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In this dissertation, I explore unsupervised techniques for the task of automatic 

short answer grading. I compare a number of knowledge-based and corpus-based 

measures of text similarity, evaluate the effect of domain and size on the corpus-based 

measures, and also introduce a novel technique to improve the performance of the 

system by integrating automatic feedback from the student answers. I continue to 

combine graph alignment features with lexical semantic similarity measures and employ 

machine learning techniques to show that grade assignment error can be reduced 

compared to a system that considers only lexical semantic measures of similarity. I also 

detail a preliminary attempt to align the dependency graphs of student and instructor 

answers in order to utilize a structural component that is necessary to simulate human-

level grading of student answers. I further explore the utility of these techniques to 

several related tasks in natural language processing including the detection of text 

similarity, paraphrase, and textual entailment. 
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CHAPTER 1

INTRODUCTION

Many problems in natural language pro
essing (NLP) require, as a subtask, the abil-

ity to estimate the similarity between two pie
es of text. For instan
e, modern information

retrieval is predi
ated upon the need to rank a large set of do
uments (e.g. websites) based

upon their similarity to a user's query string. Likewise, automati
 summarization, text


lassi�
ation, information extra
tion, and automati
 translation evaluation rely upon a sys-

tem's knowledge of the underlying similarity between two texts. The task I fo
us on here,

the automati
 grading of short student answers (or 
omputer-aided assessment), is another

example, whi
h is be
oming in
reasingly important as online edu
ation be
omes more and

more 
ommon.

In this thesis, I present my work in building a system 
apable of automati
ally grading

student responses to short-answer questions and attempt to show the appli
ability of these

methods beyond 
omputer-aided assessment (CAA) to the dete
tion of textual similarity

more generally. Unlike previous work, whi
h has either required the availability of manually


rafted patterns [70, 96℄, or large sets of training data to bootstrap su
h patterns [80℄, I have

attempted to devise a system whi
h is not pattern-based but rather uses lexi
al, synta
ti
,

and semanti
 similarity te
hniques to determine a appropriate s
ore.

I have expli
itly addressed the short answer grading task as a textual similarity prob-

lem. With that in mind, I have employed several existing and well-known bag-of-words

similarity measures. In order to address the limitations asso
iated with the bag-of-words

paradigm, I have attempted to enri
h this model with more 
omplex dependen
y graph

subsumption-based measures of similarity inspired by re
ent work in textual entailment

[40, 65, 87℄. I go on to produ
e a hybrid system whi
h 
ombines the above te
hniques for

assessing similarity using one of several �avors of support ve
tor ma
hine (SVM) learning in

order to exploit the best measures available.

Furthermore, I have engaged in a portability study, in whi
h I apply this grading
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system to the related tasks of semanti
 text similarity, paraphrase dete
tion, and re
ognizing

textual entailment. I use several of the most 
ommonly 
ited datasets for ea
h of these tasks

and 
ompare my results against existing state-of-the-art systems.

Over the 
ourse of this work, I have sought and found answers to the following ques-

tions. First, given a number of 
orpus-based and knowledge-based methods previously pro-

posed for word and text semanti
 similarity, what are the measures that work best for the

task of short answer grading? Se
ond, given a 
orpus-based measure of similarity, what is

the impa
t of the domain and the size of the training 
orpus on the utility of the measure?

Third, to what extent is it possible to enhan
e the quality of the grading system by sup-

plementing the gold-standard answer with the answers of other students? Fourth, does the

dependen
y parse stru
ture of a text provide 
lues that 
an be exploited to improve upon

existing BOW methodologies for short answer grading? Fifth, to what extent 
an ma
hine

learning be applied to improve upon existing approa
hes to short answer grading? Finally,


an the methodologies I have proposed for short answer grading be su

essfully used to dete
t

textual similarity, paraphrase, and entailment?

1.1. Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the theoreti
al

ba
kground in both textual similarity (generally speaking) and grading as it relates to student

assessment. I then outline existing work in the �elds of short answer grading, text similarity,

paraphrase dete
tion, and textual entailment, espe
ially those whi
h have had a substantial

impa
t upon the design of this system. Chapter 3 des
ribes in detail the datasets that I

have used in earlier work and provides an introdu
tion to the datasets I have used in the

portability study. Chapter 3 also 
ontains a brief dis
ussion on the appli
ability of various

evaluation metri
s for the tasks of short answer grading, text similarity, paraphrase dete
tion,

and re
ognizing textual entailment. Chapter 4 details the 
ontributions of my work fo
using

on the bag-of-words and pseudo-relevan
e feedba
k te
hniques whi
h were introdu
ed [72℄ at

the 2009 European Asso
iation for Computational Linguisti
s (EACL) 
onferen
e in Athens,

Gree
e. Chapter 5 des
ribes the usage of both dependen
y graph alignment te
hniques and

2



ma
hine learning to supplement the simpler bag-of-words te
hniques [71℄ and in
ludes an

analysis of the sour
es of error asso
iated with the 
urrent system. In Chapter 6, I des
ribe

my work as applied to the "Semanti
 Text Similarity" (STS) task of the 2012 Semanti


Evaluation Workshop (SemEval 2012) as well as the appli
ation of the system to the tasks

of text similarity, paraphrase dete
tion, and re
ognizing textual entailment using other well-

known datasets. Finally, in Chapter 7 I dis
uss my �ndings.
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CHAPTER 2

BACKGROUND

In this 
hapter, I show how this work may be pla
ed into the larger 
ontext of


omputer-aided assessment (CAA) and similarity dete
tion resear
h by exploring the pra
-

ti
al and theoreti
al justi�
ations for this type of endeavor and the work of others who have

wandered along a similar path. The remainder of this 
hapter is organized as follows. In

Se
tion 2.1 I dis
uss what it means for two things to be similar by digging into the psy-


hologi
al underpinnings of of similarity as seen by humans. In Se
tion 2.2, I look at the

a
t of grading in its own right by tra
ing the evolution of s
holasti
 assessment as well as

groundbreaking e�orts to automate the pro
ess. Finally, in Se
tion 2.3 I look at the e�orts

of other resear
hers in the �elds of CAA, textual similarity, paraphrase, and entailment who

have paved the way for this present work.

2.1. Theory of Similarity

Humans are good at determining when two things are similar, but it is a very di�
ult

trait to quantify or to defend. An extended quote from the Ameri
an philosopher Nelson

Goodman's "Seven stri
tures on similarity" [38℄ may be illustrative:

When, in general, are two things similar? The �rst response is likely to be: "When

they have at least one property in 
ommon." But sin
e every two things have some

property in 
ommon, this will make similarity a universal and hen
e useless relation.

That a given two things are similar will hardly be notable news if there are no two

things that are not similar.

Are two things similar, then, only if they have all their properties in 
ommon?

This will not work either; for of 
ourse no two things have all their properties in


ommon. Similarity so interpreted will be an empty and hen
e useless relation. That

a given two things are similar in this sense would be notable news indeed, but false.

By now we may be ready to settle for a 
omparative rather than a 
ategori
al

formula. Shall we say that two things a and b are more alike than two others 
 and d

if a and b have more properties in 
ommon than do 
 and d... More to the point would

be 
ounting not all shared properties but rather only important properties � or better,


onsidering not the 
ount but the overall importan
e of the shared properties. Then a

and b are more alike than 
 and d if the 
umulative importan
e of the properties shared

by a and b is greater than that of the properties shared by 
 and d. But importan
e

is a highly volatile matter, varying with every shift of 
ontext and interest, and quite
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in
apable of supporting the �xed distin
tions that philosophers so often seek to rest

upon it.

Despite de
ades or more of resear
h among psy
hologists [7℄, there remains no agreed

upon model for human 
ognition of similarity between obje
ts. It would appear that transi-

tivity does not hold among similarity relations and that there is some asymmetry where A

is per
eived to be more similar to B than B is to A [99℄. Likewise, similarity is not the same

thing as relatedness. Paul Resnik illustrates this by suggesting that a 
ar and gasoline are

very more 
losely related than a 
ar and a bi
y
le, though the latter two are more similar

[83℄. What this all adds up to is that any resear
h involving similarity dete
tion in arti�
ial

intelligen
e has to 
ope with the nebulous psy
hologi
al models that they are attempting to

mimi
. This is no less true for similarity in natural language pro
essing (NLP).

A wide variety of tasks in natural language pro
essing require some degree of similar-

ity dete
tion at various levels of granularity. At the most primitive stage, systems for lexi
al

substitution, synonymy dete
tion, and text generation need to be able to determine whether

two words are similar enough to be used inter
hangeably. At the other extreme, do
ument


lassi�
ation and 
lustering assess the similarity between two do
uments (or between a do
-

ument and a do
ument model). Perhaps the most ubiquitous example of textual similarity

being used today is between a short query and the do
ument within a 
olle
tion. This is the

foundation of the entire sear
h engine industry without whi
h our 
olle
tive Internet a
tivity

would be limited to a set of bookmarks and hyperlinks. The general task that I am most


on
erned with in this work involves quantifying the similarity between two short pie
es of

text � at the level of a phrase, senten
e, or paragraph � hen
eforth 
alled senten
e similarity.

However, the various levels 
an not be entirely disentangled (senten
es are made of words,

do
uments are made of senten
es), so it may be instru
tive to �rst 
onsider similarity that

is not at the level of senten
es.

Term (or word) similarity is a well-studied �eld in its own right with most resear
h

measuring the distan
e between words in a thesaurus or lexi
al ontology [31, 79℄. Obviously,

dete
ting similarity at the phrase or senten
e level requires a system to be able to re
ognize

5



the 
ompositional words and what meanings they are 
apable of 
onveying individually.

Beyond that, though, there must also be some means of analyzing how the stru
ture of the

phrasing a�e
ts the overall meaning. For instan
e, the two phrases "a 
at in a hat" and "a

hat in a 
at" represent a 
omplete lexi
al overlap, but des
ribe two very di�erent problems.

Quantifying the similarity of full do
uments is mu
h more of a statisti
al endeavor.

Not every word in one do
ument needs to be found in the other, and not every senten
e

in one do
ument requires a dire
t 
omplement. Similarity at this level is better de�ned

by likeness of topi
, style, or stru
ture [16, 13℄. In most modern work, do
ument-similarity

(or query-do
ument similarity) is measured by 
onverting ea
h do
ument into a ve
tor-spa
e

representation based upon frequen
y of word 
hoi
e and usually some means of weighting the

importan
e of ea
h dimension [90, 89℄. The two ve
tors are then 
ompared using standard

ve
tor similarity measures (e.g. Eu
lidean distan
e, 
osine similarity, et
.).

Note that in neither 
ase (word- or do
ument-similarity) do the measurements depend

upon any analysis of individual senten
es or phrases. They are neither 
on
erned with the

syntax itself, nor the semanti
 di�eren
es that 
an only be indi
ated through a 
hange in

synta
ti
al stru
ture. Textual analysis of this type is in the purview of senten
e similarity

and, until re
ently, 
omparatively little resear
h has been devoted to it.

2.2. Grading Ba
kground

Fundamentally, the entire dis
ipline of edu
ation has as its goal that a student in
rease

in knowledge, and there are many tools at the disposal of edu
ators as they attempt to

a
hieve this goal � le
tures, assignments, proje
ts, hands-on work, fa
e-to-fa
e tutoring, et
.

Yet these tools alone are not su�
ient to ensure that the goal of student learning is being

met. It remains for the edu
ator to 
on�rm that learning has taken pla
e through some

assessment of the knowledge a
quired by the student.

2.2.1. Brief History of Edu
ational Assessment

Today, privately grading some type of written work is the default approa
h for as-

sessing student learning, but this is a relatively re
ent phenomenon whi
h is not without
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ontroversy. From the time of the S
holasti
s in the late Medieval period through at least

the 15th 
entury (and generally until the mid-19th 
entury), assessment of students was


arried out orally, in publi
, and in Latin [93℄. This 
onsisted of a disputation, in whi
h

the degree 
andidate would orally present arguments in favor of some proposition while be-

ing 
hallenged by an assigned adversary, the masters of the s
hool, and any member of the

a
ademi
 
ommunity who happened to be in attendan
e. Over time, an in
reased New-

tonian mathemati
al 
omponent in edu
ation, a rise in the number of students during the

19th 
entury, and a 
hange in the so
ial and politi
al environment of a
ademia led to the

de
line of this system, �rst at Cambridge and then more widely, and to the normalization of

an essay-based presentation of arguments whi
h would remain 
ommon throughout the late

19th and 20th 
enturies.

At the turn of the twentieth 
entury in Ameri
a, the College Entran
e Examination

Board (later 
alled the College Board) assessed 
ollege appli
ants using entirely essay-based

exams whi
h were manually 
omposed and graded by tea
hers and professors. Within a few

de
ades, the �rst multiple-
hoi
e tests were being designed, and by 1926, the multiple-
hoi
e

S
holasti
 Aptitude Test (SAT) was released, though it did not gain dominan
e in 
ollege

entran
e examinations until the 1940s when World War II redu
ed the workfor
e available to

grade entry exams. After the war, the Advan
ed Pla
ement (AP) exams were designed with

a substantial essay 
omponent. Over the past half 
entury, standardized testing as a means

to sort students (for 
ollege admission and employment purposes) and s
hools (for funding

purposes) has skyro
keted but has remained a 
ontroversial feature in Ameri
an edu
ation

[67℄.

Sin
e the advent of the Internet, distan
e-learning 
ourses have begun to make up a

greater and greater proportion of all post-se
ondary edu
ation. A

ording to a re
ent study

[3℄, over 6 million students in higher edu
ation were taking at least one online 
ourse during

Fall 2010, whi
h represents almost a third (31%) of the entire student body, nationwide.

Sin
e 2002, total enrollments have grown by 18% while the number of students taking online


ourses has out-pa
ed this �gure, growing by 283% over the same period with a growth of at

7



least 10% ea
h year. With the in
reasing availability of video le
tures and other multimedia

learning modules in these online 
ourses, there exists an unpre
edented opportunity for

a pra
ti
ally limitless number of people to re
eive a quality edu
ation from a distan
e.

Unfortunately, high-quality assessment remains a signi�
ant bottlene
k for any large-s
ale

distan
e-learning program.

The most 
ommon method of automating this assessment is by using simple assess-

ment methods with 
lear right or wrong answers: e.g. multiple 
hoi
e questions (MCQs),

true-false questions, mat
hing, et
.). These 
an all be reliably graded by a ma
hine. Unfor-

tunately, there are limitations asso
iated with these types of questions, the most signi�
ant

of whi
h is that there is no way to determine partial understanding (and so provide partial


redit). It is also mu
h more di�
ult to measure a student's understanding of a 
on
ept

beyond simple re
ognition and de�nitional familiarity [74℄. One study published in 1980

[36℄ suggests that a relian
e upon MCQs may also disadvantage students from a learning

point of view. In this study students who had pra
ti
ed using short answer questions were

signi�
antly better able to retain their knowledge for a short answer test than those who had

pra
ti
ed using only multiple-
hoi
e questions. Unlike multiple-
hoi
e questions, short an-

swer responses and essay questions, train students to generate 
orre
t answers rather than to

simply re
ognize them, and for these types of assessment items to be automated, an analysis

of the texts themselves be
omes ne
essary.

In a traditional assessment setting (e.g., an exam, assignment or quiz), an instru
tor

or a grader is required to spend time providing students with feedba
k on their responses

to questions related to the subje
t matter. In many 
ases, however, a 
ompetent instru
tor

is not available to provide this feedba
k or is unable to handle the magnitude of the work

required. This is where automation 
omes into play.

2.2.2. Computer-Aided Assessment

Computer-aided assessment has been used to redu
e the burden on instru
tors sin
e

at least the mid-1960s when test grading ma
hines, now ubiquitous in Ameri
an s
hools and

around the world, were �rst being employed to automate the marking of multiple 
hoi
e

8



assignments [10℄. Around the same time, Ellis Page developed the in�uential Proje
t Essay

Grade (PEG) system [76℄ whi
h sought to apply 
omputational power to more 
omplex

essay-style problems.

In more re
ent years, intelligent tutoring systems (ITS) have 
ome to be a ri
h avenue

of CAA resear
h due to the 
lear bene�ts of tutoring on student learning, the low-stakes


ontext of grading and feedba
k in a tutoring s
enario,and the signi�
ant time burden that

tutoring pla
es on instru
tors and other human tutors. Sin
e the ne
essary level of one-on-

one intera
tion is untenable for an individual instru
tor with more than a handful of students,

tutoring is not applied as widely as it should perhaps be in the 
ontext of higher edu
ation.

However, with the aid of 
omputerized learning modules that assess a student's progress and

give feedba
k, it is be
oming in
reasingly possible to simulate one-on-one instru
tion in a

way that is advantageous to student learning [6℄.

It has been reported that intera
tive tutoring with a human tutor produ
es advantages

to student learning (over and above simple le
ture-based learning), raising marks by up to

2 standard deviations [22℄. At the same time, state-of-the-art intelligent tutoring systems

have been reported to raise marks by 1 standard deviation (SD) [4℄. However, more re
ent

s
holarship [100℄ has suggested that both of these reports are erroneous and that the a
tual

deviation improvements are 
loser to 0.79 SDs for a human tutor and 0.76 SDs for an ITS

tutor, whi
h suggests that state-of-the-art ITS are now on par with human-level behavior.

I should also point out one 
ompli
ating feature of the grading task whi
h may be a

sour
e of reti
en
e for students and instru
tors alike � namely the obje
tivity of the me
ha-

nized grader. This is a double-edged sword. On one hand, automating the pro
ess prevents

uns
rupulous graders from "playing favorites," but at the same time, this 
old and me
han-

i
al form of grading goes against the in
lination and preferen
es of students and tea
hers

alike. While grading a

ording to the re
ommended pra
ti
es is meant to be used as feed-

ba
k, purely indi
ating the quality of the work a student has produ
ed, tea
hers are apt

to assign grades as a reward, not for a
hievement, but for e�ort and to motivate students

[15, 24℄. For better or worse, this aspe
t of grading is lost in both this work and in CAA,
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generally.

2.3. Related Work

Resear
h to date has 
on
entrated on two subtasks of CAA: the grading of essays,

whi
h is done mainly by 
he
king the style, grammati
ality, and 
oheren
e of the essay (
f.

[9, 44, 76℄), and the assessment of short student answers (e.g., [80, 85, 94℄). Ea
h type

of assessment 
an be either summative (geared towards produ
ing a reliable and defensible

grade in a high-stakes grading situation) or formative (used as a learning aid in a lower-stakes

situation, su
h as a review session, self-
he
k, or tutoring environment). The primary fo
us

of this work is in automati
 short answer grading with a lean towards summative assessment,

though I believe that the methods des
ribed in Chapters 4 and 5 
an be applied in either


ontext.

2.3.1. Summative Assessment

Short answer grading systems that perform summative assessments in high-stakes

situations must be impe

ably a

urate, so many state-of-the-art systems [70, 96℄ tend to

pla
e a lot of the burden on the instru
tors and the test designers themselves. Some attempt

is usually made to, �rst, distill an answer into individual, 
orre
t answer 
omponents whi
h

must all be in
luded for an student answer to be 
onsidered fully 
orre
t. Then, these

answer 
omponents are manually 
rafted into models or patterns whi
h must be mat
hed

by a student response to indi
ate that a given 
omponent has been su

essfully answered.

These patters should a

ount for di�eren
es in word 
hoi
e, word order, passive or a
tive

voi
e et
.

The WebLAS system from UCLA [11℄, whi
h 
an be 
onsidered more of an instru
-

tional aid than a grading system per se, parses a model answer in order to dete
t important


omponents (e.g. words and phrases), supplements these using WordNet, and 
ompiles a

regular expression to mat
h student answers. This is done intera
tively with the instru
tor,

and has not � to my knowledge � been evaluated as a stand-alone grading system.

10



Another early foray into short answer grading [19℄, proposed modeling a 
orre
t an-

swer as a set of Prolog 
on
eptual dependen
ies, supplemented by a list of synonyms. It

expli
itly requires well-stru
tured texts for student input (for the parser) and 
ontains a sep-

arate syntax-analysis module whi
h 
an be used as part of the grade. However, this system

has never been formally evaluated.

If a large annotated 
orpus is available, the patterns to mat
h 
an be supplemented by

learning additional patterns semi-automati
ally. The Oxford-UCLES system [96℄ bootstraps

patterns by starting with a set of keywords and synonyms and sear
hing through windows of

a text for new patterns. A later implementation of the Oxford-UCLES system [80℄ 
ompares

several ma
hine learning te
hniques, in
luding indu
tive logi
 programming, de
ision tree

learning, and Bayesian learning, to the earlier pattern mat
hing approa
h, with en
ouraging

results.

CarmelTC [85, 101℄ treats grading as a text 
lassi�
ation problem. The authors of the

question produ
e a set of 
ategories representing answers that are either 
orre
t, expressing

the same idea in di�erent ways, or indi
ate some mis
on
eption. The system then attempts

to 
lassify the student answers into one of the 
ategories using a variety of approa
hes

in
luding latent semanti
 analysis (LSA), a naive Bayes (NB) 
lassi�er, and a de
ision-tree

method based upon deep synta
ti
al features on the student text. They report for their

hybrid approa
h (
ombining the NB 
lassi�er with the de
ision tree) an F-measure of 0.85,

well above their LSA and NB baselines (0.70 and 0.77, respe
tively). This evaluation was

only performed on a single physi
s question with 126 student responses, so it is di�
ult to

extrapolate their results to a more general 
ontext.

The Open University, a leader in distan
e learning in the U.K., re
ently began using

assessment software 
ommer
ially available from Intelligent Assessment Te
hnologies (IAT)

[51, 69, 70℄. The system models 
orre
t answers as a set of keywords along with the role-

based relationships between them. These are then abstra
ted to be
ome an answer template

by allowing for lexi
al varian
e among the keywords. Student answers 
an be �agged as


lose or requiring a 
ertain type of feedba
k. They reported 96.6% agreement with human
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annotators for their evaluation set.

Finally, the Edu
ational Testing Servi
e (ETS) has produ
ed several systems whi
h

have sought to ta
kle the task of short answer grading. In their early work [17℄, they used a


on
ept grammar and 
on
ept lexi
on to build appropriate patterns for their answers based

upon a training set of 200 student answers. Fa
ed with a true/false de
ision, this early

system a
hieved 81% a

ura
y.

Several years later, ETS released C-Rater [55℄, whi
h mat
hes the synta
ti
al features

of a student response (i.e. subje
t, obje
t, and verb) to that of a set of 
orre
t responses.

The gold-standard model patterns are built semi-automati
ally, by �rst 
onverting ea
h

answer into a set of one or more predi
ate-argument tuples. Ea
h word is supplemented with


ontextually similar words. In a move reminis
ent of my work des
ribed in Se
tion 4.2.2,

graded student responses 
an also be 
onverted into tuple form and used to grade other

student responses. On a large-s
ale assessment by the National Assessment of Edu
ation

Progress agen
y, C-Rater reported a

ura
y between 81% and 90%.

Current work on C-Rater [94℄ treats the grading task more like a textual entailment

task. As in prior work, model answers, based upon the analysis of 100-150 graded student

answers are broken into 
on
epts to look for in a 
orre
t answer. Ea
h 
on
ept is represented

by a set of senten
es supplemented by a lexi
on, and s
oring is based upon the presen
e or

absen
e of 
on
epts. Breaking new ground, however, student answers are parsed in order

to extra
t a predi
ate-argument stru
ture whi
h is then 
ategorized as absent, present, or

negated for ea
h 
on
ept using a maximum entropy-based mat
hing algorithm. Reported

agreement (per 
on
ept-mat
h) was 84.8% 
ompared to an annotator agreement of 90.3%.

2.3.2. Formative Assessment

The Geometry Explanation Tutor [2℄ was an attempt to aid in student understand-

ing by 
onstru
tively o�ering hints as students attempted to explain their reasoning behind

geometry-related answers. The authors built a hierar
hy of in
orre
t (or semi-
orre
t) an-

swers that indi
ate what spe
i�
 knowledge a student seems to have upon arriving at a given

in
orre
t (or semi-
orre
t) answer. The student 
an then be guided to a more 
orre
t an-

12



swer. For instan
e, "angles are 
ongruent" and "angles in a triangle are 
ongruent" are both

in
orre
t statements on their way to the 
orre
t statement "angles opposite 
ongruent sides

in an isos
eles triangle are 
ongruent." They have modeled their system as a 
lassi�
ation

task. Ea
h node in the hierar
hy has a set of texts to represent them. Student responses

are parsed and fed to a Loom 
lassi�er whi
h assigns it to some node in the hierar
hy. They

report an a

ura
y of 80%.

In the dependen
y-based 
lassi�
ation 
omponent of the Intelligent Tutoring System

[75℄, instru
tor answers are parsed, enhan
ed, and manually 
onverted into a set of 
ontent-

bearing dependen
y triples or fa
ets. For ea
h fa
et of the instru
tor answer ea
h student's

answer is labelled to indi
ate whether it has addressed that fa
et and whether or not the

answer was 
ontradi
tory. The system uses a de
ision tree trained on part-of-spee
h tags,

dependen
y types, word 
ount, and other features to attempt to learn how best to 
lassify

an answer/fa
et pair.

AutoTutor [39, 104℄ has been designed as an immersive tutoring environment with a

graphi
al "talking head" and spee
h re
ognition to improve the overall experien
e for stu-

dents. AutoTutor es
hews the pattern-based approa
h favored by higher-stakes systems in

favor of a bag-of-words (BOW) LSA approa
h. In addition to analyzing student responses

to determine if they mat
h a 
orre
t response, AutoTutor also makes pedagogi
al de
isions

regarding whi
h type of response to give a student: hints, pumps for more information,


orre
ting a student response, giving the answer dire
tly, et
. In order to make these deter-

minations, the authors analyzed a 
orpus 
ontaining 100 hours worth of human tutoring. In

this 
orpus, 192 student answers were found, rated separately by four raters, and then used

to evaluate the grading module of the AutoTutor system. It was found to 
orrelate with the

annotators at r=0.49 while a pair of humans with an intermediate knowledge of the subje
t


orrelated with one another at r=0.51. Interestingly, a pair of human experts 
orrelated with

one another at r=0.78.

An o�shoot of AutoTutor, 
alled Resear
h Methods Tutor, has been involved in sev-

eral studies [6, 103℄ of the e�e
t that intera
tive tutoring systems (ITS) have on student

13



learning 
ompared to simpler learning environments where students read through a pre-

pared text and answer a short multiple 
hoi
e quiz at the end � 
alled 
omputer-aided

instru
tion (CAI) systems. Students were given a pretest at the beginning of the semester

and a post-test at the end, and were assigned to various tutoring systems. Results indi
ate

that parti
ipating in the intera
tive tutoring system improved s
ores (above the simple a
t

of taking the 
ourse) by 0.75 standard deviations (SDs). Human tutoring has been found

in other work to improve s
ores by 2.3 SDs. It was found that ITS showed an improvement

over CAI as well, raising s
ores by 13.5% 
ompared to 8.8% for CAI.

2.3.3. Senten
e Similarity

A natural starting point for resear
h into senten
e similarity is in the appli
ation

of existing do
ument similarity te
hniques to senten
e similarity problems. However, even

leaving aside the issue of syntax, the traditional ve
tor-based measures of similarity are

insu�
ient in themselves to adequately measure the similarity between short texts. With

su
h a small number of words, there simply isn't enough 
ontext to reliably model the two

texts as ve
tors of words. Of 
ourse, the text representations 
an be expanded in many ways.

Following the ve
tor-spa
e models used in do
ument similarity (or query/do
ument

similarity) tasks, mu
h resear
h has been performed that involves using a 
orpus as a 
ontext

within whi
h individual words 
an be modeled as a ve
tor in some multi-dimensional semanti


spa
e � thereby permitting a full senten
e to be so modeled as the sum of its 
onstituent

word ve
tors. Three su
h te
hniques deserve spe
ial mention.

Latent semanti
 analysis [29, 53℄ has been widely used in re
ent de
ades to model

texts. Brie�y, a 
orpus is represented as an N by N matrix whi
h 
ontains information on

the 
o-o

urren
e of word pairs within a window in some do
ument 
olle
tion. This matrix

then undergoes singular value de
omposition to redu
e the dimensionality of the matrix to

redu
e sparseness and make the ve
tor size 
omputationally feasible. However, this 
auses

the word 
o-o

urren
e information to be hidden, thus making the semanti
 knowledge it


ontains latent. A fairly robust analysis of LSA as it applies to do
ument similarity was

performed by Lee et al. [56℄ showing the e�e
t of various models of similarity and of varying
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the parameters for training an LSA model.

Expli
it semanti
 analysis [35℄, on the other hand, makes use of the high dimen-

sional spa
e dire
tly � typi
ally using Wikipedia arti
les as the dimensions and tra
king

term frequen
y within ea
h arti
le. Using the same Wikipedia arti
le dimensionality, salient

semanti
 analysis [41℄ uses term 
o-o

urren
e with the hyperlinks within Wikipedia to de-

te
t salient terms and to weight the 
on
ept ve
tor in favor of these important (or more

salient) dimensions for a given word.

Other work builds upon resear
h in term similarity to produ
e a measure for senten
e

similarity that is based stri
tly upon the similarity between existing words. In earlier work

from my resear
h group [68℄ a set of well-known metri
s modeling term similarity as the

inverse of a distan
e within the WordNet hierar
hy or basing it upon the information 
ontent

of a 
ommon an
estor. Liu et al. [64℄ extends this idea slightly by adding word-order

information. The use of a thesaurus (either WordNet or Roget's to de�ne word similarity

(and extrapolate a senten
e similarity) has been used in several 
ases, and shows impressive

results for the senten
e similarity task [52, 98℄. In a similar way, another group has built

upon the idea of dynami
 time warping (e�e
tively an edit distan
e with 
osts de�ned using

WordNet relations) to produ
e a similarity s
ore for senten
es [63℄.

One early example [42℄, involved training a 
lassi�er to dete
t similarity (or none)

based upon simple features like word order, distan
e between words, number of mat
hed

words, and verbs with mat
hing Levin 
lassi�
ations [58℄. Interestingly, this 
an be 
onsid-

ered an attempt to in
lude stru
ture and syntax in a similarity de
ision. Islam and Inkpen

[47℄ have su

essfully built upon these ideas to model senten
e similarity in terms of both

stru
tural features su
h as word order and the least 
ommon subsequen
e of the senten
es

and term similarity measures su
h as those des
ribed above. Likewise, Li et al. [59℄ have

attempted to 
ombine word order, distan
e and depth within an ontology, and frequen
y

statisti
s from a 
orpus to measure similarity.

Testing on datasets for both term similarity and do
ument similarity (though not for

senten
e similarity), Yeh et al. [106℄ introdu
es a method for dete
ting similarity based upon
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the well-known PageRank algorithm [14℄. Building upon existing work in PageRank-based

lexi
al similarity [46℄, they measured similarity in a three step pro
ess. First, an initial

weighted teleport distribution was 
omputed based upon the Wikipedia "neighborhood"

of the terms in the text using a modi�ed version of the expli
it semanti
 analysis (ESA)

algorithm. Then, a personalized PageRank was applied to the texts. Finally, the resultant

distribution ve
tors were 
ompared using standard ve
tor similarity te
hniques.

Although the �eld as a whole is underdeveloped, dete
ting senten
e-level similarity is

an important part of many NLP tasks in
luding query substitution, image retrieval, improved

do
ument retrieval, ma
hine translation evaluation, and text summarization. It also has

appli
ations in three tasks related to, but distin
t from, general senten
e-similarity: textual

entailment, paraphrase dete
tion, and 
omputer-aided assessment (CAA). While CAA is the

general fo
us of this work (see Se
tion 2.2.2), I also des
ribe (in Chapter 6) a portability

study, applying these te
hniques to the other two related tasks. To that end, I here introdu
e

the tasks of textual entailment and paraphrase dete
tion.

2.3.4. Textual Entailment

The textual entailment task en
ourages 
omputers to make inferen
es based upon a

short thesis (T) and to determine whether a separate hypothesis text (H) 
an reasonably be

understood to follow from it. This is a sub
ons
ious pro
ess in humans, and so it is easy to

overlook, but in the �eld of 
omputer understanding, it is a gaping hole that must be �lled

by somehow modelling 
ommon sense and its use in informal logi
.

In order to promote resear
h in textual entailment, the PASCAL organization be-

gin hosting annual 
hallenges in 2005 that allowed resear
hers to evaluate and ben
hmark

their new and existing textual entailment systems. These 
hallenges were 
alled the Re
og-

nizing Textual Entailment (RTE) 
hallenge [25℄, and they have garnered many impressive

submissions. Despite the generally poor results of the �rst 
hallenge, signi�
ant annual im-

provements in the quality of submissions has been the norm over the years. Importantly for

my purposes, their data (from multiple 
hallenges) is now publi
ly available for the formal

or informal evaluation of entailment systems.
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The entailment-related works that are most similar to what is des
ribed in this thesis

are the graph mat
hing te
hniques proposed by [40℄ and [87℄. Both input texts are 
onverted

into a graph by using the dependen
y relations obtained from a parser. Next, a mat
hing

s
ore is 
al
ulated by 
ombining separate vertex- and edge-mat
hing s
ores. The vertex

mat
hing fun
tions use word-level lexi
al and semanti
 features to determine the quality of

the mat
h while the edge mat
hing fun
tions take into a

ount the types of relations and the

di�eren
e in lengths between the aligned paths. A similar avenue of resear
h that heavily


onsiders stru
ture utilizes tree kernels to measure the similarity between synta
ti
 graphs

[73℄.

Following the same line of work in the textual entailment world are the resear
h

teams at Stanford [20, 26, 65, 82℄, whi
h experiment variously with using diverse knowledge

sour
es, using a per
eptron to learn alignment de
isions, and exploiting natural logi
. Their

work di�ers from that of many others in the entailment �eld in that they devote signi�
ant

attention to dete
ting 
ontradi
tions in the texts, whi
h may invalidate an other ways similar

(or entailing) pair [28℄.

Another stru
ture-based line of resear
h was 
arried out using so-
alled "dependen
y

tree skeletons" [102℄. Brie�y, all paths through a dependen
y tree that 
ontain keywords

(nouns) are 
onsidered spines, and anything not atta
hed to a spine are removed. Common

pre�xes or su�xes are removed and anything that remains is 
onsidered a mismat
h between

the two texts. Four kernels are 
ombined to 
ompute an overall 
lassi�
ation based upon

verb mat
hes, verb relations, subsequen
e s
ores, and 
ollo
ation s
ores.

Two other groups that are notable in the 
ontext of textual entailment are both

asso
iated with Language Computer Corporation. Hi
kl et al. [43℄ 
onvin
ingly dominated

the 3rd RTE 
hallenge by using a 4-stage pipeline that �rst involves heuristi
ally extra
ting a

set of assertions from both texts. These assertions are aligned based upon a set of term-level

lexi
al and semanti
 features with weights learned on the training data. After ranking and

s
oring the thesis assertions for ea
h hypothesis assertion, the best hypothesis assertion is

sele
ted and 
lassi�ed as either entailing or non-entailing using a de
ision tree. Finally, the
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pairs are 
he
ked for 
ontradi
tions whi
h invalidate the entailment de
ision. The COGEX

system [97℄ 
onverted the T and H snippets into a "three-layered semanti
ally-ri
h logi


form" representation whi
h was relaxed until rea
hing a threshold or dete
ting entailment.

A set of named-entity heuristi
s were also in
luded to eliminate false positives.

2.3.5. Paraphrase Dete
tion

Paraphrase is a natural part of human 
ommuni
ation. As we relate a story or ane
-

dote that we have heard from someone else, we are almost guaranteed to paraphrase and

reword the story rather than to engage in a rote re
itation of the tale using the exa
t words

with whi
h it was told to us. This is not a natural trait of 
omputers and so 
omputa-

tional tasks that involve mimi
king or understanding typi
al human spee
h require a 
ertain


omfort with paraphrase. In language generation for 
onversational agents, for instan
e,

the ability to alter texts through paraphrase prevents the text from be
oming stale and

predi
table. Likewise, in question answering, the ability to dete
t whether two answers are

paraphrases of one another may serve to strengthen the 
ase for the answer found.

In re
ent literature, the paraphrase task has been often been treated as a spe
ial


ase of two other tasks � textual entailment and ma
hine translation. If textual entailment

requires that H 
an reasonably be inferred from T, then dete
ting a paraphrase requires that

both H and T 
an be inferred from one another [5, 88℄. Similarly, paraphrase 
an be thought

of as a 
ase of monolingual translation, where the two texts 
onvey the same information

using di�erent surfa
e forms.

Fin
h et al. [32℄ make use of multiple tools in the ma
hine translation evaluation

arsenal. Simpler evaluation s
ores su
h as word error rate (WER), position-independent

word-error rate (PER), the Bilingual Evaluation Understudy (BLEU) metri
 and the metri


put forth by the National Institute of Standards and Te
hnology (NIST) were used in 
on-

jun
tion with part-of-spee
h information and a WordNet-based measure of term similarity

[48℄ to train a support ve
tor ma
hine (SVM) 
lassi�er to make a paraphrase de
ision.

Turning the paraphrase dete
tion task around, Qiu et al. [81℄ attempts to dete
t

semanti
ally important dissimilarities between the two texts an in the absen
e of su
h dis-
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similarities 
laims to dete
t paraphrase. Constituent 
omponents of ea
h text were broken

down into predi
ate-argument stru
tures. Non-mat
hing stru
tures were then 
lassi�ed as

either signi�
ant or insigni�
ant using an SVM 
lassi�er.
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CHAPTER 3

DATASETS AND EVALUATION METRICS

Until re
ently, the 
omputer-aided assessment (CAA) 
ommunity has been 
hara
-

terized by isolated progress with little ability to 
ompare the approa
hes of di�erent groups

and to build upon the work of other resear
hers. Without a publi
ly available dataset freed

from legal issues asso
iated with priva
y and intelle
tual property rights, it was not possible

to e�e
tively 
ompare two systems side-by-side. In order to address this anomaly (and to

evaluate my grading methodology), I have 
reated and publi
ized a dataset

1


onsisting of

short answer questions taken from introdu
tory 
omputer s
ien
e assignments with answers

provided by a 
lass of undergraduate students. The assignments were administered as part

of a 
ourse on Data Stru
tures at the University of North Texas in the fall of 2007. For ea
h

assignment, the student answers were 
olle
ted via an online learning environment.

3.1. Des
ription of Short Answer Grading Dataset

The students submitted answers to 87 questions spread a
ross ten assignments and

two examinations. Six of these questions (4.6, 4.7, 8.5, 9.5, 9.7, and 12.3) were ignored over

the 
ourse of these experiments as the question types were more similar to multiple 
hoi
e,

1

In 
ooperation with my advisor, Dr. Rada Mihal
ea

Table 3.1. Two sample questions along with student answers and the grades

assigned by the two human judges. In these examples, the annotator s
ores

are reasonably 
lose.

Sample questions, 
orre
t answers, and student answers Grades

Question: What is the role of a prototype program in problem solving?

Corre
t answer: To simulate the behavior of portions of the desired software produ
t.

Student answer 1: A prototype program is used in problem solving to 
olle
t data for the problem. 1, 2

Student answer 2: It simulates the behavior of portions of the desired software produ
t. 5, 5

Student answer 3: To �nd problem and errors in a program before it is �nalized. 2, 2

Question: What are the main advantages asso
iated with obje
t-oriented programming?

Corre
t answer: Abstra
tion and reusability.

Student answer 1: They make it easier to reuse and adapt previously written 
ode and they separate 
omplex

programs into smaller, easier to understand 
lasses. 5, 4

Student answer 2: Obje
t oriented programming allows programmers to use an obje
t with 
lasses that 
an be


hanged and manipulated while not a�e
ting the entire obje
t at on
e. 1, 1

Student answer 3: Reusable 
omponents, Extensibility, Maintainability, it redu
es large problems into smaller

more manageable problems. 4, 4
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true/false, or ordering problems. For example, question 4.7 is worded as follows: "Using an

index outside the bounds of the array generates an error. Is this a 
ompilation error or a

run-time error?"

Table 3.1 shows two question-answer pairs with three sample student answers ea
h.

Thirty-one students were enrolled in the 
lass and submitted answers to these assignments.

The data set used in this work 
onsists of a total of 2273 student answers. This is less than

the expe
ted 31× 81 = 2511 as some students failed to submit a few assignments.

This dataset has been released in two stages. The �rst release 
onsisted of 21 questions

(from assignments 1-3) with a total of 630 student responses. This dataset was released as

part of my �rst publi
ation related to this task [72℄ and is referred to as MM2009 for the

remainder of this thesis. The full dataset was released (all 87 questions) along with my

se
ond publi
ation [71℄. This full dataset is referred to as MM2011.

For all experiments on the full dataset (MM2011), thirty-two student answers were

used for development and were not in
luded in the evaluation. More details on this pro
ess


an be found in Se
tion 5.3.

3.1.1. Annotation Pro
ess

The answers were independently graded by two human judges, using an integer s
ale

from 0 (
ompletely in
orre
t) to 5 (perfe
t answer). Both human judges were graduate

students in the 
omputer s
ien
e department; one (Grader 1) was the tea
hing assistant

assigned to the Data Stru
tures 
lass, while the other (Grader 2) was myself performed

after the 
ourse had ended. The average grade of the two annotators is treated as the gold

standard against whi
h the system output is 
ompared.

Table 3.2. Magnitude of di�eren
e between annotators

Di�eren
e Examples % of examples

0 1294 57.7%

1 514 22.9%

2 231 10.3%

3 123 5.5%

4 70 3.1%

5 9 0.4%
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The annotators were given no expli
it instru
tions on how to assign grades other than

the [0..5℄ s
ale. Both annotators gave the same grade 57.7% of the time and gave a grade only

1 point apart 22.9% of the time. While the agreement between annotators was 57.7% and the

adja
ent agreement (o� by at most one) was 80.6%, the Kappa statisti
 was 0.28 indi
ating

only moderate agreement ex
luding 
han
e. This is likely due to the high proportion of

answers (for both annotators) that were judged perfe
tly 
orre
t (i.e. 5). Comparing ea
h

annotator to the average, their root mean square error was 0.66. The annotators 
orrelated

(using Pearson's r) at 0.59.

A full breakdown of the divergen
e in annotator grading 
an be seen in Table 3.2. A

sample of responses in whi
h the annotators di�ered by more than 1 
an be found in Table

3.3.

Table 3.3. Two sample questions along with student answers and the grades

assigned by the two human judges

Sample questions, 
orre
t answers, and student answers Grades

Question: What is the s
ope of global variables?

Corre
t answer: File s
ope.

Student answer 1: they 
an be a

essed by any C++ �le anywhere. 5, 0

Student answer 2: Global Variables 
an be used in any fun
tion as long as the appropriate

.h �le that holds the variable is in
luded 5, 3

Student answer 3: 
an be a

esed by any 
lasses that have and obje
t of that variables 
lass in it 5, 1

Question: What is a sta
k?

Corre
t answer: A data stru
ture that 
an store elements, whi
h has the property that the last

item added will be the �rst to be removed (or last-in-�rst-out)

Student answer 1: Stores a set of elements in a parti
ular order. 4, 0

Student answer 2: A sta
k is an ADT that stores a set of elements in a parti
ular order. 4, 1

Student answer 3: a �nite ordered list with zero or more elements 4, 0

In addition, an analysis of the grading patterns indi
ate that the two graders may

have been operating o� of di�erent internal grading poli
ies as one grader (Grader 1) was


onsiderably more generous than the other. In fa
t, when the two di�ered, Grader 1 gave

the higher grade 76.6% of the time. The average grade given by Grader 1 is 4.43, while the

average grade given by Grader 2 is 3.94. Details 
an be found in Table 3.4.

For both annotators, and hen
e for the gold standard mean, the dataset is heavily

biased towards 
orre
t answers (see Figure 3.1). However, I believe that this 
orre
tly mirrors

real-world issues asso
iated with the task of grading.
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Table 3.4. Annotation 
onfusion matrix: Columns indi
ate the grade given

by Grader 1 while rows indi
ate the grade given by Grader 2

0 1 2 3 4 5

0 22 3 4 33 36 9

1 0 6 5 37 50 34

2 1 5 15 56 58 37

3 0 2 3 61 110 70

4 0 0 4 30 86 183

5 0 0 3 55 119 1104

Figure 3.1. Real-world grading biased towards 
orre
t answers

3.2. Other Datasets

In order to evaluate the appli
ability of the te
hniques used in this system to other

related �elds, I have made use of an additional �ve datasets that have been widely used in

the �elds of text similarity, textual entailment, and paraphrase dete
tion.

The �rst dataset, hereafter referred to as the SemEval2012 
orpus, was provided as

part of the Semanti
 Evaluation (SemEval) 2012 workshop for semanti
 textual similarity

(STS) [1℄. This dataset was released in two stages (training and testing). The training data

was 
omposed of data from 3 existing datasets. Formally, 750 senten
e pairs were taken from

the Mi
rosoft Resear
h Paraphrase Corpus [MSRpar℄ (see below), 750 pairs were taken from

the Mi
rosoft Resear
h Video Des
ription Corpus [MSRvid℄, and 734 pairs were taken from

the 2008 Workshop on Ma
hine Translation (WMT) development dataset [SMTeuroparl℄

(Europarl se
tion). The testing data that was released was taken from these same three

datasets (750 [MSRpar℄, 750 [MSRvid℄, 459 [SMTeuroparl℄) as well as from two datasets
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whi
h were a surprise to the entrants. The �rst of these two datasets [OnWN℄ 
onsisted

of 750 pairs where the �rst senten
e was taken from OntoNotes and the se
ond was taken

from a WordNet de�nition. In the se
ond [SMTnews℄, 399 pairs were extra
ted from the

news 
onversation se
tion of WMT. Altogether, this represents 2234 training pairs and 3108

testing pairs � or 5342 pairs 
ombined. Ea
h of these pairs was given a s
ore on a s
ale

of [0..5℄ by �ve users asso
iated with Amazon Me
hani
al Turk. The average of the users'

s
ores is treated as the gold standard similarity s
ore. Results from experiments on this

dataset 
an be found in Se
tion 6.1.

The se
ond dataset, hereafter referred to as Li30 [60℄, was based on a dataset built

by Rubenstein and Goodenough [86℄ in 1965 to dete
t similarity between individual terms.

The new dataset was formed by repla
ing the individual terms with their de�nitions taken

from the Collins Cobuild [91℄. New similarity s
ores were 
al
ulated by taking the average

similarity (on a [0..4℄ s
ale) as judged by 32 native English speakers. In order to redu
e

the e�e
ts of bias on the dataset, a subset of 30 pairs is 
ommonly used in resear
h on this

dataset, and I follow this norm in this set of experiments. Results from experiments on this

dataset 
an be found in Se
tion 6.2.1.

The third dataset, hereafter referred to as Lee50 [56℄, is a 
olle
tion of 50 small

do
uments (between 51 and 126 words) ea
h taken from the Australian Broad
asting Cor-

poration's news mail servi
e. All possible pairs of these do
uments (i.e. 1275 pairs) were

given to a grouping of 83 
ollege students who rated the similarity of the do
ument pairs on

a s
ale of [1..5℄. The dataset was heavily skewed towards low similarity s
ores. An analysis

of the annotations revealed an average inter-rater 
orrelation of 0.605 by repeatedly sele
ting

a random set of annotations and 
omparing to the average of the remaining annotations.

It was reported that around 90% of annotations were within 1 point of the average. The

average of the annotations for ea
h pair were s
aled to the [0..1℄ range and treated as a gold-

standard for similarity. Results from experiments on this dataset 
an be found in Se
tion

6.2.2.

The fourth dataset, hereafter referred to as RTE-3 is from the third Re
ognizing
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Textual Entailment (RTE) Challenge organized by the PASCAL group [25℄. For system

development, 800 senten
e pairs were provided, and for testing, another 800 senten
e pairs.

These senten
e pairs were ea
h manually tagged as either "entailing" or "non-entailing."

The senten
e pairs were drawn from four broadly de�ned 
ategories: information retrieval,

multi-do
ument summarization, information extra
tion, and question answering

2

Twenty-six

teams parti
ipated in the RTE-3 
hallenge [37℄. Results from experiments on this dataset


an be found in Se
tion 6.2.3.

The �nal dataset, the Mi
rosoft Resear
h Paraphrase (MSRP) 
orpus, was published

by Mi
rosoft's Natural Language Pro
essing Group [30℄. Using heuristi
 extra
tion te
h-

niques and a support ve
tor ma
hine (SVM) 
lassi�er, 5801 senten
e pairs were removed

from a 
olle
tion of news arti
les gathered from the World Wide Web over the 
ourse of 2

years. All 
andidate senten
es were required (by the extra
tion heuristi
s) to be similar in

length, to have at least three words in 
ommon, and to have a moderate to large edit distan
e

(greater than 7 edits). Two independent judges annotated ea
h pair as either "semanti
ally

equivalent" or not with ties broken by a third judge. Overall, 67% of the pairs were found

to be equivalent. Results from experiments on this dataset 
an be found in Se
tion 6.2.4.

3.3. Evaluation Metri
s

In attempting to analyze the results of this work, I have been fa
ed with the di�
ult

de
ision of whi
h metri
 to use to evaluate the s
ores provided through a 
omparison with

the gold standard. Related work has been split on whi
h evaluation metri
 is the most

appropriate, with the de
ision often determined by the dataset.

For datasets with real-valued s
ores, su
h as SemEval2012, Li30 and Lee50 [56℄, 
orre-

lation metri
s su
h as Pearson's r and Spearman's ρ are more frequently used [35, 39, 41, 98℄.

For datasets su
h as the RTE suite or the MSRP Corpus that require a binary yes-no de
ision

or assignment to a 
ategory, measures su
h as a

ura
y, Kappa statisti
, and pre
ision/re
all

are more 
ommon [18, 62, 94, 95℄. I believe that both measures are inherently limited and

2

See the RTE-3 website (http://pas
allin.e
s.soton.a
.uk/Challenges/RTE3/Introdu
tion/) for further de-

tails on the 
reation pro
ess.
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misleading when used alone on a short answer grading set.

For instan
e, the 
orrelation statisti
s are unde�ned in the 
ase that every student

gets the same grade on a given problem. This o

urs several times in this dataset. In

addition, the 
hange from 6 possible grades that the two annotators provide to 11 possible

grades that the average s
ore 
an take makes 
omparison between the annotators' 
orrelation

and any system's 
orrelation mu
h less meaningful. Likewise, for a

ura
y, Kappa, and

pre
ision/re
all measures large grading dis
repan
ies and small grading dis
repan
ies are

penalized to the same extent. In reality, a system that awards an "A" e�ort with a "B"

is more satisfa
tory than a system that awards an "F" for the same e�ort. Perhaps more

problemati
 is that any metri
 that requires an exa
t mat
h su
h as a

ura
y and the Kappa

statisti
 require real values to be "rounded" in order to mat
h a 
ategory.

In my earlier e�orts (See Chapter 4), I reported only Pearson's r, but as the work

matured, I have 
hosen to report also the root mean squared error (RMSE) to quantify the

di�eren
e between the system response and the given s
ores. Where a

ura
y s
ores are

reported for real-valued datasets, it should be assumed that s
ores have �rst been rounded

to the nearest 0.5.
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CHAPTER 4

BAG-OF-WORDS APPROACHES

In this 
hapter, I report my early work in the appli
ation of existing knowledge-based

and 
orpus-based similarity measures to the task of automati
 short answer grading. In

parti
ular, I am interested in determining how the size and subje
t matter of the training


orpora a�e
t the overall quality of the 
orpus-based measures. Furthermore, I des
ribe

an attempt to enhan
e the provided instru
tor answer (to a

ount for phrasal variation) by

using other student responses in a manner similar to the pseudo-relevan
e feedba
k te
hnique


ommonly employed in information retrieval. All experiments reported in this 
hapter were

evaluated using the MM2009 dataset unless otherwise indi
ated.

4.1. Textual Similarity Measures

Comparative evaluations were performed using eight knowledge-based measures of

semanti
 similarity (shortest path, Lea
o
k & Chodorow, Lesk, Wu & Palmer, Resnik, Lin,

Jiang & Conrath, Hirst & St. Onge), and three 
orpus-based measures (
osine similarity,

latent semanti
 analysis, and expli
it semanti
 analysis).

For the knowledge-based measures, I derive a text-to-text similarity metri
 by using

the methodology proposed in [68℄: for ea
h open-
lass word in one of the input texts, the

maximum semanti
 similarity that 
an be obtained by pairing it up with individual open-


lass words in the se
ond input text is used. More formally, for ea
h open-
lass word W of


lass C in the instru
tor answer, �nd maxsim(W,C) where

maxsim(W,C) = maxSimx(W,wi)

where wi is a word in the student answer of 
lass C and the Simx fun
tion is one of the

fun
tions des
ribed below. The lexi
al similarity s
ores are determined using the Word-

Net::Similarity pa
kage des
ribed in [79℄. All the word-to-word similarity s
ores obtained in

this way are summed up and normalized to a

ount for the length of the two input texts. A

short des
ription of ea
h of these similarity metri
s is provided below.
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4.1.1. Knowledge-Based Measures

The shortest path similarity is determined as:

(1) Simpath =
1

length

where length is the length of the shortest path between two 
on
epts using node-
ounting

(in
luding the end nodes).

The Lea
o
k & Chodorow (LCH) [54℄ similarity is determined as:

(2) Simlch = − log
length

2 ∗D

where length is the length of the shortest path between two 
on
epts using node-
ounting,

and D is the maximum depth of the taxonomy.

The Lesk similarity of two 
on
epts is de�ned as a fun
tion of the overlap between the


orresponding de�nitions, as provided by a di
tionary. It is based on an algorithm proposed

by Lesk [57℄ as a solution for word sense disambiguation.

The Wu & Palmer (WUP) [105℄ similarity metri
 measures the depth of two given 
on
epts in

the WordNet taxonomy, and the depth of the least 
ommon subsumer (LCS), and 
ombines

these �gures into a similarity s
ore:

(3) Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)

The measure introdu
ed by Resnik [83℄ returns the information 
ontent (IC) of the LCS of

two 
on
epts:

(4) Simres = IC(LCS)

where IC is de�ned as:

(5) IC(c) = − logP (c)

and P (c) is the probability of en
ountering an instan
e of 
on
ept c in a large 
orpus.

28



The measure introdu
ed by Lin [61℄ builds on Resnik's measure of similarity, and adds a

normalization fa
tor 
onsisting of the information 
ontent of the two input 
on
epts:

(6) Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)

I also 
onsider the Jiang & Conrath (JCN) [48℄ measure of similarity:

(7) Simjcn =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)

Finally, the Hirst & St. Onge (HSO) [45℄ measure of similarity is 
onsidered, whi
h deter-

mines the similarity strength of a pair of synsets by dete
ting lexi
al 
hains between the pair

in a text using the WordNet hierar
hy.

4.1.2. Corpus-Based Measures

The 
orpus-based measures di�er from knowledge-based methods in that they do

not require any en
oded understanding of either the vo
abulary or the grammar of a text's

language. A semanti
 model is formed by analyzing alternatively the frequen
y of a word in

the 
orpus, the words that it appears with, or the set of do
uments that it appears in.

In many of the real-world s
enarios where 
omputer-aided assessment (CAA) might

be advantageous, robust language-spe
i�
 resour
es (e.g. WordNet, dependen
y parsers,

part-of-spee
h taggers) may not be available. Thus, state-of-the-art 
orpus-based measures

may be the only available approa
h to CAA in languages with s
ar
e resour
es.

One of the oldest 
orpus-based measures of do
ument similarity is a ve
tor-based


osine similarity using term frequen
y and do
ument frequen
y (referred to as "tf*idf") [50℄.

Brie�y, tf*idf works by 
onverting a text (usually a do
ument) into a ve
tor representation,

where ea
h dimension of the ve
tor is a unique word in a 
olle
tion of do
uments. The

values asso
iated with ea
h element of the ve
tor are 
al
ulated as the produ
t of the term

frequen
y (tf) � the number of o

urren
es of this word in the do
ument � and the inverse

do
ument frequen
y (idf) � the log of the ratio of do
uments in the 
olle
tion to do
uments

that 
ontain this word. The ve
tors are then 
ompared by �nding the angle between them

(
osine similarity). This te
hnique is sometimes altered using novel smoothing or weighting
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poli
ies, but the method as des
ribed above is used here, as a baseline. Do
ument frequen
y

is taken from the British National Corpus (BNC) [8℄.

Over the past two de
ades, latent semanti
 analysis (LSA), proposed by Deerwester

et al. [29℄, has been widely used as a measure of similarity and has even been proposed as

an all-in
lusive model for human 
ognition of language [53℄. In LSA, term 
o-o

urren
es

in a 
orpus are 
aptured by means of a dimensionality redu
tion performed by a singular

value de
omposition (SVD) on the term-by-do
ument matrixT representing the 
orpus. The

result is an independent ve
tor for ea
h word, whi
h 
an be summed to form a new ve
tor

representing the full text. Again, the 
osine similarity of the ve
tors is used to 
ompute

a text similarity s
ore. For the experiments reported involving the MM2009 
orpus, the

SVD operation has been run on several 
orpora in
luding both the BNC (LSA BNC) and

a dump of the entire English Wikipedia (LSA Wikipedia). For the experiments reported in

this 
hapter, the Wikipedia 
orpus refers to a version downloaded in September 2007.

Expli
it semanti
 analysis (ESA) [35℄ is a variation on the standard ve
torial model

in whi
h ea
h dimension of the ve
tor is dire
tly equivalent to an abstra
t 
on
ept. Ea
h

arti
le in Wikipedia represents a 
on
ept in the ESA ve
tor. The relatedness of a term to

a 
on
ept is de�ned as the tf*idf s
ore for the term within the Wikipedia arti
le, and the

relatedness between two words is the 
osine of the two 
on
ept ve
tors in a high-dimensional

spa
e. I refer to this method as ESA Wikipedia.

4.2. Experimental Setup

For the knowledge-based measures, I use the WordNet-based implementation of the

word-to-word similarity metri
s, as available in the WordNet::Similarity pa
kage [77℄. For the

LSA experiments, I use the InfoMap pa
kage.

1

For the experiments using expli
it semanti


analysis, I use an in-house implementation of the ESA algorithm as des
ribed in [34℄

2

. Note

that all the word similarity measures are normalized so that they fall within a [0..1℄ range.

1

http://infomap-nlp.sour
eforge.net/

2

Originally implemented by Samar Hassan with my own modi�
ations to improve e�
ien
y
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The normalization is performed by dividing the original similarity s
ore by the maximum

possible s
ore for that measure.

3

.

4.2.1. The Role of Domain and Size

One of the key 
onsiderations when applying 
orpus-based te
hniques is the extent

to whi
h the size and subje
t matter of the training 
orpus a�e
t the overall performan
e

of the system. In parti
ular, based on the underlying pro
esses involved, the LSA and ESA


orpus-based methods are expe
ted to be espe
ially sensitive to 
hanges in domain and size.

The language models that are built depend upon the relatedness of the words in the training

data whi
h suggests that, for instan
e, in a 
omputer s
ien
e domain the terms "obje
t"

and "oriented" will be more 
losely related than in a general-purpose text. Similarly, a large

amount of training data will lead to less sparse ve
tor spa
es, whi
h in turn is expe
ted to

a�e
t the performan
e of the 
orpus-based methods.

With this in mind, two training 
orpora were developed for use with the 
orpus-

based measures that sought to 
over the 
omputer s
ien
e domain. The �rst 
orpus (LSA

slides) 
onsists of several online le
ture notes asso
iated with the 
lass textbook, spe
i�
ally


overing topi
s that are used as questions in the dataset. The se
ond domain-spe
i�
 
orpus

is a subset of the Wikipedia dump (LSAWikipedia CS) 
onsisting of arti
les that 
ontain any

of the following terms: 
omputer, 
omputing, 
omputation, algorithm, algorithms, re
ursive,

or re
ursion.

The performan
e of the LSA models that have been trained on the domain-spe
i�



orpora is 
ompared with LSA models trained on the open-domain 
orpora mentioned in

Se
tion 4.1.2, namely LSA Wikipedia and ESA Wikipedia. In addition, for the purpose of

running a 
omparison with the LSA slides 
orpus, I also 
reated a random subset of the LSA

Wikipedia 
orpus approximately mat
hing the size of the LSA slides 
orpus. I refer to this


orpus as LSA Wikipedia (small).

3

For several similarity measures this was done in
orre
tly and has been �xed for all experiments with the

MM2011 dataset as shown in Chapter 5. The original published results are reported here.

31



Table 4.1 shows an overview of the various 
orpora used as training in these experi-

ments, along with the Pearson 
orrelation 
oe�
ient observed for this dataset.

Table 4.1. Corpus-based measures trained on 
orpora from di�erent domains

and of di�erent sizes � MM2009 dataset

Measure - Corpus Size Correlation

Training on generi
 
orpora

LSA BNC 566.7MB 0.4071

LSA Wikipedia 1.8GB 0.4286

LSA Wikipedia (small) 0.3MB 0.3518

ESA Wikipedia 1.8GB 0.4681

Training on domain-spe
i�
 
orpora

LSA Wikipedia CS 77.1MB 0.4628

LSA slides 0.3MB 0.4146

ESA Wikipedia CS 77.1MB 0.4385

Assuming a 
orpus of 
omparable size, it is expe
ted that a measure trained on a

domain-spe
i�
 
orpus would outperform a measure trained on a generi
 one. Indeed, by


omparing the results obtained with LSA slides to those obtained with LSA Wikipedia

(small), it is possible to see that by using the in-domain 
omputer s
ien
e slides the system

obtains a 
orrelation of r=0.4146, whi
h is higher than the 
orrelation of r=0.3518 obtained

with a 
orpus of the same size but open-domain. The e�e
t of the domain is even more

pronoun
ed when the performan
e obtained with LSA Wikipedia CS (r=0.4628) is 
ompared

with the one obtained with the full LSAWikipedia (r=0.4286).

4

The smaller, domain-spe
i�



orpus performs better, despite the fa
t that the generi
 
orpus is 23 times larger and is a

superset of the smaller 
orpus! This suggests that for LSA the quality of the texts is vastly

more important than the quantity.

When using the domain-spe
i�
 subset of Wikipedia, de
reased performan
e is ob-

served with ESA 
ompared to the full Wikipedia spa
e. I suggest that for ESA the high-

dimensionality of the 
on
ept spa
e

5

is paramount, sin
e many relations between generi


words may be lost to ESA that 
an be dete
ted latently using LSA.

4

The di�eren
e was found signi�
ant using a paired t-test (p<0.001).

5

In ESA, all the arti
les in Wikipedia are used as dimensions, whi
h leads to about 1.75 million dimensions

in the ESA Wikipedia 
orpus, 
ompared to only 55,000 dimensions in the ESA Wikipedia CS 
orpus.
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In tandem with my exploration of the e�e
ts of domain-spe
i�
 data, I also look

at the e�e
t of size on the overall performan
e. The main intuitive trends are there, i.e.

the performan
e obtained with the large LSA-Wikipedia is better than the one that 
an

be obtained with LSA Wikipedia (small). Similarly, in the domain-spe
i�
 spa
e, the LSA

Wikipedia CS 
orpus leads to better performan
e than the smaller LSA slides data set.

However, an analysis 
arried out at a �ner-grained s
ale, in whi
h the performan
e obtained

with LSA is 
al
ulated when trained on 5%, 10%, ..., 100% fra
tions of the full LSAWikipedia


orpus, did not reveal a 
lose 
orrelation between size and performan
e, whi
h suggests that

further analysis is needed to determine the pre
ise e�e
t of 
orpus size on performan
e.

4.2.2. Pseudo-Relevan
e Feedba
k

When a grader determines that a student answer is 
orre
t, it implies that there is

some degree of similarity between the answer provided by the student and some 
orre
t

answer provided by the instru
tor (or otherwise known to the grader). Sin
e, in the interest

of simpli
ity, the system is provided with only one 
orre
t answer, some student answers

may be wrongly graded be
ause of little or no similarity to the surfa
e forms of that single


orre
t answer.

In order to address this problem, I introdu
e a novel te
hnique that feeds ba
k from

the student answers themselves in a manner similar to the way pseudo-relevan
e feedba
k

is used in information retrieval [84℄. In so doing, the paraphrasing that is usually observed

a
ross student answers will enhan
e the vo
abulary of the 
orre
t answer, while at the same

time maintaining the 
orre
tness of the gold-standard answer. In fa
t, something similar is

done manually in most state-of-the-art pattern mat
hing systems for CAA [17, 18, 95℄. In

these, a set of 100-400 student answers are analyzed and used to 
reate patterns to over
ome

variety in word 
hoi
e. I attempt to a
hieve the same goal using a simpler version of this

system to automati
ally �nd 
orre
t answers among student answers.

Brie�y, given a metri
 that provides similarity s
ores between the student answers

and the 
orre
t answer, s
ores are ranked from most similar to least. The words of the top

N ranked answers are then added to the gold standard bag-of-words. The remaining answers
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are then res
ored a

ording the the new gold standard ve
tor. In pra
ti
e, the s
ores from

the �rst run (i.e. with no feedba
k) are held 
onstant for the top N highest-s
oring answers,

and the se
ond-run s
ores for the remaining answers are multiplied by the �rst-run s
ore of

the Nth highest-s
oring answer. In this way, the original s
ores for the top N highest-s
oring

answers are kept (and thus prevent them from be
oming arti�
ially high), whi
h at the same

time, guarantees that none of the lower-s
ored answers will get a new s
ore higher than the

best answers.

The e�e
ts of relevan
e feedba
k are shown in Figure 4.1, whi
h plots the Pearson


orrelation between automati
 and human grading (Y axis) versus the number of student

answers that are used for feedba
k (X axis). This experiment has not yet been attempted

with the larger MM2011 dataset.

Table 4.2. Maximum absolute improvement obtained with relevan
e feed-

ba
k for di�erent measures � MM2009 dataset

Feedba
k Maximum

Measure answers improvement

LSA-Wiki-full 6 0.0384

LSA-Wiki-CS 3 0.0471

LSA-slides-CS 6 0.0413

ESA-Wiki-full 7 0.0241

ESA-Wiki-CS 7 0.0255

WordNet-JCN 6 0.0302

WordNet-Path 6 0.0474

tf*idf 12 0.0147

LSA-BNC 9 0.0302

Table 4.2 shows the maximum absolute improvement that 
an be obtained by using

feedba
k with a sele
tion of measures, along with the number of feedba
k answers for whi
h

this improvement is obtained.

Overall, an improvement of up to 0.047 on the [0..1℄ Pearson s
ale is shown to be

obtainable by using this te
hnique, with a maximum improvement observed after about 4-

6 iterations on average. After an initial number of high-s
ored answers, it is likely that

the 
orre
tness of the answers degrades, and thus the de
rease in performan
e observed

after an initial number of iterations. These results indi
ate that the LSA and WordNet
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similarity metri
s respond more favorably to feedba
k than the ESA metri
. It is possible

that supplementing the bag-of-words in ESA (with e.g. synonyms and phrasal di�eren
es)

does not drasti
ally alter the resultant 
on
ept ve
tor, and thus the overall e�e
t is smaller.

Figure 4.1. E�e
t of relevan
e feedba
k on performan
e � MM2009 dataset
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4.2.3. Binary De
ision

To gain further insights, I performed an additional experiment to determine the ability

of this system to make a binary a

ept/reje
t de
ision. In this evaluation, the [0..5℄ human

grading s
ale of the dataset is mapped to an a

ept/reje
t annotation by using a threshold

of 2.5. Every answer with a grade higher than 2.5 is labeled as "a

ept," while every answer

below 2.5 is labeled as "reje
t." Next, I use the best system (LSA trained on domain-

spe
i�
 data with relevan
e feedba
k), and run a ten-fold 
ross-validation on the data set.

Spe
i�
ally, for ea
h fold, the system uses the remaining nine folds to automati
ally identify

a threshold to maximize the mat
hing with the gold standard. The threshold identi�ed in

this way is used to automati
ally annotate the test fold with "a

ept"/"reje
t" labels.

The ten-fold 
ross validation resulted in an a

ura
y of 92%, indi
ating the ability
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of the system to automati
ally make a binary a

ept/reje
t de
ision. However, moving the

threshold to 4.0 (to distinguish between ex
ellent and good answers) proved a more di�
ult

task. Note that it is possible that the high-s
ore bias asso
iated with this dataset (see

Chapter 3) is responsible for the high a

ura
y in this se
tion.

4.3. Dis
ussion

These experiments show that several knowledge-based and 
orpus-based measures of

similarity perform 
omparably when used for the task of short answer grading. However,

sin
e the 
orpus-based measures 
an be improved by a

ounting for domain and 
orpus

size, the highest performan
e 
an be obtained with a 
orpus-based measure (LSA) trained

on a domain-spe
i�
 
orpus. Further improvements were also obtained by integrating the

highest-s
ored student answers through a relevan
e feedba
k te
hnique.

Table 4.3 summarizes the results of my experiments. In addition to the per-question

evaluations that have been reported throughout this thesis, a per-assignment evaluation is

also reported, whi
h re�e
ts a 
umulative s
ore for a student on a single assignment, as

des
ribed in Chapter 3.

Table 4.3. Summary of results obtained with various similarity measures,

with relevan
e feedba
k based on six student answers. Also listed, as baselines,

are tf*idf and LSA trained using BNC. The annotator agreement (Pearson's

r) is also shown.

Correlation

Measure per-quest. per-assign.

Baselines

tf*idf 0.3647 0.4897

LSA BNC 0.4071 0.6465

Relevan
e Feedba
k based on Student Answers

WordNet shortest path 0.4887 0.6344

LSA Wikipedia CS 0.5099 0.6735

ESA Wikipedia full 0.4893 0.6498

Annotator agreement 0.6443 0.7228

Overall, in both the per-question and per-assignment evaluations, the best perfor-

man
e was obtained by using an LSA measure trained on a medium size domain-spe
i�
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orpus obtained from Wikipedia, with relevan
e feedba
k from the four highest-s
oring stu-

dent answers. This method improves signi�
antly over the tf*idf baseline and also over

the LSA trained on BNC model, whi
h has been used extensively in previous work. The

di�eren
es were found to be signi�
ant using a paired t-test (p<0.001).

In the next 
hapter, I use the knowledge-based and 
orpus-based te
hniques des
ribed

here in the development of a system that takes into a

ount not only the lexi
al-semanti
s of

a senten
e, but the stru
ture as well through the use of dependen
y graph alignments. The

s
ores of these simpler similarity measures are also used as features in training a support

ve
tor ma
hine (SVM) learning system.
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CHAPTER 5

ALIGNMENT SYSTEM AND SVM LEARNING

In this 
hapter, I �rst revisit the bag-of-words approa
hes dis
ussed in the previous


hapter and introdu
e some 
ommon-sense modi�
ations to the prepro
essing and evaluation

pro
esses. Afterwards, I detail my work using dependen
y graph alignment s
ores to a

ount

(in a simple way) for stru
tural similarities between student and instru
tor answers. I go

on to des
ribe my e�orts to exploit support ve
tor ma
hine (SVM) learning te
hniques to

leverage non-redundant eviden
e spread a
ross multiple simpler features. All experiments

des
ribed in this 
hapter use the MM2011 dataset unless otherwise indi
ated.

It was shown in Chapter 4 and in mu
h prior work that simple bag-of-words similarity

metri
s perform reasonably well when used in 
omputer-aided assessment (CAA) and when

dete
ting textual similarity in general. Unfortunately, by their very nature, �ne di�eren
es

in a word's role in the senten
e narrative are in
apable of being distinguished by these simple

measures alone. Any student of poetry is aware that the senten
e "Dido loves Aeneas" does

not mean the same thing as "Aeneas loves Dido," but latent semanti
 analysis (LSA) and

the other bag-of-words similarity measures are forever 
ommitted to a belief in requited love.

When grading student answers, this ability to dete
t these subtle di�eren
es in word

order and senten
e role are often the di�eren
e between a 
orre
t answer and an in
orre
t one.

Most prior attempts to a

ount for this in CAA have fo
used on using a large development

set of student answers (usually over 100 answers per question) to manually 
raft patterns

with a �xed word order whi
h must be mat
hed in order for a positive s
ore to be given.

This was in no way an option as the dataset under 
onsideration has only around 30 student

responses per question altogether.

In the textual entailment �eld, where su
h di�eren
es are the rule rather than the

ex
eption, mu
h re
ent work [65, 78, 87℄ has fo
used on 
omparing the dependen
y graph

representations of both texts in order to determine whether the hypothesis is entailed based

upon the stru
ture of the senten
es without being tied to an expli
it word order. These

38



systems produ
e an alignment based upon the separate similarities of the nodes (words)

and the edges (relations) of the dependen
y graphs and use the alignment itself to rea
h a

de
ision regarding entailment.

In order to meet the needs of the grading task, my system attempts to quantify an

alignment as a s
ore on a [0..5℄ s
ale so that it 
an be dire
tly applied as a grade for a

student answer. As an initial attempt, I have modeled the dependen
y graph alignment step

as an assignment problem and have sought to mat
h nodes in su
h a way as to maximize

the alignment s
ore (i.e. the grade). This pro
ess is des
ribed in more detail in Se
tion

5.4. Before des
ribing the three-staged pipeline system (as shown in Figure 5.1), I must �rst

dis
uss a few pragmati
 
hanges that are used throughout this 
hapter.

5.1. Modi�
ations and Bag-of-Words Improvements

Before looking at the system pipeline, I des
ribe here two te
hniques that deserve

mention: question demoting and isotoni
 regression. The former is based upon real-world

intuition among those who frequently grade student answers � namely that repeating words in

the question is easy and is not ne
essarily indi
ative of student understanding. For example,

given the question â��Who was the �rst President of the United States?â�� and an instru
tor

answer â��The �rst president of the United States was George Washingtonâ��, it may be

possible for a student to re
eive a fair amount 
redit (due to surfa
e similarities) by providing

the answer â��The �rst president of the United States was Bara
k Obama.â�� In order to

prevent students from inappropriately re
eiving 
redit for these types of answers, terms

that are freely given to the student in the question are dis
ounted. Spe
i�
ally, any terms


ontained in the question are removed from both the instru
tor answer and the student

answer. This makes it possible to 
ompare only the pertinent terms. I have termed this

pro
ess question demoting. Coin
identally, I have re
ently dis
overed that this method was

quietly applied in an earlier work on CAA [96℄, but has never been analyzed in any detail.

The se
ond te
hnique to mention here � isotoni
 regression � is applied to meet

an evaluation-related need. I have dis
ussed in Se
tion 3.3 the de
ision to report results

measuring 
orrelation, a

ura
y, and root mean squared error (RMSE). In order to determine
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a

ura
y and RMSE, it is ne
essary for the system output and the gold-standard grades to

be on the same [0..5℄ s
ale. Additionally, it is vital that a grading system be able to give

students grades that have some inherent or agreed upon meaning � e.g. the standard 100

point s
ale. With this in mind, I use isotoni
 regression [107℄ to 
onvert the system s
ores

onto the same [0..5℄ s
ale used by the annotators

1

. The isotoni
 regression model is trained

on ea
h type of system output (i.e. BOW s
ores, alignment s
ores, SVM output). More

details on the training pro
ess 
an be found in Se
tion 5.6.

One surprise while building this system was the 
onsisten
y with whi
h question

demoting improved s
ores for the BOW similarity measures. With this relatively minor


hange the average 
orrelation between the BOW methods' similarity s
ores and the student

grades improved by up to 0.046 with an average improvement of 0.019 a
ross all eleven

semanti
 features. Table 5.1 shows the results of applying question demoting to the semanti


features. When 
omparing s
ores using RMSE, the di�eren
e is less 
onsistent, yielding an

average improvement of 0.002. However, for one measure (tf*idf), the improvement is 0.063

whi
h brings its RMSE s
ore 
lose to the lowest of all BOW metri
s.

Table 5.1. BOW features with question demoting (QD). Pearson's 
orrela-

tion, root mean square error (RMSE), and median RMSE for all individual

questions. Note that the dis
repan
y on several s
ores (Lesk, HSO, RES, LCH)

is due to a normalization error in an early version of the system.

MM2009 MM2011

r r w/ QD RMSE w/ QD Med. RMSE w/ QD

Lesk 0.363 0.450 0.462 1.034 1.050 0.930 0.919

JCN 0.450 0.443 0.461 1.022 1.026 0.954 0.923

HSO 0.196 0.441 0.456 1.036 1.034 0.966 0.935

PATH 0.441 0.436 0.457 1.029 1.030 0.940 0.918

RES 0.252 0.409 0.431 1.045 1.035 0.996 0.941

Lin 0.392 0.382 0.407 1.069 1.056 0.981 0.949

LCH 0.223 0.367 0.387 1.068 1.069 0.986 0.958

WUP 0.337 0.325 0.343 1.090 1.086 1.027 0.977

ESA Wikipedia 0.468 0.395 0.401 1.031 1.086 0.990 0.955

LSA Wiki-CS 0.463 0.328 0.335 1.065 1.061 0.951 1.000

tf*idf 0.365 0.281 0.327 1.085 1.022 0.991 0.918

Avg.grade N/A N/A N/A 1.097 1.097 0.973 0.973

Looking at the a
tual distribution of the tf*idf s
ores, it has been observed that this

measure (after isotoni
 regression) produ
es s
ores entirely within the range [2.5 to 5℄ with

1

Spe
i�
ally, the Pool Adja
ent Violators Algorithm (PAVA) as implemented by Dr. Razvan Bunes
u is

used.
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over 900 s
ores between 4.25 and 4.75. Given the bias inherent in this dataset, it is likely to

be a good strategy for redu
ing error, but is not ne
essarily an indi
ator of true dis
riminative

ability. For referen
e, I in
lude here (in Table 5.2) the results of assigning the same grade to

every student for all 11 grades awarded by the system (0, 0.5, ..., 5). The average grade (as

determined on the training data) is also in
luded for ea
h question. The average grade was

sele
ted as a baseline as it is the 
onstant value with the minimum RMSE for the training

data.

Table 5.2. The simplest baselines possible � always guessing the same value.

Note that in this 
ase 
orrelation statisti
s are unde�ned, so they are not

reported here.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 average

RMSE 4.32 3.84 3.37 2.90 2.44 2.01 1.61 1.29 1.11 1.14 1.37 1.10

A

ura
y (w/in 0.5) 1.1% 1.6% 2.5% 6.4% 11% 16% 20% 24% 31% 72% 63% 31%

5.2. Alignment Pipeline

In the �rst stage (Se
tion 5.3), the system is provided with the dependen
y graphs

for ea
h pair of instru
tor (Ai) and student (As) answers. For ea
h node in the instru
tor's

dependen
y graph, I 
ompute a similarity s
ore for ea
h node in the student's dependen
y

graph. This s
ore is based upon a set of lexi
al, semanti
, and synta
ti
 features applied

to both the pair of nodes themselves and their 
orresponding subgraphs � for instan
e, the

sets of nodes and edges rea
hable from a starting node assuming that a governor-dependent

relationship represents a dire
tional edge from the governor to the dependent. The s
oring

fun
tion is trained on a small set of manually aligned graphs using the averaged per
eptron

algorithm.

In the se
ond stage (Se
tion 5.4), the node similarity s
ores 
al
ulated in the previous

stage are used to weight the edges of a bipartite graph where the nodes of Ai are on one side

and the nodes of As are on the other. I then apply the Hungarian algorithm to �nd both an

optimal mat
hing and the s
ore asso
iated with su
h a mat
hing. Question demoting (see

Se
tion 5.1) is optionally applied to this step as well (with some modi�
ation as des
ribed

below).
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Figure 5.1. Pipeline model for s
oring short-answer pairs

In the �nal stage (Se
tion 5.5), SVM-based ma
hine learning is employed to produ
e

an overall grade based upon the alignment s
ores found in the previous stage as well as the

results of several semanti
 BOW similarity measures (Se
tion 4.1).

5.3. Node Alignments

Dependen
y graphs for both the student and instru
tor answers are generated us-

ing the Stanford Dependen
y Parser [27℄ in 
ollapse/propagate mode. The graphs are fur-

ther post-pro
essed to propagate dependen
ies a
ross the "APPOS" (appositive) relation,

to expli
itly en
ode negation, part-of-spee
h, and senten
e ID within ea
h node, and to

add an overar
hing ROOT node governing the main verb or predi
ate of ea
h senten
e

of an answer. The �nal representation is a list of (relation, governor, dependent) triples,

where governor and dependent are both tokens uniquely des
ribed by the tuple (senten-


eID:token:POS:wordPosition). For example: (nsubj, 1:provide:VBZ:4, 1:program:NN:3)

indi
ates that the noun "program" is a subje
t in senten
e 1 whose asso
iated verb is "pro-

vide."

If the dependen
y graphs output by the Stanford parser are 
onsidered to be dire
ted

(minimally 
y
li
) graphs,

2

it is possible to de�ne for ea
h node x a set of nodes Nx that are

rea
hable from x using a subset of the relations (i.e. edge types)

3

. The term "rea
hable" is

variously de�ned in four ways to 
reate four subgraphs de�ned for ea
h node. These are as

follows:

• N0
x
: All edge types may be followed

2

The standard output of the Stanford Parser produ
es rooted trees. However, the pro
ess of 
ollapsing and

propagating dependen
es violates the tree stru
ture whi
h results in a tree with a few 
ross-links between

distin
t bran
hes.

3

For more information on the relations used in this experiment, 
onsult the Stanford Typed Dependen
ies

Manual at http://nlp.stanford.edu/software/dependen
ies_manual.pdf
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• N1
x
: All edge types ex
ept for subje
t types, ADVCL, PURPCL, APPOS, PARATAXIS,

ABBREV, TMOD, and CONJ

• N2
x : All edge types ex
ept for those in N1

x plus obje
t/
omplement types, PREP,

and RCMOD

• N3
x
: No edge types may be followed (This set is the single starting node x)

Subgraph similarity (as opposed to simple node similarity) is a means to es
ape the

rigidity involved in aligning parse trees while making use of as mu
h of the senten
e stru
ture

as possible. Humans intuitively make use of modi�ers, predi
ates, and subordinate 
lauses

when determining that two senten
e entities are similar. For instan
e, the entity-des
ribing

phrase "men who put out �res" mat
hes well with "�remen," but the words "men" and

"�remen" have less of an inherent similarity. It remains to be determined how mu
h of

a node's subgraph will positively enri
h its semanti
s. In addition to the 
omplete N0
x

subgraph, N1
x and N2

x were in
luded to tighten the s
ope of the subtree by �rst removing

more abstra
t relations, then sightly more 
on
rete relations.

A total of 68 features have been employed to train the ma
hine learning system

to 
ompute node-node (or more spe
i�
ally, subgraph-subgraph) mat
hes. Of these, 36

are based upon the semanti
 similarity of the four subgraphs de�ned by N
[0..3]
x . All eight

WordNet-based similarity measures listed in Se
tion 4.1 plus the LSA model

4

are used to

produ
e these features. The remaining 32 features are lexi
o-synta
ti
 features

5

de�ned only

for N3
x
and are des
ribed in more detail in Table 5.4.

I have used φ(xi, xs) to denote the feature ve
tor asso
iated with a pair of nodes

〈xi, xs〉, where xi is a node from the instru
tor answer Ai and xs is a node from the student

answer As. A mat
hing s
ore 
an then be 
omputed for any pair 〈xi, xs〉 ∈ Ai ×As through

a linear s
oring fun
tion f(xi, xs) = w
Tφ(xi, xs). In order to learn the parameter ve
tor w,

the averaged version of the per
eptron algorithm was used [23, 33℄.

4

LSA experiments performed on the MM2011 dataset use only the domain-fo
used subset of a full Wikipedia

dump as des
ribed in Se
tion 4.2.1. Note also that a disk 
rash required me to use a newer version of

Wikipedia that was 1.8GB after �ltering for domain.

5

Note that synonyms in
lude negated antonyms (and vi
e versa). Hypernymy and hyponymy are restri
ted

to at most two steps).
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Table 5.3. Per
eptron training for node mat
hing

0. set w ← 0, w ← 0, n← 0
1. repeat for T epo
hs:

2. forea
h 〈Ai;As〉:
3. forea
h 〈xi, xs〉 ∈ Ai ×As:

4. if sgn(wTφ(xi, xs)) 6= sgn(A(xi, xs)):
5. set w← w +A(xi, xs)φ(xi, xs)
6. set w← w +w, n← n+ 1
7. return w/n.

Table 5.4. Subtree mat
hing features used to train the per
eptron

Name Type # features Des
ription

RootMat
h binary 5 Is a ROOT node mat
hed to: ROOT, N, V, JJ, or Other

Lexi
al binary 3 Exa
t mat
h, Stemmed mat
h, 
lose Levenshtein mat
h

POSMat
h binary 2 Exa
t POS mat
h, Coarse POS mat
h

POSPairs binary 8 Spe
i�
 X-Y POS mat
hes found

Ontologi
al binary 4 WordNet relationships: synonymy, antonymy, hypernymy, hyponymy

RoleBased binary 3 Has as a 
hild - subje
t, obje
t, verb

VerbsSubje
t binary 3 Both are verbs and neither, one, or both have a subje
t 
hild

VerbsObje
t binary 3 Both are verbs and neither, one, or both have an obje
t 
hild

Semanti
 real 36 Nine semanti
 measures a
ross four subgraphs ea
h

Bias 
onstant 1 A value of 1 for all ve
tors

Total 68

As training data, a subset of the student answers was randomly sampled in su
h a way

that the set was roughly balan
ed between good s
ores, medio
re s
ores, and poor s
ores.

Ea
h node pair 〈xi, xs〉 was then manually annotated as mat
hing, i.e. A(xi, xs) = +1, or

not mat
hing, i.e. A(xi, xs) = −1. Overall, 32 student answers in response to 21 questions

with a total of 7303 node pairs (656 mat
hes, 6647 non-mat
hes) were manually annotated.

The pseudo
ode for the learning algorithm is shown in Table 5.3. On
e they had been used

to train the per
eptron, these 32 student answers were removed from the dataset, were not

used as training further along in the pipeline, and were not in
luded in the �nal results.

After training for 50 epo
hs,

6

the mat
hing s
ore f(xi, xs) is 
al
ulated (and 
a
hed) for

ea
h node-node pair a
ross all student answers for all assignments.

For the purpose of this experiment, the s
ores asso
iated with a given node-node

mat
hing are 
onverted into a simple yes/no mat
hing de
ision where positive s
ores are


onsidered a mat
h and negative s
ores a non-mat
h. The threshold weight learned from

the bias feature strongly in�uen
es the point at whi
h real s
ores 
hange from non-mat
hes

6

This value was 
hosen arbitrarily and was not tuned in any way.
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to mat
hes, and given the threshold weight learned by the algorithm, an F-measure of 0.72,

with pre
ision(P) = 0.85 and re
all(R) = 0.62 
an be 
omputed. However, as the per
eptron

is designed to minimize error rate, this may not re�e
t an optimal obje
tive when seeking

to dete
t mat
hes. By manually varying the threshold, it is possible to �nd a maximum

F-measure of 0.76, with P=0.79 and R=0.74. Figure 5.2 shows the full pre
ision-re
all 
urve

with the F-measure overlaid.

Figure 5.2. Pre
ision, re
all, and F-measure on node-level mat
h dete
tion
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5.4. Graph Alignment

On
e a s
ore has been 
omputed for ea
h node-node pair a
ross all student/instru
tor

answer pairs, I attempt to �nd an optimal alignment for the answer pair by treating the

answer pair as a bipartite graph in whi
h ea
h node in the student answer is represented

by a node on the left side of the bipartite graph and ea
h node in the instru
tor answer

is represented by a node on the right side. The s
ore asso
iated with ea
h edge is the

s
ore 
omputed for ea
h node-node pair in the previous stage. The bipartite graph is then

augmented by adding dummy nodes to both sides whi
h are allowed to mat
h any node

with a s
ore of zero. An optimal alignment between the two graphs is then 
omputed

e�
iently using the Hungarian algorithm. Note that this results in an optimal mat
hing,

not a mapping, so that an individual node 
an be asso
iated with at most one node in the

other answer.
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At this stage I also 
ompute several alignment-based s
ores by applying various trans-

formations to the input graphs, the node mat
hing fun
tion, and the alignment s
ore itself.

The �rst and simplest transformation involves the normalization of the alignment

s
ore. While there are several possible ways to normalize a mat
hing su
h that longer answers

do not unjustly re
eive higher s
ores, I have opted to simply divide the total alignment s
ore

by the number of nodes in the instru
tor answer.

The se
ond transformation s
ales the node mat
hing s
ore by multiplying it with the

idf 7 of the instru
tor answer node, i.e. repla
e f(xi, xs) with idf(xi) ∗ f(xi, xs).

The third transformation � question demoting � involves removing from the bipartite

graphs, of both the instru
tor answer and the student answer, any words found in the

question. The justi�
ation for this was des
ribed more in Se
tion 5.1.

The appli
ation of these three transformations leads to a total of eight transform


ombinations, and therefore eight di�erent alignment s
ores. For a given answer pair (Ai, As),

the eight graph alignment s
ores are assembled into a feature ve
tor ψG(Ai, As).

Before applying any ma
hine learning te
hniques, I �rst test the quality of the eight

graph alignment features ψG(Ai, As) independently. Results indi
ate that the basi
 alignment

s
ore performs 
omparably to most BOW approa
hes. The introdu
tion of idf weighting

seems to degrade performan
e somewhat, while introdu
ing question demoting 
auses the


orrelation with the grader to in
rease while also in
reasing RMSE somewhat. The four

normalized 
omponents of ψG(Ai, As) are reported in Table 5.5.

Table 5.5. Alignment feature/grade 
orrelations using Pearson's r and two

RMSE measures. Results are also reported when inverse do
ument frequen
y

weighting (IDF) and question demoting (QD) are used � alone and in 
onjun
-

tion.

Standard w/ IDF w/ QD w/ QD+IDF

Pearson's r 0.411 0.277 0.428 0.291

RMSE 1.018 1.078 1.046 1.076

Median RMSE 0.910 0.970 0.919 0.992

7

Inverse do
ument frequen
y, as 
omputed from the British National Corpus (BNC)
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5.5. Ma
hine Learning

In the hopes of exploiting the various advantages of both bag-of-words approa
hes

(Se
tion 4.1) and the stru
ture-aware alignment module (Se
tion 5.4), ea
h of these are used

as features in a Support Ve
tor Ma
hine (SVM) to produ
e a 
ombined real-number grade.

In addition, an Isotoni
 Regression (IR) model is built to transform the 
omputed output

s
ores onto the original [0..5℄ s
ale for ease of 
omparison.

An SVM, in its simplest form, is a maximum margin binary 
lassi�er. It takes a

series of inputs (in one of two 
ategories) and maps ea
h one to a point in high dimensional

spa
e. It then �nds the hyperplane in that spa
e that separates data points based upon their


ategory. If the points are linearly separable, the hyperplane is guaranteed to be as far from

a point in either dataset as possible. Unseen inputs 
an then be 
lassi�ed based upon whi
h

side of this hyperplane they fall on. In this work, I utilize and 
ompare three extensions

to the SVM model � SVM for regression (SVR), ranking SVM, and support ve
tor ordinal

regression. An in-depth analysis of these extensions is beyond the s
ope of this work, but

interested readers are here referred to the relevant literature [21, 49, 92℄.

5.5.1. SVM Features and Implementations

The alignment s
ores ψG(Ai, As) are 
ombined with the s
ores ψB(Ai, As) from the

lexi
al semanti
 similaritymeasures into a single feature ve
tor ψ(Ai, As) = [ψG(Ai, As)|ψB(Ai, As)].

The feature ve
tor ψG(Ai, As) 
ontains the eight alignment s
ores found by applying the

three transformations in the graph alignment stage. The feature ve
tor ψB(Ai, As) 
onsists

of eleven semanti
 features � the eight knowledge-based features plus LSA, ESA and a ve
-

tor 
onsisting only of tf*idf weights � both with and without question demoting. Thus, the

entire feature ve
tor ψ(Ai, As) 
ontains a total of 30 features.

An input pair (Ai, As) is then asso
iated with a grade g(Ai, As) = u
Tψ(Ai, As) 
om-

puted as a linear 
ombination of features. The weight ve
tor u is trained to optimize per-

forman
e in three s
enarios:

Regression: An SVM model for regression (SVR) is trained using as target fun
tion the
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grades assigned by the instru
tors using the libSVM

8

implementation of SVR, with tuned

parameters.

Ranking: An SVM model for ranking (SVMRank) is trained using as ranking pairs all

pairs of student answers (As, At) su
h that grade(Ai, As) > grade(Ai, At), where Ai is the


orresponding instru
tor answer using the SVMLight

9

implementation of SVMRank with

tuned parameters.

Ordinal Regression: An SVM model for ordinal regression (SVORIM) is trained using as a

target fun
tion the grades mapped to a [1..11℄ s
ale. I employ the pa
kage implemented by

Hsuan-Tien Lin

10

with tuned parameters.

In all 
ases, the parameters (for 
ost C and tube width ǫ) were found using a grid

sear
h. At ea
h grid point, the training data was partitioned into 5 folds whi
h were used to

train a temporary SVM model with the given parameters. The regression pa
kages sele
ted

the grid point with the minimal mean square error (MSE), while the SVMRank pa
kage

tried to minimize the number of dis
ordant pairs. The parameters found were then used to

s
ore the test set � a set not used in the grid training.

5.6. Results

The SVM 
omponents of the system are run on the full dataset, retraining on
e

for ea
h of the 10 assignments and 2 examinations (for a total of 12 assignments). Ea
h

assignment is s
ored independently with ten of the remaining eleven assignments used to

train the SVM system. For ea
h assignment, one additional assignment is held out for later

use in the development of an isotoni
 regression model (see Figure 5.3).

Figure 5.3. Dependen
ies of the SVM/IR training stages

B CA − Ten Folds

B CA − Ten Folds

B CA − Ten FoldsIR Model

SVM Model

Features

8

http://www.
sie.ntu.edu.tw/�
jlin/libsvm/

9

http://svmlight.joa
hims.org/

10

http://www.work.
alte
h.edu/ htlin/program/libsvm/
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All SVM models were trained using a linear kernel.

11

Results from all three SVM

implementations are reported in Table 5.6 along with a sele
tion of other measures. Note

that the RMSE s
ore was 
omputed after performing isotoni
 regression on the SVMRank

results, but that it was unne
essary to perform an isotoni
 regression on the SVR and

SVORIM results as the system was trained to produ
e a s
ore on the 
orre
t s
ale.

I report the results of running the systems on three subsets of features ψ(Ai, As):

BOW features ψB(Ai, As) only, alignment features ψG(Ai, As) only, or the full feature ve
tor

(labeled "Hybrid"). Finally, three subsets of the alignment features are used: only unnor-

malized features, only normalized features, or the full alignment feature set.

Table 5.6. The results of the SVM models trained on the full suite of BOW

measures, the alignment s
ores, and the hybrid model. The terms "normal-

ized," "unnormalized," and "both" indi
ate whi
h subset of the 8 alignment

features were used to train the SVM model. For ease of 
omparison, ea
h

se
tion in
ludes the s
ores for the inter-annotator agreement (IAA), the "Av-

erage grade" baseline, and two of the top performing BOW metri
s � both

with question demoting.

Unnormalized Normalized Both

IAA Avg. grade tf*idf Lesk BOW Align Hybrid Align Hybrid Align Hybrid

SVMRank

Pearson's r 0.586 0.327 0.450 0.480 0.266 0.451 0.447 0.518 0.424 0.493

RMSE 0.659 1.097 1.022 1.050 1.042 1.093 1.038 1.015 0.998 1.029 1.021

Median RMSE 0.605 0.973 0.918 0.919 0.943 0.974 0.903 0.865 0.873 0.904 0.901

A

ura
y (w/in 0.5) 0.807 0.309 0.639 0.644 0.634 0.534 0.626 0.644 0.662 0.624 0.646

SVR

Pearson's r 0.586 0.327 0.450 0.431 0.167 0.437 0.433 0.459 0.434 0.464

RMSE 0.659 1.097 1.022 1.050 0.999 1.133 0.995 1.001 0.982 1.003 0.978

Median RMSE 0.605 0.973 0.918 0.919 0.910 0.987 0.893 0.894 0.877 0.886 0.862

A

ura
y (w/in 0.5) 0.807 0.309 0.639 0.644 0.621 0.493 0.626 0.636 0.632 0.630 0.617

SVORIM

Pearson's r 0.586 0.327 0.450 0.454 0.076 0.462 0.447 0.490 0.444 0.502

RMSE 0.659 1.097 1.022 1.050 1.018 1.158 1.012 1.034 0.990 1.035 0.978

Median RMSE 0.605 0.973 0.918 0.919 0.957 1.044 0.962 0.906 0.898 0.915 0.915

A

ura
y (w/in 0.5) 0.807 0.309 0.639 0.644 0.641 0.703 0.640 0.658 0.652 0.663 0.666

5.7. Error Analysis

In this se
tion, I explore the limitations of the existing system and seek to dete
t

any misleading artifa
ts in my experimental setup by performing an in-depth analysis of

11

The SVR system was also run using quadrati
 and radial-basis fun
tion (RBF) kernels, but the results did

not show 
onsistent improvement over the simpler linear kernel.
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individual errors. In the interest of brevity, I 
onsider only the system using the libSVM

pa
kage with all features available for learning (bag-of-words, normalized alignment data,

and unnormalized alignment data). This system 
on�guration resulted in the lowest error

rate (RMSE), is transparent given the weight ve
tor, and utilizes the full set of features

available. In theory, this system should be making the best de
isions.

5.7.1. Analysis Methodology

When using this system, 567 student responses (24.9%) were given a grade more than

1 point away from the average s
ore of the two graders. Of these, forty-eight (48) were more

than 2.5 points away from the 
orre
t s
ore. I have analyzed the responses asso
iated with

these 48 errors as well as 26 responses 
hosen randomly with an error between 1 and 1.75,

and 26 responses 
hosen randomly with an error between 1.75 and 2.5. These 100 errors 
an

be attributed to twelve di�erent 
auses or limitations, whi
h is des
ribed (with examples)

below. The frequen
y of ea
h type of error 
an be found in Table 5.7 lit based upon the

magnitude of the error.

Table 5.7. Counts for ea
h error type. The pattern of errors di�ers based

upon magnitude of error, so they are shown divided here.

1.0 to 1.75 1.75 to 2.5 over 2.5 Full Set

Unrea
hable Lows 1 8 23 32

BOW Tri
ked 6 14 9 29

No Answer 0 0 15 15

Within Grade Range 5 1 0 6

Symboli
 Response 1 3 0 4

Alignment Penalty 3 0 0 3

Unmat
hed Phrases 3 0 0 3

Over-normalization 3 0 0 3

Contradi
tions 1 0 1 2

Bounds Irregularity 1 0 0 1

Converse Topi
 1 0 0 1

Spelling Error 1 0 0 1

Total 26 26 48 100

5.7.2. Error Des
riptions

Two of the error 
ategories involve simple mistakes that 
an and should be handled

in post-pro
essing.
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[No Answer℄ Whenever a student fails to respond to a question, the 
ontent-delivery

system produ
es the text "Not Answered." The system treats this like any other text,

but should instead dete
t this as a spe
ial 
ase. This is responsible for 15 large errors.

[Bounds Irregularity℄ In this 
ase, the system has produ
ed a s
ore above 5.0 (or below

0). Only one 
ase of this error was found in this sample, but it 
ertainly 
ontributes

to error unne
essarily and may also a�e
t lower-magnitude errors (with less than 1.0

error).

Some errors are due to well-understood natural language pro
essing issues that have

not been integrated into the 
urrent system.

[Spelling Errors℄ An in
orre
tly spelled word failed to mat
h 
orre
tly using either the

BOW measures or the alignment measures. Example: (7.4.21) "by referen
e" fails to

mat
h "by refrene
e" [si
℄.

[Unmat
hed Phrases℄ Multi-word phrases fail to produ
e an alignment mat
h. Ex-

ample: (2.5.9)

• Question: How many 
onstru
tors 
an be 
reated for a 
lass?

• Answer: Unlimited number.

• Student: as many as you want

The phrase "as many as you want" should have been mat
hed with the word "unlim-

ited" but the stru
tures of the two phrases are so di�erent as to make dete
ting this

mat
h di�
ult.

Two others are more di�
ult to approa
h, in that some knowledge of the outside

word is required in order to link an answer with the given response.

[Symboli
 Response℄ In some 
ases, students would respond using mathemati
al sym-

bols that the system is not prepared to analyze. Example: (12.10.7)

• Question: How many steps does it take to sear
h a node in a binary sear
h tree?

• Answer: The height of the tree.

• Student: 2�n where n is the # of levels the binary tree has
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[Converse Topi
℄ The instru
tor answer and the student answer solve the same ques-

tion from di�erent sides and have very little semanti
 overlap. Example: (7.2.25)

• Question: What is the main advantage of linked lists over arrays?

• Answer: The linked lists 
an be of variable length.

• Student: The size of array is restri
ted to de
laration. Insertion or Deletion of

values in middle of // array is not possible.

While the student te
hni
ally des
ribed what the disadvantages were asso
iated with

an array, both graders gave a full s
ore to this student, but the system 
ould not

reasonably infer the the student and instru
tor gave the same answers.

One 
ategory suggests the di�
ulty of the grading task itself.

[Within Grade Range℄ The two graders gave vastly di�erent s
ores and the system

was very near to one of the graders. Example: (4.4.7)

• Question: What is the di�eren
e between an array de
lared as stati
, and one

that is not?

• Answer: The arrays de
lared as stati
 live throughout the life of the program;

that is, they are

initialized only on
e, when the fun
tion that de
lares the array it is �rst 
alled.

• Student: a stati
 array has pre-runtime size and that size 
annot be 
hanged. A

dynami
 array gets its size at runtime.

• S
ores: 1 (Grader 1), 5 (Grader 2), 3 (Average), 4.02 (System)

Whenever a wide gap exists between the two annotators (greater than 1.0 almost 20%

of the time), it is impossible to know whether the system really should support one

grader over the other, or if it should be in between. Sometimes assigning a response

to this error was a judgement 
all, as it appeared that one of the annotators fell into

the trap of skimming or looking for lexi
al overlap. Human error or in
onsisten
y is

always a possibility, whi
h is one advantage of an automated system.

Three types of error reiterate the limitations of the BOW-approa
h and lay bare the

need for a deeper, synta
ti
 analysis of the text.
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[Contradi
tions℄ The student produ
es a 
orre
t answer, but then 
ontinues the an-

swer in su
h a way that the answer be
omes invalid. Many approa
hes dete
t the


orre
t answer without being aware of the spoilage asso
iated with the 
ontradi
tion.

Example: (10.3.7)

• Question: What is a leaf?

• Answer: A node that has no 
hildren.

• Student: A leaf is a node with 
hildren, it is a terminating node.

The phrase "terminating node" would be 
orre
t on its own, but the fa
t that the

student expli
itly negated the instru
tor answer was de
isive.

[BOW Tri
ked℄ This is a very broad 
ategory, that simply indi
ates that many of the

features (esp. bag-of-words features) believed that student answer was very similar

to the instru
tor answer. However, this is misleading due to a deeper analysis of the

text. Examples: (3.3.13) and (8.7.10)

• Question: How does the 
ompiler handle inline fun
tions?

• Answer: It makes a 
opy of the fun
tion 
ode in every pla
e where a fun
tion


all is made.

• Student: it treats them as the same fun
tion.

• Question: What operations would you need to perform to �nd a given element

on a sta
k?

• Answer: Pop all the elements and store them on another sta
k until the element

is found, then // push ba
k all the elements on the original sta
k.

• Student: pop and push

In these two 
ases, the presen
e of several high-
ontent words "fun
tion" or "push"/"pop"

tri
ked the system into believing that the student had provided a 
orre
t answer,

without realizing that more information was needed.

[Over-normalizations℄ The system dete
ts a 
orre
t and 
ru
ial alignment, but the

alignment s
ores are so low as to be pra
ti
ally ignored. Example: (12.5.20)

• Question: What is the advantage of linked lists over arrays?
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• Answer: Linked lists are dynami
 stru
tures, whi
h allow for a variable number

of elements to be // stored.

• Student: linked lists do not have a memory 
onstraint other than total memory

• Alignments: Among other things the phrases "variable" and "do not have a

memory 
onstraint" mat
h, but // the bene�ts of the alignment are minimal

due to the many elements that do not mat
h.

Finally, two severe limitations are due to the sele
tion of features available for learning.

All of these features should 
orrelate positively with textual similarity � i.e. as the measures

be
ome more positive, the 
han
e of a 
orre
t s
ore should improve. This means that in the

absen
e of any eviden
e of similarity the feature values will all be very 
lose to zero, and the

�nal result will be very 
lose to the SVM bias value. For all 12 models built (one per fold),

the bias value is between 3.2 and 3.8, so �nal s
ores tend to be 
lustered within this region.

Due to the skewed nature of the training data � few examples with grades below 3 � this

is a good learning strategy for minimizing error, but does not 
learly indi
ate the ability to

distinguish good answers from poor ones.

[Unrea
hable Lows℄ Sin
e there is no feature meant to 
orrelate with textual dissim-

ilarity, it is not possible for the SVM system to produ
e very low s
ores. La
k of

similarity results in s
ores near the bias.

[Alignment Penalty℄ Roughly half of the feature weights, in
luding those of many of

the simple alignment features are negative. In parti
ular, the weight asso
iated with

a non-demoted alignment, unnormalized, with IDF s
aling is below -1.0 in all models.

In some 
ases, this results in a good alignment negatively impa
ting the overall s
ore.

Example: (2.4.15)

• Question: When does C++ 
reate a default 
onstru
tor?

• Answer: If no 
onstru
tor is provided, the 
ompiler provides one by default. If

a 
onstru
tor is de�ned // for a 
lass, the 
ompiler does not 
reate a default


onstru
tor.

• Student: When no 
onstru
tor exists when one is needed, a parameterless default
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onstru
tor is de
lared.

• Alignment S
ores: 0.40*-0.38 + 0.34*0.69 + 0.28*-1.65 + 0.21*0.27 + 0.21*0.54

+ 0.26*0.07 + 0.03*0.66 + 0.02*0.42 = -0.17
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CHAPTER 6

SEMEVAL2012 AND OTHER DATASETS

Ex
luding a few grading-spe
i�
 modi�
ations (su
h as pseudo-relevan
e feedba
k

and question demoting) the te
hniques des
ribed in this thesis are equally appli
able to

non-grading short text similarity tasks. In this 
hapter, I explore the appli
ation of these

te
hniques to the 
losely related tasks of dete
ting semanti
 textual similarity, textual en-

tailment, and paraphrase. One bene�t to su
h a study is that several datasets are publi
ly

available and have been widely used by resear
hers for a number of years (see Se
tion 3.2).

Many existing systems have been tested using ea
h of these datasets whi
h provides a 
han
e

to 
ompare this system's results with those of others in the �eld.

I �rst detail a joint submission to the SemEval 2012 Semanti
 Text Similarity (STS)

Task, whi
h in
luded many of the 
omponents des
ribed in Chapters 4 and 5. I then explore

the 
apabilities of our joint system disentangled from the 
ontributions of the remainder of

the team. Finally, I show the results of applying this system to the rest of the datasets

des
ribed in Se
tion 3.2 and analyze the results.

6.1. SemEval 2012 - Semanti
 Textual Similarity (Task 6)

The STS task website

1

des
ribes the semanti
 textual similarity (STS) task as being

related to both textual entailment and paraphrase dete
tion, but di�erent in two key ways.

First, STS assumes a bidire
tional relationship, whi
h is not the 
ase for entailment. Given

the two senten
es "Booth killed Lin
oln" and "Lin
oln is dead," it is 
lear that the �rst

entails the se
ond, but not the other way around. Se
ond, STS assumes a graded response

where both entailment and paraphrase are binary de
isions. For the SemEval task, the gold

standard s
ores are within the range [0..5℄.

Ea
h team was allowed to train using the development set for one month before the

test data was released. Teams were allowed only �ve days with the test data before they

1

http://www.
s.york.a
.uk/semeval-2012/task6/
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were required to submit their predi
ted s
ores for the data set. Up to three sets of s
ores

per team were allowed.

Thirty-�ve teams submitted a total of 88 system runs.

2

At the time of submission,

the method of evaluation was not entirely 
lear, but after the fa
t, the 
ontest organizers

indi
ated that evaluation, using Pearson's 
orrelation 
oe�
ient, would be 
arried out in

three ways. First, all �ve 
omponents of the dataset were 
on
atenated and 
orrelation

a
ross the whole dataset was found (labeled "ALL" in Table 6.1). Se
ond, a 
orrelation


oe�
ient was 
al
ulated for ea
h of the �ve 
omponents individually before �nding the

weighted mean (reported as "Mean") in Table 6.1). Finally, the output for ea
h dataset was

separately normalized, using the linear least squares method before 
omputing the Pearson's


orrelation 
oe�
ient for the 
on
atenated dataset. Due to its 
omplexity, and for reasons

of spa
e, I have ele
ted not to in
lude this s
ore in Table 6.1.

6.1.1. Our STS Submission

Our team 
onsisted of three individuals � Carmen Banea, Dr. Samer Hassan, and

myself � under the supervision of Dr. Rada Mihal
ea. Our submission [12℄ 
an be des
ribed

as a 
ombination of three subsystems whi
h independently produ
ed a set of features used as

training for a ma
hine learning system. These three feature 
omponents were the knowledge-

based similarity s
ores des
ribed in Se
tion 4.1.1, the graph alignment s
ores des
ribed in

Se
tion 5.4, and a set of 
orpus-based similarity features in
luding tf*idf, latent semanti


analysis (LSA), expli
it semanti
 analysis (ESA), and salient semanti
 analysis (SSA), whi
h

was the primary 
ontribution of my teammates. An analysis of SSA is beyond the s
ope of

this work, but details 
an be found in our system des
ription paper [12℄ and, to a greater

extent, in the publi
ations of my 
olleague Dr. Hassan [41℄.

It should be pointed out here that for both the knowledge-based and graph-alignment

features the system setup has 
hanged slightly from previous 
hapters. The Hirst & St. Onge

metri
 was dis
arded for reasons of time, both as a simple feature and as a feature in the

alignment system. Our LSA models were retrained on a newer Wikipedia dump (again set to

2

Some of these were not published o�
ially due to being submitted late or other issues.
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the CS domain as des
ribed in Se
tion 4.2.1) and are now built using the Semanti
Ve
tors

implementation (http://
ode.google.
om/p/semanti
ve
tors/) instead of Infomap. These


hanges are maintained for all experiments reported in this 
hapter.

Given this set of real-valued features (knowledge-based, 
orpus-based, and graph-

alignment), the training of our ma
hine learning systems pro
eeded in one of two ways

3

.

Either the full training set was used to train our ma
hine learning models (labeled as "Com-

bined" training) or the individual 
omponents of the dataset were used for the 
orresponding


omponent in the testing set (labeled as "Individual" training). For instan
e, examples taken

from the MSRpar 
orpus in the testing dataset were s
ored using a model built only using ex-

amples from the Mi
rosoft Resear
h Paraphrase (MSRP) 
orpus in the training dataset. The

same is true for the MSRvid and SMTeuroparl 
omponents. For the two surprise datasets

(OnWN and SMTnews), the 
ombined training dataset was used in both 
ases.

In addition, two di�erent ma
hine learning algorithms were employed in our submis-

sion. First, we used support ve
tor regression (SVR) with a Pearson VII fun
tion-based

kernel. We also attempted to produ
e a model using the M5P de
ision tree algorithm. Sin
e

ea
h team was permitted to submit up to three runs, we submitted the results of the SVR

system using two methods of training (IndividualRegression and CombinedRegression) as

well as the M5P system using only the "Individual" method of training (IndividualDe
-

Tree). Results for these submissions (as supplied by the 
ontest organizers) 
an be found at

the top of Table 6.1.

Our top submission (IndividualRegression) was ranked 5th among all 88 submissions

a

ording the the "ALL" evaluation 
riterion and our top 
orrelation 
oe�
ient (0.7846)

required around 5% improvement to surpass the 
hallenge's top ranked submission (0.8239)

4

.

For the sake of 
omparison, Table 6.1 in
ludes also the results of running all of the

similarity metri
s des
ribed in Chapters 4 and 5 on the testing dataset using the "Individual"

training method where appli
able. For the ma
hine learning 
omponent reported here, I have

3

Note that this is di�erent from the ma
hine learning des
ribed in Se
tion 5.5 and was 
arried out by my


olleague, Carmen Banea.

4

Full results 
an be found at: http://www.
s.york.a
.uk/semeval-2012/task6/index.php?id=results-update
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Table 6.1. Detailed evaluation results for the SemEval 2012 Semanti
 Text

Similarity task. The top se
tion mat
hes the s
ores published by the task

organizers. The remaining se
tions indi
ate the s
ores (and ranks) that would

have been a
hieved if the indi
ated system were submitted to this task.

Run ALL Rank Mean RankMean MSRpar MSRvid SMTeuroparl OnWN SMTnews

Team− IndividualRegression 0.7846 5 0.6162 13 0.5353 0.8750 0.4203 0.6715 0.4033

Team− IndividualDecTree 0.7677 9 0.5947 25 0.5693 0.8688 0.4203 0.6491 0.2256

Team− CombinedRegression 0.7418 14 0.6159 14 0.5032 0.8695 0.4797 0.6715 0.4033

Wordnet JCN 0.4882 68 0.5323 55 0.4825 0.6494 0.4977 0.6216 0.2773

Wordnet LCH 0.3287 85 0.5016 63 0.5103 0.5625 0.4952 0.5445 0.2975

Wordnet Lesk 0.4775 69 0.5507 51 0.4742 0.6401 0.5142 0.6404 0.3998

Wordnet Lin 0.4118 81 0.5021 63 0.4864 0.5698 0.4987 0.5740 0.2730

Wordnet Path 0.4752 69 0.5491 52 0.4988 0.6652 0.5013 0.6206 0.3463

Wordnet Res 0.4200 78 0.5281 56 0.4777 0.6083 0.5069 0.6175 0.3284

Wordnet WUP 0.2312 89 0.4454 69 0.4939 0.4414 0.4716 0.4848 0.2572

LSA 0.5657 53 0.5380 53 0.4289 0.6821 0.3965 0.6513 0.4218

ESA 0.5600 55 0.4760 67 0.2319 0.7362 0.3634 0.5771 0.3855

tf*idf 0.5014 63 0.4752 67 0.3646 0.6880 0.4751 0.4579 0.3158

Alignment 0.2216 89 0.3899 79 0.3532 0.4754 0.2220 0.4500 0.3780

Alignment−Norm 0.3133 86 0.4769 67 0.4469 0.4560 0.4395 0.5288 0.5179

Alignment− IDF 0.1450 89 0.3253 86 0.0896 0.6787 0.1676 0.3265 0.2827

Alignment− IDF +Norm 0.2554 89 0.2887 87 0.0453 0.6152 0.2672 0.2462 0.2373

SV RBOW − only 0.7605 10 0.6008 22 0.5409 0.8051 0.5078 0.6250 0.3910

SV RUnnormalizedAlign 0.6510 37 0.4149 74 0.3586 0.7013 0.0018 0.4519 0.3876

SV RNormalizedAlign 0.7103 20 0.5209 58 0.4492 0.6453 0.4307 0.5179 0.5312

SV RFullAlign 0.6722 23 0.5293 55 0.4416 0.7120 0.4372 0.5021 0.5074

SV RUnnormalizedAlign +BOW 0.5558 56 0.5192 59 0.1467 0.8311 0.5156 0.6363 0.4168

SV RNormalizedAlign +BOW 0.7604 10 0.5912 29 0.4877 0.8276 0.4880 0.6246 0.3976

SV RFullAlign+BOW 0.6409 36 0.5292 55 0.2077 0.8323 0.4891 0.6352 0.4106


onsidered only the support ve
tor regression model (using the libSVM pa
kage). I have used

the parameters found after performing a grid sear
h on the MM2011 dataset as des
ribed in

Se
tion 5.5.1 and did not re�ne these parameters for any of the experiments reported in this


hapter

5

.

As expe
ted, the runs our team submitted performed best on the whole, but were

outperformed (or mat
hed) in some 
ases at the �ner-grained level. Altogether, the regression

models des
ribed in Se
tion 5.5 
ame 
losest to the team submission (esp. SV RBOW−only

and SV RNormalizedAlign+BOW ). The only di�eren
e between these systems and the one

submitted was the la
k of SSA as an available feature, a di�erent support ve
tor regression

learning implementation (libSVM vs Weka), and a di�erent implementation of LSA/ESA

along with di�erent training 
orpora. As it stands, my best SVR implementation would

have a
hieved 10th among all submissions a

ording to the "ALL" evaluation metri
.

5

The 
ost and epsilon values were both set to 0.5.
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For two of the datasets (SMTeuroparl and SMTnews), my system's metri
s signi�-


antly outperformed the team submissions. For SMTeuroparl, almost all of the knowledge-

based measures (in
luding tf*idf) outperformed the team's ma
hine learning systems and one

of the alignment features (Alignment − Norm) performed just as well. For the SMTnews


orpus, alignment seemed to play an even more important part. The same top-performing

alignment feature (Alignment − Norm) here outperformed the best team submission (by

28%), the best knowledge-based measure (by 30%), and the best 
orpus-based measure

(by 23%). Of 
ourse, this measure was itself improved upon by using ma
hine learning,

though adding BOW features degraded performan
e here as well. Had my best measure

(SV RNormalizedAlign) been submitted it would have ranked 4th on the SMTnews 
orpus.

One may theorize that alignment has an espe
ially important role to play in the

evaluation of ma
hine translation (disproportionate to its role in textual similarity). For

a translation to be 
orre
t, it is mu
h more important for the senten
e stru
ture to be

maintained than is the 
ase for other similarity tasks (e.g. paraphrase). It may also be

the 
ase that, in the 
ontext of ma
hine translation, false synonyms due to in
orre
t word-

sense disambiguation (whi
h 
an 
onfound purely knowledge-based similarity models) are

parti
ularly problemati
, and so redu
ing the in�uen
e of the word-similarity models may

yield an advantage.

6.2. Additional Experiments

One of the long-term goals of this proje
t has been to expand beyond 
omputer-aided

assessment (whi
h has a very narrow �eld of utility) into more general natural language

pro
essing (NLP) tasks thus allowing lessons learned here to be applied more broadly. With

that in mind, I have instigated a portability study, in addition to the SemEval task, that

will provide a way to gage the e�e
tiveness of my methodology when applied to the tasks of

dete
ting paraphrase, textual entailment, and textual similarity in general. All systems that

are listed for 
omparison in the following se
tions are des
ribed in Se
tion 2.3. The system

setup for these experiments is the same as that des
ribed in the previous se
tion.
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Table 6.2. Li30 - Pairwise similarity of Miller-Goodenough terms

System Pearson's r RSME

Wordnet JCN 0.8518 0.8114

Wordnet LCH 0.8293 0.7048

Wordnet Lesk 0.8671 0.7839

Wordnet Lin 0.9056 0.5367

Wordnet Path 0.8647 0.7111

Wordnet Res 0.8848 0.6728

Wordnet WUP 0.8044 0.7256

LSA 0.7637 0.8941

ESA 0.7522 0.9523

tf*idf 0.7517 0.7845

Alignment 0.6858 0.9411

Alignment−Norm 0.7141 0.9108

Alignment− IDF 0.6425 0.9604

Alignment− IDF +Norm 0.5777 1.0187

SV RBOW − only 0.8794 0.5188

SV RUnnormalizedAlign 0.5042 0.9422

SV RNormalizedAlign 0.6383 0.8409

SV RFullAlign 0.7528 0.7172

SV RUnnormalizedAlign +BOW 0.8855 0.5062

SV RNormalizedAlign +BOW 0.8745 0.5309

SV RFullAlign+BOW 0.8777 0.5236

SSA [41℄ 0.881 -

Roget's 1987 Thesaurus [52℄ 0.8725 -

OMIOTIS [98℄ 0.856 -

STS [47℄ 0.853 -

Dynami
 Time Warping [63℄ 0.841 -

Term Pair Heuristi
 [13℄ 0.83 -

STASIS [60℄ 0.816 -

6.2.1. Experiments on the Li30 Similarity Dataset

Beyond SemEval, the �rst dataset under 
onsideration was introdu
ed by Li et al.

[60℄ and despite its small size has been widely adopted in the text similarity 
ommunity.

A des
ription of the dataset 
an be found in Se
tion 3.2. For experiments on this dataset

s
ored on a [0..4℄ s
ale, I report Pearson's 
orrelation 
oe�
ient (as do most other resear
hers

to use this dataset) as well as the root mean squared error (RMSE). In order to 
ompute

RMSE, all simple metri
s (not in
luding any SVR systems) are pla
ed onto the appropriate

s
ale using isotoni
 regression whi
h was performed by taking 5 folds and using 4 folds as

training to label the remaining 1 fold. SVR was trained using 5 folds in the same manner.

Results 
an be found in Table 6.2.
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It would appear that the SVR system performs 
omparably to state-of-the-art systems

that have been evaluated on this dataset. For the most part, it 
an be said that the ma
hine-

learning systems outperformed the simple measures ex
ept that the Lin measure seems to


omfortably surpass even the top-performing systems. It is not 
lear why this should be the


ase, and the small size of the dataset suggests that this s
ore may simply be an outlier.

In general the knowledge-based measures outperformed their 
orpus-based 
ounter-

parts as well as the alignment features. Very little improvement is observed when 
ombining

the alignment features with the BOW features in the SVR system. However, an analysis

performed on this dataset [13℄ suggests that senten
e similarity (whi
h is sensitive to 
hanges

in stru
ture) is not really what the annotators were measuring. Rather, the term similarities

(re
all that the senten
es here are de�nitions of the terms in the Rubenstein and Goode-

nough 
orpus) seem to have been germane to the task during annotation. It is thus not

surprising that a 
onsideration of senten
e stru
ture may be less advantageous here than on

a less idiosyn
rati
 dataset.

6.2.2. Experiments on the Lee50 Short Do
ument Similarity Dataset

Arguably turning away from the senten
e-similarity task, the system's performan
e

was next assessed on the Lee50 dataset. A des
ription of this dataset 
an be found in Se
tion

3.2. For experiments on this dataset s
ored on a [0..1℄ s
ale, I report Pearson's 
orrelation


oe�
ient (as do most other resear
hers to use this dataset) as well as the root mean squared

error (RMSE). Training for isotoni
 regression or SVR were performed as des
ribed in Se
tion

6.2.1. Results 
an be found in Table 6.3.

From these results, one 
an see that the SVR systems far surpass the simpler metri
s

and 
omfortably outperform the state-of-the-art systems that have evaluated on this dataset.

It 
an also be said that while alignment only s
ores (even with ma
hine learning) 
an not

be 
onsidered high quality, their addition to the BOW-only SVR model yields a 
onsistent

if subtle improvement for both evaluation metri
s.

Also of note is the performan
e of the ve
tor-based measures, espe
ially ESA and

tf*idf. It may be 
on
luded that as the size of the texts in
reases, the dis
riminative abilities
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Table 6.3. Lee50 - "short" do
ument similarity 
orpus

System Pearson's r RSME

Wordnet JCN 0.7334 0.6407

Wordnet LCH 0.7178 0.6534

Wordnet Lesk 0.7331 0.6291

Wordnet Lin 0.7181 0.6418

Wordnet Path 0.7401 0.6281

Wordnet Res 0.7284 0.6368

Wordnet WUP 0.6611 0.6655

LSA 0.6611 0.6641

ESA 0.7301 0.6003

tf*idf 0.7506 0.5638

Alignment 0.4702 0.7350

Alignment −Norm 0.4964 0.7375

Alignment − IDF 0.5835 0.6755

Alignment − IDF +Norm 0.5980 0.6783

SV RBOW − only 0.7856 0.6110

SV RUnnormalizedAlign 0.5784 0.8247

SV RNormalizedAlign 0.5914 0.8075

SV RFullAlign 0.5951 0.8028

SV RUnnormalizedAlign +BOW 0.7929 0.6016

SV RNormalizedAlign +BOW 0.7923 0.6030

SV RFullAlign+BOW 0.7930 0.6013

WikiWalk [106℄ 0.766 -

ESA-Gabrilovi
h [35℄ 0.72 -

SSA [41℄ 0.684 -

LSA-Lee et al. [56℄ 0.6 -

of sparse metri
s su
h as tf*idf be
ome more useful. On the other hand, I note that tf*idf has,

in addition to a solid 
orrelation s
ore, the absolute best error rate of all metri
s 
onsidered

(by a wide margin). This suggests that rather than exhibiting a true advantage, the tf*idf

measure is exploiting the dataset's skew towards low similarity s
ores.

6.2.3. Experiments on the RTE-3 Textual Entailment Dataset

I next sought to apply the te
hniques des
ribed in this thesis (many of whi
h were

inspired by work in RTE) to the 
urrently well-studied task of entailment dete
tion using the

RTE-3 dataset whi
h many quality systems have used to report their results. A des
ription

of this dataset 
an be found in Se
tion 3.2. For experiments on this dataset s
ored with

either a "yes" or a "no," I follow existing work in reporting a

ura
y, pre
ision (in dete
ting

entailment), re
all, and the F1-measure. Rather than using an support ve
tor ma
hine

(SVM) regression model whi
h would produ
e a real-valued s
ore, I instead use the SVM
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Table 6.4. RTE-3 - Textual entailment evaluated on the test portion of the


orpus (with SVM 
lassi�
ation)

System A

ura
y Pre
ision Re
all F-measure

Baseline - guess "yes" 0.5000 0.5000 1.0000 0.6667

Wordnet JCN 0.6238 0.6004 0.7971 0.6849

Wordnet LCH 0.6350 0.6113 0.7922 0.6901

Wordnet Lesk 0.6350 0.6097 0.8020 0.6923

Wordnet Lin 0.6225 0.5909 0.8582 0.6999

Wordnet Path 0.6363 0.6155 0.7751 0.6861

Wordnet Res 0.6263 0.6049 0.7824 0.6823

Wordnet WUP 0.6350 0.6122 0.7873 0.6888

LSA 0.6100 0.6047 0.6919 0.6454

ESA 0.5938 0.5959 0.6455 0.6197

tf*idf 0.6225 0.6071 0.7482 0.6703

Alignment 0.5975 0.5973 0.6601 0.6272

Alignment −Norm 0.5800 0.5629 0.8093 0.6640

Alignment − IDF 0.5763 0.5589 0.8234 0.6660

Alignment − IDF +Norm 0.5900 0.6085 0.5623 0.5845

SV CBOW − only 0.6325 0.6152 0.7506 0.6762

SV CUnnormalizedAlign 0.5788 0.6154 0.4694 0.5326

SV CNormalizedAlign 0.5713 0.5982 0.4988 0.5440

SV CFullAlign 0.5713 0.6025 0.4743 0.5308

SV CUnnormalizedAlign +BOW 0.6363 0.6185 0.7531 0.6792

SV CNormalizedAlign +BOW 0.6350 0.6149 0.7653 0.6819

SV CFullAlign+BOW 0.6325 0.6162 0.7457 0.6748

8 Hi
kl et al. [43℄ 0.8038 0.8815 - -

COGEX [97℄ 0.7225 0.6741 0.8878 0.7663

Nielsen et al. [75℄ 0.671 - - -

Tree Skeletons [102℄ 0.669 - - -

NatLog [20, 66℄ 0.6362 0.6374 0.6732 0.6548


lassi�
ation (SVC) model (in the libSVM pa
kage) to produ
e s
ores in [0,1℄. Training for

the SVM was performed by using the training 
omponent of the dataset to build a model

and using the testing 
omponent for evaluation. Results are reported in Table 6.4.

Unlike the other datasets, the results reported here are far below the best rated

system reported at the RTE-3 Challenge itself [43℄, though it is 
ompetitive with several of

the less ex
eptional systems from the 
hallenge in
luding the Natural Logi
 system produ
ed

at Stanford [66℄. To some extent, this is surprising sin
e entailment de
isions are mu
h

more dependant upon stru
tural issues than paraphrase or general similarity. However, this

dataset may also in
lude several "got
ha" type issues where the ability to dete
t 
ontradi
tion

(even in the presen
e of similarity)may be required to make an intelligent entailment de
ision.
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That said, the SVC systems that in
luded the alignment features slightly outper-

formed the BOW-only SVC model in pre
ision, re
all, and F-measure, though this does not

appear to be a signi�
ant improvement. Also worth mentioning is the quality of a generally

poor measure (SV CUnnormalizedAlign). In this 
ase, the measure produ
ed s
ores with a

very high pre
ision, suggesting that it was able to rate very stru
turally similar s
ores better

than the other measures under 
onsideration.

6.2.4. Experiments on the MSRP Paraphrase Dataset

Finally, I 
onsider the Mi
rosoft Resear
h Paraphrase Corpus (MSRP) whi
h is easily

the most widely used of the datasets employed here. A des
ription of this dataset 
an be

found in Se
tion 3.2. For experiments on this dataset s
ored with either a "yes" or a "no,"

I follow existing work in reporting a

ura
y, pre
ision (in dete
ting paraphrase), re
all, and

the F1-measure. Training for the SVM 
lassi�er was performed as des
ribed in Se
tion 6.2.3.

Results are shown in Table 6.5.

Before dis
ussing the results of the experiments on this dataset, I here refer to a study

performed on it [13℄ whi
h points out that all the best reported systems have approximately

the same F1-measure (0.80-0.81) despite surfa
e di�eren
es in a

ura
y, pre
ision, or re
all.

The authors of this study suggest that this indi
ates an upper limit to the e�e
tiveness

of similarity-based systems as applied to paraphrase. Only systems that were spe
i�
ally

designed for paraphrase su
h as Fin
h et al. [32℄ have been able to break this barrier reporting

an F-measure around 0.83.

With this in mind, my best SVC systems (as well as the Lin measure and un
hara
-

teristi
ally, the Alignment − Norm measure) a
hieve an F-measure in the 0.81-0.82 range.

The SVC systems that made use of alignment features are 
hara
terized by a high re
all

here 
ompared to the knowledge-based measures whi
h display high pre
ision. Although it

is outside the s
ope of this work, it would be interesting to perform an error analysis on this

dataset, to see what types of senten
e pairs are enfor
ing this barrier (at most 0.75 a

ura
y)

on so many systems when the most-
ommon-
ase baseline is relatively high at 0.66.
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Table 6.5. MSRP - Evaluated on the test portion of the Mi
rosoft paraphrase


orpus (with SVM 
lassi�
ation)

System A

ura
y Pre
ision Re
all F-measure

Baseline - guess "yes" 0.6649 0.6649 1.0000 0.7987

Wordnet JCN 0.7154 0.7500 0.8586 0.8007

Wordnet LCH 0.7136 0.7314 0.9005 0.8072

Wordnet Lesk 0.7107 0.7407 0.8700 0.8002

Wordnet Lin 0.7316 0.7493 0.8970 0.8165

Wordnet Path 0.7171 0.7435 0.8778 0.8051

Wordnet Res 0.7206 0.7476 0.8761 0.8067

Wordnet WUP 0.7125 0.7420 0.8709 0.8013

LSA 0.6968 0.7125 0.9127 0.8003

ESA 0.6725 0.6785 0.9651 0.7968

tf*idf 0.6800 0.6785 0.9869 0.8041

Alignment 0.7032 0.7188 0.9101 0.8032

Alignment −Norm 0.7177 0.7323 0.9075 0.8106

Alignment − IDF 0.6649 0.6653 0.9991 0.7987

Alignment − IDF +Norm 0.6655 0.6665 0.9956 0.7985

SV CBOW − only 0.7206 0.7271 0.9276 0.8152

SV CUnnormalizedAlign 0.6649 0.6647 1.0000 0.7986

SV CNormalizedAlign 0.7154 0.7207 0.9346 0.8138

SV CFullAlign 0.7119 0.7229 0.9197 0.8095

SV CUnnormalizedAlign +BOW 0.7246 0.7345 0.9171 0.8157

SV CNormalizedAlign +BOW 0.7316 0.7459 0.9040 0.8176

SV CFullAlign+BOW 0.7344 0.7457 0.9110 0.8201

Fin
h et al. [32℄ 0.7496 0.7658 0.8980 0.8266

Liu et al. [64℄ 0.736 0.745 0.916 0.822

STS [47℄ 0.7260 0.7470 0.8910 0.8130

Qiu et al. [81℄ 0.720 0.725 0.934 0.816

Lexi
o-Synta
ti
 Subsumption [88℄ 0.7061 0.7207 0.9111 0.8048

Mihal
ea et al. [68℄ 0.703 0.696 0.977 0.813

OMIOTIS [98℄ 0.6997 0.7078 0.9340 0.8052
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CHAPTER 7

DISCUSSION

Re
all from Chapter 1 that I have sought the answers to six questions. Ea
h question

will be revisited here to see what has been learned, and what still remains un
ertain.

First, given a number of 
orpus-based and knowledge-based methods as previously

proposed for word and text semanti
 similarity, what are the measures that work best for the

task of short answer grading? While there are a number of word and text similarity measures

that have been proposed in the past, no previous work has 
onsidered a 
omprehensive

evaluation of all the measures for the task of short answer grading. I have �lled this gap

by running 
omparative evaluations of several knowledge-based and 
orpus-based measures

on a data set of short student answers. The results (see Se
tion 5.1) indi
ate that when

used without feedba
k, the s
ores obtained with the best knowledge-based measures (Lesk,

Jiang & Conrath, and Hirst & St. Onge) outperform the best 
orpus-based measures (latent

semanti
 analysis [LSA℄ and expli
it semanti
 analysis [ESA℄) in my re
ent experiments by a

signi�
ant margin

1

However, it should not be ignored that 
orpus-based approa
hes bene�t


ru
ially from their language independen
e. It is mu
h easier to 
reate a large domain-

sensitive 
orpus than an equally bene�
ial language knowledge base (e.g. WordNet).

Se
ond, given a 
orpus-based measure of similarity, what is the impa
t of the domain

and the size of the 
orpus on the a

ura
y of the measure? In my early work (see Se
tion

4.2.1), it was found that signi�
ant improvements 
an be obtained for the LSA measure when

using a medium-sized, domain-spe
i�
 
orpus built from Wikipedia 
ompared to a larger,

full Wikipedia 
orpus. This indi
ates that noise 
ontributes to LSA error in a signi�
ant

way. In fa
t, when using LSA, the results suggest that the 
orpus domain may be mu
h more

important than 
orpus size on
e a 
ertain threshold size has been rea
hed. These experiments

also 
learly show that ESA works best when left alone, using all of the Wikipedia arti
les

1

I suspe
t that the for
ed 
hange in training set 
ontributed to the mu
h poorer quality of the ESA and

LSA metri
s for the MM2011 evaluations 
ompared to those performed on MM2009. Further work should

be done to 
on�rm this.
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available as dimensions.

Third, to what extent is it possible to enhan
e the quality of the grading system

by supplementing the gold-standard answer with the answers of other students? It 
an

be seen from these experiments (see Se
tion 4.2.2) that there may be some advantage to

automati
ally enhan
ing the instru
tor answer using other student answers. The greatest

improvement in Pearson's 
orrelation was 0.047 (or 10%). The limiting fa
tor in this 
ase

was the small number of student answers to sele
t from. I believe this warrants further study

� parti
ularly if a large (e.g. greater than 100 answers per question) short answer dataset is

ever made publi
 for resear
hers.

Fourth, does the dependen
y parse stru
ture of a text provide 
lues that 
an be

exploited to improve upon existing bag-of-words (BOW) methodologies for short answer

grading? It would seem that the rudimentary alignment features introdu
ed here (see Se
-

tion 5.3) are not su�
ient to a
t as a stand-alone grading system. However, even with a

very primitive attempt at alignment dete
tion, I show that it is possible to improve upon

grade learning systems that only 
onsider BOW features. The 
orrelations asso
iated with

the hybrid systems (esp. those using normalized alignment data) frequently show an im-

provement over the BOW-only support ve
tor ma
hine (SVM) systems. This is true for ea
h

SVM system when 
onsidering either the 
orrelation or the error metri
.

Fifth, to what extent 
an ma
hine learning be leveraged to improve upon existing

approa
hes to short answer grading? The SVM learning te
hniques used in this work are


learly able to utilize multiple BOW measures to yield improvements over individual BOW

metri
s (see Se
tion 5.6). For example, the 
orrelation for the BOW-only SVM model for

SVMRank improved upon the best BOW feature from .462 to .480. Likewise, using the

BOW-only SVM model for support ve
tor regression (SVR) redu
es the root mean squared

error by .022 overall 
ompared to the best BOW feature.

Finally, 
an the methodologies I have proposed for short answer grading be su

ess-

fully used to dete
t textual similarity, paraphrase, and entailment? Ex
luding the textual

entailment task where the results of this methodology were far below state-of-the-art sys-
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tems, all of my experiments seem to suggest that SVM regression using knowledge-based

and 
orpus-based measures as features is a viable ta
ti
, and more often than not adding

alignment-based features produ
es an improved system. Perhaps surprising is that in many


ases (esp. Li30 and MSRP), the knowledge-based measures alone perform admirably whi
h

is further validation of the insights of our group's earlier work in similarity [68℄.
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