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Volunteered geographic information (VGI) has received increased attention as a 

new paradigm for geographic information production, while light detection and ranging 

(LiDAR) data is widely applied to many fields. This study quantitatively compares LiDAR 

data and user-generated 3D building models created using Google Building Maker, and 

investigate the potential applications of the quantitative measures in support of rapid 

disaster damage assessment. User-generated 3D building models from Google Building 

Maker are compared with LiDAR-derived building models using 3D shape signatures. 

Eighteen 3D building models are created in Fremont, California using the Google 

Building Maker, and six shape functions (distance, angle, area, volume, slope, and 

aspect) are applied to the 18 LiDAR-derived building models and user-generated ones. A 

special case regarding the comparison between LiDAR data and building models with 

indented walls is also discussed.  Based on the results, several conclusions are drawn, 

and limitations that require further study are also discussed. 
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CHAPTER 1 

INTRODUCTION 

Why Create Three Dimensional (3D) Building Models? 

 3-Dimensional is a new level of spatial data in a “digital world” (Arslan et al., 

2009). 3D modeling has been widely used in several fields such as urban planning, traffic 

planning, pollution management, and even disaster assessment due to its capabilities in 

showing real-world features and phenomena in three dimensions. For example, a 3D 

city can illustrate spatial relationships between buildings and districts. In 2010, Autodesk 

Ecotect Analysis exemplified dynamic air flow analysis based on a 3D city model. The 

distribution of flow pollutants from traffic is illustrated by a 3D buffer map so that 

individuals can determine the relationship between traffic load and pollution level. 

Moreover, a 3D city model can provide views of underground. Moser et al. (2010) 

presented a case study which used a 3D visual model to create a new subway network 

and set up subway stations in Salzburg, Austria. Depending on the underground views 

from the 3D city model, engineers can remove intersected space with building 

basements from usable spaces.  
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In addition, more and more people are moving to urban areas, while more and more 

man-made features, such as skyscrapers and residential communities, are being built on 

urban lands. The increase in urban population and complexity of infrastructure may 

induce heavier damage in a disaster. 3D modeling is a powerful approach for emergency 

management and disaster assessment. For example, 3D building models provide richer 

information of rooftops so that levels of building damages are able to be estimated 

accurately (Li et al., 2008). 3D models also allows for simulating internal structures of 

buildings to find escaping routes in the buildings (Kolbe, 2005).  

Why Develop Volunteered Information System (VGI)? 

With the emergence of neogeography (Turner, 2006) which combines Web-

based cartography and GIS techniques and tools, a new GIS data production paradigm, 

volunteered geographic information (VGI), is developed (Goodlchild, 2007a; Elmadhoun, 

2010). Goodchild (2007a) defines that VGI is the concept of “citizens as sensors,” 

meaning that citizens can voluntarily create, collect, and disseminate geographic 

information. Currently popular geo-web services, such as Google Earth, Yahoo!Maps, 

OpenStreetMap, reveal the essence of the Web 2.0. They allow public individuals to 

interact with geospatial information, such as creating maps using data shared by others.  

VGI improves the traditional spatial data infrastructure (SDI) which is the top-

down geographic information (Gould, 2007). This means SDI is developed by 

governments, professional institutions, and commercial organizations. SDI only covers a 
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small range of application since its sources are limited, its producing is somehow 

expensive, and its characteristics lack real-time (Coleman and Eng, 2010). Contrary to 

SDI, VGI is bottom-up geographic information. It can also include free “multi-media” 

data like photographs and videos which cannot be obtained from traditional ways 

(Sabone, 2010). 

Characteristics of VGI 

A potential impact of VGI is to improve ordinary persons understanding our 

earth (Goodchild, 2007a). For example, it makes it possible for ordinary persons to 

determine positions by Web 2.0 or mobile devices, such as Google Maps, Google Earth, 

GPS devices, and even mobile phones (Turner, 2006). OpenStreetMaps (OSM) and 

Google’s MyMaps service are used as platforms allowing ordinary users to create, edit, 

and modify maps (Goodchild, 2007a and 2007b; Goodchild and Glennon, 2010; Sabone, 

2009). Moreover, VGI is near-real-time. It reduces response time after disastrous events 

and before adequate high-resolution images are available (National Research Council, 

2007). For instance, a VGI group can deal with problems more effectively than 

specialists because individuals in the VGI group may be from the scene of events. 

Besides, VGI can be widely developed because it is cost-effective. Governments will no 

longer need to invest on mapping (Goodchild et al., 2007). Therefore, from the 

characteristics of VGI, a main objective of developing VGI is to fill the gaps in existing 

geospatial data as well as to supplement geospatial information (Goodchild, 2007a).  
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Applications of VGI 

After the 2010 Haiti earthquake (Turner, 2010), local information collected from 

OSM was employed for rescue and reconstruction. A humanitarian OpenStreetMap 

Team was temporarily established. This team works on the assessment and 

management of earthquake damage based on OpenStreetMap maps and geospatial 

information posted by local volunteers. The project includes three steps: (1) data 

collection, (2) disaster response, and (3) post- disaster assessment. In the data collection 

step, map data in damage regions are contributed in only six hours after the earthquake 

(http://www.slideshare.net/sabman/haiti-quake-public-key). The second step involves 

the use of OSM data for analyzing and responding to the disaster; for example, the OSM 

data provide the coordinates of landslide or buildings with different damage levels, and 

help routing operations. Finally, the data from OSM are used for managing people at 

risk. 

Experts and organizations intend to collaborate with ordinary individuals. They 

use social networks to create spatial information. These data give details about updated 

and local information. Wildfires threatening Santa Barbara during the 2007-2009 

periods provide more examples of VGI application (Goodchild and Glennon, 2010).  For 

example, the Zaca Fire was quickly brought under control, and the public was informed 

in sufficient time to facilitate evacuation of threatened areas (Goodchild and Glennon, 

2010). These exemplified social networks of VGI, such as Flickr and Youtube. Comparing 

http://www.slideshare.net/sabman/haiti-quake-public-key
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to official agencies, the social networks related with VGI provide more updated and 

cost-effective information (Goodchild and Glennon, 2010). Beside, Goodchild and 

Glennon (2008) give another example: in November 2008, another fire, Tea Fire, also 

ignited in Santa Barbara. VGI respond to this immediately on Web-based community. 

Although Tea Fire is stronger and quickly spread, it burns for only 2 days and damaged 

230 architectures (Goodchild and Glennon, 2008). VGI is used by Emergency Services 

and Roadside Assistance (ESRI, 2011). From these emergency cases, integration of VGI 

Public and Participation GIS (PPGIS) brings up the needs of timely and cost-effective 

emergency management (Bugs et al., 2010).  

Some other VGI programs are listed below. The Globe Program is an interagency 

program supported by NASA, NSF and US State Department.This program provides 

opportunity to learn more about our earth. In the program, VGI is the main source of 

information. It is created by Globe Alumni organization (Sabone, 2009). The program 

encourages people to collaborate with each other to collect and share their information 

on this website. In addition, the TomTom Mapshare Service (TomTom, 2007) provides a 

media to allow their customers to update, add, and delete maps in devices timely 

(Sabone, 2009). Moreover, New Jersey government collaborates with volunteers to hold 

mapping vernal pools, which provides a web mapping interface (Lathrop et al., 2005).  

 

 



 

6 
 

Research Questions 

The purpose of this study is to quantitatively compare LiDAR data and user-

generated 3D building models created using Google Building Maker. There are two 

major research questions: 

(1) What measures can be used to quantify the differences between LiDAR-

derived 3D building models and user-generated 3D building models created 

using Google Building Maker?  

(2) What are the potential applications of the quantitative measures in support 

of disaster damage assessment such as post-earthquake damage 

assessment?  
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CHAPTER 2 

RESEARCH BACKGROUND 

A Brief Review of 3D Building Extraction From High-Resolution Images And Lidar Data 

Traditionally, 3D building models can be built from two remote sensing data 

sources: (1) image data (Pollefeys et al., 2008), and (2) light detection and ranging 

(LiDAR) data (Früh and Zakhor, 2004; Charalambos Poullis and Neumann, 2008). 3D 

models demonstrating urban structures can be automatically extracted from aerial 

imagery (Haala and Hahn, 1995). In the early 1990s, the first scanning airborne lasers 

(ALS) are introduced for data collection (Stephan et al., 2010). Li et al. (2008) proposed 

an approach that detects degrees of damages after earthquake by comparing pre-

earthquake and post-earthquake 3D building models. An automated approach assessing 

building damage after an earthquake is developed by deriving 3D shape signatures of 

buildings from LiDAR data (Dong and Guo, 2011).  
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High-resolution Images and LiDAR data have been considered as the top 

priorities for building extraction (Wei et al., 2004; Zhou et al., 2004). High-resolution 

images are typical sources developed by remote sensing techniques for building 

extraction, which provide shadows cast by buildings so that operators could make 

analysis of 3D building models (Xiao et al., 2004). It is useful to get shadow information 

for verifying whether a feature exists as well as for identifying boundaries of buildings. 

Also, depending on shadow of buildings shown in aerial images, it is possible to measure 

heights of buildings (Huertas and Nevatia, 1988). Additionally, high resolution images 

make it possible to display textures of 3D building models (Frueh et al., 2004). Textures 

mapping of 3D building models provides a lot of details of roof types and information of 

vertical walls. In recent years, high-resolution images are used for extracting 3D 

geometric models of buildings (Huertas and Nevatia, 1988; Sahar and Krupnlk, 1999; 

Kolbe et al., 2000).  

Earthquake damage can be assessed with both high resolution imagery and 

LiDAR data. Since LiDAR data provide elevation information of buildings, they have a 

crucial advantage over high resolution imagery in 3D building model extraction. In fact, 

not only do LiDAR data provide points with height values to create digital surface 

models (DSMs) (Zhou et al., 2004), but also they are used to construct Triangulated 

Irregular Networks (TIN) by filtering LiDAR data points (Tse et al., 2004). A high density 

of LiDAR data points leads to high quality and accuracy of building detection (Alexander 

et al., 2009). 
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A great variety of processing techniques have been developed for extracting 3D 

buildings from high-resolution images and LiDAR data. These techniques are generally 

operated by a combination of high-resolution images, LiDAR data, and GIS. A preliminary 

step in this process is to extract building footprints and recognize shapes.  Edge 

detection from high-resolution images is a prevalent technique for building extractions 

(Sahar et al., 2010). Edge detection is based on histogram peak selection to examine 

features in parcels. Because there are a limited number of buildings in a parcel, a 

building in this parcel will be detected based on their three significant bands (Sahar et 

al., 2010). If the histogram peak is consistent, it represents the roofs of the building. 

Next, using shadow-based verification and geometry-based elimination, the areas of 

building footprints will be accounted in order to remove segments that do not fulfill the 

buildings (Sahar et al., 2010). Conversion from raster to vector is done in the GIS-based 

stage so that the exterior rings of buildings including convex hull of the 2D shape can be 

created. The research by Sahar et al. (2010) gives an automated GIS method to extract a 

large numbers of buildings in an area. However, the method is characterized by three 

limitations: (1) the images used in the study cannot be updated immediately. (Sahar et 

al., 2010); (2) it only can extract simple roof tops since there is no analysis of texture-

based images; (3) not all of buildings can be detected because of missed significant 

spectral signatures (Sahar et al., 2010). Brenner et al. (2003) use multispectral images 

and normalized digital surface models (nDSMs) derived from a scanning laser altimeter 

to determine 2D building polygons. This process separates buildings from natural 
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features such as grasses and trees. The nDSMs are used to separate features with 

different elevations. The colored infrared images provide information to discriminate 

among buildings and trees that have same elevation (Henricson et al., 1996). If this 

information is available, extracting building footprints is successful in the first stage of 

the automated method. However, since an Imaging Laser Altimeter has to be installed 

on an aircraft or a satellite, this method can be expensive. Therefore, updating of 

building information can be difficult. Many algorithms have been applied as ancillary 

means for footprint extraction. Lee et al. (2003) and Wei et al. (2004) use the Hough 

Transform method to classify building top shapes. The Hough Transform is a technique 

that helps to find imperfect shapes to revise the shapes.  For extracting building 

footprints, this technique is applied to detecting lines that can construct effective 

polygons (Wei et al., 2004). The Hough Transform also helps to determine the directions 

of buildings and extract building rings by detecting parallel lines and perpendicular lines 

(Lee et al., 2003). A Bayesian technique is a method of probability and statistics. This 

algorithm is used to compute the posterior probability of building footprints (Wang et 

al., 2007). They describe three steps of the algorithm: (1) locating points on the 

boundary lines, (2) creating cursory footprints, and (3) determining a final building 

footprint using posteriori probability. This method by Wang et al. (2007) is used for 

eliminating great amounts of noise around building boundaries and extracting accurate 

building footprints. Furthermore, the Bayesian technique can be applied to extracting 

entire 3D building models (Wang et al., 2007). 
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Many techniques are developed to extract 3D building models. Automated 

extraction of 3D models is widely completed by collaboration of remotely sensed data 

and GIS (Lari and Ebadi, 2004; Zhou et al., 2004). Other previous works employ a variety 

of approaches that are used to extract 3D buildings through from LiDAR data and digital 

aerial images. Baptsavias et al. (1995) completed a project, which indicates that 3D 

models can be accurately extracted from LiDAR data and orthoimages through three 

steps: edge extraction, mathematical algorithms, and height bins. Baptsavias et al. 

(1995) solved two main difficulties: how to avoid merging two buildings close to each 

other and how to separate buildings and vegetation. Moreover, Zhou et al. (2004) 

propose to integrate orthoimage details into LiDAR points cloud. Their method is 

completed to extract 3D building models based on nDSMs, digital building models 

(DBMs), and digital terrain model (DTM). The main contribution is to develop a method 

of generating high quality DBM so that accurate building roofs can be modeled. 

Triangulated irregular networks (TIN) from LiDAR points cloud are considered as basic 

models to identify different types of building roofs so that 3D building models can be 

accurately extracted (Alexander et al., 2009). This method is limited by densities of 

LiDAR points. In fact, if the high-resolution LiDAR data are available, extraction will be 

more accurate. Also, patched roof slopes influence the accuracy of 3D models. 

Normally, flat building roofs are extracted easily. 
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Developing 3D VGI Modeling 

Since traditional data collection is often expensive, and existing methods for 

creating 3D object models are very complex (Benner et al., 2005), the emergence of VGI 

provides a new paradigm for geospatial data collection, including 3D geospatial data 

collection. For example, many virtual globe programs, such as Google Earth and Bing 

Maps 3D, allow public interaction with 3D geographic information by easy and free 

(Jones, et al., 2010). Moreover, the application of online tools, such as Google Building 

Maker and Google SketchUp, promotes 3D VGI modeling (Schilling et al., 2009). 

OpenStreetMap is a good example which helps generating 3D-city models by volunteers 

(Neubauer, et al., 2009). Schilling et al. (2009) show GIS services and 3D city models 

coming together for storing and analyzing rich 3D city models. Two examples of OSM for 

3D visualization are KOSMOS Worldflier (http://igorbrejc.net/category/3d) and the 

OSM-3D projects (http://www.osm-3d.org) (Geotz and Zipf, 2011). The German 

government considers that 3D VGI data contribute the most important portion of 

information of city planning (Over et al., 2010). Although, most 3D VGI is somehow 

difficult to completely fulfill the accuracy, which they need to be evaluated by official 

services, it still reveals its huge advantages of collecting vector data of objects for 3D 

models. 

 

 

http://igorbrejc.net/category/3d
http://www.osm-3d.org/
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Quality of VGI 

Current technologies mainly focus on enhancing generation and dissemination of 

VGI. However, since VGI techniques are related to amateurs who produce and 

disseminate the geospatial information, the quality of VGI is a main concern before VGI 

can be used. There are several questionable factors raising this concern: Where do the 

VGI data come from (Coleman, D. J. & Eng. P., 2010)? Who generates the VGI (Coleman, 

et al., 2010)? What are the objectives of the individual contributors (Gould, 2007)? 

These three questions are related to VGI sources. Whether the sources of VGI are 

credible influences the quality of VGI (Flanagin & Metzger, 2008). For example, 

OpenStreetMap depends on GPS data collected by different individuals to maintain its 

huge information structures to be latest and comprehensive. The multiplicity of data 

sources makes it complex to verify the credibility of VGI (Flanagin & Metzger, 2008). In 

addition, the quantity of data controls the credibility of user-generated information 

(Rieh & Danelson, 2007). Plentiful data allows users to compare the data from different 

individuals so as to obtain suitable data. Likewise, tools that individuals use to produce 

VGI impact the credibility of VGI (Sabone, 2009). Different tools have different errors 

standards. Depending on different applications of VGI, individuals should use different 

tools. For example, some of the techniques of positions are suitable for outdoor areas 

and broad range coverage (Sabone, 2009). Like GPS, it is to position through receiving 

signals from four satellites and obtains latitude and longitude (Barnes, 2003). While GPS 

can provide high accurate position points, some positioning techniques have relatively 
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low accuracy. For instance, Cell of Origin (COO) detects points with distances from 500 

m to 15 km (D’Roza & Bilchev, 2003). Consequently, the point positions in 

OpenStreetMap have different levels of accuracy because they may be collected by 

different position devices.  

Although there is total difference between the top-down data (data obtained 

from professional organizations and then used in sub-system) (Gould, 2007) and 

bottom-top data (data are created by users; and then many of them are used by both 

users and professional organizations) (Bishr & Kuhn, 2006), the complementation of 

these two improves the quality of VGI (Gould, 2007a). Authoritative datasets are 

selected as references for filtering errors and inaccuracies of user-generated data. For 

example, Sabone (2009) suggests several criteria from Canadian Geographic Data 

Infrastructures (CGDI), which are National Road Network (NRN), National Topologic 

Database (NTDB), and CanVec, as standards and specifications of data accuracy. Table 1 

summarizes these authoritative criteria are used for examining whether the VGI is 

complete and accurate, and the table gives explanation about these criteria 

respectively. Among the criteria, positional accuracies of VGI are influenced by Location 

Based Services (LBS) devices which include spatial positioning techniques, mobile 

communication infrastructure, wireless Internet, and Web-GIS. Because of different 

applications and purposes, the positional accuracy requirements of VGI are different 

(Barnes, 2003). For example, GPS/A-GPS provides relatively high accurate geo-spatial 

data for emergency services and roadside assistance. Other applications, such as traffic 
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calming, vehicle navigation, and asset tracking, need to track or navigate using other 

devices like EOTD (Enhanced Observed Time Difference)/COO (Cell of Origin) having a 

larger range of accuracy.  

Table 1. Authoritative Criteria of the Quality VGI. (Sabone, 2009) 

Elements of VGI Authoritative databases Description 

Data Structure NRN and NTDB There must be a complete VGI structure 
consisting of geometric description (e.g. 
line, points, or polygon), descriptive 
representation (e.g. coordinate system), 
identifier (e.g. names of roads or POI), and 
metadata. 

Metadata NRN The metadata of VGI minimally includes 
source (e.g. GPS) and accuracy of the 
information. 

Positional accuracy NTDB, Can Vec, and NRN VGI must meet a planimetric accuracy 
criterion. 

Attribute accuracy CGDI VGI should include names and types of 
features (e.g. E I-35 highway). 

Uncertainty Errors of attributes: NRN 
and Can Vec; Errors of 
positions: Traditional 
mapping specifications 

Errors of attributes should not be more 
than 5%; Errors of positions should not be 
more than 10%. 

 

Evaluating quality of 3D VGI models is more complex than evaluating 2D VGI quality. 

Currently, 3D VGI mostly focuses on applications of visualization. For example, 

OpenStreetMap provides more information of city regions and building geometries 

(Neubauer et al, 2008). It allows public to capture points of interest, land uses and even 

structures on the earth surface. Besides, integration of data from OpenStreetMap and 
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Shuttle Radar Topography Mission (SRTM) attains DEMs simulating building geometries. 

Many user-created 3D models are obtained from Google Earth (Jones, 2011). However, 

there is less quality information to persuade users to completely trust these 3D VGI 

models.  Furthermore, there are few standardized applications of 3D city models with 

VGI (Goetz and Zipf, 2011). Some official spatial data include 3D VGI data to plan and 

manage urban environments (Sheppard and Cizek, 2009). This brings up potential risks, 

such as error reproduction and even legal concerns. Many methods have been proposed 

to examine these VGI data qualities via developing Web-based community forums which 

allow creators and users to discuss and update. They are similar with most shopping 

websites and other commercial websites, such as Amazon, App store, and Priceline. 

More and more people post large amount of reviews every day, every hour, and even 

every second, which somehow is as standard of online information quality. The quality 

of such online information can be called “perceived quality” which is an expression of 

users’ perspectives (Jones, 2011). Jones (2011) propose the five-star method to express 

the quality of spatial data (Figure 1). A 3D model is created by User 1 via SketchUp (an 

online application). Afterwards, it is stored into the 3D Warehouse which is the access to 

allow other users use this 3D model. Depending on experiences and purposes of use, 

they will write commends to assess this 3D model from User 1 and give a star-level 

standard. Finally, an average assessment is provided and posted so that other new users 

can view this assessment before use. Figure 1 illustrates the assessment. However, 

perceived quality focuses only on external applications that are related with users’ 
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experience and their purpose. The quality of 3D VGI models is associated to not only 

external applications but also internal data quality. This thesis introduces a method of 

assessing the quality of 3D VGI models extracted by a Web 2.0 tool – Google Building 

Maker. 

 

Figure 1. Perceived quality evaluation and average rating visualization. (Jones, 2011)
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CHAPTER 3 

STUDY AREA, DATA, SOFTWARE, AND BASIC KNOWLEDGE 

Study Area 

A group of parcels with 19 buildings near Mowry Avenue in the City of Fremont, 

California was selected as the study area (Figure 2 (a), (b), & (c)). Figure2 (a) displays 

overall nDSM of Fremont city; Figure2 (b) is aerial image which is zoomed in on the 

study area; and Figure2 (c) show the nDSM that is zoomed in on the study area. This 

study area was chosen because the buildings in the group cover all common types of 

roofs, such as flat roof, shed roof, gable roof, mansard roof, and hip roof (Figure 3). 
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Figure 2. LiDAR nDSM (a and c) and Google image (b) of the study area. 

 

 

(a) 

 

(b) 

 

(c) 
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(a) Flat roof                                                   (b) Shed roof 

                      

(c) Gable roof                                                   (d) Hip roof 

 

(e) Desk roof 

Figure 3. Five roof types: (a) flat; (b) shed; (c) gable; (d) hip; (e) desk.  
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Data 

The data acquired for this project are: 

(1) High-resolution imagery: The high-resolution images are from Google Maps. The 

high-resolution images of cities include aerial photographs that are taken by 

aircraft flying at 800–1500 feet; while most of other images are collected from 

satellites (Google earth, 2012). The high-resolution images from Google Maps 

are used for manual extraction of 3D VGI building models. 

(2) LiDAR data: The LiDAR data are collected by the NSF GeoEarthScope project, and 

downloaded from the OpenTopography Cyberinfrastructure at the San Diego 

Super Computer Center. 

Software Tools 

In this study, three software packages are used for data collection, data pre-

processing, and data analysis.   

(1) Google Building Maker: It is a 3D Web-based application for creating 3D building 

models (Google, 2009). Building models are extracted as simple geometric 

shapes from aerial photos supplied by Google. Once submitted to the Google 

Building Warehouse, these building models will be evaluated by Google in a few 

days.  If the quality of building models is good enough, Google will confirm them 

via E-mail and share them for public use.  
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(2) SketchUp: It is launched by @Last Software in 1999. Google as a developer 

releases this software in August 2000. Although there are a few features not 

available from the free version of SketchUp, it is enough for creating and editing 

simple 3D building shells. The SketchUp software is updated almost every year. 

In this study, SketchUp 8 is employed for editing 3D building models created 

from Google Building Maker. New released features, such as geo-location with 

Google Maps, Outer Shell, and matching aerial photos, improve the quality of 3D 

VGI building models collected by Google Building Maker. 

(3) ArcGIS 10: ArcGIS 10 is used to: (a) convert 3D building models into GIS data for 

further editing; (b) pre-process LiDAR data to create normalized digital surface 

models (nDSM);and (c) compare 3D building models generated from Google 

Building Maker and LiDAR data. 

Basic Terms Related To Data and Software 

(1) COLLADA format: Its full name is a collaborative design activity which establishes 

“an open standard digital asset schema for interactive 3D applications” 

(COLLADA, 2007). It is an XML database schema that allows free exchange of 3D 

applications without losing any information. Google Earth files and 3D geometric 

shapes in the 3D Google Warehouse are in COLLADA format which can be 

changed to other formats easily (Google SketchUp Blog, 2009). 
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(2) Multipatch: A multipatch is a shapefile consisting of a series of surface polygons. 

It allows simplifying complex buildings and appending textures on surfaces. The 

newer ArcGIS edition, ArcGIS 10, provides new features allowing creating and 

managing multipatch data. A COLLADA file can be directly changed into 

multipatch format and viewed in 3D (Table 2: Multipatch 3D models). A series of 

editing features, including Move, Rotate, and Scale, help revise the new 

multipatch layer on the landscape. Besides, a new function of the 3D Analysis in 

ArcGIS 10 is automatically displaying textures on surfaces.  

(3) nDSM: nDSM is a normalized digital surface model, which is the difference 

between a digital elevation model (DEM contains the terrain’s elevations over a 

bare area) and a digital surface model (DSM presents the elevations of both 

terrains and objects’ surfaces on terrains). In fact, an nDSM has elevations of 

objects on the bare earth surface. nDSM is a raster dataset or a triangular 

irregular network (TIN). The triangulation process refers that all raw LiDAR points 

are connected in a network consisting of triangular faces. An example of TIN is 

shown in Figure 4. 

 

Figure 4. An example of a TIN. 
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CHAPTER 4 

METHODOLOGY 

Collecting 3D VGI models 

 3D data in GIS contain x, y and z axes (Hudson-Smith and Evans, 2003). Unlike 

natural landscape features, buildings created by humans are relatively regular. 

Moreover, man-made structures are better represented in 3D of vector models 

(Alexander et al, 2009). 3D geometric shapes are normally constructed by existing GIS, 

AutoCAD, and photogrammetry methods.  In this study, 3D geometric shapes of 

buildings are extracted from Google Building Maker. Figure 5 shows the processes of 

extracting 3D buildings using Google Building Maker and SketchUp.  
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The major steps are described below: 

(1) Select the location of interest in Google Building Maker via the geo-location 

function of SketchUp (Figure 6).  

(2) Go to Google Building Maker web-page and add 3D geometric shapes from 

different angles (Figure 7).  

(3) Export the extracted building models into the SketchUp interface. 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart for generating 3D VGI models and exporting to ArcGIS environment. 
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Figure 6. Locating buildings in Google Building Maker. 

 

   

Figure 7. Adding 3D geometric shapes in Google Building Maker. 
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(4) The 3D models are edited in Google SketchUp, and the Outer Shell tool is used to 

solid geometries so that the gaps and single segments on geometries could be 

removed and cleaned up. After deriving the original building models, a series of 

building models are created by increasing or decreasing the height and width of 

each original building by 5%, 10%, 15%, 20%, 25%, and 50%. This is to simulate 

errors induced by ordinary Internet users when creating the 3D building models 

through Google Building Maker. 

(5) Afterwards, these 3D VGI building models are exported as COLLADA files;  

(6) Finally, the COLLADA files are converted to multipatch shapefiles in ArcGIS 10. 

For example, Table 2 illustrates the conversion from Sketchup 3D geometric 

shapes to GIS multipatch shapefiles.  
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Table 2. Conversion from COLLADA File to Multipatch File. 

High resolution 

images 

3D model of the 

building in Google 

SketchUp 

Multipatch 3D 

model 

Ortho-view of 

multipatch 3D 

model 

 
 

 

 
 

 

 

 

 

 

 

 

 

  

Extracting LiDAR nDSM 

LiDAR data are represented by a set of points, and the dataset is sized by the 

range of the scanning area (Alexander et al, 2009). There are many automatic methods 

for extracting building footprints from LiDAR DEM. In this study, the multipatch 

footprint of each building was assumed to be available. These multipatch footprints not 

only provide the areas of buildings, but also are used as masks for extracting the nDSM 

of each building. Figure 8(a) and (b) show footprints of two buildings generated from an 

nDSM.  
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(a) 

                                               

(b) 
Figure 8. Extraction of building footprints from LiDAR data. 

Comparisons of 3D shape signatures 

According to Osada et al. (2002), 3D shape signatures are used for measuring the 

similarity or dissimilarity between 3D shapes. The fundamental principle of 3D shape 

signatures is converting 3D geometric shapes to parameterized functions so that the 3D 

objects can be easily analyzed (Osada et al., 2002; Dong and Guo, 2011). The 3D 

geometric shapes are represented by probability distributions derived from geometric 

functions. Osada et al. (2002) used five functions in their work, namely the angle formed 

by three random points, the distance between fixed points and random points on 3D 

model surfaces, the distance between two random points, the square root of the area of 

the triangle between three points, and the cube root of the volume of the tetrahedron 
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between four points. Dong (2009, 2010) used one function, the distance between two 

random points selected from LiDAR data, to create 3D shape signatures of individual 

tree crowns based on 10,000 pairs of random points so that the 3D shape signatures of 

the individual tree crown are stable.   

In this study, 3D shape signatures are calculated from 3D points on the surface of 

building models derived from Google Building Maker and LiDAR data. On the walls of 

building models where LiDAR data point are not available, random points are generated 

in each triangle in the Triangulated Irregular Network (TIN) using barycentric 

coordinates (Bradley, 2007). If p1(x1, y1, z1), p2(x2, x2, z2), and p3(x3, y3, z3) are three 

vertices of a triangle (Figure 9), a random point p(x, y, z) can be calculated using the 

following equation: 

p = t1p1 + t2p2 + t3p3  (1) 

where t1, t2, and t3 are barycentric coordinates (Bradley, 2007) and t1 + t2 + t3 = 1.  

                               

 

 

 

 

 

 

Figure 9. Barycentic coordinates inside a triangle. 

p3 (x3, y3, z3) p2 (x2, y2, z2) 

P (x, y, z) 

p1 (x1, y1, z1) 
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In the work of Dong (2009, 2010), there are 10,000 pairs of random points for creating 

3D shape signatures of tree crowns. Since buildings are more complex than nature 

features, 100,000 pairs of random points were used to generate 3D shape signatures for 

each building in this study. An interesting issue is to select shape functions whose 

distributions represent good signatures for the 3D models (Osada et al., 2010). Six shape 

functions were used: angle, area, aspect, distance, slope, and volume. These shape 

functions can be sampled to form shape distributions. Specifically, these six functions 

are explained below, and mathematical expressions of these functions can be found in 

Liu et al. (2012). The process is shown in Figure 10. 

(1) Angle: the angle between three random points on the surface of a 3D model. 

(2) Area: the area of a triangle consisting of three random points on the surface 

of a 3D model. 

(3) Aspect: the downslope direction of the triangle between three random 

points on the surface of a 3D model. 

(4) Distance: the distance between two random points on the surface of a 3D 

model. 

(5) Slope: the angle between a 3D triangle formed by three random points on 

the surface of a 3D model and the horizontal plane. 

(6) Volume: the volume of a tetrahedron formed by four random points on the 

surface of a 3D model. 



 

32 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 . Flowchart of 3D shape signature analysis. 

 

The method described above was implemented using C# and ArcObjects for 

ArcGIS 10 for comparison between LiDAR-derived 3D building models and user-

generated 3D building models created using Google Building Maker. 
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CHAPTER 5 

RESULTS ANALYSIS 

3D Shape Distribution Results 

Figure 11 shows that the 3D building models in the study area displayed in 

Google Earth. The 3D Buildings models in the study area are represented as TIN 

generated from nDSM (Figure 12). Meanwhile they are represented through Multipatch 

files converted from COLLADA files (Figure 13). In order to evaluate the similarity of 3D 

LiDAR models and 3D VGI models, a series of 3D shape signatures are calculated from 

random points on surfaces of different 3D Models (Figure 18).  
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Figure 11. 3D building models via Google Building Maker and displayed on Google Earth. 

 

Figure 12. TIN models of LiDAR-derived buildings. 
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Figure 13. 3D Multipatch models viewed in ArcScene. 

Similarity analysis 

In Figure 18, each histogram includes two distribution curves: an nDSM 

distribution curve and a user-generated 3D model’s curve. As can be seen in the Figure 

20, most 3D shape signatures in the columns for angle, area, distance and volume do 

not show significant difference between LiDAR-derived 3D building models and user-

generated 3D building models. Furthermore, in Table 3, most correlation coefficients (r) 

for angle, volume, distance, and area functions are greater than 0.98. If only the four 

shape functions are considered as measures, the shape distributions of most 3D building 

models are highly correlated. However, from the 3D shape signatures generated based 

on the other two functions (aspect and slope), many of the user-generated 3D building 

models have distinctive shape distributions from their LiDAR-Derived 3D building 

models. Their r values are less than 0.98 in Table 3.  
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To investigate why there are differences between user-generated 3D models and 

their LiDAR nDSM, it is possible to analyze their 3D geometric models. For example, 

comparing B3 TIN (Figure 14 (b)) with B3 multipatch (Figure 14 (a)), the upper right 

corner protrudes from the B3’s roof; whereas, the B3 multipatch has a flat roof without 

that protruding corner. Other examples as same as B3, B4 (Figure 15) and B6 (Figure 16), 

have the same problem when comparing their multipatches to their TIN models. The 

noises impact the shape distributions for LiDAR-Derived 3D building models; thereby 

weakening accuracy of the measure. 

                                

Figure 14. 3D B3 Models: (a) User-generated 3D model; (b) TIN model from LiDAR. 

                                      

Figure 15. 3D B4 Models: (a) User-generated 3D model; (b) TIN model from LiDAR. 

                                     

Figure 16. 3D B6 Models: (a) User-generated 3D model; (b) TIN model from LiDAR. 

(a) (b) 

(a) (b) 

(a) (b) 
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In addition, complex buildings, such as B1 (Figure 17.a), B2 (Figure 17.b), B16 

(Figure 17.c), and B18 (Figure 17.d), contain irregular geometric shapes. It is inevitable 

to get low quality of user-generated 3D building models from Google Building Maker. 

From Figure 20, it is possible to infer the unmatched shape distributions of multipatch of 

these buildings with their TIN models from LiDAR. For instance, B1’s Slope shape 

distribution, B2’s Aspect shape distribution, B16’s Aspect and Slope shape distributions, 

and B18’s Slope shape distribution show obvious difference in their multipatch shape 

signature curves and the LiDAR-derived shape signature curves.  

               

      

       

Figure 17. User-generated 3D models: (a) B1; (b) B2; (c) B16; (d) B18. 

(a) (b) 

(c) (d) 
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Figure 18. Comparison of 3D shape signatures between LiDAR-Derived 3D models and user-generated 3D models.
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Table3. Correlation Coefficients (r0) between the 3D Shape Signatures of Figure 18. 

 Angle Area Aspect Distance Slope Volume 

Bank 0.9989 0.9986 0.9919 0.9935 0.9428 0.9998 

B1 0.9888 0.9831 0.9603 0.9836 0.7984 0.9911 

B2 0.9943 0.9968 0.8717 0.9690 0.9591 0.9977 

B3 0.9987 0.9980 0.9256 0.9965 0.9791 0.9999 

B4 0.9988 0.9819 0.9087 0.9941 0.9664 0.9994 

B5 0.9986 0.9990 0.8270 0.9920 0.9653 0.9990 

B6 0.9976 0.9983 0.8383 0.9720 0.9353 0.9995 

B7 0.9986 0.9594 0.8800 0.8685 0.9487 0.9864 

B8 0.9916 0.9824 0.9451 0.9851 0.7336 0.9869 

B9 0.9988 0.9925 0.9478 0.9960 0.9685 0.9995 

B10 0.9987 0.9980 0.8715 0.9961 0.9736 0.9998 

B11 0.9972 0.9987 0.9349 0.9901 0.9572 0.9975 

B12 0.9987 0.9982 0.8032 0.9956 0.9726 0.9996 

B13 0.9874 0.9829 0.8717 0.9667 0.6883 0.9950 

B16 0.9873 0.9821 0.7941 0.9838 0.8486 0.9801 

B17 0.9664 0.9886 0.9085 0.9883 0.8694 0.9976 

B18 0.9886 0.9893 0.9888 0.9907 0.8599 0.9816 

B19 0.9895 0.9909 0.9013 0.9616 0.7259 0.9879 

 

Sensitive Measures 

To further test which measures can be used to quantify the differences between 

LiDAR-derived 3D building models and user-generated 3D building models, the user-

generated 3D building models were modified by changing the heights of the roofs from -

20% (decrease by 20%) to +20% (increase by 20%), with an interval of 5%. The shape 

distributions are shown in Figure 19. The correlation coefficients between 3D shape 

signatures in Figure 19 are also computed. Standard deviations of the correlation 

coefficients are shown in Figure 20. A higher standard deviation indicates that the 
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correlation coefficients tend to be more dispersed. As can be seen in Figure 20, over 83% 

of the cases have high standard deviations of correlation coefficients calculated from 

the slope function. Although for several cases, the standard deviations of correlation 

coefficients from the slope function are not the highest, they still appear higher than 

those from most other shape functions. The results suggest that the slope function is 

the most sensitive measure of 3D shape signatures among the six functions.  
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Figure 19. 3D Shape distributions of six functions for 18 building models.
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Error tolerance 

Errors cannot be fully avoided from user-generated 3D building models because 

influencing factors are multitudinal, such as low acquaintance with location, interfering 

features on roofs, or complication of buildings. From the “Dissimilarity Analysis” section, 

it can be seen that the Bank building model has relatively high quality. Here, this 

building model is used to determine a range of error tolerance. Figure 21 plots the 

shape distribution of the Bank building with varying heights: -50%, -25%, -20%, -15%, -

10%, -5%, 5%, 10%, 15%, 20%, 25%, and 50%.  

As shown in Table 9, slope is the most sensitive shape function when the building 

height increases or decreases by the percentage intervals mentioned above. Even 

between the LiDAR-derived building model and the original user-generated 3D building 

model, the correlation coefficient for the slope shape function is only 0.94. In the paper 

by Dong and Guo (2011), a correlation coefficient of 0.99 is proposed as the threshold 

for detecting major changes in 3D building shapes. In other words, if the correlation 

coefficient between two shape functions obtained from a LiDAR-derived building model 

and a user-generated building model is greater than or equal to 0.99, the LiDAR-derived 

building model can be considered the same as the user-generated building model. If the 

LiDAR data is collected in a post-earthquake scenario, then the correlation coefficient 

threshold 0.99 can be used to detect buildings with major damages. Following this 

assumption, it can be seen from Table 9 that most shape functions (except slope) can be 

used to compare LiDAR-derived building models with user-generated building models 



 

53 
 

for detecting major building damage, even though the height of the user-generated 

building model is 20% more or less than the actual building height. Beyond the +/-20% 

range, it would be difficult to tell if the differences in the correlation coefficients are 

caused by major building damage or inaccurate user-generated building models.   

The D_50% curve in each shape function graph is much more distinct from other 

curves and even the I_50% curve in Figure 21. Since the building loses part of the 

building structure (Figure 22), the shape distribution of each function has apparent 

differences from its original model. Meanwhile, the D_50% correlation coefficients of 

the six functions in Table 4 are much lower than others.
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Figure 21. 3D Shape Signatures of six shape functions. 

Table 4. Correlation Coefficients between the 3D LiDAR Model and the 3D VGI Model with Different Height Changes. 

  Original I_5% I_10% I_15% I_20% I_25% I_50% D_5% D_10% D_15% D_20% D_25% D_50% 

Angle 0.9989 0.9985 0.9984 0.9980 0.9974 0.992 0.9739 0.9983 0.9966 0.9956 0.9916 0.9824 0.8801 

Area 0.9986 0.9995 0.9988 0.9992 0.9982 0.9967 0.9696 0.9993 0.9977 0.9974 0.9927 0.9840 0.8947 
Aspect 0.9919 0.9922 0.9922 0.9930 0.9937 0.9872 0.9612 0.9914 0.9891 0.9894 0.9859 0.9745 0.9219 
Distance 0.9935 0.9930 0.9925 0.9919 0.9923 0.9857 0.9752 0.9923 0.9946 0.9934 0.9882 0.9749 0.8162 
Slope 0.9428 0.9154 0.9038 0.8508 0.8213 0.9493 0.8792 0.9262 0.7564 0.7170 0.6152 0.8704 0.7067 
Volume 0.9998 0.9997 0.9995 0.9992 0.9989 0.9820 0.9820 0.9986 0.9982 0.9979 0.9957 0.9801 0.9118 
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Figure 22. The actual building model and the modified building model with 50% 

decrease in height. 

 

Special case 

In the real world, many buildings have indented vertical walls as shown in Figure 

23, or there are even no walls in some structures such as pavilions. Users may prefer to 

create these 3D models the same as the real structures, as shown in the Multipatch 2 

model of a building in Fremont, California (Figure 24). Since LiDAR points may not be 

collected from the indented vertical walls, direct comparison between shape functions 

derived from LiDAR data and 3D building models with indented walls may create false 

alarms which indicate the building is damaged but in fact it is intact.  In such cases, 

“projected building shells” can be generated by projecting the building roof onto the 

ground to create vertical walls along the roof boundary (Multipatch 1 in Figure 23). 

Correlation coefficients (r) in Table 5 show that Multipatch 1 is more similar to the 3D 

LiDAR model than Multipatch 2. For Multipach 1, except for the aspect function, other 

correlation coefficients of the five functions are greater than 0.99. However, for 
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Multipatch 2, all correlation coefficients are less than 0.99, especially the aspect and 

slope functions which show significant differences compared with Multipatch 1.
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Figure 23. Comparisons of 3D shape signatures for a building derived from LiDAR point 

clouds and the Google Building Maker. 

Table 5. Correlation Coefficients between 3D Shape Signatures (LM1 - LiDAR vs. 

Multipatch 1, and LM2 - LiDAR vs. Multipatch 2). 

 Angle Area Aspect Distance Slope Volume 

LM1 0.9966 

 

0.9953 

 

0.9700 

 

0.9926 

 

0.9960 

 

0.9994 

 
LM2 0.9800 

 

0.9813 

 

0.8859 

 

0.9736 

 

0.9030 

 

0.9785 

 

 

 
Aerial Image of Auto 

Center in Fremont, CA 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

 

Volunteered geographic information (VGI), as a new paradigm for geographic 

information production, allows for public participation in spatial data collection. Major 

VGI efforts have focused on social media and 2D spatial data collection, and 3D VGI is a 

new area that needs more investigative efforts. Using Google Building Maker, Internet 

users can conveniently create 3D building models for many cities and share the models 

in Google Warehouse. Using 3D modeling tools such as Google Building Maker, 

grassroots citizens can potentially create 3D urban models in an inexpensive, affordable, 

and timely manner.  

 

An important application of 3D VGI is for supporting rapid disaster response and 

damage assessment. 3D building models can be created anytime during the disaster 

preparation stage or immediately following a disaster, and used as pre-event data. 

Other geospatial data such as LiDAR data can be collected after the disaster as post-

event data. New methods can be developed for rapid comparison of pre-event and post-

event data. Such an approach for disaster response and damage assessment can be 

more effective and efficient because: (1) data analysis can be carried out in an 

automated way; (2) damage assessment can be conducted at the building scale and 
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district/regional scale; and (3) disaster mapping, analysis and reporting can be 

integrated seamlessly.  

In the study, user-generated 3D building models from Google Building Maker 

were compared with LiDAR-derived building models using 3D shape signatures. Eighteen 

3D building models were created in Fremont, California using the Google Building Maker, 

and six shape functions (distance, angle, area, volume, slope, and aspect) were applied 

to the 18 LiDAR-drived building models and user-generated ones. A special case 

regarding the comparison between LiDAR data and building models with indented walls 

was also discussed.  Based on the results, the following conclusions are drawn: 

(1) Distance, angle, area, volume and aspect can be used as shape functions for 

comparison of user-generated building models and LiDAR-derived building 

models. 

(2) Slope as a shape function is very sensitive to building height variation and 

should be used with care. When building height is not accurate enough 

(which is a common problem for user-generated building models), shape 

signatures calculated from slope can be misleading. 

(3) Most of the six shape functions (except slope) can be used to compare 

LiDAR-derived building models with user-generated building models for 

detecting major building damage, even though the height of the user-

generated building model is 20% more or less than the actual building height. 
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However, beyond the +/-20% range, it would be difficult to tell if the 

differences in the correlation coefficients are caused by major building 

damage or inaccurate user-generated building models. 

(4) When compared with LiDAR data, 3D building models with indented walls 

may create false alarms which indicate the building is damaged but in fact it 

is intact.  In such cases, “projected building shells” can be generated by 

projecting the building roof onto the ground to create vertical walls along the 

roof boundary, then comparisons can be made between the projected 

building shells and LiDAR data. 

(5) 3D shape signatures may not detect minor changes in 3D building models. 

However, this should not be a problem if the 3D shape signatures are used 

for detecting major changes in building shapes, such as major building 

damages after a disaster.  

There are several limitations of this study that need to be further investigated: 

(1) Since the author is the only data provider for the user-generated building 

models, more evaluations using 3D building models created by different 

users are necessary. 

(2) When simulating errors in 3D building models induced by ordinary Internet 

users, for simplicity only errors in building height are taken into account in 
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this study. Actual errors in user-generated 3D building models can be more 

complex, and more advanced simulations may be necessary in the future.     

(3) The behavior of VGI data providers may greatly affect the quality of VGI, and 

this is a topic beyond the scope of this study. However, how to improve the 

data quality by providing basic training or tutorials for ordinary VGI providers 

is an important question that affects the wide application of VGI, including 

user-generated 3D building models. 
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