

APPROVED:

Oscar N. García, Major Professor
Shengli Fu, Committee Member
Xinrong Li, Committee Member
Murali Varanasi, Chair of the Department of

Electrical Engineering
Costas Tsatsoulis, Dean of the College of

Engineering
Mark Wardell, Dean of the Toulouse Graduate

School

DATA COMPRESSION USING A MULTI-RESIDUE SYSTEM (MRS)

Jyothy Melaedavattil Jaganathan, B.Tech

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2012

Melaedavattil Jaganathan, Jyothy. Data compression using a multi-residue system

(MRS). Master of Science (Electrical Engineering), August 2012, 62 pp., 7 tables, 19

illustrations, bibliography, 40 titles.

This work presents a novel technique for data compression based on multi-residue

number systems. The basic theorem is that an under-determined system of congruences could be

solved to accomplish data compression for a signal satisfying continuity of its information

content and bounded in peak-to -peak amplitude by the product of relatively prime moduli,. This

thesis investigates this property and presents quantitative results along with MATLAB codes.

Chapter 1 is introductory in nature and Chapter 2 deals in more detail with the basic

theorem. Chapter 3 explicitly mentions the assumptions made and chapter 4 shows alternative

solutions to the Chinese remainder theorem. Chapter 5 explains the experiments in detail whose

results are mentioned in chapter 6. Chapter 7 concludes with a summary and suggestions for

future work.

ii

Copyright 2012

by

Jyothy Melaedavattil Jaganathan

iii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor, Dr. Oscar N.

García, for his continuous support during my Master’s study and research and for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me throughout my

research and writing of this thesis. I cannot imagine having a better advisor and mentor for my

graduate study than Dr. García.

Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Shengli Fu

and Dr. Xinrong Li, for their encouragement, insightful comments, and hard questions.

I would also like to thank all of my friends at the University of North Texas.

Finally, I would like to thank my parents, Jaganathan MD and Sheela ME, for giving

birth to me in the first place and for supporting me spiritually and providing me will all the good

things I have needed throughout my life.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER 1 INTRODUCTION ..1

1.1 Purpose .. 1

1.2 Solution of System of Congruences .. 3

1.3 Other Methods of Solutions .. 5

CHAPTER 2 BASIC THEOREM ...6

2.1 Data Compression ... 6

2.2 Early Approach ... 7

2.3 Multi-Residue Coding ... 8

2.4 Basic Theoretical Approach .. 9

CHAPTER 3 BACKGROUND CONSIDERATIONS ...13

3.1 Assumptions .. 13

CHAPTER 4 RESIDUE TABLE ..15

4.1 Rationale for the Use of a Table ... 15

4.2 Different Tables .. 16

4.3 No Search at the Expense of More Memory ... 17

4.4 Two-Dimensional Canonical Table .. 18

CHAPTER 5 SEQUENCE OF EXPERIMENTS ..20

5.1 Platform... 20

5.2 Initial Motivation: Case 1 ... 21

5.3 Speed Up: Cases 2 and 3 ... 21

5.4 Further Speed-Up: Cases 4 and 5.. 24

5.5 Best Table with Zero Error: Cases 6 and 7 ... 24

CHAPTER 6 RESULTS ..26

6.1 Case 1: Use of the Symbolic Math Toolbox on the Sinusoid Signal 26

v

6.2 Case 2: Use of the CRT on the Sinusoid Signal ... 28

6.3 Case 3: Use of the CRT on the TIMIT Sentence .. 30

6.4 Case 4: Use of the Two-Dimensional Table with Three Prime Moduli 32

6.5 Case 5: Use of a Three-Dimensional Table with Three Prime Moduli 34

6.6 Case 6: Use of the Two-Dimensional Table with Two Prime Moduli 36

6.7 Case 7: Use of the Two-Dimensional Canonical Table .. 38

CHAPTER 7 CONCLUSIONS ...40

APPENDIX A CASE 3 PROGRAM ..42

APPENDIX B CASE 4 PROGRAM ..47

APPENDIX C CASE 5 PROGRAM ..50

APPENDIX D CASE 6 PROGRAM ..54

APPENDIX E CASE 7 PROGRAM ..57

BIBLIOGRAPHY ..60

vi

LIST OF TABLES

Page

Table 1.1 RNS encoding example .. 3

Table 2.1: MRS encoding ... 10

Table 4.1 Table style 1 for P = [3 5 7] .. 16

Table 4.2 Table style 2 for P = [3 5 7] .. 16

Table 4.3 Table style 3 for P = [3 5 7] .. 16

Table 4.4 Two moduli canonical 2D table for P = [5 7] ... 18

Table 7.1: Summary of results .. 41

vii

LIST OF FIGURES

Page

Fig. 1.1 Clock arithmetic representation ..2

Fig. 2.1 3D pictorial view of algorithm ...12

Fig. 4.1 Pictorial representation of decoding process using table ..15

Fig. 4.2 Pictorial representation of 3D table ..18

Fig. 5.1 Combining two residues to single byte...23

Fig. 6.1 Input and output figures for Case 1 ..26

Fig. 6.2 Timing bar chart for Case 1 ..27

Fig. 6.3 Input and output figures for Case 2 ..28

Fig. 6.4 Timing bar plot for Case 2 ..29

Fig. 6.5 Input and output figures with TIMIT sentence for Case 3 ...30

Fig. 6.6 Timing bar plot for Case 3 ..31

Fig. 6.7 Input and output figures with TIMIT sentence for Case 4 ...32

Fig. 6.8 Timing bar plot for Case 4 ..33

Fig. 6.9 Input and output figures with TIMIT sentence for Case 5 ...34

Fig. 6.10 Timing bar plot for Case 5 ..35

Fig. 6.11 Input and output figures with TIMIT sentence for Case 6 ...36

Fig. 6.12 Timing bar plot for Case 6 ..37

Fig. 6.13 Input and output figures with TIMIT sentence for Case 7 ...38

Fig. 6.14 Timing bar plot for Case 7 ..39

1

CHAPTER 1

INTRODUCTION

Residue arithmetic systems, popularly known as clock arithmetic systems, are widely

used in coding theory applications to error code correcting codes, cryptography, and digital

signal processing utilizing the simplicity and parallelism in arithmetic calculations, then using

this representation. The most interesting property of the residue number system (RNS) [1] is the

absence of carrying addition and subtraction between residues and elimination of partial product

formation in multiplication, which makes the residue number system [2] interesting in computing

theory. Thus, mechanisms using this approach are mostly found in arithmetic operations,

information theory, and signal processing applications.

1.1 Purpose

This work reports on an investigation of a novel technique of data compression using a

multi residue system. Before we get into the fundamental theorem, we describe the origin and

general concept of RNS.

The origin of the RNS is traced back to the first century AD by the Chinese scholar Sun

Tzu in his book Suan-Ching. He developed the idea of the Chinese remainder theorem (CRT)

that solves a system of linear congruence [3] defined by relatively prime numbers. The concept

of modular arithmetic was revived by Carl Friedrich Gauss in 1801 in his book Disquisitiones

Arithmeticae. Gauss defines congruence, residue, and modulus as follows [4]:

If a number a divides the difference of numbers b and c, b and c are said to be congruent
to a. The number a is called the modulus, and the numbers b and c are the residue of the
other.

The RNS is in general defined by a modulus say m, which consists of elements from 0 to

m-1, m>0. The residue of an integer X for the RNS defined by modulus m is defined by

2

x ≡ X mod m,where x ϵ {0, 1, ….. m-1} is the remainder resulting from division 𝑋
𝑚

 and the ‘≡’

sign denotes the congruence relation between x and p. Thus, x is X congruent modulo m. Thus,

using modulo m, any integer can be coded into the residue system as an integer between 0 and m-

1. Fig. 1.1 shows the clock representation of RNS. The left-hand side of the figure shows mod 8,

and the right-hand side shows general mod M representation.

Fig. 1.1 Clock arithmetic representation

When more than one modulus is involved, the RNS is known as a multi-residue system (MRS)

[5]. Table 1.1 shows a simple example of MRS. MRS can involve any number of moduli, but

here for demonstration, only two moduli are used.

 In abstract algebra, the set of integers defined by each of the congruence relations by

modulo m refers to an equivalence class otherwise called congruence class or residue class. The

congruence relation mentioned here does not need to be over prime numbers but rather over

integers greater than or equal to 2. Hence, for generality, let’s consider modulo m, m≥3. This

forms a ring of integers denoted as 𝑍𝑚+ . The sum of two integers in this ring is the remainder of

the sum of integers divided by modulo m. In this equivalence class, when we say that two

integers—say a and b—are equivalent, it means that they are congruent modulo m. This defines

the general equivalence relation of congruence. When it comes to residue, they do not form an

algebraic field unless m = pn, where n = 1,2,….n for finite n [6] [7].

3

Table 1.1 RNS encoding example

M = [3, 5]
Xi

x1 ≡ X1 mod 3
ϵ {0, 1,2}

x2 ≡ X2 mod 5
ϵ {0, 1,2,3,4 }

0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4
15 0 0

1.2 Solution of System of Congruences

Congruence therefore implies an equivalence relation between integers [8] X, x and m

such as

x = X + m×c,

where X is residue, x is integer, m is modulus, and c is any integer that solves the equation. Thus,

the congruence relation between integers establishes a linear equation. The CRT by Sun Tzu

solves the MRS of equations [9] provided that the moduli of the system are relatively prime.

4

The CRT can be summarized as follows: Let P ={p1, p2, ….. pn} be n relatively prime

modulus and let X = {X1 ,X2 ,…. Xn } be n arbitrary integers. Then, there exists a solution to the

system of linear congruences [10] defined by these such that

x ≡ X1 mod p1

 ≡ X2 mod p2

≡ Xn mod pn

where x is a unique residue modulo, P = ∏ 𝑝𝑖𝑛
𝑖=1 .

Relatively prime moduli refer to moduli whose gcd = 1; i.e., gcd(p1, p2, ….. pn) = 1. This

is only a sufficient condition for CRT to work; there are exemptions to it. The solution to such a

set of congruences is given by the following:

x ≡ X1×a1×
𝑃
𝑝1

 + X2×a2×
𝑃
𝑝2

 + ……… + Xn×an×
𝑃
𝑝𝑛

 (mod P),

where P = p1 × p2 × …… × pn and ai is obtained as ai × 𝑃
𝑝𝑖

 = 1 mod pi.

To demonstrate how CRT solves for a system of moduli, let’s consider three moduli: 5, 7,

and 9 and all the numbers from 1 to the product of 5, 7, and 9; i.e., 315.

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7

Since gcd(3,5,7) = 1, they are relatively prime. According to CRT,

x ≡ 2×a1×
105
3

 + 3×a2×
105
5

 + 2×a3×
105
7

 (mod 105)

≡ 2×a1× 35 + 3×a2×21 + 2×a3×15 (mod 105),

where, a1 × 35 ≡ 1 mod 3, a2 × 21 ≡ 1 mod 5 and a3 × 15 ≡ 1 mod 7;

 i.e., a1 ≡ 35 mod 3 ≡ 2; a2 ≡ 21 mod 5 ≡ 1 and a3 ≡ 15 mod 7 ≡ 1.

5

Therefore, x ≡ 2 × 2× 35 + 3 × 1 × 21 + 2 × 1 × 15 (mod 105) ≡ 233 mod 105 ≡ 23, which is the

solution for the given set of congruences.

1.3 Other Methods of Solutions

Apart from the CRT, there are other methods for solving the linear system of

congruences, the extended Euclidean algorithm and the Aryabhatta remainder theorem [11] [12].

The extended Euclidean algorithm involves long division and requires the computation of

inverses, whereas the Aryabhatta remainder theorem is similar to the CRT in its approach. For

this work, CRT was initially chosen because of its popularity and simplicity. Also, we propose a

finite table look-up to solve the system of congruences, constructed using CRT.

6

CHAPTER 2

BASIC THEOREM

Data transmission, both analog and digital, refers to the transmission of information from

source to destination. In today’s world, data transmission occurs in every walk of life. Owing to

advancement in the usage of computers, we need not only to pass binary-encoded text messages,

as we used to during the 1920s with the telegraph system, but we also need to transmit and store

other digitalized information such as potentially large audio and video files.

Data transmission and storage can be costly processes. The cost of transmission or

storage is directly proportional to the amount of data. And hence it is important to use

information encoding and decoding schemes such that only the most relevant data is transmitted.

Thus, data encoding/decoding and data reduction play a key role in transmission.

Encoding for comparison refers to the process of putting symbolic data into a particular format

utilizing the same symbols, and decoding refers to putting it back in the original format. The

purpose of data encoding/decoding isn’t limited to data reduction but may also include secure

transmission.

2.1 Data Compression

Data compression or source coding can be of two kinds: lossless and lossy. In lossless

compression, data is reduced by eliminating redundancy but preserving all information. Lossy

compression selects the most important information needed for an “acceptable” decoded

message and eliminates the rest. By “acceptable,” we mean that the user of the decoded message

is not likely to perceive the information lost such as in JPEG image encoding. Data compression

usually reduces the usage of network resources in transmission or storage but comes with an

additional cost of hardware for encoding at the source and decoding at the destination. Data

7

compression dates back to 1948 when Shannon presented a criterion that guides data

compression for source coding known as the Shannon-Nyquist criterion [13] [14].

Basically, encoding/decoding schemes involve solving a set of equation as in Ax = B,

where A is the encoding scheme, x is the original signal/data involved, and B is the encoded

form. To reconstruct and recover the data, this equation has to be solved for x = BA-1. Thus, in

general, the process of decoding implies solving a system of linear equations [15]. In the case of

data compression, this problem involves the solution of an under-determined system of equations

[16] [17]. The recent idea of “compressive sensing” [18] [19] [20] throws light into this issue in

detail. Thus, the motivation of this work was derived from the idea of solving a system of under-

determined equations [21] [22] [23] that would facilitate efficient compression and a simple

encoding and decoding scheme.

2.2 Early Approach

This work presents a novel encoding/decoding scheme using MRSs introduced in

Chapter 1. The system of equations was shifted to a new class of integers called residue class

involving congruences. Thus, the linear equation [24] [25] transforms into the following:

Ax (mod p) ≡ B where p is the prime number.

Since the original motivation for this work came from the consideration of compressive

sensing [26] [27], the same signal used in Cleve Moler’s magic reconstruction [28] problem was

considered first as an example. This signal corresponded to the signal generated by the “1” key

of a touch-tone telephone. The signal is the sum of sinusoids and continuous and small valued

signals.

x(t) = sin(1394πt) + sin(3266πt)
2

8

The continuously varying signal in the time domain was sampled to obtain the discrete

values. Sampling frequency is irrelevant in this context since our aim was to successfully encode

the signal in an MRS [29] and decode it using the CRT [9].

2.3 Multi-Residue Coding

In order to work on multi-residue coding [1], three relatively prime moduli were chosen.

There are no restrictions to the number of moduli to be chosen, but three was thought to be

optimum since two might be too few and four might be a little more than needed.

Before converting the signal to an MRS [30], the discrete values of the signal were

analyzed and some pre-processing was done for efficient decoding. Table 1.1 shows how the

residue system handles negative numbers. Once the negative values are converted to the residue

system, it would be impossible to decode them to obtain the original values back. Hence, it was

found necessary to shift the entire set of values to positive half by adding the peak-to-peak value

to the signal.

On further analysis, the discrete signal values were found to be nominal. Converting

these nominal values to MRS wouldn’t make much of a difference since the moduli chosen were

much greater than these values. Thus, bringing the signal to the bounds of the product of the

moduli was found to be the best. We know that in an MRS [31], the bounds are determined by

the product of the moduli. We know that the solution to MRS is defined by prime moduli p1, p2,

and p3:

x ≡ X1 mod p1

 ≡ X2 mod p2

≡ X3 mod p3

9

is x ϵ {0,1,2,…. p1 × p2 × p3}. Thus, the input signal was augmented to the limit of the product of

the moduli by multiplying with a ratio of peak to peak of signal to the product of the moduli.

Multiplying served not only to bring the signal to the bounds of moduli considered, but it also

served to save the decimal values. The augmented signal was rounded off since the CRT cannot

handle decimal values.

A sampled, bounded positive signal x(t) < ∏𝑝𝑖 i= {1,2,3} for all t and quantized as an

integer x(r) was converted into an MRS using three relative prime moduli p1, p2, and p3. This

yielded three sets of residues for each sample such as X1, X2 and X3. Of these three sets of

residue, one set, say X3, was removed, resulting in the reduction of data to be sent and thus

defining a set of an under-determined set of congruence equations. Thus, the two sets of moduli

were sent to the decoder section.

2.4 Basic Theoretical Approach

The basic theorem by Oscar N Garcia states: for a signal that remains bounded in peak to

peak amplitude within the product of relatively prime moduli ∏𝑝𝑖 and satisfies continuity in its

information content, we can solve an under determined system of congruences and accomplish

data compression.

The basic idea presented here was to reconstruct the original signal from the reduced set

of congruences while solving for them using the CRT using the previous value of the signal.

Therefore, the first sample of the augmented signal was transferred to the decoder section

without converting it into an MRS. The decoder consisted of a module to compute the solution to

a system of equations defined above using the CRT and a module to bring the decoded signal

back to the limits of the original signal. Thus, at the decoder at a given time t, residues of sample

at t and previous sample at t-Δt were processed.

10

To demonstrate the process, let’s consider three moduli 2, 3, and 5 that are relatively

prime and all odd values between 1 and the product of (2, 3, 5); i.e., 30.

Table 2.1: MRS encoding

x X1 mod 2 X2 mod 3

1 - -
3 1 0
5 1 2
7 1 1
9 1 0
11 1 2
13 1 1
15 1 0
17 1 2
19 1 1
21 1 0
23 1 2
25 1 1
27 1 0
29 1 2

To begin with, the initial value of sample, 1, was sent to the decoder without converting it into

MRS. The decoder then received the first set of residue corresponding to the second sample 3;

that is, 1 and 0. Given only two residues, we know from table 2.1 that the possible solutions are

3, 9, 15, 21, and 27. From this list of possible solutions, the correct answer is found taking into

consideration the continuity of the transmitted signal. Thus, the correct answer was assumed to

be the one closest to the previous sample 1; i.e., 3.

11

The scheme used here depends on the continuity of the signal and is not applicable to any

random signal. The extent of continuity or permissible rate of change of signal value is discussed

in Chapter 3 under background considerations.

The decoded signal is brought back to the vicinity of the original signal by dividing the

decoded value by the ratio mentioned above and then subtracting the peak of the original signal

from it. Thus, the expected error in this process comes from rounding off.

To sum up, an encoding and decoding scheme is proposed here which uses the properties

of a continuously varying signal, RNS [3], and CRT. The signal is sampled, made positive,

brought to the bounds of product of moduli, quantized, and converted to the system of residue

using the first two moduli. The initial sample is send to decoder without encoding it. At the

decoder at a given time t, sample at is found with the help of two residues of sample at t and the

previous sample at t-Δt using the CRT. It is assumed that the signal is continuous enough such

that the sample at t is the closest one to sample at t-Δt from a list of possible solutions for the first

two residues at t.

The application of the theorem basically transforms the integers from integer domain to z

complete finite residue class. To further explain the process that takes place during the execution

of algorithm, let’s consider the solution at time t. The solution at time t lies in a two dimensional

plane, say with m1×m2 on its x axis and m3 on its y axis. The solution at time t projects the

solution at time t+Δt onto another plane whose dimensions are same. This projection would be

exactly the intersection of two circles whose radii are m1 and m2. Fig. 2.1 gives a pictorial view

of process explained.

12

Fig.2.1 3D pictoral view of algorithm.

As seen in figure, if the modulus is 5, a pentagon would be inscribed in the circle whose

one edge would be at the intersection of two circles or solution at time t +Δt.

13

CHAPTER 3

BACKGROUND CONSIDERATIONS

Chapter 2 presented a novel data encoding/decoding mechanism using an MRS. This

chapter deals with the details of the assumptions presented in Chapter 2, justifying each of them.

3.1 Assumptions

Following are the three assumptions for the proposed algorithm:

1) The moduli selected must be relatively prime and odd.

2) The signal must have a functional relation.

3) The signal must be bound by the product of the relatively prime moduli selected.

Let’s consider the first condition. The moduli selected should be relatively prime; i.e., the

gcd of any two of them be one, because the CRT guarantees a unique solution when moduli are

relatively prime. There are exceptions to these conditions; but to ensure that the algorithm works,

we consider only relatively prime moduli. We know that the decoding program chooses the

correct next sample from a list of all possible solutions such that the closest one to the previous

sample would be the correct choice. This is possible only if the moduli selected are odd. If they

are even, there will be two numbers that will be equidistant to the given previous sample, which

would force the system to take a decision at 0.5 probability that could risk failure of the entire

process.

Let’s consider the second condition: the entire algorithm is based on the fact that the

signal is continuous and has a slow rate of change of amplitude; i.e., the amplitude of the signal

doesn’t vary abruptly. In other words, the signal should have a functional relation and cannot be

random. So to test the algorithm, we considered smooth continuous signals like the sum of

sinusoids and speech signal, such that the next sample is the closest one to the present sample.

14

Moving on to the third condition that the boundary of the signal should be within the

limits of the product of moduli. Consider the sampled signal x(n), according to the condition:

i.e., 0 < x(n) < ∏𝑝𝑖.

We know MRS for the defined primes, say p1, p2 and p3 comprises of integers 0 to P= p1 ×p2

×p3. And integer greater than P will be converted to an integer within this bound.

Now consider a signal whose boundaries are very much larger than the product of prime.

i.e., x(n) >> ∏𝑝𝑖where i={1,2,3}

At the encoding end, the signal values get converted into an MRS, where its values get

reduced to within the range of the product of moduli. During decoding, the CRT would give all

possible solutions with the range mentioned above, and the result would be an incorrect output.

Now let’s consider a signal whose range is very much less than product of moduli.

i.e., x(n) << ∏𝑝𝑖 where I ={1,2,3}

In this case, since the values are very much smaller, conversion into multi-residue wouldn’t bring

much changes and moreover the difference between consecutive samples would be much smaller

such that the nearest neighbor prediction has higher chances of being error.

Thus, the above-mentioned are the three necessary conditions for the proposed algorithm

to work correctly.

15

CHAPTER 4

RESIDUE TABLE

The new algorithm discussed here is so far based on the CRT. However, on further

investigation, we were convinced by the fact that the CRT could be substituted by a table of all

integers ranging from 0 to the product of the moduli arranged in a manner respective to their

moduli.

4.1 Rationale for the Use of a Table

The idea was to save the time the process took in order to compute the possible solutions

by the CRT each time. The table was meant to act as a look-up table for CRT solutions. Thus, the

dimension of the two-dimensional table would be m1 × m2 for column and m3 for row or vice

versa, either way being correct. At a given time t, the column (or row) of sample at t would be

selected using the product of two residues out of the three that we have been using, say m1 × m2 ,

to designate the column and then m3 to determine the row. The solution would be selected as the

one giving the minimum absolute difference with sample at t-Δt . Fig. 4.1 gives a pictorial

representation of this process.

Fig. 4.1 Pictorial representation of decoding process using table

16

4.2 Different Tables

The table discussed above isn’t a unique one for the given moduli. It varies based on the

way moduli and corresponding remainders are used in the rows and columns. Tables 4.1, 4.2,

and 4.3 show three possible residue tables for moduli 3, 5, and 7.

Table 4.1 Table style 1 for P = [3 5 7]
m3\

r(m1×m2)
1,1 2,2 0,3 1,4 2,0 0,1 1,2 2,3 0,4 1,0 2,1 0,2 1,3 2,4 0,0

1 1 92 78 64 50 36 22 8 99 85 71 57 43 29 15
2 16 2 93 79 65 51 37 23 9 100 86 72 58 44 30
3 31 17 3 94 80 66 52 38 24 10 101 87 73 59 45
4 46 32 18 4 95 81 67 53 39 25 11 102 88 74 60
5 61 47 33 19 5 96 82 68 54 40 26 12 103 89 75
6 76 62 48 34 20 6 97 83 69 55 41 27 13 104 90
0 91 77 63 49 35 21 7 98 84 70 56 42 28 14 0

Table 4.2 Table style 2 for P= [3 5 7]

m3\r(m1×m2) 0,0 0,1 0,2 0,3 0,4 1,0 1,1 1,2 1,3 1,4 2,0 2,1 2,2 2,3 2,4
0 0 21 42 63 84 70 91 7 28 49 35 56 77 98 14
1 15 36 57 78 99 85 1 22 43 64 50 71 92 8 29
2 30 51 72 93 9 100 16 37 58 79 65 86 2 23 44
3 45 66 87 3 24 10 31 52 73 94 80 101 17 38 59
4 60 81 102 18 39 25 46 67 88 4 95 11 32 53 74
5 75 96 12 33 54 40 61 82 103 19 5 26 47 68 89
6 90 6 27 48 69 55 76 97 13 34 20 41 62 83 104

Table 4.3 Table style 3 for P= [3 5 7]
m3\r(m1,m2) 0,0 0,1 0,2 0,3 0,4 1,0 1,1 1,2 1,3 1,4 2,0 2,1 2,2 2,3 2,4

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
3 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
6 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

Thus, clearly. these tables differ.

17

4.3 No Search at the Expense of More Memory

Though this two-dimensional table saves calculation time and is 12 times faster in this

simple example when compared to solving for CRT for every single sample, we found that a

modification of a two-dimensional table would work faster. The idea was to use a three-

dimensional table with elements prearranged, not only in the order of moduli but also with

respect to the distance from one another, thus avoiding search time for the shortest distance

element in the column. In short, a third dimension based on distance between elements of other

columns was built on top of the two dimensional table as a modification. Fig. 4.2 explains the

idea of three-dimensional table pictorially.

The three axes for the three-dimensional table are residues from m1× m2 on x-axis,

residue from m3 on y-axis (or vice versa) and closest element with respect to elements in residue

(m1× m2) with a length of m1× m2. In other words, the two-dimensional table forms the base of

the three-dimensional table as shown in Fig. 4.2. The three-dimensional table arranges the

elements in a two-dimensional table with the closest element in the next row when counting

clockwise, as the third dimension, i.e., height of the three-dimensional table. Since the table

which forms base for this table isn’t a table, the three-dimensional table also isn’t unique. While

using the three-dimensional table at the decoding end, the residues of the first two moduli of the

previous sample at t– Δt give the row number; the residue of the third moduli of the previous

sample at t – Δt gives the column number; and the residues of the first two moduli of the present

sample at t give the height component.

Therefore sample at t = 3D table {r(m3)t– Δt, r(m1× m2) t– Δt, r(m1× m2) t}

The addressing varies according to the way the two-dimensional table is arranged. The

size of the three-dimensional table would be m3 by m1 × m2 by m1 × m2 (or) m1 × m2 by m3 by m1

18

× m2. The three-dimensional table, as mentioned before, saves execution time because there isn’t

any time involved in searching or calculating results as before, at the expense of memory to build

and retain the three-dimensional table for given moduli, thus consuming more power and area.

This could be a serious issue when large moduli are selected.

4.4 Two-Dimensional Canonical Table

Later on, the idea of using only two moduli was considered. The table for the same was

constructed as shown in Table 4.4.

Table 4.4 Two-dimensional canonical table for P = [5 7] using two moduli

Col no.\r(m1) 0 1 2 3 4 5 6
1 0 1 2 3 4 5 6
2 7 8 9 10 11 12 13
3 14 15 16 17 18 19 20
4 21 22 23 24 25 26 27
5 28 29 30 31 32 33 34

 Fig. 4.2 Pictorial representation of 3D table

19

The new two-dimensional table was derived from Table 4.3 by replacing two moduli with

two. This new table was named “canonical residue table” and provided the best direct addressing

performance and lowest memory requirements of all the tables. Having the elements arranged in

ascending order eliminated the need for search and made it easier to use a new decoding scheme,

which addressed the elements directly. It should be noticed that this table is part of a family of

tables whose columns have the same arithmetic difference between corresponding elements as

between the values of the residues of modulo m2.

20

CHAPTER 5

SEQUENCE OF EXPERIMENTS

The algorithm and a different residue table proposed for data compression were subjected

to experimentation with different inputs. Many modifications of the original algorithm and

experiments with different data were carried out, which resulted in changes in the algorithm and

results as mentioned in this thesis. This chapter deals with the experiences and lessons learned

during this aspect of the research.

5.1 Platform

The experiments mentioned below were carried out on a MATLAB platform, which is a

linear algebraic computing language. To solve the CRT, initially the Symbolic Math toolbox in

MATLAB was used. The rest of the experiments were carried out in the basic platform of

MATLAB.

The Symbolic Math MATLAB Toolbox provides tools for solving and manipulating

symbolic math expressions and performing arithmetic with variable precision. The toolbox

contains hundreds of MATLAB symbolic functions that leverage the MuPAD engine for tasks

such as symbolic differentiation, integration, simplification, transforms, and solving system of

equations. The Symbolic Math toolbox also includes the MuPAD programming language, which

is optimized for handling and operating user-created symbolic math expressions. Programming

in MuPAD can include a broad set of libraries of MuPAD functions in frequently used

mathematical areas, such as calculus and linear algebra, as well as specialized areas, such as

number theory and combinatory.

21

5.2 Initial Motivation: Case 1

As mentioned in Chapter 1, the work began with an effort to find alternatives to solve an

underdetermined system of equations involved that appeared in compressive sensing [32] [33]

for data compression [34], and then the idea of taking the entire system to a multi-residue

framework came up. Since tutorial work began by reading about “compressive sensing” [35] [36]

[37], the sinusoidal signal used in Cleve Moler’s “Magic Reconstruction” [28] was first used to

see the feasibility of a multi-residue approach. The signal corresponded to the “A” key of a

touch-tone telephone. The basic algorithm of converting signals into residue classes and

reconstructing them using the CRT was tested successfully on this signal; this result encouraged

us to follow this research line.

What follows is part of the code from the encoding section. Here, the augmented input

data is converted to MRS using the ‘mod’ function in MATLAB:

for id = 1 : dM-1
 mod_dat(:, id) = mod(dat_aug, M(id));
end

The following snippet of code shows how CRT was called on MATLAB using Symbolic Math

toolbox in this program.

command = ['numlib::ichrem(' z_str ',[5,7,11])'];
p(i) = evalin(symengine, command);

Initially, the parameter passed onto the Symbolic Math toolbox was converted into

symbols/string, and then the CRT command numlib::ichrem was executed.

5.3 Speed Up: Cases 2 and 3

In an effort to utilize the signal for a real-world signal, a sound file was considered. For

the purpose of a uniform comparison, a sound file, SA1.wav file (ID: 55092), was downloaded

from the TIMIT database and used in all the following experiments reported here. The sound file

22

had a sampling frequency of 16k Hz, duration of 2.9248 seconds with 16 bits/sample by default.

The *.wav file was read using wavread command on MATLAB as given below.

[din,fs]= wavread('timi_in');

The signal was tested successfully using the same algorithm just by replacing the sampled

sinusoidal signal with the new one. The output was saved as another sound (*.wav) file using the

wavwrite function.

wavwrite(dout ,fs ,'timi_out');

The acceptability of the result was confirmed by computing the root mean square (RMS) error

between input and output signals and by listening to the output sound signal. The RMS error was

in the range of 10-6, which we considered practically lossless. The following code shows the

RMS error calculation:

err = dout(2:end) - din(2:end) %does not include first sample
err_rms = sqrt((sum(err.^2))/length(err));

However, solving the CRT by using the Symbolic Math toolbox was a long, time-

consuming approach since each time there was a call for it, data from the basic MATLAB

environment had to be converted to symbolic form. After the computation of the result, the

answer was converted back from symbolic form to the MATLAB environment. This command

and conversion call between MATLAB and the Symbolic Math toolbox was found to be a

limitation to the usage of this algorithm in real-time applications. Hence, CRT was written in the

MATLAB platform to avoid using the slower Symbolic Math toolbox process. This proved to be

a good decision since it sped up the execution of the program by 12 times. Below is a snippet of

the CRT code (see Appendix A for the complete code).

for j=1:length(a)
 temp = invmodn(M/m(j),m(j));
 x=x+ a(j)*(M/m(j))*temp;
 x=mod(x,M);
end;

23

where invmodn(x,m) found the modular inverse of argument x with respect to modulus m.

The idea for compression was to project the signal to a residue class that would reduce

the number of bits per sample for storage and transmission by using all but one of the

remainders. For example, the TIMIT sentence, by default, had 16 bits per sample; but

compressing it with moduli 7, 31, and 127 and transmitting the residues from 7 and 31 (3 and 5

bits, respectively) reduced the number of bits per sample by 50%. Later on, a provision for bit

shift was done to enforce 8 bits per sample. This approach was done by multiplying the second

higher-order residue by 2n, where n is the number of bits in the first lower-order moduli. In the

case of 7, 31, and 127, the residue was multiplied by 23, 3 corresponding to number of bits in 7 at

the encoding end. Fig. 5.1 depicts the process. The algorithm written in MATLAB is as follows:

for i=1:length(dat)
 mod_dat(i) = mod_dat(i,1)+(8*mod_dat(i,2));
end

We transmit the residues of mod 7 and mod 31 and, by combining those to a single byte, obtain

50% compression. At the decoder, the encoded samples were first converted to an 8-bit binary

representation and then the first lower-order 5 bits were considered to be residues of mod 31 and

the higher-order 3 bits were considered to be the residues of mod 7.

Later on, a thought to encode the signal initially using differential pulse-code modulation

(DPCM) was suggested. DPCM was used at the encoder prior to coding it in the RNS [8] and

was decoded at other end after decoding it by using CRT. This, however, was found not to be

Fig. 5.1 Combining two residues to single byte

24

very effective since in the minimum number of bits to be sent was 8 bits, the same as the case

without using DPCM. Hence, DPCM was dropped to reduce the numerical computation

complexity of the algorithm. Encoding two consecutive DPCM bytes was considered but not

pursued at this time.

5.4 Further Speed-Up: Cases 4 and 5

In the beginning, the main intent of this work was to come up with a methodology for

data compression using multi-residue codes [38] [39]. After working on it with sound waves,

sinusoidal signals, and implementing CRT module, we realized it was desirable to operate in real

time and to take a note of timing for the algorithm; therefore, timing plots were included in the

programs. This gave information on the time taken by segments of the program and allowed their

selective optimization. The decoding segment of the process was found to be consuming two-

thirds of the total execution time. The time taken was later reduced by the inclusion of two-

dimensional residue table decoder instead of CRT (see Appendix B for the code); nevertheless,

the decoding end dominated the execution time owing to the search process. This was again

improved by using a three-dimensional table where the result of converting the multi-residue to

an integer was done by direct addressing. This eliminated the search. As mentioned before, we

saved execution time at the expense of using more memory space for the three-dimensional table

(see Appendix C for code). The final approach used a canonical two-dimensional table that did

not require a search, allowed direct addressing, and had lower memory requirements.

5.5 Best Table with Zero Error: Cases 6 and 7

We introduced a new decoding scheme that addresses the elements of the table, thus

eliminating a search. This gave us a speedier process and also fewer computations. In an effort to

reduce computations, we also used two moduli instead of three. Thus, the two-dimensional table

25

was reconstructed as shown in Table 4.4. The following is a snippet of code from encoding and

decoding part of the new scheme.

%---Encoding-----
a = mod(f2(:,:,1),M(2))+1;
Isave = a;

Isend=((f2(:,:,1)-a)./M(2))+1;
%---Decoding--------

for j=1:n
 for i=1:m
 r(i,j)=Table(Isend(i,j),Isave(i,j));
 end
end

As can be seen, different variables named Isend and Isave were created that address the table

directly, avoiding search. Thus, the scheme totally eliminated the search process and hence

improved timing. On further analysis, we realized that the error from the two-dimensional table

and the three-dimensional table was due to rounding off the sampling data. The representation of

the sampled value in MATLAB was in double precision floating point format, which

necessitated rounding off values before encoding. Therefore, in the new program, we read data

using int16 format, thus avoiding usage of the rounding-off function and thereby achieving zero

RMS error. The following part of the MATLAB code (See Appendix E for code) shows the

same.

y = wavread('timi_in.wav','native');

We have considered how we achieved sequential improvements in computation time,

complexity, and memory utilization with a two-dimensional canonical table and direct

addressing without search and eliminated the error within the length (16 bits) of the data when it

was read into the workspace by using the ‘native’ MATLAB option. We give quantitative results

in the next chapter.

26

CHAPTER 6

RESULTS

This chapter presents the results obtained in each experimental case studied and with

each of the associated experiments. The first two experiments used the example of Cleve Moler’s

compressive sensing problem [28], and the others used TIMIT’s *.wav file in raw format after

eliminating the header.

6.1 Case 1: Use of the Symbolic Math Toolbox on the Sinusoid Signal

Input: x(t) =sin(1394πt) + sin(3266πt)
2

 Signal corresponding to dial tone of ‘1’

Moduli M = [5 7 11]

Output was calculated by using the CRT from the Symbolic Math toolbox in MATLAB.

Fig. 6.1 shows the input and output signals. The RMS error obtained was 4.0626e-5.

Fig. 6.1 Input and output figures for Case 1

27

Fig. 6.2 is the timing bar plot for case 1 above. As can be seen, out of total 23 seconds of

run time, 75% of the time was consumed by the decoder section with 17 seconds. From our

evaluation, it was understood that the time taken in decoder was in calls and switches between

MATLAB and the Symbolic Math toolbox. To avoid these calls, a MATLAB code for CRT was

written, and timing was evaluated with same signal in the next experiment.

With the RMS error as low as 4.0626e-5, it was estimated as noiseless compression for all

practical purposes.

Fig. 6.2 Timing bar chart for Case 1

28

6.2 Case 2: Use of the CRT on the Sinusoid Signal

Input same as Case 1.

Moduli used, M = [7 31 127]

Programmed using the new CRT code, written in MATLAB

RMS error obtained = 2.9e-4

Fig. 6.3 shows the MATLAB figure for input and output signals.

We noticed the slight loss in precision in the decoded signal, probably due to the

numerical approximations in the MATLAB code.

Fig. 6.3 Input and output figures for Case 2

29

Fig. 6.4 is the timing bar plot for case 2 discussed. As can be seen, the total time was

reduced from 20 seconds to 1.65 seconds, proving that time taken by writing CRT code was

better than using the Symbolic Math toolbox by 12 times. The decoder continued to use a major

portion of the time, but it was no longer because of calls between MATLAB and the Symbolic

Math toolbox. Instead, it was the solution of the system of congruences due to the time taken in

calculating solutions using CRT for each signal and searching for the approximate answer.

Hence came the decision to use the two-dimensional table. Before dealing with the two-

dimensional table, case 3 presents the result of the same experiment with speech data.

Fig. 6.4 Timing bar plot for Case 2

30

6.3 Case 3: Use of the CRT on the TIMIT Sentence

Input: The TIMIT sentence was downloaded from the TIMIT database.

Programmed using new CRT code, written in MATLAB

Moduli M = [7 31 127]

RMS error obtained = 2.766e-4 (see Appendix A for code)

Fig. 6.5 Input and output figures with TIMIT sentence for Case 3

31

Fig. 6.6 shows the timing plot for Case 3 using the CRT MATLAB code as discussed.

The total execution time was 220 seconds, out of which the decoder consumed most of the time.

Though we saved on time by writing CRT code, the process wasn’t fast enough to be used in a

real-time environment. Case 4 presents the results obtained with the two-dimensional table.

Fig. 6.6 Timing bar plot for Case 3

32

6.4 Case 4: Use of the Two-Dimensional Table with Three Prime Moduli

Input: The TIMIT sentence was downloaded from the TIMIT database.

Moduli M = [7 31 127]

A two-dimensional residue table (table style as in Table 4.1) was used in place of the CRT.

RMS error obtained = 2.766e-4

Fig. 6.7 shows the input and output figures obtained during this experiment (see

Appendix B for the code).

Fig. 6.7 Input and output figures with TIMIT sentence for Case 4

33

Fig. 6.8 shows the timing plot for Case 4. As can be seen, the execution times slashed

down to 15 seconds from 220 seconds in Case 3. It shows that the idea of implementing a two-

dimensional residue table makes the entire process 14 times faster than solving for CRT every

single time.

Fig. 6.8 Timing bar plot for Case 4

34

6.5 Case 5: Use of a Three-Dimensional Table with Three Prime Moduli

Input: The TIMIT sentence was downloaded from the TIMIT database.

Moduli M = [7 31 127]

The three-dimensional residue table was used in place of the two-dimensional table, thus

eliminating the search process in the decoder section.

RMS error obtained = 2.766e-4

Fig. 6.9 shows the input and output figures obtained (see Appendix C for code).

Fig. 6.9 Input and output figures with TIMIT sentence for Case 5

35

Fig. 6.10 shows a timing plot for Case 5. It can be inferred that the time consumed was

reduced to 0.35 second while using the three-dimensional table in place of the two-dimensional

table where total time consumed was 15 seconds. However, the speed of the entire process with

three-dimensional table came with the additional requirement for memory, which could be really

huge in cases of larger moduli.

Fig. 6.10 Timing bar plot for Case 5

36

6.6 Case 6: Use of the Two-Dimensional Table with Two Prime Moduli

Input: The TIMIT sentence was downloaded from the TIMIT database.

Moduli M = [31 127]

A two-dimensional table (table style as in Table 4.1) was used with two moduli with the

search process at the decoding end.

RMS error obtained = 2.7495e-4

Fig. 6.11 shows the input and output figures obtained (see Appendix D for code).

Fig. 6.11 Input and output figures with TIMIT sentence for Case 6

37

Fig. 6.12 shows timing plot for Case 6. It can be clearly read from the figure that the time

consumed came down to 1.3 seconds while using two moduli instead of three and decoding using

a two-dimensional table where total time consumed was 15 seconds. Thus, it was inferred that

reducing the number of moduli would reduce the computations and hence the time consumed.

Fig. 6.12 Timing bar plot for Case 6

38

6.7 Case 7: Use of the Two-Dimensional Canonical Table

Input: The TIMIT sentence was downloaded from the TIMIT database.

Moduli M = [149 269]

A canonical form of the two-dimensional table (Table 4.4 style) was used with two

moduli and a new decoding method that addresses the elements directly eliminating the search

process.

RMS error obtained = 0

Fig. 6.13 shows the input and output figures obtained (see Appendix E for code).

 Fig. 6.13 Input and output figures with TIMIT sentence for Case 7

39

Fig. 6.14 shows a timing plot for Case 7. It can be seen that the time consumed was

reduced to 0.082 second when using two moduli canonical table with a new decoding scheme

instead of using a two-dimensional table with two moduli using search mechanism where the

total time consumed was 1.1 seconds. It should be noticed that the decoder time no longer

contributed to 75% of the total execution time.

 Fig. 6.14 Timing bar plot for Case 7

40

CHAPTER 7

CONCLUSIONS

As mentioned in Chapter 1, this work presented a novel technique for data compression

using an MRS. The basic idea was a simpler and more general approach than solving an under-

determined system of equations for data compression. By projecting the signal to be compressed

into the MRS field, the system of equations was transformed into a system of congruences. The

CRT was first used to solve this system. Other ideas about the solution of the Diophantine

equations were analyzed but not reported here [40].

Having programmed in MATLAB, initially the Symbolic Math toolbox was utilized,

which was later replaced by the MATLAB script for CRT. Considering the time restrictions the

system might face while working in real-time applications, the two-dimensional residue table

was introduced. It was later replaced by the three-dimensional table at the expense of more

memory.

From the RMS error obtained in various experiments explained in Chapter 6, this method

was found to be a lossless compression for all input.

As an extension to the work, replacing three moduli with two arbitrary relatively prime

integers and thus reducing the number of computations was considered and successfully tested.

This development not only reduced the number of computations but also the time aced and

allowed greater choice in the solution on the moduli. To further eliminate the search process, a

new decoding method that directly addresses the canonical residue table was used that eliminated

the search process used in previous cases. This was considered to be the best method derived

from this work due to its 0 RMS error and speed.

The results obtained in this work are summarized in Table 7.1.

41

Table 7.1: Summary of results

Case considered with input: a TIMIT sentence
of 2.92-second duration RMS error Total execution time in seconds

Case 3: Using CRT script 2.766e-4 225
Case 4: Using 2D table with search 2.766e-4 15
Case 5: Using 3D table without search 2.766e-4 0.37
Case 6: Using 2D table with a search for 2
moduli 2.7495e-4 1.19

Case 7: Using canonical 2D table without a
search for 2 moduli 0 0.082

The next level of achievement for this work would be in image and video compression.

Having a video frame with a three-dimensional r ed-green-blue (RGB) data matrix, this work

could be challenging in terms of managing the time for overall computation. It should be

observed that in an audio-visual implementation, we would need a playback of the audio

segment that corresponded to 30-frame/second video. The time of our playback is 0.026 second

for the TIMIT sentence whose duration is 2.92 seconds. Therefore, the audio process should be

developed more than adequately for an audio-visual application.

42

APPENDIX A

CASE 3 PROGRAM

43

%---
%-- MATLAB program for Case 3
%---

function Docv2

tstart = tic;

% Input : timi_in.wav; Fs : 16k Hz
%reading .wav file which is TIMIT sentence "She had your dark suit in
%greasy wash water all year."
[y,fs]= wavread('timi_in');

%calculating peak to peak of input signal to lift the signal to make it
%positive
p2p = max(y)-min(y);
dat = round((y+p2p).*1000);

% Parameters for simulation
M = [127 31 7];

% Encoding
tenc_start = tic;
[A,ty_enc] = mr_enc(dat, M,tenc_start);

% Decoding
tdec_start = tic;
[dA, ty_Dec,ty_crt] = mr_decv1(dat, A, M,p2p,tdec_start);

dA = dA(:);
dA = (dA./1000)-p2p;

%--Error calculation
err = dA(2:end) - y(2:end);
err_rms = sqrt((sum(err.^2))/length(err));
RMS = sqrt((sum(dA.^2))/length(dA));
fprintf('\nRMS error between input and output signals is %f', err_rms);
fprintf('\n');

fprintf('\nRMS of obtained signal is %f', RMS);
fprintf('\n');

%----------plotting input and output signals
figure
subplot(2,1,1)
plot(y)
% title('Input sound wave')
title('Input sound wave; Moduli M = [7 31 127]');
xlabel('No of samples')
ylabel('Amplitude')
subplot(2,1,2)
plot(dA)
% title('Output sound wave obtained')
xlabel('No of samples')
ylabel('Amplitude')
title(['Output obtained with RMS error = ',num2str(err_rms)])

44

%writing the obtained signal to .wav file
% wavwrite(dA ,fs ,'timi_run1');

ty_total = toc(tstart);
timevectors = [ty_total ty_enc ty_Dec ty_crt]
figure
bar(timevectors)
title('Bar plot for timing')
xlabel('timevectors = [1 = Total; 2 = Encoder; 3 = Decoder; 4 = CRT]')
ylabel('Elapsed time for each function')

%Encoding function
function [A,ty_enc] = mr_enc(dat, M,tenc_start)

%---%%
% Encoding for multi-residue system
%
% Input:
% M: [p1 p2 p3] moduli with size of dM
% dat: data for simulation, size of dLen
% Output:
% A: size of dLen x M, residue matrix
%---%%

dat = dat(:);

dM = length(M);

for id = 1 : dM-1
 A(:, id) = mod(dat, M(id));
end
ty_enc = toc(tenc_start);

%Decoding function
function [dA, ty_Dec,ty_crt] = mr_decv1(dat, A, M,~,tdec_start)

%---%%
% Decoding for multi-residue system
%
% Input:
% M: [p1 p2 p3] modulis with size of dM
% dat: original data
% A: size of dLen x dM, dLen is the length of data
% Output:
% dA: size of dLen, the decoded for A
%---%%

dM = length(M);
[dLen, col] = size(A);
% A = double(A);
dA(1) = dat(1);
% dA = double(dA);
% For loop for all the input data
tcrt_start = tic;

45

for id = 2 : dLen
 outTmp = [];
 for im = 0 : M(dM)-1
 res = [A(id, 1:dM-1) im];
 [outTmp(im+1),ty_crt] = crt(res, M,tcrt_start);
 end

 [~, Idx] = min(abs(outTmp - dA(id-1)));
 dA(id) = outTmp(Idx);
end

% dA = int16(dA);
ty_Dec = toc(tdec_start);

%Chinese remainder theorem
function [x,ty_crt] = crt(a,m,tcrt_start)
% This function solves the Chinese Remainder Theorem problem:
% x= a(1) mod m(1)
% x= a(2) mod m(2)
% ...
% x= a(r) mod m(r)
% The values for a and m should be a vector of the same dimension

if any(size(a) ~= size(m)),
 error('The vectors a and m should be the same size');
end;

r=length(a);

M=prod(m); % calculate the total modulus

x=0;
for j=1:r
 temp = invmodn(M/m(j),m(j));
 x=x+ a(j)*(M/m(j))*temp;
 x=mod(x,M);
end;
ty_crt = toc(tcrt_start);

function y = invmodn(b,n)
% This function calculates the inverse of an element b mod n
% It uses the extended Euclidean algorithm

n0=n;
b0=b;
t0=0;
t=1;

q=floor(n0/b0);
r=n0-q*b0;
while r>0,
 temp=t0-q*t;
 if (temp >=0),
 temp=mod(temp,n);
 end;
 if (temp < 0),
 temp= n - (mod(-temp,n));

46

 end;
 t0=t;
 t=temp;
 n0=b0;
 b0=r;
 q=floor(n0/b0);
 r=n0-q*b0;
end;

if b0 ~=1,
 y=[];
 disp('No inverse');
else
 y=mod(t,n);
end;

47

APPENDIX B

CASE 4 PROGRAM

48

%---
%-- MATLAB program for Case 4
%---

clear all
clc

% -------------Step 1: Defining moduli for compression--------------------
M = [7 31 127];

%------------Step 2: Generating 2D residue table for given moduli------------
--
k=M(1)*M(2);
t=k*M(3);
twoD(1,1)=1;
for i=2:M(3)
 twoD(i,1)=twoD(i-1,1)+k;
end
col=1;
for i=2:k
twoD(1,col+1)=mod((twoD(M(3),col)+1),t);
for j=2:M(3)
 twoD(j,i)=mod((twoD(j-1,i)+k), t);
end
col=col+1;
end

%Creating order matrix for decoding
mod_M1 = mod(1:M(1),M(1));
mod_M2 = mod(1:M(2),M(2));
for l = 1:M(1):M(2)*M(1)
 order(1,l:l+(M(1)-1)) = vertcat(mod_M1);
end
for l = 1:M(2):M(2)*M(1)
 order(2,l:l+(M(2)-1)) = vertcat(mod_M2);
end
order = order';

% Defining time vector to calculate time taken by process
tstart = tic;

% Step 3: Reading input: TIMIT sentence
y = wavread('timi_in.wav');

% -----------------Step 4: Augmenting the signal to the limit of product of
moduli-------------%
p2p = max(y)-min(y);
dat = round((y+p2p).*1000);

% --------------------Step 5: multi- residue coding of augmented signal------
-------------%
dat = dat(:);
dM = length(M);

%Initialising time vector for encoding section
tenc_start = tic;
for id = 1 : dM-1

49

 A(:, id) = mod(dat, M(id));
end
ty_enc = toc(tenc_start);

%----------- Step 6: Decoding the signal using 2D table and order matrix-----
---------%
dA = dat(1);
dLen = length(dat);
tdec_start = tic;
for id =2:dLen
 for i=1:length(order)
 l1 = order(i,:);
 l2 = A(id,:);
 if l1 == l2
 col_IDX = i;
 end
 end
 %Searching the nearest neighbour to previous sample
 [~,row_IDX] = min(abs(dA(id-1)-twoD(:,col_IDX)));
 dA(id) = twoD(row_IDX,col_IDX);
end
ty_Dec = toc(tdec_start);

% ------Step 7: Converting (augmented) decoded signal to limits of original
signal----%
dA = dA';
dA = (dA ./ (1000))- p2p;
ty_total = toc(tstart);

%-----------------Error calculation------------------%
e = dA(2:end)-y(2:end);
err_rms = sqrt((sum(e.^2))/length(e));
fprintf('\nrms is %f', err_rms);
fprintf('\n');

%-----------------------Fig.ures-----------------------%
%plotting input and output signals
subplot(2,1,1)
plot(y)
title('Input signal TIMIT sentence; Moduli M = [7 31 127]');
xlabel('No of samples')
ylabel('Amplitude')
subplot(2,1,2)
plot(dA)
xlabel('No of samples')
ylabel('Amplitude')
title(['Output obtained with RMS error = ',num2str(err_rms)])

timevectors = [ty_total ty_enc ty_Dec]
figure
bar(timevectors)
title('Bar plot for timing')
xlabel('Timevectors: Total Encoder Decoder')
ylabel('Elapsed time in seconds')
%-----------MATLAB script for Case 4 in Chapter 6 ends--------------

50

APPENDIX C

CASE 5 PROGRAM

51

%---
%-- MATLAB program for Case 5
%---

clear all;
close all;
clc;

% Moduli for compression
M = [7 31 127];

% Step 1: Generate the 2-D table
for im1 = 1 : M(1)
 for im2 = 1 : M(2)
 mlist((im1-1)*M(2)+im2, :) = [im1-1 im2-1];
 end
end

% Using CRT for the 2D table
for ic = 1 : M(1)*M(2)
 for ir = 1 : M(3)
 ms2D(ir, ic) = crt([mlist(ic,:) ir-1], [M(1) M(2) M(3)]);
 end
end

% Step 2: Construct the 3-D table called ms3D
for ic = 1 : M(1)*M(2)
 for ir = 1 : M(3)
 % Locate the previous samples
 Pre_Sample = ms2D(ir, ic);

 for iz = 1 : M(1)*M(2)
 % Find M(3) possible values for the current sample
 Curr_Sample_Candi = ms2D(:, iz);

 % Find the distance between current and previous
 dist = abs(Pre_Sample - Curr_Sample_Candi);
 [dummy idx] = min(dist);

 ms3D(ir, ic, iz) = Curr_Sample_Candi(idx);
 end
 end
end
save Table3D ms3D;
load Table3D;

tstart = tic;

%reading .wav file which is TIMIT sentence "She had your dark suit in
%greasy wash water all year."
y = wavread('timi_in.wav');

%Calculating peak to peak of input signal to lift the signal to make it
%positive
p2p = max(y)-min(y);

52

dat = round((y+p2p).*1000);

% Encoding for multi-residue system%%
dat = dat(:);
dM = length(M);
tenc = tic;
for id = 1 : dM
 A(:, id) = mod(dat, M(id));
end
tencd= toc(tenc);

%Decoding for multi-residue system
tdec = tic;
yout(1) = dat(1);

prev_m1 = mod(yout(1), M(1));
prev_m2 = mod(yout(1), M(2));
prev_m1m2 = prev_m1*M(2) + prev_m2;
prev_m3 = mod(yout(1), M(3));
% decoding using direct decoding matrix
for id = 2 : length(A)

 curr_m1m2 = A(id, 1)*M(2) + A(id, 2);

 [prev_m1m2+1, prev_m3+1, curr_m1m2+1];
 % 3D table look up
 yout(id) = ms3D(prev_m3+1, prev_m1m2+1, curr_m1m2+1);

 % Update the memory
 prev_m1m2 = curr_m1m2;
 prev_m3 = mod(yout(id), M(3));

 if yout(id) ~= dat(id)
 fprintf('here');
 end

end
tdecd = toc(tdec);

% Converting yout (augmented) decoded signal its original magnitude
yout = (yout./1000)-p2p;
yout = yout(:);

tend =toc(tstart);

%Error calculation
e = yout(2:end)-y(2:end);
err_rms = sqrt((sum(e.^2))/length(e));
fprintf('\nrms is %f', err_rms);
fprintf('\n');

%-----------------------Figures-----------------------%
%plotting input and output signals
subplot(2,1,1)
plot(y)
title('Input signal TIMIT sentence; Moduli M = [7 31 127]');

53

xlabel('No of samples')
ylabel('Amplitude')
subplot(2,1,2)
plot(yout)
xlabel('No of samples')
ylabel('Amplitude')
title(['Output obtained with RMS error = ',num2str(err_rms)])

t = [tend tencd tdecd];
figure;
bar(t)
title('Bar plot for timing')
ylabel('Time in seconds')
xlabel('1=Total time 2=Encoder time 3=Decoder time')

54

APPENDIX D

CASE 6 PROGRAM

55

%---
%-- MATLAB program for Case 6
%---

clear all
close all
clc

%--Contrusting two dimensional table for given 2 moduli matrix M
M = [31 127];

M1=M(1)*M(2);
twoD(1,1)=0;
for i=2:M(1)
twoD(i,1)=mod(twoD(i-1,1)+M(2),M1);
end
col=1;
for i=2:M(2)
twoD(1,col+1)=mod((twoD(M(1),col)+1),M1);
for j=2:M(1)
twoD(j,i)=mod((twoD(j-1,i)+M(2)), M1);
end
col=col+1;
end
twoD = int16(twoD);

tstart = tic;

%---Reading input: TIMIT sentence
y = wavread('timi_in.wav');
p2p = abs(min(y));
dat = round((y + p2p).*1000);

%---Encoding--------
tenc_start = tic;
A = mod(dat, M(2));
ty_enc = toc(tenc_start);

%----Decoding-------
tdec_start = tic;
dLen = length(A);
y_out(1) = dat(1);

for id =2:dLen
 col_IDX(id) = A(id)+1;
 [~,row_IDX(id)] = min(abs(y_out(id-1)-twoD(:,col_IDX(id))));
 y_out(id) = twoD(row_IDX(id),col_IDX(id));
end
ty_Dec = toc(tdec_start);

% Converting (augmented) decoded signal to limits of original signal
y_out = (y_out./1000) - p2p;
ty_total = toc(tstart);

%Error calculation
y_out = y_out(:);
e = y_out(2:end)-y(2:end);

56

err_rms = sqrt((sum(e.^2))/length(e));
fprintf('\nrms is %f', err_rms);
fprintf('\n');

%-----------------------Figures-----------------------%
%---Plotting input and output signals
subplot(2,1,1)
plot(y)
title('Input signal TIMIT sentence; Moduli M = [31 127]');
xlabel('No of samples')
ylabel('Amplitude')
subplot(2,1,2)
plot(y_out)
xlabel('No of samples')
ylabel('Amplitude')
title(['Output obtained with RMS error = ',num2str(err_rms)])

timevectors = [ty_total ty_enc ty_Dec]
figure
bar(timevectors)
title('Bar plot for timing')
xlabel('Timevectors: 1= Total 2= Encoder 3= Decoder')
ylabel('Elapsed time in seconds')

57

APPENDIX E

CASE 7 PROGRAM

58

%---
%-- MATLAB program for Case 7
%---

clear all
close all
clc
%----Creating 2D table---------
M = [236 269];

Table=zeros(M(1),M(2));
start=0;
for i=1:M(1)
 for j=1:M(2)
 Table(i,j)=start;
 start=start+1;
 end
end

tstart = tic;
%-------Reading sound file----------
f1=wavread('timi_in.wav','native');
[m,n]=size(f1);

%Lifting the signal and making it positive
p2p = abs(min(f1));
f2 = (f1 + p2p);

Isend = int16(zeros(m,n));
a = int16(zeros(m,n));
Isave = int16(zeros(m,n));

%---Encoding-----
tenc = tic;
a = mod(f2(:,:,1),M(2))+1;
Isave = a;

Isend=((f2(:,:,1)-a)./M(2))+1;
tencd= toc(tenc);

%---Decoding--------
tdec = tic;

 for j=1:n
 for i=1:m
 r(i,j)=Table(Isend(i,j),Isave(i,j));
 end
 end

tdecd = toc(tdec);

r=int16(r);
r1 = r- p2p;

59

tend =toc(tstart);
%-------------Error calculation---------
e = f1 - r1;
err_rms = sqrt((sum(e.^2))/length(e));
fprintf('\nrms is %f', err_rms);
fprintf('\n');

%------------Plotting--------------
figure
subplot(2,1,1)
plot(f1)
title('Input signal TIMIT sentence; Moduli M = [236 269]');
xlabel('No of samples')
ylabel('Amplitude')
subplot(2,1,2)
plot(r1)
xlabel('No of samples')
ylabel('Amplitude')
title(['Output obtained with RMS error = ',num2str(err_rms)])

t = [tend tencd tdecd];
figure;
bar(t)
title('Bar plot for timing')
ylabel('Time in seconds')
xlabel('1=Total time 2= Encoder time 3=Decoder time')

60

BIBLIOGRAPHY

[1] Oscar N Garcia, "Error Codes for Arithmetic and Logical Operations," College Park, MD,
Doctoral Dissertation 1969.

[2] Harvey L Garner, "Error Codes for Arithmetic Operations," IEEE Transactions on
Electronic computers, vol. EC-15, no. 5, pp. 763 - 770, 1966.

[3] F.J Taylor, "Residue Arithmetic: A Tutorial with Examples," Computer, vol. 17, no. 5, pp.
50-62, May 1984.

[4] C.F Gauss, Disquisitiones arithmeticae, 1st ed.: Yale University Press, 1966.

[5] H S Shapiro, "Some Remarks on Modular Arithmetic and Parallel Computation,"
Mathematics of Computation , vol. 16, pp. 218-222, 1962.

[6] ROHAN Academic Computing. [Online]. http://www-
rohan.sdsu.edu/doc/matlab/toolbox/comm/galois.html

[7] Wikipedia: The Free Encyclopedia. [Online].
http://en.wikipedia.org/wiki/Trigonometry_in_Galois_fields

[8] Harvey L Garner, "The residue number system," IRE Transactions on Electronic
Computers, vol. EC -8, no. 2, pp. 140 - 147, 1959.

[9] Yuke Wang, "New Chinese Remainder theorems," in Conference on Signals, Systems &
computers Conference Record of the Thirty- Second Asilomar, vol. 1, 1998, pp. 165-
171.

[10] Shenghui Su, "To Solve the High Degree Congruence," in Proceedings of the 2007
International Conference on Computational Intelligence and Security, Washington,
DC, 2007, pp. 672-676.

[11] Subhash Kak, "Computational Aspects of Aryabhatta Algorithm," Indian Journal of History
of science, vol. 21, no. 1, pp. 62-71, 1986.

[12] Sreeram Vuppula, "The Aryabhatta Algorithm Using Least Absolute Remainders," CoRR,
vol. 0604012, 2006.

[13] C.E Shannon, "A Mathematical Theory of Communication," Bell System Technical Journal,
vol. 27, pp. 379-423 and 623-656, July and October 1948.

[14] imatest- Digital Image Quality. [Online]. http://www.imatest.com/docs/shannon/

http://www-rohan.sdsu.edu/doc/matlab/toolbox/comm/galois.html
http://www-rohan.sdsu.edu/doc/matlab/toolbox/comm/galois.html
http://en.wikipedia.org/wiki/Trigonometry_in_Galois_fields
http://www.imatest.com/docs/shannon/

61

[15] D. Gerlic, "The Inverse of a Block-Circulant Matrix," IEEE Transactions on Antenna and
Propagation, vol. 31, no. 5, pp. 808 - 810, September 1983.

[16] Arash Amini, "Deterministic Construction of Binary, Bipolar and Ternary Compressed
Sensing matrices," IEEE Transactions on Information Theory, vol. 57, no. 4, pp.
2360 - 2370, 2011.

[17] Rick Chartnard, "Exact Reconstruction of Sparse Signals via Nonconvex Minimization,"
IEEE Signal Processing Letters, vol. 14, no. 10, pp. 707 - 710, October 2007.

[18] Richard G. Baraniuk, "Compressive Sensing," IEEE Signal Processing Magazine, vol. 24,
no. 4, pp. 118-124, July 2007.

[19] John Edwards, "Focus on Compressive sensing," IEEE Signal Processing Magazine, vol.
28, no. 2, pp. 11-13, March 2011.

[20] Vivek Goyal, "The Optimum Bayesian: Replica method of Compressed Sensing," in
Illinois/Missouri Applied Harmonic Analysis Seminar, 2010.

[21] Emmanuel J. Candes, "Decoding by Linear Programming," IEEE Transactions on
Information Theory, vol. 51, no. 12, pp. 4203 - 4215, December 2005.

[22] W.Edwin Clark, "On Arithmetic Weight for a General Radix Representation of Integers,"
IEEE Transactions on Information Theory, vol. 19, no. 6, pp. 823 - 826, November
1973.

[23] Marco F. Duarte, "Sparse Signal Detection From Incoherenct Projections," IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP)- III,
pp. 305--308, 2006.

[24] Juan M. Restrepo. (2001, July) Eigen Values and the Canonical Forms of Matrices.
[Online].
http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea/node56.html

[25] Juan M. Restrepo. (2001, July) [Online].
http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea/sourcea.html

[26] Justin Romberg, "Compressed Sensing: A Tutorial," in IEEE Statistical Signal Processing
Workshop, 2007.

[27] Albert Cohen, "Compressed Sensing and Best k-term Approximation," Journal of the
American Mathematical Society, vol. 22, pp. 211-231, 2009.

[28] Cleve Moler, "Cleve's Corner- "Magic" Reconstruction: Compressed Sensing," MathWorks

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea/node56.html
http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea/sourcea.html

62

News & Notes, 2010.

[29] JH Jordan, "Complete Residue Systems in the Gaussian Integers," Math Magazine, vol. 38,
pp. 1-12, 1965.

[30] Oscar N Garcia and T R N Rao, "Cyclic and Multiresidue Codes for Arithmetic
Operations," IEEE Transactions on Information Theory, vol. 17, no. 1, pp. 85-91,
January 1971.

[31] Oscar N Garcia and J L Massey, "Error Correcting Codes for Computer Arithmetic,"
Advances in Information Systems Science, vol. IV, pp. 273-326, 1972.

[32] Riccardo Masiero, "Data Acquisition Through Joint Compressive Sensing and Principal
Component Analysis," in GLOBECOM 2009, IEEE Global Telecommunications
Conference, Honolulu, HI, 2009, pp. 1 - 6.

[33] Ronald A DeVore, "Deterministic Constructions of Compressed Sensing Matrices," Science
Direct- Journal of Complexity, vol. 23, no. 4-6, pp. 918 – 925, August 2007.

[34] Edinburgh Compressed Sensing Group. [Online].
http://ecos.maths.ed.ac.uk/ric_bounds.shtml

[35] Olga V Holtz. (2009, January) An Introduction to Compressive Sensing. [Online].
http://www.cs.berkeley.edu/~oholtz/Talks/CS.pdf

[36] Wei Dai, "Weighted Superimposed Codes and Constrained Integer Compressed Sensing,"
IEEE Transactions on Information Theory, vol. 55, no. 5, pp. 2215 - 2229, May
2009.

[37] Wikipedia: The Free Encyclopedia. [Online].
http://en.wikipedia.org/wiki/Compressed_sensing

[38] W.Edwin Clark, "On Modular Weight and Cyclic Nonadjacent Forms for Arithmetic
Codes," IEEE Transactions on Information Theory, vol. 20, no. 6, pp. 767 - 770,
November 1974.

[39] W.Edwin Clark, "Equidistant Binary Arithmetic Codes," IEEE Transactions on Information
Theory, vol. 32, no. 1, pp. 106 - 108, January 1986.

[40] Keith Conrad. (2009, Fall) Gaussian integers. [Online].
http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes.pdf

http://ecos.maths.ed.ac.uk/ric_bounds.shtml
http://www.cs.berkeley.edu/~oholtz/Talks/CS.pdf
http://en.wikipedia.org/wiki/Compressed_sensing
http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes.pdf

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Purpose
	1.2 Solution of System of Congruences
	1.3 Other Methods of Solutions

	CHAPTER 2 BASIC THEOREM
	2.1 Data Compression
	2.2 Early Approach
	2.3 Multi-Residue Coding
	2.4 Basic Theoretical Approach

	CHAPTER 3 BACKGROUND CONSIDERATIONS
	3.1 Assumptions

	CHAPTER 4 RESIDUE TABLE
	4.1 Rationale for the Use of a Table
	4.2 Different Tables
	4.3 No Search at the Expense of More Memory
	4.4 Two-Dimensional Canonical Table

	CHAPTER 5 SEQUENCE OF EXPERIMENTS
	5.1 Platform
	5.2 Initial Motivation: Case 1
	5.3 Speed Up: Cases 2 and 3
	5.4 Further Speed-Up: Cases 4 and 5
	5.5 Best Table with Zero Error: Cases 6 and 7

	CHAPTER 6 RESULTS
	6.1 Case 1: Use of the Symbolic Math Toolbox on the Sinusoid Signal
	6.2 Case 2: Use of the CRT on the Sinusoid Signal
	6.3 Case 3: Use of the CRT on the TIMIT Sentence
	6.4 Case 4: Use of the Two-Dimensional Table with Three Prime Moduli
	6.5 Case 5: Use of a Three-Dimensional Table with Three Prime Moduli
	6.6 Case 6: Use of the Two-Dimensional Table with Two Prime Moduli
	6.7 Case 7: Use of the Two-Dimensional Canonical Table

	CHAPTER 7 CONCLUSIONS
	APPENDIX A CASE 3 PROGRAM
	APPENDIX B CASE 4 PROGRAM
	APPENDIX C CASE 5 PROGRAM
	APPENDIX D CASE 6 PROGRAM
	APPENDIX E CASE 7 PROGRAM
	BIBLIOGRAPHY

