore better capture the correlation of acceleration in

multiple coordinates. We stress that these latter works lay out the theoretical foundation for our ST

AN mobility model, as they thoroughly studied the kinematics to ref ect the correlation of motion

across both temporal and spatial coordinates. However, because these models are built for target-

tracking purposes, they focus on the high-precision prediction of the acceleration and paths for an

individual aircraft, and therefore their motion dynamics are too complex to be directly used for our

purpose. Driven by the need to model the motion of airborne vehicles at a statistical group level,

we capture the correlation across spatial coordinates through a simple parameter — the radius r .

Our model captures the correlation of motion across spacial and temporal coordinates very well,

while is also simple enough for mobility analysis.

Another topic to discuss is the modeling of motions at boundaries. In this thesis, we adopt

the boundary models typically used for the RD model, namely the “wrap-around” and the “refec-

tion” models [24, 3]. In the “wrap-around” model, after an airborne vehicle hits the boundary,

it wraps around and appears at the opposite side of the region. Alternatively, in the “ref ection”

model, the trajectory is mirrored against that boundary. Typical trajectories of these two boundary

models are shown in Figure 2.3. These boundary models can capture the movement of agents in a

large space [3]. Although these models generally may not appear in reality, they provide rich ana-

lyzability and permit us to focus more on the mobility itself instead of the impact of boundaries. In

the rest of the thesis, we largely focus on the “wrap-around” scenario, but will also brief y discuss

the “ref ection” model.

2.3. Model Analysis

We consider an airborne vehicle f ying within an rectangular airspace [0,L]× [0,W]. As-

suming the wrap-around boundary scenario, the trajectory of the airborne vehicle at time t (where

Ti ≤ t < Ti+1) is shown in Equation (6)-(11). These equations can be easily derived from Equa-

tions (1)-(5) by observing Figure 2.4. Of a particular note is the f oor function (denoted by “⌊⌋”) in

Equation (9) which guarantees the range of Φ(t) to stay within 0 and 2π (see [24] for the detailed

illustration). For the same reasoning, the f oor functions in Equations (10) and (11) capture the

11
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FIGURE 2.3. Illustration of a) the ref ection (1) and the wrap-around (2) boundary
model in a rectangular region, b) the ref ection (1) and the wrap-around (2) bound-
ary model in a circular region.
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wrap-around boundary scenario—the agent that reaches a boundary will appear at the other side

of the region.

r(Ti)

Φ(Ti)

(cx(Ti), cy(Ti))

(lx(t), ly(t))

(lx(Ti), ly(Ti))

θ(t)

Φ(t)

FIGURE 2.4. Trajectory analysis diagram to predict the location of an airborne
vehicle at time Ti+1 ≥ t ≥ Ti . The dashed red curve represents the trajectory of the
airborne vehicle.

cx(Ti) = lx(Ti)+ r(Ti)sin(Φ(Ti))(6)

cy(Ti) = ly(Ti)− r(Ti)cos(Φ(Ti))(7)

θ(t) =
V

r(Ti)
(t−Ti)(8)

Φ(t) = Φ(Ti)−θ(t)−2π
⌊

Φ(Ti)−θ(t)
2π

⌋

(9)

lx(t) = cx(Ti)− r(Ti)sin(Φ(t))−W⌊cx(Ti)− r(Ti)sin(Φ(t))
W

⌋(10)
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ly(t) = cy(Ti)+ r(Ti)cos(Φ(t))−L⌊cy(Ti)− r(Ti)cos(Φ(t))

L
⌋(11)

With regard to the ref ection boundary model, the only changes are to replace Equations (10) and

(11) with the two following equations:

lx(t) = cx(Ti)− r(Ti)sin(Φ(t))−2W⌊cx(Ti)− r(Ti)sin(Φ(t))
2W

+0.5⌋(12)

ly(t) = cy(Ti)+ r(Ti)cos(Φ(t))−2L⌊cy(Ti)− r(Ti)cos(Φ(t))

2L
+0.5⌋.(13)

The f oor functions and the “+0.5” terms guarantee that the trajectory is ref ected back into the

region when an agent moves to the boundary (as motivated by the mathematical description of

triangular wave forms). The above motion analysis results (Equations (6) to (13)) will be used to

derive a variety of properties for the ST mobility model in the rest of the thesis.
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CHAPTER 3

NODE DISTRIBUTION AND CONNECTIVITY

In this chapter, we consider multiple airborne vehicles in the space, f ying according to the

ST mobility model. We analyze the distribution of node locations and heading angles in Chapter

3.1. These analysis is similar to that of the RD model [24], but here we also take into considera-

tion of the smooth trajectory. The uniform distribution of node locations gives rise to interesting

properties in terms of network connectivity, which we will brief y outline in section 3.2.

3.1. Node Distribution

Before presenting my results, we f rst provide the mathematical preliminary in Lemma 3.1,

which will be used in the later proofs.

LEMMA 3.1.
∫ b

u=0 1
{

u+a−b⌊u+a
b ⌋< x

}

du= x holds for any x∈ [0,b], where a∈ R, b∈ R+,

and1{} is 1 if {} is true and0 if {} is false.

PROOF.

∫ b

u=0
1
{

u+a−b⌊u+a
b

⌋< x

}

du=
∫ b

u=0
1
{

u+a
b

−⌊u+a
b

⌋< x
b

}

du(14)

Introducing u′ = u
b, we f nd Equation (14) to be represented as

b
∫ 1

u′=0
1
{

u′+
a
b
−⌊u′+ a

b
⌋< x

b

}

du′ = b
x
b
= x(15)

The f rst equality holds due to the property of f oor operations [24]. �

THEOREM 3.2. N airborne vehicles move independently in the space[0,L)× [0,W) according to

the ST mobility model associated with wrap-around boundary model. If the initial locations of

these vehicles are uniformly distributed in[0,L]× [0,W], and the heading angles are also initially

uniformly distributed in[0,2π), then the node locations and heading angles remain uniformly

distributed at all times t> 0.
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PROOF. To prove that the mobility model maintains the uniform distribution, let us f rst examine

a single vehicle and show that if its position and heading angle are uniformly distributed initially,

they remain uniformly distributed. Then, because the airborne vehicles move independently, we

can show the uniform distribution of node locations and heading angles for all vehicles.

For a moment, we consider the f xed movement pattern of a vehicle. In particular, the time

sequence to change the turning center 0 = T0 ≤ T1 ≤ T2, ... and the corresponding radius r(T0),

r(T1), ...., are all f xed. Let us show for the particular movement pattern associated with this

vehicle, uniform distribution remains for any time t.

We start with examining any time t within the duration [T0,T1). Because the node location

and heading angle are uniformly distributed at time T0, the joint probability distribution function

(pdf) of lx(T0), ly(T0), and Φ(T0) can be represented as P(lx(T0) < x0, ly(T0)< y0,Φ(T0)< Φ0) =

x0
L

y0
W

Φ0
2π , for any x0, y0, and Φ such at 0 ≤ x0 < L, 0 ≤ y0 <W, and 0 ≤ Φ < 2π . In order to show

that the node distributions and heading angles are uniformly distributed at at any time T0 ≤ t < T1,

we only need to prove that the joint pdf P(lx(t)< x, ly(t)< y,Φ(t)< Φ) = x
L

y
W

Φ
2π for any x, y, and

Φ such at 0 ≤ x< L, 0 ≤ y<W, and 0 ≤ Φ < 2π .

Equation (6) to (11) inform that lx(t), ly(t), and Φ(t) are functions of lx(T0), ly(T0), Φ(T0)

and r(T0), and T0. In particular, we have

Φ(t) = Φ(T0)−
V

r(T0)
(t −T0)−2π

⌊

Φ(T0)− V
r(T0)

(t −T0)

2π

⌋

(16)

lx(t) = lx(T0)+ r(T0)sin(Φ(T0))− r(T0)sin(Φ(t))−W⌊ lx(T0)+ r(T0)sin(Φ(T0))− r(T0)sin(Φ(t))
W

⌋

ly(t) = ly(T0)− r(T0)cos(Φ(T0))+ r(T0)cos(Φ(t))−L⌊ ly(T0)− r(T0)cos(Φ(T0))+ r(T0)cos(Φ(t)
L

⌋.

For the convenience of presentation, we denote the expressions in the right of the above

three equations as Ψ(Φ(T0), r(T0), t,T0), Λx(lx(T0),Φ(T0), r(T0), t,T0), and Λy(ly(T0),Φ(T0), r(T0), t,T0),

respectively. Using the abbreviated notations and according to Equation (16), we can f nd the joint

pdf of P(lx(t)< x, ly(t)< y,Φ(t)< Φ) as follows:

P(lx(t)< x, ly(t)< y,Φ(t) < Φ)(17)
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= P(Λx(lx(T0),Φ(T0), r(T0), t,T0)< x,Λy(ly(T0),Φ(T0), r(T0), t,T0)< y,Ψ(Φ(T0), r(T0), t,T0)< Φ)

=

∫ 2π

Φ(0)=0

1
2π

∫ L

lx(T0)=0

1
L

∫ W

ly(T0)=0

1
W

1{Ψ(Φ(T0), r(T0), t,T0)< Φ}(18)

1{Λx(lx(T0),Φ(T0), r(T0), t,T0)< x}1{Λy(ly(T0),Φ(T0), r(T0), t,T0)< y}dxdydΦ(T0),

=
1

2πWL

∫ 2π

Φ(0)=0
1{Ψ(Φ(T0), r(T0), t,T0)< Φ}

∫ W

lx(T0)=0
1{Λx(lx(T0),Φ(T0), r(T0), t,T0)< x}dx(19)

∫ L

ly(T0)=0
{Λy(ly(T0),Φ(T0), r(T0), t,T0)< y}dydΦ(T0).

The last equality is due to the independence of the variables lx and ly.

According to the Lemma 3.1, we can easily see that
∫W

lx(T0)=0 1{Λx(lx(T0),Φ(T0), r(T0), t,T0)< x}

dx= x. Similarly, we also have
∫ L

ly(T0)=0
{

Λy(ly(T0),Φ(T0), r(T0), t,T0)< y
}

dy= y. As such, equa-

tion 17 can be simplif ed to

P(lx(t)< x, ly(t)< y,Φ(t)< Φ) =
xy

2πWL

∫ 2π

Φ(0)=0
1{Ψ(Φ(T0), r(T0), t,T0)< Φ}dΦ(20)

=
x
L

y
W

Φ
2π

,(21)

also according to Lemma 3.1. The above proof shows that the uniform distribution remains in

the time interval [T0,T1) for a particular movement pattern. Furthermore, let us denote the time

right before t as t−. We then easily observe that Φ(T1) = Φ(T−
1 ), because choosing a new center

(cx(T1),cy(T1)) along the line perpendicular to the heading angle Φ(T−
1 ) at time T1 does not change

the heading angle of the vehicle at that particular time instance. Combined with the facts that

lx(T1) = lx(T
−

1 ), ly(T1) = ly(T
−

1 ), we see that the uniform distribution also holds for the closed

time interval [T0,T1].

The proof to show that the uniform distribution remains during [T1,T2] follows exactly

the same procedure. We can then further generalize the above proof to [Ti ,Ti+1] for any i ≥ 0.

Therefore, uniform distribution remains for any time t ≥ 0 for each particular movement pattern,

and therefore generally for a particular vehicle.

Because the N airborne vehicles move independently, the jointed distribution of node loca-

tions and heading angles for these airborne vehicles is the multiplication of individual distributions.
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As each individual distribution is uniform, we can conclude that the N vehicles’ node locations and

heading angles remain uniformly distributed at any time t ≥ 0. The proof is complete.

�

Theorem 3.2 informs that the uniform distribution at the initial time is reserved. In the

next Theorem, we present that the steady-state distribution of node location and heading angle are

uniform and independent from the initial distribution.

THEOREM 3.3. N airborne vehicles move independently in the space[0,L]× [0,W] according to

the ST mobility model associated with wrap-around boundary model. Assuming thatλ is finite and

σ 6= 0, the distributions of node locations and heading angles are uniform in[0,L)× [0,W) and

[0,2π), respectively, in the limit of large time, regardless of the distribution at the initial time.

PROOF. Let us f rst sketch the structure of the proof. We f rst construct a Markov process with

states S(t) =
(

lx(t), ly(t),Φ(t), 1
r (t),τ(t)

)

and f nd the probability transition kernel for the Markov

chain def ned at the time sequence Ti, namely S(Ti). After that, we f nd the invariant distribution

of the Markov chain S(Ti). The Palm Formula [24, 1] is then used to f nd the limiting probability

distribution of the Markov process S(t).

First, we note that S(t) is a Markov process, because S(t+∆t) is only dependent upon S(t),

but not on any states before time t. S(Ti) for i = 0,1, ... form a discrete-time Markov chain. The

transition probability kernel for the Markov chain S(Ti) is

f (S(Ti+1)|S(Ti)) =(22)

f (lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti),Ti+1,Ti), ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti),Ti+1,Ti),

Φ(Ti+1) = Ψ(Φ(Ti), r(Ti),Ti+1,Ti),
1
r
(Ti+1),τ(Ti+1)|lx(Ti), ly(Ti),Φ(Ti),

1
r
(Ti),τ(Ti))

= 1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti),Ti+1,Ti)} f (
1
r
(Ti+1),τ(Ti+1)|lx(Ti), ly(Ti),Φ(Ti),

1
r
(Ti),τ(Ti)).

Because 1
r (Ti) and τ(Ti) are independently and identically distributed (i.i.d.) normal and
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exponential random variables, we can infer that 1
r (Ti) and τ(Ti) do not dependent on S(Ti). There-

fore, we can simplify Equation (22) to

f (S(Ti+1)|S(Ti))(23)

= 1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti),Ti+1,Ti) f (
1
r
(Ti+1),τ(Ti+1))

= 1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}

1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti),Ti+1,Ti)}λe−λτ(Ti+1)
1√

2πσ
e
− 1

2r(Ti+1)2σ2

The markov chain S(Ti) is aperiodic, Φ-irreducible, and Harris recurrent, when σ 6= 0.

Hence there exists an unique measure, which also coincides with the stationary distribution [22].

Let us prove that the invariant distribution takes the following form:

lim
i→∞

f (S(Ti)) =
1
L

1
W

1
2π

e−λτ(Ti)
1√

2πσ
e
− 1

2r(Ti)
2σ2(24)

To prove it, we only need to show that limi→∞ f (S(Ti)) as demonstrated in Equation (24)

satisf es Equation (25).

lim
i→∞

f (S(Ti)) = lim
i→∞

f (S(Ti+1)) = lim
i→∞

∫

S(Ti)∈Ω
f (S(Ti)) f (S(Ti+1)|S(Ti))dS(Ti),(25)

where Ω represents the sample space of S(Ti). The left equality is straightforward as τ(Ti) and

τ(Ti+1) are i.i.d. random variables, and r(Ti) and r(Ti+1) are also i.i.d. random variables.

To show that the right side of Equation (25) holds, we substitute Equations (23) and (24)

into the right side of Equation (25). Noticing that
∫W

lx(Ti)=0 1{lx(Ti+1)=Λx(lx(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}dlx(Ti)=

1 according to Lemma 3.1 and also similar relationships hold for ly(Ti) and Φ(Ti), we obtain

∫

S(Ti)∈Ω
f (S(Ti)) f (S(Ti+1)|S(Ti))dS(Ti) =

∫

S(Ti)∈Ω
1{lx(Ti+1) = Λx(lx(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}

1{ly(Ti+1) = Λy(ly(Ti),Φ(Ti), r(Ti),Ti+1,Ti)}1{Φ(Ti+1) = Ψ(Φ(Ti), r(Ti),Ti+1,Ti)}λe−λτ(Ti+1)

1√
2πσ

e
− 1

2r(Ti+1)2σ2 1
L

1
W

1
2π

e−λτ(Ti)
1√

2πσ
e
− 1

2r(Ti )
2σ2 d(S(Ti))
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=
1
L

1
W

1
2π

λe−λτ(Ti+1)
1√

2πσ
e
− 1

2r(Ti+1)2σ2 = f (S(Ti+1))(26)

Finally, let us f nd the limiting probability distribution of the markov process S(t). According to

the Palm formula [24, 1], the limiting probability distribution of S(t) can be found in the following,

by conditioning upon the stationary distribution of S(Ti), where Ti → ∞. In particular,

lim
t→∞

f (S(t)) =
1

E0[T1]
E0

[

∫ T1

0
1(S(t))dt

]

(27)

=
1
λ

E0
[

∫ T1

0
1(S(t))dt

]

(28)

=
1
λ

∫

S(Ti)∈Ω

∫ Ti+τ(Ti)

t=Ti

f (S(Ti)) f (S(t)|S(Ti))dtdS(Ti)(29)

where E0 represents the empirical average. As shown in Equation (28), E0[T1] = λ because T1 is

independently exponentially distributed with a f nite mean λ .

Furthermore, noticing that when t is between Ti and Ti + τ(Ti), f (S(t)|S(Ti)) can be found

using Equation (23), with all Ti+1 replaced as t. Substituting the expression of f (S(t)|S(Ti)) and

Equation (24) into Equation (29) and using the same reasoning to derive Equation (26), we obtain

∫

S(Ti)∈Ω

∫ Ti+τ(Ti)

t=Ti

f (S(Ti)) f (S(t)|S(Ti))dtdS(Ti)(30)

=
1
L

1
W

1
2π

λe−λτ(t) 1√
2πσ

e
− 1

2r(t)2σ2
∫ ∞

τ(Ti)=0

∫ Ti+τ(Ti)

t=Ti

λe−λτ(Ti)dtdτ(Ti)

=
1
L

1
W

1
2π

λe−λτ(t) 1√
2πσ

e
− 1

2r(t)2σ2
∫ ∞

τ(Ti)=0
λτ(Ti)e

−λτ(Ti)dτ(Ti)

=
1
L

1
W

1
2π

λe−λτ(t) 1√
2πσ

e
− 1

2r(t)2σ2 λ(31)

Therefore, We have limt→∞ f (S(t)) = 1
L

1
W

1
2π λe−λτ(t) 1√

2πσ e
− 1

2r(t)2σ2 . Integrating with re-

spect to τ(t) and 1
r(t) , we obtain that f (lx(t), ly(t),Φ(t))= 1

L
1
W

1
2π as t → ∞. The proof is complete.

�

Theorems 3.2 and 3.3 demonstrate the uniform distribution of node locations and heading

angles. The results also suggest the close analogy between the ST mobility model and the RD

model. In particular, the smooth trajectory requirement of the ST mobility model does not change
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the stationary uniform distribution, associated with the non-smooth straight trajectory in the RD

model. The results can be understood, as the wrap-around model avoids the boundary impacts. A

simulation of the node distribution is shown in Figure 3.2a. We note that the results also apply to

the ref ection boundary model, as shown in Figure 3.2b. The proofs can be easily adapted from the

proofs for Theorems 3.2 and 3.3, by noticing the equivalence between these two boundary models

[24]. The results can also be applied to circular area, as shown in Figure 3.2c and 3.2d.
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FIGURE 3.1. Simulation of node distribution with: a) wrap-around model in a rect-
angular region, b) ref ection model in a rectangular region.
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FIGURE 3.2. Simulation of node distribution with: c) wrap-around model in a cir-
cular region, and d) ref ection model in a circular region.

3.2. Summary of Connectivity Properties

The uniform distribution of stationary node locations directly informs a series of results

about the network’s connectivity. For the completeness of our presentation, we provide a brief

summary of the connectivity properties of our ST mobility model, based upon the existing connec-

tivity studies in the literature [3, 33, 11]. For simplicity, we assume that if the distance between two

airborne vehicles is within a transmission range d, the two vehicles are considered as connected

[3].
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3.2.1. Connectivity Properties for Individual Nodes

The number of existing neighbors for each node in a network is an important characteristic

for routing algorithm design. If the expected number of neighbors is too low, the network will

suffer from large transmission delay or even package drop. On the contrary, a high expected

number leads to a very dense network, and thus causes problems such as harder-to-implement

collision avoidance mechanisms, and the competition of limited communication channels among

the agents.

For an unbounded area (i.e., simulated by the wrap-around boundary condition), the ex-

pected node degree for a given node is E(D) = πNd2

A , where N is the number of nodes, and A is

the area of the region [3]. For instance, for rectangular regions as shown in Theorems 3.2 and 3.3,

we have A= LW. Furthermore, for a large n and also small d relative to A, the probability of the

number of neighbors for any given node is approximately P(D = m) = e−E(D)E(D)m

m! [3]. Therefore,

the probability for a node to be isolated can be easily derived as P(D = 0) = e−
πNd2

A [3].

3.2.2. Connectivity Properties at a Network Level

The probability for the network to be connected, denoted as P(connected), is less than

or equal to the probability for the network to have no isolated nodes. The latter probability

P(No isolated Node)= (1−P(M = 0))N, as demonstrated in [3]. It was also shown that P(No isolated Node)

is a tight bound for P(connected), especially when P(No isolated Node) → 1. For the wrap-

around boundary model with large N with small d, this bound is approximately e−Ne−
πNd2

A [3].

Some other studies also investigated network-level connectivity for networks with uniform distri-

bution [11, 33]. For instance, for a circular region with boundary (e.g., the ref ection model), if the

transmission range r =
√

logN+c(N)
Nπ then P(connected)→ 1 as N → ∞, if and only if the constant

c(N)→ ∞.

k-connectivity is often of interest when establishing connected networks robust to agent

failures. Similar to the development for 1-connectivity, the probability for the network to have

no nodes with degree less than or equal to k− 1 is a higher bound for P(k− connected). In

particular, P(k− connected) ≤ (1−P(M ≤ k− 1))N. It was also shown that the higher bound is

tight, especially when P(M ≤ k−1)→ 0 [3].
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CHAPTER 4

EXPLORING RANDOMNESS

I envision that the knowledge about the randomness/predictability of mobility models is a

crucial factor to the design of effective routing schemes, but has not received much attention in the

literature (see [2] for a brief discussion). If a mobility model captures some degree of predictability

for future trajectories, routing design could be signif cantly more effective by smartly taking into

account this information. At one extreme, the routing path selection for a network of agents with

deterministic trajectories is fairly simple, as relative locations of agents at future times are available

beforehand, and global optimization can thus be enacted to f nd the best routing design. At the

other extreme, in completely random networks without any predictive information about future

movement, it is highly possible that a relay node located at the boundary of transmission range

(selected by the routing algorithm so as to minimize the number of hops) is moving out of the

transmission range, and therefore losing data transmission. As far as our knowledge, there has

not been quantitative studies on capturing the randomness/predictability for mobility models. In

this Chapter, we provide an entropy measure to capture the different level of randomness among

mobility models. As the focus of this thesis is on the modeling, we leave the smart utilization of

this randomness/predictability information in robust routing design to the future work.

Another motivation to the study of randomness is concerned with better understanding of

the AN mobility models. We observe that the three AN mobility models suitable for different

applications are aligned with different levels of randomness.

For instance, mobility patterns of UAVs used for security and patrol purposes (captured

by the ST mobility model) may be highly random. However, it may be more deterministic than

RD model, because it captures the correlation of movement across time/space. UAVs used for

search and rescue purposes (captured by the semi-circle mobility model) are usually provided

with certain target location information to start with, and hence their mobility patterns are less

random. Commercial aircraft and UAVs envisioned for NextGen cargo transportation have pre-

planned trajectory information and hence their mobility patterns (captured by the f ight plan-based
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mobility model) are almost deterministic. Because of the signif cance of mobility models in rout-

ing design, there is a need to investigate the properties of various mobility models suitable for

airborne networks in great depth, and explore strategies to enhance network connectivity in each

case.Randomness/predictability provides a measure for such investigation.

4.1. Def nition of Randomness/Predictability

To def ne randomness, it is natural to consider the entropy about possible future locations

and directions based upon the current location and direction. We note that the entropy def ned on

long look-ahead time does not help. For instance, RD, ST mobility model and the SRCM mobility

model all result in uniform stationary distribution, which do not allow us to differentiate among

them. Therefore, we are motivated to study immediate entropy measure at a very short time-frame,

based upon the the markov chain description of the trajectory and direction dynamics.

Specif cally, we consider a markov chain, the state of which represents the status of the

vehicle, including e.g., position and direction. For the convenience of presentation, we consider a

discretization of time, and assume that the transition from one state to the other takes a unit time

∆t, where ∆t is suff ciently small. Randomness is def ned based upon the entropy rate H [10]

H =−
∫

i

∫

j
piQi j lnQi j(32)

where pi is the the probability to stay at state zi , and Qi j represents the transition probability from

one state i to state j .

As a special case, if the states are uniformly distributed (e.g., when t → ∞ for the RD and

ST mobility models) and therefore pi are all equal, and also Qi j associated with different i are the

same, we can simplify Equation (32) to

H =−
∫

j
Qi j lnQi j(33)

for any i.
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4.2. Comparison of Randomness for AN Mobility Models

In this section, we calculate the randomness measures for three mobility models, including

RD, ST, and the f ight plan-based. The quantitative measures of randomness allow us to obtain the

impact of model parameters’s on the randomness performance and also compare the three different

mobility models. For a fair comparison among the three mobility models, we assume that every

model takes the same f xed forward speed V , all though general models may allow varying forward

speed.

4.2.1. RD Mobility Model

Assume that a vehicle keeps its direction for an exponentially distributed duration (with

mean λ ) before choosing its new direction uniformly distributed between 0 and 2π . Because of

the uniform stationary distribution of the RD model and also the memoryless property guaranteed

by the exponentially distributed λ , we can use Equation (33) to obtain the randomness measure.

Without loss of generality, assuming that the vehicle is moving from location 0 to the right, let

us examine the probability of locations and directions at time ∆t. As ∆t is suff ciently small, we

assume that the change of direction occurs at most once within ∆t. The probability for changing

direction k times follows Poisson distribution

P(n= k) =
(λ∆t)ke−λ∆t

k!
.(34)

Therefore, P(n= 1)≈ λ∆t, and P(n= 0) ≈ 1−λ∆t. If n= 0, the vehicle moves to the right and

ends up at the location V∆t with direction to the right. If n = 1, we assume that the change of

direction occurs in the beginning, as ∆ is very small. In this case, the vehicle will locate uniformly

on a circle centered at the starting location with directions pointing outwards. As the direction is

completely correlated with the location at ∆t, we can f nd the ending location/direction with pdf
1

2π . Therefore, we can compute the randomness as

HRD(loc,direc) = −P(n= 0)lnP(n= 0)−
∫ 2π

Φ=0

P(n= 1)
2π

ln
P(n= 1)

2π
dΦ(35)

= −(1−λ∆t)ln(1−λ∆t)−
∫ 2π

Φ=0

λ∆t
2π

ln
λ∆t
2π

dΦ
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= −(1−λ∆t)ln(1−λ∆t)−λ∆tln
λ∆t
2π

Interestingly, the speed of the vehicle does not affect the randomness level of the model.

Moreover, the randomness of the model increases with the increase of the parameter λ as suggested

by Figure 4.1. This conclusion is reasonable, as λ represents how frequently a random direction is

chosen.

4.2.2. ST Mobility Model

As def ned earlier in the thesis, we assume that a vehicle circles around for an exponen-

tially distributed duration with mean λ , before selecting a new radius with its inverse normally

distributed with mean 0 and variance σ 2. Similar to the RD case, when no change of turning

center occurs within ∆t, the vehicle will travel around its original turning center for a duration

∆t. Otherwise, the vehicle will end up at a location with the inverse of its turning radius normally

distributed. We thus can f nd randomness for the ST mobility model, in a way similar to that of the

RD model, as follows:

HSR(loc,direc)(36)

= −P(n= 0)lnP(n= 0)−
∫ ∞

1
R=−∞

P(n= 1)e−
1

2R2σ2
√

2πσ
ln

P(n= 1)e−
1

2R2σ2
√

2πσ
d

1
R

= −(1−λ∆t)ln(1−λ∆t)−
∫ ∞

1
R=−∞

λ∆te−
1

2R2σ2
√

2πσ
ln

λ∆te−
1

2R2σ2
√

2πσ
d

1
R

= −(1−λ∆t)ln(1−λ∆t)−λ∆tln(λ∆t)−
∫ ∞

1
R=−∞

λ∆te−
1

2R2σ2
√

2πσ
ln

e−
1

2R2σ2
√

2πσ
d

1
R

= −(1−λ∆t)ln(1−λ∆t)−λ∆tln(λ∆t)−λ∆t(−1
2
− ln(

√
2πσ))

= −(1−λ∆t)ln(1−λ∆t)−λ∆tln
λ∆t√
2πeσ

The result suggests that V also does not impact the randomness of the ST mobility model.

However, both λ and σ play a role in the randomness. In particular, the randomness is less with

small σ , which suggests more straight trajectory. For large σ , denoting high variability of turning

radius, the location and direction of the vehicle can be very uncertain. Therefore, there is a thresh-
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FIGURE 4.1. a) Randomness against λ in the RD model (∆t = 0.001), b) Compar-
ison of the randomness between the RD and the ST mobility model (∆t = 0.001,
λ = 2).
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old for the randomness of the ST mobility model to be less than that of the RD model. Specif cally,

comparison of equations (36) and (37) suggests that σ = 2π
e is the threshold. A comparison of

randomness for the two models can be found in Figure 4.1b.

4.2.3. Flight Plan-based Mobility Model

With the assumption that the trajectory follows the pre-planned f ight path but with a tiny

variation modeled by a Gaussian noise (with mean 0 and variance σ̂ 2), we have

HFP = ln(
√

2πeσ̂)(37)

When σ̂ is smaller than 1√
2πe

, the entropy is negative, representing the randomness to be

less than a uniform distribution within 0 and 1 [9].
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CHAPTER 5

VARIANTS OF THE ST MOBILITY MODEL

In this chapter, let us also discuss possible variants and enhancement for the ST mobility

model.

5.1. Enhanced Modeling of Model Parameters

This basic ST mobility model can be easily generalized to include varying forward speed,

3D movements, etc. Airborne vehicles typically has the minimum turning radius for safety reasons.

To capture this realistic issue, instead of roughly modeling 1
r as a Gaussian variable, we can provide

a more detailed model for r , and require r to reside within certain safe range [r0,∞] and [−∞,−r0].

All of the above enhancements do not change the distributions of node locations and directions.

For the purpose of clear presentation, we do not include these variations in the model analysis, but

realize that these new features can be easily added.

5.2. Collision Avoidance

In the current mobility model, we assume that each vehicle moves independently from

each other. However, neighboring airborne vehicles need to satisfy safe separation distance, and

therefore proper collision avoidance needs to be included. As collision avoidance is not the focus

of this thesis, we will leave this development to the further work. However, it is worthwhile to note

that as the centripetal and tangential accelerations are directly captured in the mobility model, this

model has the natural capability of incorporating control mechanisms for collision avoidance (see

[6] for a related implementation).

5.3. RWP-like ST Mobility Model

The current ST mobility model resembles the RD model equipped with smooth trajectory.

We can similarly develop RWP-like ST mobility models. Possible strategies include: 1) randomly

choosing a center which satisf es the smooth trajectory requirement and is uniformly distributed in

the region, and circling around it for an exponential duration, before choosing another center; 2)

randomly choosing a destination uniformly distributed in the region and reaching it through smooth
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trajectory, before choosing another destination. Similar to the RWP models, we also observe the

non-uniform node distributions, as shown in Figure 5.1.
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FIGURE 5.1. Simulation of node distribution for a)the random-center RWP-like
ST mobility model b) the random-destination RWP-like ST mobility model after
smoothing.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORKS

In this thesis, I presented a novel ST mobility for airborne networks. I prove that, similar

to the RD model, the stationary node distribution is uniform. This result permits a series of analyt-

ical results on connectivity properties. I also systematically characterize randomness in mobility

models. In particular, I provide a way to quantify randomness for mobility models, and use that

to compare three mobility models for airborne networks. I will investigate various enhanced ver-

sion of the ST mobility model as suggested in Chapter 5 in the future. I will also investigate area

coverage, as whether an airborne network is able to cover the entire area of interest, and the time

it takes to cover are also important characteristics for airborne networks [21, 26]. Moreover, I will

further our investigation with more advanced connectivity properties such as path duration and link

duration, fully investigate the impact of randomness on the performance of routing protocols, and

design effective routing protocols that utilize this physical information.
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