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CHAPTER I 

INTRODUCTION 

There is in the literature a large number of papers 

dealing with the question of a one-particle interpretation 

of the solutions of the equations of relativistic quantum 

shsory. (}eaes?ally, thee© go under the title of relativistic 

wave equations, as opposed to relativistic field equations. 

That is to say, the phrase "wave" implies attempts at a 

one-particle interpretation of the state functions. What 

is meant by this is that one would like to be able to talk 

about the probability (or density) of finding a particle 

at a certain point. As is well known, this is given non-
2 

relativistically by | Vital The interpretation of 

I W ) | as the probability density of finding a particle 

at the point at the time t comes from the general 

quantum theory assumption that 

( J U *(x) ><*,*) 

is the probability of measuring some observable R of 

a complete compatible set of observables and finding the 

eigenvalue * when the system is in the state represented 
f\ 

by "ty , with n U* =• Hot • What is meant by the prior 

statement is that in the coordinate representation the 



eigenfunction of the point position operator is Six - x) 

for the eigenvalue X . If A represents the point 

position operator, then the probability density is 

i _ .|4 
| JS(x-f) W , ± U * | - I ><*,*>{ . 

The probability interpretation of together 

with the assumption that its time variation is given by 

Schroedinger1s equation is supported by the fact that 

is constant in time if satifies Schroedinger's 

equation. In the non-relativistic case this is equivalent 

to the existence of a continuity equation. That is, letting 

^ J ' w = J i f d 7 ° - I u t 

= o 

if it is assumed that TkS/fcJ -» o at the boundaries 

of the volume of integration. The other way of showing 

the constancy of is 

& - J Y w * . j ( g W g ) « i 7 



f f j V W : f [ J ( A + tf W ? - JViHtyJ l i ] 

- - t j t i f t v n - v # ( h ^ j j ^ 

i 

since n is assumed. Hermitian. These two ways are 

obviously equivalent when one uses Schroedinger1s equation 

(.and its complex conjugate) to derive I f + ^ f 

The first relativistic wave equation was the Klein-

Gordon (K. G.) equation, which, however, does not allow 

one to interpret , of its solutions, as a 

probability. It is possible to derive a continuity equation 

from the K. G. equation, but p is then not always positive 

or zero (4-, p. 55) > and this clearly precludes any attempt 

at letting p be a probability. Also, the manner in 

which p = I was obtained from j j ** 

appears, initially at least, to be unique. On the other 

hand, it is clear that one cannot possibly derive any 

useful information about from the fact 

that satisfies the K. G. equation. This is a 

consequence of the K. G. equation being second order in 

time, while the above expression involves only first time 

derivatives. Because of these problems the K. G. equation 

is generally considered a relativistic "field" equation 

and not a relativistic "wave" equation (2, p. 709). 



There is an immediately apparent solution to these 

questions. It is to find a different equation that will 

give the time dependence of the state functions for the 

relativistic case, and from what has just been said it 

is clear that one wants an equation that is first order 

in the time derivative. Considering the manner in which 

Schroedinger originally derived the K. G. equation (3), 

one might choose to set 

[ a c[j3z+CM*] 

before making the replacements F-• i"K iL. and 7p -» S__ 
£± r z a* 

These substitutions give 

i i - c [~ * /mV] ̂  

instead of the K. G. equation. However, several questions 

arise for this case also, the most obvious one being how 

to treat the square root of a differential operator, both 

in regard to its effect on an<i i-ts Hermitian 

or non-Hermitian nature. Another question is which approach 

should be used. Considering the necessary initial con-

ditions in the two cases, it is clear that the first and 

second order equations are not equivalent. Yet, both cases 

come from the same classical expression for the energy. 

Some of these questions can and will be resolved later. 



Dirac took the approach that the square-root operator 

could be linearized (1, p. 255) and obtained an equation 

that has satisfactory one-particle characteristics in 

many but not all aspects. In particular, the velocity 

operator has eigenvalues of i C (the speed of light) 

and from one of the fundamental postulates of quantum 

theory these are the only measurable values of that observ-

able; that is, a particle in a state represented by a 

solution of the Dirac equation can have velocity eigen-

values of only plus or minus the speed of light. This 

condition is clearly undesirable. The statements made 

here are the standard statements found in different text-

books but these statements are not entirely accurate. 

That is, the solutions of the Dirac equation do not explic-

itly enter the process of showing the eigenvalues of the 

velocity operator to be t £ . The velocity operators 

are defined by i"h Xj = £Xi, Hj » where f-{ is the Dirac 

Hamiltonian; that is, only the Dirac Hamiltonian enters 

the proof and not the solutions of the Dirac equation. 

These considerations lead one to suggest that it is the 

operator representing the classical observable, in this 

case the velocity, that is the source of difficulties, 

and not the state functions. In fact, it is this idea 

that has motivated this study. 

The basic concept to be used in studying the question 

of one-particle interpretations of relativistic wave 



equations is that of observables and. operator represen-

tations that are different from the more usual classically 

motivated observables and representations. In particular, 

the concept of a mean-position observable will be used 

to determine to what extent the one-particle "problems" 

can be resolved. 
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CHAPTER II 

THE ORIGIN AND SIGNIFICANCE OF THE 

MEAN-POSITION OBSERVABLE 

In this chapter some of the background and basic 

concepts of the mean-position observable will be developed. 

The literature is quite extensive on the mean-position 

concept. One of the earliest papers is by M. H. L. Pryce (5) 

on the definition of the center-of-mass in a relativistic 

system. In extending these classical relativistic ideas to' 

quantum theory Pryce was led naturally to a mean-positiion 

observable. More recently, Newton and Wigner (3) used 

"natural"invariance requirements to obtain localized 

functions that were the eigenfunctions of the same operator 

that Pryce had found for the mean-position observable, thus 

furthering the significance of this concept. The idea in 

both cases is that as the name implies, the concept of the 

position of a relativistic particle is not as simple as in 

classical physics. It is obvious that a point particle in 

classical mechanics occupies a certain point in space at 

each instant of time. Even in non-relativistic quantum 

theory this may not be true; that is, since not all observ-

ables are simultaneously measurable, the position of a 

particle may not be definite under certain conditions. 

8 



In fact, unless the state lias been "prepared" by measuring 

either the position observable or other compatible observ-

able, only the probability of measuring and finding the 

particle at a certain point is known. The mean-position 

concept requires a modification of even this probability 

statement. That is, if the point-position observable is 

not a measurable quantity for a relativistic particle but 

if the mean position is measurable, then a measurement 

of the mean position that finds the eigenvalue X "fixes" 

the system in the eigenstate of the mean-position operator 
«S±» 

with the eigenvalue & • The essence of the present 

discussion is the answer to the question: what does a 

sufficiently quickly repeated measurement of the mean 

position find and is the particle at the point X imme-

diately after the first measurement? The answers, as will 

become clear, depend on the meaning of the mean position 

as an observable. A measurement of the mean position that 

finds X does not tell one that the particle, considered 

as a point, is at the point X , but only tells one that 

the particle is definitely in a region of the order of 

magnitude of the particle's Compton wavelength about X 

The sufficiently quickly repeated measurement of the mean 

position will, in fact, not necessarily find X again 

but as will be shown in chapter III, will find some other 

value. The point-position concept is considered a non-
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measurable quantity in relativistic quantum theory and 

is, consequently, not an observable. It is this viewpoint 

that will be followed in the present treatment and its 

consequences for relativistic wave mechanics is the object. 

One might summarize by saying that not only is measurement 

of the particle position no longer a classical concept 

(that is, it is not simultaneously measurable with momentum), 

but now the very observable itself must be modified from 

a point concept to what one might call a non-local observ-

able. This is not to say that the mean position is not 

a point function of space, but rather to say that what is 

measured at a point in space is not the particle being at 

that point. It is as if a second uncertainty has been 

introduced, not by some other measurement, but as an intrinsic 

property of nature. An interesting fact is that Pauli (4) 

shows by a semi-classical analysis of the measurement 

process of the position of a particle tnat one should 

expect to be able to define a point probability density 

for the case where V < < C ,that is, for the non-rela-

tivistic case. There is no proof given that one could 

not do so for the relativistic case, but the arguments 

do not indicate that one should exist. 
A | 

All this leads one to suggest that X is not an 

*f> V 

observable; that is, representing X by x and its 

immediate consequence that s. and !$'>-» 

is not meaningful in the relativistic region. This then 
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allows one to explain why jTftx/fc)/1 should not be the prob-

ability of finding the particle at "x , even if the system 

is in the state represented by ^ . That is, even if 

\x 
IfScX-WtyLX'rfdx'l** IVcx,*)! 

is obviously true, it has no physical significance if 

&(*- T) is not the eigenfunction of any measurable quantity. 

Thus, one of the most perplexing problems of interpretation 

is removed. It should be noted that Pauli (4) appears to 

refrain from making 

Ju: > <t* 

the probability amplitude,, a fundamental postulate of 

quantum theory, thus keeping the problem from ever arising. 

This, however, is not the standard approach. 

In the approach taken here the probability amplitude 

for finding the mean position of the particle to be X 

(in the coordinate or • It -representation) is 

Vcx'ji) <U' 

where U± it) is the X -representation of the mean-

position eigenfunction corresponding to the eigenvalue X . 

In what is to follow it will be shown that 

i P * 2.) •** 

sWawj* /X 

and not the Dirac delta function represents the eigenfunction 
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of the position observable. This expression for IXx(x) 

is not a simple function, but as will be shown in the next 

chapter,' IKfit) can be written in a tractable form in 

a certain.limit. It is worth noting that now a clear-cut 

distinction should be made between representations and 

probability" amplitudes; that is, usually the two are 

identical because any observable in its own representation 

MM* ^ 

( X > in the X -representation; , in the ^ 

representation, etc.) has for its eigenfunction the Dirac 

delta function ( S(x- x') , hif- ̂ ') » etc.). This means 

that 
J ulct; f c r ) A t 

goes to (in the a-representation) 

which since a is arbitrary, is just the a'-representation 

of f . For this reason the Dirac notation <»<| * tyi*) 

tends to be somewhat misleading; that is, generally 

is considered the inner product of \«*> with ('H'> which 

by definition is the probability amplitude of finding a 

when the system is in the state . If one defines 

this inner product by the symbol (H>/|'V'>) and means 

by <«<| t|»> the a-representation of , then one must 

be careful not to equate (l*>, Jty>) with 

The general question of when can an operator be represented 
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simply by multiplication by that variable appears to be 

unresolved and is possibly related to the objections raised 

by von Neumann (2). A clarification of whether an operator 

in its own representation is represented by multiplication 

by the eigenvalue would be most desirable. Part of the 

problem can be seen by considering the mean-position eigen-

value problem 

t\ ¥•> -- ±'i 2'v 

where the capitals have been used to denote mean quantities. 

If one were to take the "mean position" representation of 

this eigenvalue problem, then by the standard approach X 

would be replaced by 2 T and j > by S ( X - ±') , so 

it is clear that 

U$l±') = SCX - X') . 

At first sight this seems quite all right; that is, the 

Dirac delta eigenfunction would appear to be in keeping 

with the statement that a sufficiently quickly repeated 

measurement of X should find X again. That is, the 

probability of finding any other value than X ' should 

be zero and 

1 &X' 
CM 

should be one, which it clearly is. The problem is how 

do the points of space represented by X differ from 
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those represented, by X ? There is a distinction between 

"XI and x ; that is, they represent different observables 

or one is measurable and, hence, observable while the other 

is not observable. Perhaps the difference in the physical 

quantities is sufficient, but one might want some distinction 

other than just using small and capital letters for the 

points in space. 

This question of representations can be further clar-

ified by the following observations. If one demands that 

tA w 
and satisfy the usual commutation relations 

then one obvious representation is X —* X and Vg, 

and this leads inevitably to a delta function for the 

eigenfunction of X . Furthermore, von Neumann (1, p. 570) 

has shown that if there is a finite number of degrees of 

freedom in the system (not a field), then any other repre-

sentation of the commutation relations is unitarily equiv-

alent and, hence, can give no different physical results 

for quantum mechanics. Yet, the -representation of 

if is or - ir ^ depending on whether 

one is talking about the point-position observable or the 

mean-position observable. Clearly, both of the operators 

satisfy the above commutation relations (with Ap % ), 

hence, by von Neumann's theorem these operators must be 

either (1) unitarily equivalent, or (2) there must be an 
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infinite number of degrees of freedom in the system. The 

first alternative seems unlikely in that the physical results 

that come from using the mean-position representation appear 

to be quite different from those for the point-position 

representation. The second would then appear as the cor-

rect one, except that the idea arises that perhaps one is 

working with a new observable, X > not just a new repre-

sentation, which satisfies the same commutation relations 
A* 

as X . This latter concept is the logical choice as 

long as one wants to stay within a "relativistic wave 

mechanics". 

One further alternative is that the above commutation 

relations are not the correct ones for the mean-position 

observable. In fact, a new set of commutation relations 

will be derived in the next chapter using the analogy 

between infinitesimal canonical transformations in classical 

mechanics and infinitesimal unitary transformations in 

quantum mechanics. The new commutation relations have 

strong consequences since all attempts at formulating new 

position observables and their representations use as a 

guide the requirement that they satisfy the standard com-

mutation relations. 
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CHAPTER III 

INTERPRETATIONS AND VARIATIONS OF THE 

KLEIN-GORDON EQUATION 

As has been pointed, out previously, the standard Klein-

Gordon equation is unsatisfactory as a relativistic one-

particle equation for several reasons. There have, however, 

been several variations- of the standard approach that have 

met with some success. In the treatment summarized by 

Feshbach and Villars (3, p. 26) the Klein-Gordon equation 

is replaced by two differential equations, and the wave 

function and its first time derivative are considered as 

the components of a two-component wave function. The two 

equations are thus combined into one that is very analogous 

to the Dirac equation. The two degrees of freedom are 

interpreted as being the positive and negative charge of 

the associated particle. The density, p • , and continuity 

equation are then related to the charge of the particle 

and not its position. Further, the two component wave 

functions require an extension of the inner product that 

leads naturally to a new position operator. The new position 

operator is a consequence of the fact that the usual one, 

, is not Hermitian within the new inner product. 

It is also possible to take the approach of Schweber (5, p. 56) 

17 
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in which one agrees to work only with positive energy states, 

in an attempt to have a reasonable p , and one is led 

in an undefined way to introduce a new inner product so 

that, ". . .a linear vector space can be made into a 

Hilbert space . . . " The manner in which the use of only 

positive energy states makes p satisfactory is not 

declared and is not easily deducible from what is stated 

in Schweber's book. The equation of continuity that is 
* 

derivable from the Klein-Gordon equation gives 

and if one arbitrarily sets = i ^ and -i ̂  

then 

p s JL if* y 
' /m 

which is greater than or equal to zero if [ > o 

Relativistically, one might take , and so 

find that the choice of' the positive sign makes E > o 

This approach appears good at first sight, but the following 

after-thoughts arise. Since the Klein-Gordon equation is 

t 

of second order in time, f and are arbitrary and, 

hence, yo may be either positive, zero, or negative. 

The above demonstration of when p > o depends on the 

replacement of by E t » and clearly the two dif-

ferential equations for the time dependence of the state 

functions are basically different. Hence, using both of 
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them in the same argument would seem, at best, rather 

dubious. No such objections can be made to the approach 

of Feshbach and Villars, but they make no claims about 

the position of the relativistic spin-zero particle and 

its relation to p . Consequently, in.the following it 

is shown how one may define and interpret the position 

concept in the relativistic realm, not |or the Klein-Gordon 

equation, but for 

* (jfv«.*)*/»> 

where either the positive sign or the negative sign will 

be used. 

If one takes the X -representation of the above wave 

equation, it becomes 

i y p , (in-2) 

with an arbitrary choice of the plus sign. Now 

j Hi.t) •<£ 

is constant in time since 

at 

-i VtJALCRW)* vct,qfl & 

= O. 
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Further^ in the 11 -representation (III-l) becomes 

i ! M ± Z = (- $*+ sm'hu.i) 
3 4, v ' 

and one needs to know what effect the square-root operator 

has on "V̂  >?,•£) . This can be found from 

(J**/™*)1 J a 

~ J <JkiV> dJt 

(- v „ W ) 1 4 - J M 

where <)TI135> =• e , which is derivable from the 

fact that X generates an infinitesimal change S X 

Thus 

(. v,'t *• W . t ) = (*«)"* JcJtV—'J*®"-*-* i j 

and now if one forms 

iJifoitoOJls = f( ̂  V<s) + fa) 

-- Jift-Vw^vSaJ f a ) I * 

C*•») J 
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and. using the standard integral representation of the 

delta function 

<*«) J 
the above becomes 

i j a j ix'u jk. j') v'i) ><jf) 

:ilHjiXu*-X)tjr+~t)i tfiJi *<Jf3 

which is equal to zero. Therefore, 

J Vy*,4) 

is constant in time. At first sight this result appears 

very desirable; that is, it removes the major objection 

to interpreting {1Kx/£)|* as a probability density. 

Therefore, one might feel that if one only works with 

equation (III-l), then one has a sensible relativistic 

wave equation. Another major objection, the zitterbewegung, 

which is the high frequency oscillatory motion, is also 

removed. Since it occurs as a consequence of the inter-

ference between the positive and negative energy states 

(4, p. 90), choosing only the positive or only the negative 

will surely remove this paradoxical result. These suc-

cesses are only partial, however, because of the fact that 

using only positive energy states one can not form a delta 

function in coordinate space, that is, 
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and since tydCj^) satisfies (III-2), 

or 

I r "t iffl' * ~ (̂ +/»»*) j) -t 
¥<*,*)- J 

This should in general contain 

% i * ) e i C l ' * - £ * W M + f.dSje 4^'*trfWM 

and unless these negative energy states are included the 

value of tyCKj-k) can not be made as small as desired 

(1, p. 38). An interesting consequence of this can be 

seen as follows. Consider 

j7|» =, J |J> <&\V> i $ 

and 

or for - I "?> > 

<x'i*> - <i/x> <2$ 

and since * o n e miSbt write <Ji|x.v e 

and obtain 
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which, is the previously used expression for the delta 

function. However, this has been done using <%(x>-> 

which is true only if the representations and inner products 

are identical, that is, one of the basic properties of an 

inner product is that ( 1 0 > ) • ]«>). If the inner 

product of two elements is not equal to the complex con-

jugate of the inner product of the two elements in reverse 

order, then can not be found from <x/J?> and, 

in fact, is not necessarily equal to (afrJ'V . This 

principle is in keeping with the previous statement that 

delta functions can not be built up out of only positive 

energy states. The point of interest here is the manner 

in which this fact is shown. Consider the derivation of 

<*3f l 15 > — I. _ g * x 

which follows from 

-K i - J?i 

and in the x -representation this equation becomes 
\ 

- i % <*(!'•. = 

hence, 

< Vl/lt'v a C 4 
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and G is (iff)'** for the proper normalization. This 
•ir* 

derivation depends on Jfc "being - i Vg in the pt -

representation which follows from being the generator 

of a unitary $X displacement. Now if one attempts a 

similar derivation for , one starts with 

fir>. nr> 

and a question then arises as to the X -representation 
A . 

of x . Normally, it is taken to be i Vj; , but if 

the mean-position concept is used instead of the point-

position, then jt goes to i(V% - • Therefore, 

the position-eigenfunction problem becomes 

J. 

which has as a solution 

with the proper normalization. Therefore, 

which is not a delta function and clearly does not rep-

resent a particle localized at the point >?' ; in fact, 

*71 X> is not, by the present interpretation, the prob-

ability amplitude for finding the particle at the point 

~X but is the "% -representation of Jx'> . The above 

equation for <X|3?/> is not readily evaluated and, hence, 
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is of 110 physical interest. Corinaldesi and Strocchi 

(2, p. 62) use a slightly different Jfc -representation 

for the mean-position operator 

J . 

but it has far reaching consequences in the present treat-

ment. It is worth noting that the representation with 

the minus sign (Schweber's) appears to agree with that 

of Pryce's and Newton and Wigner's. The found 

"by using the above representation of X is 

and B is chosen, for a particular normalization, to be 

( * . Once again this isolated function has no direct 

physical significance. It is, however, the state function 

in the -representation for a particle prepared in 

the state in which the mean position of the particle is 

. Using this latter form of < Xix'> 

<*t r> . ^ 

and this will be the expression used in this treatment. 

Expressions that do have physical significance can be formed 

from these representations by taking the inner products 

of state functions with eigenfunctions. In other words, 

instead of being concerned about whether 

is constant in time, one should be interested in expressions 
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like 

j<ti X'*<j?( At 

or 

f ^ i x V < •*> < « 

and in integrals over all space of the absolute-value-

squared of these probability amplitudes (inaer products), 

in the "% - and % -representations respectively. 

In particular, consider 

<Uf 

which is the probability amplitude for finding the mean 

position to be X if the mean position of the particle 

has been found to be "K from an instantly previous meas-

urement. The probability amplitude can be evaluated by 

the following analysis. 

Carrying out the integration in spherical coordinates 

with x") - - Jk j 7-x1<!A>e ' o n e h a s 

R £ a z /} a A D 

- l ^ e d J k b Jlv 
'«-« LJi'f/m1) 1 

= . m l * r " A i i — 1 - e a f t c w e A» 
i R ^ "he 
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J « J. < > W ) * 

- 2 f 0 0 ^ ^ fl ^ 
rt 31? J* U W ) * 

|y . _\ _ S?Pi"L+l) f0/^t. A*""t . „ 

^ ̂  TrTT) I e-/*dt. 

where R= |X - X | . The Basset function of order n has 

the following integral representation (2, p. 63) 

— 3*" f ̂ ;j.J , '*1* » 

Furthermore, the Basset function obeys the following re-

cursion relation (2, p. 63) 

(t e,r/° 
where 

k-nC/») * & ̂  H > / » - HLli/* 
and. df1) is the Hankel function of the first kind 

of order n with argument i p . Letting 2. - and ̂>=/rn ft 

then 

&% = - a c n r ) " V ( ^ ) | (£+,)* ^ 

rm i . 
*f rr ^ 
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The Basset function has the following limits as the argu-

ment p approaches large ( yO -> oo ) values and. small 

( jy -> O ) values respectively, for order n > o , 

~ ( a p ) * * ? ( jO co ) 

and. 

k«t/*> ~ ("f") "* ( yO -»• O )• 

Therefore, as approaches large values 

[- $ 

* 

for p s / m ft-* CO » and for p approaching small values 

f < ; t i * v < ~ r- ii. e**f r<4. /^l\"7 

" M f f o l t i 3 \ * J J 

/vrT 

«?tr I f 

Using the limited form for large yO one observes that 

the integral 

J*<JC(«'>*<3tia> A X 

is reduced by e" of its original value for R - — I- ; 

/mc/ 
that is j the value of the integral is appreciable only for 
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values of the order of the Compton wavelength of the par-

ticle. The physical significance and its unusual conse-

quences will he examined shortly. 

To show the constancy in time of 

G a J J <*!?> 

consider 

G' J <L* Jlt'dx" < 7tl *><*/?> . 

Then 

gi%-Cx-x) . 
U ' W ) ^ 

and the exponentials can be regrouped to 

w M ' J 1 ' J 

H ' i X - X ) iX-t .iX'.t" 
c e e 

so that 

Jt'.) £ -J5 fair) 
gives and 

Q - f J L v W A J i e.^<x"x J tj.Ua) "fa",*) 
J 

after an integration over %' . The integration over 

can not be performed to give a .£(* - because of 

the denominator, so one expands the ty*s to obtain 
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C Jk +**i) a 

& 10" fit It" AX IKIV 
J i *#% » s ± u w j * 

and integrating over X and x' 

or 

if-
q - i_inf f yd> %$) l% 

J C V + ^ x ) i v 
after the integrations over j£' and. i " • The constancy 

in time follows from 

W' ^ [ W* **# + ̂  

- L**) 

r itxfr)* TkX/t) - Vilfi M,i)] 

In a similar, but simplor, mannor th.6 constancy in time of 

J I J < 
can be shown. An interesting consequence of the relations 

shown above is that 
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mm*/ M J I f / 

< x I x > » 

< £ / x V 

and 

1 <*/*>* < x/ x \ 4.3? 

are all equal; that is, they are all given by 

l f a if 
c a # J a w ) * 

This fact would seem to suggest that (1) <x'/x'> is, in 

fact, a probability amplitude, and (2) one might write 

) and use the completeness 

of J l$>£k<j£| ( JlK>ix<x! ) to show their equiv-

alence. Since these interpretations and manipulations 

can cause difficulties in other cases, it seens better 

not to accept these as legitimate operations. The analogy 

to ordinary quantum mechanics is, however, so striking 

that something of significance might be involved. 

The above expression for the probability amplitude 

for repeating the mean-position measurement has an inter-

esting physical interpretation. It is that if one measures 

the mean position and finds )<' , then a sufficiently 

quickly repeated measurement of the mean position will 

not find X' with certainty, but the probability is only 
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significant (greater than ~ ) for distances less 

than the Compton wavelength of the particle. The usual 

statements (5> P» 61) concerning the physical interpretation 

of the -representation of the mean-position eigen-

function would, at first thought, appear to be a contra-

diction, but because of the above equivalences this might 
f I 

indeed be a correct result for the wrong reason. The idea 

of not being able to repeat a measurement sufficiently 

quickly and get the same value needs clarification since 

it is generally considered to be basic to the concept of 

measurement. If one imagines a moving marble on a pool 

table and an array of joined identical boxes that just 

covers the table, then the mean-position measurement might 

be considered to be the process of placing the array of 

boxes on the table and noting what box the marble is in. 

Clearly, if one repeats this sufficiently quickly (before 

the marble can move) one would expect to find it in the 

same box, thus apparently contradicting the above result 

for 

< )?J tfV < x| x"v At . 1 
The reason that this pool table result is incorrect is 

that the joined array of boxes is fixed with respect to 

space, that is, the surface of the table. For two real 

measurements the boxes may overlap, that is, even though 

the particle does not move before the second measurement, 
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it may be found in another box. If this were not true, 

the boxes would give a type of background for an absolute 

reference system. 

One other unusual consequence of the mean-position 

concept will now be derived. The commutation relations 

iti Sij. can be obtained, as is well-known, by 

subjecting the operators X,- or ^ to similarity trans-

formations with the unitary operators I/5x and , 

respectively. A similar process will now be carried out 

using the mean-position observable. 

If one takes the % -representation of j(£ , the 

mean-position operator, to be 

./ 2_ + j 
H 3*,- J £3( W ) > 

the£ 

> i ( + l J"~ + -L _J<i IJ,^) 
\ iJti 3 (*"+—*.> ' 

,f = ( I - i *, J J,, - j; - Ui) |Je,-> 

but jJrj+SJiiV' U,-> , so 

< • 1-•<•>*- i u f e ' * 
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and 

- i +i *r SAj - J- •*'' Sit,'. 

Therefore, 

-* + I S,-̂  5^. - U 4 ^ 

and so, 

= i r » C*<JJii( - »Ai y- Ocsii) 

* Vk +"»J 
which to first order terms in gives, 

[ xtjJ,(] = f (S.J + /j+fl)) 

rather than the usual commutation relations. The absence 

of the additional term in non-relativistic quantum theory 

might be accounted for by noting that the expectation 

value of this term, in ' %, -eigenstates, is 

Jh j. 
C S V " 1 ) 

which for the non-relativistic region, < /Vv̂ ' , 

gives a term of the order of zero, or at least very much 

less than one. The interesting feature is that even for 

i=j, Xi and do not commute in the relativistic region. 
A A 

Normally, one says that Xi and should commute because 

a measurement of the X coordinate does not affect the 
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^ momentum, but this is now no longer correct. In fact, 

the non-commutation might be considered to be in harmony 

with the concept of the mean-position measurement, for 

a measurement of the mean position that finds x' implies 

only that the particle is in a region of the order of the 

Compton wavelength around X' » that is, it is fixed to 

some extent in the y and t directions as well. This 

statement actually goes somewhat beyond what the equations 

show. It is, however, in accord with the concept of the 

mean-position observable. 
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CHAPTER IV 

CONCLUSION 

In the previous chapters an attempt has "been made to 

make a consistent one-particle interpretation of relativ-

istic quantum theory using the mean-position observable 

exclusively. This work was done only for a very special 

type of wave equation, that is, 

M -k i* 
9i 

and one would like to pursue this approach for other types 

of equations, for instance the Dirac equation. In addition 

some very special assumptions were made concerning the 

form of the inner product and the expansion postulate. 

Several other possibilities exist and will now be enumerated 

and their consequences described. Instead of choosing the 

-representation of the inner product as 

ft ) - J VcJL*) 

one might dhoose the Lorentz invariant form 

<*•»>-

and this Lorentz invariant inner product would clearly 

change the results of this investigation significantly. 

In particular, if one uses 

57 
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<Jlx> = e LJk+"«) 

for the JR -representation of the mean-position eigen-

function, the probability of finding the mean position 

of the particle at the point "X' if the mean position 

was measured and found to be X previously is 

(£dL)* !»:«/•><* , 
a Cafr)* l A - y ; p 

which appears quite different from the expression for this 

quantity derived in the previous chapter, but this prob-

ability has, in fact, the same qualitative behavior for 

large values of yO - /yn j y — Jt'l as the probability found 

in Chapter III. That is to say, it decreases rapidly for 

distances beyond the Compton wavelength of the particle# 

Consequently, the above change in the inner product would 

not change markedly the results described in the previous 

chapter. 

A second alternative to what was done in the previous 

chapter, which would produce profound changes, is the 

replacement of 

by 

(a tr)'* 

I -i%:• * -*% X 
<Sl x> - e l<* ) > 
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which, is the form used by Schweber (3, p. 62). In the 

version of the inner product used in Chapter III, this 

probability using Schweber's eigenfunction of the mean-

position operator gives 

J < X \ x w j f c x v JlJk » e ' ^ - C x - x ) 

and leads to divergencies, which is clearly undesirable. 

However, if one combines Schweber's ijiean-positiou eigen-

function with the Lorentz invariant inner product, the 

result is 

fsSi>&M> j a . , c j i f - * . s e g . $ 
J ( J V ) « w J 

which implies that the result of repeating the measurement 

sufficiently quickly gives the same value. This is in 

agreement with standard quantum theory, but in contradis-

tinction to the results presented in the previous chapter. 

If one* wished to keep this repeatability of a measurement, 

the above argument is a possible approach. The previous 

chapter, however, has given a physical argument for not 

necessarily being able to repeat a measurement with unlim-

ited accuracy. 

; There was still another assumption made in this work 

that could be modified with significant consequences. 

This is the expansion postulate 

| a J lX> <JhV> . 
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In this work there has been a restriction to the positive 

sheet of the hyperboleid > where Jt.* £ , by 

taking the positive sign for (*' •f /yr\~) *• in the wave equation. 

Hence, one might put this into the expansion postulate by 

writing 

|V> * J l*> S(3t+/m
2) VJt.) <Xl4> At A*. 

with V (K)- I for Jta > o and ^ (Ar,)- o for < Q 

This leads in a natural manner to 

!»>• 

and in the x -representation gives 

< » » • i % 

which is the form used by several authors for the relativ-

istic Fourier transform. This seems to be an inconsistent 

approach from the present standpoint for the following 

reasons. If in 

4- = - L 
a J ( X W J 

one replaces by iJE> , then 

<xiJo - ̂  <x\jt> a J ( 

it- * 

which is.a contradiction with what was used for <x /!> 

above. That is, < 1 ? / s h o u l d be equal to (««•)"*ê '* 

from being the generator of an infinitesimal § x 
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displacement. Further, if one takes = I 7'> , then in 

the Jt -representation 

A U > J a ( R W ) * 

which is also a contradiction. Therefore, it seems pref-

erable not to use the above form of the expansion postu-

late but to use | "Vo a. JI XxXffy Jt$ . 

In addition to the above alternatives it should be 

pointed out that one could also investigate the use of 

other representations of the mean-position observable. 

Numerous other possibilities exist in the works of Pryce 

(2) and Mathews (l). 

The result of Chapter III concerning the new commu-

tation relations has some interesting implications. It 

is well known that the mean-position observable satisfies 

the standard commutation relations and, yet, it has been 

shown in Chapter III that the mean-position observable 

generates new commutation relations if one considers the 

mean-position observable as the generator of $ V . These 

two facts are contradictory. The reason for this is that 

the point-position operator and the mean-position operator 

are related by 

± i ' + * i j f a 

(SixicL xJT x 3 H@3?iuxx sin ̂  x s ̂  i, = it , it is 

clear that X* £ x* • Hence, in the derivation of 
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[ %i, - ^ 0 a j » 

A A 

one uses the Hermitian nature of X* and if X* is no 

longer Hermitian, then one does not have the usual com-

mutation relations for X,- with . In particular, 

if Xi is not assumed Hermitian, then the resulting com-

mutation rtlationa ar© 

[ hj ĴO * * S i % 9 

* 

which is equivalent to the commutation relations for 2L,-

ft 
with Jk} • There is still the rather surprising fact 

A 

that the generator, » of a useful representation 

of the mean-position observable produces a condition on 

the mean-position observable that the representation does 

not satisfy. The origin of this, as already stated, is 

in X» not being Hermitian and there there does not seem 

to be any possible alternative to this result. 

In conclusion it may be said' that it is possible to 

have a sensible, self-consistent, one-particle relativistic 

wave equation for 

if one takes as fundamental the mean-position observable. 

Whether this can also be carried out for other relativistic 

wave equations is still undecided and, in fact, some of 
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the implications from this case require further clari-

fication, in particular the new commutation relations. 
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