SENTENCE SIMILARITY ANALYSIS WITH APPLICATIONS IN
AUTOMATIC SHORT ANSWER GRADING

Michael A.G. Mohler

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

August 2012

APPROVED:

Rada Mihalcea, Major Professor

Razvan Bunescu, Committee Member

Paul Tarau, Committee Member

Miguel Ruiz, Committee Member

Barrett Bryant, Chair of the
Department of Computer Science
and Engineering

Costas Tsatsoulis, Dean of the College
of Engineering

Mark Wardell, Dean of the Toulouse
Graduate School

Mohler, Michael A.G. Sentence similarity analysis with applications in automatic
short answer grading. Doctor of Philosophy (Computer Science and Engineering),
August 2012, 80 pp., 19 tables, 5 figures, bibliography, 107 titles.

In this dissertation, I explore unsupervised techniques for the task of automatic
short answer grading. I compare a number of knowledge-based and corpus-based
measures of text similarity, evaluate the effect of domain and size on the corpus-based
measures, and also introduce a novel technique to improve the performance of the
system by integrating automatic feedback from the student answers. I continue to
combine graph alignment features with lexical semantic similarity measures and employ
machine learning techniques to show that grade assignment error can be reduced
compared to a system that considers only lexical semantic measures of similarity. I also
detail a preliminary attempt to align the dependency graphs of student and instructor
answers in order to utilize a structural component that is necessary to simulate human-
level grading of student answers. I further explore the utility of these techniques to
several related tasks in natural language processing including the detection of text

similarity, paraphrase, and textual entailment.

Copyright 2012
by

Michael A.G. Mohler

i

ACKNOWLEDGEMENTS
I dedicate this dissertation to my wife, Megan, who has stood by me throughout.
You are my partner, my drive, and my foil. I thank God for bringing you into my life,
and I thank you for your patience, you labors, and your love.
This material is based upon work supported by the National Science Foundation
under Grant No. 0747340. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the

views of the National Science Foundation.

il

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ...ttt e e e e e e e e e e es iii
LIST OF TABLES ...ttt e e et vii
LIST OF FIGURES ..o e e e e e e e e e es ix
CHAPTER 1. INTRODUCTIONcuuiiiiiieeeetee e 1
1.1 OrganizZationc..uuuiiiiiiiie e 2
CHAPTER 2. BACKGROUND ..ottt e e e e e eeaaaanes 4
2.1 Theory of SIMIlATTtY ..ooeveniiii e, 4

2.2 Grading Backgroundooiiiiiiiiiiiii e 6

2.2.1 Brief History of Educational Assessment.............ccocoeviiiiiiinneniinnnn.. 6

2.2.2 Computer-Aided ASSESSIMENTccouveiiiiiiiiiiiiiiie e 8

2.3 Related WOTK ... ooivieiiiee e e e e 10

2.3.1 Summative ASSESSMENtooeiiiiiiiiieiiiiiiee e 10

2.3.2 Formative ASSESSINENT .. .ccouuuuiiiiiiiiiieiiiiiiee e 12

2.3.3 Sentence SImilarity........coooumiimiiiiiiiiiiiiiii e 14

2.3.4 Textual Entailmentc.coveiiiiiiiiiieii e 16

2.3.5 Paraphrase Detectionccooiiiiiiiiiiiiiiiiiiii e 18

CHAPTER 3. DATASETS AND EVALUATION METRICScccooviiiiiiiiiiieiiiiiiin, 20
3.1 Description of Short Answer Grading Datasetcccvvvvviiiiiiiieeeiiiiiinnn, 20

3.1.1 Annotation ProcCesscooovviiiiiiiiiiiiiiiiie e 21

3.2 Other Datasetscooeuuuiiiiiiiie e 23

3.3 Evaluation MetTiCs....c..uiiiiiiiiie e 25
CHAPTER 4. BAG-OF-WORDS APPROACHESccoiiiiiiiiie e 27
4.1 Textual Similarity Measurescoouuiiiiiiiiiiieiiiie e 27

4.1.1 Knowledge-Based Measures..........coeeeuuiiiiiiiiiiiineiiiiieiiieeiieeeiieeeaen, 28

4.1.2 Corpus-Based Measures..........ccouuiiiiiiiiiiiiiiiiiiisiciiiie e 29

4.2 Experimental Setup........oooooiiiiiiiiii e 30

4.2.1 The Role of Domain and Size............ccooiiiiiiiiiiiiiiiiiiieiiiee e 31

iv

4.2.2 Pseudo-Relevance Feedback ..o 33

4.2.3 Binary DeCiSIONc....oviiiiiiiiiiiiiiiiiii e 35

4.3 DISCUSSION ..ttt 36
CHAPTER 5. ALIGNMENT SYSTEM AND SVM LEARNINGccoovviiiiiiiiiiiiiiiinn, 38
5.1 Modildations and Bag-of-Words Improvementsccoevveeeeniiireeennne. 39

5.2 Alignment Pipeline..........ooouiiiiiiiiiiiiiiie e 41

5.3 Node AlGNIMEnts......ccoiiiiiiiiiiiii e 42

5.4 Graph ALGNmMENtcoooiiiiiiiiiiiiii e 45

5.5 Machine Learning..........cccouiiiiiiiiiiiiiiiiiiii e 47

5.5.1 SVM Features and Implementationscccccooeeeiiiiiiiiiiiinniiinnnn.. 47

5.6 RESUIES coiiiiie e 48

5.7 EITOr ANALYSIS . .ovuiiiiiiiiiiiiiii e 49

5.7.1 Analysis Methodologyuuuiiiiiiiiiiiiiiiiii e 50

5.7.2 Error DesCriptionsoiiiuiiiiiiiiiiii e 50

CHAPTER 6. SEMEVAL2012 AND OTHER DATASETS.....cooiiiiiiiiiiieeeeceeeii, 56
6.1 SemEval 2012 - Semantic Textual Similarity (Task 6)ccccccceeevninnnenn. 56

6.1.1 Our STS SubMISSION «...ueiiiiiiiiiiiii e 57

6.2 Additional EXperimentsccooeeeeiiiiiiiiiiiiiee e 60

6.2.1 Experiments on the Li30 Similarity Datasetcccccccoviiiiiiiiiie. 61

6.2.2 Experiments on the Leeb0 Short Document Similarity Dataset62

6.2.3 Experiments on the RTE-3 Textual Entailment Dataset 63

6.2.4 Experiments on the MSRP Paraphrase Dataset...........ccc............ 65

CHAPTER 7. DISCUSSION ..ot 67
BIBLIOGRAPHY ..ot e e 70

3.1

3.2

3.3

3.4

4.1

4.2

4.3

5.1

5.2

9.3

5.4

5.9

5.6

LIST OF TABLES
Page

Two sample questions along with student answers and the grades assigned by the
two human judges. In these examples, the annotator scores are reasonably close20

Magnitude of difference between annotators............ccoeeviiiiiiiieiiiiieiiiee e 21

Two sample questions along with student answers and the grades assigned by the
tWO human JUAZES.......viiiiii e 22

Annotation confusion matrix: Columns indicate the grade given by Grader 1
while rows indicate the grade given by Grader 2.........c.....oooiiiiiiiiiiiiiiin . 23

Corpus-based measures trained on corpora from dibdrent domains and of different
Sizes - MMZ2009 dataset.......oouuniiiiiiiie e 32

Maximum absolute improvement obtained with relevance feedback for different
measures - MM2009 datasel..........oeviuieriiiiee e 34

Summary of results obtained with various similarity measures, with relevance
feedback based on six student answers. Also listed, as baselines, are tf*idf and
LSA trained using BNC. The annotator agreement (Pearson's r) is also shown..36

BOW features with question demoting (QD). Pearson's correlation, root mean
square error (RMSE), and median RMSE for all individual questions. Note that
the discrepancy on several scores (Lesk, HSO, RES, LCH) is due to a
normalization error in an early version of the systemcccciin 40

The simplest baselines possible Khlways guessing the same value. Note that in

this case correlation statistics are undefibled, so they are not reported here....... 41
Perceptron training for node matchingccooooiiiii 44
Subtree matching features used to train the perceptroncccooeeeiiiiiiiieiiinnnn.. 44

Alignment feature/grade correlations using Pearson's r and two RMSE measures.
Results are also reported when inverse document frequency weighting (IDF) and
question demoting (QD) are used - alone and in conjunction..............ccccoeeuveeenn. 46

The results of the SVM models trained on the full suite of BOW measures, the
alignment scores, and the hybrid model. The terms "normalized,"
"unnormalized," and "both" indicate which subset of the 8 alignment features
were used to train the SVM model. For ease of comparison, each section includes
the scores for the inter-annotator agreement (IAA), the "Average grade"

vi

5.7

6.1

6.2

6.3

6.4

6.5

baseline, and two of the top performing BOW metrics - both with question
AEIMOTITIZ ..ttt et e e 49

Counts for each error type. The pattern of errors dibdrs based upon magnitude of
error, so they are shown divided herecoooiii 50

Detailed evaluation results for the SemEval 2012 Semantic Text Similarity task.
The top section matches the scores published by the task organizers. The
remaining sections indicate the scores (and ranks) that would have been achieved

if the indicated system were submitted to this task...........ccooooiiiiiiiiiiiinns 59
Li30 - Pairwise similarity of Miller-Goodenough terms..............cccccovvviiiiinnnienenn. 61
Leeb0 - "short" document similarity COrpus.........ooooeeiiiiiiiiiiiiiiiiiiiiiiiiiieee e 63

RTE-3 - Textual entailment evaluated on the test portion of the corpus (with
SVM classifiCation)coovuiiiiiiiiiiiiccii e 64

MSRP - Evaluated on the test portion of the Microsoft paraphrase corpus (with
SVM classiDRICATION) ...eevviiiiiiiiiiieiii et 66

vii

3.1

4.1

5.1

5.2

5.3

LIST OF FIGURES

Page
Real-world grading biased towards correct anSwers........c..ccueeeeiiieeviineriinneriinnnnn. 23
Effect of relevance feedback on performance - MM2009 dataset.............cccceeeeen 35
Pipeline model for scoring short-answer pairs..........ccoceooeiieiieiiiiiieeeiiiiieeeeeiiien 42
Precision, recall, and F-measure on node-level match detection 45
Dependencies of the SVM /IR training Stagesccceeviiriiiiiiiiieeeiiniiiiiieeeeeennn 48

viil

CHAPTER 1

INTRODUCTION

Many problems in natural language processing (NLP) require, as a subtask, the abil-
ity to estimate the similarity between two pieces of text. For instance, modern information
retrieval is predicated upon the need to rank a large set of documents (e.g. websites) based
upon their similarity to a user’s query string. Likewise, automatic summarization, text
classification, information extraction, and automatic translation evaluation rely upon a sys-
tem’s knowledge of the underlying similarity between two texts. The task I focus on here,
the automatic grading of short student answers (or computer-aided assessment), is another
example, which is becoming increasingly important as online education becomes more and

more cominor.

In this thesis, I present my work in building a system capable of automatically grading
student responses to short-answer questions and attempt to show the applicability of these
methods beyond computer-aided assessment (CAA) to the detection of textual similarity
more generally. Unlike previous work, which has either required the availability of manually
crafted patterns |70, 96|, or large sets of training data to bootstrap such patterns [80], I have
attempted to devise a system which is not pattern-based but rather uses lexical, syntactic,

and semantic similarity techniques to determine a appropriate score.

I have explicitly addressed the short answer grading task as a textual similarity prob-
lem. With that in mind, I have employed several existing and well-known bag-of-words
similarity measures. In order to address the limitations associated with the bag-of-words
paradigm, I have attempted to enrich this model with more complex dependency graph
subsumption-based measures of similarity inspired by recent work in textual entailment
[40, 65, 87]. I go on to produce a hybrid system which combines the above techniques for
assessing similarity using one of several flavors of support vector machine (SVM) learning in

order to exploit the best measures available.

Furthermore, I have engaged in a portability study, in which I apply this grading

system to the related tasks of semantic text similarity, paraphrase detection, and recognizing
textual entailment. I use several of the most commonly cited datasets for each of these tasks
and compare my results against existing state-of-the-art systems.

Over the course of this work, [have sought and found answers to the following ques-
tions. First, given a number of corpus-based and knowledge-based methods previously pro-
posed for word and text semantic similarity, what are the measures that work best for the
task of short answer grading? Second, given a corpus-based measure of similarity, what is
the impact of the domain and the size of the training corpus on the utility of the measure?
Third, to what extent is it possible to enhance the quality of the grading system by sup-
plementing the gold-standard answer with the answers of other students? Fourth, does the
dependency parse structure of a text provide clues that can be exploited to improve upon
existing BOW methodologies for short answer grading? Fifth, to what extent can machine
learning be applied to improve upon existing approaches to short answer grading? Finally,
can the methodologies I have proposed for short answer grading be successfully used to detect

textual similarity, paraphrase, and entailment?

1.1. Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the theoretical
background in both textual similarity (generally speaking) and grading as it relates to student
assessment. I then outline existing work in the fields of short answer grading, text similarity,
paraphrase detection, and textual entailment, especially those which have had a substantial
impact upon the design of this system. Chapter 3 describes in detail the datasets that I
have used in earlier work and provides an introduction to the datasets I have used in the
portability study. Chapter 3 also contains a brief discussion on the applicability of various
evaluation metrics for the tasks of short answer grading, text similarity, paraphrase detection,
and recognizing textual entailment. Chapter 4 details the contributions of my work focusing
on the bag-of-words and pseudo-relevance feedback techniques which were introduced [72] at
the 2009 European Association for Computational Linguistics (EACL) conference in Athens,

Greece. Chapter 5 describes the usage of both dependency graph alignment techniques and

machine learning to supplement the simpler bag-of-words techniques [71] and includes an
analysis of the sources of error associated with the current system. In Chapter 6, I describe
my work as applied to the "Semantic Text Similarity" (STS) task of the 2012 Semantic
Evaluation Workshop (SemEval 2012) as well as the application of the system to the tasks
of text similarity, paraphrase detection, and recognizing textual entailment using other well-

known datasets. Finally, in Chapter 7 I discuss my findings.

CHAPTER 2

BACKGROUND

In this chapter, I show how this work may be placed into the larger context of
computer-aided assessment (CAA) and similarity detection research by exploring the prac-
tical and theoretical justifications for this type of endeavor and the work of others who have
wandered along a similar path. The remainder of this chapter is organized as follows. In
Section 2.1 [discuss what it means for two things to be similar by digging into the psy-
chological underpinnings of of similarity as seen by humans. In Section 2.2, I look at the
act of grading in its own right by tracing the evolution of scholastic assessment as well as
groundbreaking efforts to automate the process. Finally, in Section 2.3 I look at the efforts
of other researchers in the fields of CAA, textual similarity, paraphrase, and entailment who

have paved the way for this present work.

2.1. Theory of Similarity

Humans are good at determining when two things are similar, but it is a very difficult
trait to quantify or to defend. An extended quote from the American philosopher Nelson

Goodman’s "Seven strictures on similarity" [38] may be illustrative:

When, in general, are two things similar? The first response is likely to be: "When
they have at least one property in common." But since every two things have some
property in common, this will make similarity a universal and hence useless relation.
That a given two things are similar will hardly be notable news if there are no two
things that are not similar.

Are two things similar, then, only if they have all their properties in common?
This will not work either; for of course no two things have all their properties in
common. Similarity so interpreted will be an empty and hence useless relation. That
a given two things are similar in this sense would be notable news indeed, but false.

By now we may be ready to settle for a comparative rather than a categorical
formula. Shall we say that two things ¢ and b are more alike than two others ¢ and d
if @ and b have more properties in common than do ¢ and d... More to the point would
be counting not all shared properties but rather only important properties — or better,
considering not the count but the overall importance of the shared properties. Then a
and b are more alike than c and d if the cumulative importance of the properties shared
by a and b is greater than that of the properties shared by ¢ and d. But importance
is a highly volatile matter, varying with every shift of context and interest, and quite

incapable of supporting the fixed distinctions that philosophers so often seek to rest
upon it.

Despite decades or more of research among psychologists |7], there remains no agreed
upon model for human cognition of similarity between objects. It would appear that transi-
tivity does not hold among similarity relations and that there is some asymmetry where A
is perceived to be more similar to B than B is to A [99]. Likewise, similarity is not the same
thing as relatedness. Paul Resnik illustrates this by suggesting that a car and gasoline are
very more closely related than a car and a bicycle, though the latter two are more similar
[83]. What this all adds up to is that any research involving similarity detection in artificial
intelligence has to cope with the nebulous psychological models that they are attempting to

mimic. This is no less true for similarity in natural language processing (NLP).

A wide variety of tasks in natural language processing require some degree of similar-
ity detection at various levels of granularity. At the most primitive stage, systems for lexical
substitution, synonymy detection, and text generation need to be able to determine whether
two words are similar enough to be used interchangeably. At the other extreme, document
classification and clustering assess the similarity between two documents (or between a doc-
ument and a document model). Perhaps the most ubiquitous example of textual similarity
being used today is between a short query and the document within a collection. This is the
foundation of the entire search engine industry without which our collective Internet activity
would be limited to a set of bookmarks and hyperlinks. The general task that I am most
concerned with in this work involves quantifying the similarity between two short pieces of
text — at the level of a phrase, sentence, or paragraph — henceforth called sentence similarity.
However, the various levels can not be entirely disentangled (sentences are made of words,
documents are made of sentences), so it may be instructive to first consider similarity that

is not at the level of sentences.

Term (or word) similarity is a well-studied field in its own right with most research
measuring the distance between words in a thesaurus or lexical ontology [31, 79]. Obviously,

detecting similarity at the phrase or sentence level requires a system to be able to recognize

the compositional words and what meanings they are capable of conveying individually.
Beyond that, though, there must also be some means of analyzing how the structure of the
phrasing affects the overall meaning. For instance, the two phrases "a cat in a hat" and "a
hat in a cat" represent a complete lexical overlap, but describe two very different problems.

Quantifying the similarity of full documents is much more of a statistical endeavor.
Not every word in one document needs to be found in the other, and not every sentence
in one document requires a direct complement. Similarity at this level is better defined
by likeness of topic, style, or structure [16, 13]. In most modern work, document-similarity
(or query-document similarity) is measured by converting each document into a vector-space
representation based upon frequency of word choice and usually some means of weighting the
importance of each dimension |90, 89]. The two vectors are then compared using standard
vector similarity measures (e.g. Euclidean distance, cosine similarity, etc.).

Note that in neither case (word- or document-similarity) do the measurements depend
upon any analysis of individual sentences or phrases. They are neither concerned with the
syntax itself, nor the semantic differences that can only be indicated through a change in
syntactical structure. Textual analysis of this type is in the purview of sentence similarity

and, until recently, comparatively little research has been devoted to it.

2.2. Grading Background

Fundamentally, the entire discipline of education has as its goal that a student increase
in knowledge, and there are many tools at the disposal of educators as they attempt to
achieve this goal — lectures, assignments, projects, hands-on work, face-to-face tutoring, etc.
Yet these tools alone are not sufficient to ensure that the goal of student learning is being
met. It remains for the educator to confirm that learning has taken place through some

assessment of the knowledge acquired by the student.

2.2.1. Brief History of Educational Assessment

Today, privately grading some type of written work is the default approach for as-

sessing student learning, but this is a relatively recent phenomenon which is not without

controversy. From the time of the Scholastics in the late Medieval period through at least
the 15th century (and generally until the mid-19th century), assessment of students was
carried out orally, in public, and in Latin [93|. This consisted of a disputation, in which
the degree candidate would orally present arguments in favor of some proposition while be-
ing challenged by an assigned adversary, the masters of the school, and any member of the
academic community who happened to be in attendance. Over time, an increased New-
tonian mathematical component in education, a rise in the number of students during the
19th century, and a change in the social and political environment of academia led to the
decline of this system, first at Cambridge and then more widely, and to the normalization of
an essay-based presentation of arguments which would remain common throughout the late

19th and 20th centuries.

At the turn of the twentieth century in America, the College Entrance Examination
Board (later called the College Board) assessed college applicants using entirely essay-based
exams which were manually composed and graded by teachers and professors. Within a few
decades, the first multiple-choice tests were being designed, and by 1926, the multiple-choice
Scholastic Aptitude Test (SAT) was released, though it did not gain dominance in college
entrance examinations until the 1940s when World War II reduced the workforce available to
grade entry exams. After the war, the Advanced Placement (AP) exams were designed with
a substantial essay component. Over the past half century, standardized testing as a means
to sort students (for college admission and employment purposes) and schools (for funding
purposes) has skyrocketed but has remained a controversial feature in American education

67].

Since the advent of the Internet, distance-learning courses have begun to make up a
greater and greater proportion of all post-secondary education. According to a recent study
[3], over 6 million students in higher education were taking at least one online course during
Fall 2010, which represents almost a third (31%) of the entire student body, nationwide.
Since 2002, total enrollments have grown by 18% while the number of students taking online

courses has out-paced this figure, growing by 283% over the same period with a growth of at

least 10% each year. With the increasing availability of video lectures and other multimedia
learning modules in these online courses, there exists an unprecedented opportunity for
a practically limitless number of people to receive a quality education from a distance.
Unfortunately, high-quality assessment remains a significant bottleneck for any large-scale
distance-learning program.

The most common method of automating this assessment is by using simple assess-
ment methods with clear right or wrong answers: e.g. multiple choice questions (MCQs),
true-false questions, matching, etc.). These can all be reliably graded by a machine. Unfor-
tunately, there are limitations associated with these types of questions, the most significant
of which is that there is no way to determine partial understanding (and so provide partial
credit). It is also much more difficult to measure a student’s understanding of a concept
beyond simple recognition and definitional familiarity [74]. One study published in 1980
[36] suggests that a reliance upon MCQs may also disadvantage students from a learning
point of view. In this study students who had practiced using short answer questions were
significantly better able to retain their knowledge for a short answer test than those who had
practiced using only multiple-choice questions. Unlike multiple-choice questions, short an-
swer responses and essay questions, train students to generate correct answers rather than to
simply recognize them, and for these types of assessment items to be automated, an analysis
of the texts themselves becomes necessary.

In a traditional assessment setting (e.g., an exam, assignment or quiz), an instructor
or a grader is required to spend time providing students with feedback on their responses
to questions related to the subject matter. In many cases, however, a competent instructor
is not available to provide this feedback or is unable to handle the magnitude of the work

required. This is where automation comes into play.

2.2.2. Computer-Aided Assessment

Computer-aided assessment has been used to reduce the burden on instructors since
at least the mid-1960s when test grading machines, now ubiquitous in American schools and

around the world, were first being employed to automate the marking of multiple choice

assignments [10]. Around the same time, Ellis Page developed the influential Project Essay
Grade (PEG) system [76] which sought to apply computational power to more complex

essay-style problems.

In more recent years, intelligent tutoring systems (ITS) have come to be a rich avenue
of CAA research due to the clear benefits of tutoring on student learning, the low-stakes
context of grading and feedback in a tutoring scenario,and the significant time burden that
tutoring places on instructors and other human tutors. Since the necessary level of one-on-
one interaction is untenable for an individual instructor with more than a handful of students,
tutoring is not applied as widely as it should perhaps be in the context of higher education.
However, with the aid of computerized learning modules that assess a student’s progress and
give feedback, it is becoming increasingly possible to simulate one-on-one instruction in a

way that is advantageous to student learning [6].

It has been reported that interactive tutoring with a human tutor produces advantages
to student learning (over and above simple lecture-based learning), raising marks by up to
2 standard deviations |22]. At the same time, state-of-the-art intelligent tutoring systems
have been reported to raise marks by 1 standard deviation (SD) [4]. However, more recent
scholarship [100] has suggested that both of these reports are erroneous and that the actual
deviation improvements are closer to 0.79 SDs for a human tutor and 0.76 SDs for an I'TS

tutor, which suggests that state-of-the-art I'TS are now on par with human-level behavior.

I should also point out one complicating feature of the grading task which may be a
source of reticence for students and instructors alike — namely the objectivity of the mecha-
nized grader. This is a double-edged sword. On one hand, automating the process prevents
unscrupulous graders from "playing favorites," but at the same time, this cold and mechan-
ical form of grading goes against the inclination and preferences of students and teachers
alike. While grading according to the recommended practices is meant to be used as feed-
back, purely indicating the quality of the work a student has produced, teachers are apt
to assign grades as a reward, not for achievement, but for effort and to motivate students

|15, 24]. For better or worse, this aspect of grading is lost in both this work and in CAA,

generally.

2.3. Related Work

Research to date has concentrated on two subtasks of CAA: the grading of essays,
which is done mainly by checking the style, grammaticality, and coherence of the essay (cf.
|9, 44, 76|), and the assessment of short student answers (e.g., |80, 85, 94|). Each type
of assessment can be either summative (geared towards producing a reliable and defensible
grade in a high-stakes grading situation) or formative (used as a learning aid in a lower-stakes
situation, such as a review session, self-check, or tutoring environment). The primary focus
of this work is in automatic short answer grading with a lean towards summative assessment,
though I believe that the methods described in Chapters 4 and 5 can be applied in either

context.

2.3.1. Summative Assessment

Short answer grading systems that perform summative assessments in high-stakes
situations must be impeccably accurate, so many state-of-the-art systems |70, 96| tend to
place a lot of the burden on the instructors and the test designers themselves. Some attempt
is usually made to, first, distill an answer into individual, correct answer components which
must all be included for an student answer to be considered fully correct. Then, these
answer components are manually crafted into models or patterns which must be matched
by a student response to indicate that a given component has been successfully answered.
These patters should account for differences in word choice, word order, passive or active

voice etc.

The WebLAS system from UCLA [11], which can be considered more of an instruc-
tional aid than a grading system per se, parses a model answer in order to detect important
components (e.g. words and phrases), supplements these using WordNet, and compiles a
regular expression to match student answers. This is done interactively with the instructor,

and has not — to my knowledge — been evaluated as a stand-alone grading system.

10

Another early foray into short answer grading [19], proposed modeling a correct an-
swer as a set of Prolog conceptual dependencies, supplemented by a list of synonyms. It
explicitly requires well-structured texts for student input (for the parser) and contains a sep-
arate syntax-analysis module which can be used as part of the grade. However, this system

has never been formally evaluated.

If a large annotated corpus is available, the patterns to match can be supplemented by
learning additional patterns semi-automatically. The Oxford-UCLES system [96] bootstraps
patterns by starting with a set of keywords and synonyms and searching through windows of
a text for new patterns. A later implementation of the Oxford-UCLES system [80] compares
several machine learning techniques, including inductive logic programming, decision tree
learning, and Bayesian learning, to the earlier pattern matching approach, with encouraging

results.

CarmelTC [85, 101] treats grading as a text classification problem. The authors of the
question produce a set of categories representing answers that are either correct, expressing
the same idea in different ways, or indicate some misconception. The system then attempts
to classify the student answers into one of the categories using a variety of approaches
including latent semantic analysis (LSA), a naive Bayes (NB) classifier, and a decision-tree
method based upon deep syntactical features on the student text. They report for their
hybrid approach (combining the NB classifier with the decision tree) an F-measure of 0.85,
well above their LSA and NB baselines (0.70 and 0.77, respectively). This evaluation was
only performed on a single physics question with 126 student responses, so it is difficult to

extrapolate their results to a more general context.

The Open University, a leader in distance learning in the U.K., recently began using
assessment software commercially available from Intelligent Assessment Technologies (IAT)
[51, 69, 70]. The system models correct answers as a set of keywords along with the role-
based relationships between them. These are then abstracted to become an answer template
by allowing for lexical variance among the keywords. Student answers can be flagged as

close or requiring a certain type of feedback. They reported 96.6% agreement with human

11

annotators for their evaluation set.

Finally, the Educational Testing Service (ETS) has produced several systems which
have sought to tackle the task of short answer grading. In their early work [17], they used a
concept grammar and concept lexicon to build appropriate patterns for their answers based
upon a training set of 200 student answers. Faced with a true/false decision, this early
system achieved 81% accuracy.

Several years later, ETS released C-Rater |55], which matches the syntactical features
of a student response (i.e. subject, object, and verb) to that of a set of correct responses.
The gold-standard model patterns are built semi-automatically, by first converting each
answer into a set of one or more predicate-argument tuples. Each word is supplemented with
contextually similar words. In a move reminiscent of my work described in Section 4.2.2,
graded student responses can also be converted into tuple form and used to grade other
student responses. On a large-scale assessment by the National Assessment of Education
Progress agency, C-Rater reported accuracy between 81% and 90%.

Current work on C-Rater |94] treats the grading task more like a textual entailment
task. As in prior work, model answers, based upon the analysis of 100-150 graded student
answers are broken into concepts to look for in a correct answer. Each concept is represented
by a set of sentences supplemented by a lexicon, and scoring is based upon the presence or
absence of concepts. Breaking new ground, however, student answers are parsed in order
to extract a predicate-argument structure which is then categorized as absent, present, or
negated for each concept using a maximum entropy-based matching algorithm. Reported

agreement (per concept-match) was 84.8% compared to an annotator agreement of 90.3%.

2.3.2. Formative Assessment

The Geometry Explanation Tutor [2] was an attempt to aid in student understand-
ing by constructively offering hints as students attempted to explain their reasoning behind
geometry-related answers. The authors built a hierarchy of incorrect (or semi-correct) an-
swers that indicate what specific knowledge a student seems to have upon arriving at a given

incorrect (or semi-correct) answer. The student can then be guided to a more correct an-

12

swer. For instance, "angles are congruent" and "angles in a triangle are congruent" are both
incorrect statements on their way to the correct statement "angles opposite congruent sides
in an isosceles triangle are congruent." They have modeled their system as a classification
task. Each node in the hierarchy has a set of texts to represent them. Student responses
are parsed and fed to a Loom classifier which assigns it to some node in the hierarchy. They

report an accuracy of 80%.

In the dependency-based classification component of the Intelligent Tutoring System
[75], instructor answers are parsed, enhanced, and manually converted into a set of content-
bearing dependency triples or facets. For each facet of the instructor answer each student’s
answer is labelled to indicate whether it has addressed that facet and whether or not the
answer was contradictory. The system uses a decision tree trained on part-of-speech tags,
dependency types, word count, and other features to attempt to learn how best to classify

an answer /facet pair.

AutoTutor |39, 104| has been designed as an immersive tutoring environment with a
graphical "talking head" and speech recognition to improve the overall experience for stu-
dents. AutoTutor eschews the pattern-based approach favored by higher-stakes systems in
favor of a bag-of-words (BOW) LSA approach. In addition to analyzing student responses
to determine if they match a correct response, AutoTutor also makes pedagogical decisions
regarding which type of response to give a student: hints, pumps for more information,
correcting a student response, giving the answer directly, etc. In order to make these deter-
minations, the authors analyzed a corpus containing 100 hours worth of human tutoring. In
this corpus, 192 student answers were found, rated separately by four raters, and then used
to evaluate the grading module of the AutoTutor system. It was found to correlate with the
annotators at r—=0.49 while a pair of humans with an intermediate knowledge of the subject
correlated with one another at r=0.51. Interestingly, a pair of human experts correlated with

one another at r=0.78.

An offshoot of AutoTutor, called Research Methods Tutor, has been involved in sev-

eral studies |6, 103] of the effect that interactive tutoring systems (ITS) have on student

13

learning compared to simpler learning environments where students read through a pre-
pared text and answer a short multiple choice quiz at the end — called computer-aided
instruction (CAI) systems. Students were given a pretest at the beginning of the semester
and a post-test at the end, and were assigned to various tutoring systems. Results indicate
that participating in the interactive tutoring system improved scores (above the simple act
of taking the course) by 0.75 standard deviations (SDs). Human tutoring has been found
in other work to improve scores by 2.3 SDs. It was found that I'TS showed an improvement

over CAI as well, raising scores by 13.5% compared to 8.8% for CAL

2.3.3. Sentence Similarity

A natural starting point for research into sentence similarity is in the application
of existing document similarity techniques to sentence similarity problems. However, even
leaving aside the issue of syntax, the traditional vector-based measures of similarity are
insufficient in themselves to adequately measure the similarity between short texts. With
such a small number of words, there simply isn’t enough context to reliably model the two
texts as vectors of words. Of course, the text representations can be expanded in many ways.

Following the vector-space models used in document similarity (or query/document
similarity) tasks, much research has been performed that involves using a corpus as a context
within which individual words can be modeled as a vector in some multi-dimensional semantic
space — thereby permitting a full sentence to be so modeled as the sum of its constituent
word vectors. Three such techniques deserve special mention.

Latent semantic analysis [29, 53| has been widely used in recent decades to model
texts. Briefly, a corpus is represented as an N by N matrix which contains information on
the co-occurrence of word pairs within a window in some document collection. This matrix
then undergoes singular value decomposition to reduce the dimensionality of the matrix to
reduce sparseness and make the vector size computationally feasible. However, this causes
the word co-occurrence information to be hidden, thus making the semantic knowledge it
contains latent. A fairly robust analysis of LSA as it applies to document similarity was

performed by Lee et al. |56] showing the effect of various models of similarity and of varying

14

the parameters for training an LSA model.

Explicit semantic analysis [35], on the other hand, makes use of the high dimen-
sional space directly — typically using Wikipedia articles as the dimensions and tracking
term frequency within each article. Using the same Wikipedia article dimensionality, salient
semantic analysis [41] uses term co-occurrence with the hyperlinks within Wikipedia to de-
tect salient terms and to weight the concept vector in favor of these important (or more

salient) dimensions for a given word.

Other work builds upon research in term similarity to produce a measure for sentence
similarity that is based strictly upon the similarity between existing words. In earlier work
from my research group [68] a set of well-known metrics modeling term similarity as the
inverse of a distance within the WordNet hierarchy or basing it upon the information content
of a common ancestor. Liu et al. [64] extends this idea slightly by adding word-order
information. The use of a thesaurus (either WordNet or Roget’s to define word similarity
(and extrapolate a sentence similarity) has been used in several cases, and shows impressive
results for the sentence similarity task [52, 98|. In a similar way, another group has built
upon the idea of dynamic time warping (effectively an edit distance with costs defined using

WordNet relations) to produce a similarity score for sentences [63].

One early example [42], involved training a classifier to detect similarity (or none)
based upon simple features like word order, distance between words, number of matched
words, and verbs with matching Levin classifications [58|. Interestingly, this can be consid-
ered an attempt to include structure and syntax in a similarity decision. Islam and Inkpen
[47] have successfully built upon these ideas to model sentence similarity in terms of both
structural features such as word order and the least common subsequence of the sentences
and term similarity measures such as those described above. Likewise, Li et al. [59] have
attempted to combine word order, distance and depth within an ontology, and frequency

statistics from a corpus to measure similarity.

Testing on datasets for both term similarity and document similarity (though not for

sentence similarity), Yeh et al. [106] introduces a method for detecting similarity based upon

15

the well-known PageRank algorithm [14]. Building upon existing work in PageRank-based
lexical similarity [46], they measured similarity in a three step process. First, an initial
weighted teleport distribution was computed based upon the Wikipedia "neighborhood"
of the terms in the text using a modified version of the explicit semantic analysis (ESA)
algorithm. Then, a personalized PageRank was applied to the texts. Finally, the resultant
distribution vectors were compared using standard vector similarity techniques.

Although the field as a whole is underdeveloped, detecting sentence-level similarity is
an important part of many NLP tasks including query substitution, image retrieval, improved
document retrieval, machine translation evaluation, and text summarization. It also has
applications in three tasks related to, but distinct from, general sentence-similarity: textual
entailment, paraphrase detection, and computer-aided assessment (CAA). While CAA is the
general focus of this work (see Section 2.2.2), I also describe (in Chapter 6) a portability
study, applying these techniques to the other two related tasks. To that end, I here introduce

the tasks of textual entailment and paraphrase detection.

2.3.4. Textual Entailment

The textual entailment task encourages computers to make inferences based upon a
short thesis (T) and to determine whether a separate hypothesis text (H) can reasonably be
understood to follow from it. This is a subconscious process in humans, and so it is easy to
overlook, but in the field of computer understanding, it is a gaping hole that must be filled
by somehow modelling common sense and its use in informal logic.

In order to promote research in textual entailment, the PASCAL organization be-
gin hosting annual challenges in 2005 that allowed researchers to evaluate and benchmark
their new and existing textual entailment systems. These challenges were called the Recog-
nizing Textual Entailment (RTE) challenge [25|, and they have garnered many impressive
submissions. Despite the generally poor results of the first challenge, significant annual im-
provements in the quality of submissions has been the norm over the years. Importantly for
my purposes, their data (from multiple challenges) is now publicly available for the formal

or informal evaluation of entailment systems.

16

The entailment-related works that are most similar to what is described in this thesis
are the graph matching techniques proposed by [40] and [87]. Both input texts are converted
into a graph by using the dependency relations obtained from a parser. Next, a matching
score is calculated by combining separate vertex- and edge-matching scores. The vertex
matching functions use word-level lexical and semantic features to determine the quality of
the match while the edge matching functions take into account the types of relations and the
difference in lengths between the aligned paths. A similar avenue of research that heavily

considers structure utilizes tree kernels to measure the similarity between syntactic graphs

[73].

Following the same line of work in the textual entailment world are the research
teams at Stanford |20, 26, 65, 82|, which experiment variously with using diverse knowledge
sources, using a perceptron to learn alignment decisions, and exploiting natural logic. Their
work differs from that of many others in the entailment field in that they devote significant
attention to detecting contradictions in the texts, which may invalidate an other ways similar

(or entailing) pair [28].

Another structure-based line of research was carried out using so-called "dependency
tree skeletons" [102]. Briefly, all paths through a dependency tree that contain keywords
(nouns) are considered spines, and anything not attached to a spine are removed. Common
prefixes or suffixes are removed and anything that remains is considered a mismatch between
the two texts. Four kernels are combined to compute an overall classification based upon

verb matches, verb relations, subsequence scores, and collocation scores.

Two other groups that are notable in the context of textual entailment are both
associated with Language Computer Corporation. Hickl et al. [43| convincingly dominated
the 3rd RTE challenge by using a 4-stage pipeline that first involves heuristically extracting a
set, of assertions from both texts. These assertions are aligned based upon a set of term-level
lexical and semantic features with weights learned on the training data. After ranking and
scoring the thesis assertions for each hypothesis assertion, the best hypothesis assertion is

selected and classified as either entailing or non-entailing using a decision tree. Finally, the

17

pairs are checked for contradictions which invalidate the entailment decision. The COGEX
system [97] converted the T and H snippets into a "three-layered semantically-rich logic
form" representation which was relaxed until reaching a threshold or detecting entailment.

A set of named-entity heuristics were also included to eliminate false positives.

2.3.5. Paraphrase Detection

Paraphrase is a natural part of human communication. As we relate a story or anec-
dote that we have heard from someone else, we are almost guaranteed to paraphrase and
reword the story rather than to engage in a rote recitation of the tale using the exact words
with which it was told to us. This is not a natural trait of computers and so computa-
tional tasks that involve mimicking or understanding typical human speech require a certain
comfort with paraphrase. In language generation for conversational agents, for instance,
the ability to alter texts through paraphrase prevents the text from becoming stale and
predictable. Likewise, in question answering, the ability to detect whether two answers are
paraphrases of one another may serve to strengthen the case for the answer found.

In recent literature, the paraphrase task has been often been treated as a special
case of two other tasks — textual entailment and machine translation. If textual entailment
requires that H can reasonably be inferred from T, then detecting a paraphrase requires that
both H and T can be inferred from one another |5, 88|. Similarly, paraphrase can be thought
of as a case of monolingual translation, where the two texts convey the same information
using different surface forms.

Finch et al. [32] make use of multiple tools in the machine translation evaluation
arsenal. Simpler evaluation scores such as word error rate (WER), position-independent
word-error rate (PER), the Bilingual Evaluation Understudy (BLEU) metric and the metric
put forth by the National Institute of Standards and Technology (NIST) were used in con-
junction with part-of-speech information and a WordNet-based measure of term similarity
[48] to train a support vector machine (SVM) classifier to make a paraphrase decision.

Turning the paraphrase detection task around, Qiu et al. [81] attempts to detect

semantically important dissimilarities between the two texts an in the absence of such dis-

18

similarities claims to detect paraphrase. Constituent components of each text were broken
down into predicate-argument structures. Non-matching structures were then classified as

either significant or insignificant using an SVM classifier.

19

CHAPTER 3

DATASETS AND EVALUATION METRICS

Until recently, the computer-aided assessment (CAA) community has been charac-
terized by isolated progress with little ability to compare the approaches of different groups
and to build upon the work of other researchers. Without a publicly available dataset freed
from legal issues associated with privacy and intellectual property rights, it was not possible
to effectively compare two systems side-by-side. In order to address this anomaly (and to
evaluate my grading methodology), I have created and publicized a dataset! consisting of
short answer questions taken from introductory computer science assignments with answers
provided by a class of undergraduate students. The assignments were administered as part
of a course on Data Structures at the University of North Texas in the fall of 2007. For each

assignment, the student answers were collected via an online learning environment.

3.1. Description of Short Answer Grading Dataset

The students submitted answers to 87 questions spread across ten assignments and
two examinations. Six of these questions (4.6, 4.7, 8.5, 9.5, 9.7, and 12.3) were ignored over

the course of these experiments as the question types were more similar to multiple choice,

n cooperation with my advisor, Dr. Rada Mihalcea

TABLE 3.1. Two sample questions along with student answers and the grades
assigned by the two human judges. In these examples, the annotator scores
are reasonably close.

‘ Sample questions, correct answers, and student answers ‘ Grades
Question: What is the role of a prototype program in problem solving?
Correct answer: To simulate the behavior of portions of the desired software product.
Student answer 1: | A prototype program is used in problem solving to collect data for the problem. 1,2
Student answer 2: | It simulates the behavior of portions of the desired software product. 5,5
Student answer 3: | To find problem and errors in a program before it is finalized. 2,2
Question: What are the main advantages associated with object-oriented programming?
Correct answer: Abstraction and reusability.
Student answer 1: | They make it easier to reuse and adapt previously written code and they separate complex
programs into smaller, easier to understand classes. 5,4
Student answer 2: | Object oriented programming allows programmers to use an object with classes that can be
changed and manipulated while not affecting the entire object at once. 1,1
Student answer 3: | Reusable components, Extensibility, Maintainability, it reduces large problems into smaller
more manageable problems. 4,4

20

true/false, or ordering problems. For example, question 4.7 is worded as follows: "Using an
index outside the bounds of the array generates an error. Is this a compilation error or a
run-time error?"

Table 3.1 shows two question-answer pairs with three sample student answers each.
Thirty-one students were enrolled in the class and submitted answers to these assignments.
The data set used in this work consists of a total of 2273 student answers. This is less than
the expected 31 x 81 = 2511 as some students failed to submit a few assignments.

This dataset has been released in two stages. The first release consisted of 21 questions
(from assignments 1-3) with a total of 630 student responses. This dataset was released as
part of my first publication related to this task [72] and is referred to as MM2009 for the
remainder of this thesis. The full dataset was released (all 87 questions) along with my
second publication [71]. This full dataset is referred to as MM2011.

For all experiments on the full dataset (MM2011), thirty-two student answers were
used for development and were not included in the evaluation. More details on this process

can be found in Section 5.3.

3.1.1. Annotation Process

The answers were independently graded by two human judges, using an integer scale
from 0 (completely incorrect) to 5 (perfect answer). Both human judges were graduate
students in the computer science department; one (Grader 1) was the teaching assistant
assigned to the Data Structures class, while the other (Grader 2) was myself performed
after the course had ended. The average grade of the two annotators is treated as the gold

standard against which the system output is compared.

TABLE 3.2. Magnitude of difference between annotators

Difference || Examples | % of examples
0 1294 57.7%
1 514 22.9%
2 231 10.3%
3 123 5.5%
4 70 3.1%
5 9 0.4%

21

The annotators were given no explicit instructions on how to assign grades other than
the [0..5] scale. Both annotators gave the same grade 57.7% of the time and gave a grade only
1 point apart 22.9% of the time. While the agreement between annotators was 57.7% and the
adjacent agreement (off by at most one) was 80.6%, the Kappa statistic was 0.28 indicating
only moderate agreement excluding chance. This is likely due to the high proportion of
answers (for both annotators) that were judged perfectly correct (i.e. 5). Comparing each
annotator to the average, their root mean square error was 0.66. The annotators correlated

(using Pearson’s r) at 0.59.

A full breakdown of the divergence in annotator grading can be seen in Table 3.2. A

sample of responses in which the annotators differed by more than 1 can be found in Table

3.3.
TABLE 3.3. Two sample questions along with student answers and the grades
assigned by the two human judges
| Sample questions, correct answers, and student answers ‘ Grades
Question: What is the scope of global variables?
Correct answer: File scope.
Student answer 1: | they can be accessed by any C++ file anywhere. 5,0
Student answer 2: | Global Variables can be used in any function as long as the appropriate
.h file that holds the variable is included 5,3
Student answer 3: | can be accesed by any classes that have and object of that variables class in it | 5, 1
Question: What is a stack?
Correct answer: A data structure that can store elements, which has the property that the last
item added will be the first to be removed (or last-in-first-out)
Student answer 1: | Stores a set of elements in a particular order. 4,0
Student answer 2: | A stack is an ADT that stores a set of elements in a particular order. 4,1
Student answer 3: | a finite ordered list with zero or more elements 4,0

In addition, an analysis of the grading patterns indicate that the two graders may
have been operating off of different internal grading policies as one grader (Grader 1) was
considerably more generous than the other. In fact, when the two differed, Grader 1 gave
the higher grade 76.6% of the time. The average grade given by Grader 1 is 4.43, while the
average grade given by Grader 2 is 3.94. Details can be found in Table 3.4.

For both annotators, and hence for the gold standard mean, the dataset is heavily
biased towards correct answers (see Figure 3.1). However, [believe that this correctly mirrors

real-world issues associated with the task of grading.

22

TABLE 3.4. Annotation confusion matrix: Columns indicate the grade given
by Grader 1 while rows indicate the grade given by Grader 2

01|12 3| 4 5
0122|134 |33| 36 9
1101(6]5 37|50 | 34
211 |5|15]56| 58 | 37
310123 |61[110| 70
41010]4|30]| 8 | 183
510 |0 3 |55|119]1104

FIGURE 3.1. Real-world grading biased towards correct answers

1100

1000 -
900 |
800 r
700 |
600
500 r

Frequency

400 +
300 +
200 +
100

o]

0 05 1 15 2 25 3 35 4 45 5

Average Grade

3.2. Other Datasets

In order to evaluate the applicability of the techniques used in this system to other
related fields, I have made use of an additional five datasets that have been widely used in

the fields of text similarity, textual entailment, and paraphrase detection.

The first dataset, hereafter referred to as the SemEval2012 corpus, was provided as
part of the Semantic Evaluation (SemEval) 2012 workshop for semantic textual similarity
(STS) [1]. This dataset was released in two stages (training and testing). The training data
was composed of data from 3 existing datasets. Formally, 750 sentence pairs were taken from
the Microsoft Research Paraphrase Corpus [MSRpar]| (see below), 750 pairs were taken from
the Microsoft Research Video Description Corpus [MSRvid|, and 734 pairs were taken from
the 2008 Workshop on Machine Translation (WMT) development dataset [SMTeuroparl]
(Europarl section). The testing data that was released was taken from these same three

datasets (750 |[MSRpar|, 750 [MSRvid|, 459 |[SMTeuroparl|) as well as from two datasets

23

which were a surprise to the entrants. The first of these two datasets [OnWN] consisted
of 750 pairs where the first sentence was taken from OntoNotes and the second was taken
from a WordNet definition. In the second [SMTnews|, 399 pairs were extracted from the
news conversation section of WMT. Altogether, this represents 2234 training pairs and 3108
testing pairs — or 5342 pairs combined. Each of these pairs was given a score on a scale
of [0..5] by five users associated with Amazon Mechanical Turk. The average of the users’
scores is treated as the gold standard similarity score. Results from experiments on this

dataset can be found in Section 6.1.

The second dataset, hereafter referred to as Li30 [60], was based on a dataset built
by Rubenstein and Goodenough [86] in 1965 to detect similarity between individual terms.
The new dataset was formed by replacing the individual terms with their definitions taken
from the Collins Cobuild [91]. New similarity scores were calculated by taking the average
similarity (on a [0..4] scale) as judged by 32 native English speakers. In order to reduce
the effects of bias on the dataset, a subset of 30 pairs is commonly used in research on this
dataset, and I follow this norm in this set of experiments. Results from experiments on this

dataset can be found in Section 6.2.1.

The third dataset, hereafter referred to as Leeb0 [56], is a collection of 50 small
documents (between 51 and 126 words) each taken from the Australian Broadcasting Cor-
poration’s news mail service. All possible pairs of these documents (i.e. 1275 pairs) were
given to a grouping of 83 college students who rated the similarity of the document pairs on
a scale of |[1..5]. The dataset was heavily skewed towards low similarity scores. An analysis
of the annotations revealed an average inter-rater correlation of 0.605 by repeatedly selecting
a random set of annotations and comparing to the average of the remaining annotations.
It was reported that around 90% of annotations were within 1 point of the average. The
average of the annotations for each pair were scaled to the [0..1| range and treated as a gold-
standard for similarity. Results from experiments on this dataset can be found in Section

6.2.2.

The fourth dataset, hereafter referred to as RTE-3 is from the third Recognizing

24

Textual Entailment (RTE) Challenge organized by the PASCAL group [25]. For system
development, 800 sentence pairs were provided, and for testing, another 800 sentence pairs.
These sentence pairs were each manually tagged as either "entailing" or "non-entailing."
The sentence pairs were drawn from four broadly defined categories: information retrieval,
multi-document summarization, information extraction, and question answering? Twenty-six
teams participated in the RTE-3 challenge [37]. Results from experiments on this dataset
can be found in Section 6.2.3.

The final dataset, the Microsoft Research Paraphrase (MSRP) corpus, was published
by Microsoft’s Natural Language Processing Group [30]. Using heuristic extraction tech-
niques and a support vector machine (SVM) classifier, 5801 sentence pairs were removed
from a collection of news articles gathered from the World Wide Web over the course of 2
years. All candidate sentences were required (by the extraction heuristics) to be similar in
length, to have at least three words in common, and to have a moderate to large edit distance
(greater than 7 edits). Two independent judges annotated each pair as either "semantically
equivalent" or not with ties broken by a third judge. Overall, 67% of the pairs were found

to be equivalent. Results from experiments on this dataset can be found in Section 6.2.4.

3.3. Evaluation Metrics

In attempting to analyze the results of this work, I have been faced with the difficult
decision of which metric to use to evaluate the scores provided through a comparison with
the gold standard. Related work has been split on which evaluation metric is the most
appropriate, with the decision often determined by the dataset.

For datasets with real-valued scores, such as SemEval2012, Li30 and Lee50 |56], corre-
lation metrics such as Pearson’s r and Spearman’s p are more frequently used |35, 39, 41, 98|.
For datasets such as the RTE suite or the MSRP Corpus that require a binary yes-no decision
or assignment to a category, measures such as accuracy, Kappa statistic, and precision /recall

are more common [18, 62, 94, 95]. I believe that both measures are inherently limited and

2See the RTE-3 website (http://pascallin.ecs.soton.ac.uk/Challenges/RTE3/Introduction/) for further de-
tails on the creation process.

25

misleading when used alone on a short answer grading set.

For instance, the correlation statistics are undefined in the case that every student
gets the same grade on a given problem. This occurs several times in this dataset. In
addition, the change from 6 possible grades that the two annotators provide to 11 possible
grades that the average score can take makes comparison between the annotators’ correlation
and any system’s correlation much less meaningful. Likewise, for accuracy, Kappa, and
precision /recall measures large grading discrepancies and small grading discrepancies are
penalized to the same extent. In reality, a system that awards an "A" effort with a "B"
is more satisfactory than a system that awards an "F" for the same effort. Perhaps more
problematic is that any metric that requires an exact match such as accuracy and the Kappa
statistic require real values to be "rounded" in order to match a category.

In my earlier efforts (See Chapter 4), I reported only Pearson’s r, but as the work
matured, I have chosen to report also the root mean squared error (RMSE) to quantify the
difference between the system response and the given scores. Where accuracy scores are
reported for real-valued datasets, it should be assumed that scores have first been rounded

to the nearest 0.5.

26

CHAPTER 4

BAG-OF-WORDS APPROACHES

In this chapter, I report my early work in the application of existing knowledge-based
and corpus-based similarity measures to the task of automatic short answer grading. In
particular, I am interested in determining how the size and subject matter of the training
corpora affect the overall quality of the corpus-based measures. Furthermore, I describe
an attempt to enhance the provided instructor answer (to account for phrasal variation) by
using other student responses in a manner similar to the pseudo-relevance feedback technique
commonly employed in information retrieval. All experiments reported in this chapter were

evaluated using the MM2009 dataset unless otherwise indicated.

4.1. Textual Similarity Measures

Comparative evaluations were performed using eight knowledge-based measures of
semantic similarity (shortest path, Leacock & Chodorow, Lesk, Wu & Palmer, Resnik, Lin,
Jiang & Conrath, Hirst & St. Onge), and three corpus-based measures (cosine similarity,
latent semantic analysis, and explicit semantic analysis).

For the knowledge-based measures, I derive a text-to-text similarity metric by using
the methodology proposed in [68]: for each open-class word in one of the input texts, the
maximum semantic similarity that can be obtained by pairing it up with individual open-
class words in the second input text is used. More formally, for each open-class word W of

class Cin the instructor answer, find maxsim(W,C) where

maxsim(W, C) = max Sim, (W, w;)

where w; is a word in the student answer of class C and the Sim, function is one of the
functions described below. The lexical similarity scores are determined using the Word-
Net::Similarity package described in [79]. All the word-to-word similarity scores obtained in
this way are summed up and normalized to account for the length of the two input texts. A

short description of each of these similarity metrics is provided below.

27

4.1.1. Knowledge-Based Measures

The shortest path similarity is determined as:

1

]. 3 a = —
(1) Simpatn length

where length is the length of the shortest path between two concepts using node-counting

(including the end nodes).

The Leacock & Chodorow (LCH) |54] similarity is determined as:

length
o8 2% D

(2) Simlch =1

where length is the length of the shortest path between two concepts using node-counting,

and D is the maximum depth of the taxonomy.

The Lesk similarity of two concepts is defined as a function of the overlap between the
corresponding definitions, as provided by a dictionary. It is based on an algorithm proposed

by Lesk [57] as a solution for word sense disambiguation.

The Wu & Palmer (WUP) [105] similarity metric measures the depth of two given concepts in
the WordNet taxonomy, and the depth of the least common subsumer (LCS), and combines

these figures into a similarity score:

2 % depth(LC'S)
depth(concepty) + depth(concepts)

(3) SiMaypup =

The measure introduced by Resnik [83] returns the information content (IC) of the LCS of

two concepts:

(4) Simyes = IC(LCS)

where IC is defined as:

(5) 1C(c) = —log P(c)

and P(c) is the probability of encountering an instance of concept ¢ in a large corpus.

28

The measure introduced by Lin [61] builds on Resnik’s measure of similarity, and adds a
normalization factor consisting of the information content of the two input concepts:

2% IC(LCS)
IC(concepty) + IC(concepts)

(6) Simlm =

I also consider the Jiang & Conrath (JCN) [48] measure of similarity:

1
IC(concepty) + IC(concepts) — 2 % IC(LC'S)

(7) Simjm =

Finally, the Hirst & St. Onge (HSO) |45] measure of similarity is considered, which deter-
mines the similarity strength of a pair of synsets by detecting lexical chains between the pair

in a text using the WordNet hierarchy.

4.1.2. Corpus-Based Measures

The corpus-based measures differ from knowledge-based methods in that they do
not require any encoded understanding of either the vocabulary or the grammar of a text’s
language. A semantic model is formed by analyzing alternatively the frequency of a word in
the corpus, the words that it appears with, or the set of documents that it appears in.

In many of the real-world scenarios where computer-aided assessment (CAA) might
be advantageous, robust language-specific resources (e.g. WordNet, dependency parsers,
part-of-speech taggers) may not be available. Thus, state-of-the-art corpus-based measures
may be the only available approach to CAA in languages with scarce resources.

One of the oldest corpus-based measures of document similarity is a vector-based
cosine similarity using term frequency and document frequency (referred to as "tf*idf") [50].
Briefly, tf*idf works by converting a text (usually a document) into a vector representation,
where each dimension of the vector is a unique word in a collection of documents. The
values associated with each element of the vector are calculated as the product of the term
frequency (tf) — the number of occurrences of this word in the document — and the inverse
document frequency (idf) — the log of the ratio of documents in the collection to documents
that contain this word. The vectors are then compared by finding the angle between them

(cosine similarity). This technique is sometimes altered using novel smoothing or weighting

29

policies, but the method as described above is used here, as a baseline. Document frequency

is taken from the British National Corpus (BNC) [8].

Over the past two decades, latent semantic analysis (LSA), proposed by Deerwester
et al. [29], has been widely used as a measure of similarity and has even been proposed as
an all-inclusive model for human cognition of language [53|. In LSA, term co-occurrences
in a corpus are captured by means of a dimensionality reduction performed by a singular
value decomposition (SVD) on the term-by-document matrix T representing the corpus. The
result is an independent vector for each word, which can be summed to form a new vector
representing the full text. Again, the cosine similarity of the vectors is used to compute
a text similarity score. For the experiments reported involving the MM2009 corpus, the
SVD operation has been run on several corpora including both the BNC (LSA BNC) and
a dump of the entire English Wikipedia (LSA Wikipedia). For the experiments reported in

this chapter, the Wikipedia corpus refers to a version downloaded in September 2007.

Explicit semantic analysis (ESA) [35] is a variation on the standard vectorial model
in which each dimension of the vector is directly equivalent to an abstract concept. Each
article in Wikipedia represents a concept in the ESA vector. The relatedness of a term to
a concept is defined as the tf*idf score for the term within the Wikipedia article, and the
relatedness between two words is the cosine of the two concept vectors in a high-dimensional

space. I refer to this method as ESA Wikipedia.

4.2. Experimental Setup

For the knowledge-based measures, I use the WordNet-based implementation of the
word-to-word similarity metrics, as available in the WordNet::Similarity package [77]. For the
LSA experiments, I use the InfoMap package.! For the experiments using explicit semantic
analysis, I use an in-house implementation of the ESA algorithm as described in [34]?. Note

that all the word similarity measures are normalized so that they fall within a [0..1] range.

!http://infomap-nlp.sourceforge.net,/

20riginally implemented by Samar Hassan with my own modifications to improve efficiency

30

The normalization is performed by dividing the original similarity score by the maximum

possible score for that measure.?.

4.2.1. The Role of Domain and Size

One of the key considerations when applying corpus-based techniques is the extent
to which the size and subject matter of the training corpus affect the overall performance
of the system. In particular, based on the underlying processes involved, the LSA and ESA
corpus-based methods are expected to be especially sensitive to changes in domain and size.
The language models that are built depend upon the relatedness of the words in the training
data which suggests that, for instance, in a computer science domain the terms "object"
and "oriented" will be more closely related than in a general-purpose text. Similarly, a large
amount of training data will lead to less sparse vector spaces, which in turn is expected to

affect the performance of the corpus-based methods.

With this in mind, two training corpora were developed for use with the corpus-
based measures that sought to cover the computer science domain. The first corpus (LSA
slides) consists of several online lecture notes associated with the class textbook, specifically
covering topics that are used as questions in the dataset. The second domain-specific corpus
is a subset of the Wikipedia dump (LSA Wikipedia CS) consisting of articles that contain any
of the following terms: computer, computing, computation, algorithm, algorithms, recursive,

or recursion.

The performance of the LSA models that have been trained on the domain-specific
corpora is compared with LSA models trained on the open-domain corpora mentioned in
Section 4.1.2, namely LSA Wikipedia and ESA Wikipedia. In addition, for the purpose of
running a comparison with the LSA slides corpus, I also created a random subset of the LSA
Wikipedia corpus approximately matching the size of the LSA slides corpus. I refer to this
corpus as LSA Wikipedia (small).

3For several similarity measures this was done incorrectly and has been fixed for all experiments with the
MM2011 dataset as shown in Chapter 5. The original published results are reported here.

31

Table 4.1 shows an overview of the various corpora used as training in these experi-

ments, along with the Pearson correlation coefficient observed for this dataset.

TABLE 4.1. Corpus-based measures trained on corpora from different domains
and of different sizes — MM2009 dataset

Measure - Corpus ‘ Size | Correlation
Training on generic corpora
LSA BNC 566.7MB 0.4071
LSA Wikipedia 1.8GB 0.4286
LSA Wikipedia (small) | 0.3MB | 0.3518
ESA Wikipedia 1.8GB 0.4681
Training on domain-specific corpora
LSA Wikipedia CS 77.1MB 0.4628
LSA slides 0.3MB 0.4146
ESA Wikipedia CS 77.1MB 0.4385

Assuming a corpus of comparable size, it is expected that a measure trained on a
domain-specific corpus would outperform a measure trained on a generic one. Indeed, by
comparing the results obtained with LSA slides to those obtained with LSA Wikipedia
(small), it is possible to see that by using the in-domain computer science slides the system
obtains a correlation of r=0.4146, which is higher than the correlation of r=0.3518 obtained
with a corpus of the same size but open-domain. The effect of the domain is even more
pronounced when the performance obtained with LSA Wikipedia CS (r=0.4628) is compared
with the one obtained with the full LSA Wikipedia (r=0.4286).* The smaller, domain-specific
corpus performs better, despite the fact that the generic corpus is 23 times larger and is a
superset of the smaller corpus! This suggests that for LSA the quality of the texts is vastly
more important than the quantity.

When using the domain-specific subset of Wikipedia, decreased performance is ob-
served with ESA compared to the full Wikipedia space. I suggest that for ESA the high-
dimensionality of the concept space’ is paramount, since many relations between generic

words may be lost to ESA that can be detected latently using LSA.

4The difference was found significant using a paired t-test (p<0.001).

°In ESA, all the articles in Wikipedia are used as dimensions, which leads to about 1.75 million dimensions
in the ESA Wikipedia corpus, compared to only 55,000 dimensions in the ESA Wikipedia CS corpus.

32

In tandem with my exploration of the effects of domain-specific data, 1 also look
at the effect of size on the overall performance. The main intuitive trends are there, i.e.
the performance obtained with the large LSA-Wikipedia is better than the one that can
be obtained with LSA Wikipedia (small). Similarly, in the domain-specific space, the LSA
Wikipedia CS corpus leads to better performance than the smaller LSA slides data set.
However, an analysis carried out at a finer-grained scale, in which the performance obtained
with LSA is calculated when trained on 5%, 10%, ..., 100% fractions of the full LSA Wikipedia
corpus, did not reveal a close correlation between size and performance, which suggests that

further analysis is needed to determine the precise effect of corpus size on performance.

4.2.2. Pseudo-Relevance Feedback

When a grader determines that a student answer is correct, it implies that there is
some degree of similarity between the answer provided by the student and some correct
answer provided by the instructor (or otherwise known to the grader). Since, in the interest
of simplicity, the system is provided with only one correct answer, some student answers
may be wrongly graded because of little or no similarity to the surface forms of that single
correct answer.

In order to address this problem, I introduce a novel technique that feeds back from
the student answers themselves in a manner similar to the way pseudo-relevance feedback
is used in information retrieval [84]. In so doing, the paraphrasing that is usually observed
across student answers will enhance the vocabulary of the correct answer, while at the same
time maintaining the correctness of the gold-standard answer. In fact, something similar is
done manually in most state-of-the-art pattern matching systems for CAA [17, 18, 95|. In
these, a set of 100-400 student answers are analyzed and used to create patterns to overcome
variety in word choice. I attempt to achieve the same goal using a simpler version of this
system to automatically find correct answers among student answers.

Briefly, given a metric that provides similarity scores between the student answers
and the correct answer, scores are ranked from most similar to least. The words of the top

N ranked answers are then added to the gold standard bag-of-words. The remaining answers

33

are then rescored according the the new gold standard vector. In practice, the scores from
the first run (i.e. with no feedback) are held constant for the top N highest-scoring answers,
and the second-run scores for the remaining answers are multiplied by the first-run score of
the Nth highest-scoring answer. In this way, the original scores for the top N highest-scoring
answers are kept (and thus prevent them from becoming artificially high), which at the same
time, guarantees that none of the lower-scored answers will get a new score higher than the
best answers.

The effects of relevance feedback are shown in Figure 4.1, which plots the Pearson
correlation between automatic and human grading (Y axis) versus the number of student
answers that are used for feedback (X axis). This experiment has not yet been attempted

with the larger MM2011 dataset.

TABLE 4.2. Maximum absolute improvement obtained with relevance feed-
back for different measures — MM2009 dataset

Feedback | Maximum
Measure answers | improvement
LSA-Wiki-full 6 0.0384
LSA-Wiki-CS 3 0.0471
LSA-slides-CS 6 0.0413
ESA-Wiki-full 7 0.0241
ESA-Wiki-CS 7 0.0255
WordNet-JCN 6 0.0302
WordNet-Path 6 0.0474
tf*idf 12 0.0147
LSA-BNC 9 0.0302

Table 4.2 shows the maximum absolute improvement that can be obtained by using
feedback with a selection of measures, along with the number of feedback answers for which
this improvement is obtained.

Overall, an improvement of up to 0.047 on the [0..1] Pearson scale is shown to be
obtainable by using this technique, with a maximum improvement observed after about 4-
6 iterations on average. After an initial number of high-scored answers, it is likely that
the correctness of the answers degrades, and thus the decrease in performance observed

after an initial number of iterations. These results indicate that the LSA and WordNet

34

similarity metrics respond more favorably to feedback than the ESA metric. It is possible
that supplementing the bag-of-words in ESA (with e.g. synonyms and phrasal differences)

does not drastically alter the resultant concept vector, and thus the overall effect is smaller.

FIGURE 4.1. Effect of relevance feedback on performance — MM2009 dataset

0.55 " LSA-Wiki-full ——

LSA-Wiki-CS -~
LSA-slides-CS - -
ESA-Wiki-full
ESA-Wiki-CS -
0.5 < T TN WN-PATH
B N TF*IDF

. LSA-BNC

X

> >0 O MO X

Correlation

0.35 : : :
0 5 10 15 20
Number of student answers used for feedback

4.2.3. Binary Decision

To gain further insights, I performed an additional experiment to determine the ability
of this system to make a binary accept/reject decision. In this evaluation, the [0..5] human
grading scale of the dataset is mapped to an accept/reject annotation by using a threshold
of 2.5. Every answer with a grade higher than 2.5 is labeled as "accept," while every answer
below 2.5 is labeled as "reject." Next, I use the best system (LSA trained on domain-
specific data with relevance feedback), and run a ten-fold cross-validation on the data set.
Specifically, for each fold, the system uses the remaining nine folds to automatically identify
a threshold to maximize the matching with the gold standard. The threshold identified in
this way is used to automatically annotate the test fold with "accept"/"reject" labels.

The ten-fold cross validation resulted in an accuracy of 92%, indicating the ability

35

of the system to automatically make a binary accept/reject decision. However, moving the
threshold to 4.0 (to distinguish between excellent and good answers) proved a more difficult
task. Note that it is possible that the high-score bias associated with this dataset (see

Chapter 3) is responsible for the high accuracy in this section.

4.3. Discussion

These experiments show that several knowledge-based and corpus-based measures of
similarity perform comparably when used for the task of short answer grading. However,
since the corpus-based measures can be improved by accounting for domain and corpus
size, the highest performance can be obtained with a corpus-based measure (LSA) trained
on a domain-specific corpus. Further improvements were also obtained by integrating the
highest-scored student answers through a relevance feedback technique.

Table 4.3 summarizes the results of my experiments. In addition to the per-question
evaluations that have been reported throughout this thesis, a per-assignment evaluation is
also reported, which reflects a cumulative score for a student on a single assignment, as

described in Chapter 3.

TABLE 4.3. Summary of results obtained with various similarity measures,
with relevance feedback based on six student answers. Also listed, as baselines,
are tf*idf and LSA trained using BNC. The annotator agreement (Pearson’s
r) is also shown.

Correlation
Measure per-quest. \ per-assign.
Baselines
tf*idf 0.3647 0.4897
LSA BNC 0.4071 0.6465

Relevance Feedback based on Student Answers
WordNet shortest path | 0.4887 0.6344
LSA Wikipedia CS 0.5099 0.6735
ESA Wikipedia full 0.4893 0.6498
Annotator agreement 0.6443 0.7228

Overall, in both the per-question and per-assignment evaluations, the best perfor-

mance was obtained by using an LSA measure trained on a medium size domain-specific

36

corpus obtained from Wikipedia, with relevance feedback from the four highest-scoring stu-
dent answers. This method improves significantly over the tf*idf baseline and also over
the LSA trained on BNC model, which has been used extensively in previous work. The
differences were found to be significant using a paired t-test (p<0.001).

In the next chapter, [use the knowledge-based and corpus-based techniques described
here in the development of a system that takes into account not only the lexical-semantics of
a sentence, but the structure as well through the use of dependency graph alignments. The
scores of these simpler similarity measures are also used as features in training a support

vector machine (SVM) learning system.

37

CHAPTER 5

ALIGNMENT SYSTEM AND SVM LEARNING

In this chapter, I first revisit the bag-of-words approaches discussed in the previous
chapter and introduce some common-sense modifications to the preprocessing and evaluation
processes. Afterwards, I detail my work using dependency graph alignment scores to account
(in a simple way) for structural similarities between student and instructor answers. I go
on to describe my efforts to exploit support vector machine (SVM) learning techniques to
leverage non-redundant evidence spread across multiple simpler features. All experiments

described in this chapter use the MM2011 dataset unless otherwise indicated.

It was shown in Chapter 4 and in much prior work that simple bag-of-words similarity
metrics perform reasonably well when used in computer-aided assessment (CAA) and when
detecting textual similarity in general. Unfortunately, by their very nature, fine differences
in a word’s role in the sentence narrative are incapable of being distinguished by these simple
measures alone. Any student of poetry is aware that the sentence "Dido loves Aeneas" does
not mean the same thing as "Aeneas loves Dido," but latent semantic analysis (LSA) and

the other bag-of-words similarity measures are forever committed to a belief in requited love.

When grading student answers, this ability to detect these subtle differences in word
order and sentence role are often the difference between a correct answer and an incorrect one.
Most prior attempts to account for this in CAA have focused on using a large development
set of student answers (usually over 100 answers per question) to manually craft patterns
with a fixed word order which must be matched in order for a positive score to be given.
This was in no way an option as the dataset under consideration has only around 30 student

responses per question altogether.

In the textual entailment field, where such differences are the rule rather than the
exception, much recent work [65, 78, 87| has focused on comparing the dependency graph
representations of both texts in order to determine whether the hypothesis is entailed based

upon the structure of the sentences without being tied to an explicit word order. These

38

systems produce an alignment based upon the separate similarities of the nodes (words)
and the edges (relations) of the dependency graphs and use the alignment itself to reach a
decision regarding entailment.

In order to meet the needs of the grading task, my system attempts to quantify an
alignment as a score on a [0..5] scale so that it can be directly applied as a grade for a
student answer. As an initial attempt, I have modeled the dependency graph alignment step
as an assignment problem and have sought to match nodes in such a way as to maximize
the alignment score (i.e. the grade). This process is described in more detail in Section
5.4. Before describing the three-staged pipeline system (as shown in Figure 5.1), I must first

discuss a few pragmatic changes that are used throughout this chapter.

5.1. Modifications and Bag-of-Words Improvements

Before looking at the system pipeline, I describe here two techniques that deserve
mention: question demoting and isotonic regression. The former is based upon real-world
intuition among those who frequently grade student answers — namely that repeating words in
the question is easy and is not necessarily indicative of student understanding. For example,
given the question AAIWho was the first President of the United States?aAl and an instructor
answer aAIThe first president of the United States was George WashingtonaAl, it may be
possible for a student to receive a fair amount credit (due to surface similarities) by providing
the answer aAIThe first president of the United States was Barack Obama.aAl In order to
prevent students from inappropriately receiving credit for these types of answers, terms
that are freely given to the student in the question are discounted. Specifically, any terms
contained in the question are removed from both the instructor answer and the student
answer. This makes it possible to compare only the pertinent terms. I have termed this
process question demoting. Coincidentally, I have recently discovered that this method was
quietly applied in an earlier work on CAA [96], but has never been analyzed in any detail.

The second technique to mention here — isotonic regression — is applied to meet
an evaluation-related need. I have discussed in Section 3.3 the decision to report results

measuring correlation, accuracy, and root mean squared error (RMSE). In order to determine

39

accuracy and RMSE, it is necessary for the system output and the gold-standard grades to
be on the same [0..5] scale. Additionally, it is vital that a grading system be able to give
students grades that have some inherent or agreed upon meaning — e.g. the standard 100
point scale. With this in mind, I use isotonic regression [107] to convert the system scores
onto the same |0..5] scale used by the annotators’. The isotonic regression model is trained
on each type of system output (i.e. BOW scores, alignment scores, SVM output). More
details on the training process can be found in Section 5.6.

One surprise while building this system was the consistency with which question
demoting improved scores for the BOW similarity measures. With this relatively minor
change the average correlation between the BOW methods’ similarity scores and the student
grades improved by up to 0.046 with an average improvement of 0.019 across all eleven
semantic features. Table 5.1 shows the results of applying question demoting to the semantic
features. When comparing scores using RMSE, the difference is less consistent, yielding an
average improvement of 0.002. However, for one measure (tf*idf), the improvement is 0.063

which brings its RMSE score close to the lowest of all BOW metrics.

TABLE 5.1. BOW features with question demoting (QD). Pearson’s correla-
tion, root mean square error (RMSE), and median RMSE for all individual
questions. Note that the discrepancy on several scores (Lesk, HSO, RES, LCH)
is due to a normalization error in an early version of the system.

MM2009 MM2011

r r w/ QD |RMSE w/ QD | Med. RMSE w/ QD
Lesk 0.363 | 0450 0462 | 1.034 1.050 0.930 0.919
JCN 0450 | 0443 0461 | 1.022 1.026 0.954 0.923
HSO 0.196 | 0.441 0456 | 1.036 1.034 0.966 0.935
PATH 0.441 0436 0457 | 1.020 1.030 0.940 0.918
RES 0252 | 0409 0431 | 1.045 1.035 0.996 0.941
Lin 0392 0382 0407 | 1.069 1.056 0.981 0.949
LCH 0.223 | 0.367 0.387 | 1.068 1.069 0.986 0.958
WUP 0337 0325 0.343 | 1.090 1.086 1.027 0.977
ESA Wikipedia | 0468 |0.395 0401 | 1.031 1.086 0.990 0.955
LSA Wiki-CS 0463 |0.328 0.335 | 1.065 1.061 0.951 1.000
tP*idf 0.365 | 0281 0.327 | 1.085 1.022 0.991 0.918
Avg.grade N/A | N/A NJ/A | 1.097 1.097 0.973 0.973

Looking at the actual distribution of the tf*idf scores, it has been observed that this

measure (after isotonic regression) produces scores entirely within the range [2.5 to 5| with

ISpecifically, the Pool Adjacent Violators Algorithm (PAVA) as implemented by Dr. Razvan Bunescu is
used.

40

over 900 scores between 4.25 and 4.75. Given the bias inherent in this dataset, it is likely to
be a good strategy for reducing error, but is not necessarily an indicator of true discriminative
ability. For reference, I include here (in Table 5.2) the results of assigning the same grade to
every student for all 11 grades awarded by the system (0, 0.5, ..., 5). The average grade (as
determined on the training data) is also included for each question. The average grade was
selected as a baseline as it is the constant value with the minimum RMSE for the training
data.

TABLE 5.2. The simplest baselines possible — always guessing the same value.
Note that in this case correlation statistics are undefined, so they are not
reported here.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 | average
RMSE 432 384 337 290 244 2.01 1.61 129 1.11 1.14 1.37| 1.10
Accuracy (w/in 0.5) | 1.1% 1.6% 2.5% 6.4% 11% 16% 20% 24% 31% 72% 63% | 31%

5.2. Alignment Pipeline

In the first stage (Section 5.3), the system is provided with the dependency graphs
for each pair of instructor (A4;) and student (A;) answers. For each node in the instructor’s
dependency graph, I compute a similarity score for each node in the student’s dependency
graph. This score is based upon a set of lexical, semantic, and syntactic features applied
to both the pair of nodes themselves and their corresponding subgraphs — for instance, the
sets of nodes and edges reachable from a starting node assuming that a governor-dependent
relationship represents a directional edge from the governor to the dependent. The scoring
function is trained on a small set of manually aligned graphs using the averaged perceptron
algorithm.

In the second stage (Section 5.4), the node similarity scores calculated in the previous
stage are used to weight the edges of a bipartite graph where the nodes of A; are on one side
and the nodes of A, are on the other. I then apply the Hungarian algorithm to find both an
optimal matching and the score associated with such a matching. Question demoting (see

Section 5.1) is optionally applied to this step as well (with some modification as described

below).

41

FIGURE 5.1. Pipeline model for scoring short-answer pairs

{o(x;xs)} Node Maichi?g Model | {f(x,xs)} _| Graph Alignment Model Y, 4
(xix5) €AXAg f(X;,Xs) = W'Q(X;,Xs) (xixs) €A XA Hungarian algorithm “A,) -
Answer Grading Model | g(A;A)
] 9(AAS) = uY(AA)
Text Similarity Models | -4 S\PVPP‘ s
BOW measures

In the final stage (Section 5.5), SVM-based machine learning is employed to produce
an overall grade based upon the alignment scores found in the previous stage as well as the

results of several semantic BOW similarity measures (Section 4.1).

5.3. Node Alignments

Dependency graphs for both the student and instructor answers are generated us-
ing the Stanford Dependency Parser [27] in collapse/propagate mode. The graphs are fur-
ther post-processed to propagate dependencies across the "APPOS" (appositive) relation,
to explicitly encode negation, part-of-speech, and sentence ID within each node, and to
add an overarching ROOT node governing the main verb or predicate of each sentence
of an answer. The final representation is a list of (relation, governor, dependent) triples,
where governor and dependent are both tokens uniquely described by the tuple (senten-
celD:token:POS:wordPosition). For example: (nsubj, 1:provide:VBZ:4, 1:program:NN:3)
indicates that the noun "program" is a subject in sentence 1 whose associated verb is "pro-
vide."

If the dependency graphs output by the Stanford parser are considered to be directed
(minimally cyclic) graphs,? it is possible to define for each node x a set of nodes N, that are
reachable from x using a subset of the relations (i.e. edge types)®. The term "reachable" is
variously defined in four ways to create four subgraphs defined for each node. These are as

follows:

e NV : All edge types may be followed

2The standard output of the Stanford Parser produces rooted trees. However, the process of collapsing and
propagating dependences violates the tree structure which results in a tree with a few cross-links between
distinct branches.

3For more information on the relations used in this experiment, consult the Stanford Typed Dependencies
Manual at http://nlp.stanford.edu/software/dependencies manual.pdf

42

e N1: Alledge types except for subject types, ADVCL, PURPCL, APPOS, PARATAXIS,
ABBREV, TMOD, and CONJ

e N2 : All edge types except for those in N! plus object/complement types, PREP,
and RCMOD

e N3 : No edge types may be followed (This set is the single starting node)

Subgraph similarity (as opposed to simple node similarity) is a means to escape the
rigidity involved in aligning parse trees while making use of as much of the sentence structure
as possible. Humans intuitively make use of modifiers, predicates, and subordinate clauses
when determining that two sentence entities are similar. For instance, the entity-describing
phrase "men who put out fires" matches well with "firemen," but the words "men" and
"firemen" have less of an inherent similarity. It remains to be determined how much of
a node’s subgraph will positively enrich its semantics. In addition to the complete N?
subgraph, N! and N? were included to tighten the scope of the subtree by first removing
more abstract relations, then sightly more concrete relations.

A total of 68 features have been employed to train the machine learning system
to compute node-node (or more specifically, subgraph-subgraph) matches. Of these, 36
are based upon the semantic similarity of the four subgraphs defined by NE-S AL eight
WordNet-based similarity measures listed in Section 4.1 plus the LSA model?* are used to
produce these features. The remaining 32 features are lexico-syntactic features® defined only
for N2 and are described in more detail in Table 5.4.

[have used ¢(z;, ;) to denote the feature vector associated with a pair of nodes
(x;,xs), where x; is a node from the instructor answer A; and x; is a node from the student
answer A. A matching score can then be computed for any pair (x;, z,) € A; x Ag through
a linear scoring function f(z;, x,) = wl¢(z;,2,). In order to learn the parameter vector w,

the averaged version of the perceptron algorithm was used |23, 33].

4LSA experiments performed on the MM2011 dataset use only the domain-focused subset of a full Wikipedia
dump as described in Section 4.2.1. Note also that a disk crash required me to use a newer version of
Wikipedia that was 1.8GB after filtering for domain.

SNote that synonyms include negated antonyms (and vice versa). Hypernymy and hyponymy are restricted
to at most two steps).

43

TABLE 5.3. Perceptron training for node matching

0.set w0, W<+ 0,n+0

1. repeat for T epochs:

2 foreach (A;; Ay):

3 foreach (z;,xs) € A; x Ag:

" if sgn(w? oz, 2.)) # sgn(Alzi, z,):
5. set w < w + A(z;, x5) (x4,)

6 set wWew+w,n<—n+1

7. return w/n.

TABLE 5.4. Subtree matching features used to train the perceptron

Name Type # features Description

RootMatch | binary 5 Is a ROOT node matched to: ROOT, N, V, JJ, or Other
Lexical binary 3 Exact match, Stemmed match, close Levenshtein match
POSMatch binary 2 Exact POS match, Coarse POS match

POSPairs binary 8 Specific X-Y POS matches found

Ontological | binary 4 WordNet relationships: synonymy, antonymy, hypernymy, hyponymy
RoleBased binary 3 Has as a child - subject, object, verb

VerbsSubject | binary 3 Both are verbs and neither, one, or both have a subject child
VerbsObject | binary 3 Both are verbs and neither, one, or both have an object child
Semantic real 36 Nine semantic measures across four subgraphs each

Bias constant 1 A value of 1 for all vectors

Total 68

As training data, a subset of the student answers was randomly sampled in such a way
that the set was roughly balanced between good scores, mediocre scores, and poor scores.
Each node pair (x;,zs) was then manually annotated as matching, i.e. A(x;,x;) = +1, or
not matching, i.e. A(z;, ;) = —1. Overall, 32 student answers in response to 21 questions
with a total of 7303 node pairs (656 matches, 6647 non-matches) were manually annotated.
The pseudocode for the learning algorithm is shown in Table 5.3. Once they had been used
to train the perceptron, these 32 student answers were removed from the dataset, were not
used as training further along in the pipeline, and were not included in the final results.
After training for 50 epochs,® the matching score f(z;,z;) is calculated (and cached) for
each node-node pair across all student answers for all assignments.

For the purpose of this experiment, the scores associated with a given node-node
matching are converted into a simple yes/no matching decision where positive scores are
considered a match and negative scores a non-match. The threshold weight learned from
the bias feature strongly influences the point at which real scores change from non-matches

6This value was chosen arbitrarily and was not tuned in any way.

44

to matches, and given the threshold weight learned by the algorithm, an F-measure of 0.72,
with precision(P) = 0.85 and recall(R) = 0.62 can be computed. However, as the perceptron
is designed to minimize error rate, this may not reflect an optimal objective when seeking
to detect matches. By manually varying the threshold, it is possible to find a maximum
F-measure of 0.76, with P=0.79 and R=0.74. Figure 5.2 shows the full precision-recall curve

with the F-measure overlaid.

FIGURE 5.2. Precision, recall, and F-measure on node-level match detection

+ PRk b S 1 T i
" ’ emy Precision =======
Y F-Measure
----- P Thresh0|d QT

0.8 (TR 4

Score

0.2 |-

0 L L L L
0 0.2 0.4 0.6 0.8 1

Recall

5.4. Graph Alignment

Once a score has been computed for each node-node pair across all student /instructor
answer pairs, I attempt to find an optimal alignment for the answer pair by treating the
answer pair as a bipartite graph in which each node in the student answer is represented
by a node on the left side of the bipartite graph and each node in the instructor answer
is represented by a node on the right side. The score associated with each edge is the
score computed for each node-node pair in the previous stage. The bipartite graph is then
augmented by adding dummy nodes to both sides which are allowed to match any node
with a score of zero. An optimal alignment between the two graphs is then computed
efficiently using the Hungarian algorithm. Note that this results in an optimal matching,
not a mapping, so that an individual node can be associated with at most one node in the

other answer.

45

At this stage I also compute several alignment-based scores by applying various trans-

formations to the input graphs, the node matching function, and the alignment score itself.

The first and simplest transformation involves the normalization of the alignment
score. While there are several possible ways to normalize a matching such that longer answers
do not unjustly receive higher scores, I have opted to simply divide the total alignment score

by the number of nodes in the instructor answer.

The second transformation scales the node matching score by multiplying it with the
idf" of the instructor answer node, i.e. replace f(x;, x,) with idf (x;) * f(x;, z,).

The third transformation — question demoting — involves removing from the bipartite
graphs, of both the instructor answer and the student answer, any words found in the

question. The justification for this was described more in Section 5.1.

The application of these three transformations leads to a total of eight transform
combinations, and therefore eight different alignment scores. For a given answer pair (A;, Ay),

the eight graph alignment scores are assembled into a feature vector ¥ (A;, As).

Before applying any machine learning techniques, I first test the quality of the eight
graph alignment features 1g(A;, As) independently. Results indicate that the basic alignment
score performs comparably to most BOW approaches. The introduction of idf weighting
seems to degrade performance somewhat, while introducing question demoting causes the
correlation with the grader to increase while also increasing RMSE somewhat. The four
normalized components of g (A;, As) are reported in Table 5.5.

TABLE 5.5. Alignment feature/grade correlations using Pearson’s r and two

RMSE measures. Results are also reported when inverse document frequency
weighting (IDF) and question demoting (QD) are used — alone and in conjunc-

tion.
Standard w/IDF w/ QD w/ QD+IDF
Pearson’s r 0.411 0.277 0.428 0.291
RMSE 1.018 1.078 1.046 1.076
Median RMSE | 0.910 0.970 0.919 0.992

"nverse document frequency, as computed from the British National Corpus (BNC)

46

5.5. Machine Learning

In the hopes of exploiting the various advantages of both bag-of-words approaches
(Section 4.1) and the structure-aware alignment module (Section 5.4), each of these are used
as features in a Support Vector Machine (SVM) to produce a combined real-number grade.
In addition, an Isotonic Regression (IR) model is built to transform the computed output

scores onto the original [0..5] scale for ease of comparison.

An SVM, in its simplest form, is a maximum margin binary classifier. It takes a
series of inputs (in one of two categories) and maps each one to a point in high dimensional
space. It then finds the hyperplane in that space that separates data points based upon their
category. If the points are linearly separable, the hyperplane is guaranteed to be as far from
a point in either dataset as possible. Unseen inputs can then be classified based upon which
side of this hyperplane they fall on. In this work, I utilize and compare three extensions
to the SVM model — SVM for regression (SVR), ranking SVM, and support vector ordinal
regression. An in-depth analysis of these extensions is beyond the scope of this work, but

interested readers are here referred to the relevant literature 21, 49, 92].

5.5.1. SVM Features and Implementations

The alignment scores g (A;, A) are combined with the scores ¥p(A;, A;) from the
lexical semantic similarity measures into a single feature vector 1¥(A;, A) = [a(A;i, As)|vp(A;, As)].
The feature vector ¥g(A;, As) contains the eight alignment scores found by applying the
three transformations in the graph alignment stage. The feature vector ¥ p(A;, As) consists
of eleven semantic features — the eight knowledge-based features plus LSA, ESA and a vec-
tor consisting only of tf*idf weights — both with and without question demoting. Thus, the
entire feature vector ¥(A;, As) contains a total of 30 features.

An input pair (4;, A,) is then associated with a grade g(A;, A,) = uTy(A4;, A,) com-
puted as a linear combination of features. The weight vector u is trained to optimize per-

formance in three scenarios:

Regression: An SVM model for regression (SVR) is trained using as target function the

47

grades assigned by the instructors using the libSVM ® implementation of SVR, with tuned
parameters.

Ranking: An SVM model for ranking (SVMRank) is trained using as ranking pairs all
pairs of student answers (Ag, A;) such that grade(A;, As) > grade(A;, A;), where A; is the
corresponding instructor answer using the SVMLight ° implementation of SVMRank with
tuned parameters.

Ordinal Regression: An SVM model for ordinal regression (SVORIM) is trained using as a
target function the grades mapped to a [1..11] scale. I employ the package implemented by
Hsuan-Tien Lin'® with tuned parameters.

In all cases, the parameters (for cost C' and tube width €) were found using a grid
search. At each grid point, the training data was partitioned into 5 folds which were used to
train a temporary SVM model with the given parameters. The regression packages selected
the grid point with the minimal mean square error (MSE), while the SVMRank package
tried to minimize the number of discordant pairs. The parameters found were then used to

score the test set — a set not used in the grid training.

5.6. Results

The SVM components of the system are run on the full dataset, retraining once
for each of the 10 assignments and 2 examinations (for a total of 12 assignments). Each
assignment is scored independently with ten of the remaining eleven assignments used to
train the SVM system. For each assignment, one additional assignment is held out for later

use in the development of an isotonic regression model (see Figure 5.3).

FIGURE 5.3. Dependencies of the SVM/IR training stages

Features{ A - Ten Folds j
SVMModel [A-Ten Fold
IR Model [A - Ten Folds j

8http:/ /www.csie.ntu.edu.tw/ cjlin/libsvm /

%http:/ /svmlight joachims.org/
Ohttp:/ /www.work.caltech.edu/ htlin/program /libsvm/

48

All SVM models were trained using a linear kernel.!! Results from all three SVM

implementations are reported in Table 5.6 along with a selection of other measures. Note

that the RMSE score was computed after performing isotonic regression on the SVMRank

results, but that it was unnecessary to perform an isotonic regression on the SVR and

SVORIM results as the system was trained to produce a score on the correct scale.

I report the results of running the systems on three subsets of features ¥ (A;, As):

BOW features)p(A;, As) only, alignment features g (A;, As) only, or the full feature vector

(labeled "Hybrid"). Finally, three subsets of the alignment features are used: only unnor-

malized features, only normalized features, or the full alignment feature set.

TABLE 5.6. The results of the SVM models trained on the full suite of BOW
measures, the alignment scores, and the hybrid model. The terms "normal-
ized," "unnormalized," and "both" indicate which subset of the 8 alignment
features were used to train the SVM model. For ease of comparison, each
section includes the scores for the inter-annotator agreement (IAA), the "Av-
erage grade" baseline, and two of the top performing BOW metrics — both
with question demoting.

Unnormalized | Normalized Both
TAA | Avg. grade tf*idf Lesk || BOW | Align Hybrid | Align Hybrid | Align Hybrid
SVMRank
Pearson’s r 0.586 0.327 0.450 || 0.480 | 0.266 ~ 0.451 | 0.447 0.518 | 0.424 0.493
RMSE 0.659 1.097 1.022 1.050 || 1.042 | 1.093 1.038 | 1.015 0.998 | 1.029 1.021
Median RMSE 0.605 0.973 0.918 0.919 || 0.943 | 0.974 0.903 | 0.865 0.873 | 0.904 0.901
Accuracy (w/in 0.5) | 0.807 0.309 0.639 0.644 || 0.634 | 0.534 0.626 | 0.644 0.662 | 0.624 0.646
SVR
Pearson’s r 0.586 0.327 0.450 || 0.431 | 0.167 0.437 | 0.433 0.459 | 0.434 0.464
RMSE 0.659 1.097 1.022 1.050 || 0.999 | 1.133 0.995 | 1.001 0.982 | 1.003 0.978
Median RMSE 0.605 0.973 0.918 0.919 || 0.910 | 0.987 0.893 | 0.894 0.877 | 0.886 0.862
Accuracy (w/in 0.5) | 0.807 0.309 0.639 0.644 || 0.621 | 0.493 0.626 | 0.636 0.632 | 0.630 0.617
SVORIM
Pearson’s r 0.586 0.327 0.450 || 0.454 | 0.076 0.462 | 0.447 0.490 | 0.444 0.502
RMSE 0.659 1.097 1.022 1.050 || 1.018 | 1.158 1.012 | 1.034 0.990 | 1.035 0.978
Median RMSE 0.605 0.973 0.918 0.919 || 0.957 | 1.044 0.962 | 0.906 0.898 | 0.915 0.915
Accuracy (w/in 0.5) | 0.807 0.309 0.639 0.644 || 0.641 | 0.703 0.640 | 0.658 0.652 | 0.663 0.666

5.7. Error Analysis

In this section, I explore the limitations of the existing system and seek to detect

any misleading artifacts in my experimental setup by performing an in-depth analysis of

HThe SVR system was also run using quadratic and radial-basis function (RBF) kernels, but the results did

not show consistent improvement over the simpler linear kernel.

49

individual errors. In the interest of brevity, [consider only the system using the libSVM
package with all features available for learning (bag-of-words, normalized alignment data,
and unnormalized alignment data). This system configuration resulted in the lowest error
rate (RMSE), is transparent given the weight vector, and utilizes the full set of features

available. In theory, this system should be making the best decisions.

5.7.1. Analysis Methodology

When using this system, 567 student responses (24.9%) were given a grade more than
1 point away from the average score of the two graders. Of these, forty-eight (48) were more
than 2.5 points away from the correct score. 1 have analyzed the responses associated with
these 48 errors as well as 26 responses chosen randomly with an error between 1 and 1.75,
and 26 responses chosen randomly with an error between 1.75 and 2.5. These 100 errors can
be attributed to twelve different causes or limitations, which is described (with examples)
below. The frequency of each type of error can be found in Table 5.7 lit based upon the

magnitude of the error.

TABLE 5.7. Counts for each error type. The pattern of errors differs based
upon magnitude of error, so they are shown divided here.

1.0 to 1.75 1.75 to 2.5 over 2.5 | Full Set
Unreachable Lows 1 8 23 32
BOW Tricked 6 14 9 29
No Answer 0 0 15 15
Within Grade Range 5 1 0 6
Symbolic Response 1 3 0 4
Alignment Penalty 3 0 0 3
Unmatched Phrases 3 0 0 3
Over-normalization 3 0 0 3
Contradictions 1 0 1 2
Bounds Irregularity 1 0 0 1
Converse Topic 1 0 0 1
Spelling Error 1 0 0 1
Total 26 26 48 100

5.7.2. Error Descriptions

Two of the error categories involve simple mistakes that can and should be handled

in post-processing.

20

[No Answer| Whenever a student fails to respond to a question, the content-delivery
system produces the text "Not Answered." The system treats this like any other text,
but should instead detect this as a special case. This is responsible for 15 large errors.
|[Bounds Irregularity| In this case, the system has produced a score above 5.0 (or below
0). Only one case of this error was found in this sample, but it certainly contributes
to error unnecessarily and may also affect lower-magnitude errors (with less than 1.0

error).

Some errors are due to well-understood natural language processing issues that have

not been integrated into the current system.

[Spelling Errors| An incorrectly spelled word failed to match correctly using either the
BOW measures or the alignment measures. Example: (7.4.21) "by reference" fails to
match "by refrenece" [sic|.
[Unmatched Phrases| Multi-word phrases fail to produce an alignment match. Ex-
ample: (2.5.9)

e Question: How many constructors can be created for a class?

e Answer: Unlimited number.

e Student: as many as you want
The phrase "as many as you want" should have been matched with the word "unlim-
ited" but the structures of the two phrases are so different as to make detecting this

match difficult.

Two others are more difficult to approach, in that some knowledge of the outside

word is required in order to link an answer with the given response.

[Symbolic Response| In some cases, students would respond using mathematical sym-
bols that the system is not prepared to analyze. Example: (12.10.7)
e Question: How many steps does it take to search a node in a binary search tree?
e Answer: The height of the tree.

e Student: 2ii where n is the # of levels the binary tree has

ol

[Converse Topic| The instructor answer and the student answer solve the same ques-
tion from different sides and have very little semantic overlap. Example: (7.2.25)

e Question: What is the main advantage of linked lists over arrays?

e Answer: The linked lists can be of variable length.

e Student: The size of array is restricted to declaration. Insertion or Deletion of

values in middle of // array is not possible.

While the student technically described what the disadvantages were associated with
an array, both graders gave a full score to this student, but the system could not

reasonably infer the the student and instructor gave the same answers.
One category suggests the difficulty of the grading task itself.

[Within Grade Range| The two graders gave vastly different scores and the system
was very near to one of the graders. Example: (4.4.7)
e Question: What is the difference between an array declared as static, and one
that is not?
e Answer: The arrays declared as static live throughout the life of the program;
that is, they are
initialized only once, when the function that declares the array it is first called.
e Student: a static array has pre-runtime size and that size cannot be changed. A
dynamic array gets its size at runtime.
e Scores: 1 (Grader 1), 5 (Grader 2), 3 (Average), 4.02 (System)
Whenever a wide gap exists between the two annotators (greater than 1.0 almost 20%
of the time), it is impossible to know whether the system really should support one
grader over the other, or if it should be in between. Sometimes assigning a response
to this error was a judgement call, as it appeared that one of the annotators fell into
the trap of skimming or looking for lexical overlap. Human error or inconsistency is

always a possibility, which is one advantage of an automated system.

Three types of error reiterate the limitations of the BOW-approach and lay bare the

need for a deeper, syntactic analysis of the text.

52

[Contradictions| The student produces a correct answer, but then continues the an-
swer in such a way that the answer becomes invalid. Many approaches detect the
correct answer without being aware of the spoilage associated with the contradiction.
Example: (10.3.7)
e Question: What is a leaf?
e Answer: A node that has no children.
e Student: A leaf is a node with children, it is a terminating node.
The phrase "terminating node" would be correct on its own, but the fact that the
student explicitly negated the instructor answer was decisive.
[BOW Tricked| This is a very broad category, that simply indicates that many of the
features (esp. bag-of-words features) believed that student answer was very similar
to the instructor answer. However, this is misleading due to a deeper analysis of the
text. Examples: (3.3.13) and (8.7.10)
e Question: How does the compiler handle inline functions?
e Answer: [t makes a copy of the function code in every place where a function
call is made.
e Student: it treats them as the same function.
e Question: What operations would you need to perform to find a given element
on a stack?
e Answer: Pop all the elements and store them on another stack until the element
is found, then // push back all the elements on the original stack.
e Student: pop and push
In these two cases, the presence of several high-content words "function" or "push" /"pop"
tricked the system into believing that the student had provided a correct answer,
without realizing that more information was needed.
|Over-normalizations| The system detects a correct and crucial alignment, but the
alignment scores are so low as to be practically ignored. Example: (12.5.20)

e Question: What is the advantage of linked lists over arrays?

23

e Answer: Linked lists are dynamic structures, which allow for a variable number
of elements to be // stored.
e Student: linked lists do not have a memory constraint other than total memory

"variable" and "do not have a

e Alignments: Among other things the phrases
memory constraint" match, but // the benefits of the alignment are minimal

due to the many elements that do not match.

Finally, two severe limitations are due to the selection of features available for learning.
All of these features should correlate positively with textual similarity —i.e. as the measures
become more positive, the chance of a correct score should improve. This means that in the
absence of any evidence of similarity the feature values will all be very close to zero, and the
final result will be very close to the SVM bias value. For all 12 models built (one per fold),
the bias value is between 3.2 and 3.8, so final scores tend to be clustered within this region.
Due to the skewed nature of the training data — few examples with grades below 3 — this
is a good learning strategy for minimizing error, but does not clearly indicate the ability to

distinguish good answers from poor ones.

|[Unreachable Lows| Since there is no feature meant to correlate with textual dissim-
ilarity, it is not possible for the SVM system to produce very low scores. Lack of
similarity results in scores near the bias.
[Alignment Penalty| Roughly half of the feature weights, including those of many of
the simple alignment features are negative. In particular, the weight associated with
a non-demoted alignment, unnormalized, with IDF scaling is below -1.0 in all models.
In some cases, this results in a good alignment negatively impacting the overall score.
Example: (2.4.15)
e Question: When does C++ create a default constructor?
e Answer: If no constructor is provided, the compiler provides one by default. If
a constructor is defined // for a class, the compiler does not create a default
constructor.

e Student: When no constructor exists when one is needed, a parameterless default

o4

constructor is declared.
e Alignment Scores: 0.40%-0.38 + 0.34*%0.69 + 0.28*-1.65 + 0.21*0.27 + 0.21*0.54
+ 0.26*0.07 + 0.03*0.66 + 0.02*0.42 = -0.17

25

CHAPTER 6
SEMEVAL2012 AND OTHER DATASETS

Excluding a few grading-specific modifications (such as pseudo-relevance feedback
and question demoting) the techniques described in this thesis are equally applicable to
non-grading short text similarity tasks. In this chapter, I explore the application of these
techniques to the closely related tasks of detecting semantic textual similarity, textual en-
tailment, and paraphrase. One benefit to such a study is that several datasets are publicly
available and have been widely used by researchers for a number of years (see Section 3.2).
Many existing systems have been tested using each of these datasets which provides a chance

to compare this system’s results with those of others in the field.

[first detail a joint submission to the SemEval 2012 Semantic Text Similarity (STS)
Task, which included many of the components described in Chapters 4 and 5. I then explore
the capabilities of our joint system disentangled from the contributions of the remainder of
the team. Finally, I show the results of applying this system to the rest of the datasets

described in Section 3.2 and analyze the results.

6.1. SemEval 2012 - Semantic Textual Similarity (Task 6)

The STS task website' describes the semantic textual similarity (STS) task as being
related to both textual entailment and paraphrase detection, but different in two key ways.
First, STS assumes a bidirectional relationship, which is not the case for entailment. Given
the two sentences "Booth killed Lincoln" and "Lincoln is dead," it is clear that the first
entails the second, but not the other way around. Second, STS assumes a graded response
where both entailment and paraphrase are binary decisions. For the SemEval task, the gold

standard scores are within the range [0..5].

Each team was allowed to train using the development set for one month before the

test data was released. Teams were allowed only five days with the test data before they

http://www.cs.york.ac.uk /semeval-2012 /task6/

26

were required to submit their predicted scores for the data set. Up to three sets of scores
per team were allowed.

Thirty-five teams submitted a total of 88 system runs.? At the time of submission,
the method of evaluation was not entirely clear, but after the fact, the contest organizers
indicated that evaluation, using Pearson’s correlation coefficient, would be carried out in
three ways. First, all five components of the dataset were concatenated and correlation
across the whole dataset was found (labeled "ALL" in Table 6.1). Second, a correlation
coefficient was calculated for each of the five components individually before finding the
weighted mean (reported as "Mean") in Table 6.1). Finally, the output for each dataset was
separately normalized, using the linear least squares method before computing the Pearson’s
correlation coefficient for the concatenated dataset. Due to its complexity, and for reasons

of space, I have elected not to include this score in Table 6.1.

6.1.1. Our STS Submission

Our team consisted of three individuals — Carmen Banea, Dr. Samer Hassan, and
myself — under the supervision of Dr. Rada Mihalcea. Our submission [12] can be described
as a combination of three subsystems which independently produced a set of features used as
training for a machine learning system. These three feature components were the knowledge-
based similarity scores described in Section 4.1.1, the graph alignment scores described in
Section 5.4, and a set of corpus-based similarity features including tf*idf, latent semantic
analysis (LSA), explicit semantic analysis (ESA), and salient semantic analysis (SSA), which
was the primary contribution of my teammates. An analysis of SSA is beyond the scope of
this work, but details can be found in our system description paper [12] and, to a greater
extent, in the publications of my colleague Dr. Hassan |41].

It should be pointed out here that for both the knowledge-based and graph-alignment
features the system setup has changed slightly from previous chapters. The Hirst & St. Onge
metric was discarded for reasons of time, both as a simple feature and as a feature in the
alignment system. Our LSA models were retrained on a newer Wikipedia dump (again set to

2Some of these were not published officially due to being submitted late or other issues.

o7

the CS domain as described in Section 4.2.1) and are now built using the SemanticVectors
implementation (http://code.google.com/p/semanticvectors/) instead of Infomap. These
changes are maintained for all experiments reported in this chapter.

Given this set of real-valued features (knowledge-based, corpus-based, and graph-
alignment), the training of our machine learning systems proceeded in one of two ways °.
Either the full training set was used to train our machine learning models (labeled as "Com-
bined" training) or the individual components of the dataset were used for the corresponding
component in the testing set (labeled as "Individual" training). For instance, examples taken
from the MSRpar corpus in the testing dataset were scored using a model built only using ex-
amples from the Microsoft Research Paraphrase (MSRP) corpus in the training dataset. The
same is true for the MSRvid and SMTeuroparl components. For the two surprise datasets
(OnWN and SMTnews), the combined training dataset was used in both cases.

In addition, two different machine learning algorithms were employed in our submis-
sion. First, we used support vector regression (SVR) with a Pearson VII function-based
kernel. We also attempted to produce a model using the M5P decision tree algorithm. Since
each team was permitted to submit up to three runs, we submitted the results of the SVR
system using two methods of training (IndividualRegression and CombinedRegression) as
well as the M5P system using only the "Individual" method of training (IndividualDec-
Tree). Results for these submissions (as supplied by the contest organizers) can be found at
the top of Table 6.1.

Our top submission (IndividualRegression) was ranked 5th among all 88 submissions
according the the "ALL" evaluation criterion and our top correlation coefficient (0.7846)
required around 5% improvement to surpass the challenge’s top ranked submission (0.8239)*.

For the sake of comparison, Table 6.1 includes also the results of running all of the
similarity metrics described in Chapters 4 and 5 on the testing dataset using the "Individual"

training method where applicable. For the machine learning component reported here, [have

3Note that this is different from the machine learning described in Section 5.5 and was carried out by my
colleague, Carmen Banea.

“Full results can be found at: http://www.cs.york.ac.uk/semeval-2012/task6 /index.php?id=results-update

28

TABLE 6.1. Detailed evaluation results for the SemEval 2012 Semantic Text
Similarity task. The top section matches the scores published by the task
organizers. The remaining sections indicate the scores (and ranks) that would
have been achieved if the indicated system were submitted to this task.

Run ALL | Rank | Mean | RankMean || MSRpar | MSRvid | SMTeuroparl | OnWN | SMTnews
Team — Individual Regression 0.7846 5| 0.6162 13 0.5353 | 0.8750 0.4203 | 0.6715 0.4033
Team — Individual DecTree 0.7677 9 | 0.5947 25 0.5693 | 0.8688 0.4203 | 0.6491 0.2256
Team — Combined Regression 0.7418 14 | 0.6159 14 0.5032 | 0.8695 0.4797 | 0.6715 0.4033
Wordnet JCN 0.4882 68 || 0.5323 55 0.4825 | 0.6494 0.4977 | 0.6216 0.2773
Wordnet LCH 0.3287 85| 0.5016 63| 0.5103| 0.5625 0.4952 | 0.5445 0.2975
Wordnet Lesk 0.4775 69 || 0.5507 51 0.4742 | 0.6401 0.5142 | 0.6404 0.3998
Wordnet Lin 0.4118 81| 0.5021 63| 0.4864| 0.5698 0.4987 | 0.5740 0.2730
Wordnet Path 0.4752 69 || 0.5491 52 0.4983 | 0.6652 0.5013 | 0.6206 0.3463
Wordnet Res 0.4200 78 || 0.5281 56 0.4777 | 0.6083 0.5069 | 0.6175 0.3284
Wordnet WUP 0.2312 89 | 0.4454 69 0.4939 | 0.4414 0.4716 | 0.4848 0.2572
LSA 0.5657 53 || 0.5380 53| 0.4289 | 0.6821 0.3965 | 0.6513 0.4218
ESA 0.5600 55 | 0.4760 67 0.2319| 0.7362 0.3634 | 0.5771 0.3855
tf*idf 0.5014 63 || 0.4752 67| 0.3646 | 0.6880 0.4751 | 0.4579 0.3158
Alignment 0.2216 89 || 0.3899 79| 0.3532| 0.4754 0.2220 | 0.4500 0.3780
Alignment — Norm 0.3133 86 || 0.4769 67 0.4469 | 0.4560 0.4395 | 0.5288 0.5179
Alignment — IDF 0.1450 89| 0.3253 86| 0.0896| 0.6787 0.1676 | 0.3265 0.2827
Alignment — IDF + Norm 0.2554 89 || 0.2887 87 0.0453 | 0.6152 0.2672 | 0.2462 0.2373
SVRBOW — only 0.7605 10 | 0.6008 22 0.5409 | 0.8051 0.5078 | 0.6250 0.3910
SV RUnnormalizedAlign 0.6510 37| 0.4149 74| 0.3586 | 0.7013 0.0018 | 0.4519 0.3876
SV RNormalizedAlign 0.7103 20 | 0.5209 58 0.4492 | 0.6453 0.4307 | 0.5179 0.5312
SV RFullAlign 0.6722 23 || 0.5293 55 0.4416 | 0.7120 0.4372 | 0.5021 0.5074
SV RUnnormalizedAlign + BOW || 0.5558 56 || 0.5192 59| 0.1467 | 0.8311 0.5156 | 0.6363 0.4168
SV RNormalizedAlign + BOW 0.7604 10 || 0.5912 29 0.4877 | 0.8276 0.4880 | 0.6246 0.3976
SV RFullAlign + BOW 0.6409 36 || 0.5292 55 0.2077| 0.8323 0.4891 | 0.6352 0.4106

considered only the support vector regression model (using the libSVM package). I have used
the parameters found after performing a grid search on the MM2011 dataset as described in
Section 5.5.1 and did not refine these parameters for any of the experiments reported in this
chapter®.

As expected, the runs our team submitted performed best on the whole, but were
outperformed (or matched) in some cases at the finer-grained level. Altogether, the regression
models described in Section 5.5 came closest to the team submission (esp. SVRBOW —only
and SV RNormalized Align+BOW). The only difference between these systems and the one
submitted was the lack of SSA as an available feature, a different support vector regression
learning implementation (libSVM vs Weka), and a different implementation of LSA/ESA
along with different training corpora. As it stands, my best SVR implementation would

have achieved 10th among all submissions according to the "ALL" evaluation metric.

5The cost and epsilon values were both set to 0.5.

29

For two of the datasets (SMTeuroparl and SMTnews), my system’s metrics signifi-
cantly outperformed the team submissions. For SMTeuroparl, almost all of the knowledge-
based measures (including tf*idf) outperformed the team’s machine learning systems and one
of the alignment features (Alignment — Norm) performed just as well. For the SMTnews
corpus, alignment seemed to play an even more important part. The same top-performing
alignment feature (Alignment — Norm) here outperformed the best team submission (by
28%), the best knowledge-based measure (by 30%), and the best corpus-based measure
(by 23%). Of course, this measure was itself improved upon by using machine learning,
though adding BOW features degraded performance here as well. Had my best measure

(SV RNormalizedAlign) been submitted it would have ranked 4th on the SMTnews corpus.

One may theorize that alignment has an especially important role to play in the
evaluation of machine translation (disproportionate to its role in textual similarity). For
a translation to be correct, it is much more important for the sentence structure to be
maintained than is the case for other similarity tasks (e.g. paraphrase). It may also be
the case that, in the context of machine translation, false synonyms due to incorrect word-
sense disambiguation (which can confound purely knowledge-based similarity models) are
particularly problematic, and so reducing the influence of the word-similarity models may

yield an advantage.

6.2. Additional Experiments

One of the long-term goals of this project has been to expand beyond computer-aided
assessment (which has a very narrow field of utility) into more general natural language
processing (NLP) tasks thus allowing lessons learned here to be applied more broadly. With
that in mind, I have instigated a portability study, in addition to the SemEval task, that
will provide a way to gage the effectiveness of my methodology when applied to the tasks of
detecting paraphrase, textual entailment, and textual similarity in general. All systems that
are listed for comparison in the following sections are described in Section 2.3. The system

setup for these experiments is the same as that described in the previous section.

60

TABLE 6.2. Li30 - Pairwise similarity of Miller-Goodenough terms

| System | Pearson’s r | RSME |

Wordnet JCN 0.8518 0.8114
Wordnet LCH 0.8293 0.7048
Wordnet Lesk 0.8671 0.7839
Wordnet Lin 0.9056 0.5367
Wordnet Path 0.8647 0.7111
Wordnet Res 0.8848 0.6728
Wordnet WUP 0.8044 0.7256
LSA 0.7637 0.8941
ESA 0.7522 0.9523
tf*idf 0.7517 0.7845
Alignment 0.6858 0.9411
Alignment — Norm 0.7141 0.9108
Alignment — IDF 0.6425 0.9604
Alignment — IDF + Norm 0.5777 1.0187
SVRBOW — only 0.8794 0.5188
SV RUnnormalized Align 0.5042 0.9422
SV RNormalizedAlign 0.6383 0.8409
SV RFullAlign 0.7528 0.7172
SV RUnnormalizedAlign + BOW 0.8855 0.5062
SV RNormalizedAlign + BOW 0.8745 0.5309
SV RFullAlign + BOW 0.8777 0.5236
SSA [41] 0.881 -

Roget’s 1987 Thesaurus [52] 0.8725 -

OMIOTIS [98] 0.856 -

STS [47] 0.853 .

Dynamic Time Warping [63] 0.841 -

Term Pair Heuristic [13] 0.83 -

STASIS [60] 0.816 -

6.2.1. Experiments on the Li30 Similarity Dataset

Beyond SemkEval, the first dataset under consideration was introduced by Li et al.
[60] and despite its small size has been widely adopted in the text similarity community.
A description of the dataset can be found in Section 3.2. For experiments on this dataset
scored on a |0..4] scale, I report Pearson’s correlation coefficient (as do most other researchers
to use this dataset) as well as the root mean squared error (RMSE). In order to compute
RMSE, all simple metrics (not including any SVR systems) are placed onto the appropriate
scale using isotonic regression which was performed by taking 5 folds and using 4 folds as
training to label the remaining 1 fold. SVR was trained using 5 folds in the same manner.

Results can be found in Table 6.2.

61

It would appear that the SVR system performs comparably to state-of-the-art systems
that have been evaluated on this dataset. For the most part, it can be said that the machine-
learning systems outperformed the simple measures except that the Lin measure seems to
comfortably surpass even the top-performing systems. It is not clear why this should be the
case, and the small size of the dataset suggests that this score may simply be an outlier.

In general the knowledge-based measures outperformed their corpus-based counter-
parts as well as the alignment features. Very little improvement is observed when combining
the alignment features with the BOW features in the SVR system. However, an analysis
performed on this dataset [13| suggests that sentence similarity (which is sensitive to changes
in structure) is not really what the annotators were measuring. Rather, the term similarities
(recall that the sentences here are definitions of the terms in the Rubenstein and Goode-
nough corpus) seem to have been germane to the task during annotation. It is thus not
surprising that a consideration of sentence structure may be less advantageous here than on

a less idiosyncratic dataset.

6.2.2. Experiments on the Lee50 Short Document Similarity Dataset

Arguably turning away from the sentence-similarity task, the system’s performance
was next assessed on the Leeb0 dataset. A description of this dataset can be found in Section
3.2. For experiments on this dataset scored on a [0..1] scale, I report Pearson’s correlation
coefficient (as do most other researchers to use this dataset) as well as the root mean squared
error (RMSE). Training for isotonic regression or SVR were performed as described in Section
6.2.1. Results can be found in Table 6.3.

From these results, one can see that the SVR systems far surpass the simpler metrics
and comfortably outperform the state-of-the-art systems that have evaluated on this dataset.
It can also be said that while alignment only scores (even with machine learning) can not
be considered high quality, their addition to the BOW-only SVR model yields a consistent
if subtle improvement for both evaluation metrics.

Also of note is the performance of the vector-based measures, especially ESA and

tf*idf. It may be concluded that as the size of the texts increases, the discriminative abilities

62

TABLE 6.3. Leeb0 - "short" document similarity corpus

| System | Pearson’s r | RSME |
Wordnet JCN 0.7334 0.6407
Wordnet LCH 0.7178 0.6534
Wordnet Lesk 0.7331 0.6291
Wordnet Lin 0.7181 0.6418
Wordnet Path 0.7401 0.6281
Wordnet Res 0.7284 0.6368
Wordnet WUP 0.6611 0.6655
LSA 0.6611 0.6641
ESA 0.7301 0.6003
tf*idf 0.7506 0.5638
Alignment 0.4702 0.7350
Alignment — Norm 0.4964 0.7375
Alignment — IDF 0.5835 0.6755
Alignment — IDF + Norm 0.5980 0.6783
SV RBOW — only 0.7856 0.6110
SV RUnnormalizedAlign 0.5784 0.8247
SV RNormalizedAlign 0.5914 0.8075
SV RFullAlign 0.5951 0.8028
SV RUnnormalizedAlign + BOW 0.7929 0.6016
SV RNormalizedAlign + BOW 0.7923 0.6030
SV RFullAlign + BOW 0.7930 0.6013
WikiWalk [106] 0.766 -
ESA-Gabrilovich [35] 0.72 -
SSA [41] 0.684 -
LSA-Lee et al. [56] 0.6 -

of sparse metrics such as tf*idf become more useful. On the other hand, I note that tf*idf has,
in addition to a solid correlation score, the absolute best error rate of all metrics considered
(by a wide margin). This suggests that rather than exhibiting a true advantage, the tf*idf

measure is exploiting the dataset’s skew towards low similarity scores.

6.2.3. Experiments on the RTE-3 Textual Entailment Dataset

I next sought to apply the techniques described in this thesis (many of which were
inspired by work in RTE) to the currently well-studied task of entailment detection using the
RTE-3 dataset which many quality systems have used to report their results. A description
of this dataset can be found in Section 3.2. For experiments on this dataset scored with
either a "yes" or a "no," I follow existing work in reporting accuracy, precision (in detecting
entailment), recall, and the Fl-measure. Rather than using an support vector machine

(SVM) regression model which would produce a real-valued score, I instead use the SVM

63

TABLE 6.4. RTE-3 - Textual entailment evaluated on the test portion of the
corpus (with SVM classification)

| System || Accuracy | Precision | Recall | F-measure ||
| Baseline - guess "yes" [0.5000 | 0.5000 [1.0000] 0.6667 ||

Wordnet JCN 0.6238 0.6004 |0.7971| 0.6849
Wordnet LCH 0.6350 0.6113]0.7922 | 0.6901
Wordnet Lesk 0.6350 0.6097 | 0.8020 0.6923
Wordnet Lin 0.6225 0.5909 |0.8582| 0.6999
Wordnet Path 0.6363 0.6155 |0.7751| 0.6861
Wordnet Res 0.6263 0.6049 |0.7824| 0.6823
Wordnet WUP 0.6350 0.6122 | 0.7873 0.6888
LSA 0.6100 0.6047 | 0.6919 0.6454
ESA 0.5938 0.5959 | 0.6455 0.6197
tf*idf 0.6225 0.6071 |0.7482| 0.6703
Alignment 0.5975 0.5973]0.6601| 0.6272
Alignment — Norm 0.5800 0.5629 |[0.8093 | 0.6640
Alignment — IDF 0.5763 0.5589 | 0.8234 0.6660
Alignment — IDF + Norm 0.5900 0.6085 |0.5623| 0.5845
SVCBOW — only 0.6325 0.6152 | 0.7506 0.6762
SV CUnnormalizedAlign 0.5788 0.6154 |0.4694 | 0.5326
SV CNormalizedAlign 0.5713 0.5982]0.4988 | 0.5440
SVCFullAlign 0.5713 0.6025 | 0.4743 0.5308
SV CUnnormalizedAlign + BOW || 0.6363 0.6185 [0.7531| 0.6792
SV CNormalizedAlign + BOW 0.6350 0.6149]0.7653| 0.6819
SVCFullAlign + BOW 0.6325 0.6162 | 0.7457 0.6748
8 Hickl et al. [43] 0.8038 | 0.8815 - -

COGEX [97] 0.7225 0.6741]0.8878| 0.7663
Nielsen et al. [75] 0.671 - - -

Tree Skeletons [102] 0.669 - - -

NatLog [20, 66| 0.6362 0.6374]0.6732| 0.6548

classification (SVC) model (in the libSVM package) to produce scores in [0,1]. Training for
the SVM was performed by using the training component of the dataset to build a model

and using the testing component for evaluation. Results are reported in Table 6.4.

Unlike the other datasets, the results reported here are far below the best rated
system reported at the RTE-3 Challenge itself [43], though it is competitive with several of
the less exceptional systems from the challenge including the Natural Logic system produced
at Stanford [66]. To some extent, this is surprising since entailment decisions are much
more dependant upon structural issues than paraphrase or general similarity. However, this
dataset may also include several "gotcha' type issues where the ability to detect contradiction

(even in the presence of similarity) may be required to make an intelligent entailment decision.

64

That said, the SVC systems that included the alignment features slightly outper-
formed the BOW-only SVC model in precision, recall, and F-measure, though this does not
appear to be a significant improvement. Also worth mentioning is the quality of a generally
poor measure (SVCUnnormalizedAlign). In this case, the measure produced scores with a
very high precision, suggesting that it was able to rate very structurally similar scores better

than the other measures under consideration.

6.2.4. Experiments on the MSRP Paraphrase Dataset

Finally, I consider the Microsoft Research Paraphrase Corpus (MSRP) which is easily
the most widely used of the datasets employed here. A description of this dataset can be
found in Section 3.2. For experiments on this dataset scored with either a "yes" or a "no,"
[follow existing work in reporting accuracy, precision (in detecting paraphrase), recall, and
the F1-measure. Training for the SVM classifier was performed as described in Section 6.2.3.
Results are shown in Table 6.5.

Before discussing the results of the experiments on this dataset, I here refer to a study
performed on it [13] which points out that all the best reported systems have approximately
the same Fl-measure (0.80-0.81) despite surface differences in accuracy, precision, or recall.
The authors of this study suggest that this indicates an upper limit to the effectiveness
of similarity-based systems as applied to paraphrase. Only systems that were specifically
designed for paraphrase such as Finch et al. [32] have been able to break this barrier reporting
an F-measure around 0.83.

With this in mind, my best SVC systems (as well as the Lin measure and uncharac-
teristically, the Alignment — Norm measure) achieve an F-measure in the 0.81-0.82 range.
The SVC systems that made use of alignment features are characterized by a high recall
here compared to the knowledge-based measures which display high precision. Although it
is outside the scope of this work, it would be interesting to perform an error analysis on this
dataset, to see what types of sentence pairs are enforcing this barrier (at most 0.75 accuracy)

on so many systems when the most-common-case baseline is relatively high at 0.66.

65

TABLE 6.5. MSRP - Evaluated on the test portion of the Microsoft paraphrase
corpus (with SVM classification)

| System | Accuracy | Precision | Recall | F-measure ||
| Baseline - guess "yes" [0.6649 | 0.6649 [1.0000] 0.7987 ||
Wordnet JCN 0.7154 0.7500 | 0.8586 0.8007
Wordnet LCH 0.7136 0.7314 |0.9005| 0.8072
Wordnet Lesk 0.7107 0.7407]0.8700| 0.8002
Wordnet Lin 0.7316 0.7493 | 0.8970 0.8165
Wordnet Path 0.7171 0.7435 |0.8778 | 0.8051
Wordnet Res 0.7206 0.7476 | 0.8761 0.8067
Wordnet WUP 0.7125 0.7420 | 0.8709 0.8013
LSA 0.6968 0.7125 |0.9127| 0.8003
ESA 0.6725 0.6785 |0.9651| 0.7968
tf*idf 0.6800 0.6785 |0.9869 | 0.8041
Alignment 0.7032 0.7188 | 0.9101 0.8032
Alignment — Norm 0.7177 0.7323 |0.9075 0.8106
Alignment — IDF 0.6649 0.6653 | 0.9991 0.7987
Alignment — IDF + Norm 0.6655 0.6665 |0.9956 | 0.7985
SVCBOW — only 0.7206 0.7271 | 0.9276 0.8152
SV CUnnormalizedAlign 0.6649 0.6647 |1.0000| 0.7986
SV CNormalizedAlign 0.7154 0.7207 [0.9346 | 0.8138
SVCFullAlign 0.7119 0.7229 |0.9197 | 0.8095
SV CUnnormalizedAlign + BOW || 0.7246 0.7345 [0.9171| 0.8157
SVCNormalizedAlign + BOW 0.7316 0.7459 |0.9040 | 0.8176
SVCFullAlign + BOW 0.7344 0.7457 0.9110| 0.8201
Finch et al. |32] 0.7496 0.7658 | 0.8980 0.8266
Liu et al. [64] 0.736 0.745 0.916 0.822
STS [47] 0.7260 0.7470 | 0.8910 0.8130
Qiu et al. [81] 0.720 0.725 0.934 0.816
Lexico-Syntactic Subsumption [88] || 0.7061 0.7207 |0.9111 | 0.8048
Mihalcea et al. [68] 0.703 0.696 0.977 0.813
OMIOTIS [98] 0.6997 0.7078 | 0.9340 0.8052

66

CHAPTER 7
DISCUSSION

Recall from Chapter 1 that I have sought the answers to six questions. Each question

will be revisited here to see what has been learned, and what still remains uncertain.

First, given a number of corpus-based and knowledge-based methods as previously
proposed for word and text semantic similarity, what are the measures that work best for the
task of short answer grading? While there are a number of word and text similarity measures
that have been proposed in the past, no previous work has considered a comprehensive
evaluation of all the measures for the task of short answer grading. I have filled this gap
by running comparative evaluations of several knowledge-based and corpus-based measures
on a data set of short student answers. The results (see Section 5.1) indicate that when
used without feedback, the scores obtained with the best knowledge-based measures (Lesk,
Jiang & Conrath, and Hirst & St. Onge) outperform the best corpus-based measures (latent
semantic analysis [LSA] and explicit semantic analysis [ESA]) in my recent experiments by a
significant margin® However, it should not be ignored that corpus-based approaches benefit
crucially from their language independence. It is much easier to create a large domain-

sensitive corpus than an equally beneficial language knowledge base (e.g. WordNet).

Second, given a corpus-based measure of similarity, what is the impact of the domain
and the size of the corpus on the accuracy of the measure? In my early work (see Section
4.2.1), it was found that significant improvements can be obtained for the LSA measure when
using a medium-sized, domain-specific corpus built from Wikipedia compared to a larger,
full Wikipedia corpus. This indicates that noise contributes to LSA error in a significant
way. In fact, when using LSA, the results suggest that the corpus domain may be much more
important than corpus size once a certain threshold size has been reached. These experiments

also clearly show that ESA works best when left alone, using all of the Wikipedia articles

T suspect that the forced change in training set contributed to the much poorer quality of the ESA and
LSA metrics for the MM2011 evaluations compared to those performed on MM2009. Further work should
be done to confirm this.

67

available as dimensions.

Third, to what extent is it possible to enhance the quality of the grading system
by supplementing the gold-standard answer with the answers of other students? It can
be seen from these experiments (see Section 4.2.2) that there may be some advantage to
automatically enhancing the instructor answer using other student answers. The greatest
improvement in Pearson’s correlation was 0.047 (or 10%). The limiting factor in this case
was the small number of student answers to select from. I believe this warrants further study
— particularly if a large (e.g. greater than 100 answers per question) short answer dataset is

ever made public for researchers.

Fourth, does the dependency parse structure of a text provide clues that can be
exploited to improve upon existing bag-of-words (BOW) methodologies for short answer
grading? It would seem that the rudimentary alignment features introduced here (see Sec-
tion 5.3) are not sufficient to act as a stand-alone grading system. However, even with a
very primitive attempt at alignment detection, I show that it is possible to improve upon
grade learning systems that only consider BOW features. The correlations associated with
the hybrid systems (esp. those using normalized alignment data) frequently show an im-
provement over the BOW-only support vector machine (SVM) systems. This is true for each

SVM system when considering either the correlation or the error metric.

Fifth, to what extent can machine learning be leveraged to improve upon existing
approaches to short answer grading? The SVM learning techniques used in this work are
clearly able to utilize multiple BOW measures to yield improvements over individual BOW
metrics (see Section 5.6). For example, the correlation for the BOW-only SVM model for
SVMRank improved upon the best BOW feature from .462 to .480. Likewise, using the
BOW-only SVM model for support vector regression (SVR) reduces the root mean squared

error by .022 overall compared to the best BOW feature.

Finally, can the methodologies I have proposed for short answer grading be success-
fully used to detect textual similarity, paraphrase, and entailment? Excluding the textual

entailment task where the results of this methodology were far below state-of-the-art sys-

68

tems, all of my experiments seem to suggest that SVM regression using knowledge-based
and corpus-based measures as features is a viable tactic, and more often than not adding
alignment-based features produces an improved system. Perhaps surprising is that in many
cases (esp. Li30 and MSRP), the knowledge-based measures alone perform admirably which

is further validation of the insights of our group’s earlier work in similarity |68|.

69

BIBLIOGRAPHY

[1] E. Agirre, D. Cer, M. Diab, and A. Gonzalez-Agirre, Semeval-2012 task 6: A pilot
on semantic textual similarity, In Proceedings of the 6th International Workshop on
Semantic Evaluation (SemEval 2012), in conjunction with the First Joint Conference
on Lexical and Computational Semantics (*SEM 2012)., 2012.

[2] V. Aleven, O. Popescu, and K.R. Koedinger, A tutorial dialogue system with knowledge-
based understanding and classification of student explanations, Working Notes of 2nd
[JCATI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Citeseer,
2001.

[3] L.LE. Allen and J. Seaman, Going the distance: Online education in the united states,
2011., Sloan Consortium (2011), 44.

[4] J.R. Anderson, A.T. Corbett, K.R. Koedinger, and Ray. Pelletier, Cognitive tutors:
Lessons learned, The journal of the learning sciences 4 (1995), no. 2, 167-207.

[5] I. Androutsopoulos and P. Malakasiotis, A survey of paraphrasing and textual entail-
ment methods, Arxiv preprint arXiv:0912.3747 (2009).

[6] E. Arnott, P. Hastings, and D. Allbritton, Research methods tutor: Evaluation of a
dialogue-based tutoring system in the classroom, Behavior Research Methods 40 (2008),
no. 3, 694-698.

[7] F.G. Ashby and N.A. Perrin, Toward a unified theory of similarity and recognition.,
Psychological review 95 (1988), no. 1, 124.

[8] G. Aston and L. Burnard, The bnc handbook: exploring the british national corpus
with sara, Edinburgh Univ Pr, 1998.

[9] Y. Attali and J. Burstein, Automated essay scoring with e-rater v. 2, Journal of Tech-
nology, Learning, and Assessment 4 (2006), no. 3, 1-31.

[10] Leo L. Azure, Test grading machine, 1966.

70

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

L.F. Bachman, N. Carr, G. Kamei, M. Kim, M.J. Pan, C. Salvador, and Y. Sawaki, A
reliable approach to automatic assessment of short answer free responses, 2002, pp. 1-4.
C. Banea, S. Hassan, M. Mohler, and R. Mihalcea, UNT: A supervised synergistic
approach to semantic text similarity, 2012.

Daniel Béar, Torsten Zesch, and Iryna Gurevych, A reflective view on text similarity,
Proceedings of the International Conference Recent Advances in Natural Language
Processing 2011 (Hissar, Bulgaria), RANLP 2011 Organising Committee, September
2011, pp. 515-520.

S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine,
Computer networks and ISDN systems 30 (1998), no. 1-7, 107-117.

S.M. Brookhart, Teachers’ grading practices: Meaning and values, Journal of Educa-
tional Measurement 30 (1993), no. 2, 123-142.

J. Burstein, The e-rater®) scoring engine: Automated essay scoring with natural lan-
guage processing., (2003).

J. Burstein, S. Wolff, and C. Lu, Using lexical semantic techniques to classify free-
responses, Breadth and depth of semantic lexicons (1999), 1-18.

P.G. Butcher and S.E. Jordan, A comparison of human and computer marking of short

free-text student responses, Computers & Education 55 (2010), no. 2, 489-499.

D. Callear, J. Jerrams-Smith, and V. Soh, CAA of Short Non-MC(@) Answers, Pro-
ceedings of the 5th International Computer Assisted Assessment conference (2001).
N. Chambers, D. Cer, T. Grenager, D. Hall, C. Kiddon, B. MacCartney, M.C. de Marn-
effe, D. Ramage, E. Yeh, and C.D. Manning, Learning alignments and leveraging nat-
ural logic, Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, Association for Computational Linguistics, 2007, pp. 165-170.

W. Chu and S.S. Keerthi, New approaches to support vector ordinal regression, Proceed-
ings of the 22nd international conference on Machine learning, ACM, 2005, pp. 145—
152.

71

[22]

23]

[24]

[25]

[26]

27]

28]

29]

[30]

[31]
32]

P.A. Cohen, J.A. Kulik, and C.L.C. Kulik, Fducational outcomes of tutoring: A meta-
analysis of findings, American educational research journal 19 (1982), no. 2, 237.

M. Collins, Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms, Proceedings of the 2002 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP-02) (Philadelphia, PA), July
2002.

L.H. Cross and R.B. Frary, Hodgepodge grading: Endorsed by students and teachers
alike, Applied Measurement in Education 12 (1999), no. 1, 53-72.

[. Dagan, O. Glickman, and B. Magnini, The pascal recognising textual entailment
challenge, Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognising Tectual Entailment (2006), 177-190.

M.C. de Marnefte, T. Grenager, B. MacCartney, D. Cer, D. Ramage, C. Kiddon, and
C.D. Manning, Aligning semantic graphs for textual inference and machine reading,
Proceedings of the AAAI Spring Symposium, Citeseer, 2007.

M.C. de Marneffe, B. MacCartney, and C.D. Manning, Generating typed dependency
parses from phrase structure parses, LREC 2006, 2006.

M.C. De Marneffe, A.N. Rafferty, and C.D. Manning, Finding contradictions in text,
Proceedings of ACL-08: HLT (2008), 1039-1047.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman, Indezing
by latent semantic analysis, Journal of the American society for information science
41 (1990), no. 6, 391-407.

W.B. Dolan and C. Brockett, Automatically constructing a corpus of sentential para-
phrases, Proc. of IWP, 2005.

C. Fellbaum, Wordnet, an electronic lexical database, The MIT Press, 1998.

A. Finch, Y.S. Hwang, and E. Sumita, Using machine translation evaluation techniques
to determine sentence-level semantic equivalence, Proceedings of the Third Interna-

tional Workshop on Paraphrasing (IWP2005), 2005, pp. 17-24.

72

[33]

[34]

[35]

136]

[37]

138]
[39]

40]

[41]

42]

Y. Freund and R. Schapire, Large margin classification using the perceptron algorithm,
Machine Learning 37 (1999), 277-296.

E. Gabrilovich and S. Markovitch, Qwvercoming the brittleness bottleneck using
wikipedia: Enhancing text categorization with encyclopedic knowledge, Proceedings of
the National Conference on Artificial Intelligence, vol. 21, Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2006, p. 1301.

, Computing Semantic Relatedness using Wikipedia-based Explicit Semantic
Analysis, Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence (2007), 6-12.

L.R. Gay, The comparative effects of multiple-choice versus short-answer tests on re-
tention, Journal of Educational Measurement 17 (1980), no. 1, 45-50.

D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan, The third pascal recognizing
textual entailment challenge, Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, Association for Computational Linguistics, 2007, pp. 1—
9.

N. Goodman, Seven strictures on similarity, Problems and projects (1972), 437-447.
A.C. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings, and R. Kreuz, Autotutor: A
simulation of a human tutor, Cognitive Systems Research 1 (1999), no. 1, 35-51.
A.D. Haghighi, A.Y. Ng, and C.D. Manning, Robust textual inference via graph match-
ing, Proceedings of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing, Association for Computational Linguistics,
2005, pp. 387-394.

S. Hassan and R. Mihalcea, Semantic relatedness using salient semantic analysis, Pro-
ceedings of AAAI Conference on Artificial Intelligence, 2011.

V. Hatzivassiloglou, J. Klavans, and E. Eskin, Detecting text similarity over short pas-
sages: FExploring linguistic feature combinations via machine learning, Proceedings of
the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora (1999).

73

[43]

|44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

A. Hickl and J. Bensley, A discourse commitment-based framework for recognizing
textual entailment, Proceedings of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, Association for Computational Linguistics, 2007, pp. 171-176.

D. Higgins, J. Burstein, D. Marcu, and C. Gentile, Fvaluating multiple aspects of
coherence in student essays, Proc. of HLT-NAACL, 2004.

G. Hirst and D. St-Onge, Lezical chains as representations of context for the detection
and correction of malapropism, WordNet: An Electronic Lexical Database (Christiane
Fellbaum, ed.), MIT Press, 1998, pp. 305-332.

T. Hughes and D. Ramage, Lexical semantic relatedness with random graph walks,
Proceedings of EMNLP-CoNLL, 2007, pp. 581-589.

A. Islam and D. Inkpen, Semantic text similarity using corpus-based word similarity
and string similarity, (2008).

J.J. Jiang and D.W. Conrath, Semantic similarity based on corpus statistics and lexical
tazonomy, Arxiv preprint cmp-lg/9709008 (1997).

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data min-
ing, ACM, 2002, pp. 133-142.

K.S. Jones, A statistical interpretation of term specificity and its application in re-
trieval, Journal of documentation 28 (1972), no. 1, 11-21.

S. Jordan and T. Mitchell, e-assessment for learning? the potential of short-answer
free-text questions with tailored feedback, British Journal of Educational Technology 40
(2009), no. 2, 371-385.

A. Kennedy and S. Szpakowicz, Ewvaluating rogetGAZs thesauri, Paragraph 10244
(2008), 6443.

T.K. Landauer and S.T. Dumais, A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge., Psycholog-

ical review 104 (1997), no. 2, 211.

74

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

C. Leacock and M. Chodorow, Combining local context and wordnet similarity for word
sense identification, WordNet: An electronic lexical database 49 (1998), no. 2, 265-283.
, C-rater: Automated Scoring of Short-Answer Questions, Computers and the
Humanities 37 (2003), no. 4, 389-405.

M.D. Lee, B. Pincombe, and M. Welsh, An empirical evaluation of models of text doc-
ument similarity, Proceedings of the 27th Annual Conference of the Cognitive Science
Society (2005), 1254-1259.

M. Lesk, Automatic sense disambiguation using machine readable dictionaries: how to
tell a pine cone from an ice cream cone, Proceedings of the 5th annual international
conference on Systems documentation, ACM, 1986, pp. 24-26.

B. Levin, English verb classes and alternations: A preliminary investigation, vol. 348,
University of Chicago press Chicago, 1L, 1993.

L. Li, Y. Zhou, B. Yuan, J. Wang, and X. Hu, Sentence similarity measurement based
on shallow parsing, Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth
International Conference on, vol. 7, IEEE, 2009, pp. 487—491.

Y. Li, D. McLean, Z.A. Bandar, J.D. O’Shea, and K. Crockett, Sentence similarity
based on semantic nets and corpus statistics, IEEE Transactions on Knowledge and
Data Engineering (2006), 1138-1150.

D. Lin, An nformation-theoretic definition of similarity, Proceedings of the 15th in-
ternational conference on machine learning, vol. 1, San Francisco, 1998, pp. 296-304.
M. Lintean, C. Moldovan, V. Rus, and D. McNamara, The role of local and global
weighting in assessing the semantic similarity of texts using latent semantic analysis,
Twenty-Third International FLAIRS Conference, 2010.

X. Liu, Y. Zhou, and R. Zheng, Sentence similarity based on dynamic time warp-
ing, Semantic Computing, 2007. ICSC 2007. International Conference on, IEEE, 2007,
pp- 250-256.

X.Y. Liu, Y.M. Zhou, and R.S. Zheng, Measuring semantic similarity within sentences,

75

165]

|66]

[67]
[68]

[69]
[70]

71

[72]

73]

Machine Learning and Cybernetics, 2008 International Conference on, vol. 5, IEEE,
2008, pp. 2558-2562.

B. MacCartney, T. Grenager, M.C. de Marneffe, D. Cer, and C.D. Manning, Learning
to recognize features of valid textual entailments, Proceedings of the main conference
on Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, Association for Computational Linguistics,
2006, p. 48.

B. MacCartney and C.D. Manning, Natural logic for textual inference, Proceedings of
the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Association
for Computational Linguistics, 2007, pp. 193-200.

J. Mathews, Just whose idea was all this testing, The Washington Post 14 (2006).

R. Mihalcea, C. Corley, and C. Strapparava, Corpus-based and knowledge-based ap-
proaches to text semantic similarity, Proceedings of the American Association for Ar-
tificial Intelligence (AAATI 2006) (Boston), 2006.

T. Mitchel, E-assessment of short answer questions. a white paper, 2006.

T. Mitchell, T. Russell, P. Broomhead, and N. Aldridge, Towards robust computerised
marking of free-text responses, Proceedings of the 6th International Computer Assisted
Assessment (CAA) Conference (2002).

M. Mohler, R. Bunescu, and R. Mihalcea, Learning to grade short answer questions
using semantic similarity measures and dependency graph alignments, Proceedings of
the Association for Computational Linguistics - Human Language Technologies (ACL-
HLT 2011) (Portland, Oregon, USA), 2011.

M. Mohler and R. Mihalcea, Text-to-text semantic similarity for automatic short an-
swer grading, Proceedings of the European Association for Computational Linguistics
(EACL 2009) (Athens, Greece), 2009.

A. Moschitti, Making tree kernels practical for natural language learning, Proceedings

of EACLaAZ06, 2006.

76

[74]

[75]

|76]

7]

78]

[79]

[30]

[81]

82

[83]

[84]
[85]

D. Nicol, E-assessment by design: using multiple-choice tests to good effect, Journal of
Further and Higher Education 31 (2007), no. 1, 53-64.

R.D. Nielsen, W. Ward, and J.H. Martin, Recognizing entailment in intelligent tutoring
systems, Natural Language Engineering 15 (2009), no. 04, 479-501.

E.B. Page, The imminence of... grading essays by computer, The Phi Delta Kappan
47 (1966), no. 5, 238-243.

S. Patwardhan, S. Banerjee, and T. Pedersen, Using measures of semantic related-
ness for word sense disambiguation, Computational Linguistics and Intelligent Text
Processing (2003), 241-257.

M.T. Pazienza, M. Pennacchiotti, and F.M. Zanzotto, Teztual entailment as syntactic
graph distance: a rule based and a svm based approach, Proceedings of the recognizing
textual entaiment challenge workshop, 2005, pp. 11-13.

T. Pedersen, S. Patwardhan, and J. Michelizzi, WordNet:: Similarity-Measuring the
Relatedness of Concepts, Proceedings of the National Conference on Artificial Intelli-
gence (2004), 1024-1025.

S.G. Pulman and J.Z. Sukkarieh, Automatic Short Answer Marking, ACL WS Bldg
Ed Apps using NLP (2005).

L. Qiu, M.Y. Kan, and T.S. Chua, Paraphrase recognition via dissimilarity significance
classification, Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, 2006, pp. 18-26.

R. Raina, A. Haghighi, C. Cox, J. Finkel, J. Michels, K. Toutanova, B. MacCartney,
M.C. de Marneffe, C.D. Manning, and A.Y. Ng, Robust teztual inference using diverse
knowledge sources, Recognizing Textual Entailment (2005), 57.

P. Resnik, Using information content to evaluate semantic similarity in a tazonomy,
Arxiv preprint cmp-1g/9511007 (1995).

J.J. Rocchio, Relevance feedback in information retrieval, (1971).

C.P. Rosé, A. Roque, D. Bhembe, and K. Vanlehn, A hybrid text classification approach
for analysis of student essays, Proceedings of the HLUT-NAACL 03 workshop on Build-

7

[36]

187]

138]

[89]

[90]

191]

92]

193]

194]

[95]

[96]

ing educational applications using natural language processing-Volume 2, Association
for Computational Linguistics, 2003, pp. 68-75.

H. Rubenstein and J.B. Goodenough, Conteztual correlates of synonymy, Communi-
cations of the ACM 8 (1965), no. 10, 627-633.

V. Rus, A. Graesser, and K. Desai, Lexico-syntactic subsumption for textual entailment,
Recent Advances in Natural Language Processing IV: Selected Papers from RANLP
2005 (2007), 187.

V. Rus, P.M. McCarthy, A.C. Graesser, and D.S. McNamara, Identification of
sentence-to-sentence relations using a tertual entailer, Research on Language & Com-
putation 7 (2009), no. 2, 209-229.

G. Salton, Automatic text processing: The transformation, analysis, and retrieval of,
Addison-Wesley, 1989.

G. Salton, A. Wong, and C.S. Yang, A vector space model for automatic indexing,
Communications of the ACM 18 (1975), no. 11, 613-620.

J. Sinclair et al., Collins cobuild english dictionary for advanced learners, vol. 3rd ed.,
Harper Collins, 2001.

A.J. Smola and B. Schélkopf, A tutorial on support vector regression, Statistics and
computing 14 (2004), no. 3, 199-222.

C. Stray, The shift from oral to written examination: Cambridge and oxford 1700-1900,
Assessment in Education: Principles, Policy & Practice 8 (2001), no. 1, 33-50.

J.Z. Sukkarieh and J. Blackmore, c-rater: Automatic content scoring for short con-
structed responses, Proceedings of the 22nd International Conference for the Florida
Artificial Intelligence Research Society, Florida, USA, 2009.

J.Z. Sukkarieh and S.G. Pulman, Information extraction and machine learning: Auto-
marking short free text responses to science questions, Proceeding of the 2005 confer-
ence on Artificial Intelligence in Education: Supporting Learning through Intelligent
and Socially Informed Technology, IOS Press, 2005, pp. 629-637.

J.Z. Sukkarieh, S.G. Pulman, and N. Raikes, Auto-Marking 2: An Update on the

78

197]

98]

[99]
[100]

101]

|102]

103

[104]

[105]

UCLES-Ozford University research into using Computational Linguistics to Score
Short, Free Text Responses, International Association of Educational Assessment,
Philadephia (2004).

M. Tatu and D. Moldovan, Cogex at rte3, Proceedings of the ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing, Association for Computational Linguistics,
2007, pp. 22-27.

G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis, Tezt relatedness based on a word
thesaurus, Journal of Artificial Intelligence Research 37 (2010), no. 1, 1-40.

A. Tversky, Features of similarity., Psychological review 84 (1977), no. 4, 327.

K. VanLEHN, The relative effectiveness of human tutoring, intelligent tutoring sys-
tems, and other tutoring systems, Educational Psychologist 46 (2011), no. 4, 197-221.
K. VanLehn, P.W. Jordan, C.P. Rosé, D. Bhembe, M. Bottner, A. Gaydos,
M. Makatchev, U. Pappuswamy, M. Ringenberg, A. Roque, et al., The architecture
of Why2-Atlas: A coach for qualitative physics essay writing, Lecture Notes in Com-
puter Science (2002), 158-167.

R. Wang and G. Neumann, Recognizing tertual entailment using sentence similar-
ity based on dependency tree skeletons, Proceedings of the ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing, Association for Computational Linguistics,
2007, pp. 36-41.

P. Wiemer-Hastings, D. Allbritton, and E. Arnott, Rmt: A dialog-based research meth-
ods tutor with or without a head, Intelligent Tutoring Systems, Springer, 2004, pp. 141—
229.

P. Wiemer-Hastings, K. Wiemer-Hastings, and A. Graesser, Improving an intelligent
tutor’s comprehension of students with Latent Semantic Analysis, Artificial Intelligence
in Education (1999), 535-542.

Z. Wu and M. Palmer, Verbs semantics and lexical selection, Proceedings of the 32nd
annual meeting on Association for Computational Linguistics, Association for Compu-

tational Linguistics, 1994, pp. 133-138.

79

[106] E. Yeh, D. Ramage, C.D. Manning, E. Agirre, and A. Soroa, Wikiwalk: random walks
on wikipedia for semantic relatedness, Proceedings of the 2009 Workshop on Graph-
based Methods for Natural Language Processing, Association for Computational Lin-
guistics, 2009, pp. 41-49.

[107| B. Zadrozny and C. Elkan, Transforming classifier scores into accurate multiclass prob-

ability estimates, 2002.

80

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1. Organization

	CHAPTER 2. BACKGROUND
	2.1. Theory of Similarity
	2.2. Grading Background
	2.2.1. Brief History of Eduational Assessment
	2.2.2. Computer-Aided Assessment

	2.3. Related Work
	2.3.1. Summative Assessment
	2.3.2. Formative Assessment
	2.3.3. Sentence Similarity
	2.3.4. Textual Entailment
	2.3.5. Paraphrase Detection

	CHAPTER 3. DATASETS AND EVALUATION METRICS
	3.1. Description of Short Answer Grading Dataset
	3.1.1. Annotation Process

	3.2. Other Datasets
	3.3. Evaluation Metrics

	CHAPTER 4. BAG-OF-WORDS APPROACHES
	4.1. Textual Similarity Measures
	4.1.1. Knowledge-Based Measures
	4.1.2. Corpus-Based Measures

	4.2. Experimental Setup
	4.2.1. The Role of Domain and Size
	4.2.2. Pseudo-Relevance Feedback
	4.2.3. Binary Decision

	4.3. Discussion

	CHAPTER 5. ALIGNMENT SYSTEM AND SVM LEARNING
	5.1. Modifications and Bag-of-Words Improvements
	5.2. Alignment Pipeline
	5.3. Node Alignments
	5.4. Graph Alignment
	5.5. Machine Learning
	5.5.1. SVM Features and Implementations

	5.6. Results
	5.7. Error Analysis
	5.7.1. Analysis Methodology
	5.7.2. Error Descriptions

	CHAPTER 6. SEMEVAL2012 AND OTHER DATASETS
	6.1. SemEval 2012 - Semantic Textual Similarity (Task 6)
	6.1.1. Our STS Submission

	6.2. Additional Experiments
	6.2.1. Experiments on the Li30 Similarity Dataset
	6.2.2. Experiments on the Lee50 Short Document Similarity Dataset
	6.2.3. Experiments on the RTE-3 Textual Entailment Dataset
	6.2.4. Experiments on the MSRP Paraphrase Dataset

	CHAPTER 7. DISCUSSION
	BIBLIOGRAPHY

