SPACES OF H-INTEGRABLE FUNCTIONS

APPROVED:

William D.C. Offling

Deif 7, Dowson

MINOP Professor

All The Department of Mathematics

tO $\frac{1}{\sqrt{2\pi}}\int_{0}^{1}f(x)dx\leq\frac{1}{2\sqrt{2\pi}}\int_{0}^{1}f(x)dx$

SPACES OP H-INTEGRABLE FUNCTIONS

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Eugene L. Wittenmyer, B. A,

Denton, Texas

May, 1968

TABLE OF CONTENTS

Chapter

Chapter I

INTRODUCTION AND PRELIMINARY DISCUSSION

Introduction

In this thesis we consider integrals of a certain class of interval functions. Specifically we consider (Chapter II) a nondegenerate number interval [a,b], a real valued function m, defined and nondecreasing on [a,bj, and the set H_m , of real valued functions f, defined on [a,b] such that

1) $f(a)=0$

2) for each subinterval $[p,q]$ of $[a,b]$, if $m(q)$ $m(p) = 0$, then $f(q) - f(p) = 0$ 3) the set of all sums of the form $\sum_{n} \frac{(\Delta f)^2}{\Delta m}$ for

subdivisions D of [a,b] is bounded above.

By means of a certain interval function integral, we define (Chapter II) an inner product $((\cdots))_{m}$ for H_{m} . With respect to this inner product, we prove that H_m is a complete inner product space, in other words, a Hilbert space;

The remainder of the thesis is an examination of certain orthogonality and separability properties of H_{m} .

Preliminary Definitions and Theorems Suppose that $[a,b]$ is a number interval such that $a < b$. Definition l . - The statement "D is a subdivision of $[a,b]'$ " means

1) D is a finite set of number intervals [p,q] such that a **=3** p < q **si** b

2) if I_1 and I_2 are distinct elements of D, then I_1 and I_2 have at most one point in common

 \mathbf{I}

3) if x is a number so that $a \leq x \leq b$, then x is in some element of D.

Definition 2. - The statement "D' is a refinement of a subdivision D of $[a,b]$ " means that D' is a subdivision of $[a,b]$, such that if x is an end point of some element of D , then x is an end point of some element of D .

Suppose that $[a,b]$ is a number interval and that H is a real valued function defined on $\{ 1 |$ I is a subinterval of $[a,b]$ \hat{J} . We state the following theorem without proof.

Theorem 1. - If $a \leq p < q \leq b$, then there is no more than one number J, such that if c is a positive number, then there is a subdivision D of $[p,q]$, such that if D' is a refinement of D, then $|J - \sum H(I)| < c$. \mathbf{D}^+

If J is a number satisfying the conditions of Theorem 1 with respect to H and $[p,q]$, then J will be called the

integral of H on [p,q] and will be denoted by H. **J**q w111 the limit for refinements of subdivisions of the appropriate $t_{\rm max}$, subset of ϵ refinements of the appropriate of the appropriate ϵ

 $\begin{array}{c} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{array}$ we have the second of the second \mathbf{w} $\int r^{n \text{ and }} \int w$ integrals I hand \mathbf{f}_in and \mathbf{f}_in is the sense of Theorem like of Theorem like \mathbf{f}_in lso see that if rw Is J^r and J^r $\int_{r}^{\rm{a}}$ $\begin{bmatrix} s & f^{\mathrm{S}} & f^{\mathrm{S}} & f^{\mathrm{S}} \end{bmatrix}$

At this point we adopt the convention that if each of burb point we adopt the convention y is a number, then $\frac{\Delta}{\pi} = 0$ if $y = 0$ and $\frac{\Delta}{\pi}$ has the us \mathbf{y} and \mathbf{y} and \mathbf{y} and \mathbf{y} and \mathbf{y} meaning otherwise.

Theorem 2. - Suppose that $[a,b]$ is a number interval and that each of f and g is a function, such that $[a,b]$ is a subset of the common domain of f and g and such that g is nondecreasing on $[a,b]$. Suppose that if $[p,q]$ is a subinterval

decreasing on $\mathcal{O}(\mathcal{A})$ is a subset of $\mathcal{O}(\mathcal{A})$ is a subset of $\mathcal{O}(\mathcal{A})$ is a subset of $\mathcal{O}(\mathcal{A})$

of [a,b] and $g(q) - g(p) = 0$, then $f(q) - f(p) = 0$. Then:

.1) If E is a refinement of a subdivision D of a subinterval [p,q] of [a,b], then $\sum_{\alpha} \frac{\Delta \Delta L}{\Delta \alpha} \equiv \sum_{\alpha} \frac{\Delta \Delta L}{\Delta \alpha}$ \overline{D} ΔE \overline{E} ΔE

(where $\sum_{n=0}^{\infty} \frac{\sqrt{N+1}}{n}$ denotes the sum of $\frac{11}{\pi} \left(\frac{S}{S}\right) = \frac{1}{\pi} \left(\frac{C}{S}\right)^{-1}$ over all elements [t,s] of D).

2) Suppose that $[p,q]$ is a subinterval of $[a,b]$. The following three statements are equivalent:

a) There is a number M, such that if D is a subdivision of [p,q], then $\sum_{R} \frac{(\Delta f)^2}{\Delta g} \leq M$. ν \sim

b) There is a number J, such that if c is a positive number, then there is a subdivision D of $[p,q]$, such that if E is a refinement of D, then $\sqrt{21}$ $J - \sum_{\alpha} \frac{\Delta \Delta + I}{\alpha}$ < C. In this case by Theorem 1 E Δ 8 there is only one such number J which in accordance with S_{ℓ} our convention we designate by :

c) There is a function h defined and nondecreasing on $[p,q]$, such that if I is a subinterval of $[p,q]$, then

 $(\Delta_{\tau}f)^2 \leq (\Delta_{\tau}h)(\Delta_{\tau}g)$.

Proof - I. Suppose that $[p,q]$ is a subinterval of $[a,b]$ and that D is a subdivision of $[p,q]$. Suppose that E is a refinement of D and let $E_{\tau} = \{ [s,t] | [s,t] \in E, [s,t] \subseteq \tau,$ $I \in D$ **]**. Suppose that E_I has n elements. Let $K =$ $=$ $\{x \mid x \in [p,q], p \neq x \neq q, x \text{ is an end point of some element}\}$ of E_T }. K has n-1 elements. Let $k_1 = \min \{x \mid x \in K\}$.

There is a subdivision D_1 of $[p,q]$, such that D_1 = $=\{[p,k_1], [k_1,q]\}\;$. Denote $[p,k_1]$ by I_1 and $[k,q]\}$ by I_1^{\prime} . a), Suppose that Δ _T g Δ _T g \neq 0. Either τ_1 τ_1 Δ_{I_i} g $\Delta_{I'_i}$ f = $\Delta_{I'_i}$ g Δ_{I_i} f or Δ_{I_i} g $\Delta_{I'_i}$ f \neq Δ $_{\mathbf{I}'_i}$ g Δ $_{\mathbf{I}_i}$ f. In either case $(\Delta_{T_1} g \Delta_{T_1'} f - \Delta_{T_1'} g \Delta_{T_1} f)^2 \geq 0$ τ^{\dagger} and τ^{\dagger} and τ^{\dagger} $(\Delta_{\mathcal{I}_{i}} \otimes \Delta_{\mathcal{I}'_{i}} f)^{2}$ -2($\Delta_{\mathcal{I}_{i}} \otimes \Delta_{\mathcal{I}'_{i}} f$)($\Delta_{\mathcal{I}'_{i}} \otimes \Delta_{\mathcal{I}_{i}} f$) + + (Δ γ g Δ γ f)² \geq 0 \mathbf{r}^{\dagger} \mathbf{r}^{\dagger} $\mathcal{I} \subset \mathcal{I} \subset \mathcal{I}^{\mathcal{I}}$ and $\mathcal{I}^{\mathcal{I}}$ is a integral $\mathcal{I}^{\mathcal{I}}$ and $\mathcal{I}^{\mathcal{I}}$ is a integral integral integral $\mathcal{I}^{\mathcal{I}}$ integral integral integral integral integral integral integral integral + ($\Delta_{I'}g \Delta_{I}^{f}f$)² $\Delta_{I_i} \gtrsim \Delta_{I'_i} \gtrsim (\Delta_{I_i} f)^2 + 2 (\Delta_{I_i} g \Delta_{I'_i} f) (\Delta_{I'_i} g \Delta_{I_i} f) +$ A I | ^S A i ; g (A ^f) ² + 2 (A I (g A i ; f) (A [±] / g A + ($\Delta_{I_i} g \Delta_{I'_i} f$)² + ($\Delta_{I'_i} g \Delta_{I_i} f$)² + + (A ^I (g A ^x / f) + (A j/ g A j f) $(\Delta_{I_i} f + \Delta_{I'_i} f)^2$ $(\Delta_{I_i} g \Delta_{I'_i} g) \le$ $(\Delta_{I_1} g + \Delta_{I'_1} g) [\Delta_{I'_1} g (\Delta_{I_1} f$ $(\Delta_{I,f} f + \Delta_{I'_{f}} f)^{2}$ $(\Delta_{I,f} g + \Delta_{I,f} g)$ $\Delta I'_{\rm B} + \Delta I'_{\rm s}$ $=$ $\Delta I'_{\rm B} \Delta I'_{\rm s}$ $\mathcal{L}_{\mathcal{A}}$ J M X| X| -Li Δ_{T} g + Δ_{T} 'g Δ_{T} and Δ_{T} g Δ_{T} 'g Δ_{T} 'g \overline{A} -m \overline{A} is a just \overline{A} is a just

$$
\frac{(\Delta_{I}f + \Delta_{I}f)^{2}}{\Delta_{I}g + \Delta_{I}fg} \leq \frac{(\Delta_{I}f)^{2} + (\Delta_{I}f)^{2}}{\Delta_{I}g + \Delta_{I}fg} + \frac{(\Delta_{I}f)^{2}}{\Delta_{I}fg}
$$

b) Suppose that $\Delta_{\mathcal{T}}$ **g** $\Delta_{\mathcal{T}}$ *i***g** = 0. One of the following x^{1} , x^{2} **is true:**

1)
$$
\Delta_{I_i} g = 0, \Delta_{I'_i} g \neq 0,
$$

11)
$$
\Delta_{I_i} g = 0, \Delta_{I'_i} g = 0,
$$

iii) $\Delta_{\mathcal{T}_1} g \neq 0$, $\Delta_{\mathcal{T}_1'} g = 0$. Due to the nature of Δ : **J-i x,** when $\Delta g = 0$, we have:

$$
(\Delta_{I} f)^{2} = (\Delta_{I_{1}} f + \Delta_{I_{1}^{'}} f)^{2}
$$
\n
$$
\Delta_{I} g
$$
\n
$$
= (\Delta_{I_{1}} f)^{2}
$$
\n
$$
= (\Delta_{I_{1}^{'}} f)^{2}
$$
\n
$$
= (\Delta_{I_{1}^{'}} f)^{2}
$$
\n
$$
(\Delta_{I} f)^{2} = (\Delta_{I_{1}^{'}} f)^{2}
$$
\n
$$
\Delta_{I} g
$$

 $5⁷$

 $(\Delta_T f)^2 = (\Delta_T f)^2$ $\overline{\Delta \tau \epsilon}$ $\overline{\Delta \tau \epsilon}$

Now let k_2 = min $\begin{cases} K - \sum k_1 \end{cases}$ $\begin{cases} K - \sum k_1 \end{cases}$. There is a subdivision D_2 of $[k_1, q]$, such that $D_2 = \{ [k_1, k_2], [k_2, q] \}$. Denote $[k_1,k_2]$ by I_2 and $[k_2,q]$ by I_2' . Repeating a) and b) above for I_2 and I_2 , we see that

$$
\frac{(\Delta_{\mathbf{I}_{i}^{'}}\mathbf{f})^{2} = (\Delta_{\mathbf{I}_{k_{1}},q} \mathbf{f})^{2}}{\Delta_{\mathbf{I}_{i}^{'}}\mathbf{g}} \leq \frac{(\Delta_{\mathbf{I}_{\mathbf{I}}}\mathbf{f})^{2} + (\Delta_{\mathbf{I}_{\mathbf{I}}^{'}}\mathbf{f})^{2}}{\Delta_{\mathbf{I}_{\mathbf{I}}}\mathbf{g}}
$$

Thus by induction we see that for $1 \leq j \leq n-1$ if k_i = min $\{K - \{\mathbf{k}_1, \ldots, \mathbf{k}_{i-1}\}\}$ and D_i is a sub division of $[k_{j-1},q]$ such that $D_j = \{ [k_{j-1},k_j], [k_j,q] \}$ then $(\Delta_T f)^2$ $(\Delta_T f)^2$ $+(\Delta_T f)^2$. In addition $j-1$ \leq j j ΔI_{j-1} g ΔI_j e ΔI_j

 $(\Delta_T f)^2$ $(\Delta_T f)^2 + (\Delta_T f)^2$ \angle \leftarrow Δ **i** β **b** Δ **i** β **b** Δ **i** β ²

$$
\leq \left[\sum_{j-1}^{n-1} \frac{(\Delta_{I_j} f)^2}{\Delta_{I_j} g} \right] + \frac{(\Delta_{I_{n-1}'} f)^2}{\Delta_{I_{n-1}'} g}
$$

Therefore,

 $(\Delta_T f)^2 \geq \sum (\Delta f)^2$ $\frac{1}{\Delta \tau}$ = $\frac{1}{\Delta}$, Now summing over all I in D we obtain $\sum_{n} \left(\frac{\Delta f}{\Delta g} \right)^2 \leq \sum_{n} \left(\frac{\Delta f}{\Delta g} \right)^2$.

II. Suppose that a) is true. Let $H = \{z \mid z = \angle \longrightarrow \frac{\sqrt{4}}{2}$ **^D A s for some subdivision D of [p,q] J . H is bounded above by M. Thus there is a number J such that J is the least upper bound of H. Let c be a positive number. There is a subdivision D** of $\lceil \frac{1}{2} \rceil$, such that $\lceil \frac{1}{2} \rceil$ **d** $\lceil \frac{1}{2} \rceil$ **d** $\lceil \frac{1}{2} \rceil$ **c.** Let E be a refinement of D. By I $\sum_{R} \frac{(\Delta f)^2}{\Delta g} \le$ $\leq \sum_{\mathbf{E}} \frac{(\Delta \mathbf{f})^2}{\Delta \mathbf{g}}$ and $\sum_{\mathbf{E}} \frac{(\Delta \mathbf{f})^2}{\Delta \mathbf{g}} \leq J$. **Lf|I ² a n ^d £ LA|I ² ^D** Thus $J - \frac{\sum_{F} (\Delta f)^2}{\Delta g}$ $\langle c.$ **E A S**

Suppose that b) is true. Let D be a subdivision of CPj.q3 and suppose that c is a positive number. There is a subdivision A of [p,q], such that if A ¹ is a refinement of A, then

 \sum $\left(\frac{\Delta}{2}\right)^2$ **A' ^ S <c. Let B be the greatest**

common refinement of A and D" Then

$$
\left|\frac{1}{J} - \sum_{B} \frac{(\Delta f)^2}{\Delta g} \right| < c
$$
\n
$$
\left|\sum_{B} \frac{(\Delta f)^2}{\Delta g} - J\right| < c
$$
\n
$$
\left|\sum_{B} \frac{(\Delta f)^2}{\Delta g} \right| - |J| < c
$$
\n
$$
\left|\sum_{B} \frac{(\Delta f)^2}{\Delta g} \right| - |J| < c
$$
\n
$$
\left|\sum_{B} \frac{(\Delta f)^2}{\Delta g} \right| < |J| + c. \text{ Since } (\Delta f)^2 \geq 0
$$

for all forall subintervals I of [p,q], it follows that

 $\sum_{i=1}^{\infty} \frac{(\Delta_i f)^2}{\pi} \geq 0$. Thus $\sum_{i=1}^{\infty} \frac{(\Delta_i f)^2}{\Delta_i} \leq |J| + c$. Since B Δ β β β β β β **Tj, £}** B is a refinement of D, we see by I that $\sum_{n=1}^{\infty} \frac{1}{n}$ \leq D A & \leq $\frac{\sqrt{\Delta I}}{\Delta g}$; therefore $\sum_{\Delta} \frac{\sqrt{\Delta I}}{\Delta g} \langle |J| + c$. B D Let $\left\{ \eta \right\}$ + c = M^e Suppose that c) is true. Let D be a subdivision of [p,q]. For each I in D, $(\Delta_T f)^2 \leq \Delta_T h \Delta_T g$. Thus \mathcal{P} , \mathcal{P} Δ is $=$ $\sqrt{2}$ in $\sqrt{2}$ $\left(\begin{array}{cc} \Delta & f \end{array}\right)^2$ = $\sum_{i} (\Delta f)^2 \leq h(a) h(b)$ **h** Δ **g** $=$ \therefore \therefore \therefore \therefore Denote $h(q) - h(p)$ by M. Then a) is true. Suppose that a) is true. Since a) is equivalent to b), t (df)² $\frac{dS}{dg}$ exists for every subinterval [s,t] of [a,b] and, $\int_{\mathbb{S}}$ s therefore, also for every subinterval of $[p,q]$. If x is in [p,q], let h be the function defined by 0 , if $x = p$ $h(x)$ **f** , if $p \lt x \leq q$. $\bigcup_{\mathbf{p}}$ \bigcup Suppose that each of x and y is in [p,q], such that $x \leq y$. $\mathbf{S}_{\mathcal{A}}$ $h(y) - h(x) =$ $\frac{d(f)}{dx} - \frac{d(f)}{dx}$

 $h(y) - h(x) = \int_{x}^{x} \frac{du}{dg} \ge 0$, for if c is a positive number, then there are subdivisions A and B of $[p, y]$ and $[p, x]$ respectively, such that if A' and B' are refinements of A and B respectively, then $J_1 - 2$ $\frac{\Delta+1}{\Delta g}$ $\langle c/2 \text{ and } 2 \rangle$ $\frac{\Delta+1}{\Delta g} - 3$ Δ g | $\sqrt{2}$ and $\frac{B}{B}$ $\langle c/2,$ where $J_1 = \int_p^y$
There is a refin $(\mathrm{d}\mathrm{f})^{\mathbb{Z}}$ dg and $J_2 = \int_0^x$
f: \int such that <u>(df)</u> dg p – **J**p There is a refinement F of A such that x is an end point of some element of F. Let $A_x = \{ I \mid I \in F, I \subseteq [p,x] \}$. Let B^* be a common refinement of B and A_x , and let $D = B^* \cup [F - A_x]$. Suppose that D^{*i*} is a refinement of D. If $D'_x = \{I | I \in D^i, I \subseteq [p,x]\}$ X and $D_{rr} = \{ I \mid I \in D \}$, $I \subseteq [x,y]$ $\}$, then

$$
\left| J_1 - \sum_{\substack{D_x \\ D_x \\ D_x \\ \text{thus}}} \frac{(\Delta f)^2}{\Delta g} - J_2 \right| \leq \frac{C}{2}.
$$

Thus

$$
\left| \begin{array}{ccc} (J_1 - J_2) - \sum_{p'_y} & \frac{(\Delta f)^2}{\Delta g} \end{array} \right| < c, \text{ and}
$$

$$
\int_{x}^{y} \frac{\left(\mathrm{d}f\right)^{2}}{\mathrm{d}g} = \int_{p}^{y} \frac{\left(\mathrm{d}f\right)^{2}}{\mathrm{d}g} - \int_{p}^{x} \frac{\left(\mathrm{d}f\right)^{2}}{\mathrm{d}g}
$$

Let J_1 - J_2 = J. Since each of the sums approximating J is a sum of nonnegative terms, $J \geq 0$. $\{[x,y]\}$ is a subdivision

of $[x,y]$, so that by a)

$$
\frac{f(y) - f(x)}{g(y) - g(x)}^2 \leq J = h(y) - h(x). \text{ Thus}
$$

 $(f(y) - f(x))^2 \leq (h(y) - h(x)) (g(y) - g(x)).$ \bullet following corollary is a consequence of \bullet \mathbf{Q}_p as \mathbf{Q}_s

bounded variation on $[p,q]$.
Proof. - Suppose that D is a subdivision of $[p,q]$. Then by Theorem 2, there is a function h defined and nondecreasing on $[p,q]$, such that if I is in D, then ζ , such that if ζ \tilde{z} decreasing on [p,q], Δ_{I} h \geq 0 and Δ_{I} g \geq 0 for each I in D. Therefore, Δ_{I} h Δ_{I} g \geq 0. In addition,

 $I \cdot (1 - \alpha)^2$ in a j and $I \cdot \alpha$ in a j g α f) ² =£ ⁰ for each I in D. Thus

$$
|\Delta_{I} f| = \sqrt{(\Delta_{I} f)^{2}} \leq \sqrt{\Delta_{I} h \Delta_{I} g} = \sqrt{\Delta_{I} h} \sqrt{\Delta_{I} g}.
$$

Summing over all I in D, we have

$$
\sum_{D} |\Delta f| \leq \sum_{D} \sqrt{\Delta h} \sqrt{\Delta g} \text{ and then}
$$

$$
(\sum_{D} |\Delta f|)^2 \leq (\sum_{D} \sqrt{\Delta h} \sqrt{\Delta g})^2. \text{ By the}
$$

Schwarz inequality

$$
(\sum_{D} \sqrt{\Delta h} \sqrt{\Delta g})^2 \leq \sum_{D} (\sqrt{\Delta h})^2 \sum_{D} (\sqrt{\Delta g})^2,
$$

or

(**A t**

$$
(\sum_{D} |\Delta f|)^2 \leq \sum_{D} \Delta h \sum_{D} \Delta g. \text{ Now}
$$

$$
\sum_{D} \Delta h = h(q) - h(p) \text{ and } \sum_{D} \Delta g = g(q) - g(p). \text{ Let}
$$

$$
h(q) - h(p) = J_1 \text{ and } g(q) - g(p) = J_2. \text{ Then}
$$

 $($ $\sum |\Delta f|)^{2} \leq J_1 J_2$ and since $0 \leq ($ $\sum |\Delta f|^{2}$, $\sum \left| \Delta f \right| = \sqrt{J_1} J_2$ **D**

Theorem 3. Suppose that [a,b] Is a number interval and that each of m, f and g is a function, such that [a»b] is a subset of the common domain of m, f and g, with m nondecreasing on $[a,b]$, such that if $a \leq p \leq q \leq b$ and $m(q) - m(p) = 0$, then $f(q) - f(p) = 0$ and $g(q) - g(p) = 0$. If $a \leq s \leq t \leq b$ and each of $\left\{ \begin{array}{cc} \frac{\text{Q1}}{2m} & \text{and} \end{array} \right\}$ $\int_{s}^{t} \frac{(\mathrm{d} \mathbf{f})^2}{\mathrm{d} \mathfrak{m}}$ and $\int_{s}^{t} \frac{(\mathrm{d} \mathbf{g})}{\mathrm{d} \mathfrak{m}}$

exist, then $\int_{s}^{t} \frac{[d(f+g)]^{2}}{dm}$ exists.
Proof.- There are numbers J_1 and J_2 , such that if D is **^ exists,**

a subdivision of [s,t], then $\sum_{n} \frac{(\Delta f)^2}{\Delta m} \leq J_1$ and

 \sum_{i} $\left(\frac{\Delta g}{g}\right)^{2} \leq J_{\text{e}}$, For each I in D, $\Delta m_{\text{e}} \geq 0$, Th $\mathbf{v}_2 \cdot \mathbf{v}_3$ **(c) y~! LAs l g J For each I In D, A m^T > 0. Thus**

ere is a number $\sqrt{A} m$ > 0, such that \sqrt{A} **i 1 d mumber 42 m**^{**T**} \cong **c**_{**b**} **bdoin ones (yC m**^T*i* \cong **m**^T **Then D \JKm J** $\leq J_1$ and $\left| \sum_i \left(\frac{\Delta}{\Delta} \right) \right| \leq J_2$. Thus $\frac{1}{D}$ $\left(\frac{\sqrt{\Delta}m}{\sqrt{\Delta}}\right)$ $\left[\sum_{D} \left(\frac{\Delta \mathbf{g}}{\Delta m}\right)^{2}\right] \leq J_{1} \qquad \left[\sum_{D} \left(\frac{\Delta \mathbf{g}}{\Delta m}\right)^{2}\right],$

$$
J_1 \left[\sum_{D} \left(\frac{\Delta g}{\Delta m} \right)^2 \right] \leq J_1 J_2 \text{ and } \left[\sum_{D} \left(\frac{\Delta f}{\Delta m} \right)^2 \right] \leq \left[\sum_{D} \left(\frac{\Delta g}{\Delta m} \right)^2 \right] \leq
$$

$$
\leq J_1 J_2.
$$
 By the Schwarz inequality,
$$
\left[\sum_{D} \left(\frac{\Delta f}{\Delta m} \right)^2 \right] \leq
$$

$$
\leq \left[\sum_{D} \left(\frac{\Delta f}{\Delta m} \right)^2 \right] \left[\sum_{D} \left(\frac{\Delta g}{\Delta m} \right)^2 \right] \text{Therefore } \left[\sum_{D} \left(\frac{\Delta f}{\Delta m} \right)^2 \right] \leq
$$

 $\leq J_1$ J_2 . Since each side of the preceeding inequality is nonnegative,

$$
\left|\sum_{D} \frac{\Delta f \Delta g}{\Delta m}\right| \leq \sqrt{J_1 J_2} \text{ etc } J_3 = \sqrt{J_1 J_2}.
$$

Let A be a subdivision of [s,t]. Consider the sum
\n
$$
\sum_{A} \frac{(\Delta (f+g))^2}{\Delta m}.
$$
\n
$$
\sum_{A} \frac{(\Delta (f+g))^2}{\Delta m} = \sum_{A} \frac{(\Delta f + \Delta g)^2}{\Delta m}
$$
\n
$$
\sum_{A} \frac{(\Delta (f+g))^2}{\Delta m} = \sum_{A} \frac{(\Delta f)^2 + 2 \Delta f \Delta g + (\Delta g)^2}{\Delta m}
$$
\n
$$
\sum_{A} \frac{(\Delta (f+g))^2}{\Delta m} = \sum_{A} \frac{(\Delta f)^2 + 2 \sum_{A} \Delta f \Delta g}{\Delta m} + \sum_{A} \frac{(\Delta g)^2}{\Delta m}
$$
\n
$$
+ \sum_{A} \frac{(\Delta g)^2}{\Delta m} + 2 \sum_{A} \frac{(\Delta f)^2}{\Delta m} + \sum_{A} \frac{(\Delta g)^2}{\Delta m}
$$
\n
$$
+ \sum_{A} \frac{(\Delta g)^2}{\Delta m}
$$

$$
\sum_{A} \frac{[\Delta(f+g)]^2}{\Delta^m} \leq J_1 + 2 J_3 + J_2.
$$

Thus by theorem 2,
$$
\int_{s}^{t} \frac{[d(f+g)]^2}{dm} exists.
$$

Corollary 2. - Under the hypothesis of Theorem 2, there is a number J , such that if $0 \leq c$, then there is a subdivision **D of [s,t]» such that if D' is a refinement of D, then**

$$
\left|J - \sum_{D'} \frac{\Delta f \Delta g}{\Delta m}\right| \leq c.
$$
 In this case J is unique.

Proof. Let c be a positive number. Suppose that
\n
$$
\int_{s}^{t} \frac{(\mathrm{d}f)^{2}}{\mathrm{d}m} = J_{2} \text{ and } \int_{s}^{t} \frac{(\mathrm{d}g)^{2}}{\mathrm{d}m} = J_{3}. \text{ By Theorem 3,}
$$
\n
$$
\int_{s}^{t} \frac{[\mathrm{d}(f+g)]^{2}}{\mathrm{d}m} \text{ exists and has the value } J_{1}.
$$
\nThere are subdivisions A, B, and C of [s,t], such that if
\nA', B', and C' are refinements of A, B, and C respectively,
\nthen\n
$$
\begin{vmatrix}\nJ_{1} - \sum_{A^{1}} \frac{(\Delta f + \Delta g)^{2}}{\Delta m} \begin{vmatrix} \Delta g \end{vmatrix} \begin{vmatrix} \Delta g \end{vmatrix
$$

greatest common refinement of A, B, and C. Then if D' is a refinement of D,

$$
\begin{vmatrix}\nJ_1 - \sum_{D'} \left(\frac{\Delta f + \Delta g}{\Delta m} \right)^2 + \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 - J_2\n\end{vmatrix} + \frac{1}{\sum_{D'} \left(\frac{\Delta g}{\Delta m} \right)^2 - J_3} \left(\frac{2c}{3} + \frac{2c}{3} + \frac{2c}{3} - 2c.\n\right)
$$
\n
$$
\begin{vmatrix}\nJ_1 - J_2 - J_3 - \sum_{D'} \left(\frac{\Delta f + \Delta g}{\Delta m} \right)^2 + \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 + \frac{2}{\sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2} \right] \times 2c.\n\end{vmatrix}
$$
\n
$$
\begin{vmatrix}\nJ_1 - J_2 - J_3 - \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 + \sum_{D''} \left(\frac{\Delta f}{\Delta m} \right)^2 + \frac{2}{\sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2} \right] \times 2c.\n\end{vmatrix}
$$
\n
$$
\begin{vmatrix}\nJ_1 - J_2 - J_3 - 2 \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 - \frac{2}{\Delta m} \left(\frac{\Delta f}{\Delta m} \right)^2 \right) \times 2c.\n\end{vmatrix}
$$
\n
$$
\begin{vmatrix}\nJ_1 - J_2 - J_3 - 2 \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 + \frac{2}{\Delta m} \left(\frac{\Delta f}{\Delta m} \right)^2 \right) \times 2c.\n\end{vmatrix}
$$
\n
$$
\begin{vmatrix}\nJ_1 - J_2 - J_3 - 2 \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 \right] \times 2c.\n\end{vmatrix}
$$
\n
$$
\begin{vmatrix}\nJ_1 - J_2 - J_3 - 2 \sum_{D'} \left(\frac{\Delta f}{\Delta m} \right)^2 \right] \times c.\n\end{vmatrix}
$$
\nTherefore let $J = \frac{1}{2} (J_1 - J_2 - J_3)$ and $\int_0^L \frac{df dg}{dm} = \frac{1}{2} \left[$

 \bar{a}

 $\mathcal{A}^{\mathcal{A}}$

 $\hat{\boldsymbol{\beta}}$

 $\hat{\mathcal{E}}$

 \sim

 $\hat{\mathbf{r}}$.

 $\bar{1}$

 \bar{z}

 $\hat{\boldsymbol{\theta}}$ $\sim 10^7$

 \bar{z}

exists. Uniqueness follows from Theorem 1.

 $\sim 10^{11}$

14

 $\hat{\boldsymbol{\beta}}$

 $\mathcal{L}_{\mathcal{A}}$

 $\ddot{}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$.

 $\mathcal{L}^{\mathcal{L}}$

Chapter II

CHARACTERIZATION OP THE CLASS

OP INTERVAL FUNCTIONS

Suppose that [a,b] is a number interval and that m is a real valued function defined and nondecreasing on [a,b] such that $m(a) \neq m(b)$.

Definition 3 - If m is the function with the properties specified above, then denotes the set of all real valued functions f defined on [a,b] such that

1) f(a)=0

2) if [p,q] is a subinterval of [a,b] and m(q)-m(p)=0, then $f(q) - f(p) = 0$

\$) the set of all sums of the form D • for subdivisions D of [a,b] is bounded above. p 2

We note that by Theorem 2, if f is in H^m , then Jp exists for each subinterval [p,q] of [a,b].

 $Definition$ $\frac{1}{2}$ **- If each** of **f** and **g is** in H_m , then $f+g$ is **the function whose domain contains [a,b] such that for each** $x \in [a,b], (f+g)(x)=f(x)+g(x).$

Definition 5 - If f is in H^m and k is a real number, then kf is the function whose domain contains [a,b] such that. for each x in $[a,b]$, $(kf)(x)=k(f(x))$.

We now show that is a linear space with operations of addition and scalar multiplication as defined in definitions 4 and 5 and with the set of real numbers as its scalar field.

Theorem 4 - If each of f, g, and h is in H_m and each of k, k_1 , and k_2 is a real number, then the following statements are true:

- 1) $(f+g) \epsilon H_m$
- 2) $f+g=g+f$
- 3) $f+(g+h)=(f+g)+h$

4) there is an element Θ in $H_m^{}$ such that if f is in $H_{m^\bullet}^{}$ then f+©=f.

- 5) kf ϵ H_m
- 6) $k(f+g) = k f + kg$
- 7) $k_1(k_2f)=k_1k_2f$
- 8) (k_1+k_2) f=k₁f+k₂f

9) the following two statements are equivalent:

i) $kf=0$

ii) k=0 or $f=0$, where 0 has the usual meaning.

Proof -

 $f(a)=0$ and $g(a)=0$ so that $(f+g)(a)=0$. Suppose that $[p,q]$ is a subinterval of $[a,b]$ such that $m(q)$ -m $(p)=0$. Then $f(q)-f(p)=0$ and $g(q)-g(p)=0$ so that $(f(q)-f(p))-(g(q)-g(p))=0$ and $(f(q)+g(q))-(f(p)+g(p))=(f+g)(q) - (f+g)(p)=0$. By Theorem 3, $\begin{bmatrix} b & \frac{[d(f+g)]^2}{dm} \\ a & \frac{[d(f+g)]^2}{dm} \end{bmatrix}$ exists and by Theorem 2 the set of all sums of the form $\sum_{D} \frac{[\Delta(f+g)]^2}{\Delta m}$ for subdivisions D of $[a,b]$ is bounded above. Thus f+g is in H_m . Uniqueness follows from the fact that each of f, g, and f+g is real

valued. Statements 2) and 3) follow directly from the commutative and associative properties respectively of the real numbers.

4) Let 0(x)=O for every x in [a,b], 1) and 2) of Definition 3 are obviously satisfied. Let D be a subdivision of $[a, b]$. \overline{D} $\frac{f(x)}{f(x)} = 0$ \overline{D} $0=0$. Thus θ is in H_m . $(f+g)(x)=f(x)+\Theta(x)$ $=f(x)+0$ $(f+g)(x)=f(x)$.

5) Suppose that k is a real number and that f is in Consider the function kf. (kf)(a)=k(f(a)) H_m .

 $=$ **k(0) (kf)(a)=0. Suppose that [p,q] is a subinterval of [a,b] such that m(q)-m(p)=0. Then** $kf(q)-kf(p)=k(f(q)-f(p))$ **=k(0)**

kf(q)-kf(p)=0. Suppose that D is a subdivision of [a,b]. Consider $\sum_{D}^{\infty} \frac{[\Delta(kf)]^2}{4m}$. There is a number M such that if **A m A** is a subdivision of [a,b], \leq $\frac{1}{n}$ \leq $\frac{1}{n}$ \leq M. Then $\sum_{\mathbf{A}} \left[\frac{\Delta(\mathbf{k}f)}{\Delta \mathbf{m}} \right]^2 = \left[\frac{\sum_{\mathbf{s},\mathbf{t}}}{\sum_{\mathbf{s},\mathbf{t}} \mathbf{S}} \right] \mathbf{A} \frac{\left[\mathbf{k}f(\mathbf{t}) - \mathbf{k}f(\mathbf{s}) \right]^2}{\mathbf{m}(\mathbf{t}) - \mathbf{m}(\mathbf{s})}$ $=$ $[s, t] \in A$ $\frac{K}{m} \left(\frac{t}{t} \right) - \frac{t}{m} \left(\frac{s}{s} \right)$ $= k^2 \left(\frac{L+1}{2} \right)$ $\left(\frac{L+1}{2} \right)$ $\left(\frac{L}{2} \right)$ **k**²M. Thus kf is in H_m

Properties 6), 7)»and 8) follow from the parallel properties of the real numbers.

9) Suppose that ii) is true. If k = 0, then for any x in $[a, b]$ **kf(x)=0(f(x))=0. If** $f = \theta$, **then kf(x)=k** θ **(x)=k(0)=0. In either** case $kf(x)=0(x)$ for every x in $[a,b]$. Suppose **that i) is true. If k=0, then ii) is true. Suppose that k^O. Then since kf(x)=0 for each x in [a,bj, f(x)=0 for each x in [a,b] which implies that f=9.**

Definition 6 - If each of f and k is in H » we define ¹ ¹ • ¹ m ^t ^o ^b ^e fciie * nne ^r Product of f and g with respect to m and denote the integral by $((f,g))_m$.

The following theorem justifies the preceeding definition . and establishes the fact that H^m is an inner product space.

Theorem 5 **-** If each of f and g is in H_m and k is a num**ber» then the following statements are true:**

- **1} ((f»s))^m is a real number**
- 2) $((f, f))_m \ge 0$ and $((f, f))_m = 0$ if and only if $f = 0$
- **3)** $((f,g))_{m}=(g,f)_{m}$
- $^{(4)}$ ((f+g,h))_m=((f,h))_m+((g,h))_m
- 5) $((f, kg))_{m} = k((f, g))_{m}$

Proof - **1) is** true since $\begin{bmatrix} b & \frac{dfdg}{dm} & \text{is a real number.} \end{bmatrix}$

2) $((f, f))_{m} = \int_{a}^{b} \frac{du}{dm} = \int_{a}^{b} \frac{du}{dm}$. Since for any

subdivision D of [a,b], ^ is nonnegative, we see by the proof of Theorem 2 that 0 < . Suppose Then if D is a subdivision of $[a,b]$, $\left[\lambda\right]$, $\left[\lambda\right]$, $\left[\lambda\right]$ \overline{D} **A**^m \overline{D} $\overline{\Delta}$ ^m **from** which we deduce that $\begin{bmatrix} b & (\text{d}f)^2 \\ a & \text{d}m \end{bmatrix} = 0$. Suppose that **that f=0.** $((f,f))_{m}=0$, that $a(x_0)$, and let D be a subdivision of $[a,b]$ such that $[a, x] \in D$. Since $0 \leq \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{2n}$ **1** we see that each term is identically zero so that b $\frac{df}{dt}$ a dm $= 0$

 \mathbf{S}_{ℓ} $=0$. If $m(x)-m(a)=0$, then $f(x)-f(a)=0$ and $f(x)=f(a)=0$. If $m(x)-m(a)\neq 0$, then $(f(x)-f(a))^2=0$ and $f(x)-f(a)=0$ which means that $f(x)=0$. Thus $f(x)$ is identically zero for all x in [a,b].

. 3) Statement 5} follows directly from the commutative property of the real numbers.

4) By Theorem 2 each of $\int_{a}^{b} \frac{(\mathrm{d}f)^{2}}{\mathrm{d}\mathfrak{m}}$, \int_{a}^{b} $\frac{Q}{d}$ $\frac{Q}{d}$ exists and by Theorem 3 each of $\int_{a}^{D} \frac{dQ}{d m}$ $\frac{a}{a}$ $\frac{\frac{1}{a}}{\frac{1}{a}}$, and **2** b dfdh a $\frac{1}{\text{dm}}$ ' $\frac{1}{\text{dm}}$ and $\frac{1}{\text{cm}}$ $\frac{1}{\text{cm}}$ exists. Suppose that c is a positive number. There are subdivisions A, B, and C of $[a,b]$ such that if A^{\dagger} , B^{\dagger} , and C' are refinements of A, B, and C respectively, then $\frac{1}{a} \frac{d \ln \ln a}{d m} - \frac{1}{a} \frac{d \ln \ln a}{d m}$ $\langle c/3, c \rangle$ **I** b d \gcdh \sum Δ \gcd \overline{dm} – \overline{B} – Δm Δ Δ (f+g) Δ σ $\left[\begin{array}{cc} \Delta \frac{1+\epsilon}{2} & \Delta \frac{1+\epsilon}{2} \\ \Delta m & \end{array}\right]$ $\langle c/3$. Let D be a common refinement of **1** $\langle c/3, \text{ and } \rangle$ $\int_{a}^{b} \frac{d(1+g)dn}{dm}$ **4** A, B, and C and suppose that D' is a refinement of D. Then $\lvert \text{b } \frac{\text{dfdh}}{\text{dfdh}} \rvert$ $\Delta f \Delta h \rvert$ $\lvert \text{b } \frac{\text{dgdh}}{\text{dgdh}} \rvert$ $\Delta g \Delta h \rvert$ $\lvert \text{c } \Delta (f+g) \Delta h \rvert$ $\int_a^{\infty} dm$ \overline{D} \overline{D} \overline{A} \overline{m} \overline{m} \mathcal{L} and b d(f+g)dh $\frac{a_1 + b_2 - a_3}{a_m}$ $\langle c \rangle$

$$
\int_{a}^{b} \frac{d f d h}{d m} + \int_{a}^{b} \frac{d g d h}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} \Big|_{a}^{b} - \int_{a}^{b} \frac{d f h}{d m} + \int_{r}^{c} \frac{d f h}{d m} + \int_{r}^{c} \frac{d g h}{d m} - \sum_{p}^{b} \frac{d (f + g) d h}{d m} \Big|_{a}^{c} - \int_{a}^{c} \frac{d f h}{d m} + \int_{p}^{c} \frac{d g d h}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} \Big|_{a}^{c} - \int_{a}^{c} \frac{d f d h}{d m} + \int_{a}^{b} \frac{d g d h}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} \Big|_{a}^{c} - \int_{a}^{c} \frac{d f d h}{d m} + \int_{a}^{b} \frac{d g d h}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} \Big|_{a}^{c} - \int_{a}^{c} \frac{d f d f g}{d m} + \int_{a}^{b} \frac{d g d h}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} + \int_{a}^{c} \frac{d f d (k g)}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} + \int_{a}^{c} \frac{d f d (k g)}{d m} + \int_{a}^{d} \frac{d f d (k g)}{d m} - \int_{a}^{b} \frac{d (f + g) d h}{d m} + \int_{a}^{d} \frac{d f d (k g)}{d m} - \int_{a}^{b} \frac{d f
$$

Definition 7 - If f is in H_m , we define the norm of f with respect to m, denoted by $||f||_{m}$, by $||f||_{m}=\sqrt{(f,f))_{m}}$.

It Is a well known consequence of the properties of a linear space in which an inner product and a norm have been defined that the following inequalities are true for elements f, g, and h of the space:

- 1) Schwarz inequality: $|((f,g))_m| \leq ||f||_m ||g||_m$
- 2) Minkowski inequality: $\| f+g \|_{m} \leq \| f \|_{m} + \| g \|_{m}$
- 3) Triangle inequality: $||f-g||_{m} \leq ||f-h||_{m} + ||h-g||_{m}$
- 4) $\|f\|_{m} \|g\|_{m} \leq \|f-g\|_{m}$.

<u>Lemma 1</u> - Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions in H_m such that if D is a subdivision of $[a,b]$, then

 $\sum_{\substack{\mathbf{n} \in \mathbb{Z} \\ |\mathbf{n}| > 0}} |\Delta(\mathbf{f}_{\mathbf{p}} - \mathbf{f}_{\mathbf{q}})| \rightarrow 0$ as min $\{\mathbf{p}, \mathbf{q}\} \rightarrow \infty$. Then $\{\mathbf{f}_{\mathbf{n}}\}\mathbf{w}_{\mathbf{n}=\mathbf{1}}$

converges pointwise for each x in [a,b].

Proof - Let x be an element of $[a,b]$. If $x=a$, then for all positive integers n, $f_n(x)=f_n(a)=0$ which gives us convergence trivally for $x=a$. Suppose that $a \lt x \lt b$ and let c be a positive number. There is a subdivision **D** of [a,b] such that $[a, x] \in D$. There is a positive number N such that if each of p.and **q** is a positive integer, and $N \leq m$ in p , q³, then $-$ 0 \vert \langle c or since the sum is nonnegative, **D p q** $\sum_{p} |\Delta(f_{p} - f_{q})|$ < c. Since $|(f_{p}(x) - f_{q}(x)) - (f_{p}(a) - f_{q}(a))|$ is a term of the previous sum, $|(f_p(x)-f_q(x))-(f_p(a)-f_q(a))| < c$. **Jr M. K** Now $f_{n}(a)-f_{n}(a)= 0$ -0=0 so that $|f_{n}(x)-f_{n}(x)|$ $\langle c$. Thus for each x we conclude that $\{f_{n}\}_{n=1}^{\infty}$ is a Cauchy sequence and has a limit. Therefore there is a function g whose domain contains [a,b] such that $f_n(x) \to g(x)$ as $n \to \infty$ for each x in [a,b].

CO Lemma 2 - Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of elements of H_m such that $||f_p - f_q|| \longrightarrow 0$ as min $\{p,q\} \longrightarrow \infty$. Then the set R= $\{z|z=$ $\|\uparrow_{n}\|$ \sum_{m} , n a positive integer, $f_{n} \in H_{m}$ is bounded.

<u>Proof</u> - Since for each positive integer n, $||f_n||_{m} \ge 0$, R is bounded below by O. There is a positive number N such that if each of p and q is a positive integer and $N < min$ { p, q }, then $\| f_p - f_q \|_{m}$ -0 $\| = \| f_p - f_q \|_{m}$ $\langle 1.$ Let p* be the least positive integer greater than N and q be any positive integer greater than N. Then $|||f_q||_{m}$ $||f_{p*}||_{m} \leq ||f_q - f_{p*}||_{m} < 1$ and therefore $|| f_{\alpha} ||_{m}$ $|| f_{\alpha*} ||_{m+1}$. Let $M = max$ $\left\{ \|f_1\|_{m'} \|f_2\|_{m'}. \ldots, \|f_{n\hat{*}-1}\|_{m'} \|f_{n\hat{*}}\|_{m'} \right\}$. R is bounded above by M.

Theorem 6 - Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of **elements** of H_m such that $|| f_p - f_q ||$ $m \to 0$ as $min \{p, q\} \to \infty$. Then there is a function g in H_m such that $\|\mathbf{f}_{n} - \mathbf{g}\|_{m} \rightarrow 0$ **m p m** as p—

Proof - Let c be a positive number. There is a positive number N such that if each of p and q is a positive integer such that $N < min$ p, q , then

$$
\|\mathbf{f}_p - \mathbf{f}_q\|_{m} \leq \frac{c}{\sqrt{m(b) - m(a)}}
$$
 By theorem 2 there is a

function h such that

$$
h(x) = \int_{a}^{b} \left[x \frac{[d(r_{p}-r_{q})]^{2}}{dm}, \text{ if } a \leq x \leq b. \text{ By the corollary}
$$

of Theorem **2,** for any subdivision D of [a,b],

$$
\sum_{D} |\Delta(f_p - f_q)| \leq \sqrt{[m(b) - m(a)]} \int_a^b \frac{[d(f_p - f_q)]^2}{dm} =
$$

= $\sqrt{m(b) - m(a)}$ $||f_p - f_q||_m$ where $\int_a^b \frac{[d(f_p - f_q)]^2}{dm} = h(b) - h(a).$

Thus j

 $\frac{C}{D} |\Delta V_{\perp p}^{-1} q| \leq \frac{\Gamma_{p}^{-1} q}{\Gamma_{p}^{-1} q} \leq \frac{C}{\Gamma_{p}^{-1} q}$ $\sqrt{m(b)-m(a)}$ $\sqrt{m(b)-m(a)}$ \mathbf{S} **O that** \mathbf{S} $\left[\Delta(\mathbf{f}_{n}-\mathbf{f}_{n})\right]$ \leq **c,** which implies by Lemma 1 that **if** $a \leq x \leq b$, then $|f_p(x)-f_q(x)| \to \Theta(x)$ as $\min \{p,q\} \to \infty$. **Thus there is a function g such that if x is in [a,b], then** $f_n(x) \rightarrow g(x)$ as $n \rightarrow \infty$. Since $f_n(a) = 0$ for all positive **integers n, it follows that g(a)=0. Suppose that [s,t] is a subintervai of [ajb] such that m(t)-m(s)=O^s For each positive integer n,** $f_n(t)$ - $f_n(s)$ =0. There are positive numbers N_s and N_t such that $|f_j(s)-g(s)| \leq c/2$ and $|g(t)-f_k(t)| \leq c/2$ if N_t \langle **k** and N_s \langle **j.** Let $N=max$ $\{N_t, N_s\}$. If r is a positive **integer** and **N** \langle **r**, then $|f_{\mathbf{r}}(s) - g(s)| \leq \langle c/2 \rangle$ and $|\mathbf{g}(\mathbf{t})-\mathbf{f}_n(\mathbf{t})| \leq c/2$ so that $|g(t)-f_{\text{r}}(t)| + |f_{\text{r}}(s)-g(s)|$ $\langle c \text{ and }$

$$
|g(t)-g(s)| = |g(t)-f_{r}(t)+f_{r}(s)-g(s)| \quad \text{for} \quad \text{Thus}
$$

$$
g(t)-g(s)=0.
$$

Let D be a subdivision of [a,b] and d the number of elements of D. Suppose that **I**=[s,t] **i**s an element of D and $0\langle \Delta_{\text{T}}^m$.

There are positive numbers N_1 and N_2 such that if each of p and q is a positive integer and $N_1 \leq p$ and $N_2 \leq q$, then $|g(s) - f_p(s)| \leq w^{1/2}$ and $|f_q(t) - g(t)| \leq w^{1/2}$, $\frac{2}{2}$ | q' $\frac{1}{2}$ $\frac{1}{2}$ where $W = \frac{c \Delta_T m}{d}$. Let $N_T = max \{N_1, N_2\}$. If n_T is a positive integer and $N_T < n_T$, then $\Delta_{\textrm{T}}$ E- $\Delta_{\textrm{T}}$ fn $_{\textrm{\tiny{T}}}$ \vert \vert $<$ \vert W^{1/2}, from which we obtain $|\Delta_{\texttt{T}} s - \Delta_{\texttt{T}} \texttt{f}_{n_{\texttt{T}}} | = | (g(s) - g(t)) - (f_{n_{\texttt{T}}} (s) - f_{n_{\texttt{T}}} (t))|$ $\leq |g(s)-f_{n_{\tau}}(s)| + |f_{n_{\tau}}(t)-g(t)|$ $\Delta_{\texttt{I}} \texttt{f}_{\texttt{n}_{\texttt{T}}} \mid \langle W^{1/2} \texttt{or} | \Delta_{\texttt{I}} \texttt{g} | \rangle \langle |\Delta_{\texttt{I}} \texttt{f}_{\texttt{n}_{\texttt{T}}} | + W^{1/2} \texttt{and}$ $(\Delta_{\text{T}}\varepsilon - \Delta_{\text{T}}\mathbf{f}_{n_{-}})^{2}$ i < w $\Delta_{\mathcal{I}}^m$ $\Delta_{\mathcal{I}}^m$ $= c$. Now d $(\Delta_{\tau} g)^2$ $2(\Delta_{\tau} g)(\Delta_{\tau} f_{n})$ $(\Delta_{\tau} f_{n})^2$ $\frac{1}{2}$ = $\frac{1}{2}$ + $\frac{1$ $\Delta_{\mathcal{I}^m}$ $\Delta_{\mathcal{I}^m}$ $\Delta_{\mathcal{I}^m}$ $\Delta_{\mathcal{I}^m}$ $\Delta_{\mathcal{I}^m}$ $\Delta_{\mathcal{I}^m}$ (Δ_τg)" Δ_{τ^m} 2 $2(\Delta_\text{T}g)(\Delta_\text{T}f_n)$ $(\Delta_\text{T}f_n)^2$ **I 4- c** $\Delta_{\texttt{T}}^{\texttt{m}}$ and $\Delta_{\texttt{T}}^{\texttt{m}}$ \angle ² Δ _I^g Δ _I^f_{n₊} Δ ^I_{n+} Δ ^T_{n+} Δ ^C $\frac{1}{1}$ + c Δ_{T} ^m d $(2|\Delta_{\text{I}}f_{n_{\tau}}|)(|\Delta_{\text{I}}f_{n_{\tau}}| + W^{\frac{1}{2}}) - (\Delta_{\text{I}}f_{n_{\tau}})^{2}$. \mathbf{I} c $\Delta_{\mathcal{I}}^{\mathfrak{m}}$ and $\Delta_{\mathcal{I}}^{\mathfrak{m}}$ and $\Delta_{\mathcal{I}}^{\mathfrak{m}}$

$$
\frac{(\Delta_{\mathtt{T}^{\mathcal{B}}})^2}{\Delta_{\mathtt{T}^{\mathsf{m}}}} \leq \frac{2^{(\Delta_{\mathtt{T}} \hat{r}_{n_{\mathtt{T}}})^2}}{\Delta_{\mathtt{T}^{\mathsf{m}}}} + 2 \left(\frac{c}{d}\right)^{1/2} \frac{\left|\Delta_{\mathtt{T}} \hat{r}_{n_{\mathtt{T}}}\right|}{(\Delta_{\mathtt{T}^{\mathsf{m}}})^{1/2}} - \frac{(\Delta_{\mathtt{T}} \hat{r}_{n_{\mathtt{T}}})^2}{\Delta_{\mathtt{T}^{\mathsf{m}}}} + \frac{c}{d}
$$

25

Let $N_{\overline{D}}$ =max $\{N_{\overline{I}} \mid I \in D\}$. Then if n is a positive integer and N_{D} $\langle n, \rangle$

$$
\sum_{D}\frac{(\Delta_{\mathbb{S}})^2}{\Delta^m} \leq \sum_{D}\frac{(\Delta f_n)^2}{\Delta^m} + [2(c)^{1/2}] \sum_{D}\frac{|\Delta f_n|}{(\Delta^m)^{1/2}(d)^{1/2}} + \sum_{D}\frac{c}{d}
$$

which by the Schwarz inequality does not exceed

$$
\sum_{D} \frac{(\Delta f_n)^2}{\Delta^m} + [2(c)^{1/2}] \sqrt{\sum_{D} \frac{(\Delta f_n)^2}{\Delta^m}} \sqrt{\sum_{D} \frac{1}{\frac{1}{d}} + c}.
$$
 Then

$$
\sum_{D} \frac{(\Delta g)^2}{\Delta^m} \sqrt{\sum_{D} \frac{(\Delta f_n)^2}{\Delta^m}} + [2(c)^{1/2}] \sqrt{\sum_{D} \frac{(\Delta f_n)^2}{\Delta^m}} + c
$$
 so that

$$
\sum_{D} \frac{(\Delta g)^2}{\Delta^m} \sqrt{\sum_{D} \frac{(\Delta f_n)^2}{\Delta^m}} + [2(c)^{1/2}] \|\mathbf{f}_n\|_m + c.
$$

By Lemma 2 there is a number **M** such that $|| \mathbf{f}_n ||_{m} \leq M$ for every **n. Thus** $\frac{1}{2}$ $\frac{\text{MeV}}{\text{Am}}$ $\left(\frac{M^2}{2} + 2M(c)^{1/2} + c. \right)$ Therefore g is in H_m .

Suppose that c is a positive number. There is a positive number N ! such that If each of p and q is a positive integer and N ¹ < mln {p» q} , then

$$
\sqrt{\int_{a}^{b} \frac{[d(f_{p} - f_{q})]^{2}}{dm}} < c/2 \text{ so that } \int_{a}^{b} \frac{[d(f_{p} - f_{q})]^{2}}{dm} < c^{2}/4.
$$

Thus for any subdivision B of [a,b].

(f A m μ ²(μ ^{- μ} α ²) μ ² ***. "• < c /4. Let D be a subdivision of [a,b]**

and consider EA(g-fn) j for n > N». For each I in D let A m

 $N_{\overline{1}}$ be a positive number such that if $n_{\overline{1}}$ is a positive integer and $n_{\rm T}$ > N_T then $\frac{100.64 n_{\rm T}}{1}$ / $\frac{1}{2}$ where d is the number $\Delta_{\texttt{T}}^{\texttt{m}}$ of elements in D. If $N_{\text{D}}=max\{N_{\text{T}} \mid \text{IED}\}\$, then for n^{\dagger}) N_{D} \sum ι Δ (g-f \mathbf{D} $\frac{1}{\mathbf{A}\mathbf{m}}$ $\overline{\Delta^n}$ 2 \leq c . Let n* be a positive integer 4 such that n^* > max $\{N^*$, $N_{\text{D}}\}$ Then $\sum [\Delta(\varepsilon - f_n)]^2 = \sum [\left(\varepsilon(t) - f_n(t)\right) - \left(\varepsilon(s) - f_n(s)\right)]^2$ $\sum_{n=1}^{\infty} \frac{n!}{n!}$ = [s,t]eD $\sum_{n=1}^{\infty} \frac{n!}{n!}$ $\sum_{k=1}^{n}$ $\left[\frac{g(t)-f_n(t)}{f_n(t)+f_{n*}(t)-f_{n*}(t)} \right]$ **-** $-(g(s)-f_n(s))+(f_{n*}(s)-f_{n*}(s))]^2/\Delta m$ $=\sum_{s} [g(t)-f_{n*}(t))-(g(s)-f_{n*}(s)) +$ $+(f_{n*}(t)-f_{n}(t))-(f_{n*}(s)-f_{n}(s))]^{2}/\Delta m$ $=$ $\frac{14(6-1)^{10}}{10^{10}} = \frac{4}{5}$ $[\Delta(\varepsilon-r_{n*})]^2$ + 2 $\sum [\Delta(\varepsilon-r_{n*})][\Delta(r_{n*}-r_{n}))]$ Δ _m D Δ _n + \angle $\Delta(f)$ **<** v *'V* $\sum_{n=1}^{\infty} [\Delta(\epsilon-r_{n*})]^2$ Δ^m + 2 $\frac{\mu \left(\frac{1}{n^*} \right)^{\frac{1}{n^*}}}{\sqrt{n^*}}$ $\frac{\Delta(f_{n*}f_n)^2}{\Delta m}$, which Am **< z** \overline{D} $[\Delta(\varepsilon-r_{n*})](\Delta(r_{n*}-r_n))$ A m Δ

by the Schwarz inequality, does not exceed

$$
\sum_{D} \frac{[\Delta(\mathbf{g} - \mathbf{f}_{n*})]^2}{\Delta^m} + 2\sqrt{\sum_{D} \frac{[\Delta(\mathbf{g} - \mathbf{f}_{n*})]^2}{\Delta^m}}\sqrt{\sum_{D} \frac{[\Delta(\mathbf{f}_{n*} - \mathbf{f}_{n})]^2}{\Delta^m}} + \sum_{D} \frac{[\Delta(\mathbf{f}_{n*} - \mathbf{f}_{n})]^2}{\Delta^m} \n+ \sum_{D} \frac{[\Delta(\mathbf{f}_{n*} - \mathbf{f}_{n})]^2}{\Delta^m} \n\langle \mathbf{g}^2 + (\mathbf{g}) \mathbf{g}^2 + \mathbf{g}^2 = \mathbf{g}^2
$$

Therefore, $\left\| \begin{array}{cc} b & \left[d(g-f_n) \right]^2 \\ a & \frac{1}{2} \end{array} \right\|_2 \leq c^2$ and therefore $\left\| g-f_n \right\|_m \leq c$

for $n > N$. Thus $||g-f_n||_m \to 0$ as $n \to \infty$.

2p r - T "

From Theorems 4, 5, and 6 we see that ^ is a Hilbert space,

Chapter III

DISCUSSION PRELIMINARY TO THE

PROOF OF SEPARABILITY

The statement "f is H-integrable on $[a,b]$ " means that $\int_{b}^{a} \frac{(df)^2}{dm}$ exists in the sense of Theorem 2. \log $\frac{1}{2}$

Theorem 7 - Suppose that each of g^* and m is a function defined on $[a,b]$, where m is defined as before and g^* is continuous. If h is the function defined by **^f**

$$
h(x) = \begin{cases} 0, & \text{if } a=x \\ \int_a^x g^*(t) dm(t), & \text{if } a < x \leq b, \\ a & \text{otherwise} \end{cases}
$$

then h is H-integrable.

Proof - m nondecreasing on [a,b], implies that m is of bounded variation on [a,b]. Thus, since g* is continuous on **fq** (a,b), $\int_{\mathcal{D}} g^*(t)$ dm(t) exists for every subinterval [p,q] of [a,b].

1) Suppose that $[p,q]$ is a subinterval of $[a,b]$, such that **fq** measure \mathbf{J}^{p} and suppose the \mathbf{I}^{p} -displayer that contains the contains that contains that contains the contains of the contains of the containing the contains of the contains of the contains of the con is a positive number of \mathcal{L} and \mathcal{L} and \mathcal{L} are is a subdivision D of \mathcal{L} , \mathcal{L} whose domain is D^i , such that $r(I)$ is in I for each I in D^i , such that if D' is a refinement of D and r is a function whose domain is D', such that r(ii) is in I for each \pm in D', then $J_{[p,q]}$ - \sum $g^*(r(I))\Delta m$ $\langle c$. Now $m(v)$ - $m(u)$ =0 for each

 $\text{subinterval [u,v] of [p,q], so that } \angle g^*(r(I)) \Delta m = 0,$ **D«** which implies that $J_{\lceil p-q\rceil}$:

2) By the proof of part one of Theorem 2, if D is a subdivision of [a,b] and E is a **refinement of D, then**

$$
\sum_{D} \frac{\Delta^m}{(\Delta h)^2} \leq \sum_{E} \frac{\Delta^m}{(\Delta h)^2} .
$$

3) Suppose that D is a subdivision of [a»b] and has d elements. Since g* is continuous and m is of bounded variation on $[a, b]$, there are numbers G and M, such that $|g^*(x)| \leq G$ **for every x in [a,b], and if E is a subdivision of [a,b],** $\sum_{\mathbf{F}} |\Delta \mathbf{m}| \leq M.$

Consider the sum

$$
\sum_{D} \frac{(\Delta h)^2}{\Delta^m} = \sum_{D} \left[\int_{p}^{q} g^*(t) dm(t) \right]^2
$$
 for notation, $m(q) - m(p)$

let $[p,q]=I$. For each **I** in D, there is a subdivision E_T of **I**, such that if E_I^{\dagger} is a refinement of E_I^{\dagger} , and $r_{E_I^{\dagger}}$ is a function whose domain is E^I such that $r_{E^I_T}$ (U) is in U for every U

in E_I^t, then
\n
$$
\int_{p}^{q} g^{*}(t) dm(t) \leq \left| \sum_{E_{I}^{t}} g^{*}(r_{E_{I}^{t}}(U)) (\Delta_{U}m) \right| + k
$$
\n
$$
\leq \sum_{E_{I}^{t}} |g^{*}(r_{E_{I}^{t}}(U)) | \Delta_{U}m + k, \text{ where } k^{2} \frac{M}{d^{2}}.
$$

Then $\sum_{i=1}^n$ \mathbf{v} \mathbf{v} \angle $|g^*(r_{\text{E}}(0))|\Delta$ $\sum_{E_1^1}$ |g*(r_E₁(U))| Δ _Um + k $\bm \omega$ ti \leq \geq _{*T*} χ , i.e. v encoder χ is the set of χ L E J \setminus + 2k \mathbf{v} */* ⁱ **D u** 2s*(r ^E ,(U)} | ^A E i $\Delta_{\mathbf{T}}$ ''' $\overline{}$ σ^{m}

$$
\leq \sum_{D}\left(\sigma^2\left[\sum_{E_{\frac{\Gamma}{2}}} \Delta_{U^m}\right]^2\right) + 2kG\sum_{D}\left[\sum_{E_{\frac{\Gamma}{2}}} \Delta_{U^m}\right] + \sum_{E^2} \sum_{\frac{K^2}{\Delta_{\frac{\Gamma}{2}}}} \Delta_{\frac{\Gamma}{2}}
$$

ידם י

$$
\leq \quad a^2 \quad \sum_{D} \frac{(\Delta_{\mathtt{I}}^m)^2}{\Delta_{\mathtt{I}}^m} \; + \; 2k \mathfrak{a} \quad \sum_{D} 1 \; + \; \sum_{D} \frac{1}{a^2}
$$

$$
\leq \quad G^2 \quad \sum_{D} \quad \Delta m + \sum_{D} \quad 2kG \quad + \sum_{D} \quad \frac{1}{d}
$$

$$
\leq G^2M + \sum_{D} \frac{2k dG + 1}{d} = G^2M + 2k dG + 1
$$

 $\sum_{n=1}^{\infty} \frac{\Delta n}{n} \leq G^2 M + 2G \sqrt{M} + 1$. Thus h is H-integrable,

30

Lemma 3 - If each of f and g is a function defined on [a,b], such that f is continuous and g is H-integrable, let h be the function defined by

$$
h(x) = \begin{cases} 0, & \text{if } x=a \\ \int_{a}^{x} f(t) dm(t), & \text{if } a < x \leq b. \end{cases}
$$

Proof - By Theorem, 7> h is **H**-integrable. Thus by the corollary of Theorem 2, $\begin{bmatrix} b & \frac{dhdg}{dm} & \text{exists.} \end{bmatrix}$

 $Lemma 4 - If each of f and m is a function defined on$ [a,b], such that f is continuous and m in nondecreasing with $m(a)/m(b)$, then for each positive number c there is a positive number d, such that if D is a subdivision of [a,b], such that $|f(x)-f(y)| \le d$ for x and y in an element of D, then for each I in D, such that Δ_{T} ^{m/} 0 \int f(t)dm(t) - f(r) Δ _rm ζ c, where r is in I. $\Delta_{\mathbf{\mathbf{\mathbf{\mathbb{C}}}}}$

Proof - Suppose that c is a positive number. There is a subdivision E of [a,bj, such that if I is in E and each of x and y is in I, then $| f(x)-f(y)| \leq \frac{c}{2}$. For each I in E for which $\Delta_{\mathcal{I}^{m}} \neq 0$, there is a subdivision $F_{\mathcal{I}}$ of I, such that if F_1^1 is a refinement of F_1 and r' is a function whose domain is F_1' , such that $r'(U)$ is in U for each U in F_1' , then

$$
\left|\int_{\mathbf{I}} f dm - \sum_{\substack{\mathbf{F}_{\mathbf{I}}^{\mathbf{I}}} \mathbf{f}(\mathbf{r}^{\mathsf{T}}(\mathbf{U})) \Delta_{\mathbf{U}} m} \right| < \frac{c \Delta_{\mathbf{I}} m}{2}, \text{ where } \int_{\mathbf{I}} f dm \text{ denotes}
$$
\n
$$
\left|\int_{\mathbf{P}} f(t) dm(t) \text{ if } \mathbf{I} = [\mathbf{p}, \mathbf{q}] \text{, } \text{ Thus}
$$
\n
$$
\left|\int_{\mathbf{I}} f dm - \sum_{\substack{\mathbf{F}_{\mathbf{I}}^{\mathbf{I}}} \mathbf{f}(\mathbf{r}^{\mathsf{T}}(\mathbf{U})) \Delta_{\mathbf{I}} m} \right| < \frac{c}{2} \text{, } \text{Now}
$$
\n
$$
\left|\sum_{\substack{\mathbf{F}_{\mathbf{I}}^{\mathbf{I}}} \mathbf{f}(\mathbf{r}^{\mathsf{T}}(\mathbf{U})) \Delta_{\mathbf{U}} m - \mathbf{f}(\mathbf{r}) \Delta_{\mathbf{I}} m} \right| \text{ does not exceed } \frac{c}{2}, \text{ for if}
$$

 $\hat{\mathbf{r}}$

 \cdot

r is in I, then

 \sim

 \sim \sim

 $\hat{\boldsymbol{\beta}}$

 ϵ is .

 $\bar{\beta}$

$$
\frac{\left|\sum_{\substack{F_1^T \ D_1^T}} f(r'(U))\Delta_U^m - f(r)\Delta_T^m\right|}{\Delta_T^m} = \frac{\left|\sum_{\substack{F_1^T \ D_1^T}} f(r'(U)\Delta_U^m - \sum_{\substack{F_1^T}} f(r)\Delta_U^m\right|}{\Delta_T^m}\right|}{\Delta_T^m}
$$
\n
$$
\leq \frac{\sum_{\substack{F_1^T \ D_1^T}} f(r'(U)) - f(r)\Delta_U^m}{\Delta_T^m}
$$
\nThus\n
$$
\frac{\left|\sum_{\substack{F_1^T \ D_1^T}} f(r'(U)) - f(r)\right|}{\Delta_T^m} - \sum_{\substack{F_1^T \ D_1^T}} f(r)\Delta_U^m\right|}{\Delta_T^m}
$$

$$
\frac{\int_{\mathbb{T}} f dm - f(r) \Delta_{\mathbb{T}} m}{\Delta_{\mathbb{T}}^{m}} \leq \frac{\int_{\mathbb{T}} f dm - \sum_{\mathbb{T} \downarrow} f(r'(U) \Delta_{\mathbb{U}} m}{\Delta_{\mathbb{T}}^{m}} +
$$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
+\left|\sum_{\substack{F_1^{\perp}\\ \Delta T^{\perp}}}\mathbf{f}(\mathbf{r}^{\prime}(\mathbf{U}))\Delta_{U^{\perp}} - \mathbf{f}(\mathbf{r})\Delta_{T^{\perp}}\right|
$$

 $\begin{array}{rcl} \left\langle \begin{array}{cc} c & c \\ \frac{c}{2} & +\frac{c}{2} & = & c \end{array} \right\rangle$. Thus we obtain the desired result if we take $d=\frac{c}{2}$.

Theorem 8 - Suppose that each of f and g is a function defined on [a,b], such that f is continuous and g is H-integrable. If h is the function defined by

$$
\text{graph. If h is the function defined by} \quad h(x) = \begin{cases} 0, & \text{if } x = a \\ \int_a^x f(t) \, dm(t), & \text{if } a < x \leq b, \\ a & \text{if } a \leq x \leq b, \\ \int_a^b \frac{dh \, dg}{dm} \, dm & \text{if } a \leq x \leq b, \\ \text{Proof } -g & \text{is of bounded variation or} \end{cases}
$$

Proof - g is of bounded variation on $[a,b]$, and f is continuous on [a,b], so that $\int_{a}^{b} f(t)dg(t)$ exists. By Lemma 3,

$$
\int_{a}^{b} \frac{dhdg}{dm} \text{ exists. Let } \int_{a}^{b} \frac{dhdg}{dm} = J_{1} \text{ and } \int_{a}^{b} f(t)dg(t) = J_{2}.
$$
\nSuppose that c is a positive number. There is a subdivision E of [a,b], such that if E' is a refinement of E, and r' is a function, such that E' is the domain of r', and r'(I) is in I for each I in E', then

$$
\left| J_2 - \sum_{E^1} f(r^1(T)) \Delta_E \right| < \frac{c}{2}.
$$
 There is a subdivision F of

 $[a,b]$, such that if F' is a refinement of F , then

$$
\left|\mathbf{J}_1 - \sum_{\mathbf{F}^1} \frac{\Delta h \Delta \mathbf{g}}{\Delta^m} \right| \leq \frac{c}{2}
$$
. There is a subdivision G of [a,b],

such that if I is in G, and each of x and y is in I, then $|f(x)-f(y)| \leq \frac{c}{6(1+1)}$, where $L = |e|^{10}$ dg. Let D be a common refinement of E, F, and G. If D' is a refinement of D, let $D^* = \left\{ I \mid I \in D^t, \Delta_{\mathcal{I}_i^m} \neq 0 \right\}$. Then if r is a function whose domain is D^{\dagger} , such that r(I) is in I for each I in D^{\dagger} ,

$$
\begin{vmatrix}\nJ_1 - \sum_{D'} \frac{\left| \int_T f dm \right| \Delta_T g}{\Delta_T m} & & \\
\Delta_T m & \sum_{D'} \frac{\left| \int_T f dm \right| \Delta_T g}{\Delta_T m} & \\
\Delta_T m & = 0, \quad \sum_{D'} \frac{\left| \int_T f dm \right| \Delta_T g}{\Delta_T m} = \sum_{D'} \frac{\left| \int_T f dm \right| \Delta_T g}{\Delta_T m}.
$$

Thus
\n
$$
\int_{J_1}^{J_1} J_2 = \sum_{D^*} \left[\int_{\mathcal{I}^{\text{fdm}}} \Delta_{\mathcal{I}^E} \right]_+ \left| J_2 - \sum_{D^*} f(r(I)) \Delta_{\mathcal{I}^E} \right|_+ \left| J_2 - \sum_{D^*} f(r(I)) \Delta_{\mathcal{I}^E} \right|_+ \frac{2c}{3}
$$
\n
$$
\left| J_1 - J_2 \right| - \left| \sum_{D^*} \left[\int_{\mathcal{I}^{\text{fdm}}} \Delta_{\mathcal{I}^E} - f(r(I)) \Delta_{\mathcal{I}^m} \Delta_{\mathcal{I}^E} \right|_+ \right|_+ \frac{2c}{3}
$$
\n
$$
\left| J_1 - J_2 \right| - \left| \sum_{D^*} \left[\int_{\mathcal{I}^{\text{fdm}}} \Delta_{\mathcal{I}^E} - f(r(I)) \Delta_{\mathcal{I}^m} \Delta_{\mathcal{I}^E} \right|_+ \right|_+ \frac{2c}{3}
$$
\n
$$
\left| J_1 - J_2 \right| \left| J_2 - J_2 \right|_+ \left|
$$

 $3 + 3(1+1)$ $\frac{D*}{2}$ $|01|$ Thus $J_1=J_2$.

Theorem 9 - Suppose that each of f, g, and m is a function defined on [a,b], such that f and g are each continuous, and **m** is nondecreasing with $m(b) \neq m(a)$. Let h_1 and h_2 be the **functions defined by**

$$
h_1(x) = \begin{cases} 0, & \text{if } x=a \\ \int_a^x f(t) dm(t), & \text{if } a < x \leq b, \\ a \end{cases}
$$

and

$$
h_2(x) = \begin{cases} 0, & \text{if } x=a \\ \int_a^b g(t) dm(t), & \text{if } a < x \leq b. \end{cases}
$$

$$
\int_a^b \frac{dh_1 dh_2}{dm} = \int_a^b f(t)g(t) dm(t).
$$

Proof $-$ **By Theorem 7**, each of h_1 and h_2 is H-integrable, **I so that by the corollary to Theorem 2, § ^1^ 2 exists.** By Theorem β , $\int_0^b dh_1 dh_2$ $\int_0^b f(t) dh_1(t)$ $\int a \frac{1}{dm} dx = \int a \frac{f(t) \, dm}{2(t)}$. Since each of $\int_{a}^{a} \frac{dh_1 dh_2}{dm} = \int_{a}^{b} f(t) dh_2(t)$. Since each
tinuous, fg is continuous, so that $\int_{a}^{b} f(t) dt$ **fb fb I**₂ $f(t)dh_0(t)=J_1$ and **I**₂ $f(t)g(t)dm(t)=J_0$. *a* **d**m **f and g is continuous, fg is continuous, so that** i **f(t)g(t)dm(t) b fb exists. Let Suppose that c is a positive number. There is a subdivision D of [a,b], such that if D ¹ is a refinement of D, and r is a function whose domain is D ¹, such that r(l) is in I for each**

I in D', then
$$
J_1 - \sum_{D'} f(r(1))\Delta_{T}h_2 \leq \frac{c}{3}
$$
. There is a subdivision E of [a,b], such that if E' is a refinement of E, and r' is a function whose domain is E', such that $r'(1)$ is in I for each I in E', then $J_2 - \sum_{D'} f(r'(1))g(r'(1))\Delta_{T}m \leq \frac{c}{3}$. There is a subdivision F of [a,b], such that if I is in F, and each of x and y is in I, then $|g(x)-g(y)| \leq \frac{c}{6(LM+1)}$, where L = lub $\{z \mid z = |f(x)|$, $x \in [a,b]$ and $M = m(b) - m(a)$. Let G be a common refinement of D, E, and F. If G' is a refinement of G, and s is a function whose domain is G', such that $s(I)$ is in I for each I in G', then $J_1 - \sum_{G'} f(s(1))\Delta_{T}h_2 \neq \frac{1}{d'} f(s(1))\Delta_{T}h_1 - \sum_{G'} f(s(1))\Delta_{T}h_2 \leq \frac{2c}{d'} d'_{1} - \sum_{G'} f(s(1))g(s(1))\Delta_{T}m - \sum_{G'} f(s(1))\Delta_{T}h_2 \leq \frac{2c}{3}$. $|J_1-J_2| - \sum_{G'} f(s(1))(\Delta_{T}h_2 - g(s(1))\Delta_{T}m)| \leq \frac{2c}{3}$. $|J_1-J_2| \leq \frac{2c}{3} + \sum_{G'} f(s(1))(\Delta_{T}h_2 - g(s(1))\Delta_{T}m)|$. $\sum_{G'} g = \frac{1}{d'} f(s(1)) \left(\int_{T} g dm - g(s(1))\Delta_{T}m \right)$. $\int_{T} g dm = 0$, if I is in G', such that $\Delta_{T}m = 0$. Thus if $G^* = \{I \mid \text{FeV}, \Delta_{T}m \neq 0\}$.

so that by Lemma 4,

 $\ddot{}$

$$
\begin{array}{ccc} \left|J_{1}-J_{2}\right| < \frac{2c}{3} + \sum_{G^{*}} \left|f(s(I))\right| \Delta_{T^{m}}\left(\frac{c}{\beta(LM+1)}\right) \\ < \frac{2c}{3} + \frac{c}{3M} \sum_{G^{*}} \left|f(s(I))\right| \Delta_{T^{m}}\left(\frac{c}{\beta(LM+1)}\right) \\ < \frac{2c}{3} + \frac{c}{3M} \sum_{G^{*}} \left|f(s(I))\right| \Delta_{T^{m}}\left(\frac{c}{\beta(LM+1)}\right) \\ < \frac{2c}{3} + \frac{c}{3M} \sum_{G^{*}} \left|f(s(I))\right| \Delta_{T^{m}}\left(\frac{c}{\beta(LM+1)}\right) \end{array}
$$

57

The following theorem is stated without proof.

Theorem 10 - If f is a nondecreasing function defined on [a,b], then f is quasi-continuous on [a,b], That is, if x is in $[a,b]$, then the limit from the right, $f(x^+)$, exists for a \leq x \lt b, and the limit from the left, $f(x^*)$, exists for $a \leq x \leq b$.

Theorem 11 - Suppose that g is a function defined on $[a,b]$, such that g is of bounded variation on $[a,b]$, $g(a) = 0$, and if f is a continuous function defined on \mathbf{b} $\int a^{-\sqrt{t}}$, $\int a^{-\sqrt{t}}$, then $\int a^{-\sqrt{t}}$, then $\int a^{-\sqrt{t}}$ $g(x^{-})=g(x^{+})=0$.

Proof - Under the above conditions $g(b) = 0$, for if $f(x) = 1$ for every x in [a,b], then there is a subdivision **D** of [a,b], such that if **D'** is a refinement of D, and r is a function whose domain is D', such that $r(I)$ is in I for each I in D, then $|g(b)-g(a)| = |\bigtriangleup \bigtriangleup g| = |\bigtriangleup f(r)\bigtriangleup g|$ \overline{D} \overline{D} \overline{D} \overline{D} \overline{D} \langle c.

Thus $g(b)=g(b)=0$. Since g is of bounded variation on $[a,b]$, g may be expressed as the difference of two nondecreasing functions. Each of these functions is quasi-continuous, so that g is also quasi-continuous.

1) Suppose that a \leq x \lt b, and that c is a positive number. There is a positive number d^* , such that if $a \leq x \leq y \leq b$ and $|x-y| \le d^*$, then $|g(x^+) - g(y)| \le \frac{c}{2}$. Let d=min $\{d^*, b-x\}$. Let f be the function defined by

$$
f(t)=\begin{cases}0, & \text{if } a \leq t < x \\ \frac{t-x}{d}, & \text{if } x \leq t < x+d \\ 1, & \text{if } x+d \leq t \leq b.\end{cases}
$$

Obviously f is continuous on $[a,b]$. Since $g(a)=g(b)=0$, lb and $\int_{a} f(t) dg(t)=f(b)g(b)-f(a)g(a)- \int_{a} g(t) df(t)$, then \mathbf{b} \mathbf{b} J a⁻¹⁺/²₀¹⁻¹/₂⁰¹/²/² \int_{a}^{b} \int_{a}^{x} $\begin{bmatrix} x \\ y \end{bmatrix}$ **f** $\begin{bmatrix} x+d \\ z \end{bmatrix}$ $\mathbf{g}_\mathbf{a}(\mathbf{t})\mathrm{d}\mathbf{f}(\mathbf{t}) + \mathbf{I}_\mathbf{x} \quad \mathbf{g}(\mathbf{t})\mathrm{d}\mathbf{f}(\mathbf{t}) + \mathbf{I}_\mathbf{x}$ b
{v+d}g(t)df(t) = 0. Each o \mathbf{x} , \mathbf{b} $p{\rm a}$ g(t)df(t) and $p_{\rm x+d}$ g(t)df(t) is zero, since f is constant

on each of the intervals $[a,x]$ and $[x+d,b]$. Thus

 $\int_{0}^{x+d} g(t) df(t) = 0$. There is a subdivision D of $[x, x+d]$, such that if D' is a refinement of D , and $r*$ is a function whose domain is $D^{\frac{1}{2}}$, such that $r^{*}(I)$ is in I for each I in D, then $\left|\leftarrow_{\mathsf{D}f} \mathcal{E}(r^*)\Delta f\right| \leq \frac{c}{2}$. For each I in D', let $r(I)$ = $r*(I)$, if x is not in I z , $z \in I$, $z \neq x$, if $x \in I$.

Thus for each I in D', $g(x^{+}) - \frac{c}{2} \langle g(r(I)) \langle g(x^{+}) + \frac{c}{2}$,

so that
$$
g(r(I))=g(x^+) + k(r(I))
$$
, where $|k(r(I))| < \frac{c}{2}$. Then
\n
$$
\frac{c}{2} > \left| \sum_{D'} g(r(I)) \Delta_{T} f \right| = \left| \sum_{D'} [g(x^+) + k(r(I))] \Delta_{T} f \right|
$$
\n
$$
> \left| \sum_{D'} g(x^+) \Delta f \right| - \left| \sum_{D'} k(r(I)) \Delta_{T} f \right|
$$
, so that
\n
$$
\left| \sum_{D'} g(x^+) \Delta f \right| < \frac{c}{2} + \left| \sum_{D'} k(r(I)) \Delta_{T} f \right|
$$
. Now, since for
\neach I in D', $\Delta_{T} f \geq 0$, and $f(x+d)-f(x)=1$, it follows that
\n
$$
g(x^+) = \left| \sum_{D'} g(x^+) \Delta f \right| < \frac{c}{2} + \sum_{D'} |k(r(I))| \Delta_{T} f < \frac{c}{2} + \frac{c}{2} + \frac{c}{2} \Delta f
$$

 \angle $\frac{c}{r}$ + $\frac{c}{r}$ = c. Therefore $\sigma(x^+)$ $\sqrt{2} + \sqrt{2} = 6$. **Therefore** $g(x) = 0$.

2) Suppose that $a \leq x \leq b$, and that c is a positive number. There is a positive number d^* , such that if $a \leq y \leq x \leq b$ and $|\mathbf{y}-\mathbf{x}| \leq d^*$, then $|g(x^-)-g(y)| \leq \frac{c}{2}$. Let $d=\min\left\{x-a, d^*\right\}$. **Let f be the function defined by**

$$
f(t)=\begin{cases}1, & \text{if } a \leq t \leq x-d \\ 1-\frac{t-(x-d)}{d}, & \text{if } x-d < t \leq x \\ 0, & \text{if } x < t \leq b.\end{cases}
$$

As in part 1)

$$
\int_{a}^{b} f(t) dg(t) = \int_{a}^{b} g(t) df(t) = \int_{a}^{x-d} g(t) df(t) + \int_{x-d}^{x} g(t) df(t) + \int_{x}^{b} g(t) df(t) = 0.
$$
 Each of

$$
\int_{a}^{x-d} g(t) df(t) and \int_{x}^{b} g(t) df(t) is zero, since f is
$$

constant on each of the intervals $[a, x-d]$ and $[x, b]$. **Thus** $\int_{X-d} g(t) dt(t) = 0$. There is a subdivision D of *Jx-***[x-d,x], such that if D" is a refinement of D, and r* is a function whose domain is D', such that r*(l) is in I** ${\bf f}$ or each ${\bf I}$ in ${\bf D}^{\dagger}$, then $\Big|\Big\| \sum_{{\bf g}}({\bf r}^*)\Delta {\bf f}$ \overline{D} **/ 0 \ ? *** For each I in D' , let $r(I) = \int r^*(I)$, if x is not in I **Z j Z Xj z/xf if X X«** Thus for each **I** in D' , $g(x^{-}) - \frac{c}{2} \leq g(r(I)) \leq g(x^{-}) + \frac{c}{2}$, so that $g(r(1))=g(x^{m})+k(r(1))$, where $k(r(1))\leq \frac{c}{2}$. **Then**

$$
\frac{c}{2} > \left| \sum_{D^{f}} g(r(I)) \Delta_{I} f \right| = \left| \sum_{D^{f}} [g(x^{-}) + k(r(I))] \Delta_{I} f \right|
$$
\n
$$
> \left| \sum_{D^{f}} g(x^{-}) \Delta f \right| - \left| \sum_{D^{f}} k(r(I)) \Delta_{I} f \right|, \text{ so that}
$$
\n
$$
\left| \sum_{D^{f}} g(x^{-}) \Delta f \right| < \frac{c}{2} + \left| \sum_{D^{f}} k(r(I)) \Delta_{I} f \right|. \text{ Now, since}
$$
\n
$$
\left| \sum_{D^{f}} \Delta f \right| = |f(x) - f(x - d)| = |-1|, \text{ it follows that}
$$
\n
$$
|g(x^{-})| = |g(x^{-})| \left| \sum_{D^{f}} \Delta f \right| < \frac{c}{2} + |k(r(I))| \left| \sum_{D^{f}} \Delta f \right|
$$
\n
$$
< \frac{c}{2} + \frac{c}{2} = c. \text{ Therefore } g(x^{-}) = 0.
$$

We see that if the condition that either g is left continuous at each **x**, such that $a \leq x \leq b$ or g is right **4o**

continuous at each x, such that a \leq x \leq b is added to the hypothesis of Theorem 11, then $g(x) = 0$ for every x in [a,b].

Suppose that V is an inner product space with inner product $((.,.))$ and zero element Θ .

Lemma 5 - If $\{\phi_1,\phi_2,\ldots,\phi_k\}$ is an orthonormal set of elements of V, then $((u-)_{i,j=1}^K((u,\emptyset,))\emptyset_i,\emptyset_i)$ =0 for $j=1$, $2, \ldots, k$ and any u in V .

$$
\frac{\text{Proof}}{(\mathbf{u} - \sum_{j=1}^{k} ((\mathbf{u}, \beta_{1}))\beta_{1}, \beta_{j})) = ((\mathbf{u}, \beta_{j})) - ((\sum_{j=1}^{k} ((\mathbf{u}, \beta_{1}))\beta_{1}, \beta_{j}))
$$
\n
$$
= ((\mathbf{u}, \beta_{j})) - \sum_{j=1}^{k} ((\mathbf{u}, \beta_{j}))((\beta_{j}, \beta_{j}))
$$
\n
$$
= ((\mathbf{u}, \beta_{j})) - ((\mathbf{u}, \beta_{j}))((\beta_{j}, \beta_{j}))
$$
\n
$$
= ((\mathbf{u}, \beta_{j})) - ((\mathbf{u}, \beta_{j}))
$$

 $((u - \sum_{i=1}^{k} ((u, \emptyset_i))\emptyset_i, \emptyset_j)) = 0$.

Theorem 12 - If $A = \{u_i\}_{i=1}^{\infty}$ is a linearly independent sequence of elements of V, then there is an orthonormal sequence B= $\{\emptyset_i\}_{i=1}^{\infty}$ of elements V, such that if y is a linear combination of the first n elements of A, then y is a linear combination of the first n elements of B, and if x is a linear combination'of the first n elements of B, then x is a linear combination of the first n elements of A.

Proof - $u_1 \neq 0$, for otherwise A is linearly dependent. Thus $\|u_1\| \neq 0$. Define $\cancel{\beta_1} = \frac{u_1}{u_1}$ $\|\mathbf{u}_1\|$

$$
((\emptyset_1,\emptyset_1)) = \left(\frac{u_1}{\|u_1\|}, \frac{u_1}{\|u_1\|}\right) = \left(\frac{1}{\|u_1\|}\right)^2 ((u_1,u_1)) = \left(\frac{\|u_1\|}{\|u_1\|}\right)^2 = 1.
$$

Thus \emptyset_1 is orthonormal. Let $v_p = u_p - ((u_p, \emptyset_1))\emptyset_1$. By Lemma 5, v_2 is orthogonal to β_1 . Thus since β_1 is a linear combination of u_1 , v_2 is a linear combination of $\{u_1, u_2\}$ and cannot be Θ . Define $\cancel{\phi}_2 = \frac{u_2-(\mu_1, \cancel{v}_1, \cancel{v}_2)}{u_2 - \mu_1}$

 $\{\boldsymbol{\varphi}_1,\boldsymbol{\varphi}_2\}$ is orthonormal, since $\boldsymbol{\varphi}_2^{\prime}$ is a scalar multiple of \mathbf{v}_{ρ} , which is orthogonal to \mathscr{D}_1 and $((\mathscr{D}_2,\mathscr{D}_2))$ =

$$
= \left(\frac{1}{\|u_2^{-}((u_2,\beta_1))\beta_1\|}\right)^2 \left(\|u_2^{-}((u_2,\beta_1))\beta_1\|\right)^2 = 1.
$$

We note u_1 and u_2 are linear combinations of \emptyset_1 and $\{\varphi_1,\varphi_2\}$ respectively. In general, if k is a positive integer, let $v_k = u_k - \sum_{i=1}^{k-1} ((u_k, \emptyset_i))\emptyset_i$. By Lemma 5, v_k is orthogonal to each of \mathscr{D}_1 ,..., \mathscr{D}_{k-1} . Since each \mathscr{D}_1 is a linear combination of $\{u^*_1,\ldots, u^*_1\}$, v^*_k is a linear combination of $\{u_1,\ldots, u_k\}$ and cannot be Θ . Define (1) $\mathscr{D}_{k} = \frac{u_{k} - \sum_{i=1}^{k-1} ((u_{k}, \emptyset_{i})) \emptyset_{i}}{\|u_{k} - \sum_{i=1}^{k-1} ((u_{k}, \emptyset_{i})) \emptyset_{i}\|}$. Suppose that each **of i and j is a positive integer less than k.** $\text{Since } \{ \varphi_1, \ldots, \varphi_{k-1} \}$ is orthonormal

$$
((\emptyset_1,\emptyset_j))=\begin{cases} 0, & \text{if } i\neq j \\ 1, & \text{if } i=j. \end{cases}
$$

= 0 $((\emptyset_j, \emptyset_k)) = ((\emptyset_j, \dots, \dots, \emptyset_k)) = \frac{1}{\|\mathbf{v}_k\|} \dots ((\emptyset_j, \mathbf{v}_k)) = \frac{0}{\|\mathbf{v}_k\|}$ $\left(\left(\emptyset_K,\emptyset_K\right)\right) = \left(\left(\frac{v_K}{\|\nabla_K\|}\right), \frac{v_K}{\|\nabla_K\|}\right) = \left(\frac{1}{\|\nabla_K\|}\right)^2 \left(\left(v_K,v_K\right)\right) = \left(\frac{\|\nabla_K\|^2}{\|\nabla_K\|}\right)^2 = 1.$ $\mathbf{p} = \left\{ \begin{array}{ll} \mathbf{p}_1, \ldots, \mathbf{p}_k \end{array} \right\}$ is orthonormal. From (1), we see that $\mathbf{u}_{\mathbf{k}}$ is a linear combination of $\{\boldsymbol{\varnothing}_1, \ldots, \boldsymbol{\varnothing}_{\mathbf{k}}\}$.

The sequence $\left\{\emptyset\right\}$ $\begin{matrix} \infty \\ 1 \neq 1 \end{matrix}$ formed in this manner is ortho**normal.** Since each $\boldsymbol{\beta}_1$ is a linear combination of $\{u_1, \ldots, u_1\}$, and each u_1 is a linear combination of $\{\boldsymbol{\varnothing}_1, \ldots, \boldsymbol{\varnothing}_1\}$, any linear combination of $\{\boldsymbol{\varnothing}_1, \ldots, \boldsymbol{\varnothing}_n\}$ **is** a **linear** combination of $\{u_1, \ldots, u_n\}$ and conversely.

Suppose that H is a Hilbert space with inner product ((.,.)). The following theorem is stated without proof.

Theorem 13 ~ The union of a countable collection of countable sets is countable.

Theorem 14 - Suppose that $\begin{cases} \varphi_1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \end{cases}$ is an orthonormal **sequence of elements of H. The following four statements are** equivalent:

1) The set of all finite linear combinations of the \mathscr{A}_4 is is dense in H.

2) If z is in H and $((z,\phi_n))=0$ for every n, then z= Θ . 3) If x is in H, then $\|x-\sum_{i=1}^n ((x,\beta_i))\beta_i\| \to 0$ as $n \rightarrow \infty$

4) There is a countable set T of elements of H, such that H is separable with respect to T.

Proof - **I.** Suppose that 1) is true and that z is in H, such that $((z,\emptyset_1))=0$ for every i. Let c be a positive number. There is a positive integer n and a sequence of scalars $\{a_i\}_{i=1}^n$, such that c $>||z-\sum_{i=1}^n a_i\varnothing_i||$. $|c^2| > \|z-\sum_{i=1}^n a_i \beta_i\|^2 = ((z-\sum_{i=1}^n a_i \beta_i, z-\sum_{i=1}^n a_i \beta_i))$ $=((z,z))$ -2 $((z,\overline{\smash{\big)}\,}_{i=1}^n a_i \beta_i))$ + $+\sum_{i=1}^{n}a_{i}^{2}((\emptyset_{i},\emptyset_{i}))$ $=((z, z))^{-2} \sum_{i=1}^{n} a_i ((z, \emptyset_1)) + \sum_{i=1}^{n} a_i$ $= ((z, z)) + \sum_{d=1}^{n} a_1^2$, so that c^2 \geq $((z, z)) = ||z||^2$. Thus $c \geq ||z||$ and $||z|| = 0$. Thus $z = \Theta$.

II. Suppose that 2) is true and that x is in H. Suppose that p Is a positive integer, and that c is a positive number.

$$
0 \leq ||x - \sum_{i=1}^{p} ((x, \beta_{1}))\beta_{1}||^{2}
$$
\n
$$
\leq ((x - \sum_{i=1}^{p} ((x, \beta_{1}))\beta_{1}, x - \sum_{i=1}^{p} ((x, \beta_{1}))\beta_{1}))
$$
\n
$$
\leq ((x, x)) - 2 \sum_{i=1}^{p} ((x, \beta_{1}))^{2} + \sum_{i=1}^{p} ((x, \beta_{1}))^{2}
$$
\n
$$
0 \leq ((x, x)) - \sum_{i=1}^{p} ((x, \beta_{1}))^{2}.
$$
 Thus for each positive integer p, $((x, x)) \geq \sum_{i=1}^{p} ((x, \beta_{1}))^{2}$, which implies that there is a number J, such that $\sum_{i=1}^{p} ((x, \beta_{1}))^{2} \rightarrow J$ as $p \rightarrow \infty$. There is a positive number N, such that if each of m and n is a positive integer, such that $N \leq \min\{m, n\}$, then $\sum_{i=1}^{p} ((x, \beta_{1}))^{2} \geq \sum_{i=1}^{p} ((x, \beta$

 $\sum_{i=1}^m ((x, \emptyset_i))^c$ - $\sum_{i=1}^n ((x, \emptyset_i))^c$ $\begin{pmatrix} c \\ \end{pmatrix}$. For each positive integer p, let $y_n = \sum_{i=1}^{4} (x_i, \emptyset_i) y_i$. Consider $\|y_m - y_n\|^2$ where $N \lt m in\{m,n\}$ and assume for convenience that $m \geq n$. $\|y_m - y_n\| \leq ((y_m - y_n, y_m - y_n))$ $=(y_{m}, y_{m})^{-2}((y_{m}, y_{n})) + ((y_{n}, y_{n}))$ $\mathcal{P}((\sum_{i=1}^{m}((x,\emptyset_i))\emptyset_i),\sum_{i=1}^{m}((x,\emptyset_i))\emptyset_i)$ - $-2((\sum_{i=1}^{m}((x,\emptyset_{i}))\emptyset_{i},\sum_{i=1}^{n}((x,\emptyset_{i}))\emptyset_{i}) +$

+
$$
((\sum_{j=1}^{n}((x,\emptyset_j))\emptyset_j,\sum_{j=1}^{n}((x,\emptyset_j))\emptyset_j))
$$

= $\sum_{i=1}^{m}((x,\emptyset_i))^2$ -

$$
-2\sum_{i=1}^{m}((x, \beta_{1}))((\beta_{i}, \sum_{j=1}^{n}((x, \beta_{j}))\beta_{j})) +
$$

\n
$$
+\sum_{j=1}^{m}((x, \beta_{j}))^{2}
$$

\n
$$
=2\sum_{i=1}^{m}((x, \beta_{1}))^{2} -
$$

\n
$$
-2\sum_{i=1}^{n}((x, \beta_{1}))[\sum_{j=1}^{n}((x, \beta_{j}))((\beta_{i}, \beta_{j}))] +
$$

\n
$$
+\sum_{j=1}^{n}((x, \beta_{j}))^{2}
$$

\n
$$
=2\sum_{i=1}^{n}((x, \beta_{1}))^{2} -
$$

\n
$$
-2\sum_{i=1}^{n}((x, \beta_{1}))[\sum_{j=1}^{n}((x, \beta_{j}))((\beta_{i}, \beta_{j}))] -
$$

\n
$$
-2\sum_{i=1}^{n}((x, \beta_{1}))^{2}
$$

\n
$$
=2\sum_{i=1}^{n}((x, \beta_{1}))^{2}
$$

\n
$$
=2\sum_{i=1}^{n}((x, \beta_{1}))^{2}
$$

\n
$$
=2\sum_{i=1}^{n}((x, \beta_{1}))^{2} -
$$

\n
$$
=2\sum_{i=1}
$$

 \overline{a}

 $\hat{\mathbf{r}}$,

J,

$$
\left| \left((x - \sum_{i=1}^{n} ((x, \beta_{i}))\beta_{1}, \beta_{k}) \right) \right| = \left| ((x, \beta_{k})) - ((\sum_{i=1}^{n} ((x, \beta_{1}))\beta_{1}, \beta_{k})) \right|
$$
\n
$$
= \left| ((x, \beta_{k})) - (\sum_{i=1}^{n} ((x, \beta_{1}))((\beta_{1}, \beta_{k})) \right|
$$
\n
$$
= \left| ((x, \beta_{k})) - (\sum_{i=1}^{n} ((x, \beta_{1}))((\beta_{1}, \beta_{k})) \right|
$$
\n
$$
= \left| ((x - \sum_{i=1}^{n} ((x, \beta_{1}))\beta_{1}, \beta_{k}) \right|, \text{if } k \leq q \right|
$$
\n
$$
\left| ((x - \sum_{i=1}^{n} ((x, \beta_{1}))\beta_{1}, \beta_{k}) \right| \right| < c, \text{ Thus } ((x - \sum_{i=1}^{n} ((x, \beta_{1}))\beta_{1}, \beta_{k}))
$$
\n
$$
\rightarrow 0 \text{ as } n \rightarrow \infty. \text{ If } \{r_{n}\}_{n=1}^{2} \text{ is a sequence of elements}
$$
\n
$$
\text{of } H, \text{ such that } r_{n} \rightarrow f \text{ as } n \rightarrow \infty, \text{ then } ((r_{n}, \beta_{k})) \rightarrow ((r, \beta_{k}))
$$
\n
$$
\text{as } n \rightarrow \infty, \text{ for if } c \text{ is a positive number, there is a positive number of } n! \text{ such that } f \text{ is a positive integer, such that } s > N! \text{, then } \|r_{s} - r\| < c, \text{ since } f \text{ is in } H,
$$
\n
$$
((r, \beta_{k})) \text{ exists. Now } |((r_{n}, \beta_{k})) - ((r, \beta_{k}))| = |((r_{n} - r, \beta_{k}))|
$$
\n
$$
\text{which by the Schwarz inequality does not exceed}
$$
\n
$$
||r_{n} - r|| || ||\beta_{k}|| = ||r_{n} - r|| < c. \text{ Thus if}
$$
\n
$$
r_{n} = x - \sum_{i=1}^{n} ((x, \beta_{1}))\beta_{1} \text{ for each } n, ((x - \sum_{i=1}^{n} ((x, \
$$

N such that if n is a positive integer such that $N < n$, then $||x - \sum_{i=1}^{n} ((x, \emptyset_i))\emptyset_i ||$ < c. Since for each positive integer i less than or equal to n, $((x,\emptyset_1))$ is a real number, $\sum_{i=1}^{n} ((x, \emptyset_i))\emptyset_i$ is a finite linear combination of the β , 's. Thus the set of all finite linear combinations of the $\cancel{\phi}_1$'s is dense in H.

IV. Suppose that 1) is true and that c is a positive number. If x is an element of H, there is a positive integer n and a sequence of scalars $\{a_i\}_{i=1}^n$, such that

 $\|x-\sum_{i=1}^n a_i\phi_i\|<\frac{C}{2^*}$. Now if b, is a rational number, then $\|a_1\beta_1-b_1\beta_1\| = ((a_1\beta_1-b_1\beta_1,a_1\beta_1-b_1\beta_1))$ $=(a_1\beta_1, a_1\beta_1')$)-2($(a_1\beta_1, b_1\beta_1')$) + + $((b_1\cancel{p}_1',b_1\cancel{p}_1'))$ $= a_1^2 - 2a_1b_1 + b_1^2 = (a_1-b_1)^2$. Thus

for each a^t_i , let b^t_i be a rational number, such that $|a_1-b_1| \leq \frac{c}{2n}$. Then $||a_1\cancel{\beta_1}-b_1\cancel{\beta_1}|| \leq \big(\frac{c}{2n}\big)$ and $||a_1\cancel{\beta_1}-b_1\cancel{\beta_1}|| \big\langle -\frac{c}{2n} \big\rangle$. $\frac{c}{2}$ = $\sum_{i=1}^{n} \frac{c}{2n}$ > $\sum_{i=1}^{n} ||a_i \phi_i - b_i \phi_i||$ so that

c=
$$
\frac{c}{2}
$$
 + $\frac{c}{2}$ >\n $|| x - \sum_{i=1}^{n} a_i \beta_i || + || \sum_{i=1}^{n} a_i \beta_i - \sum_{i=1}^{n} b_i \beta_i ||$
\n $|| x - \sum_{i=1}^{n} a_i \beta_i + \sum_{i=1}^{n} a_i \beta_i - \sum_{i=1}^{n} b_i \beta_i ||$
\n $|| x - \sum_{i=1}^{n} b_i \beta_i ||$. Thus the set of all linear

combinations of the β_1^{\prime} 's with rational coefficients is dense in H. The set of all rational linear combinations of β_1 is countable. The set of all rational linear combinations of β_0 is countable. Thus the set of all rational linear combinations of $\left\{\varnothing_1,\varnothing_2\right\}$ is countable. In general the set of all rational linear combinations of $\{\phi_1^*,\ldots,\phi_n^*\}$ is countable for each n. Let $\mathbb{T}_n = \{z \mid z \text{ is a rational} \}$ linear combination of $\{\emptyset_1, \ldots, \emptyset_n'\}$, \cdots $T' = \{T_1, \ldots, T_n, \ldots\}$ is countable, so that $T = \bigcup_{\tau} T_1$ is countable. Thus $T^{\text{eff}}_{\text{1}}$

H is separable with respect to T. V. Suppose that 4) is true. Let $\{t^1_1,\ldots,t^1_n,\ldots\}$ (l) be an ordering of T. Let $T^* = \left\{ t^*_{\hat{1}}, \ldots, t^*_{n}, \ldots \right\}$ be a linearly independent set selected from T by eleminating those elements in the ordering (l) that are linear combinations of their predecessors. We see that any finite subset of T* is linearly independent. By Theorem 12, there is an orthonormal sequence $\{\varnothing_1\}^{\infty}_{i=1}$ of elements of H, such that if f is a linear combination of the first n elements of

T*, then f is a linear combination of the first n elements of $\left\{\varnothing\right\}$ $\underset{1=1}{\infty}$ **.** Suppose that x is an element of H. Let $\sum_{i=1}^{n} b_i t_i^*$ be a linear combination of the first **n** elements **of** T^* , such that $||x - \sum_{i=1}^{\mathfrak{l}} b_i t_i^*|| \leq c$. Let $\{a_i\}_{i=1}^{\mathfrak{l}}$ be a $\text{sequence of scalars, such that} \ \sum_{A=1}^{H} a^A A^B A^{-1} = \sum_{A=1}^{H} b^A A^B A^{-1}$ $\text{Then } \parallel x - \sum_{i=1}^n a_i \varnothing_i \parallel \leq c.$ Obviously $\sum_{i=1}^n a_i \varnothing_i$ is a finite **linear** combination of the φ_1 's. Thus the set of all **finite** linear combinations of the \varnothing ¹ **s** is dense in H.

Chapter IV

SEPARABILITY OF H_m

Throughout this chapter, we assume that m Is a function defined on [a,b], such that m is strictly increasing, and either m is left continuous at each x, such that $a \leq x \leq b$, or m is right continuous at each x, such that a \leq x \lt b.

Theorem 15 - If f is in H_m , then either f is left continuous at each x, such that a $\langle x \leq b$, or f is right continuous at each x, such that a $\leq x < b$.

Proof $-$ In the proof of Theorem 2, we saw that if f is in $H_{m'}$, then for each subinterval $[p,q]$ of $[a,b]$,

$$
\left(f(q)-f(p)\right)^2 \leq \int_p^q \frac{\left(\mathrm{d}f\right)^2}{\mathrm{d}m} \left(m(q)-m(p)\right).
$$

Let $J = \int_a^b \frac{\left(\mathrm{d}f\right)^2}{\mathrm{d}m}$.

I. Suppose that m is left continuous at each x, such that a $\langle x \leq b$ and that a $\langle y \leq b$. m is left continuous at y. There is a subinterval $[z,y]$ of $[a,b]$, such that if x is in [z,y], then $m(y) - m(x) \le \frac{c^2}{J+1}$. For each x in [z,y],

$$
(f(y)-f(x))^2 \leq \int_x^y \frac{(df)^2}{dm} (m(y)-m(x))
$$

$$
\leq J(m(y)-m(x))
$$

$$
< J \frac{c^2}{J+1}
$$

$$
< c^2 \cdot \text{Thus } |f(y)-f(x)| < c \text{ for}
$$

each x in [z,y], which implies that f is left continuous at y.

II. Suppose that m is right continuous at each x, such that $a \leq x \leq b$ and that $a \leq y \leq b$. **m** is right continuous **at y. There is a subinterval [y,z] of [a,b], such that 2 if x is in [y,z], then m(x)-m(y) < . For each x in** $[y, z],$

$$
(f(x)-f(y))^2 \leq \int_y^x \frac{(df)^2}{dm} (m(x)-m(y))
$$

$$
\leq J(m(x)-m(y))
$$

$$
< J \frac{c^2}{J+1}
$$

$$
< c^2 \cdot \text{Thus } |f(x)-f(y)| < c
$$

for each x in [y,z], which implies that f is right continuous at y.

If [p,qj is an interval, then the length of [p,q] is the number q-p.

Definition 8 **- For** each **positive integer n**, let D_n **be a subdivision of [a,b] containing exactly n+1 elements** each of which has length $\frac{b-a}{n+1}$. **L e t**

 K_n = $\{X_0, X_1, \ldots, X_{n+1}\}$ denote the set of all endpoints **of the elements of D , where 11**

 $\mathbf{x}_1 \leq \mathbf{x}_2 \leq \mathbf{x}_3 \leq \mathbf{x}_4 \leq \mathbf{x}_5$

Let Fⁿ denote the set of all functions h defined on [a,b], such that ^r a rational number, if xeKⁿ h(x) = $h(x_{1}) + \frac{x - x_{1-1}}{x - x}$ (h(x_i)-h(x_i¹)),if $x \in [x_{1-1}x_1]$, for $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ **i=l,..,,n+lj x / Kn.**

For each **h** in F_n , the $(n+2)$ -tuple $(h(x_0), h(x_1), \ldots, h(x_{n+1}))$ **is called the nth order coordinate sequence of h.**

There is exactly one nth order coordinate sequence corresponding to each h in Fn. If A is an (n+2)-tuple of rational numbers, then A completely determined some function in F_n .

 $\sum_{i=1}^{\infty} F_i$ for F_i defined in Definition **8 is countable.**

Proof - Suppose that n is a positive integer and consider F_n . For each function **h** in F_n , there is exactly one **nth order coordinate sequence (a^a^,... > a n+]_) • F o ^r each nth order coordinate sequence of rational numbers** $(b_0, b_1, \ldots, b_{n+1})$, there is exactly one function **h** in F_n , such that $h(x_1) = b_1$, for each i such that $i=0,1,\ldots,n+1$. **Thus Fⁿ contains as many unique functions as there are unique** (n+2)-tuples of rational numbers. If $(c_0, c_1, \ldots, c_{n+1})$ **is an nth order coordinate sequence of rational numbers,**

then for each c_4 there is only a countable number of values that c_1 may have. Thus since there is only a finite number of c.'s to be determined in each coordinate sequence, there is a countable number of nth order coordinate sequences of rational numbers. Therefore F_n is countable. The set of $=[\bigcup_{1=1}^{\infty}$ F₁ is countable by Theorem 15.

Theorem 17 - Let S denote the set of all functions defined and continuous on [a,bj. If c is a positive number and f is an element of S, then there is a sequence \cdot $-{h_i}$ $\brace{1=1}$ of elements of F, such that there is a positive number N, such that if n is a positive integer and n $>$ N, then $| f(x)-h_n(x) | < c$, for every x in [a,b].

Proof - Suppose that c is a positive number and that f is an element of S. Let $D_1 = \{ [a,x_1], [x_1,b] \}$ be a subdivision of [a,b], such that $x_1=a + \frac{b-a}{2}$. Let $K_1 =$

 ${x_0, x_1, x_2}$ denote the set of all endpoints of the elements of D_1 , where

$$
a=x_0 < x_1 < x_2 = b.
$$

Let h_1 be the function defined by

 \int a rational number p such that $f(x)-p\leq \frac{c}{\epsilon}$, if $n_1(x) = \bigwedge$ x-x. $h_1(x_{1-1}) + \frac{1}{x_1 - x_1 - 1}(h_1(x_1) - h_1(x_{1-1})),$ if $x \in [x_{1-1}, x_1].$ for i=1,2; $x \not\in K_1$.

is continuous and therefore is in S, In general, if n is a positive integer, let $D_n = \{ [a, x_1], [x_1, x_2], \ldots, [x_n, b] \}$ be a subdivision of $[a,b]$, such that $x_1 = a + i \frac{b-a}{n+1}$ for **be a subdivision of [a,b], such that x^a+i for all endpoints of the elements of** D_n **, where**

$$
\mathbf{a}=\mathbf{x}_0 < \mathbf{x}_1 < \ldots < \mathbf{x}_n < \mathbf{x}_{n+1}=\mathbf{b}.
$$

Let h be the function defined by n

 $h_n(x) = \begin{cases} h_n(x_{1-1}) + \frac{x_1 - x_{1-1}}{n_1 - x_{1-1}} & (h_n(x_1) - h_n(x_{1-1})) \end{cases}$ if $x \in [x_{1-1}, x_1]$. \int *a* **rational number p**, such that $f(x)-p \leq \frac{c}{b}$, if $x \in k_{n}$ **for 1=1,.... ,n+l ; x / Kn«**

h is continuous and therefore is in S. n

There is a positive number d, such that if each of x and y is in $[a,b]$ and $\vert x-y \vert \leq d$, then $\vert f(x)-f(y) \vert \leq \frac{c}{6}$. Let **N** be the least positive integer, such that $\frac{b-a}{d} \le N$. $\text{Consider } h_n \text{ for } n > N.$ $D_n = \{ [a, x_1], [x_1, x_2], \ldots, [x_n, b] \}$ **is** a **subdivision** of $[a,b]$, such that $x_1 = a+1$ $\frac{b-a}{n+1}$ for **i=l,2,...,n " The set of all endpoints of the elements of D" is denoted by n**

$$
\begin{aligned}\n\kappa_n \xi_0, & x_1, \dots, x_n, x_{n+1} \}, \text{ where} \\
a = x_0 < x_1 < \dots < x_n < x_{n+1} = b.\n\end{aligned}
$$

Each element of D_n is of length $\frac{b-a}{n+1} \leq \frac{b-a}{N} \leq d$. Thus if each of z_1 and z_2 is in $[x_{1-1},x_1]$, then $| f(z_1)-f(z_2)| < \frac{c}{6}$.

Suppose that $a \leq x \leq b$. If x is in K_n , then $|h_n(x)-f(x)| \leq \frac{c}{b}$. If x is not in K_n , let $[x_{1-1},x_1]$ be that element of D_n that contains x. Each of the following three statements is true:

1)
$$
| h_n(x_1) - f(x_1) | \le \frac{c}{6}
$$
.
\n2) $| h_n(x_{i-1}) - f(x_{i-1}) | \le \frac{c}{6}$.
\n3) $| f(x_1) - f(x_{i-1}) | \le \frac{c}{6}$.

Thus **Thus**

$$
\frac{c}{3} > |h_n(x_1) - f(x_1)| + |f(x_{1-1}) - h_n(x_{1-1})|
$$
\n
$$
|h_n(x_1) - f(x_1) + f(x_{1-1}) - h_n(x_{1-1})|
$$
\n
$$
|h_n(x_1) - h_n(x_{1-1})| - |f(x_1) - f(x_{1-1})|
$$
\n
$$
|h_n(x_1) - h_n(x_{1-1})| < \frac{c}{3} + |f(x_1) - f(x_{1-1})| < \frac{c}{3} + \frac{c}{6} = \frac{c}{2}.
$$
 Thus
\nsince $|h_n(x) - h_n(x_1)| \leq |h_n(x_{1-1}) - h_n(x_1)|$,
\n
$$
|h_n(x) - h_n(x_1)| + |f(x) - f(x_1)| < \frac{c}{2} + \frac{c}{6}
$$
\n
$$
|h_n(x) - h_n(x_1) + f(x_1) - f(x)| < \frac{2c}{3}
$$
\n
$$
|h_n(x) - f(x)| - |f(x_1) - h_n(x_1)| < \frac{2c}{3}
$$

$$
|h_n(x)-f(x)| \leq \frac{2c}{5} + |f(x_1)| - h_n(x_1)| \leq \frac{2c}{5} + \frac{c}{6} = \frac{5c}{6} \leq c.
$$

Let Θ denote the function defined on $[a,b]$, such that $\Theta(x) = 0$ for every x in [a,b].

Theorem 18 - There is a linearly independent subset F^* of P, such that the set of all finite linear combinations of the elements of F* is dense in S.

Proof - By Theorem 16, F is countable. Let

(1) $\{h^1_1, \ldots, h^n_n, \ldots\}$

be an ordering of F. Let F^{*} = $\{h_1^*, \ldots, h_n^*, \ldots\}$ be a linearly independent set selected from F by eliminating those elements in the ordering (1) that are linear combinations of their predecessors. We see that any finite subset of F* is linearly independent. For each h in F, h is in F* or h is a linear combination of elements in F*.

Suppose that f is an element of S. If c is a positive number, there is an element h_n of F , such that n * $|f(x)-h_n(x)| \leq c$ for every x in [a,b]. If h_n is in F*, then $h_n=h_m^*$ for some $m \leq n$. If h_n is not in F^* , there is a linear combination **A** of elements of F^* , such that $h_n=A$. In either case, there is some linear combination B of elements of F*, such that B=h_n, so that $|f(x)-B(x)| < c$. Thus F* is dense in S.

Definition 9 - Let S be the set of all continuous functions defined on [a,b]. If each of f and g is in S,

define $\mathbf{m}((f,g))=-\int_{a}^{b} f(t)g(t)dm(t).$

Theorem 19 - If each of f, g , and h is in S and k is a number, then the following statements are true:

- 1) $_m((f,g))$ is a real number.
- 2) $_{m}((f,f)) \geq 0$ and $_{m}((f,f))=0$ if and only if $f=\theta$. 3) $_m((f,g)) = m((g,f))$.
-
- 4) $_{m}((f+g,h)) = {_{m}((f,h)) + {_{m}'}((g,h))}.$
- 5) $_m((f, kg)) = k_{m}((f, g))$.

Proof - Suppose that each of f, g, and h is an element of S and that k is a number.

I. Since each of f and g is a continuous function, the product fg is also continuous. Thus the integral $\int_{a}^{b} f(t)g(t)dm(t)$, which is a real number, exists. II. Suppose that f is a continuous function. Then $\int_{a}^{b} (f(t))^{2} dm(t) = m((f,f))$ exists. Let D be a subdivision of [a,bj. Let r be a function whose domain is D, such that $r(I)$ is in I for every I in D. Consider $\sum_{i} (f(r))^2 \Delta m$. For each I in D, $\Delta_{\tau} m > 0$. In addition, \overline{D} $(f(r))^2 \geq 0$. Thus $\sum_{r=1}^{\infty} (f(r))^2 \Delta^m$ is nonnegative. There-® fb in the state of the state o fore since every approximating sum of $\int_{0}^{D} (f(t))^{2} dm(t)$

is nonnegative, $m((f, f)) \geq 0$.

Suppose that $f(x) = 0$ for every x in $[a,b]$. Then **for every subdivision D of [a,b],**

$$
\sum_{D} (f(r))^2 \Delta m = \sum_{D} (0) \Delta m = 0
$$

regardless of the function **r**. Thus $_{m}((f, f))=0$ if $f = 0$.

Suppose that f is a continuous function, such that $_{\text{m}}((f,f)) = 0$. Suppose that for some q in $[a,b]$, $f(q) \neq 0$. **Then** $(f(q))^2 > 0$. There is a subdivision D of $[a,b]$, **such that if I is in D, and each of x and y is in I, then o** $|f(x)|^2 - (f(y))^2| \leq \frac{1}{2}$ **that element of D that contains q. Let E be a subdivision of [s,tJ and r a function whose domain is E, such that r(I) is in I for every I in E. Consider the sum** \angle $(f(r))^2\Delta m$. **E** \mathcal{L} **,** $(f(r))^2 \Delta m \ge \sum_{i} (f(q))^2 \Delta m = (f(q))^2 \sum_{i} \Delta m$ $E = E$ **2 E 2 E** 2 **> _z:) (m(t)-m(s)) . Since m is strictly 2 _ 2** $increasing, m(t)-m(s) > 0.$ Since, for every subdivision **E** of [s,t], $\sum_{i} (f(r))^2 \Delta m \geq \frac{\text{1191}}{2}$ (m(t)-m(s)), then **E ~** $\int_{0}^{t} (f(t))^{2} dm(t) > 0.$ Now $\begin{bmatrix} b \\ a \end{bmatrix} (f(t))^2 dm(t) \geq \begin{bmatrix} \frac{t}{s} (f(t))^2 dm(t) \end{bmatrix}$, so that

$$
\int_{a}^{b} (f(t))^{2} dm(t) > 0, \text{ which is a contradiction of the assumption that }_{m}((f,f)) = 0. \text{ Thus } f(x) = 0 \text{ for every}
$$

x in [a,b].
III.
$$
{m}((f,g)) = \int{a}^{b} f(t)g(t)dm(t)
$$

$$
= \int_{a}^{b} g(t)f(t)dm(t)
$$

$$
= \int_{a}^{b} (f(f)+g(t))h(t)dm(t)
$$

$$
= \int_{a}^{b} (f(t)h(t) + g(t)h(t))dm(t)
$$

$$
= \int_{a}^{b} f(t)h(t)dm(t) + \int_{a}^{b} g(t)h(t)dm(t)
$$

$$
= \int_{a}^{b} f(t)h(t)dm(t) + \int_{a}^{b} g(t)h(t)dm(t)
$$

$$
= \int_{a}^{b} f(t)(kg(t))dm(t)
$$

$$
= k \int_{a}^{b} f(t)g(t)dm(t)
$$

$$
= k(\int_{m}^{b} (f,g(t)) - k \int_{a}^{b} f(t)g(t)dm(t)
$$

$$
= k(\int_{m}^{b} f(t)g(t)dm(t))
$$

Theorem 20 - There is a sequence $\left\{\emptyset_1\right\}$ ∞ of **elements of S, such that**

1) g is a linear combination of the first n elements of F* if and only if g is a linear combination of the first **n** elements of $\{\emptyset_1\}_{1=1}^{\infty}$, and

2)
$$
{m}((\emptyset{1}, \emptyset_{j})) = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}
$$

Proof - If we replace the general inner product ((.,.)) in Theorem 12 with the inner product ((.».)), we obtain the required sequence $\left\{\varnothing_1\right\}_{1=1}^{\infty}$ from the **linearly** independent set F^* where each \emptyset^{\prime}_k is given by

$$
\varnothing_{k} = \frac{h_{k}^{*} - \sum_{i=1}^{k-1} m \left((h_{k}^{*}, \varnothing_{i}) \right) \varnothing_{i}}{\| h_{k}^{*} - \sum_{i=1}^{k-1} m \left((h_{k}^{*}, \varnothing_{i}) \right) \varnothing_{i}} \|
$$

 $\underline{\text{Definition 10}}$ **- Since each** β_1 **obtained in Theorem** 20 **i**s a linear combination of continuous functions, φ_1 **is continuous** on $[a,b]$. For each \emptyset define **fx** $\mathbf{u}_{\mathbf{1}}(x) = \mathbf{u}_{\mathbf{a}} \quad \varnothing_{\mathbf{1}}(t) \, \text{dm}(t)$.

Theorem 21 - The sequence $\{u_i\}_{i=1}^{\infty}$ is an orthonormal **sequence with respect to the inner product ((.,.)) .**

Proof - Suppose that each of u" and u^t is an element $\frac{1}{s}$ **1111 1111 1111 1111 1111 1111 1111 of u[±] . By Theorem 7* each uⁱ is H-integrable. Thus** every u_i is in H_m . **1 m** I. **I. Suppose that s = t . Then ((us,ut))^m = ((^u ^s» ^s))^m •** $a \overline{dm}$ $\int_{a}^{b} \frac{du_{s}du_{s}}{dm} = \int_{a}^{b} (\emptyset_{s}(x))^{2} dm(x).$

Jet dfn Jsi

Since
$$
\{\varphi_1\}_{1=1}^{\infty}
$$
 is orthonormal,
\n $\int_{a}^{b} (\varphi_s(x))^2 dm(x) = \int_{m} ((\varphi_s, \varphi_s)) = 1$, so that $((u_s, u_s))_{m} = 1$.
\nII. Suppose that $s \neq t$. Then $((u_s, u_t))_{m} = \int_{a}^{b} \frac{du_s du_t}{dm}$. By Theorem 9 $\int_{a}^{b} \frac{du_s du_t}{dm} = \int_{a}^{b} \varphi_s(x) \varphi_t(x) dm(x)$. Since $\{\varphi_1\}_{1=1}^{\infty}$ is orthonormal, $\int_{a}^{b} \varphi_s(x) \varphi_t(x) dm(x) =$ $= \int_{m} ((\varphi_s, \varphi_t)) = 0$, so that $((u_s, u_t))_{m} = 0$.
\nTheorem 22 - If g is in H_m , such that $((g, u_1))_{m} = 0$ for all j, then $g = 0$.

Proof - Suppose that g is in H_m , such that $\left(\left(\mathbf{g}, \mathbf{u}_1\right)\right)_m = 0$ for all i. Suppose that c is a positive f **humber** and that f is a continuous function defined on **Proof - Suppose that g is in such that** $[a, b]$, By Theorem 8, $\begin{bmatrix} b & du_1 & d \end{bmatrix}$ $\begin{bmatrix} 0 & d & f_1 \\ d & g \end{bmatrix}$ $\begin{bmatrix} a_1 & b_1 & c_1 \\ c_2 & c_3 & d_2 \\ d_3 & d_3 & d_3 \end{bmatrix} = \begin{bmatrix} 0 & b_1 & c_1 \\ c_2 & d_3 & d_3 \\ d_3 & d_3 & d_3 \end{bmatrix}$ **[a,b]. By Theorem 8, P* d u i ^d ^g _ f°** *0.* **(t)dg(t), so** that $\int_{a}^{b} \varphi_{i}(t) d g(t) = 0$ for every positive integer i. **g is of bounded variation, so that there is a number M, such that if D is a subdivision of [a,bJ, then** $M > \sum |\Delta g|$. There is a positive integer n and a **D** sequence of scalars $\{a_i\}_{i=1}^n$, such that $f(x)$ - $\sum_{i=1} a_i \beta_i(x)$ $\begin{cases} \begin{array}{c} \times \\ \times \end{array} \end{cases}$ for every x in [a,b].

Thus $f(x)=k(x)+\sum_{i=1}^{n}a_i\phi_i(x)$ where $|k(x)|<\frac{c}{M+1}$ for

every x in [a,b]. Consider
$$
\int_{a}^{b} f(t)dg(t)
$$
.
\n
$$
\left| \int_{a}^{b} f(t)dg(t) \right| = \left| \int_{a}^{b} (k(t) + \sum_{i=1}^{n} a_{i}\varphi_{i}(t))dg(t) \right|
$$
\n
$$
= \left| \int_{a}^{b} k(t)dg(t) + \sum_{i=1}^{n} \int_{a}^{b} \varphi_{i}(t)dg(t) \right|
$$
\n
$$
= \left| \int_{a}^{b} k(t)dg(t) \right| \left\langle \frac{c}{M+1} M \right| \left\langle c \right|
$$

Therefore $\int_{a} f(t) d g(t) = 0$. By the proof of Theorem 11, each of $g(a)$, $g(b)$, $g(x⁺)$, and $g(x⁻)$ is zero. By Theorem 15, either g is left continuous at each x, such that a $\langle x \leq b$ or g is right continuous at each x, such that $a \leq x \leq b$, so that $g(x) = 0$ for every x in [a,b].

Theorem $23 - H_m$ is separable.

Proof - By Theorem 22, if g is an element of H_m , such that $((g,u_1))_{m}=0$ for all i, then $g = 0$. By Theorem 14, this is equivalent to the statement that H_m is separable. By the proof of Theorem 14 , we see that H_m is separable with respect to the set of all finite rational linear combinations of the sequence $\{u_i\}_{i=1}^{\infty}$.