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Chaos and thermal conductivity
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We argue that the condition of local thermal equilibrium realized several years ago by Rich and
Visscher [Phys. Rev. B 11, 2164 (1975)] through a process of mathematical convergence can be obtained
dynamically by adopting the prescription of a recent paper [M. Bianucci, R. Mannella, B. J. West, and

P. Grigolini, Phys. Rev. E 51, 3002 (1995)]. This should contribute to shedding light on the still un-

solved problem of the microscopic derivation of the heat Fourier law.

PACS number{s): 05.45.+b, 44.10.+ i, 66.10.Cb

In a recent review paper, Ford [1] has passionately
stressed the connection between deterministic chaos and
thermal conductivity, reaching the conclusion that
"deterministic randomness (chaos) in the sine qua non for
a proper thermal conductivity. " Yet, in his review paper
he strongly emphasizes that a rigorous derivation is still
lacking for fundamental reasons related to the difficulty
of properly defining chaos in general, and to the distress-
ing conclusion that "distinguishing integrable from
nonintegrable systems is, in general, no easier than distin-
guishing rational from irrational numbers. "

We set aside this and other, probably related, questions
concerning a genuine approach to irreversibility [2], such
as the quantum mechanical nature of the microscopic
systems, the convict between the assumption of a
rigorously exponential behavior, and the constraints im-

posed on relaxation by quantum and classical mechanics
[3]. Here we want to litnit ourselves to substantiating the
main argument of Ford with physical reasoning, rather
than by means of rigorous mathematical arguments,
these latter being probably unavailable to anybody within
the current theoretical paradigms, regardless of his or her
mathematical ability and talent. Ford stresses [1] that
the ding-a-ling model [4] has the key ingredient for the
ambitious task of producing ordinary thermal conductivi-
ty, and this ingredient is deterministic chaos. We com-
pletely agree with Ford on this key issue. However, we
think that even within the limitations stemming from the
provisos earlier stressed, the reason chaos results in ther-
modynamics and statistical mechanics has not yet been
clearly assessed. This is probably related to another of
the reasons that Ford illustrates to further his belief that,
although promising, all the important results obtained so
far, including perhaps the ding-a-ling model [4], cannot
yet be considered the final solution of the problem of the
microscopic derivation of the Fourier law. This is prob-
ably so because there is still a large gap to fill between dy-
namics and statistical mechanics. In other words, the
kind of thermodynamics one derives from chaos seems to
fit the formal prescriptions of a generalized version of
thermodynamics [5], but it is difficult to recover out of it
ordinary thermodynamics, the thermodynamics behind
the Fourier law, the only one that less sophisticated in-
vestigators would recognize as real thermodynamics.

Furthermore, there exists an apparent convict between
the recent research work stressing the role of chaos and
nonlinearity and the conventional wisdom according to
which linear modeling along the lines of Debye [6] has
still to be regarded as being a good departure point for
studying condensed systems and the related processes of
transport, including thermal transport [6].

We want to show here that a promising road to the
ambitious purpose of shedding light on these issues might
be realized by making joint use of two distinct theoretical
results, the former published several years ago [7] and the
latter just appeared [8]. Let us discuss first the proposal
of Visscher and co-workers [7]. We shall illustrate this
proposal, originally applied to the case of a very large
number of atoms, by applying it to the very simplified
case of an atomic chain of only four atoms [Fig. 1(a)]:
this is a number of atoms large enough to illustrate the
essence of the interesting proposal of these authors [7],
while keeping the treatment at a merely analytical level.
Each atom of the harmonic chain interacts with its own
independent thermal bath with the following proviso: the
terminal particles of the chain, the first and the fourth
particles, interact with two thermal sources whose tem-
peratures Ti and T4, respectively, are arbitrarily fixed,
whereas the baths of the second and third particles are
characterized by temperatures that have to be properly
adjusted according to the prescription [7] that there is no
energy Row between the chain atom and its bath in the
steady state.

From a formal point of view, the system is described by
the following set of equations:

Xi =Vi

vi =co (x2 xi ) co xi Aivi+fi(t),

X2 =V2

V2=co (x, —xz) —co (xz —x, ) —A,2V2+fz,
X3 —V3

v3=co (X4 —x3)—co (x3 —xz) —A3V3+f3,
X4 =V4,

vg= co (x4 x3 ) cia x4 A, +4vf44

1063-651X/95/52{6)/6881{4)/$06.00 52 6881 1995 The American Physical Society



6882 BRIEF REPORTS 52

(a) heat flux

k

VA
k

I
I

I
I
I
Ir 1

i T3i

k

X4

T4

(b)
10.50—

10.40—

10.30—

A

Y

10.20—

10.10—

1 0.00—
I I

2 3
pa r tic le position

tfi 1 0.50—

1 0.40—
tg

10.30—

10.20—
A

10.10—

1 0.00—

I I I

~
I I

1

I I

2 3
particle position

FIG. 1. Model for the harmonic chain with self-consistent
baths [7]. (a) Schematic representation. The temperatures of
the intermediate baths (boxes with dashed contours) have to be
determined by adopting the self-consistent prescription of Ref.
[7]. For further details see the text. (b) Kinetic energy distribu-
tion (in arbitrary unity) corresponding to the case where the in-
termediate particles are decoupled from their baths. The
crosses denote the fixed temperatures of the end baths and the
triangles denote the mean squared values of the particle veloci-
ties corresponding to the stationary condition. (c) Kinetic ener-

gy distribution (in arbitrary unity) corresponding to the case
where the intermediate particles are coupled with their baths
and the self-consistent prescription of Rich and Visscher [7] is
applied. The meaning of the symbols is the same as in (b) ~

where the x; s denote the spatial shifts from the equilibri-
um positions. The stochastic forces f, , i =1,4 (Gaussian
white noises), represent Iluctuations and the terms —

A, , v, ,
i =1,4, denote the corresponding dissipation processes:
these are the Auctuation-dissipation processes resulting
from the coupling of the particles of the system to their
respective baths. For simplicity we assign to the oscilla-
tions of the particles about their equilibrium position the
common frequency cu. Let us consider first the case
where the second and third particles are not coupled to
their baths (A, , =0,f, =0, for i =2, 3). By adopting a for-
mal matrix representation, it is possible to determine the
equilibrium distribution of kinetic energy and, conse-
quently, the steady temperature distribution [9]. Using
the choice Ti =10.0, T2=10.5, A. =1, co =0.5 (in suitable

dg;/dT; =C;, i =2, 3, (2)

where C; denotes the finite thermal capacity of the ith
bath. From the multidimensional Fokker-Planck equa-
tion we get

dg, /dt= A, , (ktiT; —(v ),—), i =2, 3, (3)

where A,; indicates the friction corresponding to the dissi-
pation terms of Eq. (1). By joint use of these equations
we obtain

dT; /dt = —A,;(ktiT; —(v ), )/C;, i =2, 3 . (4)

arbitrary units) we obtain ( v, ) = 10.0618, ( v2 )
=10.2618, (v3) =10.2382, and (v4) =10.4382, illustrat-
ed in Fig. 1(b).

The situation changes drastically if we adopt the
prescription of mathematical self-adjustment suggested
by Visscher and co-workers [7]. This means also that the
second and the third particles are coupled to a bath.
However, the temperatures of these intermediate baths
are not fixed. Rather they have to be determined by an
iterative process of self-adjustment based on the assump-
tion that the stationary state corresponds to a vanishing
heat Aow between the intermediate particle considered
(i =2,3) and its bath. This condition can be implemented
in the preceding scheme of calculation and leads to the
result T2=10.185, T3 =10.315 for the intermediate par-
ticles [9]. Figure 1(c) illustrates the new temperature dis-
tribution. The linear dependence of temperature on the
position, and the big transition from the infinite thermal
conductivity of the case of Fig. 1(b) to a condition of
finite conductivity (when the adoption of a very large
number of atoms makes it possible for us to adopt the
continuum space approximation), is already evident.

These results, as simple as they are, being derived by
means of a fully analytical treatment, have, in our
opinion, some appealing aspects. The model of Visscher
and co-workers [7] is linear, and this is the reason it can
be solved exactly. On the other hand, it refers to that
kind of idealization of reality (see the Debye approach)
which has been proved to lead to a satisfactory solution
of the heat capacity [6]. Nonlinearity and chaos, the
basic ingredients stressed by Ford, are tacitly present
through the fluctuation-dissipation processes represent-
ing the interaction among the intermediate particles and
their thermal baths.

Furthermore, the procedure of mathematical conver-
gence prescribed by Visscher and co-workers [7] is exact-
ly equivalent to the physical process of temperature read-
justment that intermediate thermal baths with a finite
thermal capacity would have. Formally, this key aspect
can be easily accounted for as follows. One writes the
multidimensional Fokker-Planck equation corresponding
to the system of (1) with also the second and the third
particles coupled to their baths. However, rather than
making the assumption that they have an infinite thermal
capacity, thus keeping fixed the temperatures T2 and T3,
we let them change according to the amount of energy
exchanged with the particles to which they are coupled.

The amount of heat exchanged is determined by
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We see from Eq. (4) that when the steady state is reached,
the condition of a vanishing heat Bow between each inter-
mediate particle and its bath is automatically realized,
thereby ensuring the equivalence between the process of
mathematical convergence of Visscher and co-workers [7]
and the process of self-adjustment of the intermediate
baths, triggered by their finite heat capacity.

At this stage we have to properly use the results of Ref.
[8]. This paper shows that if a particle of interest is cou-
pled to a chaotic system, termed booster to point out its
mechanical rather than thermodynamical nature, the
dynamical properties of the particle of interest become
indistinguishable from that of a Brownian particle, name-
ly, a particle driven by an ordinary Fokker-Planck equa-
tion, with a friction A, ; and a diffusion D; =k;k& T;. If
the kinetic energy of the particle is given a value not cor-
responding to the equilibrium condition of the particle,
this is expected to change with a rate given by (3). This
means that the microscopic derivation of the Fourier law
implies that each particle of the intermediate set, namely,
i =2,3, has to be coupled with its own booster, a mechan-
ical system at a given energy E;, with i =2,3. In [8] the
change of energy affecting the booster was disregarded.
However, it is straightforward to correct that Aaw in the
theory of Ref. [8]: this can be done by using the prescrip-
tions, themselves, of this theory. Let us apply this
theoretical derivation. The booster serves the basic role
of changing mechanical energy into something that can
be perceived as heat, if we look at it from the system of
interest. Thus, it is possible to derive a mechanical ex-
pression for the temperature T; which is a given function
of the energy E, From the expansion

k~T;(E;+LE; )=k~T, (E)+k~bE, /C,

+0(bE; ), with i =2,3,

we derive an expression for the thermal capacity of the
intermediate baths, which leads us to an equation
equivalent to (4) and, consequently, to a process of tem-
perature adjustment equivalent to the prescription of
Visscher and co-workers [7]. Of course, if the booster is
characterized by only a few degrees of freedom, this con-
dition has to be realized with caution. For the theory of
Ref. [8] to apply, it is necessary that the energy change of
the booster does not alter the chaotic condition that
determines the booster susceptibility: this means that the
condition of local thermodynamics implies a moderate
exchange of energy between the particle and its booster.

We now want to comment on some benefits stemming
from the approach outlined in this Brief Report.

(i) First of all, we explicitly derive the Fourier law from
chaos, rather than merely checking that its occurrence
accompanies the onset of chaos. This is so because on the
basis of [8] we prove that the chaotic boosters coupled to
the intermediate particles realize the condition of local
thermodynamics that ensures a condition equivalent to
that corresponding to the final stage of the iterative
mathematical procedure proposed by Visscher and co-

workers [7]: a stationary state with a vanishing heat flow
between conducting particle and booster.

(ii) We establish a perspective, within which the Debye
theory of noninteracting normal modes and the deter-
ministic chaos of Ford harmonically coexist. This is
shown schematically as follows. Following the Debye
suggestions [6], we adopt the approximation of consider-
ing a crystal as a harmonic lattice. This approximation
would be incompatible with deterministic chaos and, con-
sequently, according to Ford [l], with the microscopic
derivation of the Fourier law of heat transport. Howev-
er, we imagine that this perfect crystal interacts with an
"environment" in such a way that the perfect crystal, the
environment, and the coupling between the two happen
to be expressed by a Hamiltonian representation identical
to the Hamiltonian of the nonideal crystal that we are
studying. This nonideal crystal, in turn, is supposed to be
a medium suitable for heat transport. Let us make the
assumption that the environment, a nonlinear and chaot-
ic system, can be divided into infinitely many subsystems,
a subsystem for each atom of the perfect lattice, and that
two distinct subsystems do not interact with one another,
but only with the atom to which they are associated. The
approximation of neglecting the direct interaction among
distinct subsystems becomes reasonable with increasing
degrees of freedom of these subsystems. As a result of
this approximation scheme, we derive a model equivalent
to that earlier used to derive the Fourier law. When the
stationary condition, corresponding to the Fourier law is
reached, the harmonic lattice can be regarded as nonin-
teracting with the network of boosters. The two systems
do not exchange energy and, consequently, they can be
regarded as two independent channels for the heat
transmission. Furthermore, the network of boosters is a
system to which, too, the Fourier law applies. This is
consistent with the results found by Casati et al. [4], ac-
cording to whom the Fourier law implies a condition of
global chaos. Let us see why: After getting the desired
result by coupling each atom to its booster and keeping
the boosters isolated from one another, let us switch on
again the interaction among distinct boosters. If we con-
sider the collection of all the boosters as a single chaotic
system, we expect it to realize the Fourier law. This im-

plies an energy distribution indistinguishable from that
obtained before switching on the interaction among dis-
tinct boosters. Consequently, the assumption made of
noninteracting boosters seems to be reasonable and its
release should not lead to a significantly different result.
It must be pointed out that although chaos is the key in-
gredient in deriving the Fourier law, the thermal conduc-
tivity associated with a strongly chaotic system is low.
Consequently, the contribution to conductivity of the
chain of boosters is low, and the errors due to the approx-
imation made (of considering the boosters as noninteract-
ing) should be negligible. In conclusion, our result is
compatible with that of Casati et al. [4] and shows how
to use the key ingredient of deterministic chaos without
losing the benefits stemming from the Debye harmonic
model.
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