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Chapter I 

INTRODUCTION AND PRELIMINARY DISCUSSION 

Introduction 

In this thesis we consider integrals of a certain class 

of interval functions. Specifically we consider (Chapter 

II) a nondegenerate number interval [a,b], a real valued 

function m, defined and nondecreasing on [a,bj, and the set 

Hm, of real valued functions f, defined on [a,b] such that 

1) f(a)=0 

2) for each subinterval [p,q] of [a,b], if m(q) -

m(p) = 0, then f(q) - f(p) = 0 . .. 2 

3) the set of all suras of the form for 

subdivisions D of [a,b] is bounded above. 

By means of a certain interval function integral, we 

define (Chapter II) an inner product (( •*• ))m for H^. 

With respect to this inner product, we prove that ^ is a 

complete inner product space^ in other words, a Hilbert 

space; 

The remainder of the thesis is an examination of certain 

orthogonality and separability properties of H^. 

Preliminary Definitions and Theorems 

Suppose that [a,b] is a number interval such that a <( b. 

Definition I. - The statement "D is a subdivision of 

[a,b3" means 

1) D is a finite set of number intervals [p,qj such that 

a =3 p < q si b 

2) if 1^ and I2 are distinct elements of D, then 1^ and 

I2 have at most one point in common 



3) if x Is a number BO that a » x =z b, then x is in 

some element of D. 

Definition 2. - The statement "D1 is a refinement of a 

subdivision D of [a,b]" means that D' is a subdivision of 

[a,b ], such that if x is an end point of some element of D, 

then x is an end point of some element of D . 

Suppose that [a,b ] is a number interval and that H is a 

real valued function defined on £ I j I is a subinterval of 

[a,b] J . We state the following theorem without proof. 

Theorem 1. - If a i p < q = b, then there is no more 

than one number J, such that if c is a positive number, then 

there is a subdivision D of [p,q]» such that if D' is a re-

finement of D, then 1 J - 2 H(I) I < c. 
D' 

If J is a number satisfying the conditions of Theorem 

1 with respect to H and [p,q], then J will be called the 

Jq 
H. 

P. 
Throughout this thesis every integral considered will be 

the limit for refinements of subdivisions of the appropriate 

sums. 
We also see that JLf a » r < ( w < ( s » b and each of the 

fw Is 
integrals I H and 1 H exists (in the sense of Theorem l), 

Lso see thatJLJ 
rw Is 

Jr H a n d Jw 

is fw fs fs 

H exists and I H + l H = 1 H. 
r Jr Jw Jr 

At this point we adopt the convention that if each of 
x and y is a number, then ~ 0 if y = 0 and ^ has the usual 

*y «y 

meaning otherwise. 

Theorem 2, - Suppose that [a,b] is a number interval and 

that each of f and g is a function, such that [a,b] is a sub-

set of the common domain of f and g and such that g is non-

decreasing on [a,b]. Suppose that if [p,q] is a subinterval 
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of [a,b] and g(q) - g(p) = 0, then f(q) - f(p) = 0. 

Then: 

.1) If E is a refinement of a subdivision D of a sub-

interval [p,qj of [a,b], then 2 ^ ̂  P 
D E " b 

(where Xj ^ ^ denotes the sum of ĝlsjlg'jfc]'' o v e r a 1 1 

elements [t,s] of D). 

2) Suppose that [p,q] is a subinterval of [a,b]. The 

following three statements are equivalent: 

a) There is a number M, such that if D is a sub-

division of [p,q], then Xj ^ ^ 2s M. 
D ns 

b) There is a number J, such that if c is a 

positive number, then there is a subdivision D of 

[p,q]» such that if E is a refinement of D, then 
v2t 

< C. In this case by Theorem 1 j - £ ^ 
E A s 

there is only one such number J which in accordance with 

i2 
our convention we designate by : 

c) There is a function h defined and nondecreasing 

on [p,qj, such that if I is a subinterval of [p,q], then 

UjJOUjg). 

Proof - I. Suppose that [p,q] is a subinterval of [a,b] 
and that D is a subdivision of [p,q]. Suppose that E is a 
refinement of D and let Ej = f [ s , t ] f [s,t] e E, [s,t] S I, 

I € D J . Suppose that Ej has n elements. Let K = 

~ f x I x 6 P / x / q$ x is an end point of some element 
of Ej | . K has n-1 elements. Let = min fx j x e K ] 



There i s a subdiv is ion of [ p ,q ] , such t h a t = 
= [k^,q] ^ . Denote [ p , ^ ] by 1^ and [k^q] 

by 1^. 

a ) , ,Suppose t h a t A T g A w g / O , E i t h e r 
X| X| 

A i ( g A j / f = A x / g A j f o r A j g A -j-/ f ^ 

A T / g A T e i t h e r case 
X| X | 

( A T g A T / f - A T / g A T f ) 2 S 0 
•H -4 -L| Is 

( A T g A w f ) 2 -2( A T g A T / f ) ( A T / g A T f ) + 
X1 A| I • "H J-, i) 
+ ( A w g A T f ) 2 £ o 

Xj X| 

2 ( A I | g A J j f ) ( A j / g A f ) < ( A Z i s a i r f ) 2
 + 

+ ( A T , g A T f ) 2 

i | x( 

A I | S A i ; g ( A ^ f ) 2 + 2 ( A I ( g A i ; f ) ( A ± / g A 

+ A A -^g ( A A j g A ( A I ( f ) 2 + 

+ ( A I ( g A x / f ) 2 + ( A j / g A j f ) 2 + 

+ A j j g A j / g ( A j/**)2 

( A t f + A r f ) 2 ( A , g A T / g ) 4 
xi -M J-l -H 

( A X i g + A jvg) [ A x , g ( A I f f ) 2 + A j g( A ^ f ) 2 ] 

( i . f t 4 , , f ) 2 A T<g ( A T f ) 2 + A T g ( A T , f ) 2 

-H XJ M X| X| -Li 
A T g + A T'g A t g A T / g 

J-l -M -h j-j 



( A T f + A T / f f ( A T f)
2 + ( A T/f)

2 

i-j i, ^ X| J., 

A I (g + A x/g A j g A j/g 

( A ! f ) 2 ^ (A I(f)
2
 + ( A x/f)

2 

A j g A Xjg A j/S 

b) Suppose that A T g A T/g = 0. One of the following 
X, x( 

is true: 

i) A j g = 0, A j/g / 0, 

ii) A , g = 0, A T/g » 0, 
it i) 

iii) A T g / 0, A T/g = 0. Due to the nature of A f 
J-i x, 

when A g = 0, we have: 

*2 , A „ . A ^ 2 

-i 
i) ( A 1 f ) 2 « ( A I | f + 4 j'f)' 

A j g A I( g V~A j/g 

= (0 + A T'f)
2 

Ai 

o + A j/g 

( A j. f)2 = ( A j/f)a 

A j g Aj/g 

ii) ^ ^ I ( A t f)2 . (° + o)2 

A T g I ° 0 + 0 

2 
( A j f ) = 0 by convention 

A j g 

iii) * A j ( A T f)
2 = ( A T f + 0)

2 

A x g A Ij g + 0 



( A T tf = ( A T tf 

A x g A j s 

Now le t k2 = mln [ K - ^k-J J . There is a subdivision 

D2 of [k:-^,q], such that Dg *» [ [k-^kg], [k2*q^ ^ • Demote 

[k-^kg] by I 2 and [kg,q] by Ig . Repeating a) and b) above 
? 

for Ig and Ig, we see that 

( A irf)
2 = ( A [ k i > q ] f )

2
# ( A ^ f ) 2 + ( A l L f f . 

A I f s ^ [ k r q ] S A I i ,g A I£g 

Thus by induction we see that for 1 » j £ n-1 i f 

k j = min f K - fk.^, . . . » k j _ i ^ ^ a n d i s a sub-

division of [k j_1 ,q] such that = f [k^_1»k^], [k j ,q ] ^ , 

then < A i ' f ) 2 ( A t f ) 2 + ( A x> f f . In addition 
«J-1 ^ j j 

A « A J j S ^ IJ/ 6 

{ A x f ) 2 ( A x f)
a + ( A i;f)

2 ^ 
^ SS — 

A i s A I }S A I('S 

" - 1 ( A t f ) 2 

J 
J - l A I , 6 

. ( A t ' ' f ) 2 

n - l 
A j' g 

n - l 

Therefore* 
( i T ^ i V ( A f)2 
—g — = / , —g-g"" * Now summing over a l l I in D we 

. J . X u u f s z 4 4 1 2 • 
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II. Suppose that a) is true. Let H = [ . u - 2 : t u t 
D A s 

for some subdivision D of [p,q] J . H is bounded above by 

M. Thus there is a number J such that J is the least upper 

bound of H. Let c be a positive number. There is a sub-

division D of [p,q], such that j J - LAJp- < c. 

j) A S 

Let E be a refinement of D. By I £ 

L f | I 2
 a n d £ L A | I 2 D

g j. 

E A S E A S Thus J - < c. 
Z ( A fV 
E A S 

Suppose that b) is true. Let D be a subdivision of 

CPj.q3 and suppose that c is a positive number. There is 

a subdivision A of [p,q], such that if A1 is a refinement 

of A, then 

. Z LAJl2 
A' ^ S 

common refinement of A and D„ Then 

k2 
< c 

<c. Let B be the greatest 

!J 

2 
B 

B 

Is 
! B 

for all 

B A s 

A e 

A s 

A s 

< c 

< c 

< }J I + C. Since ( A t f) > 0 

for all subintervals I of [p,q], it follows that 
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IE, LA_£lS > o. Thus H a I f'2 < | J | +o. Since 
B A 8 B Aj. g 

Tj, £} 

B is a refinement of D, we see by I that ^ ̂  = 
D A & 

= X . ^ V P 2 ; therefore V ^ ̂  V & < (J | + c. 
—' A S *—» A s 1 i 
B D 

Let jJ | + c = M. 

Suppose that c) is true. Let D be a subdivision of 
2 

[p»q]. For each I in D, ( A j f) =| A j h A ̂  g. Thus 

( A i f)2 

=~- — A T h. Summing over all I in D, we have 
A I s 1 

? 4 # s ? « * 
? ^ = h(l) " »(P>-
Denote h(q) - h(p) by M. Then a) is true. 

S 
Suppose that a) is true. Since a) is equivalent to b), 

t / df ̂  
•W—t- exists for every subinterval [s,t] of [a,b] and, g 

s 

therefore, also for every subinterval of [p,q]. If x is in 

[p,q], let h be the function defined by 

0, if x =s p 

h(x) 

" p ^ i! f 

, if p < x < q. 

Suppose that each of x and y is in [p,q], such that x < y, 

k2 
h(y) - h U ) = • i||i2 - £ Igl' 



h(y) - h(x) S X 
i= 0, for If c is a positive number, 

then there are subdivisions A and B of [p,y] and [p,x] 

respectively, such that if A' and B' are refinements of 

A and B respectively, then 

Jn - 2 -MrP" I < c/2 and 121 - Jr 
A S B 

< c/2, 

where = £ (df)' dg and J\ s: U f r 
dg 

P JP 

There is a refinement F of A such that x is an end point of 

some element of F. Let 

Ax = [ I | I e F, I — [p»x] | . Let B* be a common refine-

ment of B and A , and let D = B* U [F -A ]. Suppose that. 
X x 

D1 is a refinement of D. If D* = fl | I e D', I 
X 

[p*x]} 

and D' = [ I | I € D!# I S [x,y j 3 * then 

j 2 LAlf. 2 UlD2 
dl - tv' A g D' A S D. 

X 

Z u _ f i 
Dx 

Thus 

A s 
- Jr 

(JX - J2) -
D.. 

• c 
\ 5" 

( A f)' 
A S 

^ c 

< c, and 

and 

i 7 (df) _ 
dg 

x JP 
y 
Ji 

dg r idfi' 
dg 

Let ^ - J2
 a J. Since each of the sums approximating J is 

a sum of nonnegative terms, J ^ 0. /[x,y] ] is a subdivision 
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of [x,yj, so that by a) 

( g | y | - g [ x ^ 2 = J = h ( y ) *" h ( x ) * T h u s 

(f(y) - f(x))2 ̂  (h(y) - h(x)) (g(y) - g(x)). 

The following corollary is a consequence of Theorem 2. 

Corollary 1, - If |j exists, then f is of 

bounded variation on [p,q]. 

Proof. - Suppose that D is a subdivision of [p,q]. 

Then by Theorem 2, there is a function h defined and nonde-

creasing on [p,q], such that if I is in D, then 
p 

( A j f ) 25 A j h j g. Since each of h and g is non-

decreasing on [p,q}» A j h 5: 0 and A ^ g $ 0 for each 

I in D. Therefore, A t h A j g 5 0. In addition, 

( A t f)2 =£ 0 for each I in D. Thus 

| A x f | = i ( A j f ) 2 S sl& j h A j g ' ^ A j h ' s/a zg. t 

Summing over all I in D, we have 

! A f | =§ S JUTh \ j& g*and t h e n 
D D 

( 2 | A f j ) 2 = ( s/a \JR g ) 2 » By t h e 

D D 

Schwarz inequality 

( 2 \ /A h ' \/A g')2 ^ 2 ( ^/A h')2 2 ( v/A g ) 2 , 
D D D 

or 

( 2 j A f | ) 2 == A h A g . Now 
D D D 
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A h = h(q) - h(p) and E A g = g(q) - g(p). Let 
D D 

h(q) - h(p) = and g(q) - g(p) = J 2. Then 

( I A f I )2 ~ 32 a n d 5 i n c e 0 = ( 2 I A f I )2> 

H I A f| = J J i J 2. 
D 

Theorem 3. Suppose that [a,b] Is a number interval 

and that each of m, f and g is a function, such that [a»b] 

is a subset of the common domain of m, f and g, with m non-

decreasing on [a,b], such that i f a « g p < ( q = i b and 

m(q) - m(p) = 0, then f(q) - f(p) = 0 and g(q) - g(p) = 0. 

If a = s <( t ̂  b and each of -t i g i ? a n d . f L g ? 
IS 0° Js a m II ̂ and: I 

5fc 2 
^ exists, 

Proof.- There are numbers and such that if D is 

2 
a subdivision of [s,t], then 2 Z ^ ~ Jn and 

D « 
2 

y~! L A s l g J For each I In D, A mT > 0. Thus 
jy f \ ̂  X 

there is a number > 0» such that ( ,/A m-r) ~ A mr* 

Then 
D \JKmJ 

r£ and S J2• Thus 

z f - A ^ f 
_D 

y ? GsD 



E ( . a A 
y 

£ J2 and 

J-̂  Jg. By the Schwarz inequality, 

E E l a £ 
V V a W J [ V V & 5 

E ( - M ) ( - M 

12 

2] 

E u 1 ) S 

d \JKmJ E ( M -D 

D \fEmJ \v/Am; 

Therefore 

2 

E 
*-* A"> D 

= J*2* Since each side of the preceeding inequality is 

nonnegative, 

E 
D 

Af A g 
2"m si ft J~2 • Let J-y — J . 

Let A be a subdivision of [s,t]. Consider the sum 

E L M f ± E l l 2 . 
Am A 

5 2 t 
Am 

y [ A(f+K)ia 

Z_t Am 
A 

E 
a Am 

E ( A f + A g)2 

A A"l 

y ( A f)2+ 2 A f A g + ( A k)2 

' A1" 
A 

E i m i 2 + 2 E t r i g + 
A A m A A m A 
+ 

E i ^ i £ 

4 AO 

E [ A ( f + K l ] ; 

V A m 
y (Af)2 

V AT- + E Af A s 
V Am 

£ I M I 2 

A 
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y t a (f+g) j: 

A A m 
f 2 J^ + J2 « 

t 2 
Thus by theorem 2, 1 ^ d m ^ ' ' S exists. 

Corollary 2. - Under the hypothesis of Theorem 2, there 

is a number J, such that if 0 ( c, then there is a subdivision 

D of [s,t]» such that if D' is a refinement of D, then 

- z 
D1 

A f A g 
2~rri < c. In this case J is unique. 

5 
Proof. - Let c be a positive number. Suppose that 

2 
^ = J y By Theorem 5, 

| exists and has the value 

There are subdivisions A, B, and C of [s,t], such that if 

A1, B 1, and C' aye refinements of A, B, and C respectively, 

, \ a r + a 

A 

then 

LA* 
1 At « m 

< 
2c 

E l A l T 
B' A m 

- J, < 
2c 

<v A m ^ 
< _|£ . Let D be the 

greatest common refinement of A, B, and C. Then if D' is a 

refinement of D, 
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j, - y ; < Af + A K v 
1 IV A m Z ^ - j 

V A"" 2 

E -
D? Am 

T I / 2o 2e 2c 0 
3 \ + —J + - 2c. 

J1 - J2 - J 3 
. y ( A f + A g ) 

V A«> 

+ F L M r 
" A m 
D1 

J1 " J2 " J5 ~ 

A M 

< 2c. 

Z • 
V A " 1 

V ( A f f + 2 A k A f + ( A S ) G - ( A f ) 2 - ( A k V 

- A M 

D 

J1 32 J3 " 2 A m <( 2c 

< 2c 

1 
2" j, - j 2 - J, - 2 Z a / A ; 

1 2 3 V A m < c 

I ( Ji - J2 - J 3) - Z ! A ^ m A g I < c« 

Therefore let J = ^ (j^ - jg - j^) and j 

1 
2" [S 

dfdg 
dm 

fd(f+gil 
am 

2 r ^ i 2 _ r i m 2 

Js Js 'S aPS «»s 

exists. Uniqueness follows from Theorem 1. 



Chapter II 

CHARACTERIZATION OP THE CLASS 

OP INTERVAL FUNCTIONS 

Suppose that [a,b] is a number interval and that m is a 

real valued function defined and nondecreasing on [a,b] such 

that m(a)/m(b). 

Definition 3 - If m is the function with the properties 

specified above, then denotes the set of all real valued 

functions f defined on [a,b] such that 

1) f(a)=0 

2) if [p,q] is a subinterval of [a,b] and m(q)-m(p)=0, 

then f(q)-f(p)=0 y-,f 2 

$) the set of all sums of the form D • for sub-

divisions D of [a,b] is bounded above. p 2 

We note that by Theorem 2, if f is in Hm, then 
Jp 

exists for each subinterval [p,q] of [a,b]. 

Definition 4 - If each of f and g is in Hm, then f+g is 

the function whose domain contains [a,b] such that for each 

x in [a,b], (f+g)(x)=f(x)+g(x). 

Definition 5 - If f is in H m and k is a real number, 

then kf is the function whose domain contains [a,b] such 

that.for each x in [a,b], (kf)(x)=k(f(x)). 

We now show that is a linear space with operations of 

addition and scalar multiplication as defined in definitions 

4 and 5 and with the set of real numbers as its scalar field. 

15 
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Theorem 4 - If each of f, g, and h is in Hm and each 

of k, and kg is a real number*then the following state-

ments are true: 

1) (f+g)€Hm 

2) f+g=g+f " 

3) f+(g+h)=(f+g)+h 

4) there is an element © in H such that if f is in H » 
' m m 

then f+©=f. 

5) kf € Hm 

6) k(f+g)=kf+kg 

7) k1(k2f)=k1k2f 

8) (kj+kg)f=k^f+k2f 

9) the following two statements are equivalent: 

i) kf=Q 

ii) k=0 or f=0, where 0 has the usual meaning. 

Proof -

1) f(a)=0 and g(a)-0 so that (f+g)(a)=0» Suppose that 

[p,q] is a subinterval of [a,b ] such that m(q)-m(p)=0. Then 

f(q)~f(p)=0 and g(q)-g(p)=0 so that (f(q)-f(p))-(g(q)-g(p))=0 

and (f(q)+g(q))-(f(p)+g(p))=(f+g)(q) - (f+g)(p)=0. By 

Theorem 3, exists and by Theorem 2 the set 

of all sums of the form ? LMI+sUl for subdivisions 

&rn 

D of [a,b] is bounded above. Thus f+g is in H . Uniqueness 

follows from the fact that each of f» g# and f+g is real 
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valued. Statements 2) and 3) follow directly from the 

commutative and associative properties respectively of 

the real numbers. 

4) Let 0(x)=O for every x in [a,b], 1) and 2) of 

Definition 3 are obviously satisfied. Let D be a subdivision 

- ? 0=0. of [a,b]. I T Jg~ L- « D 0=0. Thus © is in Hffl. 

(f+g)(x)=f(x)+©(X) 

=f(x)+0 

(f+g)(x)=f(x). 

5) Suppose that k is a real number and that f is in 

Consider the function kf. (kf)(a)=k(f(a)) 

«k(0) 

(kf)(a)=0. Suppose that 

[p,q] is a subinterval of [a,b] such that m(q)-m(p)=0. Then 

kf(q)-kf(p)=k(f(q)-f(p)) 

=k(0) 

kf(q)-kf(p)=0. Suppose that D is a subdivision of [a,b]. 

Consider ^ . There is a number M such that if 

A m 

A is a subdivision of [a,b], ^ < M. Then 

, . S i « I'giiaj')8 

• ,5... •a'gi):g:)>a 

» k 2 ^ £ k2M. Thus kf is in Hm 

Properties 6), 7)»and 8) follow from the parallel 

properties of the real numbers. 
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9) Suppose that ii) is true. If k = 0, then for any x 

in [a,b] kf(x)=0(f(x))=0. If f=Q, then kf(x)=k©(x)=k(0)=0. 

In either case kf(x)=9(x) for every x in [a,bj. Suppose 

that i) is true. If k=0, then ii) is true. Suppose that 

k^O. Then since kf(x)=0 for each x in [a,bj, f(x)=0 for each x 

in [a,b] which implies that f=9. 

Definition 6 - If each of f and k is in H » we define 
1 1 • 1 m 

t o b e fciie * n n e r Product of f and g with respect to 

m and denote the integral by ((f,g)) . 

The following theorem justifies the preceeding definition . 

and establishes the fact that Hm is an inner product space. 

Theorem 5 - If each of f and k is in H and k is a num-« m 

ber» then the following statements are true: 

1} ((f»s))m is a real number 

2) ((f»f))m ^ 0 and ((f,f))m=0 if and only if f=© 

3) ((f>g))m=((g,f))m 

4) ((f+g,h))tn=((f,h))m+((g,h))ra 

5) ((f,kg))m=k((f,g))m. 

Proof - 1) is true since i s a real number. 

a) ((f.f))m= Ja ^ar-
 = Ja • Since for any 

subdivision D of [a,b], ^ is nonnegative, we see by 

the proof of Theorem 2 that 0 < . Suppose 

Then if D is a subdivision of [a,b] ,5"* )• = ' 0 
D D A m 

from which we deduce that L. =0. Suppose that 

that f=0. 
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((f,f))m=0, that a<x<(b, and let D be a subdivision of [a,b] 

such that [a,x]eD. Since 0 < < 1 D ^m 

we see that each term is identically zero so that 

i2 

b iaix 
a dm = 0 

=0* ' I f m(x)-m(a)=0, then f(x)-f(a)=0 and 

f(x)=f(a)=0. If m(x)-m(a)/0, then (f(x)-f(a)) =0 and 

f(x)-f(a)=0 which means that f(x)=0. Thus f(x) is 

identically zero for all x in [a,b]. 

. 3) Statement 5} follows directly from the commutative 

property of the real numbers. 

" * ™ " - 2 " * " I ' ® a dm 

a d̂m̂ ' e x l s t s a n d by Theorem 3 each of 

b 

a dm 

a dm 

» and 

2 

b dfdh 
a elm ' Ja fa Suppose 

that c is a positive number. There are subdivisions A, B, 

and C of [a,b] such that if A", B', and C are refinements 

of A, B, and C respectively, then j 

I 
b d^dh __ AgAh 

B1 Am m 

_ ZI Mf+s)Ah 
n 1 A m 

1 
< o/3, and j J* d(f^g)dh 

< c/3, 

< c/3. Let.D be a common refinement of G' A m 

4 

k, B, and C and suppose that D1 is a refinement of D„ Then 

fb df"dh _ V AfAh j | fb dgdh V Apfth| ^ A( f+g )Ah 
Ja T 5^ A® | I Ja a5T V -fm +: X flm 

" f 
and 

b d(f+g)dh 
|a dm < c 



Jbdfdh fpdgdh _ fbd(f+g)dh \ A£Ail 
a am Ja dm Ja dm ' *D' /\m 

20 
( jbdfdh 
v *a am 

+ D' 

Since ̂  D1 

+ 

^ m 

A(.f+g) A h \ 
D1 ' 

AgAh / , 
D" ~ D' 

A^Ah-tAsAh 
A m 

< o 
~ 1 

= Z_, A(f+g)Ah 
D* /̂ m 1 

fb dfdh fb dgdh _ ft 
la dm Ja dm ~ Is 

lb dfdh fb dgdh _ ft 
Ja dm ' la am j£ 

b a(f+g)dh 
a dm <( c, therefore 

bd(f+g)dh 
a am 

5) Consider ^ 1 . There are subdivisions A and 

B of [a,b] such that if A' and B' are refinements of A and B 

[b dfd(kg) . 2 ] AfA(kg) respectively, then 1 \] 

Z 
dm A' A m < c/2 and 

» < c /p( | k | +l|. Let D be a common 

refinement of A and B and suppose that D» is a refinement of 

D- 1^1 5 ^yH6, " Ja +1) < ° / 2 ' s o t h a t 

' 5 - * f a ^ | < »/*• 

Jb dfd(kg) _ E 2 Affl(kg) _ 
D1 ^m 

Ja ^ |< c - | | " * | 

Therefore ft 

< o. 

S' * S a g * 

Definition 7 - If f is in Hm, we define the norm of f 

with respect to m, denoted by ||f|| by ||f|| m=/CCf,fJ jm. 
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It Is a well known consequence of the properties of a 

linear space in which an inner product and a norm have been 

defined that the following inequalities are true for elements 

f, g, and h of the space: 

1) Schwarz inequality: |((f»g))ml < M m II ell m 

2) Minkowski inequality: ]| f+g| m < ||f|| m + ||gj| m 

3) Triangle inequality: |j f-g|| m < ||f-h|| m+ ||h-g|| m 

4) | || f|| m - llgjj J < ||f-g|| m. 

Lemma 1 - Suppose that £ f j is a sequence of functions 

in Hm such that if D is a subdivision of [a,b], then 

E U ( f - f J ^ O a s ndnlp.qj-*-. Then {f J °° -jy V""q" " " L'nJ n=l 

converges pointwise for each x in [a,b]. 

Proof - Let x be an element of [a,b]. If x=a, then 

for all positive integers n, f (x)=f (a)=0 which gives us 

convergence trivally for x=a. Suppose that a < x < b and 

let c be a positive number. There is a subdivision D of 

[a,b J such that [a,x] € D. There is a positive number N 

such that if each of p.and q is a positive integer, and 

N <( min I p,qj » then N mm ; p,q 
- 0 | < c or since the sum is nonnegative, 

D p q 

S k f p - f q ) | < c. Since |(fp(x)-fq(x))-(fp(a)-fq(a))| is a 

term of the previous sum, |(f (x)-f (x))-(f (a)-f (a))| < c. 
Jr M. K 

Now fp(a)-fq(a)= 0-0=0 so that |f (x)-f (x)| <c. Thus for each 

x we conclude that {fnI
 i s a Cauchy sequence and has a 

limit. Therefore there is a function g whose domain contains 

[a,b] such that f (x)-> g(x) as n-»«*>for each x in [a,b]. 
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Lemma 2 - Suppose that|fnJ n_^ is a sequence of elements 

of Hm such that ||fp-fq|| m-*0 as min [ p,q] —•»<». Then the 

set H=[z|z= m* n a P o s l t^ v e Integer, fn€Hm"]is 

bounded. 

Proof - Since for each positive integer n, llfnll m ^ 

R is bounded below by 0. There is a positive number N such 

that if each of p and q is a positive integer and N <( min { p»q3» 

then | llfp-fqll m-0 |= II fp-fqll m <1. Let p* be the least 

positive integer greater than N and q be any positive integer 

greater than N. Then | ||fq!l m~ | | f p J | J < | | f q - f p J I m < 1 

and therefore || fqil m < llfpJI m +1. 

Let M=max |* || f ̂ || m, ||r2 f| ^ m* ® fp*^ m+1^ * R i s 

bounded above by M. 

Theorem 6 - Suppose that £fnj| is a sequence of 

elements of H m such that j| fp-fq|| m-» 0 as min £p,q] —*oo. 

Then there is a function g in H such that || f -g II —> 0 
m p m 

as p— 

Proof - Let c be a positive number. There is a positive 

number N such that if each of p and q is a positive integer 

such that N < min [p,q} , then 

llfp-fqil m < -==3-a^s-sateam • ^ theorem 2 there is a 

Vm(b)-m(a) 

function h such that 

if x=a 

i , if a < x < b. By the corollary 

of Theorem 2, for any subdivision D of [a,b], 



5 l A ( f p " V l i j[m(b)-m(a)] J? t d ( V V } g ~ 

= <s/m(b)-m(a) lf„-fjm where fD £d(f
p-

f
q)'3

2 =h(b)-h(a). 
1 H J dm 

Thus j 

V N v V l < I'p-'q1. < u . F H , = p 4 liJ / - " : ' r : : 

Vm(b)-m(a) ^ m(b)~m(a) 

so that QJJ^(fp~fq)| < c, which implies by Lemma 1 that 

if a < x < b, then|fp(x)-f (x)| -> 9(x) as min £p,qj —»«> . 

Thus there is a function g such that if x is in [a,b], then 

f
n(

x)—> g(x) as n—>oo. Since fn(a)=0 for all positive 

integers n, it follows that g(a)=0. Suppose that [s,t] is a 

subintervai of [ajb] such that m(t)-m(s)=Os For each positive 

integer n, fn(t)-fn(s)'=0. There are positive numbers Ns and 

Nt such that|fj(s)-g(s)| < c/2 and |g(t)-fk(t)| < c/2 if 

Nt < k and Ng < j. Let N=max [N t,N s] . If r is a positive 

integer and N < r, then|fr(s)-g(s)| < c/2 and 

|g(t)-fr(t)| < c/2 so that 

!s(t)-fr(t}| + |fr(s)-g(s)| <c and 

|g(t)-g(s)| - |g(t)-fr(t)+fr(s)-g(s)| <c. Thus 

g(t)-g(s)=0. 

Let D be a subdivision of [a,b] and d the number of elements 

of D. Suppose that I=[s,tJ is an element of D and 0<A Im. 
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There are positive numbers and Ng such that If each of p 

and q is a positive integer and <( p and Ng < q, 

then | g(s) -fp(s)| < W
1//2 and | fq(t)-g(t)| < W1//2 , 

2 A 2''' 

where W = ° . Let N^=max £N-,,Np} . If n^ is a positive 

integer and < n^, then 

AI S" AIfn, 

= I (g(s)-g(t))-(f (s)-fn (t))| 

1 |g(s)-fni(s)| +-|f0i(t)-g(t)| 

< W**"/2, from which we obtain 

AIfn, < w1/2 or | A jg| < | ' V n | + w V 2 and 

(AlS-ATfn f y 
i < w 

Ai m Arm 
= C_ . Now 

d 

_ (A-s)2 ^(AjSXAjf ) (A/ )2 

•J" - •*- - X + I \ c 
d 

(A-j-g) 

"iOr 

Ai m 

2 

m Ai m Arm 

^ 2(AIg)(AIfn^) ^ (&xfn ) 2 

I 4- c 

Ai m Arm 

< slAjsl IA/HJ < AI fn )2 
A I + c 

Ajm A]-m d 

<2|Aif n i| ( I V r J + W 1 ^ ) .( A f f + 

I c B
 HI
 

<3 Aim * 
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2 

I v c 
(Ajg)2 < 2(Al fn I)

2 + 2 /cxl/2
 A I f n I - ^ I f n x > + 

Al m A i m • V^j ^ m) 1/ 2 A I m ^ 

Let Njj=max J IeD^ . Then If n is a positive integer and 

N D < n, 

< ? ^ a l 2
 + [ 2 ( = ) ^ ] ? _ l ^ n l + 5 = 

a A™ (Am) / (d) ^ 3 

which by the Schwarz inequality does not exceed 

n ) 2 + [2(c)1/2] + c. Then 

Z < E i ^ ! + r ^ ) 1 / 2 ] | E ^ Z + c so that 
D A m jd N D £m 

<•(- ll'„H„>a + taCo) 3^] I r j l . + o. 

By Lemma 2 there is a number M such that || f j| £ M for every 

n. Thus 

? < M 2 + 2M(c)l/S + 0. Therefore g Is In H . Am • \ / • *«wv.*w*v t, iAm' 

Suppose that c is a positive number. There is a positive 

number N ! such that If each of p and q is a positive integer 

and N1 < mln {p» q} , then 

i2 

< <?/n. 
ffb [d(f -f )i2 ft [d(f -f )r 
Ja ^ < o/2 so that Ja d g 1 

Thus for any subdivision B of [a,b]. 

(f 

A m 
[ A ( V f a ' ] 2 x 2 

*. "• < c /4. Let D be a subdivision of [a,b] 

and consider EA(g-fn) j for n > N». For each I in D let 

A m 
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Nj be a positive number such that if is a positive integer 

and n.j. > N̂ . then < Q2 where d is the number 

At"1 

of elements in D. If ND=max | leD J , then for n»>Nj 

X ! tA(s-f 
Tl ii 

A m 

2 
<( c . Let n* be a positive integer 
T~ 

such that 11* > maxjN', Then 

y iA(S-fn)]
2 „ z [(g(t)-f (t))-(s(s)-f (s))]

s 

V A m
n [s,t]eD S - ^ 2 

_ 2 Z [<s(t)-fn(t))+(fn*(t)-fn5((t)) -

—(s( S )-fn( e))+(fn»( s )-fn, ( s ) ) f/A 

- y [(g(t)-fn,(t))-(g(B)-fn»(s)) + 

+(fn*(t)-fn(t))-(fni,(S)-fn(s))]
2/Ara 

= ? tA(e'f"*1 + A(fn*'fn>]2 

m 

CA(g-fn«)1
2
 + 2 £ tA(g-fn»)][A(fn»-fn)] 

A m A m 

+ Y 1 tA(: 

< 

v 'V 
Z_* [A(g-3 

f
n*)3 

A m 

D 

+ 2 

z 

fn*"fn^ ̂  
Am 

< 

z 
D 

[A(g-fnJ][A(fn#-f n)] 'n* 
A m 

^ f n * f n ^ , ' which 
Ara 

by the Schwarz inequality, does not exceed 
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X ! [A(s-fn*)]
2 . 2 I S [A(s-fn»)]

2 I S [ A ( f n » -
f n ) l 2 + 

D _ n +24 B — 4 D A
n
m 

+ S [A(fn*-fn)]
2 < 

A m 

< c2 + (2) c2 + c2 = c2 

2p r - T" 

Therefore, [^(g-fn) 3 ^ c2 a n^ therefore ||g-fn |j m < c j (jm — 1 — 

for n ) N„ Thus |jg—f*n jj m — ^ 0 as n—>oo. 

From Theorems 4, 5, and 6 we see that ^ is a Hilbert 

space, 



Chapter III 

DISCUSSION PRELIMINARY TO THE 

PROOF OF SEPARABILITY 

The statement "f is H-integrable on [a,b]" means that 

fa 2 (a f ) ' exists in the sense of Theorem 2, fa 
lb am 

Theorem 7 - Suppose that each of g* and m is a function 

defined on [a,b], where m is defined as before and g* is 

continuous. If h is the function defined by 
f 

0, if a=x 
h(x) = 

| x g*(t)dm(t)j if a < x ̂ b, 

Ja 
then h is H-integrable. 

Proof - m nondecreasing on [a,b], implies that m is of 

bounded variation on [a,b]. Thus, since g* is continuous on 
fq 

[a,b], I g*(t)dm(t) exists for every subinterval [p,q] of 

[a,b]. 

1) Suppose that [p,q] is a subinterval of [a„b], such that 

fq 
m(q)-rrt(p)=0. Let I g*(t)dm(t) =JJ-? qj and suppose that c 

is a positive number. There is a subdivision D of [p,q], 

such that if D1 is a refinement of D and r is a function 

whose domain is D', such that r(l) is in I for each I in D1, 
then J[P,Q]- Z m <( c. Now m(v)-m(u)=0 for each 

28 
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subinterval [u,v] of [p,q], so that g * ( r ( l ) ) = 0, 
D« 

which implies that ^[p q] = 

2) By the proof of part one of Theorem 2, if D is a subdivi-

sion of [a,b] and E is a refinement of D, then 

" S Mt < Z lutdL 
D A m = E A m 

3) Suppose that D is a subdivision of [a»b] and has d ele-

ments. Since g* is continuous and m is of bounded variation 

on [a,b], there are numbers G and M, such that |g*(x)| < G 

for every x in [a,b], and if E is a subdivision of [a,b], 

X j Am | < M. 

Consider the sum 

S = X j [jp g*(t)dm(t)> . For notation, 

° ~ " " m(qj-m(.p) 

let [p,q]=I. For each I in D, there is a subdivision Ej of I, 

i 

such that if Ej is a refinement of Ej, and rgt is a function 

whose domain is Ej. such that rE, (U) is in U for every U 
in Ej., then 

I 
I j V i 

q g*(t)dm(t) < Z_i g*(rE,(u))(Aum) Ei 
+ k 

< | g*(rw,(u)) Aytn + k , where k 2 = ^ • 
» E± I

 EI 



3 0 

Then 

E i f i h i ! < y 

D A m 

X ! | g * ( r E , ( U ) ) | A 
p , , I £,t 

U ' 
ra + k 

A r m 

zT. 
~ D 

E k « ^ ) l A u ™ 

L E J 

\ 
+ 2k 

v " — i 

/ i 

D u 

2 s * ( r E , ( U ) } | A 

Ei 
A i 1 

. 0 1 

E 
k 

D A j m 

u 1 

.ra 

< 
- D 
£ 'Z 

IE f V + 2kG D 
A x m 

£ 
E j 

A y m 

A ! 1 
m 

E i L . 

A x 
m 

£ G2 ( y ) g + 2k0 X ! 1 + Z j ' 1 
~ D Ajm B D jsr 

1 G2 Am + X ! 2kG + ^ 1 
~ d D D a: 

< G2M + y 1 2kdG + 1 = G2M + 2kdG + 1 
d a 

? ^ £ G2M + 2G /\fW + 1 . Thus h i s H- in tegrab le , 
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Lemma 3 - If each of f and g is a function defined on 

[a,b], such that f is continuous and g is H-integrable, let 

h be the function defined by 
r 

0, if x=a 
h(x) = -

f(t)dm(t), if a < x ( b, 

exists. 
a dm 

Proof - By Theorem, 7> h is H-integrable. Thus by the 

corollary of Theorem 2, J : exists. 

Lemma 4 - If each of f and m is a function defined on 

[a,b], such that f is continuous and m in nondecreasing with 

m(a)/m(b), then for each positive number c there is a positive 

number d, such that if D is a subdivision of [a,b], such that 

|f(x)-f(y) | < d for x and y in an element of D, then for each 

I in D, such that Ajtn/ 0 

|j£ f(t)dm(t) - f(r)Ajm 

< c, where r is in I. 
A ^ 

Proof - Suppose that c is a positive number. There is 

a subdivision E of [a,bj, such that if I is in E and each of 

x and y is in I, then | f(x)-f(y) | < §• . For each I in E for 

which Ajin / 0, there is a subdivision Fj of I, such that if 

F£ is a refinement of F-j. and r» is a function whose domain is 

F|, such that r ' ( u ) is in U for each ,U in F|, then 



I fdm - y f C r ^ U ^ m 
J I rrf 

cA, 
<( where I fdm denoteo L 

32 

J: f(t)dm(t) if I=[p,q]. Thus 

jj f d m - E .m 

2 ^ f(r'(n)JAu® - f(r)A, 
pi 

m 

Afn 

r is in I, then 

<C £ • Nov? 

does not exceed ^or if 

V i 

Z a 
p 
j f(i"(U))Aum - f(r)A. .m E 

pi 
f(r'(u)Ja 

r—> 

Um" 

At"1 AX » 

Z_, 
*1 

a* m 

< F 
E |f(r'(u))-f(r)| A u m 

£ & 
ST 

Aj" 

L V 

At"1 
C 
2" 

Thus 

1 
fdm - f(r)^Im f « . - Z 

Ji pV 
f d m -Z-j -(r'(U))Al/n 

Arra 
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2f(r'(U))Aum - fCrJAjtn 
Fi 

< c ̂  c - c. Thus we obtain the desired 

result if we take d=̂ - . 

Theorem 8 - Suppose that each of f and g is a function 

defined on [a,b], such that f is continuous and g is H-inte-

grable. If h is the function defined by 

{ 0, if x=a 
h(x)= -j . 

jx f(t)dm(t), if a < x b, 

JJ a f ~ 
a T ? " Ja 

Proof ~ g is of bounded variation on [a,b], and f is 

continuous on [a,b]a so that f(t)dg(t) exists. By Lemma 3, 

£ H H * exlsts- L e t ja T ? • JX a n d Ja W s C O - J2. 

Suppose that c is a positive number. There is a subdivision E 

of [a,b], such that if E' is a refinement of E, and r1 is a 

function, such that E1 is the domain of r1, and r'(,I) is in 

I for each I in E1, then 

- z J2 «- Z_J 
* T?« X 

< j . There is a subdivision P of 
E' 

[a,bJ, such that if F" is a refinement of F, then 

j . y AhAg 
J1 ft w < J . There is a subdivision G of [a,b], 
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such that if I is in G, and each of x and y is in I, then 

|f(x)-f(y)| ^ ' w^ e r e ^ dg . Let D be a common 

refinement of E, F, and G. If D' is a refinement of D, let 

D* = £l | I e D', A^m / oj . Then if r is a function whose 

domain is Df,,such that r 

fl " S U i f d J A 

A T
M 

rS 

[I) is in I for each I in D', 

< 
c 
y . I Since Jj. fdm = 0 and 

A-j-g » 0 if v=°' ^ [Jifdm. v _ 5 LW* 
At® "* rm 

rS 

Thus 

J i - L [fifdr°l A: 
AT111 

•6 - £ 
D* 

f(r(i))ATs 
< 

2c 
T 

J1"J2 + 

j r j 2 

£ 
D* 

f(r(l))ATS 

S [jlfdm] 
5 I t 

ARM 

ATS 
< 

2c 
T 

A-j-g - fCrClJJAjn&j-g 

Ai m 
/ 2c 
<
 y 

I J1"J2 I ̂  T~ + 5 Aig _i Ijfdm - f(r(l))Ajm 

vj
2|< t + § i i 

Aj" 

|jfdm - fCrflJ^jrn 

AJM 

which by Lemma 4 does not exceed ^ -j- jAjS | ^ o( 

Thus . 
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Theorem 9 - Suppose that each of f, g, and m is a func-

tion defined on [a,b], such that f and g are each continuous, 

and m is nondecreasing with m(b)/m(a). Let h^ and hg be the 

functions defined by 

0, if x=a 
M x ) = 

lx f(t)dm(t), if a < x £ to, 
la 

and 

r 0, if x=a 

h0(x)= 
g(t)dm(t), if a < x < b, 

la — \ E 

Ja
 dh^h2 = Ja f(t)g(t)dm(t). 
Proof - By Theorem 7* each of h^ and hg is H-integrable, 

I 
By Theorem 8, | b dhn dh0 |D /j.\ 

Ja 1 = Ja f(t)dh2(t). Since each of 

, I 
fb fb 
Ja f(t)dh2(t)=Jx and I f(t)g(t)dm(t) = . 

so that by the corollary to Theorem 2, § ^ 1 ^ 2 exists. 
?a di~ 

3m" 

f and g is continuous, fg is continuous, so that i f(t)g(t)dm(t) 

P> fb 
exists. Let 

Suppose that c is a positive number. There is a subdivision 

D of [a,b], such that if D1 is a refinement of D, and r is a 

function whose domain is D1, such that r(l) is in I for each 



I in D', then - 2 fWiJJAjha 
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< ^ . There is 

a subdivision E of [a,bj* such that"if E1 is a refinement 

of E, and r' is a function whose domain is E', such that 

r1(I) is in I for each I in E", then 

V 2_, f(r,(l))g(r«(l))AIm 
F 1 < There is a sub-

division F of [a,b], such that if I is in F, and each of 

x and y is in I, then | g(x)-g(y) | < ^ 1 ^ 1 ) » where 

L= l u b z | z— |f(x)| ^ xe[a,b] } and M= m(b)-m(a). Let 

G be a common refinement of D, E, and F, If G1 is a 

refinement of G, and s is a function whose domain is G1, 

such that s(l) is in I for each I in G', then 

Ji- ^ fCsdJJAjha + |J2- ^ 

ri"J2 + ^ 

•I 

f(s(l))g(s(l))ATm 

f(s(l))g(s(l))Axm - 5Zf(s(l))A Th 2 

G' 1 d 
< 

< 
2c 

y 

2c 
T . 

J1" J2 I < 2 C 

x 2c 

G1 

T + 

2c 
T~ 

l 

- I ̂  f(s(I))(AIh2-g(s(I))Af") |< _ 

| f(»(l)) (Jxsdm-g(s(I)JAJI") 

E | f ( S ( D ) | I jjgcton — g(s(i) 

[jgdrn = 0, if I is in G', such that A^m = 0. Thus if 

G*={l | leG1, A-j-m / o } , 

| Jl" J2 | ̂  T" + ^ ^x m) | jjgdm-g(s(l) )A-] 
_ 

m 

so that by Lemma 4, 
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I . On \

 1 1 1 / \ 
J, -Jr < | £ + } |f(s(l))| A > ( c ) 
i * j> i f 1 1 1 1 \jtmrjJ 

^ Es. + ^ ' I -Q.),!,, A m / ̂ 2. a. ̂ ^ A m 
> G*4 L 1 = ̂  ^ G** 1 

\Jl~J2 I ^ §^'+ § = c* T h u s J1=J2* 

The following theorem is stated without proof. 

Theorem 10 - If f is a nondecreasing function defined 

on [a,b], then f is quasi-continuous on [a,b], That is, 

if x is in [a,b], then the limit from the right, f(x+), 

exists for a < x < b, and the limit from the left, f(x~), 

exists for a < x b. 

Theorem 11 - Suppose that g is a function defined on 

[a,b], such that g is of bounded variation on [a,b], 

g(a) = 0, and if f is a continuous function defined on 
fb 

[a,b], then I f(t)dg(t) =0. If a < x < b, then 

g(x~)=g(x+)= 0, 

Proof - Under the above conditions g(b) = 0, for if 

f(x) = 1 for every x in [a,b], then there is a subdivision 

D of [a,b], such that if D' is a refinement of D, and r is 

a function whose domain is D», such that r(l) is in I for 

each I in D, then 1 g(b)-g(a) I = XjAs|= |Xj f(r)Ag 
D' D" 

< c. 

Thus g(b)=g(b)=0. Since g is of bounded variation on [a,b], 

g may be expressed as the difference of two nondecreasing 

functions. Each of these functions is quasi-continuous, so 

that g is also quasi-continuous. 
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1) Suppose that a < x < b, and that c is a positive number. 

There is a positive number d*, such that i f a ^ x ( y < b 

and | x-y | < d*, then |g(x+)-g(y) | < p . Let d==min-jd*,b-x]-. 

Let f be the function defined by 

f 0, if a £ t < x 

f(t)= Hj ~cT~ * ̂  x ^ ̂  ̂  x+c* 

ul, if x+d < t < b. 

Obviously f is continuous on [a,b], Since g(a)=g(b)=0, 

lb 
and Ji f(t)dg(t}=f(b)g(b)-f(a)g(a)- |~ g(t)df(t) , then 

fb fb 

J a f ( t ) d g ( t ) = Jag(t)df(t)= 

t 

I 

x fx+d 
ag(t)df(t) + I g(t)df(t) + 

b 
= ° * E a c h o f 

x fb 
pas(t)df(t) and J x + C j g ( t ) d f ( t ) is zero, since f is constant 

on each of the intervals [a,x] and [x+d,b]. Thus 

Jx+dg(t)df(t) =, o. There is a subdivision D of [x,x+d], 

such that if D" is a refinement of D, and r* is a function 

whose domain is Ds
a sue 

D, then 

let r(l)= 

g(r*)Af 

:h that r*(I) is in I for each I in 

. For each I in D', 

r*(l), if x is not in I 

z» zel, z/x, if xel. 

Thus for each I in D«, g(x+) - | < g(r(l)) < g(x+) + g. , 
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so that s(r(l))=g(x+) + k(r(l)), where k(r(l)) | < Then 

t > 

z 
g(x+)Af 

g(r(X))ATf 

.+ 
> I Z-J s(x+)Af 

D1 
z 
D' 

z 
D1 

[s(x+) + k(r(!))]ATf 

k(r(I))ATf , so that 

. Now, since for < j- + I k(r(l))Ajf 

each I In D'*A-j-f ̂  0, and f(x+d)-f(x)=l, it follows that 

S(x+) = | X ! s(x+)Af < £ + ^]|k(r(l))| Ajf < | + 

+ Z 
ID1 

| A f 

/ C C -I-
< g- + »j = c. Therefore g(x ) = 0. 

2) Suppose that a <( x b, and that c is a positive number. 

There is a positive number d*, such that i f a < y < x ( b 

and | y-x | < d*, then | g(x~)-g(y) | < |- . Let d=min-[x-a,d*]- . 

Let f be the function defined by 

r 

f(t)= 

As in part 1) 

1, if a < t x-d 

i. *-(*-?) ,"lf x-d < t < 

v _ 0 , if x < t < b. 

| f(t)dg(t) = f b g ( t ) d f ( t ) = f x ~ d g ( t ) d f ( t ) + fx
 g(t)df(t)+ 

J a Ja Ja J x-d 

J; x~dg(t)df(t) and |bg(t)df(t) is zero, since f is 
a Jx 

I + I g(t)df(t) « 0. Each of 
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constant on each of the intervals [a,x~d] and [x.,b]. 

J-
Jx-

Thus Jx-(jS(t)df(t) = 0 . There is a subdivision D of 

[x-d,x], such that if D" is a refinement of D, and r* is 

a function whose domain is D', such that r*(l) is in I 

for each I in D1, then X g(r*)Af 
D" 

/ 0 

\ ? * 

For each I in D', let r(l) = [ r*(l), if x is not in I 

Z j Z Xj z/xf if X X« 

Thus for each I in D«, g(x~) - §• < g(r(l)) < g(x~) + 

so that g(r(l))=£(x~) + k(r(l)), where |k(r(l)) | < |- . 

Then 

c 
2" > j ̂  gCrdJJAjf | = | [g(x-) + k(r(l))3/Vj.f 

> I Zlj s(x"")Af 
Df 

E g(x")Af 
DB D 

Ztt 

X ! k(r(l))ATf 
r>t 1 

< £ + I X ! k(r(l))A f 

i so that 

Now, since 

= If(x}-f(x-d)I = I -1 I , it follows that 
u' 

I, I I J 

< I + j k(r(l)) I | 2 / U 

^ + §" = c<* Therefore g(x") = 0, 

We see that if the condition that either g is left 

continuous at each x, such that a < x < b or g is right 
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continuous at each x, such that a < x < b is added to the 

hypothesis of Theorem 11, then g(x) = 0 for every x in 

[a,b]. 

Suppose that V is an inner product space with inner pro-

duct ((.,.)) and zero element ©. 

Lemma 5 - If "[$1*02* * * * i s a n or'tllonornial s e t °** 

elements of V, then ( ( n > 0 ± ) ) $ ± > 0 ^ ) )=0 for 

j=l, 2,...,k and any u in V. 

Proof -

(("-y.1?.! ((».#, w ^ ) >-( (u'0j >)-((T?=i < (u.^) ̂  .0} >) 

=< (u,^) ) - Z L i < MWi-tj)) 

Theorem 12 - Xf A = "{ui 1 i=i ̂ -s a linearly independent 

sequence of elements of V, then there is an orthonormal seq-

uence B= -{V^ i = 1 of elements V, such that if y is a 

linear combination of the first n elements of A, then y is 

a linear combination of the first n elements of B, and if 

x is a linear combination'of the first n elements of B, then 

x is a linear combination of the first n elements of A. 
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Proof - / 9,.for otherwise A is linearly dependent. 

Thus llu-,11 £ 0. Define 01-
 U1 
irar 

1 1 \ l w W 3 ~ l l w / 1 V ~ w / 

Thus 0^ is orthonormal. Let (Ug,^) By Lemma 

5, v2 is orthogonal to 0^. Thus since 0^ is a linear 

combination of u-̂ , v2 is a linear combination of "2} 

and cannot be 9. Define 0n=
 u2~^nls$l^$l 

2 

is orthonormal» since j2̂  is a scalar multiple of 

v2# which is orthogonal to 0^ and ((P^P^))
 = 

( H ^ - U V i ^ i l l ) ("U2-^u2^1^^lli) = 1* 

We note and u2 are linear combinations of 0^ and 

respectively. In general, if k is a positive 

integer, let ̂ = ^ - ^ £ - 1 ((u^,0±))0±. By Lemma 5, vk 

is orthogonal to each of 0lt... >0^^* Since each 0^ is 

a linear combination of -[u^*... ,-a^ , vfe is a linear 

combination of-^u^,... ,û J- and cannot be 9. Define 

M FA 
• Suppose that each 
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= 0 

of i and j is a positive integer less than k. 

Since i s o r t h o n o r m a l> 

0, if i/j 

1, if i=j. 

u?i3,9ik)M(0y uv5r))=irar (0*J,vK))= inb 

"w-fer • irar) "(ra)* «v\»-(-K)s • 
Thus 0-^ * *# is orthonormal. Prom (l), we see that 

is a linear combination of 

The sequence • m : ;1 formed in this manner is ortho-

normal. Since each 0^ is a linear combination of 

-jV^,... , and each u^ is a linear combination of 

far'-'^i} ' any linear combination of ... >0^} 

is a linear combination of ̂ u^,... ,unJp and conversely. 

Suppose that H is a Hilbert space with inner product 

((.,.)). The following theorem is stated without proof. 

Theorem 13 ~ The union of a countable collection of 

countable sets is countable. 

Theorem 14 - Suppose that j- l s a n orthonormal 

sequence of elements of H. The following four statements 

are equivalents 

1. 
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1) The set of all finite linear combinations of the 

jZfi«s is dense in H. 

2) If z is in H and ((z,^ ))= 0 for every n, then z=9. 

3). If x is in H# then II x-

as n-)oo , 

4) There is a countable set T of elements of H, such 

that H is separable with respect to T. 

Proof - I. Suppose that 1) is true and that z is in 

H, such that ((z,^))^ for every i. Let c be a positive 

number. There is a positive integer n and a sequence of 

scalars such that c >11 II . 

-((z,z))-2{(z,y)) + 

+12- rfuffW 

-((«.«> M E L i M <z > >+ELiai 

=((z,z)) , so that 

c2 > ((z,z) ) = II z II 2. Thus c >11 z II and IIz II = 0. Thus 

z =©. 

II. Suppose that 2) is true and that x is in H. Suppose 

that p Is a positive integer, and that c is a positive 

number. 
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0 < l l x - I X i 2 

^ ( ( x - E L x ( , ' ? - i ( ( x j ^ ) ) 

< { m ^ y x ^ ^ ) ) 2
 + S L i ^ x ^ i ) ) 2 

0 < ( (x ,x ) (x,j2f^) ) 2 . Thus f o r each p o s i t i v e 

i n t e g e r p, ( ( x , x ) ) > ^ ^ = 1 ( (x , ^ ± ) ) 2 , which impl ies t ha t 
f 

t he re i s a number J , such that '^""^- , ( ( x , ^ ) )2—>J as 

P —»oo * There i s a p o s i t i v e number N, such t h a t i f each 

of m and n i s a p o s i t i v e i n t e g e r , such t h a t N < min-£m,nj-, 

then 

| X ^ = 1
( { x A > > 2 - Z ! U ( ( x ' ^ 2 < c . For each 

p o s i t i v e i n t e g e r p, l e t y p = ) ( (x ,# , ) )#, . Consider 

liym-ynH ^ where N < min-^m,n^ and assume f o r convenience 

t h a t m y n. 

, l y m - y J | 2 = ( ( y m - y
n ' y m - y n ) ) 

= ( ( y m ' y m ) ) " 2 ( ( y m ' y n ) ) + « y n ' y n » 

**( o = i ( ( x ' ? ) 0 i * y , \ - i ( ( x » P ^ ) ) -

" 2 ( O .1.1 ( (X'&i ))^1 j.T ( ) )0j ) ) + 

+ « Z j = i ( <*.* , ) ) * , . E ; u < ( x ^ j > )) 

= a = i ( ( ^ ) ) 2 -

A 
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-2 Z J - a < » ( W i ' E j=i< > Wj) > + 

+ZU(Mj»s 

- E L i « * . f i » a -

- a Z S (x.^)) [ E j = i ( j)) < Wx'fj >) 1 + 
+ Z j - i « x ' ^ » 8 

= E ? = i « x ^ i ) ) 2 -

. + Z ? = i ( ( ^ j » 2 

+Y,Uw3)f 

Ikm-ynll2 -Yl^iWi))2 (*.*!> >2 < T h u s 

since H is complete, the sequence -jV^ }" i=l converges to 

some element y of H. Consider ((x-y,^)) for some positive 

integer k. Since { z ; = i « x ^ i ) ) 2 j* n_^ converges, 

as 1—>oo . Thus if c is a positive number, 

there is a positive number N1, such that if q is a positive 

integer and q > N», then |((x-,0f )) | < c. Consider the 

sequence 
oo 

=1' 
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( ) | - | ( M ' M ( Y . L A M i ) ) 

( ( * . ? k ) ) " 2 L l ( M l ) >( ) 

( ( x ^ k ) ) - ( ( * i ^ k ) ) | * i f k <C q 

| ( ( x , i ^ k ) ) | , i f k ) q 

( ( x " X i = l ( ( x ^ i ) ^ i ^ k ^ < c - T h u s ( ( x - X S = l ^ x ' ^ j L ^ ^ L ' ^ k ^ 

—» 0 a s n — > c o . I f - £ f n j - ^ i s a s e q u e n c e o f e l e m e n t s 

o f H , s u c h t h a t f n — > f a s n — » o o , t h e n ( ( f n * # k ) ) — > ( ) 

a s n — » o o # f o r i f c i s a p o s i t i v e n u m b e r , t h e r e i s a 

p o s i t i v e n u m b e r N " , s u c h t h a t i f s i s a p o s i t i v e i n t e g e r , 

s u c h t h a t 3 > N ' \ t h e n | f s - f | | < c . S i n c e f l a i n H , 

e x i s t s . Now | ( ( f n » 4 ) ) - ^ f ' 4 ) ) ! = | ( ( V f ' 4 ) ) | ' 

w h i c h b y t h e S c h w a r z i n e q u a l i t y d o e s n o t e x c e e d 

I I f n " f l l II ^ l c l l " I I V f l l < ° * 1 1 1 1 1 3 i f 

f n = ^ Z ^ M ^ i f o r e a c h n , ( ( x . y | ^ = 1 ( ( x . f l , ) ) & , 0 ] r ) ) 

( ( x - y , ^ ) ) a s n — > 0 0 . S i n c e p r e v i o u s l y we saw t h a t 

0 a s n — > 0 0 , we c o n c l u d e t h a t 

( ( x - y , p ^ ) ) = 0 f o r e a c h k# B y 2 ) , x - y = 9 , s o t h a t x = y . 

T h e n s i n ° e ] ^ £ s l ( ( x , ^ ) x a s n ~ » o o , x ^ y ^ ( ( x , ^ ) )0± 

4 0 a s n—)»oo . 

XXX* S u p p o s e t h a t 5 } i s t r u e a n d t h a t c i s a p o s i t i v e n u m -

b e r . L e t x b e a n e l e m e n t o f H . T h e r e i s a p o s i t i v e n u m b e r 
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N such that if n is a positive integer such that N < n, 

then || ) )0̂  | < c„ Since for each positive 

integer i less than or equal to n, ((x,^)) is a real num-

ber, is a finite linear combination of 

the 1 s. Thus the set of all finite linear combinations 

of the 's is dense in H. 

IV. Suppose that 1) is true and that c is a positive 

number. If x is an element of H, there is a positive 

integer n and a sequence of scalars-^a^ such that 

|| x " Z ? - l a A 11 ̂  5** N o w ^ is a rational number, then 

K ' i - v J 2-((«iWi- a
1'

fi i- bA)) 

=((a1̂ 1.a1P»'i))-2((a1ja
,
i,b1j!ri)) + 

+ ((b^i.b^)) 

= a| - + b| = (aj-l^)2. Thus 

for each a^t let bi be a rational number, such that 

ai"bi 1 < SK * 

Then || a ^ - b ^ | | 2 < (^|) 2 and ||a±0i~h±0± || < -§h • 

f - ELi k > ELiII aA-bAII 
so that 
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c=s § + 1 1̂1 x " S = i a A IMI ̂  

> II x "Zi-l a/i +Xji=lai^i "Si=lbi^ill 

> II x "Xji=lDi^lH * Thus the set of all linear 

combinations of the 0^ 's with rational coefficients is 

dense in H. The set of all rational linear combinations 

of ̂  is countable. The set of all rational linear com-

binations of $2 is countable. Thus the set of all rational 

linear combinations of is countable. In general 

the set of all rational linear combinations of "(V^*... 

is countable for each n. Let Tn= -(z J z 13 a rational 

linear combination of "{$i* * • • T C T i * *e • »Tn*.*«} 

is countable, so that T= \J T. is countable. Thus 
T^T * 

H is separable with respect to T. 

V. Suppose that 4) is true. Let -{t̂ ,..., tn,...} (l) 

be an ordering of T. Let T*= ... »t*,.. .}• be a 

linearly independent set selected from T by eleminating 

those elements in the ordering (l) that are linear combina-

tions of their predecessors. We see that any finite sub-

set of T* is linearly independent. By Theorem 12, there is 

an orthonormal sequence elements of H, such 

that if f is a linear combination of the first n elements of 
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T*, then f is a linear combination of the first n elements 

o f { t i } Z i • Suppose that x is an element of H. Let 

^ be a linear combination of the first n elements 

of T*, such that || x -^~^1
=1bit* || < c. Let -{a^ £ = 1 be a 

sequence of scalars, such that^""^=1 âjZf̂
 =5Zi=lbifci * 

Then II x " X ! i = i a A II < 0bvlouslyX!i=iai'!'i is a finite 

linear combination of the ^ 's. Thus the set of all 

finite linear combinations of the 0^ 's is dense in. H. 



Chapter IV 

SEPARABILITY OP 

Throughout this chapter, we assume that m Is a function 

defined on [a,b], such that m is strictly increasing, and 

either m is left continuous at each x, such that a <( x <£ b, 

or m is right continuous at each x, such that a x < b. 

Theorem 15 - If f is in then either f is left con-

tinuous at each x, such that a < x b,, or f is right con-

tinuous at each x, such that a <£ x <( b. 

Proof - In the proof of Theorem 2, we saw that if f is 

in Hffl, then for each subinterval [p,q] of [a,b], 

(f(q)-f(p))2 < J p (m(q)-m(.p)) . 

L e t J= Ja ^ • 

I. Suppose that m is left continuous at each x, such that 

a < x £ b and that a < y <( b» m is left continuous at y. 

There is a subinterval [z,y] of [a,b], such that if x is 
2 

in [z,y], then m(y)-m(x) < . For each x in [z,y], 

(f(y)-f(x))2 < j* (m(y)-m(x)) 
i J(m(y)-m(x)) 

/ j c2 

< c2 . Thus | f(y)-f(x) | < c for 

51 
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each x in [z,y], which implies that f is left continuous 

at y. 

II. Suppose that m is right continuous at each x, such 

that a < x < b and that a £ y < b. m is right continuous 

at y. There is a subinterval [y,z] of [a,b], such that 
2 

if x is in [y,z], then m(x)-m(y) < . For each x in 

[y,z], 

(f(X)-f(y))
2 < J y (m(x)-m(y)) 

< J(m(x)-m(y)) 

< J 
\ J 1+1 

< c2 . Thus | f(x)-f(y)| < c 

for each x in [y,z], which implies that f is right con-

tinuous at y. 

If [p,qj is an interval, then the length of [p,q] is 

the number q-p. 

Definition 8 - For each positive integer n, let Dn 

be a subdivision of [a,b] containing exactly n+1 elements 

each of which has length HTT • L e t 

Kn " "CxO-xl xn+l> denote the set of all endpoints 

of the elements of D , where 
11 

l"x0 < xi < • • • < x n <
 X

n +1 = *>• 
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Let F n denote the set of all functions h defined on [a,b], 

such that 
ra rational number, if xeKn 

h(x) = -
x"xi-l h(Xi^i) (h(xi)-h(x±_1)),if xe[xi_>1xi3,for 

wm X i""*l 

i=l,..,,n+lj x / Kn. 

For each h in Fn, the (n+2)-tuple (h(xQ),h(x1),...,h(xn+1)) 

is called the nth order coordinate sequence of h. 

There is exactly one nth order coordinate sequence cor-

responding to each h in Fn. If A is an (n+2)-tuple of 

rational numbers, then A completely determined some function 

in Fn. 
i s CO 

Theorem 16 - F=Vs,Ji=l
Fi f o r Pi d e f i n e d i n Definition 

8 is countable. 

Proof - Suppose that n is a positive integer and con-

sider Fn. For each function h in Fn, there is exactly one 

nth order coordinate sequence (a^a^,... >an+]_) •
 F o r each 

nth order coordinate sequence of rational numbers 

(b0ibi,...,bn+i), there is exactly one function h in Fn, 

such that h(xi)=bi, for each i such that i=0,l,...,n+l. 

Thus F n contains as many unique functions as there are 

unique (n+2)-tuples of rational numbers. If (co,ci#•••>cn+l) 

is an nth order coordinate sequence of rational numbers, 
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then for each c^ there is only a countable number of values 

that may have. Thus since there is only a finite number 

of 1 s "to be determined in each coordinate sequence, there 

is a countable number of nth order coordinate sequences of 

rational numbers. Therefore Fn is countable. The set of 

U oo 

i=l*i 

is countable by Theorem 15. 

Theorem 17 - Let S denote the set of all functions de-

fined and continuous on [a,bj. If c is a positive number 

and f is an element of S, then there is a sequence • 

~{hi} Z of elements of F, such that there is a positive 

number N» such that if n is a positive integer and n ]> N, 

then | f(x)-hn(x) J < c, for every x in [a,b]. 

Proof - Suppose that c is a positive number and that f 

is an element of S. Let = -£[a,x-̂ ], [x^bfj- be a sub-

division of [a,b], such that x^=a + . Let K-̂  « 

•£x0,x^,x2 } denote the set of all endpoints of the ele-

ments of where 

a=xQ < x1 < x2 =b„ 

Let h^ be the function defined by 

f~a rational number p such that jf(x)-p|< if 

hl(x)" "l x-x 
hl(xl-l> + ^1-x^1

(hl(xl)'hl(xl-i))> i f x€[xi-l,xl]' 

for 1=1,2; x X 
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is continuous and therefore is in S, In general, if n 

V x > ' 

is a positive integer, let -£"[a,x^3, [ x ^ , x g [ x n , b ] ^ * 

ID •*CT 

be a subdivision of [a,b], such that x^a+i for 

i=l,2,...,n. Let Kn= -{x0,x1,.. . »xn+1"} denote the set of 

all endpoints of the elements of Dn, where 
a = x0 < X1 < ••• < xn < xn+l=b-

Let h be the function defined by 
n 

ra rational number p, such that f(x)-p <( g-, if xekn 

V x i - ] > l f xefxi-l'xl]' 

for 1=1,.... ,n+l ; 

x / Kn« 

h is continuous and therefore is in S. 
n 

There is a positive number d, such that if each of x and 

y is in [a,b] and j x-y | < d, then j f (x)-f(y) J < , Let 

N be the least positive integer, such that < N. 

Consider hR for n > N. Dn=-{ [a,x1], Cx1,x2],..[xn,b]"}-

is a subdivision of [a,b], such that x^a+i -j- for 

i=l,2,...,n „ The set of all endpoints of the elements 

of D„ is denoted by 
n 
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V£:0'xl'""'xn'xn+lj' w h e r e 

a~x0 < xi < ••• < x n <
 xn+l^-

Each element of Dn is of length <[ < d. Thus If 

each of s-, and z2 is in then | f(s-)-f(z2)| < £• . 

Suppose that a < x b. If x is in then 

jhn(x)-f(x) | < £•. If x is not in Kn* let
 b e 

that element of Dn that contains x. Each of the following 

three statements is true: 

1) |hn(xi)-f(xi) I < £ . 

2> lhn(xi-l'-f(xl-lH < £• 

3) | f(Xi)-f(Xl.1) | < f. . 

Thus 

§ > lhn(
xi)-f(xi)| + lf(xi-i)-Vxi-i'l 

^ | hn(
xi)-f(xi) + f(xi_i)-hn(

xi-i)| 

> | hn(xi)-hn(xi-i} I " lf(xi)-f(xi-l)i 

|hn(
xi)-hn(

xi-l)| < 5 + | f(xi)-f(xi_i) | < j + £ = | • Thus 

since | hn(x)-hn(x±) | £ | | , 

|hn(x)-hn^xi)| + I f(x)"f(xi)| < §• + 5" 

|hn(x)-hn(xi) + f(x±)-f(x)| < |2. 

|hn(x)-f(x)| - | f(3C±)-Jan(xi) | < 
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I I ^ IT* I ̂ xi^ " hn^xI^ I ^ §̂ " + 5" = 5̂ " *\ 0 • 

Let 0 denote the function defined on [a,b], such that 

©(x) = 0 for every x in [a,b]. 

Theorem 18 - There is a linearly independent subset F* 

of P, such that the set of all finite linear combinations 

of the elements of F* is dense in S. 

Proof - By Theorem 16„ F is countable. Let 

(1) h^$•* * th^».• 

be an ordering of F. Let F**-{hJ,... ,h*,... be a linearly 

independent set selected from P by eliminating those 

elements in the ordering (1) that are linear combinations 

of their predecessors. We see that any finite subset of 

F* is linearly independent. For each h in F, h is in F* 

or h is a linear combination of elements in F*. 

Suppose that f is an element of S. If c is a positive 

number, there is an element h of F, such that 
n * 

|f(x)-hn(x) | < c for every x in [a,b]. If hn is in F*, 

then hn=h* for some m < n. If hn is not in F*, there is 

a linear combination A of elements of F*, such that hn=A. 

In either case, there is some linear combination B of 

elements of F*, such that B-hn, so that |.f (x)-B(x)| < c. 

Thus F* is dense in S. 

Definition 9 - Let S be the set of all continuous 

functions defined on [a,b]. If each of f and g is in S, 
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define 

m((f*g))= J a f(t)g(t)dm(t). 

Theorem 19 - If each of f, g, and h Is in S and k is 

a number, then the following statements are true: 

1) m((f»g)) is a real number. 

2) ro((f,f)) ^ 0 and m((f,f))=0 if and only if f=9. 

3) m((fjg)) = m((g,f)) . 

4) ra((f+S,h)) = ffl((f,h)) + m((g,h)) . 

5) m((f,kg)) , k(m{(f,g)) ) . 

Proof - Suppose that each of f, g, and h is an 

element of S and that k is a number. 

I. Since each of f and g is a continuous function, the 

product fg is also continuous. Thus the integral 

f("fc)g(t)dm(t), which is a real number, exists. 

II. Suppose that f is a continuous function. Then 

J^(f(t))t*dm(t) = m((f,f)) exists. Let D be a subdivision 

of [a,bj. Let r be a function whose domain is D, such 

that r(l) is in I for every 1 in D. Consider 

/ (f(r))2Am. For each I in D, A m > 0. In addition, 
D 1 

(f(r))2 > 0. Thus (f(r))2^m is nonnegative. There-

® fb 
fore since every approximating sum of J a (f(t))

2dm(t) 



59 

is nonnegative, m((f,f)) )> 0 . 

Suppose that f(x) = 0 for every x in [a,b], Then 

for every subdivision D of [a,b], 

(f(r))2Am = (0)Am = 0 
D D 

regardless of the function r„ Thus m((f,f))=0 if f = 9. 

Suppose that f is a continuous function, such that 

((f,f)) = 0. Suppose that for some q in [a,b], f(q)^0. 

Then (f(q))2 > 0. There is a subdivision D of [a,b], 

such that if I is in D, and each of x and y is in I, then 
o 

|(f(x))2-(f(y))2| < . Suppose that [s,t] is 

that element of D that contains q. Let E be a subdivision 

of [s,tJ and r a function whose domain is E, such that 

r(I) is in I for every I in E. Consider the sum 

X ! (f(r))2Am. 
E 

Y , (f(r))2Am ̂  X ! (f(q))2 Am = (f(q))2 Z , Am 
E - E 2 2 E 

2 
> ) (m(t)-m(s)) . Since m is strictly _z:2 

_ 2 

increasing, m(t)-m(s) > 0. Since, for ev<?ry subdivision E 

of [s,t], X I (f(r))2Am > illslL (m(t)-m(s)), then 
E ~ 

y (f(t))2dm(t) > 0. 

Now £ J ^ ( f ( t ) ) 2 d m ( t ) , so that 
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J: 0 (f(t))^dm(t) y 0, which is a contradiction of the 

assumption that m((f,f)) = 0. Thus f(x) = 0 for every 

x in [a,b J. 

i n . m((f>s)) 

b 

f(t}g(t)dm(t) . 

g(t)f(t)dm(t)' 

m 
((g.f)) 

IV. m((f+g,h)> a 
* 

b 
!a 
b 

(f(t) + g(t))h(t)dm(t) 

(f(t)h(t) + g(t)h(t))dm(t) 

t. a f(t)h(t)dm(t) + J a g(t)h(t)dm(t) 

m((f,h)) + m((g,h)). 

V. m((f,kg)) = J: f(t)(kg(t))dra(t) 
= k J: f(t)g(t)dm(t) 

» k(m((f,g)) ) . 

Theorem 20 - There is a sequence of 

elements of S, such that 

1) g is a linear combination of the first n elements 

of F* if and only if g is a linear combination of the 

first n elements of - t o and 
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2 ) „ « ( W > -

r0, if i/j 

1, if i=j . 

Proof - If we replace the general inner product 

((.,.)) in Theorem 12 with the inner product ((.».)), 

we obtain the required sequence from the 

linearly independent set F* where each 0^ is given by 

K = 

h £ -Ull m 

k " I K " L E l m 

Definition 10 - Since each 0^ obtained in Theorem 

20 is a linear combination of continuous functions, 0^ 

is continuous on [a,b]. For each 0. define 

fx 
ui^ x^ =Ja ^i(t)dm(t) • 

Theorem 21 - The sequence -Cui) is an orthonormal 

sequence with respect to the inner product ((.,.)) . 

Proof - Suppose that each of u„ and ut is an element 11 " 11 1 1111 S u 

of u± . By Theorem 7* each ui is H-integrable. Thus 

every u. is in H „ 

1 m 

I. Suppose that s = t . Then ((us,ut))m = ((
u
s»

u
s))m • 

lb du du 

^ u s * u s ^ m = Ja ' By Theorem 9, 

f . fb Ws(*))
2dm(x). 

Jet dfn Jsi 
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Since • f a } is orthonorma.1, 

(^s(x))
2dm(x)= m((0Q>0s)) = so that ((us,ug))m=l. 

J
fb du du. 

II . Suppose that s/t. Then ((uG>
u
t))m= J a — • By 

b du du, fb 

a — ^ — = J a 0s(x)#t(x)dm(x) . Since 

• f e } is orthonormal, : 0B(x)0t(x)dm(x) = 

= m((^ s^ t)) = 0» so that ((us,ut))m = 0. 

Theorem 22 - If g is in such that ((g^u^))m=0 

for all i, then g = © . 
Proof - Suppose that g is in such that 

((gjU1))m = 0 for all i. Suppose that c is a positive 
t 

number and that f is a continuous function defined on 
[a,b]. By Theorem 8, P* d ui d g _ f° 0. (t)dg(t), so 

Ja 3m Ja 
fb 

that 1 #|(t)dg(t) = 0 for every positive integer i. 

g is of bounded variation, so that there is a number 

M, such that if D is a subdivision of [a,bJ, then 

M y Z U . There is a positive integer n and a 
D 

sequence of scalars -^a^ , such that 

f(x)~2Zi=iai^i(x) | ^ M + i" f o r e y e ry x i n ta>b]-

Thus f(x) =k(x)+5Z?=1a1^1 (x) where | k(x) | < M ^ 1 for 
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every x in [a,b], Consider 

(b I 
f(t)dg(t) 

J: 

fb 

J a f(t)dg(t). 

(k(t) +Ei=l
aA( t))^(t) 

k(t)dg(t) + E ^ i J a ^±(t)dg(t) 

k(t)dg(t) | < ̂  ° 1 M < c. 

Therefore f(t)dg(t) = 0. By the proof of Theorem 11, 

each of g(a), g(b), g(x+), and g(x~) is zero'. By Theorem 

15, either g is left continuous at each x, such that 

a < x ^ b or g is right continuous at each x» such that 

a x < b, so that g(x) = 0 for every x in [a,b). 

Theorem 23 - Hm is separable. 

Proof - By Theorem 22, if g is an element of 

such that ((giU^))m=0 for all i, then g = 9. By 

Theorem 14, this is equivalent to the statement that 1^ 

is separable. By the proof of Theorem 14, vie see that 

Hm is separable with respect to the set of all finite 
r °° 

rational linear combinations of the sequence-̂ û j- « 


