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Chapter I
INTRObUCTION AND PRELIMINARY DISCUSSION

Introduction
In thils thesis we consider integrals of a certaln class
of interval functions. Specifically we consider (Chapter
II) a nondegenerate number interval fa,bl, a real valued
function m, defined and nondecreasing on [a,b], and the set
Hm, of real valued functions f, defined on {a,b] such that-

1)' f(a)=0

2) for each subinterval [p,q] of [a,b], if m(q) -
m(p) = O, then f£(q) - £(p) =0 R ,

%) the set of all sums of the form = %%%l_ for

subdivisions D of [a,b] is bounded above.
By means of a certain interval function Integral, we

define (Chapter II) an inner product ({ +s¢ ))_ for H_ .

m
With respect to this inner product, we prove that Hm is a
complete inner product space, in other words, a Hilbert
space.

The remainder of the thesis is an examination of certain
orthogonality and separability properties of Hm.

Preliminary Definitions and Theorems
Suppose that [a,b] is a number interval such that a { b.
Definition 1, - The statement "D is a subdivision of ‘
[a,b]" means

1) D is a finite set of number intervals [p,ql such that
a £ p<{qgshb
2) ir I, and I, are distinct elements of D, then I, and

12 have at most one point in common
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3) if x is a number so that a € x £ b, then x is in
some elément of D.

Definition 2. - The statement "D' is a reflnement of a
subdivision D of [a,b]"” means that D' is a subdivision of
[a,b], such that if x is an end point of some element of D,
then x is an end point of some element of D'.

Suppose that [a,b] is a number interval and that H is a _
real valued functlon defined on { I l I 1s a subinterval of
[a,b] } . We state the following theorem without proof.

Theorem 1, ~ If a £ p < g £ b, then there is no more

than one number J, such that if ¢ 1s a positive number, then
there 1s a subdivision D of [p,q], such that if D' is a re-
finement of D, then l J - = H(I) l { e,

Dl

If J is a number satisfylng the conditions of Theorem
1 with respect to H and [p,q], then J will be called the

°]
integral of H on [p,q] and will be denoted by H.

p
Throughout thls thesls every integral considered will be
the limit for refinements of subdivisions of the appropriate
sums.,

We algo see that if a £ r {( w { s £ b and each of the
‘ W S
integrals r H and W H exists (in the sense of Theorem 1),

s w ] S
then H exists and H + H = H.
T r W r

At this point we adopt the conventlon that if each of

x and y 1s a number, then % = 0 1f y = 0 and § has the ucual

meanlng otherwise.

Theorem 2, -~ Suppose that [a,b] is a number interval and
that each of f and g is a function, such that [a,b] is a sub-
set of the common domain of f and g and such that g is non-
decreasing on [a,b]. Suppose that if [p,q}'is a subinterval



of [a,b] and g(q) - g(p) = 0, then £(q) - £(p) = O.
Then:
. 1) If E is a refinement of a subdivision D of a sub-

2 2
interval [p,q] of [a,b], then Z L%-é-)- éz (AL)

D 5 Ay

N2 i 2
(where 2%: L%%él- denotes the sum of [éggg:égggl over all

elements [t,s] of D).
2) Suppose that [p,q] is a subinterval of [a,b]. The
following three statements are equivalent:
a) There is a number M, such that if D is a sub-
2
division of ([p,a], then Z %él < M
D
b) There 1s a number J, such that if c is a
positive number, then there is a subdivision D of
[p;a), such that if E 1s a refinement of D, then

2
!J - EE: %fgfl l< C. 1In this case by Theorem 1

there is only one such number J which in accordance with

4 (gr)°
our conventlion we designate by Lagl .

¢) There is a function h defined and nondecreasing
on [p,q]}, such that if I is a subinterval of [p,q], then

(A£)° £ (Bh)(Dq8).

Proof - I. Suppose that [p,q] is a subinterval of [a,b]
and that D 1s a subdivision of [p,q]. Suppose that E is a
refinement of D and let E; = {[s,t] [[s,t] € E, [5,8] & 1,

I eD 3 « Suppose that EI has n elements. ILet K =

=£k] x € [pyql, p #x #q, x 1s an end point of some element
of Ex ¢ . K has n-1 elements. Let ky =min {x|x e k] .



There is a subdivision Dl of [p,ql, such that D1 =
= {[p,kl], [kl,q]} - Denote [p,k,] by I, and [k;q]
1
by Il’
a), Suppose that A 1.8 & 8 # 0. Either
] i
AI,g A} I,'f = AI?g A I,f or A 1,8 A I.’f%
A _/g A . f. In elther case
I I, .
| 2 o

(8p8 b 0% 208
2

|g A Iq,f)( A I:% A iif) +

—

liv

(b s b 0Fzo

2(8 8 8 OB g A p0) g (88 d 0+

2

+2 (B ped (A pebdq D)+
i, 2 2 .
*A e A (B f)°2 bped e (D) +
+(Bp8d 0%+ (Dpye A1)
2
(B f+ D 0 (Ape b ye)s
. 2 2

(B 48 p0° Bpe (8024858 (8 1)7

HA




2 2 2
(AI’f+AI7f)<(A Lf) +(AI(f)

AI.g + A I;g A I|g AI{g
)2

2 2
(AIf (A I.f) +(AI'/f)
;e B¢ B e
b) Suppose that A 1.8 A I/g = 0, One of the following
) §

is true:
i) Alig=0’ Al;g%o,
ii A =0, A = 0
) Bys 1/8 = 0
111) AI g #£0, A 1/8 = 0. Due to the nature of Af
| '

when Ag = 0, we have:

2 2
1) (A1) =(AIIf+AI;f)
AIg AII8+A118
2
=(O+AI;I‘)
(8102 =(8 50
AIg AI'I?;
1y (81 0% _(0+0)7
816 0+ 0
(AIf)2=Oby convention
EIg

| 111) (AI f)2‘= ( AI.f-{»O)Q

4.8 81,8+0



' 2 2
( A I f) - ( A .T. f)
AIg AIg
Now let k, = min { K - {kl} g . There 1s a subdivision

D, of [k,al, such that D, = { [(ky.ky], {ky,al § . Denote
[kl,kg] by I, and [kz,q] by Ié . Repeating a) and b) above

for 12 and Ié, we see that

(8 0% = (B 1 D7 (8 0%+ (2 0%

A8 B [x,,q] & A5 Bk

Thus by induction we see that for 1 £ J £ n-1 if

kj = min {K - {kl, e ey kJ_lf.? and D,j is a sub-

aivision of [k ;,a] such that Dy = ] [ic5_1 5k 51, {kj,q]g ,

? (b8 ¢ £)2 & (A T’ £)%. In addition

(b ;- 1)
then J—l g 3 J
A A g AR =S
I‘j 1 8 I‘j IJ
2 2 2
n-1 2 2
(A, £) (D ;- 1)
= E _______I_i_____ + Ih- 1
- A g A ‘
J-1 Ij In-—l
Therefore,
(ap0? (A 1)?
_ETE_ = e - Now summing over all I in D we

obtain >, (A f) Z %2

D
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2
II. Suppose that a) is true. Let H = {z }z = :E: L%&él
' D

for some subdivision D of [p,q] 3 . H is bounded above by
M. Thus there is a number J such that J is the least upper
bound of H. Let ¢ be a positlve number. There ls a sub~

- 2
division D of [p,q], such that !J - Z -(—%—él ‘ { e.
D

2
Let E be a refinement of D. By I :E: Li%~§l =
D

2 2
g:i: (WiNE) ana 2. LAE)7 < J.
E A g E A g

Thust- % —(—%—é-f! { c.

Suppose that b) is true. Let D be a subdivision of
[p,aq] and suppose that ¢ is a positive number. There is
a subdivision A of [p,q], such that if A' i1s a refinement
of A, then

2
J - :Z: 'Lé%jgl {ec. Let B be the greatest
Al
common refinement of A and D. Then
2
J..Z-(__A__f.ll <c
B A8

T 4]

2 aoflis o

(A f)2 ) < I3} + c. Since { A T f)2 > 0
i B FAYE S A‘I z -

for all subintervals I of [p,q], it follows that




2 | 2
ZL—Q——Q- 2 0. Thus Z(Alf) { |J] + c¢. Since
B OE8 B A7 E

: 2
B is a refinement of D, we see by I that Z 2 é =
D

2 A2
= Z%——é—l therefore Z i——%—é—l < {J‘ + c.
B D

Let [J} +c = M
Suppose that ¢) 1s true. Let D be a subdivision of

[pya]. For each I in D, (AIf)2 = AIh AIg. Thus

2
(B ;1)
e A . h., Summing over all I in D, we have |
A R I
2 (AP = 2. an
D A8 D

2
$ LaD’ = n) -n.

Denote h(q) - h{(p) by M. Then a) is true.

Suppose that a) is true. Since a) is equivalent to b)),

St Lgél? © exists for every subinterval [s,t] of [a,b] and,
S
therefore, also for every subinterval of [p,ql. If x is in
[p,ql, let h be the function defined by

O, if x = p

h(x) ={ [x 2

| S @O° srpcx s a
D g

Suppose that each of x and y 1s in [p,q], such that x {y.

h(y) _ h(x) - Sy . %g—)-z _ SX -(%—é.—)-e

p P



' ARy
n(y) - h(x) = S i%é)- = 0, for if c¢ is a positive number,
x

then there are subdivisions A and B of [p,y] and [p,x]
respectively, such that 1f A' and B' are refinements of
A and B respectively, then

2 2
‘Jl - :E: Lé%gl l { ¢/2 and :E: Lllél - J2l { ¢/2,

= A

y 2 X 2
where J1 = L%El and J2 = L%El .

p & D &
There 1s a refinement F of A such that x 1s an end point of
some element of F. Let

Ay = {I | T ePr, IS [p,x] } Let B* be a common refine-

A 1

ment of B and A, and let D = B¥ U [F -Ax]. Suppose that
D' is a refinement of D. If D}; =fr| 1eD, IS [p,x] ]
ana D = {1]|IeD, IS [xy] ], then

:E: (A f22 >, (A fzel c
Jl—- D‘ A2 - Dl Ae | ,<'§'3and
x Y
: s
(A T) e
Z A B 'Jzt <z -
DX _
Thus
2
!(Jl - J5) - :E; (A1) l { ¢, and
| D N
| J
Y (ar)? y ar)® x ar)?
(wp W | W
b - dp

Let J, - J, = J. 'Since each of the sums approximating J is

a sum of nonnegative terms, J = O. J[x,y] 3 is a subdivision.

———



i0

of [x,y], so that by a)

U IRRL RS

(£(y) - £(x))° = (a(y) - h(x)) (aly) - &(x)).

The following corollary is a consequence of Theorem 2.

9 ar)°
Corollary i, - If § Lagl exists, then f 1is of
P

‘bounded variation on [p,q].

Proof. - Suppose that D is a subdivision of [p,q].
Then by Theorem 2, there i1s a function h defined and nonde-
creasing on [p,ql, such that if I is in D, then

(A;f)° = A;h A ;& Since each of h and g 1s non-

decreasing on [p,q], A;h 2 0 and AI g = O for each

I in D. Therefore, A T h A 182 O. In addition,

(A £)° =0 for each I in D. Thus

. 2 . T L]
Summing over all I in D, we have

2 la e =220 b0 Vb glana then

(2 |asl 2= ; Vo 5 B 2. sy the
Schwarz inequality

(2; o n b e2=2> (b n? %:(JA g)°

D

(Z |a ] )eéz An ZA@. Now
D | D D

or
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E;Ah = n(q) - h(p) and %} Mg = g(a) - g(p). Let

h(q) - h(p) = J; and g(g) - &(p) = J,. Then
( 2.1acl)® = 3) 55 ana since 0 =( 25| ol ),
D D

:%:] arl =[5, 5,

Theorem 3. Suppose that [a,b] is a number interval
and that each of m, f and g is a function, such that [a,b]
is a subset of the common domain of m, f and g, with m non-
decreasing on [a,b], such that if a = p {( g £ b and

m(q) - m(p) = O, then f(q) - f(p) = O and g(q) - s(p) = O.

t 2 T . N2
Ifaés(tébandeachofs !g-;—‘land‘s KE—&)-

S s am

t fa(f+ ]2

o exlsts.

exist, then S
]

Proof.~ There are numbers Jl and 32, such that if D is

2
a subdivision of [s,t], then Z (A1) < J, and

D Am = 1
Z -(-‘Q—gle = J For each I in D, Am. 2 O, Thus
S Am = Yo ’ I ="
there is a number A mI' > O, such that ( IA mI‘)2 = A My
2 : 2 ‘
Then | . (—-A-—f—) £ J, and > (-A8Y = J,. Thus
D JA m D \JAnm

T F eyl [Fey]



[ 9] « oo I (9

2
£ J; Jy. By the Schwarz inequality, [Z ( f) ( 8)}2

b \Jam/ \Jaw,

= a' Af ° ——4—52 erefore ALd j
‘@] B @] 520

=£J,J Since each slde of the preceeding inequality is

A

. 1 Y2°
nonnegative,
Z Angi‘ 5. - [T

Let A be a subdivision of [s,t]. Consider the sum

Z [ A (£+g))°
Am

2
2 L4 (1) )" ; (AL A )

Z [ A(£+8)]° = g__z;f)+2Ang+(Ag)
Am Am
A A K
[ A (r4g))% = (A£)? + 2 AT A g
; AT g AT ; AT *
+ Z K-A—-)-gg
A Am
A (r48)1° = Af'Agl +
5 Lafpal = 5 2 %

‘ 2
-



> [AA(f+g)}2 < s ez23

+ J
A m =

5 2’

t 2
Thus by theorem 2, S Ld f;g ) exlists.
S

Corollary 2. - Under the hypothesis of Theorem 2, there
-1s a number J, such that if 0 { ¢, then there is a subdivision
D of [s,t], such that if D' 1s a refinement of D, then

EE: —l%§L£Li§ ! { e¢. In this case J is unique.

Proof. - Let ¢ be a positive number. Suppose that

2 2
t (df)"_ t dg _
S iaal._ J, and S Laal = J3. By.Theorem 3,

~
(=]

St (a( f+g ]2
m

5

)

‘exists ‘and has the value Jlo

There are subdivisions A, B, and C of [s,t], such that if

A', B', and C' are refinements of A, B, and C respectively,

then
- (Af+Ag)2 2¢

§ 2
g f!
B gm - Jf < 230

2 |
(Aag)” 2¢ .
Ec ; A I < —~= - Let D be the

greatest common reflnement of A, B, and C. Then if D' is a
refinement of D,



o - 2 bt sar |50 nf o, |
P AT L

lJl - Ty - Ty - ;;; KJQ%E%%AL£Q? + 2 iﬁgéﬁé +
vl -(-%—%)-2 < 2c

IJl - Ty = Iy -

Therefore let J = 5 (J; - J, - J5) and

s dm
1 k [a(f+e) ]° - (af)? k (ag)®
4
B 2- [S ;:; B SS n ) SS f% }

s

t

{ 2¢

dfdg

exists. Unlqueness follows from Theorem 1.

14



Chapter II

CHARACTERIZATION OF THE CLASS Hm
OF INTERVAL FUNCTIONS

Suppose that [a,b] is a number interval and that m is a
real valued function deflned and nondécreasing on [a,b] such
that m(a)Am(b). |

Definition 3 - If m is the function with the properties
specifled above, then Hm denotes the set of all real valued

functions f defined on [a,b] such that

1) f£(a)=0

2) if [p,q)] is a subinterval of [a,b] and m(q)-m(p)=0,
then f(q)-f(p)=0 %; A£)2

%) the set of all sums of the form Ljﬁﬁl’ for sub-

ar)e

divisions D of [a,b] is bounded above,
S‘A m

We note that by Theorem 2, if f is in Hm, then

P
exists for each subinterval [p,q] of [a,v].

Definition 4 - If each of f and g is in H , then f+g is
the function whose domain contains [a,b] such that for each
x in [a,b], (f+g)(x)=(x)+g(x).

Definition 5 - If f 1s in Hm and k is a real number,

then kf 1s the function whose domain contains [a,b] such

that. for each x in [a,b], (kf)(x)=k(f(x)).

We now show that Hm is a linear space with operations of

additlion and scalar multiplication as defined in definitions
4 and 5 and with the set of real numbers as its scalar field.

15



| 16
Theorem 4 - If each of f, g, and h is in H, and each
of k, k,, and k2 1s a '‘real number,then the following state~

1
ments are true:

1) (f+g)eH

2) f4g=g+f =~

3) f+(g+h)=(f+g)+h

4) there is an element © in H, such that if f is in H ,
then f+0=f.

5) xf e H
'6) k( f+g)=kf+kg
7) kl(sz)=klk2f
8) (k1+k2)f=k1%+k2f
9) the following two statements are equivalent:

1) kf=6
i3) k=0 or f=0, where 0 has the usual meaning.

" Proof -~ .
1) 1r{a)=0 and g(a)=0 so that (f+g)(a)=0. Suppose that
[p,a] is a subinterval of [a,b] such that m(q)-m(p)=0. Then

£(a)-£(p)=0 and g(q)-g(p)=0 so that (f(q)-f(p))-(g(qa)-g(p))=0
and (f(q)+s(q))-(£(p)+g(p))=(f+g)(qa) - (f+g)(p)=0. By

2
Theorem 3, SE lgiggﬁll. exists and by Theorem 2 the set

2 ,
of all sums of the form :%: Li%ééiﬂll. for subdivisions

D of [a,b] is bounded above. Thus f4g is in H_ . Uniqueness
follows from the fact that each of f, g, and f+g 1is real
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valued, Statements 2) and 3) follow directly from the
commutative and assoclative properties respectively of
the real numbers,

4) Let o(x)=0 for every x in [a,b]. 1) and 2) of
Definition 3 are obviously satisfled. Let D be a subdivlision

2
of [a,bl]. :§: Lﬁ9i~ = 2%; 0=0., Thus © is in H_.
Am | m

(f+g)(x)=r(x)+6(X)
=f(x)+0
(f+g) (x)=£(x).

5) Suppose that k 1s a real number and that f is in
H . Consider the function kf. (kf)(a)=k(f(a))

=k(0)
(kf)(a)=0. Suppose that
[p,q) is a subinterval of {a,b] such that m(q)-m(p)=0. Then

kf(a)-kf(p)=k(f(q)-£(p))
=k(0)

xf{q)-kf(p)=0. Suppose that D is a subdivision of [a,b].

2 .
Consider D [éhgf ] . There is a number M such that if

) .
A is a subdivision of {[a,b], §§: Lé%%l { M. Then

> 2 > 2
Kf k() -kf
w LAUDTE o (5 e [L{eloktle)]
> 2 >
K2 [£(t)-f
- (e en SITETtE!
2
- ;[Af] < k°M. Thus kf is in H_

Properties 6), 7),and 8) follow from the parallel

properties of the real numbers.
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9) Suppose that ii) is true. If k = O, then for any x
in [a,b] kf(x)=0(f(x))=0. If £=0, then kf(x)=ke(x)=k(0)=0.

In either case kf(x)=6(x) for every x in [a,b]. Suppose
that 1) is true. If k=0, then 1i) is true. Suppose that
k#0. Then since kf(x)=0 for each x in [a,b], £(x)=0 for each X
in [a,b] which implies that f=0.
‘Definition 6 - If each of f and g is in‘Hm, we define

J30 9%%& to be the inner product of f and g with respect to

m and denote the integral by ((f,g))m

The following theorem Justifies the preceeding definition .
and establishes the fact that Hm 1s an inner product space.
Theorem 5 - If each of f and g is in Hm and k is a num-

ber, then the following statements are true:
1) ((f,g))m is a real number

2) ((£,1)), 2 0 and ((£,£)),=0 if and only if £=0
3) ((£,8)),=((a,£)),

4)  ({f+g,h)) =((£,h)) +((g,n)})

5) ((£.keg)) =k((f,g))

Proof - 1) is true since j% 9§§5, is a real number.

2) ((£,£)), = j% dfdf J. 1%21— Since for any

subdivision D of [a,b], :%: 1s nonnegative, we see by

Am
2
the proof of Theorem 2 that O ( dg . Suppose that f=0,
Then if D is a subdivision of [a, b] ZZ: :2:-- -

D
b (ar)?
from which we deduce that a iaal— =0. Suppose that
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((f,f))m-—-O, that adlx<{b, and let D be a subdivision of [a,b]

such‘that [a,x]eD. SinceO__(= 5 Am j LE')" = 0

we see that each term is identically zero so that

(i%z%:ﬁ%:g)g =0, - If m(x)-m(a)=0, then f(x)-r(a)=0 and

f(x)=f(a)=0. If m(x)-m(a)#0, then (f(x)-f(a))2 =0 and
f(x)~-f(a)=0 which means that £(x)=0. Thus f(x) is
identically zero for all x in [a,b].

. 3) Statement 3) follows directly from the commutative

property of the real numbers.

2 2
b (daf b (dg
4) By Theorem 2 each of Sa ‘E—-}-—m 3 ja %—Lm , and

2 2
g L%%l— exists and by Theorem 3 each of JE Ke! g; ] ’

jg -q-gr%r-’- s jg %‘P— and jz d me dh exists. Suppose

that ¢ is a positive number. There are subdivisions A, B,

and C of [a,b] such that if A', B', and C!' are refinements

b dfdh ZZZ AfAn
of A, B, and C respectively, then j; 5 - G .Té%ﬂ

e/,

i

b dgdh _ . AgAh b d(f+g)ch
Ia"%’n?" 5t AR < o/s a“d;_“a m
- z%; Q%%%Eﬁ&h < ¢/3. Let.D be a common refinement of

y

A, B, and C and suppose that D' is a refinement of D. Then
b dfdn _ Z AfAD b dgdn _ Z ; A(f+g)Ah
‘f DT "Am .j;' m D + ;;: Am B

ok

+

and
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bdfdh bdgdh bd{f+g)dh , ALfAD
( a—dm T fa”am )~ +

dm a dm D! Anm
Z AE n Y . fA+ r;; - :L‘h" ) < C
Since & AfAh ;—' Qeln =§—: QAfADHAEAR Z f+g )Ah
D! D! Am D! Am Df Am

{ ¢, therefore

b dfdh . fo dgah _ fo d(f+g)dh
a ~dm a ~dam a m
jb dfdn j Sedn jbdg rg) Jdh

5) Consider Z dfd gg . There are subdivisions A and

B of [a,b] such that if A' and B' are refinements of A and B

J‘Z dfdm(kgz_z 1, k
oo from

refinement of A and B and suppose that D' 1s a refinement of

respectively, then { ¢/2 and

< c/@( Ik! +lﬁ. Let D be a common

lk! ; Am jbia_& <g'(JTqu——j-) < e/2, so that
Z§; fA £ b df { ¢/2. Then
jb dfd(kg) ? Angkg) Z fA(kg)
dm D DI Am

{ ¢ and

fdg b dfdgkgz dfdg
b dfdgkg! _ b dfd
Therefore ja - =k J-a ?ﬁiﬂ .
Definition 7 - If £ is in Hm’ we define the norm of f

with respect to m, denoted by Ilf“ m? BY ”f“ mﬁ/(CF:FTX;T
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It is a well known consequence of the properties of a
linear space in which an inner product and a norm have been
defined that the following inequalities are true for elements
f, g, and h of the space:

1) Schwarz inequality: I((f,g))mii (Eall oo el

2) Minkowski inequality: |l e+gl < lell o+ lel
%) Triangle inequality: | f-gf o S il £-nll ot “h—gﬂ o
wy el - lal | < Megll e

©0
Lemma 1 -~ Suppose that {fn} i1s a sequence of functions

n=1
in H_ such that if D is a subdivision of [a,b], then

o0

Z}:'A(f‘p—fq)!*G as min Ep,qg—ﬂ’o . Then {fn} el

converges pointwise for each x in [a,b].
Proof -~ Let x be an element of [a,b]. If x=a, then
for all positive integers n, fn(x)=fn(a)=0 which gives us

convergence trivally for x=a, Suppose that a { x { b and
let ¢ be a positive number. There is a subdivision D of
fa,b] such that [a,x] € D. There 1s a positive number N
such that if each of p.and g 1s a positive integer, and

N < min fp,j} , then
)

IEZ:’A(fp~fq - 0| < ¢ or since the sum is nonnegative,
D : A

:%;Lﬁ(fp-fq)i. { ¢. Since l(fp(x)~fq(x))-(fp(a)-fq(a))l is a
term of the previous sum, !(fp(x)-fq(x))-(fp(a)-fq(a))l { ec.
Now fp(a)~fq(a)= 0-0=0 so that pr(x)—fq(x)! {c. Thus for each
X we conclude that {fn} :ll is a Cauchy sequence and has a

limit. Therefore there is a function g whose domain contains
[a,b] such that f_(x)-» g(x) as n—>eofor each x in [a,b].
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a0
Lemma 2 = Suppose that{fn} n=1 i3 a sequence of elements

of H_ such that “fp-fq” 0 as min § p,q}—>e0, Then the
set R= fz|z= ‘[fnlt q» N 2 positive integer, fneHm}is

bounded.
Proof - Since for each posltive integer n, "fn“ " > 0,

R is bounded below by O. There is a posiﬁive number N such
that if each of p and g 1s a positive integer and N £ min{'p,qi,

then |l -2 ll -0 [=lle-e Il | <1. Let p* be the least
poslitive 1nteger greater than N and g be any positive integer

greater than N. Then I”fq“ o= ol mlé e-e .l <2

and therefore l]fq” o 4 “fp*" n i

Let Memax { £ Il Lol oo, i oell o ool 123 . R 18

bounded above by M.
Theorem 6 - Suppose that {fn :il is a sequence of

elements of H_ such that || fp-fq” o> 0 as min {p,q} —oo,

Then there is a function g in Hm such thatllfp—gllm“—* 0
as p—»oo, ‘
Proof - Let ¢ be a positive number. There is a positive

number N such that if each of p and q is a positive integer
such that N { min {p,q} , then

llfp-fq” - 4 c . By theorem 2 there is a
m(b)-m(a)
function h such that

( ) 0, if x=a

h{x

2

J% [d(fp'fq)] » if a { x { b. By the corollary
: dm

of Theorem 2, for any subdivision D of [a,b],
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2. late,50)] € J[m<b)-m<a)1 J'b A1 -

= Afm(b)-ngy' "fp—fq"m where jé [d(fp"fq)]2 =h(b)~h(a).

dm

1 5 :E:IA(f -r )] e -£ llm < c_
’ peT =R A n(p)-m(a)

-4A(fp-fq)[ { ¢, which implies by Lemma 1 that
b, thenlfp(x)-fq(x)|—+ o(x) as min {p,q}——)oo .

Thus there 1s a function g such that if x is in [a,b], then

fn(x)——> g{x) as n—o. Since fn(a)=0 for all positive

integers n, 1t follows that g(a)=0. Suppose that [s,t] is a
subinterval of [a,b] such that m(t)-m(s)=0. For each positive

integer n, fn(t)-fn(s)=0. There are positive numbers Ny and
N, such that!fj(s)-g(s)! { ¢/2 and Jg(t)-fk(t)l { of2 if
N { k and N { j. Let N=max {Nt,NS} . If r is a positive
integer and N < r, thenlfr(s)—g(sﬂ { ¢/2 and
lg(t)—fr(t)l { ¢/2 so that

Ig(t)-fr(t)l + lfr(s)~g(s)l {¢ and

le(t)-g(s)| = |e(t)-r(t)+r (s)-g(s)] <e. Thus

g(t)-g(s)=0.
Let D be a subdivisdon of [a,b] and d the number of elements

of D. Suppose that I=[s,t] is an element of D and O(lSIm.
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There are positive numbers N1 and N2 such that 1f each of p

and q 1s a positive integer and N; { p and N, < g,
. 1/2 | 1/2
then I g(s) -1p(s)| U and I fq(t)-g(t)l <w ' ,

where W = S810 | pet

- I=max {Nl’NE} . Ifn is a positive

I

integer and Ny < ‘nI, then
[85- 058, | - | (e(s)-8(0))(5, (9)-1, (+))]
< eto)-s, (o) +| 2, (8)-g(0)

¢ wl/ 2, from which we obtain

!Alg“ AJ:nt

iAIg! - lAInt

C .
Afm A d

< w2 orlAIgi' < [‘AInt + W2 ang

Bre-83%, (g2 20 a ) (B, )P

I + I e
Agm A" Agm Am d
, 2
(AIg)‘z ¢ E(AIE;)(AInt) _ (AInt) ‘o
2
< 2| 8] IAIntI Bt 7 .
A 7 Y 3

{2 IAIntI (IAIfn-Il + wl/z) " AInt)2 + .
A i d
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) + 2 (C 1/2 .I.AIntl - (A]':nt )2+ .
:)

(AIg) 4 Q(Alnt
AIm ' A

Let Ny=max {N; | IeD} . Then if n is a positive integer and
N, < n, |
Tt (Toor o T gl 3
172 I
(Bm)*/<(a)*/<
which by the Schwarz inequality does not exceed

E:(Af | +{2UﬁL@] zz(Af) JEZ 1 +c. Then

; %ﬁ)_ < ; + [2(0) 21{2 (Af i + ¢ so that

2l <Ll (e ufnum+ 2

By Lemma 2 there is a number M such that “fnllm { M for every.

n., Thus
2
» %%%lm' < Mo+ 2M(c)]‘/2 + ¢. Therefore g is in H_.
Suppose that ¢ is a positivé number, There 1s a positive
number N' such that 1f each of p and g 1s a positive integer

and N' < min {p,q} then

b [a(s, - 2 b [d(f -f )]°
JI [ clm )] { ¢/2 so that Ja [ (dr?x fq)] < 02/4.

Thus for any subdivision B of {a,b].

2
[A(f ~£_)]
Aﬁi d 4 cg/h. Let D be a subdivision of [a,b]

. 2
and consider z;: hﬁ(g"fn)] for n » N', TFor each I in D let
Am
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NI be a positive number such that if Ny is a positive integer

2
and n; > N; then [A(g'fnl)] 4 .2 where d is the number
v i

of elements in D. If Ny=max {NI [ IGD} , then for n' N,

X 2

:;: LA(%-fn')] 4 c2 . Let n* be a positive integer
Am T

such that n* > max{N', ND? Then

S IBe) P L 2 [e(e)-ry(6)=(a(a)-5 ()
NG [s,t]eD G

D Us() =2 (8))+(1_ (8)-F_, (%)) =

~(&(8)=1,(8) ) +(£,4(s)-1 4 (5))1%/Am
=D UE(6)-£,(6))=(&(s) £ 4 (s)) +
£ (8)=£,(£))=(£, 4 (5)-£_(5)) 1%/ Am
2 Bemt) + Alipamr) 1
Am

=§_: Ae-2,)1 Z; D(&-£,0) A(E -5, )],
, Am ' Am

+ ZD_: t-t) P ¢
A

| ) \ |
< 2 Wlety)) 2 et 01 n)
Am Al

e

¥ j%: [A(fn*fn)]g » which
Am

by the Schwarz inequality, does not exceed



2 2 2 2
c + (2) ¢ + = C
(2 o+ (@) &

»
2
Therefore, JZ [d(g-fn)] < @

and therefore “g—fnllm {ec
dm =

"for n > N. Thus g~ || ;0 as n—eo,

From Theorems 4, 5, and & we see that H 1s a Hllbert

space.



Chapter III

DISCUSSION PRELIMINARY TO THE
PROOF OF SEPARABILITY

The statement "f is H-integrable on [a,b]" means that

a df'2 '
1 iﬁﬁl"' exlsts in the sense of Theorem 2.

Theorem 7 = Suppose that each of g*¥ and m is a function
defined on [a,b], where m is defined as before and g* is
continucus, If h is the function defined by

0, if a=x

h(x)= jx g*¥(t)dm(t), if a { x _S_b:

a
then h is H-integrable.

Proof - m nondecreasing on [a,b], implies that m 1s of
bounded variation on [a,b]. Thus, since g* is continuous on
(a,b], g g¥(t)dm(t) exists for every subinterval [p,q] of
[a,b). -

1) Suppose that [p,q] is a subinterval of [a,b], such that

4 aq
m(q)-m(p)=0. Let g*(t)dm(t)=J and suppose that c¢
p [p,al
is a positive number. There is a subdivision D of [p,ql,
such that if D' is a refinement of D and r is a function
whose domain is D!, such that r(I) is in I for each I in D!,

then | T, o1 ; g*(r(I))Am

{ ¢c. Now m{v)-m(u)=0 for each

28



subinterval [u,v] of [p,a], so that ;E: g*(r(I)) Am = 0O,
Dt '
which implies that J£p,q] = 0,

2) By the proof of part one of Theorem 2, if D is a subdivi-

~ sion of [a,b] and E is a refinement of D, then

\'aan
2. o2 L
D Am X E Am

3) Suppose that D is a subdivision of [a,b] and has d ele-
ments. Since g¥* is continuous and m is of bounded variation

on [a,b], there are numbers G and M, such that [g*(x)] S,G
for every x in [a,b], and if E is a subdivision of [a,b],
2 lan] < m.

E —

Consider the sum

2 q 2
Z%L = Z UP g*(t)dm(t)] . For notation,
) .
D YR
let [p,ql=I. For each I in D, there is a subdivision E

T of I,

[
such that if EI is a refinement of EI’ and rE, is a function

I
whose domain is El such that rp, (U) is in U for every U
I

in Ei, then

[o et | 2. sty |+ x
I

p =

2

A

g*(rgy(U)) | Bym + k, wnere P .
Ei I a
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Then | , 2
S ({E lg*(rEi(U))lAUm+k] )
(Ah) I
D “Am é:.; Am '

(2N
Ql\)
o[™]
(B
=
+
[™]
n
&
+
[~]

< 6®M+ D 2KdG 41 = GPM + 2kde + 1
5 3 =

: 2 '
E .(.__.)_ﬁa - < G°M + 2G NM 4+ 1. Thus h i1s H-integrable.
. D —— . .
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Lemma 5 - If each of f and g 1s a function defined on
[a,b], such that f is continuous and g is H-integrable, let

h be the function defined by

0, if x=a
n(x)=+« 4 |
Jx £(t)am(t), if a < x { b,
4 A

b
dhd
J; —Hﬁ& exists.

Proof - By Theorem.7, h 1s H-integrable. Thus by the
— > .
dhd
corollary of Theorem 2, a —HE& exists.

Lemma 4 - 1If each of f and m is a function defined on
[a,b], such that f is continuous and m in nondecreasing with
m(a)#m(o), then for each positive number c there is a positive

number d, such that if D is a subdivision of [a,b], such that

| ‘f(x)—f(y)!  d for x and y in an element of D, then for each

I in D, such that AIm;é 0

L f(t)dam(t) - f(r)AIm
Ar™

{ e, where r 1is in I.

Proof - Suppose that c¢c is a positive number., There is
a subdivision E of [a,b], such that if I is in E and each of
x and y is in I, then [f(x)nf(y)] < % . For each I in E for
whicthIm # 0, there is a subdivision Fy of I, such that ir
Fi is a refinement of FI and r' is a fpnction whose domain is

Fi, such that r'(U) 4is in U for each U in F!, then
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I fam - E £(r1(U) )pym

< CAIm where} fdm denotes
F] 2’ I

J. £f(t)dm(t) if I=[p,q]. Thus
p

<M '
: fdm - Z_J £(x1(U))Apm
Fi c
A.Im < B e Now
D (= (0)agn - £(r)agn
5
L .AIm does not exceed %, for if
r is in I, then
Z £(x'(U))Aym = £(r)ppm m~ Zf(r)AUmi
Py FI
_AIm B AI m

A

¢ ;—I: [2(x1 (0)-£(x)| Aym

A
B
c 1 = c
z A zZ .
Thus
UI fdm - f’(r)AI fdm - f(r'(U))AUm’




D22 (1)) - £(x)Agm
FI

AV
{ e
5t

% = ¢, Thus we obtain the desired
result if we take d:%

Theorem 8 - Suppose that each of f and g is a function
defined on {a,b], such that f is continuous and g is H-inte~-
grable. If h is the functlion defined by

s 1f x=a
h(x)=
I f(t)am(t), if a { x < b,
thenJ‘ &ds | f(t)dg(t)‘.

Proof = g 1s of bounded variation on [a,b], and f is

continuous on [a,b]l, so that J: f(t)dg(t) exists. By Lemma 3,

o b b |
- f° dndg ... dndg _ -
L 5B exists. Let L SE = 0y gnd L £(t)dg(t) = J

Suppose that ¢ is a positive number. There 1ls a subdivision E
of [a,b], such that if E' is a refinement of E, and r' is a
function, such that E' is the domain of r', and r'(I) is in

I for each I in E', then

< % . There is a subdivision F of

; £(r*(1))A 8

[a,b], such that if F' is a refinement of F, then

EEZQL_ﬁ.’ S 3z . There is a subdivision G of [a,b],
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such that 1f I is 1n G, and each of x and y is in I, then

b
a

dg . Let D be a common

If(X)-f(Y)I ‘< E%T.m s Where L =

refinement of E, F, and G. If D' is a refinement of D, let
D = {I ! Ie D‘,{SIm f’O} . Then if r is a function whose

domain is D', such that r(I) is in I for each I in D!,

J1 - Z [.Ilfdm] B8 l c j
D! - ¢ z . Since J. fdm = 0 and
AIg = 0 1if A[m = 0, UIfd AIg ) ;‘ [J-Ifdm]AIg ‘
Im
Thus -
gy - 2*4 UIfdm]AIg L1172 ; £(r(1))Are | ¢ -239
A
. [
Jy=d £ T(r(I))Ae - Z [ fdm} A8
172 \ I I T 2
¥ D¥ A &£
|91-9, | - ; ;: [JIfdm]AIg - F(x(1))AmA g ¢ 2
Arm 2
|3;-95] < _JIfdm - £(x(1))Am
- Ao
!Jl--a'2 | < 53"- + ; [AIg Lfdm - f(r(I))A m
which by Lemma 4 does not exceed 20 S 2;;|A1g| { e.

Thus Jl= o
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Theorem 9 - Suppose that each of f, g, and m is a func-
tion defined on [a,b], such that f and g are each continuous,
and m is nondecreasing with m(b)#m(a). Let h, and h, be the
functions defined by
0, 1if x=a

hl(X)-"—' »
| jx £(t)am(t), if a < x { b,

a
and
I’ 0, if x=a
112(x)=~LJ;{ g(t)am(t), if a < x < b.
a , AY

b b
ja dhlihzg_ = J; £(t)g(t)dm(t).

Proof - By Theorem 7, each of hl and h2 is H-integrable,

® ah_dn
so that by the corollary to Theorem 2, a 172 exists.
‘ dm

b o)
By Theorem 8, j dn, dh, J; f(t)an,(t). Since each of

a—-—a--——-—‘ m =

‘ b
f and g is continuous, fg is continuous, so that J;f(t)g(t)dm(t)

Ll

b b
exists. Let L f(t)dhg(‘c)=Jl and ja f(t)g(t)am(t) = J

no

Suppose that ¢ is a positive number. There is a subdivision
D of [a,b], such that if D! is a refinement of D, and r is a
function whose domain is D', such that r(I) is in I for each
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I in D', then lJl - zgz i(r(IJ)AIha ! < % . There is

a subdivision E of [a,b], such that'if E' is a refinement
of E, and r' 1is a function whose domain is E!', such that
r'(I) is In I for each I in E', then

L 2 (e (D))e(e (1)Am |< S . There 15 a sub
2~ Ly r glr Am | 3 . ere 1s a sub-

division F of [a,b], such that if I is in ¥, and each of
x and y is in I, then lg(x)-g(y)l < 6TE%¥T7 s where

L= 1ub-{z !z= lf(x) , xel[a,b] } and M= m{b)-m(a). Let

G be a common refinement of D, E, and F. If G! is a
refinement of G, and s is a function whose domain is GV,

such that s(I) is in I for each I in G', then

1 Z(;-ﬁ S(I))Arh2!+ 5.- Zf(s(l))g(s (1) | < 2.
I =Jp + ; £(s(1))e(s(1))Am - ;f(s(l))AIhg l<3_6_

Jl"’ng = l Z f(s(I))(AIhg"g(S(I))AIm) < “25‘9‘

Jy-J, l< IZ £(s(1)) ( 18am=-g(s(I))Am

<& Z | e(s(x))] ngdm - &(s(1))Am

J;gdm =0, 1f I is 1in G*, such thatlklm = 0., Thus if

G*={I E IeG',AIm P4 O},

Lgam-g<s< I))Agm

| 3,35 | < %‘3 + Z (|£(s(x))| A gm)
ax ,
Apm

so that by Lemma 4,
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|oy-0,] <52+ | 2(s(1))] ppm
1 2 .9 F I —'('r-—-r)-
{ 2¢ c c EE:
St oW 4 L‘(*L‘LMA m {5
/20‘ C _ o _
!J -, | K5+ 5 =, Thus 3y=J,.

The followlng theorem 1s stated without proof.

Theorem 10 -~ If f is a nondecreasing function defined

on [a,b], then f is quasi-continuous on [a,b]. That is,
if x is in [a,b], then the limit from the right, fr(x¥),

exists for a ( x { b, and the limit from the left, £(x7),
exists for a { x < b.

Theorem 11 - Suppose that g is a function defined on

[a,b], such that g is of bounded variation on [a,b],

g(a) = 0, and if f is a continuous function defined on

b
[a,bl, then |, £(t)dg(t) = 0. If a {x b, then

g(x")=g(x")= o,

Proof - TUnder the above conditions g(b) = 0, for if
f(x) = 1 for every x in [a,b], then thére is a subdivision
D of [a,b], such that if D' is a refinement of D, and r is

a function whose domain is D', such that r(I) is in I for
2 el 125 semel e
D! D!

Thus g(b)=g(b)=0. Since g is of bounded variation on [a,b],

each I in D, then Ig(b)-g(a)] =

g may be expressed as the difference of two nondecreasing
functions., Each of these functions is quasi-continuous, so

that g is also quasi-continuous.
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1) Suppose that a g x { b, and that ¢ is a positive number.
There i1s a positive number d*, such that if a g x <y g‘b
and ‘x-yl { d*, then |g(x+)~g(&)! 4 %». Let d=min-{§*,b-x:}.
Let f be the function defined by
0, ifa {t { x

f(6)= i“-?,ifxit(x—»d

1, 1f x+d { t <'D.

Obviously f is continuous on [a,b]. Since g(a)=g(b)=0,

b ' b
and j; f(t)dg(t)=r(b)g(b)~-r(a)a(a)- J; g(t)ar(t) , then

b b X . X+d
_Lf(t)de;(t)= Lg(t)df(t)= jag(t)df(t) +L g(t)ar(t) +
b

+ )
X+dg(t)df(t) = 0. Each of

X b
J;g(t)df(t) and.J;+dg(t)df(t) 1s zero, since f is constant

on each of the intervals [a,x] and [x+d,b]. Thus

J;+dg(t)df(t) = 0. There 1s a subdivision D of [x,x+d],
X

such that 1f D' is a refinement of D, and r* is a function

whose domg%gﬁis D, such that r*(I) is in I for each I in
> c |

D, then !AISTJ g(r*)AL 1 < s . Por each I in D',

r*(I), if x is not in I
let r(I)= -
z, z€l, z#x, if xel.

Thus for each I in D', g(xT) - = < g(x(1)) < g(x) + 5
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so that g(r(I))=g(x") + k(r(I)), where Ik(r(I))l < %. Then

= > ' ; g(r(I))Ar l = lDZ [g(xh) + k(r(1)) 1AL l
> lDZ e:(x*)Afl - |§; k(r(1))ALL
IDZ g(x¥)Ar I < '29' + ! bz k(I’(I))AIi‘ l . Now, since for
each I in D',Af 2 0, and T(x+4d)-f(x)=1, it follows that
g(xt) = I %: g(;;+)Af %+ DZlk(r(I))l Af <5 +

+ %_:;S-Af

» S0 that

< §-+ g = ¢. Therefore g(xt) = 0.
2) Suppose that a { x { b, and that ¢ 1s a positive number.
There is a positive number d*, such that if a g vy {x %D
and !Y“xl < ax, thenl g(x")-g(y)! < §'° Let d=min-{k-a,d*} .

Let [ be the function defined by
1, ifa {t { x-a
£(t)= 1-t—“§2‘:£i-)-,1fx-d<t§x
0, ifx<t§b.

As in part 1)

j:f(t)dg(t) =I:s(t>df(t) =Ix'dg(t)df(t) +f‘ g(t)dr(t)+

a X=4

+J-bg(t)df(t) = 0, Each of
X

jx‘dg(t)df(t) and jbg(t)df(t) is zero, ‘since f is
a X



constant on each of-the intervals [a,x~d] and [x,b].

% .
Thus{J;_dg(t)df(t) = 0 . There 1s a subdlvision D of
[x-d,x], such that if D' is a refinement of D, and r* is

a function whose domain is D', such that r*(I) is in I

2 steme |< 5.

For each I in D', let r(I) = (r*(I), if x 1s not in I

for each I in D', then

z, 2 I, 2#x, 1if x I.

Thus for each I in D', g(x~) - % <elr(1)) <elx") + 5

so that g(r(I))=¢(x") + k(r(I)), where lk(r(I))] < % .

Then

> IDZ s(e(dge |- | 2 [667) + K(e(1) 1Ayt

> ! Z g(x7)Af i- l Z k(-r(I))AIf s SO that
D! D!

i;g; g(x" )AL l( §-+ l ;;: k(r(I))AIf' . Now, since
5 as

!g(x")] = !g(x")! ! ;Af |<§-+ !k(r(z))l l}D—_‘:Af!

= | (x)-r(x-a)| = | -1

s it follows that

4 %-+ % = ¢, Therefore g(x~) = O;

We see that i1f the condition that either g is left

continuous at each x, such that a { x { b or g is right

40
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continuous at each x, such that a ﬁ_x { b is added to the
hypothesis of Theorem 11, then g(x? = 0 for every x in
[a,b].

Suppose that V 1s an inner product space with lnner pro-
duct ((.,.)) and zero element ©.

Lemma 5 - Iff{ﬁi,ﬂé,...,ﬁk}'is an orthonormal set of
o 1y k
elements of V, then ((u—zE:i=1((u,¢i))ﬂi,ﬂb))=0 for

J:l’ 2you.g;k and anyu 1n VO

Proof -
(Ca- 5 1 ((way))85,85)=( () -( Oy ()8, 85)
“((w,gy))-D 5wy ) ((2,.2,))

;((u:ﬁ&))-((u:ﬂﬁ))((9&:9&))
=((usg5))"((us¢3))

(- ¥ ((uady)).8,))=0 .

o .
Theorem 12 - If A ='{ui]'i=l is a linearly independent

sequence of elements of V, then there is an orthonormal seg-

uence B=-{ﬂi]-:11 of elements V, such that if y is a

linear combination of the first n elements of A, then y is

a linear comblnation of the first n elements of B, and if

X 1s a linear combination of the first n elements of B, then

X 1s a linear comblnatlion of the first n elements of A.
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Proof - uy # ©, for otherwise A is linearly dependent.

Y,

el

(ot T » “<T%'ﬂr>2“ul’u1”2 (%)2 -

Thus @, is orthonormal. Let vy=u,~((u,,%;))#;. By Lemma

Thus ”ulu # 0. Define ¢ =

5, v, 1s orthogonal to ¢i. Thus since pi is a linear
comblnaticn of ul, Vo is a linear combination of~{ﬁl,u2]'

and cannot be 6. Define g,= '((ul’gi))ﬁi .
Ihu -T(ul:ﬂi))ﬁiﬂ

{?&,Qé]‘i: orthonormal, since Qé i1s a scalar multiple of

v,s which is orthogonal to Qi and ((ﬁé:ﬂé)) =

) ( Il uzz'((“;’f"l”gﬂ]) 2 (lluE-((uQ,gl))glli) “ o

We note u, and u, are linear combinations of ﬂi and

{]Zl,ﬂé}-respectively. In general, 1f k is a positive
N K-1 \

integer, let v =u -)> 77 ((uk,ﬂa))ﬂi. By Lemma 5, v,

is orthogonal to each of gi"“’¢k-l“ Since each @, is

a linear combination of-{ul,a«.,ui} s Vi is a linear

combination of-{ul,...,uk} and cannot be ©. Define

(1) B= e -1<(uk,gi>)¢i

— « Suppose that each
by Ko W 2y 009
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of 1 and jJ is a positive integer less than k.

Since -{Qi,...,ﬂk_l}‘ is orthonormal,

0, if i#j

((#y.250)= 1, if 1=j.

0

(B AD-By 1 D (W)= g =0

N ‘Vk Vk _ 1 2 v ~ ”Vk”)g _
(et uvkn» "(u vku) (e k”‘(m -

Thus -{Q&,...,ﬁk} is orthonormal. From (1), we see that

w, 1s a linear .combination of-{ﬂi,...,ﬁk} .

oo
The sequence-{ﬂi}‘ 4= formed in this manner is ortho-

normal, Since each Q& 1s a linear combination of
{ﬁl,...,ui}-, and each uy 1ls a linear combination of
{ﬁ&,...,ﬁi} , any linear combination of-{ﬂi,...,ﬁg}
is a linear combination of—{ul,,..,un}'and conversely.

Suppose that H is a Hilbert space with inner product
((.,.)). The following theorem is stated without proof.

Theorem 1% -« The union of a countable collection of

countable sets is countable.

00
Theorem 14 - Suppose that~{¢i}-i=l 1s an orthonormal

sequence of elements of H. The following four statements

are equivalent:



Ly
1) The set of all finite linear combinations of the
#,'s is dense in H.

2) If z 1is in H and ((z,ﬂh))= 0 for every n, then z=0.

3). If x is in H, then "X“EE:§=1 ((x,ﬁi))ﬁi"‘a'o

as n-» o0 ,

4} There is a countable set T of elements of H, such
that H is separable with respect to T,

Proof - I. Suppose that 1) is true and that z is in
H, such that ((z,ﬂi))=0 for every i. Let c be a positive

number. There is a positive integer n and a sequence of

scalars {a,} 0 ), such that ¢ Dllz-> 7 a g ll.
2oz 2 el 2 (2D Pat e Fad)
((z,2))-2((z.) 2 _ja,8,)) +
DIECR(CATA)
(z02))2 S o, (2.8 )¢S0 ol

=((z,2)}) +z£:2=1ai s 80 that

25 ((z,2)) = Nzll2. fhus o )I!zlland lzll = 0. Thus
z2=0,
II. Suppose that 2) is true and that x is in H. Suppose
that p 18 a positive_integer, and that ¢ 1s a positive

number,
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RN FRCHAVAR

U= B (G )y x=D 0 ((x,8,))8,))
)22 P (Geg))® 42 P ((x90))°
0 < ((x,%))=2> 2 1 ((x,#,))°. Thus for each positive
integer p, ((x,x)) Z:E:gzl((x’¢i))2 , which implies that

there is a number J, such th;atzfzz:l((x,p’i))g-—eJ as

P-—>00 . There is a positlive number N, such that if each
of m and n is a positive integer, such that N < min{m,n},
then

l Z?___l((x’ﬁi))z-Z?: ((X:ﬂi))z I( ¢c. For each
positive integer p, let 'y _“' _1((35:,0'1))?!1 Consilder

"ym-yn” where N < min-{m,n} and assume for convenlence

that m 2 n.
ly =y, 2=y _v,55, )
=¥ ) )-2((ypov)) + ((y59))
=((Q T (x> T ((x,8,))4,)) -
-z(<j§j$=1<(x,¢3>)¢g,§{j§=1((x,¢g>)¢3)> +
H(Q B ()08, ) 0 ((,,))9,)
=) ()P -
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23 0 () (B ((g))p) +
+p 0 ((x8))° |
=> M ((x.8,))° -
23 0 (g ) 1D 5 () (B g +

+> 0 ((x,0,))?

> ((x,¢,))F -
R CE ANPIICCH AN BN
2 0 (gD S (=8 (8, 8,0)1 +
EYR(EN Be
= i (g ))E2) 1 ((x,83))7 0 ((x.9,))°
1onvall ® =2 T (0eagy))® D 0 0 ((69))% <o Thus
since H 1s complete, the sequence {yi}:: | converges to

some element y of H. Consider ((x-y,ﬂk)) for some positive
‘ 0o
integer k. Since'{:{:2=l((x»¢i))2 }h:l converges,

((x,ﬂi))-—% O as i—00. Thus if ¢ is a positive number,
there 1s a positive number N', such that 1f q is a positive
integer and g > N', then l((x,ﬁé))l { ¢. Consider the

sequence | ((x-p 0 (1,88, 800 1oy



7
l(<x~j§j§=1<(x.¢;>>¢3,¢k>)l=I((x,¢k>)-((j§j§=1<<x,¢;)>g;,¢k)>]
(o ))-D 5 (g )(,.9,))]
_J(=2,0)-((x,8,))

I (x.8,))

» if k< q

s if k ><1

(S8 (Gt D A< o s (5T ((08,)19,08,))
—» 0 as n—00,. If-(fn}-le 1s a sequence of elements

of H, such that f —>f as n—oo, then ((fn,gfk))—-> ((f,p’k))
as n—yeoo, for if ¢ is a positive number, there is a
posltive number N'', such that if s is a positive integer,
such that s > Ntt, then”vfs—fll( ¢, Since f is in H,
((£,8,)) exists. WNow |((£,.84))-((£.8))]=|((£,~£.4,))

3

which by the Schwarz inequality does not exceed
gt 1 #iell = llsgmsl < o. omus 2

£ = x-E{jgal((x,pi))ﬂi for each n, ((x~j€12=1((xyﬂ;))ﬂisﬁk))

—_ ((x~y,ﬂ&)) as n—300 , Since previously we saw that

((X-ZE:2=1((X,ﬂi))ﬂi,ﬁk))—a»O as n—oo, we conclude that

((x-y,# })= 0 for each k. By 2), x-y = 0, so that x=y.

Then sincejij?zl((x,gi))ﬂi-—) X as n—3oo, x—ii:?=1((x’¢i))¢i

—> 0 as n—00 ,
III. Suppose that 3) is true and that ¢ is a positive num-

ber. Let x be an element of H. There is a positive number
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N such that if n is a positive Integer such that N < n,

theniixéjgzg=l((x,¢i))ﬁi'I( ¢, Since for each positive

integer i less than or equal to n, ((x,ﬂi)) is a real num-

ber, Z{:?=l((x,¢i))¢i is a finite linear combination of
the ﬁi 's. Thus the set of all finlte llnear comblinatlons
of the g, 's is dense in H.

IV. Suppose that 1) 1s true and that ¢ is a positive
number. If x 1s an element of H, there is a posltive

. . hel '
integer n and a sequence of scalars-{éi}-i=l, such that

Iix- 2=laigi'|< %. Now if b, 1s a rational number, then

N DN A RSO RN AN AN A)
=((ai¢i"ai¢i))~2((aigi’bigi)) +
+ ((byf,,0,9,))
= a5 - 2a;b, + b5 = (a;-b,)%. Thus

for each a4 let bi be a rational number, such that |

lag-0y | <% -

Thenllaiﬂiwbiﬁﬁu 2« (5%) 2 and “aiﬁi-biﬂall< _%h .

5= 2aa w2 2aallaugi-vud Z.ﬂz HECY A YL N

80 that

y
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X—Z;l:laigi ||+ ,Z gxlaiﬂi'zgﬂbigi”
> = "Z?:laiﬁi +z:§.1=1ai¢i -Zg.lzlbigi”

D x.—:E:?zlbiﬁi” . Thus the set of all linear

(¢}
i
N
+
ST
V.

combinations of the ﬂi 's with rational coefficlents 1s

dense in H. The set of all rational linear combinations
of ¢i is countable. The set of all rational linear com-

binations of Qé is countable. Thus the set of all ratlonal
linear combinations of -{;51,552} is countable. In general
the set of all rational linear combinations of ﬁ[ﬂi,...,ﬁh}
ié countable for cach n. Let Tn=-(? !z iz a rational
linear combination of *[ﬁi,,o.,ﬁh}j} . T‘=-£T1,.».,Tn,°.a}

is countable, so that T= {\/) Ti 1ls countable, Thus
T,€T?
1

H 1s separable with respect to T.
V. Suppose that 4) is true, Let-{tl,o..,tn,a..} (1)
be an ordering of T. Let T*a-{%i,g..,tg,...}-be a

linearly independent set selected from T by eleminating
those elements in the ordering (1) that are linear combina-
tions of thelr predecessors. We see that any finite sub-
set of T* is linearly independent. By Theorem 12, there is

~ ©O
an orthonormal sequence '{ﬁk,}i=1 of elements of H, such

that if £ is a linear combination of the first n elements of
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T*, then f 1s a linear combination of thé first n elements

: co
of {;gﬁ}'i=l . Suppose that x is an element of H. Let

?=lbit§ be a linear combination of the first n elements
noo.. . n
of T*, such thatllx 'EE:1=1°1t§‘|< c. Let‘{éi} 11 Pe a
n N\ 'n
sequence of scalars, such thatzz:izlaigi =2141=1b1t§ .
n n

Thenllx-:E:i=1a1¢i|l< c. 0bviouslyj€21=lai¢i is a finite
linear combination of the ﬁi 's. Thus the set of all

finlfte linear combinations of the gi 's 1s dense in H.



Chapter IV

SEPARABILITY OF Hm

Throughout this chapter, we assume that m i1s a function
defined on [a,b], such that m is strictly increasing, and
elther m is left continuous at each x, such that a < X g,b’
or m is right continuous at each x, such tﬁat a {x<b.

Theorem 15 - If f is in Hm’ then elther £ is left con-

tinuous at each x, such that a < X éab,,or f is right con-
tinuous at each x, such that a g x { b,

Proof - 1In the proof of Theorem 2, we saw that if f 1s
in H , then for each subinterval [p,q] of [a,b],

( car e
(2(a)-2(0))% < | LEEL (m(a)-n(p)) -

b 2

dm
I. Suppose that m is left continuous at each x, such that'
a {x g:b and that a < y.g b. m is left continuous at y.
There is a subinterval [z,y] gf [a,b], such that if x is

in (z,y], then m(y)-m(x) < jg%-s For each x in [z,y],

' 2 |
(£(y)-£(x))? < _ﬁ (L (m(y)-m(x))

< I(mly)-m(x))
02
I ¥FT

¢® . Thus |f(y)-f(x)l-< ¢ for

Ve NV AN

Sl



each x in [z,y], which implies that f is left continuous
at y. .

II. Suppose that m is right continuous at each x, such
that a‘$ x { b an? that a g=y { b. m is right continuous
at y. There is a subinterval [y,z] of [a,b], such that
if x is in [y,z], then m(x)-m(y) < 3%; . For each x in

[y,21,

X 2
(2(x)-2(v))% ¢ J-y L8 (m(x)-n(y))
<

J(m(x)-m(y))
2
< 7w

N\
e}
no

. Thus if(x)~f(y)! {e
for each x in [y,z], which implies that f is right con-
tinuous at y. |

If [p,q] 1s an interval, then the length of [p,ql is

the number q-p.

Definition 8 - For each positive integer n, let D,

be a subdivision of [a,b] containing exactly n+l elements

each of which has length gi% o Let

Kn = {:xo,xl,...,xn+1?k denote the set of all endpoints

of the elements of Dh’ where

= D,

a=xy < %7 {00 < Xy < ®pq
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Let Fh denote the set of all functions h defined on [a,bl,

such that
a rational number, if xeKn

h(x) =
X=X
1o i—l r -
n(‘xi_l) Wl(h(}si) h(Ki_l)),if XG{Xi_‘lXi],fOI’

1=l,...,041; X g’Kn.
For each h in F_, the (m#2)-tuple (h(xy),h(xy),..c,hlx, 4))

1s called the nth order coordinate sequence of h;

There 1s exactly one nth order coordinate sequence cor-
responding to each h in F . If A 1s an (n+2)=~-tuple of
" rational numbers, then A completely determined some functlon

in Fn.

oo
Theorem 16 - F=\ );_,F; for F, defined in Definition

8 is countable.
Proof - Suppose that n is a positive integer and con-
sider Fn. For each function h in Fn’ there 1s exactly one

nth order coordinate sequence (ao,al,...,a For each

m+l)‘
nth order coordlnate sequence of rational numbers

(bo,bl,...,bn+1), there is exactly one function h in Fn’
such that h(xi)=bi, for each i such that 1=0,1,...,n+1.

Thus Fn contains as many unique functions as there are

0°%17°°°2%n41)

is an nth order coordinate sequence of rational numbers,

unique (n+42)-tuples of rational numbers. If (c
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then for each Cy there is only a countable number of values
that ¢y may have. Thus since there is only a finlte number
of ci‘s tc be determined in each coordinate sequence, there
is a countable number of nth order coordinate sequences of
rational numbers. Therefore Fn is countable., The set of

o0
all éets F, 1s countable, so that the union szv)ixlFi

is countable by Theorem 13,
Theorem 17 - Let S denote the set of all functions de-

fined and continuous on [a,b]. If ¢ is a positive number
and f is an element of S, then there is a sequence .

o0
”{hi}'i=l of elements of F, such that there is a positive

number N, such that if n is a positive 1ﬁteger and n ) N,
then if(x)»hn(x)i { ¢, for every x in [a,b].

Proof - Suppose that ¢ is a positive number and that f
1s an element of S. Let D; m-{}a,xll,[xl,b]}-be a sube-

oy e b-a . _
division of [a,b], such that X=a + =5~ . Let Kl =

-{xo,xl,XQ}-denote the set of all endpolnts of the ele-
ments of D., where '

a=x < Xy < %, =b.
Let h1 be the function defined by

‘a rational number p such that rf(x)-pi< %u if xeK

1
hy (x)= X=Xy 1
hl(xi_l) + ;{;-:]-{I-:l(_hl(xi)-hl(xi_l)), if Xé[Xi_l’Xi]-,

for i=1,2; x ﬂ’Kl.
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h1 is continuous and therefore is in 8. In general, if n

is a positive integer, let Dn=-{ta,xl],[xl,xz],...,[xn,b]}'

be a subdivision of [a,b], such that X, =a+l %i% for

1=1,2,...,n. Let Kn=-€ko,x1,...,xn+l}.denote the set of
all endpoints of the elements of Dn’ where

a=X, 4 Xy oo <xy < X 4170+
Let hn be the functlon defined by

(2 rational number p, such that f(x)-p < %, if xek,

X=X
i-1
hn(x)=~1hn(x1-1)+ xi-xE:I (hn(xi)"hn(xi-l))’ if xe[xi_l,xi],

for i=l,...,n+l ;

L x Z K.

hn is continuous and therefore is in S.

There 18 a positive number d, such that i1f each of x and
y is in [a,b] and !x-y! 4, thenﬁlf(x)-f(y)! < 2-. Let

N be the least positive integer, such that Eé§-4g N.

Consider h, for n > N. Dn=-{{a,x1],[xi,le,...,[xn,b]T}

- b-a
is a subdivision of [a,b], such that xi—a+i 5TT for

i=1,2,...,n . The set of all endpoints of the elements
of Dn is denoted by
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Kn:{co, Xl, o ,Xn, Xn+1}, WheI’e

a=xy < % < ous <x, < K1~

b-~a
n-+.

Each element of D 1s of length < b§a { d. Thus if

' c
each of z, and z, 1s in [Xi-l’xi]’ then If(zl)-f(zg)l< g -
Suppose that a { x { b, If x is in K,s» then

c
]hn(x)-f(x) t( g- If x is not in K, let [x ,xi] be

i-1
that element of Dn that contains x. Each of the following

three statements is true:
c
1) | (x)-£(x) | < E -

2) hn(xi-l)'f(xi-l)l g

3) f(xi)-‘f(xi-l) I < % ©
Thus

(g )00y )|+ £y g )=hy (g )]

wo
AV VA v

(g )=£0xg ) + £0xg )b (e s )]

(g )0y (g 1) | - If(xi)'f(xi-l)l

lhn(xi)—hn(xi_l)l < %-+ lf<x1)'f(x1-1)! < %-+ % = %-o Thus

sincel hn(x)-hn(xi)l g Ihn(xi—l)"hn(xi)

¥

() (x| + | £)-s(xy)| < 5+
h(x)-h, (x,) + f(xi)‘f(x)l <1%2

n, (x)-£(x)| - | £(xy)-na(x)| <55
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2c o 2c ¢ _ bc
| n, (x)-2(x) | < 5% | £(x;) - n (x0)] < Frg-2 <e.
Let © denote the function defined on [a,b], such that
6(x) = O for every x in [a,b].

Theorem 18 - There is a linearly independent subset F*

of F, such that the set of all finite linear combinations
of the elements of F* 1s dense in S.

Proof - By Theorem 16, F is countable. Let

(1) {hl,.,.,hn,...}

be an prdering of F. Let F*a{bf,...,hg,ge.} be a linearly

independent set selected from F by elialnating those
elements in the ordering (1) that are lineér combinations
of thelr predecessors. We see that any finlte subset of
F* is linearly independent. For each h in F, h is in F*
or h is a linear combination of elements in F*,

Suppose that f 1s an element of S. If ¢ 1is a positive
number, there is an element h of F, such that

|f(x)-hn(x)| { ¢ for every x in [d,b]. If h 1s in F¥,
then h =h* for some m {n. If h, is not in F*, there is

a linear combination A of elements of F¥, such that hn=A.
In either case, there 1s some linear combination B of

elements of F*, such that B=h_, so that lf(x)-B(x)I { c.

Thus F* is dense in S.
Definition 9 -~ Let S be the set of all continuous

functions defined on [a,b]. If each of f and g is in S,
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n((£:8))= j; £(t)e(t)am(t).
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Theorem 19 -~ If each of £, g, and h is in S and k is

a number, then the followlng statements are true:

1) ((£,8)) 1s a real numver,
2) m((f,f)) 2 0 and _((f,f))}=0 if and onlj if f=0,
3) L{(f:8)) . nt(&:f)) .

4) ((f+g,h)) = ((£,h)) + _((e,n)) .

5) L{(f.ke)) = x( ((f,8)) ) .

Proof - Suppose that each of f, g, and h 1is an
element of S and that k is a number.

I. Since each of f and g is a continuous funetioh, the

product fg is also continuous. Thus the integral

Jb £(t)g(t)am(t), which is a real number, exists,
a

II. Suppose that f is a continuqus function. Then

. ~ .
jz(f(t))“dm(t) = m((f,f)) exlsts. Let D be a subdivision
a

of [a,b]. Let r be a function whose domain is D, such
that r(I) 1s in I for every I in D. Consider

Z (£(r))®Am. For each T in D, Aqm > 0. In addition,
D

(f(r))2 2 0. Thus :;: (f(r))%ﬁm is nonnegative. There-

b
fore since every approximating sum of .f; (f(t))edm(t)
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is nonnegative, m((f,f)) 2 0.

Suppose that f(x) = O for every x in [a,b]. Then

for every subdivision D of [a,bl],

E; (£(r))%m = Z (0)Am = O

D

regardless of the function r, Thus m((f,f))=0 if £ =6,

Suppose that f is a conftinuous function, such that

m((f,f)) = 0. Suppose that for some q in [a,b]}, £(q)#0.

Then (f(q))2 > 0. There is a subdivision D of [a,b],
such that 1f I is in D, and each of x and y 1is in I, then

o]
I(f(x))e-(f(y))gk < Liéﬂll- . Suppose that [s,t] is
that element of D that contains g. Let E be a subdivision
of [s,t] and r a function whose domain 1s E, such that

r(I) is in I for every I in E. Consider the sum
(£(r))Dm.

E
2 2 _ 2 '
E (£(r))Dm 2 ; g;:_(%_)_)_ Am —.(f(g)) Z,Am

a2
2. Lﬁi%ll— (m(t)-m(s)) . Since m is strictly

increasing, m(t)-m(s) > 0. Since, for every subdivision E

o [5,6], 2 (2(2))%m > LD (n(5)-n(s)), then
- 2
jfj (£(¢))%am(t) > o.

b 2 v 2.
Now §. (£(%))%am(t) _2_ S(£(t))%am(t), so that
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| j.b (f(t))gdm(t) > 0, which is a contradiction of the
a

assumption that ((f,f)) = 0. Thus f(x) = O for every
x in {a,bl].

mr. ((f.8)) = i £(t)e(t)am(t) -

o

]

;.J' g(6)£(t)an(t)

(&)

0

b
_[a (£(¢) + g(t))n(t)an(t)

: (£(t)n(t) + g(t)h(t))am(t)

w. ,((f+g,n))

i

I}

. 2(t)a(t)dn(t) + IZ &(t)n(t)an( s)

((£,h)) + _({g,h)).

it

m

b
_L £(¢) (ke(t) ()

v. ({f,kg))

il

K ‘jz £(t)g(t)dam(t)
k(,((£,8)) ) .

oo
Theorem 20 - There 1is a sequence~{?&f} 121 of

i

elements of S, such that

1) g is a linear combination of the first n elements
of F* if and only if g 1s a linear combination of the
first n elements of-{ﬁi} :Zl, and
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0, 1f 1#j]

1, if i=j .

)
NUCABIE
Proof ~ If we replace the general inner product
((.,.)) in Theorem 12 with the inner product a(Cese))s
: )
we obtain the required sequence {Tﬁi} 1=1 from the

linearly independent set F* where each ﬂk is given by

: B N (R ANA
“k *
Kk

NN ANA

Definition 10 - Since each ﬁa obtained in Theorem

20 is a linear combination of continuous functions, Qi
1s continuous on [a,b]. For each g, define

- X ‘
u, (x)= L g, (t)am(t)

co
Theorem 21 - The sequence-{ﬁi}'i=l is an orthonormal

sequence with respect to the inner product ((.,.))m

Proof - Suppose that each of ug and u, is an element

t
of Uy 4.7 e By Theorem 7, each uy is H~integrable. Thus

every ui is in Hmo

I. Suppose that s =t . Then ((us’ut))m = ((us,us))m

b dusdus
((us’us))m= a " adm e By Theorem 9,

IZ T | j‘: (7, (x))2am(x).
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) oo
Since -{ﬂif 1.1 1s orthonormal,

jb (7, (x))2am(x)= _((F,.9,))= 1, 8o that ((ug,uy)) 1.
a

. | b du_du,
II. Suppose that s#t. Then ((u_,u.)) = §, —g=— . BY

b du du
Theorem 9 J- -—-———-—-—- J' [} (x)ﬂt(x)dm(x) Since
'{gi}il is orthonormal, : g (x)F (x)am(x) =
m((ﬂg:ﬂ%)) = 0, so that ((us,ut))m = 0.

Theorem 22 - If g is in H_, such that ((g,ui))m=0

for all 1, then g = 9o .

Proof - Suppose that g is in H , such that
((g,ui))m = 0 for all i. Suppose that ¢ is a positive

number and that f 1s a continuous function defined on

[a,bl. By Theorem 8, b du dg t)dg(t), so
a -_am ﬁi( (

that j ﬂj t)dg(t) = O for every positive integer 1.

g 1s of* bounded variation, so that there is a number

M, such that if D 1s a subdivision of [a,b], then

M D> Z!Agl . There is a positive integer n and a
D

sequence of scalars {?i} 2=l 9 such_that

£(x)-D 3 1218, (x)

Thus f(x)=k(x)+ i—l iQ'i(x) where‘ k(x) l( ~—-T for

c
< g for every x in [a,b].
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' b
every x in [a,b]. Consider J; f(t)dag(t).

U: f(t)dg(t)l

It

b .
L (k(t) +Z§‘=1ai¢i(t))dg(t)|

b ' b
- _L k(t)dg(t) +Z§‘=1 .[a ¢1(t>dg(t>[

= jb k(t)dg(t)l < M‘—i"—r M < c.

a

b
Thereéfore J;'f(t)dg(t) = 0. By the proof of Theorem 11,

each of g(a), g(b), g(x¥), and g(x~) is zero. By Theorem
15, elther g is left continuous at each x, such that

a {x g b or g is right contlinuous at each x, such that

a { x { b, sc that g(x) = O for every x in [aqb]u

‘Theorem 23 = H is separable,

Proof - By Theorem 22, 1f g is an element of Hm,
such that ((g,ui))m=0 for all i, then g = 6. By
Theorem 14, this is equivalent to the statement that Hm

is separable. By the proof of Théorem 14, we see that
Hm is separable with respect to the set of all finite

- O
rational linear comblnations of the sequence~(u1} $=] °



