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Abstract: Sexually transmitted diseases and infections are, by defini-
tion, transferred among intimate social settings. Although the circum-
stances under which these social settings are established and maintained
may vary, the common prerequisite remains an intimate level of social
atmosphere. For this reason, the development of sexually transmitted
disease mathematical and computational models must utilize dynamic
and evolving social network simulation. This paper presents DynSNIC
(Dynamic Social Network of Intimate Contacts), a computational simu-
lator created to embody the intimate dynamic and evolving social net-
works related to the transmission of sexually transmitted diseases and
infections. DynSNIC’s utilization by health professionals will facilitate
evaluation of targeted intervention strategies and public health policies.
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1 Introduction

Sexually transmitted diseases and infections are a significant and increasing
threat among both developed and developing countries around the world, causing
varying degrees of mortality and morbidity in all populations (Eames & Keeling
2002). The rates of prevalence of curable sexually transmitted diseases and in-
fections are highest among the most developed countries, with a quarter of these
conditions occurring within the 13-19 age range (Eng & Butler 1996). The respon-
sibility of halting the dissemination of these conditions lies upon the shoulders of
professionals within the public health industry. In order to properly and effectively
use funding and resources, these individuals must have reliable tools to help predict
the most appropriate means of intervention strategies.

Sexually transmitted diseases and infections are on the brink of becoming consid-
ered endemic within general populations. Many of these illnesses are preventable in
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nature, and the public health industry would benefit from the predictive measures
capable of intimate social networking computational tools. Professionals within
this field often have limited budgets and resources must be aimed in the proper
direction in order to achieve maximum results. The utilization of computational
social networking tools would allow for those within the public health industry to
anticipate the impact of demographic specific predictions, and tailor awareness, ed-
ucational, vaccination, and prophylactic programs for the greatest impact within
their population.

With limited funding and resources available to help prevent infectious disease,
public health professionals need tools to facilitate decision making regarding where
the most effective measures would be taken. Based on collected data and statis-
tical analysis, it is evident that certain demographic groups are at higher risk for
contracting certain sexually transmitted diseases and infections. For example, pre-
vious research has indicated specific achieved levels of education have a positive
correlation with higher incidence of HIV/AIDS infection (Reiche & et al. 2005).
This type of understanding, when applied to a computational social model, would
allow the individual within the public health industry to model an awareness or ed-
ucational campaign to the population with the greatest risk factors and to predict
the potential impact on this target group from avoiding future infection.

In this paper we first introduce several methodologies to analyze graphs, in par-
ticular classical graphs and their mapping on to bipartite networks; for example:
size, density, and clustering coefficients. The general algorithm of our dynamic so-
cial network of intimate contacts (DynSNIC) simulator is presented. This algorithm
generates a dynamic contact driven network with a specific degree distribution, dis-
ease dynamics and evolving population. We then describe in detail how DynSNIC
optimizes the bipartite network with a predetermined degree distribution, minimiz-
ing the number of unresolved degrees. The networks generated are then analyzed
using the graph statistics introduced earlier in this paper. A sample case study
is presented demonstrating DynSNIC’s capabilities and this paper concludes with
future work in our simulator’s development.

2 Previous Work

Previous work employing social network schemes has varied in context. The
EPISIMS computational analysis tool, created at the University of Maryland in
conjunction with the Los Alamos National Laboratory, estimates social network-
ing based on the transportation patterns evident within the target city, Portland,
Oregon (Eubank, Guclu, Kumar, Marathe, Srinivasan, Toroczkai & Wang 2004).
This computational model may be used to handle diverse social networking in re-
gards to the transmission of infectious disease agents. Public health officials may
utilize this model to help predict where preventive measures, including quarantine
and vaccination, would be most useful and cost effective within their populations.
Since its inception, EPISIMS research has relocated to the Virginia Bioinformatics
Institute at Virginia Tech. Their research has expanded to include simulation of
most cities, a coarser grained simulation of the entire U.S, and multiple versions
of EPISIMS based on various modeling paradigms. The Center for Computational
Analysis of Social and Organizational Systems at Carnegie Melon University has
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also built a simulation framework, BIOWAR, to predict the effect of a large-scale
terrorist attack or infection outbreak. BIOWAR incorporates multi-agent systems,
census track data, human social behavior and wind dispersion data(?).

Avenues of previous social models of sexually transmitted diseases and infec-
tions have included the categorization of individuals into groups based on the dif-
fering stages of infection of each disease condition versus demographic factors such
as age, sex, and geographic location. Gonorrheal and Chlamydial infections have
been predicted using these types of models, which have been validated through
available statistics. Due to the nature of these illnesses, statistical data is often
very difficult to collect (Aral, Hughes, Stoner, Whittington, Handsfield, Ander-
son & Holmes 1999, Ward, Ison, Day, Martin, Ghani, Garnett, Bell, Kinghorn
& Weber 2000, Wylie & Jolly 2001). Epidemiological models for sexually trans-
mitted conditions have also been created based on the accumulation of contact
tracing data. This type of data may be unreliable due to individual recall error and
privacy constraints, but is the common method of understanding Syphilis trans-
mission (Chen, Kodagoda, Lawerence & Kerndt 2002, Gunn, Harper, Borntrager,
Gonzales & St.Louis 2000, Rosenberg, Moseley, Kahn, Kissinger, Rice, Kendall,
Coughlin & Farley 1999, Williams, Klausner, Whittington, Handsfield, Celum &
Holmes 1999, Wylie & Jolly 2001).

Providing social networks for sexually transmitted diseases and infections de-
pend upon numerous implications, each of which must be taken into account. While
studying the epidemiological patterns of these conditions, one must individually
analyze the interaction potential between host and pathogen, whether viral or bac-
terial, as well as interventions regarding health-care, before analyzing the potential
causative associations where the pathogen may have been acquired. Since pathogen
acquisition may hold the answer to interventions and preventative measures in the
future, the use of social networking is a practice which may save much needed time
and resources.

3 Graph statistics

8.1 Classical graph statistics

Analyzing graphs with various statistical properties has become an important
component in describing real world complex networks. First, we briefly introduce
basic graph-theoretic statistics including clustering coeflicients. Next, we describe
the modification of these methods to analyze properties of bipartite graphs..

The analysis of classical graphs is a well studied field in graph-theory and many
methodologies exist to describe the nature of these graphs. Traditionally, a classical
graph, G, is defined G = (V, E) where V is the set of vertices and E is the set of
edges in the graph E C V x V. The neighborhood N (v) of vertex v is defined as
N(v) = {{u} : eyn € E}. The degree of vertex v is the cardinality of the set of
edge connections from v to its neighborhood, d¢ = |N(v)|. Basic statistics that
describe this graph include its size n = |V|, number of edges m = |E|, average
degree k = 277”, and its density,0(G), which represents the probability any two
randomly chosen vertices are connected, §(G) = %

In addition, we consider two more statistics in the context of graphs, degree dis-



Dynamic intimate contact social networks and epidemic interventions 5

tribution p(k) and clustering coefficients. Degree distribution gives the probability
of degrees in a network and has become an integral descriptive of the topology of
complex networks. The degree distribution function p(k) describes the total num-
ber of vertices in a graph with a given degree (Eq. 1). This same information is also
described by the cumulative degree distribution (Erdos & Renyi 1959). (Eq. 2).

dy

ZvGV\dg:k
Po=> pr (2)
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The second graph descriptor is the clustering coefficient. It has been empirically
shown that many social networks have a higher neighborhood transitivity than that
of other random networks such as Internet topology (Newman & Park 2003, Watts
& Strogatz 393). Much of the analysis of the networks generated by our simulator
is evaluated using clustering coeflicients. This statistic describes the overlap in
the network topology. The clustering coefficient C, is the probability that any
two nodes are linked together if they have a neighbor in common. In an undirected
graph e(u,v) and e(v, u) are the same link. Hence, if vertex v has k neighbors @
edges could exist in the neighborhood. Eq 3 defines the clustering coefficient for
undirected graphs. The clustering coeflicient for the entire graph is the average of

each vertices’s clustering coefficient over the graph (Eq. 4) (Watts & Strogatz 393).

|EN ()l _ 2[{e(y, w)}| (3)
NOIINOED ~ dg(dg — 1)

p(k) = (1)

Co'u =

cy,u € N(v),e(y,u) € E

3.2 Bipartite graph statistics

Many of the bipartite graph statistics relate to their classical counterparts. Some
of these descriptors are redefined while others are dual components of their classical
property. A recent technical paper by Latapy et al. describes the following bipartite
graph statistics in greater detail (Latapy, Magnien & Del Vecchio 2006).

Consider a bipartite graph G = (T, L, E). The size of the graph is now divided
into the size of the top portion nt = |T| and the size of the bottom subset n; = |L|,
these are the number of nodes in the top vertex set and the bottom set, respectively.
The size of the edge set remains the same as for classical graphs m = |E|. The
average degree is now separated for each bipartition subset; the top subsets average

degree is kT = % and the bottom subset k; = % The average degree of the

graph G* = (TU L, E) is now k = —2m_ — nthrdniki  The hipartite density is

nt+n, nt+ny
thus 0(G) = 22— and §(G*) = (nTJrnL)?rTTJmLA) with §(G*) < §(G).

Clustering coefficients are evaluated much differently in the bipartite setting.
In the classical graphs, the overlap among vertices is measured by the number of
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triangles; however, in the bipartite case, triangles among vertices of the same set
do not occur. The following descriptors will be used to analyze the topology of
the networks generated by our simulator. We define the clustering coefficient for
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Figure 1 The neighborhoods of vertices u and v intersect at vertices a and b. The

clustering coefficient between these two vertices is cce(u,v) = % However, there is no

overlap (clustering) between vertices u and w; thus the clustering coefficient of vertex u

remains the same (cce(u) = 2).

pairs of nodes, both in either T or L : cc, captures the overlap in neighborhoods of
vertices u and v. Whenever the neighborhood of vertices v and v do not overlap then
cce(u,v) = 0. Conversely, if vertices u and v are elements of the same neighborhood
then cce (u,v) = 1. The equation for the neighborhood overlap is given in Eq. 5. The
cartoon in Fig.1 demonstrates clustering in a bipartite graph. The neighborhoods of
vertices u and v intersect at nodes a and b in the opposing subset, the corresponding
clustering coefficient is cce (u, v) = %; however, there is no neighborhood intersection
between vertices v and w and cce (u, w) = 0. To evaluate the clustering coefficient of
a particular node, the average over the subset is calculated for only those edge pairs
where an overlap in neighborhoods exist (Eq. 6). The graphs clustering coefficient
cce (@) is the average of each bipartition subsets corresponding clustering coefficient
(cce(T),cce(L)) (Eq. 7). Considering complex networks with significant differences
between degrees of the vertices, the previously introduced clustering coefficient
may not provide a strong and informative analysis of the network topology. The
following two clustering coefficient 1flavors further describe neighborhood overlap.
Equation 8 describes a clustering coefficient lower bound and considers a setting
where a small neighborhood is encompassed by a large neighborhood. Equation 9
evaluates an upper bound on the clustering coefficient and evaluates occurrences
where small or large neighborhoods overlap. The following clustering coefficients
can be evaluated similarly to equns. 6 and 7 : ccj(u), cc (T), cci (L), cc (G),
cer(u), cer(T), cer(L), and ceq(G)(Latapy et al. 2006).

[N(u) N N (v)|

cco(u,v) = N UN@)| (5)

ZUEN(N(u)) CCe (uv 1))

cce(u) = IN (N (u))] )

cen(C) = NTCCo (;: i Zicc. (1) (7)
NN N(@)|

cer(u, v) = min(|N (u)l, [N (v)]) )
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4 Generating realistic social networks of intimate interactions

We have developed a simulator capable of building a evolving social network
of dynamic heterosexual intimate contacts. This type of social network can be
viewed as a bipartite graph described by the triplet G = (G, G, E) where Gy
represents male, G represents female vertices contained in the network at any
point in time and {E ' E C Gy x Gy} is a vector containing the set of edges
present during discrete time intervals. We first describe the general algorithm for
our social network of intimate contacts simulator. Next, we define in detail how
we perform bipartite matching on our network so that a minimum open degree
remains. The authors implemented the simulator in C++ using the boost stl graph
libraries (Siek, Lee & Lumsdaine n.d.).

4.1  General Algorithm

The general algorithm of our simulator contains several basic steps (Alg. 1).
First, a forest is generated for each bipartition subset; next, the social network is
created by linking the two subsets with each other based on several properties. The
generated social network can then be used to evaluate disease dynamics and any
intervention strategies.

A forest is generated for each bipartition subset (G,,,Gy) in the graph G by
inserting the respective number of nodes (n,,,ny) specified by the user parameter
space. Demographic characteristics play an important role in intimate interaction
among individuals. To encapsulate these characteristics, each vertex is assigned a
vector of demographic properties ( Demog,, ). Each vector component is labeled
by a specific feature set and its value is arbitrarily chosen from the set’s range of
discrete values. Due to limited available data, we choose not to explicitly identify
each feature (i.e. race, income, education) and simply assign each vector compo-
nent a probability distribution. Currently, gender is treated as a special case and
not included in the feature vector; this is due to only heterosexual interactions
consideration in the network.

Random network models assume that a link may be placed randomly between
two vertices and uniformly throughout the network. This is not the case in real
world networks, where links are more likely to exist with non-random attachment.
Preferential attachment results when a new node is more likely to connect to a node
with a high degree than to a node of low degree. The probability of connecting to
vertex ,v;, 11, is the connectivity of vertex v; averaged over the total sum of each
vertices degree (Eq.10) (Barabasi & Albert 1999, Barabasi & Albert 2002).

(o]
G
o
EviGGk d'ui

Demographic similarity can either strengthen or weaken the probability of con-
nection, considering assortative to random mixing. Many scoring metrics exist to

II; = (10)
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begin
input : user defined parameter space
Insert n,, vertices in G,,
Insert ny vertices in Gy
foreach vy € Gy do
maxDegree,, « zipf(—2.54, kFemale Bound)
draw a random vector I from a user defined and bounded probability
distribution
D?,f =r //demographic property vector stochastically created and
assigned to female vertice
foreach v, € GG, do
maxDegree,, «— zipf(—2.31, kMaleBound)
draw a random vector I from a user defined and bounded probability
distribution
Dem?)gvm =T //demographic property vector stochastically created
and assigned to male vertice
Vvs € Gy calculate preferential attachment p(k)
Yo, € Gy, calculate preferential attachment p(k)
foreach discrete time step do
Ey = {} //initialize current edge set to the empty set
optBiMatching(G') //0Optimize bipartite matching on dynamic
network ,see Alg.2
Evaluate disease dynamics including any intervention strategies
foreach v,, € G’ do
//population evolution
draw a uniformly distributed random number r
if » > p(aging — out) then
color v,, € G as unusable
create new node Ve
maxDegree,, .. «— zipf(«, gender Bound)
insert vyey in G
recalculate preferential attachment p(k) V v, € G’

end
Algorithm 1: DynSNIC general algorithm. Note : G' = {Gm,.opes Gfueanier Bt}

quantify similarity between two objects; for example, hamming distance, cosine
similarity and feature frequency proportions (Hamming 1950, Jaccard 1901, Salton
& McGill 1983). DynSNIC takes a coarse first cut at scoring the likelihood of mixing
(P, 0 (Mizing)) between two individuals, using the unweighted cosine similarity
of both vertices’s demographic feature vector (Eq. 11). When selecting an intimate
partner in actual social settings, it is likely that certain demographic features pro-
vide stronger, weaker, or even negative attraction (i.e. education, income, age),
which would lead to a weighted function. Currently, the simplest (unweighted)
flavor of the similarity scoring metrics is implemented in DynSNIC’s initial exper-



Dynamic intimate contact social networks and epidemic interventions 9

iments. The overall likelihood of an interaction occurring (pg(Attach)) between
two vertices (v; and vy,) is the aggregate of the scoring function and preferential
attachment (pg(Attach) = py,, (k) X po,, o, (Mizing)).

- -

Dy, Dy,

— = =
Dy |[Dy,,|

A key factor in assessing structure among intimate connections, as is common
with most other social network topologies, is degree distribution. A Swedish survey
on sexual behavior was analyzed and reported by Liljeros et al. in a 2001 Nature
article (Lewin 1998, Liljeros, Edling, Amaral, Stanley & Aberg 2001). The survey
was evaluated from a random sample of 4,781 Swedes ages 18-74 that involved ques-
tions and personal interviews. One of the survey questions was how many intimate
partner changes occurred in a years time. Using the data obtained from this ques-
tion, Liljeros et. al were able to determine a specific probability distribution for
having k intimate partners. Males in the study reported a higher partner change
rate than females; however, they both had similar scaling. In particular the paper
cited the number of partners in the previous year follows a power law distribution.
The cumulative probability function (eq. 12) of a power-law distribution Py is the
probability of having k partners with scaling parameter a > 1 and L(k) being
a slowly varying function that controls the shape and finite extent of the lower
tail (Newman 2005). In our algorithm we use a specific type of power-law called a
bounded Zipf-law, the authors chose this law so an exact upper bound (shown in
(Liljeros et al. 2001)) could be placed on the number of intimate partner changes
(Zipf 1949).

p(k) =~ L(k)k™" (12)

Once the population has been generated, preferential attachment probabilities
and demographic feature vectors have been assigned to each node; the time-driven
simulation can commence. The first step is to maximally connect the two bipartition
subsets forming a network of intimate interactions. The problem of finding the
graph configuration with the lowest total remaining degree is a computationally
intensive problem with a running time known to be NP-hard and represents an
interesting dilemma. A greedy-heuristic described in section 4.2 is implemented to
reduce the computation to O(Elog V). After the contacts have been placed, disease
dynamics and any intervention strategies can be performed on the network. The
model’s population size remains constant; however, it evolves through accounting
for persons aging-out of the modeled age-span (v = age span modeled). Nodes
are stochastically colored unusable based upon the probability of aging-out of the
network (%) The unusable nodes are then replaced with new nodes, each new node
is assigned a demographic feature vector, and its cardinality from the bounded Zipf-
law distribution. Preferential attachment probabilities are recalculated for each
vertex and the dynamic network is then rebuilt according to algorithm described
in Alg.1.

Doy, 0; (MiTing) = COSIM(Dt,f, D:m) = cosf

(11)

4.2 Mazimally connecting a bipartite-graph : optBiMatching(G’)

The purpose of Algorithm 2 (optBiMatching(G') ) is to connect every node
in Gjs to another node in G, maximally exhausting each subsets total degree.
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Algorithm 2 optimizes matching on the bipartite graph in polynomial time (F log V')
with the following constraints : every node has at least one connected edge and
the resulting graph’s cardinality is optimized so that a minimal number of edges
remain to be connected (see Figs. 2 and 3).

«

C
R

subset Gm subset Gf

~F

Unidrected Bipartite Graph G

Figure 2 Initial graph G

O—

Figure 3 Optimized graph, with minimal remaining set cardinality

Let G be an undirected bipartite graph, that contains two bipartition subsets,
Gy and Gp. The vertices in each subset have a pre-assigned degree associated
with it; specifically, a random, power-law distributed number which is the maxi-
mum possible number of edges connected that vertex. For the constraint that each
node is to have at least one edge the following bounds must hold |N(Gy)| > |G|
or [IN(Gp)| > |Gy|. Note, the distribution of male and female vertices is not sig-
nificant if the previously mentioned constraint holds. Edges are attached to the
graph as follows: in vertex order of each subset, one edge is attached from a male
vertice to a randomly chosen female vertice in the opposing subset, link attachment
is determined by preferential attachment and cosine similarity of each vertices’s de-
mographic vector. A threshold is set to arbitrarily choose a vertex in the opposite
subset when a large number of vertices have been chosen but no edge has been
placed. The simulator’s threshold is set to 200 attempts before an arbitrary ver-
tex in the opposite subset is chosen for edge placement. When a node randomly
chooses a node in the opposite subset and it stochastically fails to create a link,
the model will draw a random node 200 times before arbitrarily choosing a vertex
for edge placement; the number 200 is arbitrarily chosen and sensitivity on this
threshold is left for future work. Next, an edge is attached from a female vertex to
a male vertex, also determined by preferential attachment and cosine similarity of
each vertices’s demographic vector. The edges are added one per subset until one
of the subsets maximum cardinality is reached. The exact algorithm is described
in greater detail in Alg. 2. A sample network generated by our simulator that
contains 100 nodes, 50 females and 50 males is displayed in Figure 4.



Dynamic intimate contact social networks and epidemic interventions 11

input : G = (G;,G, E) where E = ()
output: Maximally connected bipartite graph of intimate contacts

begin
while Jvy, € Gy, and Jvy € Gy s.t. dj, < maxDegree,, do
in vertex order given v,
choose vy, € Gy s.t. dy) < maxDegree,,,
loopCount = 0
maxReached = FALSE

repeat
inserted = FALSE
loopCount++

randomly choose vy € Gy s.t. dj - < maxDegree,,
pe(Attach) = py, (k) X pu,, v, (Mizing)
draw a uniformly-distributed random number r
if pp(Attach) >r then
add E = (vf,vm) in G

inserted = TRUE
if linserted and maxLoopsReached then
arbitrarily choose vy € Gy s.t. dj < maxDegree,,

add E = (vy,vp) in G
inserted = TRUE

until inserted == TRUE

in vertex order given v,

choose vy € Gy s.t. dj, < maxDegree,,
loopCount = 0

maxReached = FALSE

repeat
inserted = FALSE
loopCount++

randomly choose vy, € G, s.t. d < mawDegree,,,
pe(Attach) = p,,, (k) x Do vy (mizing)
draw a uniformly-distributed random number r
if pg(Attach) > r then
add E = (vy,vp) in G
inserted = TRUE
if linserted and maxLoopsReached then
arbitrarily choose vy, € Gy, s.t. d; < maxDegree,,,

add E = (vf,vm) in G
inserted = TRUE

until inserted == TRUE

end
Algorithm 2: optBiMatching(G’) where G' = {Gm,..00) G fusapies Bt} Con-
necting a bipartite graph minimizing remaining degree.
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Figure 4 Portion of a 100 node (|G| = |Gy|) social network realization where the
D.,).
s

-

probability of intimate connection is p(k) x COSIM(D

Um >y

5 Experimental Results

We have introduced several methods to examine the topology of complex bi-
partite networks. Next, we evaluate the dynamic networks produced by DynSNIC
using Monte-Carlo type simulations. The computational complexity associated
with calculating bipartite graph statistics allowed for ten runs, each run generat-
ing ten contact realizations of the dynamic social network. The networks contain
10,000 vertices and each bipartition subset has an equal number of male and female
vertices (|Gm| = |Gy|).

The partner change cumulative distribution is displayed on a log — log plot in
Figure 5. The solid line demonstrates a power law curve with a = 2.31, it can
be seen that the contacts generated by our simulator slightly under-fit the original
distribution however the scaling remains. Currently, our model slightly under-fits
the power-law scaling reported by Liljeros et al.; this is due to when a node reaches
its maximum degree we do not allow (by chance) for a link to be added to that
vertex (Liljeros et al. 2001). Note that approximately 90% of the vertices have
only one contact (shown in Fig.5) and thus result in approximately 4,500 links; the
average edge count for our preferential attachment networks is 7693 and 10% of the
vertices account for &~ 3200 links (similar statistics are present for cosine similarity
and PAxCOSIM networks).

Three evaluation settings were chosen for our experiments, defined by interac-
tion probabilities. The interaction likelihood settings are using solely demographic
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Figure 5 Cumulative Distribution for Intimate Contacts

feature vector cosine similarity, solely preferential attachment, and the aggregate of
preferential attachment and cosine similarity scoring. The graph statistics resulting
from the Monte-Carlo simulations are displayed in Table 1. The results demonstrate
the likelihood of clusters in our networks. They also show the range of clustering
coeflicients for the graph and each bipartition subset. Each specific clustering co-
efficient statistic show a high occurrence of clusters compared to the density of G
and G*. An interesting observation from the table is that preferential attachment
alone, produces less neighborhood overlap compared to demographic feature cosine
similarity. This correlates to results from comparing clustering in social networks to
that of non-human networks where interactions are defined more by network topol-
ogy than other affinity measures; for instance, the Internet topology compared to
the Live-Journal community (Kumar, Novak, Raghavan & Tomkins 2004). Cen-
trality measures are valuable in quantifying network topologies; evaluating these
metrics on dynamic and evolving networks is an open research question and the
authors leave centrality evaluation to future work (Berger-Wolf & Saia 2006).
Quantitative analysis of DynSNIC’s infection dynamic capabilities, in conjunc-
tion with health policies and interventions strategies, is provided in the following
case study. Many Human Papilloma Virus (HPV) types are sexually transmitted
and HPV DNA is found in 99.7% of all cervical cancers with HPV-types 16, 18, 31
and 45 accounting for 75% of cervical dysplasia(Goldie, Kohli & Grima 2004). Upon
acquisition of the HPV virus, the host could be asymptomatic for many years, clear
the infection, or cervical dysplasia could develop. HPV prevalence is an integral
component of cervical cancer’s etiology; although, DynSNIC’s vertex finite state
machine is also capable of representing additional states beyond infection status,
such as temporal pathogen dynamics (carcinogenesis). Presently, each vertex state
machine in DynSNIC label HPV’s presence, susceptibility, or immunity (vaccina-
tion, other intervention or through cleared infection) in the host. We evaluate the
impact of several disparate intervention strategies on HPV prevalence in the popu-
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| Statistic | p(k) | cosiM | p(k) x COSIM |
m 7693 7716 7742
3(G) 3.084 | 3.09E4 | 3.10E4
3G 15464 | 154E4 | L1.55E4
cc(Males) 0.423 0.457 0.442
cc(Females) 0.218 0.250 0.233
(G 0321 | 0.353 0337
ccr(Males) 0.786 0.810 0.799
cci(Females) | 0.848 0.861 0.853
1 (G) 0.817 | 0.835 0.826
cc)(Males) 0.456 0.486 0.470
cc)(Females) | 0.226 0.255 0.241
o (G) 0.321 | 0.370 0.337

Table 1 Generated Social Network Graph Statistics

lation. The simulator’s parameter space is gathered from (Corley & Mikler 2005).
The demographic feature vectors are arbitrarily defined with five features, each
feature with a integer value between 0 and 4. The discrete values are drawn from
a uniform distribution. The use of a uniform distribution in the demographic fea-
tures translates to a psuedo-"random” mixing due to the homogeneous nature of
the population demographic strata composition. To determine the probability of
natural infection a binomial is calculated with the chance of infection in one en-
counter (p;, ) and the number of encounters (\) which occur (p,(i) =1 —[1 — p;,]*);
similarly, the probability of breakthrough infection combines intervention efficacy
(eint) and chance of natural infection ( py(i) = et X pi, ). The specific stochastic
disease parameters include the probability of acquiring HPV in one encounter (0.08
male-to-female, 0.02 female-to-male), encounter frequency drawn from a Poisson
distribution with a mean of 50, intervention efficacy is 75%, the age-range modeled
is 50 years, infection clears after two years and 5% of the population is initially
infected(Corley & Mikler 2005).

Population-level impact from three intervention strategies is evaluated; these in-
clude no intervention, vaccinating® only males, and vaccinating only females. An in-
tervention targeting both males and females would be economically cost-prohibitive
and not included in our evaluations. Each Monte-Carlo simulation is loaded with
the parameter space described earlier, population size of 10,000 (|G.,| = |Gy)),
and executed for 30 discrete realizations (years). The impact of each intervention
setting is averaged from ten Monte-Carlo simulations and the results are shown
in Fig.6. Intervention results are analyzed by the relative reduction in prevalence
(RRP) between no intervention and a specific strategy. Our results show a RRP of
75% (0.2 to 0.05 in female population) at the height of the epidemic when vacci-
nating females at 80% coverage and 75% efficacy. To date, no other social network
simulator solely built on heterosexual intimate contacts has been developed for in-
tervention analysis; however, much research has been conducted in this area using

aIntervention coverage is 80%.
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Figure 6 HPYV infectious population per gender / three intervention solutions.10,000
pop size, 10 Monte-Carlo, 30 realizations each run
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mean-field type and ordinary-differential equation models with similar intervention
solutions. Hughes et al cite a RRP of 0.68 with a range of 0.628 to 0.734; other
models such as Sanders and Taira cite a RRP of 0.8 and above(Hughes, Garnett
& Koutsky 2002, Sanders & Taira 2003). Endemic prevalence does not occur with
our simulator; however, our results clearly show a reduction in prevalence within
the RRP range of established models.

6 Conclusions

Recent growth in the prevalence of sexually transmitted diseases and infections
in developing and developed countries general population has prompted a great
deal of inter-disciplinary research to curb the population wide effect of these dis-
eases. Public health professionals often have limited budgets and resources must be
specifically tailored to achieve maximum results. The utilization of computational
social networking tools would allow for those within the public health industry to
anticipate the impact of demographic specific predictions, and tailor awareness, ed-
ucational, vaccination, and prophylactic programs for the greatest impact within
their population. With limited funding and resources available to help prevent
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infectious disease, public health professionals need tools to help them to make
decisions regarding where the most effective measures would be taken. Sexually
transmitted diseases and infections are, by definition, transferred among intimate
social settings. Although the circumstances under which these social settings are
established and maintained may vary, the common prerequisite remains an intimate
level of social atmosphere. For this reason, the development of sexually transmitted
disease mathematical and computational models must utilize a precise and efficient
social networking tool.

Our social network generator is in the foundation phase of development and
there is exciting future work to be accomplished. We analyzed the current networks
which are generated by using only preferential attachment, solely cosine similarity
and an aggregate of the previous two as the contact likelihood. The next phase
of development will assign social demographic feature distributions other than uni-
form, such as Gaussian or Poisson to each node and combine preferential attachment
with the likelihood of mixing between these social demographic groups. Evaluating
several different contact placement options will lead to a more precise social network
generated. Examples of these contact placement strategies include placing edges by
randomly choosing a node from each bipartition subset and stochastically choosing
placement, exhausting a single nodes total degree before iterating to the next node
and exhausting only one bipartition subsets total degree. One future case study is to
evaluate demographic disparity in HIV/AIDS prevalence in the population and the
effect of targetted public health information programs. This setting will incorpo-
rate behavioral data from national surveys; such as, the National Health and Social
Life Survey (NHSLS) the Center for Disease Control and Intervention’s Youth Risk
Behavior Surveillance Survey (YRBSS) and integrate concepts from information
theory to study diffusion of information and the demographic-level consequences of
that information, in the population (Laumann 1994, Centers for Disease Control
and Prevention 2004).

We introduced a novel algorithm to generate social networks of intimate con-
tacts. The general algorithm generates a contact driven network with specific de-
gree distribution and a dynamic population. Next a simple heuristic was introduced
capable of performing bipartite matching in polynomial time reducing the computa-
tion power needed for the simulation from NP to E'logV. Several graph-analytic
methodologies were introduced that facilitate evaluation of the generated social
networks; in particular, bipartite graph statistics. Disease dynamics can then be
analyzed on the generated networks along with tailored intervention strategies to
provide what-if analyses.
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