IDEALS AND BOOLEAN RINGS: SOME PROPERTIES

APPROVED:

THESIS

Presented to the Greduate council of the Nouth Taxas Stato University in Partial Fulfillmont of the Requiraments

For the Dagree of

PASTER OF SOIENCE

By

Grace Min-ving Chin Fu, B. A.

Denton, Teras
May, 1968

TARLE OF CONTENTS
Chapter Page
I. GENERAL PROPERTIES OF RINES AND IDEALS 1
II. SPECIAL TYPES OF IDEALS 32
III. BOOLEAN RINGS 46
BIBLIOGRAPFY 73

CHAPTER I

GENERAL PROPERTIES OF RINGS AND IDEALS

The pucpose of this thesis is to investigate certain propertiss of rings, ideals, and a special type of ring called a Boolean ring.

Definition 1-1. Let A be a given set. A binary operation θ on A is a correspondence that associates with each ordered pair (a,b) of sloments of A e unicuely determinsd elenent $2 \oplus \mathrm{~b}$ of A .

Definition 1-2. A non-mopty sot G on which there is defined a binary oparation is called a group (witb respoct to this operation) if G satisfies the following conditions:

Gl. The operation is assoriative. If $a, b, c \in G$, then $(a \in b) \theta c=a \theta(b \theta c)$.

Q2. Theme exists in G a unique zero olament 0 such that $a \in 0=0 \oplus a=a$ forevery element a in G.

G3. For each olament a in G, there oxists e unicae eirment -a in G such that $a \in(-a)=(-a) \theta a=0$.

Qperation notation. In order to simplify the notation we write a (-b) as a-b for $a, b \in R$

Dofintiton 1-3. A group ($G, 0$) is an abelian gronp if $a \otimes b=b \oplus$ a for every $a, b \in G$.

Definition 1-4. A non-empty sot R, in which two binary operations 0 and 0 are defined, is called a ring if the following conditions are satisfied:

R1. (R, \oplus) is an gbelyan group.
R2. The operation 0 is associatire. If $a, b, c \in R$, then $(a \operatorname{a} b) 0 c=a 0(b 0 c)$.

R3. If $a, b, c \in R$, then
 law), and
(2) $(b \oplus c) 03=b$ a 0 c e a (right distributive law).

Somo basic properties of a ring are stated and proveत in theorem 1-1.

Theorem 2-1. If ($\mathrm{R},(\mathrm{n}, 0$) is a ring, then tho following proparties hold for any $a, b, c \in R:$
(1a) a $0(b-c)=a 0 b-a$ (0c
(1b) $(b-c) 0 a=b 0 a-c 0 a$
(2) a $0=0$ a 0
(3) $-(-a)=a$
(4) $\quad(-a) 0 c=a 0(-c)=-\left(\begin{array}{lll}a & 0 & c\end{array}\right)$
(5) $(-a) \circ(-c)=a 0 c$

Proof:
(I) $\{a \circ(b-c)\} \theta(a \in c)=a \otimes[(b-c) \oplus c)$

$$
=a 0[b \oplus(-c \oplus c)]
$$

$$
=a 0(b \oplus 0)
$$

$=a \cdot b$.
 in R ior a 0 in i . Gherefore,

$$
\begin{aligned}
& \left.\left.\left\{\left[\begin{array}{lll}
a & 0 & (b-c
\end{array}\right)\right] \oplus\left(\begin{array}{lll}
a & 0 & c
\end{array}\right)\right\} \oplus\left[\begin{array}{lll}
a & 0 & c
\end{array}\right)\right]=\left[\left(\begin{array}{lll}
a & 0 & b
\end{array}\right)\right] \oplus\left[\begin{array}{lll}
\left.-\left(\begin{array}{ll}
a & 0
\end{array}\right)\right]
\end{array}\right. \\
& \left.a \bullet(b-c) \odot\left\{(a \circ c) \oplus\left[-\left(\begin{array}{lll}
a & \circ & c
\end{array}\right)\right]\right\}=\left(\begin{array}{lll}
a & \circ & b
\end{array}\right) \oplus\left[\begin{array}{lll}
(a & \circ & c
\end{array}\right)\right] \\
& a 0(b-c) \oplus\left(\left(\begin{array}{lll}
a & 0 & c
\end{array}\right)-(a \in c)\right]=(a \circ b)-\left(\begin{array}{lll}
a & 0 & c
\end{array}\right) \\
& a 0(b-c)=a 3 b-a 0 c
\end{aligned}
$$

In similar manoer, $(b-c) 0 a=b 0 a-c 0$ a can be shown.
(2) From (1) we have for eveny \&,b,c $\in R$,
$a 0(b-c)=a 0 b-a 0 c a n d$
$(b-c) \geqslant a=b 0 a-c \geqslant 2$.
Now, let $b=c$, we see that

$$
\begin{aligned}
& a 0(c-c)=a 0 c-a 0 c=0 \\
& a 00=0, a n d \\
& (c-c) a=00 a-c 0 a=0 \\
& 0 B a \quad=0
\end{aligned}
$$

Tberofore, a $0=0=0$ a $=0$
(3) If a $=0$, tho proof is trivial.

If a $\neq 0$, then
$a=a \oplus 0=a \in\{(-a) \theta[-(-a)]\}$
$=[a \theta(-a)] \oplus[-(-a)]$
$=0 \oplus[-(-a)]$
$=-(-2)$
(4) From (1a), lat $b=0$, then

$$
\begin{aligned}
a 0(0-c) & =a 00-(a 0 c) \\
a 0(-c) & =0-(a 0 c) \\
& =-(a \circ c) .
\end{aligned}
$$

Therefore, a $0(-c)=-(a 0 c)$.

From (lb), let $b=0$, then $(0-c) 0 a=0$ a $a-c$ ca, $(-c) \rho a=0-(c) a)$.

Therefore, $(-c)$ (0) $a=-(c$ e $a)=a 0(-c)$.
(5) If $a \in R$, then $-a \in R$.

From (la), let $b=0$, then
$(-a) \circ(0-c)=(-a)<0-[(-a) \circ c]$,
$(-a) \subset(-c)=-[(-a) \in c\}$
$=\left[\begin{array}{lll}-(-a) & c\end{array}\right]$
$=00 \mathrm{c}$.
Therefore, (-a) $0(-c)=a<c$.
Before stating and proving theorem li, the following, definitions are needed:

Definition 1-5. A ring $(\mathrm{R}, \otimes, 0)$ is a commutative ring if $a(3)=b 0$ for every a, b in R.

Definition 1-6. A ring ($\mathrm{R}, \mathrm{f}, 0$) is a ring with identity If there exists an element θ in R such that $a \theta=e 0$ a $0=a$ for every a in R.

Definition $1-7$. If ($\mathrm{F}, \otimes, 0$) is a ring with identity and there exists an element a^{-1} in R such that a $0 a^{-1}=a^{-1} 0 a=e$ for $a \in R$, then a^{-1} is called the inverse of a under. θ.

Definition 1-8. If on element a in R is such that its inverse ail is also in R, then a is called a unit in R.

In the ring of integers ($1,+x$) the only units are I and -1.

The set of units in a ring with identity is denoted by $U=\left\{a \in R \mid a^{-1} \in R\right\}$,

With the preceding definitions, theorem l-2 can now be stated and proved.

Theorem $1-2$. Let $(R, 0,0)$ be a ring with identity; and R hes at least two elements. Then
(1) (R,0) is not necessarily a group, but (U,0) is a group.
(2) The identity θ of R is distinct from the zero element of R and there exists no lnverse for the zero element of R under 0 .

Proof: (I) Consider $U \equiv\left\{a \in R / a^{-1} \in R\right\} ; U \neq \varnothing$ since $\theta \in U$ for $\theta \in R$ and $e \theta=\theta$ so $\theta^{-1}=e \in R$. Clearly, $a \in U$ implies that $a^{-1} \in U$. For any $a, b \in U$, we have $a^{-1}, b^{-1} \in R$ and $b^{-1} \odot a^{-1} \in R$. The inverse of $a 0 b$ is $b^{-1} 0 a^{-1}$, since

$$
\begin{aligned}
(a \circ b) \circ\left(b^{-1} \circ a^{-1}\right) & =\left[(a \circ b) \circ b^{-1}\right) \odot a^{-1} \\
& =\left[a \circ\left(b \odot b^{-1}\right)\right] \odot a^{-1} \\
& =(a \circ \theta) \circ a^{-1} \\
& =a \circ a^{-1} \\
& =\varepsilon \in R .
\end{aligned}
$$

Since $b^{-3} \theta a^{-1} \in R$, we conclude that a $\theta b \in U . \quad U \subseteq R$ so the associative property holds in U. Hence, (U,0) forms a Eroup.
(2) Let $a \in \mathbb{R}$ such that $a \neq 0$, then $a 00=00$ a $0=0$ and a $0=0=0$ a $=$. Tharefore, $\theta \neq 0$. Since $a 00=00 a=0 \neq e$, it follows that 0 tas no invarse under 0 .

The terms zero divisors and free of zero divisore are introduced in definition 1-9.

Definition 1-9. An element a not equal to the zero element of a ring ($R, \phi, 0$) is called a left (right) zero divisor if thers exists in R an element b not equal to the zero element of R such that $a \in b=0(b 0 a=0)$. An element a is called a zero divisor if it is a left and right zero divisor. An element a not equal to the zero element of R is called fres of left (right) zero divisors if $a 0 b=0(b \theta a=0)$ implies $b=0$. The slement a is called free of zero divesors if it is frae of left and right zero divisors.

Theorem 1-3. If $a \in U \equiv\left\{a \in R / a^{-1} \in R\right\}$, then a is free of zero divisors.

Proof: From theorem l-2(2), a $\neq 0$ if $a \in U$. From theorem $1-2(1)$, if $a \in U$, then $e^{-1} \in U$. If $a 0 b=0$ for $b \in R$, then $a^{-1} \odot(a \circ b)=\left(a^{-1} Q a\right) 0 b=00 b=b$. On the other hand, $a^{-1} a(a \circ b)=a^{-1} \odot 0=0$ inplies that $b=0$. Hence, a is free of left zero divisors. If $c 0 \theta=0$ for $c \in R$, then (c@a) $0 a^{-1}=c \theta\left(a O a^{-1}\right)=c \theta 0=c$. On the other hand, (coa) $\theta a^{-1}=00 a^{-1}=0$ implies that $c=0$. Hence, a is freo of right zero divisors. Since a is froo of left and right zero divisors, therefors, a is free of zero divisors.

The follcwing two theoreras degl with generalized properties of a ring.

Theorem 1-4. If a and b are elements of a ring ($R, 0,0$), then the following rolations are trus:
(1) $b \odot \sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}\left(b \odot a_{i}\right)$, and
(2) $\left(\sum_{i=1}^{n} a_{i}\right) 0 b=\sum_{i=1}^{n}\left(a_{i} 0 b\right)$.

Proof: This theorem can bo easily proved by mathematical induction.
(1) The relation is trus for $n=1$, since

$$
b \circ \sum_{i=1}^{\frac{1}{2}} a_{i}=b \circ a_{i}=\sum_{i=1}^{1} b \circ a_{i} .
$$

Let us now assume that the relation is true for $n=k$, that is

$$
b \odot \sum_{i=k}^{k} a_{i}=\sum_{i=k}^{k} b \odot a_{i} .
$$

Then,

$$
\begin{aligned}
& b 0 \sum_{i=1}^{k^{+1}} a_{i}=b 0\left(\sum_{i=1}^{k} a_{i} 6 a_{k+1}\right) . \\
& =\left[\begin{array}{lll}
b & 0 & \sum_{i=1}^{k} \\
a_{i}
\end{array}\right] \oplus\left[\begin{array}{lll}
b & \circ & a_{k+1}
\end{array}\right] \\
& =\left[\sum_{i=1}^{k}\left(b<a_{j}\right)\right] \oplus\left(b \odot a_{k+1}\right) \\
& =\sum_{i=1}^{k+1}\left(b<r a_{i}\right) .
\end{aligned}
$$

The above result shows that it is true for $n=k+1$. This completes the proof.
(2) In the similar manner the relation (2) can be proved. For $n=1$, the relation (2) is true.

$$
\left(\sum_{i=1}^{1} a_{i}\right) \circ b=a_{1} \odot b=\sum_{i=1}^{1} a_{i} 0 b .
$$

Assume that it is trus for $n=k$, that is

$$
\left(\sum_{i=1}^{k} a_{i}\right) \theta b=\sum_{i=1}^{k}\left(a_{i} \theta b\right) .
$$

Then we obtain the following result :

$$
\begin{aligned}
\left(\sum_{i=1}^{k+1} a_{i}\right) \odot b & =\left(\sum_{i=1}^{k} a_{i} \oplus a_{k+1}\right) \odot b \\
& =\left[\left(\sum_{i=1}^{k} a_{i}\right) \odot b\right] \oplus\left[\begin{array}{lll}
a_{k+1} & \circ b
\end{array}\right] \\
& =\left[\sum_{i=1}^{k}\left(a_{i} \odot b\right)\right] \oplus\left[\begin{array}{lll}
a_{k+1} & \circ b
\end{array}\right] \\
& =\sum_{i=1}^{k+1}\left(a_{i} \circ b\right)
\end{aligned}
$$

The rosult shows that $n=k+1$ is true, and honce we have verified theorem 1-4(2).

Thooren 1-5. If a and b are elements of a ring ($R, \theta, 0$), then the following property is true, where n is an arbitrary positive integer:

$$
n(a \subset b)=(n a) \odot b=a \bullet(n b)
$$

Proof: Let $b_{1}=b_{2}=b_{3}=\cdots=b_{k}=b_{k+1}=\cdots=b_{n}=0$. Then it is easy to verify $\sum_{i=1}^{n} b_{i}=n b$ by mathematical induction. If $n=1$, then $\sum_{i=1}^{n} b_{i}=n b$ obviously holds, since $b_{1}=b=1 b$. If the same holds for $n=k$, then for $n=k+1$,

$$
\sum_{i=1}^{k+1} b_{i}=\sum_{i=1}^{k} b_{i} \oplus b_{k+1}=k b \oplus b_{k+1}=k b \oplus b=(k+1) b
$$

Hence, by induction, for any positive integers $n, \sum_{i=1}^{n} b_{i}=n b$.

Now we obtain the following results:
a $0 \sum_{i=1}^{n} b_{i}=a \circ n b$, and
$\sum_{i=1}^{n}\left(a \odot b_{i}\right)=n(a \odot b)$, if $a 0 b_{1}=\cdots=a 0 b_{n}=a 0 b$.
From theorem 1-4(1), hance we have a $0(n b)=n(a 0 b)$. Similarly, we havo

$$
\begin{array}{r}
\sum_{i=1}^{n}\left(a_{1} \odot b\right)=n(a \circ b) \text { and }\left(\sum_{i=1}^{n} a_{i}\right) 0 b=(n a) 0 b, \\
\text { if } a_{1} \odot b=a_{2} \circ b=\cdots=a_{n} \odot b=a 0 b, \text { and } a_{1}=a_{2}=\ldots=a_{n}=a
\end{array}
$$

$$
\text { From theorem } 2-4(2) \text {, hence we have } n(a 0 b)=(n a) 0 b
$$ Therefore, $n(a 0 b)=(n a) \theta b=a 0(n b)$.

The commutative property under θ is necessary for a ring with identity. This is discussed in the next theorem.

Theorem $1-6$. If $(R, \theta, 0)$ is an algebrafo system satisfying all the conditions for a ring with identity with the exception of $a \oplus b=b \oplus a$, then the relation $a \in b=b \oplus a$ must hold in R and R is thus a ring.

Proof: Let e be the identity of R, and $(a \oplus b) \in R$ and $(s \in \theta) \in R$ for gvery a, b in R. Then

$$
\begin{aligned}
(a \oplus b) \odot(e \oplus \theta) & =[((a \oplus b) \odot \theta] \odot[(a \oplus b) \theta \theta] \\
& =[(a \odot \theta) \oplus(b \odot \theta)] \oplus[(a \odot \theta) \oplus(b 0 \theta)] \\
& =(a \otimes b) \odot(a \odot b)
\end{aligned}
$$

and also $(a \in b) 0(a \in \theta)=[a \theta(0 \oplus \theta)] \theta[b \theta(\theta \theta \theta)]$

$$
\begin{aligned}
& =[(a \theta \theta) \theta(a \theta \theta)] \oplus[(b \theta \theta) \theta(b 0 \theta)] \\
& =(a \theta a) \oplus(b \oplus b)
\end{aligned}
$$

Hence, $(a \oplus b) \oplus(a \oplus b)=(a \oplus a) \oplus(b \oplus b)$.
Now, since $a, b \in R$ implies $-a,-b \in R$, then
$-a \oplus[(a \oplus b) \oplus(a \oplus b)] \oplus(-b)=-a \oplus[(a \oplus a) \oplus(b \oplus b)] \oplus(-b)$, $[(-a) \oplus a] \oplus[(b \oplus a)] \oplus[b \oplus(-b)]=[(-a) \oplus a] \oplus[(a \oplus b) \| \oplus[b \oplus(-b)]$,

$$
0 \oplus(b \oplus a) \oplus 0=0 \oplus(a \oplus b) \oplus 0,
$$

hence $b \oplus a=a \oplus b$.
Therefore, $a \oplus b=b \oplus a$ holds and R is a ring, and the proof is completed.

The necsssary and sufficiont conditions for a subgroup and a subring are discussed in the following definitions.

Definition 1-10. A non-empty subset S of a group ($G,+$) is a subgroup if ($S,+$) itself is a group.

If $(S,+)$ is a group, then for any element c in S there exists $-c$ in S such that $a+(-c)=a-c \in S$ whenever $a \in S$.

If S is a non-empty subset of G such that $a-c \in S$, then $a-a=0 \in S$ and $0-c=-c \in S$. Now $-(-c)=c$ by theorem l-1(3), we therefore see that $a-(-c)=a+c \in S$. Since $S \subseteq R$, hence S is a group. Therefore, for any $a, c \in S$, $a-c \in S$ is a necessary and sufficient condition for a non-ompty subset S to be a suberoup in G.

Definition 1-11. A non-gmpty subsst B of a ring ($R, \theta, 0$)
is a subring of R if ($B, \oplus, 0$) itsolf is a ring.
If (B, θ, O) is a ring, then ($B,(\oplus)$ must be a subgroup of (R, θ) which implies $a-c \in B$ for any $a, c \in B$. Furthemore, a $0 c \in B$. If B is a non-empty subsst of R and $a-c \in B$ for
any $a, c \in B$, then (B, \oplus; is a subgroup of (R, Q). The condition a $0 c \in B$ assures us of all conditions necessary for $(B, \theta, 0)$ to be a ring. Therefore, for any $a, c \in B, a \sim c \in B$ and a $0 c \in B$ are necessary and sufficiont conditions for a subring B in R. The identity of a ring and the identity of its subring ars of great interest. They are discussed in theorem 1-7. Theorsm 1-7. Lst S bs a subring of $(R,+, \cdot)$. The following statements are true:
(1) If R has identity θ, then S may not have one. But if θ is in S, then θ is an identity in S,
(2) If e is an identity of R and e^{\prime} is en identity of S and $e \notin S$, then $e \neq e^{\prime}$,
(3) If S has the identity e' and R does not have one, then e' is necessarily a zero divisor of R.

Proof: (I) Consider the ring of integers I and lot S be the set of all even integers in I. For any $a, c \in S, a-c \in S$ and axceS, S is a subring of I. I has the identity 2 where $I \in I$ but $I \notin S$. Hence ($S,+, x$) foms a subring in I without an identity. However, if $e \in S$ such that e is the identity or π, then a $0=\theta 0$ a $=$ a for any $\varepsilon \in$ R. Suppose there oxists ari element b in S such that $b \odot a f^{\prime} b$, and $S \subseteq R$ implies that $b \in R$. This laads to a contradiction. Therefore, θ is the identity of S.
(2) Consider the set $R \equiv\{(a, b) / a \in A$ and $b \in B\}$ where ($A,+, \dot{a}$) and ($B, \frac{+}{b}, \dot{b}$) are two rings. Defins
$+\equiv\{[(a, b),(c, d)],(a+c, b+d) / a, c \in A$ and $b, d \in B\}$, and

- $\equiv\left\{((a, b),(c, d)\},\left(a \dot{a}, b \dot{b}^{d}\right) / a, c \in A\right.$ and $\left.b, d \in B\right\}$,
where $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
($R,+, \cdot$) is a ring and the proof is as follows. Let
$r_{1}=(a, b), r_{2}=(c, d), r_{3}=\left(a^{\prime}, b^{\prime}\right)$ and $r_{4}=\left(c^{\prime}, d^{\prime}\right)$. If $r_{1}=r_{3}$ and $r_{2}=r_{4}$, then $a=a^{\prime}, b=b^{\prime}, c=c^{\prime}$ and $d=d^{\prime}$. It follows that $a \underset{a}{a}=a_{a}^{\prime}+c^{\prime}, b_{b}+d^{\prime}=b^{\prime}+d^{\prime}$ and $\left(a+c, b_{b}+d^{a}\right)=\left(a_{a}^{\prime}+c^{\prime}, b^{\prime}+d^{\prime}\right)$. Hence $(a, b)+(c, d)=\left(a^{\prime}, b^{\prime}\right)+\left(c^{\prime}, d^{\prime}\right)$, that is,

$$
r_{1}+r_{2}=r_{3}+r_{4}
$$

Therefore, + is a binary operation. Since $a \dot{a}^{c=a^{\prime}} \dot{a}^{c}$ and $b_{\dot{b}} d^{\prime}=b^{\prime} d^{\prime}$, then

$$
\begin{aligned}
r_{I} \cdot r_{2} & =(a, b) \cdot(c, d) \\
& =\left(a \dot{a} c, b \dot{b}^{d}\right) \\
& =\left(a^{\prime} \dot{a}^{\prime}, b^{\prime} \dot{b}^{\prime}\right) \\
& =\left(a^{\prime}, b^{\prime}\right) \cdot\left(c^{\prime}, d^{\prime}\right) \\
& =r_{3} \cdot r_{4} \cdot
\end{aligned}
$$

Hence $r_{1} \cdot r_{2}=r_{3} \cdot r_{4}$. Therefore, is a binary operation.
For $(a, b),(c, d),(s, f) \in R$, wa have

$$
\begin{aligned}
& {[(a, b)+(c, d)]+(e, f)=(a \underset{a}{+} c, e \underset{b}{+d})+(0, a)} \\
& =((a+c)+o,(b+d)+f) \\
& =\left\{a \underset{a}{+}(c \underset{a}{+b}), b_{b}^{f}\left(d_{b}^{+} p\right)\right] \\
& =(a, b)+\left(c+a, d_{b}^{b} f\right) \\
& =(a, b)+[(c, d)+(\theta, f)] .
\end{aligned}
$$

Since A and B are rings for any $a \in A$ and $b \in B$, there axists $-a \in A$ and $-b \in E$. For any $(a, b) \in R$, we have

$$
\begin{gathered}
(a, b)+(-a,-b)=(a-a, b-b)=(0,0) \in R, \\
(\underset{a}{0}, 0)+(a, b)=\left(0+a, \underset{a}{b}+\frac{0}{b}+b\right)=(a, b), \quad \text { and } \\
(a, b)+(c, d)=(a+c, b+b)=(c+a, d+b)=(c, d)+(a, b) .
\end{gathered}
$$

Therefore, ($\mathrm{R},+$) is an abelian group.

$$
\begin{aligned}
& (a, b) \cdot[(c, d) \cdot(e, f)]=(a, b) \cdot(c \underset{a}{ } \quad \theta, d \dot{b}) \\
& =[a \underset{a}{a}(c), b \dot{b}(d \dot{b} f)] \\
& =[(a+c) \dot{a} \quad \theta,(b \dot{b} d) \dot{b} f] \\
& =\left[\left(\begin{array}{llll}
a & a, b & d
\end{array}\right) \cdot(\theta, f)\right] \\
& =[(a, b) \cdot(c, a)] \cdot(0, f) . \\
& (a, b) \cdot((c, d)+(e, f))=(a, b) \cdot(c+\underset{a}{+} 0, d \underset{b}{f}) \\
& =\left[\begin{array}{l}
a,(c+s), b \underset{a}{a}(d+f)] \\
b
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =(a \underset{a}{c, b} \underset{b}{d})+\left(\underset{a}{a}, b_{b} f\right) \\
& =[(a, b) \cdot(c, d)]+\left[(a, b) \cdot\left(e, f^{\prime}\right)\right] \text {. }
\end{aligned}
$$

A similar proof holds for right distributive law. Hence $(R,+, \cdot)$ is a ring.

Lst $S \equiv\{(a, 0) / a \in A$ and 0 is zero element in $B\}$. $A \neq \varnothing$ and $B \neq \varnothing$ imply that $S \neq \varnothing$. For any $(a, 0),(b, 0) \in S$, we have

$$
\begin{aligned}
& (a, 0)+(b, 0)=(a+b, 0+0)=(a+b, 0) \in S \\
& (a, 0) \cdot(b, 0)=\left(a \cdot b, 0_{a}+0\right)=\left(a_{a} \cdot b, 0\right) \in S
\end{aligned}
$$

$-b \in A$ for $b \in A$ implies $(-b, 0)=-(b, 0) \in S$,
hence, $(a, 0)-(b, 0)=(a-b, 0+0)=(a-b, 0) \in S$. Therefore, ($\mathrm{S},+,^{\cdot}$) forms a subring of ($\mathrm{R},+, \cdot$).

Since $(a, 0) \cdot(\underset{a}{a}, 0)=\left(a \cdot a_{a}, 0 \cdot 0\right)=(a, 0)$ for any $(a, 0) \in S$, if A is a ring with identity, then S is a ring with identity. Since $(a, b) \cdot(\underset{a}{a}, g)=\left(a \cdot 9, b_{a} \cdot \underline{b}\right)=(a, b)$ for any $(a, b) \in R$, if B is also a ring with identity, then R is a ring with identity.

Let $\theta=(\underset{a}{e}, \underset{b}{e})$ and $e^{\prime}=(\underset{a}{e}, 0)$. The ring R has an identity if and only if A and B both are rings with identities. From theorem 1-2(2), it follows that $g \neq 9$. Hernce, we have $\theta=(e, f) \neq(\theta, 0)=\theta$ and $e=(\varepsilon, g) \notin S$. Therefore, we conclude that identity of a ring may be different from the identity θ^{\prime} of its subring, if θ is not an element of the subring.
(3) Let e' be the identity of S. From theorem l-2(2), we have e'for ϵS. Suppose $e^{\prime} \cdot a=b \neq a$ for some $a \in R$, then $e^{\prime} \cdot b=e^{\prime} \cdot\left(e^{\prime} \cdot a\right)=\left(e^{\prime} \cdot s^{\prime}\right) \cdot a=s^{\prime \cdot a}$ which implies $s^{\prime \cdot} \cdot y^{\prime}=e^{\prime} \cdot a \cdot$ Since $-\left(s^{\prime} \cdot a\right) \in R$, then $\left(s^{\prime} \cdot b\right)+\left[-\left(s^{\prime} \cdot a\right)\right]=\left(o^{\prime} \cdot a\right)+\left[-\left(e^{\prime} \cdot a\right)\right]=0$. By thooram I-1(4), it follows

$$
\begin{aligned}
\left(e^{\prime} \cdot b\right)+\left[e^{\prime} \cdot(-a)\right] & =e^{\prime} \cdot[b+(-a)] \\
& =e^{\prime} \cdot(b-a) \\
& =0
\end{aligned}
$$

Since $b \neq a$ implies $b-a \neq 0$, hencs e^{\prime} is a left zero divisor.
A similar proof holds for gl boing a right zero divisor. Therefore, e' of S in this case is a zero divisor.

Ideals are non-empty subsets of a ring. They play important roles in the study of rings.

Definition 1-12. A nonmempty subset I of a ring R is said to be a left (right) idegl of R if
(I) (I, θ) is a subgroup of (R, θ), and
(2) $i \in I, r \in R$ impliss that $r \theta i \in I \quad(i 0 r \in I)$.

If I is a left ideal and is also a right ideal, then I is called an tdoal.

Some important properties of ideals are stated and proved in the followlng set of theorems.

Theoren I-8. If R is a comutative ring and $a \in R$, thon $T=a 0 \mathrm{R}$ is an ideal, whers a0R=\{a0r|r|R\}.

Proof: Sxnce $R \neq \phi$, it follows that $T \neq \varnothing$. If a $0 x_{2}$ and a $0 r_{2}$ are two elments in T, thon

$$
\begin{aligned}
\left(a \circ r_{1}\right) \oplus\left[-\left(a \circ r_{2}\right)\right] & =\left(a \circ r_{1}\right) \oplus\left(a 0-\left(r_{2}\right)\right] \\
& =a 0\left[r_{1}+\left(-r_{2}\right)\right] \\
& =a \circ\left(r_{1}-r_{2}\right) \in \mathbb{T}
\end{aligned}
$$

for $\left(r_{1}-r_{2}\right) \in R$. Hence, (T, θ) is a subgroup of $(R, 6)$.
For any $a 0 r_{1} \in T$ and $r_{2} \in R, \quad\left(a \circ r_{1}\right) \circ r_{2}=a 0\left(r_{1} \circ r_{2}\right) \in T$. Hence, T is a right ideal in R. Since $T \subseteq R$ for any a $\quad \mathrm{r} \in \mathrm{T}$, therecore, a or=r a 0 which proves that T is an ideal in R.

Theorem 1-9. If R is a ring and $a \in R$, and lst $r(a) \equiv\{x \in R \mid \& 0 x=0\}$, thon $r(a)$ is a right ideal in R. Proof: It is trivial that $r(a) \neq \varnothing$. For every $x, y \in r(a) \subseteq z, b y$ bypothesis, a0x=0 and a0y=0. Ihis implies that a $0 x-a 0 y=0$ and $a 0(x-y)=0$. Hance, $x-y \in r(a)$.

Therefore, $(r(a), *)$ is a zubgroup of (R, θ). If $y \in r(a)$ and $b \in R$, then $a \circ(y \circ b)=(a \ominus y) \odot b=0 \odot b=0$. Hence $y 0 b \in r(a)$ and the proof is complated.

Theorem $1-10$. Let I_{11} and I_{12} be two left ideals in R and suppose ($\left.I_{11} \cap I_{12}\right) \neq \varnothing$, then the intersection of two left ideals is a left ldeal.

Proof: Since $\left(I_{11} \cap I_{12}\right) \subseteq I_{11},\left(I_{11} \cap I_{12}\right) \leq I_{12}$ and $b \in\left(I_{11} \cap I_{12}\right)$ implies that $-b \in I_{11}$ and $-b \in I_{12}$. By the uniqueness of the inverse of b under θ, it follows $-b \in\left(I_{11} n I_{12}\right)$. Furthermore, $a(-b)=a-b \in\left(I_{I I} \cap I_{12}\right)$ for any a, b in $\left(I_{11} \cap I_{12}\right)$. Hence $\left(I_{11} n I_{12}, \oplus\right)$ is a subgroup of (R, θ). For $r_{1} \in R$, $r_{1} 0 a \in I_{11}$ and $r_{1} 0 a \in I_{12}$ which imply that $r_{1} 0 a \in\left(I_{11} \cap I_{12}\right)$ for $a \in\left(I_{11} \cap I_{12}\right)$. Therefore, $\left(I_{11} I_{12}\right)$ is a left idgal of R_{0}

A similar proof can be shown that the intersection of two right ideals is a right ideal.

Now consider the intersection of a right and a left ideal of R and $\left(I_{1} \cap I_{r}\right) \neq \varnothing$. Since $\left(I_{1} \cap I_{r}\right) \subseteq I_{1}$ and $\left(I_{1} \cap I_{r}\right) \subseteq I_{r}$ for any $a, b \in\left(I_{1} \cap I_{r}\right)$, then $(a-b) \in\left(I_{1} \cap I_{r}\right)$. Hence $\left(I_{1} \cap I_{r}, 0\right)$ is a subgroup of (R, θ). If R is a commutative ring, and $r_{1} \in R, r_{1} 0 a \in I_{1}$ and $a 0 r_{1} \in I_{r}$ where $a \in\left(I_{1} \wedge I_{n}\right)$, then $r_{1} 0 a=a 0 r_{1} \in I_{r}$ and $r_{1} 0 a \in I_{1}$. This impliss $r_{1} 0 a=a \oslash r_{1} \in\left(I_{I} \cap I_{r}\right)$ and ($\left.I_{I} \cap I_{r}\right)$ is an ideal. If R is not a comutative ring, then ($I_{I} \cap I_{r}$) is not an idsal,

A ring h has at least two ideals; the entire ring R and
the set (0) consisting of the zero slement only. An idoal of R distinct from (O) and R will be called a proper ideal.

A special type of ideal known as principal iaeal is introduced and discussed in the following dofinition and theorem I-II.

Definltion 2-13. An ideal I_{p} is callad a principal ideal of a ring R if every element of I_{p} is some multiple of a. Denote I_{p} by (s) For suct ar ideal, that is, $(a) \equiv\{x \cdot a \mid x \in R\}$.

Theorea 1-21. Evexy idoaj in the ring of intogers is painctpal.

Prooi: (I) If $I=(0)$, then I is a principal ideal.
 $-c \in I$, ft follows $c>0$ or $-9>0$. Let a be the smaliest positive intoger in I, then thene axists $b \in I$ such that $b=q x a+r$, where $q \in R$ and $0 \leqslant r<a$.

Stnee quat and $-(q x a) \in I$, it rollows $b-(q x a)=(q x a+r)-(q x a)$
 gmallest positivs integer such that $0<200$. fence $b-(\mathrm{aza})=b^{2}=0$ and $\mathrm{b}=\mathrm{axa}$, Shorofore $\mathrm{I}=$ (a).

A sfiels and a figld can not bave poper ideals. This
will be scown to the next two theorems.
Deginition 2-24. A ring D^{*} is callad a silelo if it
 the gquation $a x=b$ bas a solution for ary $b \in 0^{\circ}$.

Theorem 1-12. A sfield ($D^{*},+^{*}, .^{*}$) has no proper ideals. Proof: Let I^{*} be an ideal in D^{*} such that $I^{*} \neq(0)$, $I^{*} \neq \phi$, and $I^{*} \subseteq D^{*}$. Suppose that $a, b \in D^{*}$, where $a \neq 0$, $b \neq 0$; then, by the definition of sfield, there sxists $x \in D^{*}$ such that $a .^{*} x=b$ and also $y \in D^{*}$ such that $x=b$.* y, that is,

$$
a \cdot * x=a \cdot *(b \cdot * y)=\left(a \cdot{ }^{*} b\right) \cdot * y=b \neq 0
$$

which implies, by definition of sfield, $\mathrm{a} \neq 0$ and $\mathrm{b} \neq 0$. It follows a .*b $\neq 0$. Therefore, D^{*} has no proper zero divisors. Let $a, \beta \in D^{*}$ such that $a \neq 0$, $\theta \neq 0$ and $a \cdot{ }^{*} \mathrm{~B}=\mathrm{a}$. Then,

$$
\begin{aligned}
a \cdot \theta_{\theta}^{2} & =a \cdot{ }^{*}\left(0 \cdot{ }^{*} e\right) \\
& =\left(a \cdot *_{\theta}\right) 0_{\theta} \\
& =a \cdot{ }^{*} \quad .
\end{aligned}
$$

It follows $\left(a .^{*} e^{2}\right)-\left(a 0^{*}\right.$ e) $=0$

$$
a \cdot *\left(e^{2}-\theta\right)=0 .
$$

Therefore, $\theta^{2}=\theta$. Furthermore, for any $c \in D^{*}$, we have $c \cdot{ }^{*} e^{2}=c{ }^{*} e$ and (c.**-c) ${ }^{*} \theta=0$. Since $e \neq 0$, we obtain $c{ }^{*} \varepsilon=c$. Similarly, we \&lso obtain $e^{*} c=c$. For any $c \in D^{*}, c \cdot * e=c=e{ }^{*} c$. Therefore, e is the identity in D^{*}.

Ey the same definition, a .* $x=\theta$ bas a solution in D^{*} which implies $a^{-1} \in D^{*}$. If $b \in I^{*}$ and $b^{-1} \in D^{*}$, then
 and $I^{*} \subseteq D^{*}$, therefore, $I^{*}=D^{*}$.

Definition 1-15. A comutative ring F is callod a field if the following conditions ars satifisd :
F_{1}. F has ε^{t} least two elements.
F_{2}. F has an identity.
F_{3}. Every $a \in F$ such that $a \neq 0$ has an inverse a^{-1} in F.
Theorem l-13. A commutative ring R with identity is a field if and only if R has no proper ideals.

Proof: If R is a fisld and if I is an ideal of R such that $I \neq(0)$, then there exists ar element efo such that $a \in I$. For R to be a field, a^{-1} must be in R. Hence, by definition of idsal, $a \cdot a^{-1}=e \in J$. Let $y \in R$, then $\theta \cdot y \in I$. Since $R C I$ and $I C R$, therefore, $I=R$. Converssly, if R ia a comutative rine with identity and R has no proper idsals, and also if $a \in R$ and $a \neq 0$, then consider the sot $R_{a}=\{r \cdot a \mid r \in R\}$. By theorom $1-8, R_{a}$ is an ideal in R. Since $R_{a} \neq(0)$ implies $R_{a}=R$, and e $\in \bar{K}=R_{a}$ implies $\theta=x \cdot a$ for some $x \in R$, hence R is a field.

The following definitions concern certain important mappings between rings, and some basic properties of homomorphisms are steted and proved in theorem 1-14 through theorem 1-16.

Definition 1-16. (1) A mapping from a ring R into a ring R^{\prime} is a correspondence thet associates with esch element $r \in R$ a unique $r^{\prime} \in R^{\prime}$.
(2) A mapping T from a ring ($R,+, \cdot$) into a ring ($\mathrm{E}, \mathrm{A}^{\prime \prime}, \mathrm{C}^{\prime}$) is a homomorphism if

$$
\begin{aligned}
& (a+b) T=a T+^{\prime} b T \quad \text {, and } \\
& (a \cdot b) T=a T \cdot b T \text { for } a l l \text { a.b } \in R
\end{aligned}
$$

(3) A mapping T is said to be from a ring R onto a ring R^{\prime} if for any $b^{\prime} \in R^{\prime}$ there exists at least one slament $a \in R$ such that $a T=b^{\prime}$.
(4) A mapping T is said to be a one to one mapping of a ring R into R^{\prime} if for any $a, b \in R$ with $a \neq b$, then $a T \neq O T$.
(5) If T is a one to one homomorphic mapping from ring R onto ring R^{\prime}, then T is called an isomorphism.

Dofinition 1-17. If T is a homomorphic mapping from a ring R into a ring R^{\prime}, then the kernal of T (cenoted by ker(T)) is the set of all elements of F which are mapped Into the zero element of R^{\prime}.

Theorgm 1-14. If T is a homomorphism of a ring ($R,+, \cdot$) into a ring ($\mathrm{R}^{1},+1, \cdot 1$), then
(I) $O T=01$
(2) $(-a) T=-(a T)$
(3) Ker(T) is a subring of R.

Proof:

$$
\begin{align*}
0 & =0+0 \tag{1}\\
O T & =(0+0) \mathrm{T} \\
& =O T+O T
\end{align*}
$$

Since OT $=O T+1$ OT, then $O 1+1 O T=O T=O T+1$ OT. NOW $-\left(O D^{\prime}\right) \in R^{\prime}$ if $O T \in R 1$. It follows that

$$
\begin{aligned}
(O 1+1 O T)-(O T) & =(O T+1 O T)-(O T) \\
O 1+1(O T-O T) & =O T+1(O T-O T) \\
O P & =O T
\end{aligned}
$$

(2)

$$
\begin{aligned}
0 & =(a+(-a)) \\
O T & =((a+(-a)) T=s T+1(-a) T
\end{aligned}
$$

From (1) we have $0^{\prime}=O T$, hence $0^{\prime}=a T+$ (-a)T. Since $a T+1(-(a T))=0^{\prime}$, thus we obtain the zelation

$$
a T+1(-a) T=a T+1(-(a T))=01
$$

R^{\prime} is a ring, hence if $a T \in R^{\prime}$, then $-(a T) \in R^{\prime}$. Therefore, we have

$$
\begin{aligned}
-(a T)+1[a T+1(-a) T] & =-(a T)+:[a T+1(-(a T)] \\
{[-(a T)+1 a T]+1(-a) T } & =[-(a T)+1 a T]+1[-(a T)] \\
(-a) T & =-(a T)
\end{aligned}
$$

(3) Let 0^{\prime} be the zero element of R^{\prime} and for any $a, b \in \operatorname{Ker}(T)$, then

$$
\begin{aligned}
(a-b) T & =[a+(-b)] T \\
& =a T+1(-b) T \\
& =a T-b T \\
& =0^{1}-0^{\prime} \\
& =0^{1}
\end{aligned}
$$

Hence $(a-b) \in K e r(T)$, and (Kor $(T),+$) is a subgroup of ($R,+$). Also $(a \cdot b) T=a T \cdot D^{\prime} \quad b T=O^{\prime} \cdot O^{\prime}=O^{\prime}$. Hence $a \cdot b \in \operatorname{Kor}(T)$, and ($\operatorname{Kor}(T),+, \cdot)$ is a subring of the ring $(R,+, \cdot)$.

Theorem 1-15. A homomorphism T from $\operatorname{ring}\left(R, t_{3}\right.$) onto ring ($\mathrm{R}^{\prime},{ }^{\prime \prime}, .^{\prime}$) is an isomorphism if and only if $\operatorname{Ker}(T)$ consists of zero element of R only.

Proof: Suppose T is a isomorphism. For $a, b \in R, a T=a$. and $b T=b^{\prime}$ with $a^{\prime}, b^{\prime} \in R^{\prime}$, and if c is any elament in Kor (T), then $(c+a) T=(a+c) T=a T+1 \quad c T=a T+O^{\prime}=a T=a \operatorname{and}$ $(a+c) T=a T+c T=a T+101$. Since T is isomorphism and
$O T=O$, hence $C T=O T=O T$ and $c=0 \in R$. If $\operatorname{Ker}(T)=(0)$, then let $r_{1}, r_{2} R$ such that $r_{1} T=r_{2} T$. Since

$$
\begin{aligned}
\left(r_{1}-r_{2}\right) T & =r_{1} T+\left(-r_{2}\right) \mathbb{I} \\
& =r_{1} T-r_{2} T \\
& =0^{\prime},
\end{aligned}
$$

hence $\quad r_{1}-r_{2} \in \operatorname{Ker}(T)$. Since $\operatorname{Ker}(T)=(0)$, it follows that $r_{1}-r_{2}=0$ and $r_{1}=r_{2}$. So we have shown that T is a one to one mapping. Therefore, with hypothesis, T is an isomorphism.

Definition 1-18. A commutative ring with identity and having no zero divisors is called an integral domain.

Theorem 1-16. Let ϕ be a homomorphic mapping from a ring (Rt, $)$ with identity e into a ring ($\mathrm{R}^{\prime},+^{\prime}, \cdot^{\prime}$) with identity e^{\prime}, then $\theta \phi$ is the identity of

$$
R \phi=\left\{r^{\prime} \in R \quad / \exists r \in R \not r 0=r^{\prime}\right\}
$$

where eh is not necessarily equal to $e^{\prime} \in R^{1}$. If R^{1} is ar integral domain or R^{\prime} is any ring with ϕ an onto mapping, then e $\phi=0^{\prime}$.

Proof: Since o ' $^{\prime} \quad a \phi=(e \cdot a) \phi=a \phi$ and $a \phi \cdot \theta \phi=(a \cdot s) \phi$ $=a \phi$ for any $a \phi \in R \phi$, hence $\theta \phi$ is identity of $R \phi$. If $a \cdot b \in R$, $a+b \in R$, and $a \phi, b \phi \in R \phi$, then

$$
\begin{aligned}
& a \phi \cdot b \phi=(a \cdot b) \phi \in R \phi \\
& a \phi+\prime b \phi=(a+b) \phi \in R \phi .
\end{aligned}
$$

For $a-b \in R$, wo have $a \phi-b \phi=a \phi+1(-(b \phi))=(a+(-b)) \phi$ $=(a-b) \phi \in R \phi$. Therefore, (R $\left.\phi,+^{\prime},{ }^{1}\right)$ is a subring of ($\mathrm{il}^{\prime},+^{+1},{ }^{\prime}$).

By theorem l-7, we see that $\theta=\theta=\mathrm{R} \in \mathrm{Q}$ is not necessarily equal to e^{\prime} of R^{\prime}. If R^{\prime} is an integral domain and suppose $\theta^{\prime} \neq e \phi$ for $e^{\prime} \in R^{\prime}$ and \quad 偶 $\in \phi$, then $\theta \phi \cdot a^{\prime}=b^{\prime} \neq a^{\prime}$ for some a' \in R'. Now we have

$$
\begin{aligned}
e \phi \cdot \cdot^{\prime} b^{\prime} & =e \phi \cdot{ }^{\prime}\left(\theta \phi \cdot a^{\prime}\right) \\
& =(e \phi \cdot \prime \theta \phi) \cdot a^{\prime} \\
& =\theta \phi \cdot a^{\prime},
\end{aligned}
$$

 bypothesis, R^{2} is an integral domain and e $\phi \neq 01$. Hence $b^{\prime}=a^{\prime}$. This leads to a contradiction. Therefore, e'=e ϕ. If ϕ is a homomorphic mapping from R onto R^{\prime}, then for any $a^{\prime} \in R^{\prime}$ there exists at least an slement $a \in R$ such that $a \phi=a$: . Since $s \phi \in \mathbb{R} \phi \subseteq \bar{K}^{\prime}$, and also

$$
\begin{aligned}
& a \phi \cdot a \phi=(a \cdot a) \phi=a \phi=a, \text { and } \\
& a \phi=(a \cdot \theta) \phi=a \phi \cdot \theta \phi,
\end{aligned}
$$

 e \ddagger is the identity or R^{\prime} for any $a^{\prime} \in R^{\prime}$.

With the afd of the dofinition of ideal, a spocial type of rint called quotient ring can be constructed. Soms basic properties of the quotient rine will be examined in the remainder of this chapter.

Definition 1-Io. If R is a ring and I is an ideal of R, then the set $Q=I$ \& $r=\{1+r \mid i \in I\}$, whers $r \in R$, is callad a rosinus deas in R.

$$
\text { If } I+r_{2} \neq I+r_{2} \text {, and if there exists an alement } c \in I+r_{1}
$$

and $c \in I+r_{2}$, then there exists $i_{1}, i_{2} \in I$ such that $c=1_{1}+r_{1}$ and $c=i_{2}+r_{2}$. Since I is an $1 d \theta a l$ and $-i_{1} \in I$ for $i_{1} \in I$, then

$$
\begin{aligned}
i_{1}+r_{1} & =i_{2}+r_{2} \\
\left(-1_{1}\right)+\left(i_{1}+r_{1}\right) & =\left(-i_{1}\right)+\left(i_{2}+r_{2}\right) \\
\left(-i_{1}+1_{1}\right)+r_{1} & =\left(-i_{1}+i_{2}\right)+r_{2}
\end{aligned}
$$

Let $-i_{1}+i_{2}=i_{3}$; hence $r_{2}=i_{3}+r_{2}$ and $I+r_{1}=I+\left(i_{3}+r_{2}\right)=\left(I+1_{3}\right)+r_{2}$ $=I+r_{2}$. We conclude that for any $I+r_{1}, I+r_{2} \in Q$, if $I+r_{1} \neq I+r_{2}$, then $I+r_{I}$ and $I+r_{2}$ have no elements in common.

Theorem 1-17. The set Q of residue classes of an ideal I in a ring ($\mathrm{R},+{ }^{+}$) is itself a ring.

Proof: Define E and in the set Q as follows:

$$
\begin{aligned}
& \oplus \equiv\{(I+a, I+b), I+(a+b) \mid I+a, I+b \in Q\} \\
& \square \equiv\{(I+a, I+b), I+(a \cdot b) \mid I+a, I+b \in Q\}
\end{aligned}
$$

For $x, y, w, z \in Q$, suppose $x=I+a_{1}, y=I+a_{2}, z=I+a_{3}, w=I+a_{4}$ such that $x=z$ and $y=w$. Lot $\left.s \in I+\left(a_{1}{ }^{i a}\right)_{2}\right)$, then there exists $i_{1} \in I$ such that $s=1_{1}+\left(a_{1}+a_{2}\right)=\left(i_{1}+a_{1}\right)+a_{2}$. Since $I+a_{1}=I+a_{3}$, there axiste $1_{2} \in I$ such that $1_{1}+a_{2}=i_{2}+a_{3}$; hence

$$
\begin{aligned}
s & =\left(i_{2}+a_{3}\right)+a_{2} \\
& =i_{2}+\left(a_{3}+a_{2}\right) \\
& =\left(i_{2}+a_{2}\right)+a_{3}
\end{aligned}
$$

Since $I+a_{2}=I+a_{4}$, then there exists $i_{3} \in I$ such that $i_{2}+a_{2}=1_{3}+a_{4}$. Hence $s=\left(i_{3}+a_{4}\right)+a_{3}=i_{3}+\left(a_{4}+a_{3}\right)=i_{3}+\left(a_{3}+a_{4}\right)$ which is an element of $I+\left(a_{3}+a_{4}\right)$. This implies that.
$I+\left(a_{1}+a_{2}\right) \leq I+\left(a_{3}+a_{4}\right)$. If $t \in I+\left(a_{3}+a_{4}\right)$, then there exists $I_{4} \in I$ such that $t=i_{4}+\left(a_{3}+a_{4}\right)=\left(i_{4}+a_{3}\right)+a_{4} . \quad$ Since $I+a_{1}=I+a_{3}$, there exists $i_{5} \in I$ such that $i_{5}+a_{1}=i_{4}+a_{3}$

$$
\begin{aligned}
t & =\left(i_{5}+a_{1}\right)+a_{4} \\
& =i_{5}+\left(a_{1}+a_{4}\right) \\
& =i_{5}+\left(a_{4}+a_{1}\right) \\
& =\left(i_{5}+a_{4}\right)+a_{1}
\end{aligned}
$$

Since $I+a_{2}=I+a_{4}$, there exists $i_{6} \in I$ such that $1_{6}{ }^{+a_{2}}=i_{5}+a_{4}$.
Hence $t=\left(i_{6}+a_{2}\right)+a_{1}=i_{6}+\left(a_{2}+a_{1}\right)=i_{6}+\left(a_{1}+a_{2}\right) \quad I+\left(a_{1}+a_{2}\right)$. Therefore $I+\left(a_{3}+a_{4}\right) I+\left(a_{1}+a_{2}\right)$ and $I+\left(a_{1}+a_{2}\right)=I+\left(a_{3}+a_{4}\right)$. Therefore \mathbb{T} is a binary operation.

Suppose $s^{\prime} \in I+a_{1} \cdot{ }_{2}$; then there exists $i_{1} \in I$ such that $i^{\prime}=i_{1}^{1}+a_{1} \cdot a_{2}$. Since $I+a_{1}=I+a_{3}$, there exists $i_{2}^{\prime}, i_{3}^{\prime} \in I$ such that $i_{2}^{1}+a_{1}=i_{3}^{1}+a_{3}$. Since $(I,+)$ is a subgroup of ($R,+$), then there exists $-i_{2}^{\prime} \in I$ such that $-i_{2}^{\prime}+\left(i_{2}^{\prime}+a_{1}\right)=-i_{2}^{\prime}+\left(i_{3}^{\prime}+a_{3}\right)$. It follows that $\left(-i_{2}^{\prime}+i_{2}^{\prime}\right)+a_{1}=\left(-i_{2}^{\prime}+i_{3}^{\prime}\right)+a_{3}$. Let $i_{3}^{\prime}-1_{2}^{\prime}=i_{4}^{\prime} \in I$, then $a_{1}=1_{4}^{\prime}+a_{3}$. Since $I+a_{2}=I+a_{4}$, there exists $i_{5}^{\prime}, i_{6}^{\prime} \in I$ such that $i_{5}^{\prime}+a_{2}=1_{6}^{\prime}+a_{4}$ and $-i_{5}^{\prime} \in I$. Now

$$
\begin{aligned}
& -i_{5}^{\prime}+\left(i_{5}^{\prime}+a_{2}\right)=-i_{5}^{\prime}+\left(i_{6}^{\prime}+a_{4}\right) \\
& \left(-i_{5}^{\prime}+i_{5}^{\prime}\right)+a_{2}=\left(-i_{5}^{\prime}+i_{6}^{\prime}\right)+a_{4}
\end{aligned}
$$

$L_{\text {et }} i_{7}^{\prime}=-i_{5}^{\prime}+i_{6}^{\prime}$, then $a_{2}=i_{7}^{\prime}+a_{4}$.

$$
s^{\prime}=i_{1}^{\prime}+a_{i} \cdot a_{2}
$$

$$
\begin{aligned}
s^{\prime} & =i_{1}^{\prime}+a_{1} \cdot a_{2} \\
& =i_{1}^{\prime}+\left(i_{4}^{\prime}+a_{3}\right) \cdot\left(i_{7}^{\prime}+a_{4}\right) \\
& =i_{1}^{\prime}+\left(i_{4}^{\prime}+a_{3}\right) \cdot i_{7}^{\prime}+\left(i_{4}^{\prime}+a_{3}\right) \cdot a_{4} \\
& =i_{1}^{\prime}+\left(i_{4}^{\prime} \cdot i_{7}^{\prime}+a_{3} \cdot i_{7}^{\prime}\right)+\left(i_{4}^{\prime} \cdot a_{4}+a_{3} \cdot a_{4}\right) \\
& =\left(i_{1}^{\prime}+i_{4}^{\prime} \cdot i_{7}^{\prime}+a_{3} \cdot i_{7}^{\prime}+i_{4}^{\prime} \cdot a_{4}\right)+a_{3} \cdot a_{4}
\end{aligned}
$$

Let $\left(i_{1}^{\prime}+i_{4}^{\prime} \cdot i_{7}^{\prime}+a_{3} \cdot i_{7}^{\prime}+i_{4}^{\prime} \cdot a_{4}\right)=i_{0}^{\prime} \in I$ ，then $i_{0}^{\prime}+a_{3} \cdot a_{4} \in I+a_{3} \cdot a_{4}$ ． Therefore $I+a_{1} \cdot a_{2} \subseteq I+a_{3} \cdot a_{4}$ ．

In a similar manner it can be shown that $I+a_{3} \cdot a_{4}$ EI $a_{1} \cdot a_{2}$ ． Hence $I+a_{1} \cdot a_{2}=I+a_{3} \cdot a_{4}$ ．Therefore， F is a binary operation．

For any $I+a_{1}, I+a_{2}, I+a_{3} \in Q$ ，
1．$\left(I+a_{1}\right) \in\left[\left(I+a_{2}\right)\right.$ 日 $\left.\left(I+a_{3}\right)\right]=\left(I+a_{1}\right)$ 田 $\left(I+\left(a_{2}+a_{3}\right)\right]$

$$
\begin{aligned}
& =I+a_{1}+\left(a_{2}+a_{3}\right) \\
& =I+\left(a_{1}+a_{2}\right)+a_{3} \\
& =\left(I+a_{1}+a_{2}\right) \text { 田 }\left(I+a_{3}\right) \\
& =\left[\left(I+a_{1}\right) \text { 田 }\left(I+a_{2}\right)\right] \text { 田 }\left(I+a_{3}\right)
\end{aligned}
$$

2．$(I+0)$ 田 $\left(I+a_{1}\right)=I+\left(0+a_{1}\right)=I+a_{1}$
3．$\left[I+\left(-a_{1}\right)\right]$ 田 $\left(I+a_{1}\right)=I+\left[\left(-a_{1}\right)+a_{1}\right]=I+0$
4．$\left(I+a_{1}\right) \oplus\left(I+a_{2}\right)=I+\left(a_{1}+a_{2}\right)=I+\left(a_{2}+a_{I}\right)=\left(I+a_{2}\right) ⿴ 囗 十\left(I+a_{1}\right)$
Hence，（ $R / I, ⿴_{\text {相）}}$ is an abslian group．
5．$\left(I+a_{1}\right) \square\left[\left(I+a_{2}\right) \square\left(I+a_{3}\right)\right]=\left(I+a_{1}\right) \square\left(I+a_{2} \cdot a_{3}\right)$

$$
\begin{aligned}
& =I+a_{1} \cdot\left(a_{2} \cdot a_{3}\right) \\
& =\left(I+a_{1} \cdot a_{2}\right) \square\left(I+a_{3}\right) \\
& =\left[\left(I+a_{1}\right) \square\left(I+a_{3}\right)\right] \square\left(I+a_{3}\right)
\end{aligned}
$$

6．（I＋a $)_{1}$ 回 $\left.\left(I+a_{3}\right) \mathbb{m}\left(I+a_{3}\right)\right]=\left(I+a_{1}\right) \square\left[I+\left(a_{2}+a_{3}\right)\right]$

$$
\begin{aligned}
& =I+a_{1} \cdot\left(a_{2}+a_{3}\right) \\
& =I+\left(a_{1} \cdot a_{2}+a_{1} \cdot a_{3}\right) \\
& \left.=\left(I+a_{1} \cdot a_{2}\right) \text { 田 (I+a} a_{1} \cdot a_{3}\right) \\
& \left.=\left(I+a_{1}\right) \text { 回(I+a} a_{2}\right) \boxplus\left(I+a_{1}\right) \bullet\left(I+a_{3}\right)
\end{aligned}
$$

A similar proof holds for right distributive law． Therefore（ $\mathrm{Q}, \mathrm{m}, \mathrm{G}$ ）is a ring．

Definition 1－20．The set of residue class Q derined in definition l－19 is a ring and is called the quotiont ring of R by I（dencted by R / I ）．

Thsorem 1－28．Let T be a homomorphic mapping from a ring $(R,+, \cdot)$ onto a ring（ $\mathrm{R}^{\prime},+1, \cdot 1$ ）and let I be the sot of elements in R which map onto the zero element O^{\prime} of R^{\prime} ，then I is an idsal and the quotiont ring R / I is isomorphic to R^{\prime} ． Proof：Since T is isomorphic onto mapping，then by trioger l－14，the set（ $I,+, \cdot$ ）is a subring of（ $\mathrm{R},+, \cdot$ ）．For any $a \in R$ and $i \in I,(1 \cdot a) T=i T \cdot a T=0 A^{\prime} a T=0$ and （ $a \cdot i$ ）$T=a T P^{\prime} I T=a T \cdot O^{\prime}=O^{\prime}$ ，which implies that $i \cdot a \in I$ and $a \cdot j \in I$ ．Hence．I is an ideal of R ．If $x_{1} \in R / I$ ，then there exists $a_{1} \leq R$ such that $x_{1}=I+a_{1}$ ．Define ϕ by $x_{1} \phi=a_{1} T$ ． Let $x_{1}, x_{2} \in R / I$ and $x_{1} \phi=x_{1}^{\prime}, x_{2} \phi=x_{2}^{\prime}$ ．If $x_{1}^{\prime} \neq x_{2}^{\prime}$ ，then therg exists $a_{1}, a_{2} \in R$ such that $x_{1}=I+a_{1}$ and $x_{2}=I+a_{2}$ ．Now

$$
\begin{aligned}
& \left(I+a_{1}\right) \phi=x_{1} \phi=a_{1} T=x_{1}^{\prime}, \text { and } \\
& \left(I+a_{2}\right) \phi=x_{2} \phi=a_{2} T=x_{2}^{\prime} .
\end{aligned}
$$

Since $x_{1}^{\prime} \neq x_{2}^{\prime}$, it follows that $a_{1} T \neq a_{2} T$. Suppose $x_{1}=x_{2}$, then

$$
\begin{aligned}
I+a_{1} & =I+a_{2} \\
\left(I+a_{1}\right) T & =\left(I+a_{2}\right) T \\
0^{\prime}+a_{1} T & =01+a_{2} T \\
a_{1} T & =a_{2} T
\end{aligned}
$$

This leads to a contradiction. Therefore ϕ is a mapping.
Now let $x_{1}, x_{2} \in R / I, I+a_{1}=x_{1}$ and $I+a_{2}=x_{2}$, then

$$
\begin{aligned}
\left(x_{1} \oplus x_{2}\right) \phi & =\left[\left(I+a_{1}\right) \oplus\left(I+a_{2}\right)\right] \phi \\
& =\left[I+\left(a_{1}+a_{2}\right)\right] \phi \\
& =\left(a_{1}+a_{2}\right) T \\
& =a_{1} T+a_{2} T \\
& =x_{1} \phi+1 x_{2} \phi, \text { and } \\
\left(x_{1} a x_{2}\right) \phi & =\left[\left(I+a_{1}\right) \square\left(I+a_{2}\right)\right] \phi \\
& =\left[I+\left(a_{1} \cdot a_{2}\right)\right] \phi \\
& =\left(a_{1} \cdot a_{2}\right) T \\
& =a_{1} T \cdot a_{2} T \\
& =x_{1} \phi \cdot 1 x_{2} \phi
\end{aligned}
$$

Therefore ϕ is a homomorphic mapping.
Now if $x_{1} \neq x_{2}$ for $x_{1}, x_{2} \in R / L$, then $I+a_{1} \neq I+a_{2}$ implies $a_{1} \neq a_{2}$. Suppose $x_{1} \phi=x_{2} \phi$, then $x_{1} \phi=a_{1} T=a_{2} T=x_{2} \phi$. Hence $a_{1}{ }^{T=a_{2} T}$. Since $-\left(a_{1} T\right) \in R^{\prime}$ implies

$$
\begin{aligned}
\left(a_{1} T\right)+1\left(-a_{1} T\right) & =a_{2} T+1\left(-a_{1} T\right) \\
0 & =a_{2} T-a_{1} T \\
0 & =\left(a_{2}-a_{1}\right) T
\end{aligned}
$$

and $a_{2}-a_{1} \in I$ ．Therefore，$I+\left(a_{2}-a_{1}\right)=I+0$ ．Now $\left(I+a_{2}\right) \in\left(I-a_{1}\right)=I+0$
$\left[\left(I+a_{2}\right)\right.$ 田 $\left.\left(I-a_{1}\right)\right]$ 田 $\left(I+a_{1}\right)=(I+0)$ 田 $\left(I+a_{1}\right)$
$\left(I+a_{2}\right)$ 田 $\left[\left(I-a_{1}\right)\right.$ 田 $\left.\left(I+a_{1}\right)\right]=I+\left(0+a_{1}\right)$ $I+a_{2}=I+a_{1}$

The above result implies that $x_{1}=x_{2}$ ，which is then contrary to the assumption．Therefore，if $x_{1} \neq x_{2}$ implies $x_{1} \phi \neq x_{2} \phi$ ， then ϕ is one to one．

For every $X_{1}^{\prime} \in R^{\prime}$ there exists at least one $a_{1} \in R$ such that $a_{1} T=x_{1}^{\prime}$ ．Since $x_{1} \phi=\left(I+a_{1}\right) \phi=a_{1} T=x_{1}^{\prime}$ for any $x_{1}^{\prime} \in R^{\prime}$ ， so ϕ is onto．

Therefore，ϕ is an isomorphic mapping from R / I onto R^{\prime} ．
Theorem 1－19．If R is a commutative ring with identity， then R / I is also a commutative ring with identity，and moreover，if R is an integral domain，then R / I is an integral domain．

Proof：For $x_{1}, x_{2} \in R / I$ there exists $a_{1}, a_{2} \in R$ such that $x_{1}=I+a_{1}$ and $x_{2}=I+a_{2}$ ．Now

$$
\begin{aligned}
x_{1} \boxminus x_{2} & =\left(I+a_{1}\right) \boxminus\left(I+a_{2}\right) \\
& =I+\left(a_{1} \cdot a_{2}\right) \\
& =I+\left(a_{2} \cdot a_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
x_{1} \square x_{2} & =I+\left(a_{2} \cdot a_{1}\right) \\
& =\left(I+a_{2}\right) \text { 回 }\left(I+a_{1}\right) \\
& =x_{2} \square x_{1}
\end{aligned}
$$

Hence, R / I is a commutative ring.
For $I+a_{1}=x_{1} \in R / I$, then $I+\theta \in R / I$ where $\theta \in R$, hence $(I+e) \square\left(I+a_{1}\right)=\left(I+\theta \cdot a_{1}\right)=\left(I+a_{1}\right)$. Therefore, R / I has the identity Ito.

If R is an integral domain, then for $a, b \in R$ such that $a \neq 0, a \cdot b=0$. Then $b=0$. Consider $x_{1}, x_{2} \in R / I$ such that $x_{1}=I+a_{1} f^{\prime} I+0$ which impijes $a_{1} \neq 0$. If $x_{1} \square x_{2}=I+0$ and $\left(I+a_{1}\right) \square\left(I+a_{2}\right)=I+a_{1} \cdot a_{2}=I+0$, then $a_{1} \cdot a_{2}=0$. But R is an integral domain and $a_{1} \neq 0$, so $a_{2}=0$ leads to $x_{2}=I+a_{2}=I+0$. Therefore, R / I is an integral domain.

CEAPTER BIBLIOGRAPHY

1. Herstejn, I. N., Topics in Algobra, Now York, Blaisdell Publishing Company, 1964.
2. Wasrdor, B. L., Modsrn Aleabra, Vol. I, translated by Frod Blum, Naw York, Frsdorick Ungar Publishing Co., 1949.
3. Zariski, Oscar and Pierro Samuel, Commutative Algebra, Vol. I, Now York, D. Van Nostrand Company, 1.958.

CHAPTER II

SPECIAL TYPES OF IDEALS

In the preceding chapter, some general properties of ideals have been discussed. Prime ideals and maximal ideals are special types of ideals which have many interesting properties. This chapter will investigate some properties of these special types of ideals.

Definition 2-1. The product of two ideals A and R in a ring R is the sot

$$
A \times B=\left\{\sum_{k=1}^{n} a_{k} \cdot b_{k} \mid a_{k} \in A \text { and } k_{k} \in B, n \text { is any arbitrary positive } \begin{array}{l}
\text { integer }
\end{array}\right\}
$$

Theorem $2-1$. The product of two ideals in a ring R is itself an ideal of R.

Proof: Let $x, y, \in A x^{5}$, then $x=\sum_{k=1}^{n} a_{k} \cdot b_{k}$ and $y=\sum_{k^{1}=1}^{m} a_{n} \cdot b_{k} \quad$ where $k=1,2,3, \ldots, n$ and $k^{1}=1,2,3, \ldots, m$. Note that $-y^{\prime}=\frac{m}{k^{\prime}=1} a_{k^{\prime}} \cdot b_{k^{\prime}}=\sum_{k^{\prime}=1}^{m}\left(-a_{k^{\prime}}\right) \cdot b_{k^{\prime}}$. Let $-a_{k^{\prime}}=a_{n+k^{\prime}}$ enc $b_{k^{\prime}}=b_{m+k^{\prime}}$, then

$$
x-y=\left(\sum_{k=1}^{n} a_{k} \cdot b_{k}\right)-\left(\sum_{k^{\prime}=1}^{m} a_{k^{\prime}} \cdot b_{k^{\prime}}\right)
$$

$$
\begin{aligned}
x-y & =\sum_{k=1}^{n} a_{k} \cdot b_{k}+\sum_{k^{\prime}=1}^{m}\left(-a_{k \prime}\right) \cdot b_{k \prime} \\
& =\sum_{k=1}^{n} a_{k} \cdot b_{k}+\sum_{k^{\prime}=1}^{m} a_{n+k^{\prime}} \cdot b_{n+k^{\prime}} \\
& =\sum_{k=1}^{m} a_{k} \cdot b_{k} \in A x B
\end{aligned}
$$

where $a_{k} \in A$ and $b_{k} \in B$. For $r \in R_{y}$ then

$$
r \cdot x=r \cdot \sum_{k=1}^{n} a_{k} \cdot b_{k}=\sum_{k=1}^{n}\left(r \cdot a_{k}\right) \cdot b_{k}
$$

where $r \cdot a_{k} \in A$ and $b_{k} \in R$. Theroforo, $r \cdot x \in A x B$ for $x \in A x D$. Similarly, $x \cdot r \in A x B$ for $x \in A x B$. Therefore, Axp is an ideal of R.

Definition 2-2. Lot I bo an ideal in R. I is prime if for any b, c in R such thet $b * c \in I$, then at least one of them is an elsmant or I.

Definition 2-3. An ideal I_{m} of R is maximal if $I_{m} f^{\prime \prime}$, and if there is no ideal properly containsa betweon R and I_{m}.

Examples of prime ideals and maximal دdegls are given in the following:

Example 2-I. The ring of integere itself is a prime daeal., sinca by definition or prime tieal, if bectJ, then bejor cej. Also the primotpal idosi (o) of J is a prime Lideai, gince I is fres of zero duisors. If bectol, then
 a primo ldeal of J.

Example 2-2. If J is the ring of integsts and $m>1$ such that $n \in J$, then the principle ideal (n) is prime if and ondy If n is a prima numbs. If n is a prime numbes and if $\theta \cdot b \in(n)$ then $a \cdot b=k n$ so sither $a=k_{1} n$ on $b=b_{2} n$ for $k_{1}, k_{2} \in J$. Fence $a \in(n)$ or $b \in(n)$. Therefore, (n) is s preme idesl in J. Suppose n is not a prime mumosr. Py definition, there exists $a, b \in J$ such that $a \cdot b=n$ with $0<a<n$ and $0<b<n$ so θ \& (n) and b\& (n). Kenoo, if (n) is a urimo ideal, thon n is a prima rumber in J. Moroover, GVery prime fideal (n) in is maximal. If Ifs an daoaj in J suco that (n)e. I ct, thon theno exista $m \& I$ euch that $m \&(n)$. It Pollown that (m, in) is rolative prime, There axists no comon diviscrs between m and n axcept
 $n \cdot b \in(n) c I$ and $m \in I, 302 \in I$ imulten that any x \& I, then
 (n) is a maximel lasal of i.

Theorem $2-2$. If I is a prita idoai in R and I_{1} and I_{2}
 I Is not prime, thon there arists I_{I} and I_{2} suck them

$$
I C I_{1}, I C I_{2}, I_{1} X I_{2} C I
$$

Proof: Suppose $I_{2} \notin I$ and I_{2} f I and lat I be a primo iceal in a such that $I_{1} x I_{2} \subset I$, then there existe $a_{2} \in I_{1}$, $a_{2} \in I_{2}$ such that $a_{1} a_{2} \in I$. SInce I is a primb fasel in R, then $a_{1} \cdot a_{2} \notin I$ imples $I_{1} Z_{2}$ 库 . Thes leads to a contradiction. If I is not a prime iusel in R, then theno exists
b_{1} and b_{2} such that $b_{1}, b_{2} \nmid I$ and $b_{1} \cdot b_{2} \in I$. Now let

$$
\begin{aligned}
& I_{1}=I+\left(b_{1}\right) \equiv\left\{1+\left(b_{1}\right) \mid i \in I\right\} \\
& I_{2}=I+\left(b_{2}\right) \equiv\left\{1+\left(b_{2}\right) \mid i \in I\right\}
\end{aligned}
$$

For $x, y \in I+\left(b_{1}\right)$, there exists $i_{1}, i_{2} \in I$ and $p, q \in R$ such that $x=i_{1}+p b_{1}$ and $y=i_{2}+q b_{1}$. Rut

$$
\begin{aligned}
x-y & =\left(i_{1}+p b_{1}\right)-\left(i_{2}+q b_{1}\right) \\
& =\left(i_{1}+p b_{1}-i_{2}\right)-q b_{1} \\
& =\left(i_{1}-i_{2}+p b_{1}\right)-q b_{1} \\
& =\left(i_{1} \cdots i_{2}\right)+(p-q) b_{1} \in I+\left(b_{1}\right),
\end{aligned}
$$

and for $r \in R$,

$$
\begin{aligned}
r \cdot x & =r \cdot\left(i_{1}+p b_{1}\right) \\
& =r \cdot i_{1}+r \cdot\left(p b_{1}\right) \\
& =r \cdot i_{1}+(r \cdot p) b_{1} \in I+\left(b_{1}\right) .
\end{aligned}
$$

Similarly, $x \cdot r \in I+\left(b_{1}\right)$ for $r \in R$ and $x \in I$. Therefore, $I_{1}=I+\left(b_{1}\right)$ is an ideal of R. A similar proof holds for $I_{2}=I+\left(b_{2}\right)$ being an ideal of R.

For any $i_{1} \in I$, since $0 \in R$ and $i_{1}=i_{1}+0 \cdot b_{1} \in I+\left(b_{1}\right)$,
hence $I \subset I_{1}=I+\left(b_{1}\right)$. Likewise, $I \subset I+\left(b_{2}\right)$. For any $r_{1}, r_{2} \in K$ and $x \in I_{1} X I_{2}=I+\left(b_{1}\right) x I+\left(b_{2}\right)$, there exist $1_{1}, I_{2} \in I$ such that

$$
\begin{aligned}
x & =\left(i_{1}+r_{1} \cdot b_{1}\right) \cdot\left(i_{2}+b_{2} \cdot r_{2}\right) \\
& =\left(i_{1}+r_{1} \cdot b_{1}\right) \cdot i_{2}+\left(i_{1}+r_{1} \cdot b_{1}\right) \cdot\left(b_{2} \cdot r_{2}\right) \\
& =i_{1} \cdot i_{2}+\left(r_{1} \cdot b_{1}\right) \cdot i_{2}+i_{1} \cdot\left(b_{2} \cdot r_{2}\right)+\left(r_{1} \cdot b_{1}\right) \cdot\left(b_{2} \cdot r_{2}\right) \\
& =i_{1} \cdot 1_{2}+\left(r_{1} \cdot b_{1}\right) \cdot i_{2}+i_{1} \cdot\left(b_{2} \cdot r_{2}\right)+r_{1} \cdot\left(b_{1} \cdot b_{2}\right) \cdot r_{2}
\end{aligned}
$$

Since $b_{1} \cdot b_{2} \in I$ and, by definition of ideal, hence $x \in I$. Therefore, $\mathrm{I}_{2} \mathrm{XI}_{2} \in I$.

The next lemma concerns a homomorphie mapping of a ring onto its quotient ring.

Lemma 2-1. There oxists a homomorphic mappine firom a ring R onto its quotiant ring R / I such that $b \cdot c \in I$ if and only if bf acf = Ito.

Proof: Let $x_{1} \in R / I$, then there exists $g_{1} \in R$ such that $x_{1}=I+a_{I}$. Define f such that $a_{1} f=I+a_{I}$ for $a_{1} \in R$ and $I+a_{1} \in R / I$. Suppose $I+a_{1} \neq I+a_{2}$ and $a_{1}=a_{2}$, then thero exists $i_{1} \in I$ such that $i_{1}+a_{2}=i_{1}+a_{2}$ which leads to a contradiction. Therefore, f is a mapping. For any $x_{1} \in R / I$ there exists $a_{1} \in R$ such that $a_{1} f=I+a_{1}=x_{1}$. Hence f is onto. For $a_{1}, a_{2} \in R$, then

$$
\begin{aligned}
\left(a_{1}+a_{2}\right) f & =I+\left(a_{1}+a_{2}\right) \\
& =\left(I+a_{1}\right) \text { 由 }\left(I+a_{2}\right) \\
& =a_{1} f \text { 由1 } a_{2} f \quad \text {, and } \\
\left(a_{1} \cdot a_{2}\right) f & =I+\left(a_{1} \cdot a_{2}\right) \\
& =\left(I+a_{1}\right) a\left(I+a_{2}\right) \\
& =a_{1} f \text { a } a_{2} f
\end{aligned}
$$

Hence f is a homomorphism．The homomorphism is called the natural homomorphism from ring R onto its quotient ring R / I ． Since $b \cdot c \in I \subset R$ ，then

$$
\begin{aligned}
b f \square c f & =(b \cdot c) f \\
& =I+b \cdot c \\
& =I+0 .
\end{aligned}
$$

On the other hand，if bf af $=I+0$ ，then

$$
\begin{aligned}
b f \text { of } & =(I+b) \text { D }(I+c) \\
& =I+(b \cdot c) \\
& =I+0 \\
& =I .
\end{aligned}
$$

Therefors，$b \cdot c \in I$ ．
The preceding lemma prepares the way for theorem $2-3$ ． Theorem $2-3$ ．Let I be an ideal sucb that $I \neq R$ ．Then I is a prime idesi is and only if R / I has no zero divisors．

Proof：$R \neq \phi$ implies $\mathrm{F} / \mathrm{I} \neq \phi$ ．If R / I bas no zero divisors，then for $x_{1}, x_{2} \in E / I$ such that $x_{1} \neq I+O, x_{1} ⿴ 囗 十 x_{2}=I+0$ and $x_{2}=I+0$ ．By lemma $2-1$ ，there exists a natural homomorphism f from R onto R / I ．Then $a_{1} f=I+a_{1}=X_{1}$ and $a_{2} f=I+a_{2}=x_{2}$ such that $a_{1}-a_{2} \in I$ for some $a_{1}, a_{2} \in R$ ．Also $a_{2} f=I+a_{2}=x_{2}=I+0$ and $I+a_{2}=I+O_{\text {，}}$ then there exists $1_{1}, 1_{2} \in I$ such that $1_{1}+a_{2}=i_{2}+0=1_{2} \in I$ ．Sines（I，＋）is a subgroup of（R，＋1）． then $i_{2}-L_{1}=a_{2} \in I$ ．Therefore，I is a prime ideal of R ．

If I is a prime 1 deal of R and $1_{1} \cdot 1_{2} \in I$ ，then thare exists at last one of i_{1} or i_{2} ，say i_{1} ，that is in I ．

By lemma 2-I, for $i_{1} \cdot 1_{2} \in I$, if $i_{1} f\left(i_{2} f=\left(I+i_{1}\right) \oplus\left(I+i_{2}\right)=I+0\right.$, then $i_{1} f=I+0$. Hence, if $i_{1} f\left(i_{2} f=I+0\right.$, then $i_{1} f=I+0$. Definition 2-4. The inverse transformation T^{-1} at \bar{a} of a ring $\overline{\mathrm{R}}$ into a ring R is the set of all elements of R having \bar{a} as T-imags, whers $\bar{a} \in \bar{R}$.

The following lenma is rather important and bas frequent application in the ramsinder of the chapter.

Lemma 2-2. Let T be a homomorphism of a ring R onto a ring $\overline{\mathrm{R}}$, with kernel N . Then there exists a one to one inclusion preserving mapping between the ideals of $\overline{\mathrm{R}}$ and the dasals of R which contain kernal N, such that if I and \bar{I}
 to $\overline{\mathrm{R}} / \mathrm{I}$.

Proof: If I is an ideal containing N, then $I T=\bar{j}$ is an ideal. If $x_{1}, x_{2} \in I$ such tuat $x_{1} T=x_{1}^{\prime}$ and $x_{2} T=x_{2}^{\prime}$ where $x_{1}^{\prime}, x_{2}^{\prime} \in I T$, then

$$
\begin{aligned}
x_{1}^{\prime}-x_{2}^{\prime} & =x_{1}^{T} \cdot x_{2}^{T} \\
& =\left(x_{1}-x_{2}\right) T \in I T
\end{aligned}
$$

This implies that $x_{1} \cdot x_{2} \in I$. For any $x_{1}^{\prime} \in I T$ and $r^{\prime} \in \bar{F}$ such that $r T=r^{\prime}$, then

$$
\begin{aligned}
r^{\prime} \cdot x_{2}^{\prime} & =r T \cdot x_{1} T \\
& =\left(r \cdot x_{1}\right) T \in I T,
\end{aligned}
$$

which implies $r \cdot x_{1} \in I$. Likewise, $x_{1} \cdot y^{\prime} \in I T$. Hence $\bar{I}=I T$ is an idagi in $\overline{\mathrm{R}}$. Evary idgal I of R has its image IT being an idaal of $\overline{\mathrm{R}}$.

Before proving that T is ons to one from ideals of ${ }^{\prime} R$ onto ideals of \bar{R}, one must show that (IT) $T^{-1}=I$. For any $x_{1} \in I C R$ such that $x_{1} T=x_{1}^{\prime} \in I T$, then $x_{1} \in(I T) T^{-1}$. Therefore $I \subset(I T) T^{-1}$. If $x_{1} \in(I T) M_{1}^{-1}$, thon $x_{1} T \in I T$, so $x_{1} T=\mathcal{X}_{1} T$ with $y_{1} \in I$. Hence $\left(x_{1}-y_{1}\right) \in N \in I$. Let $x_{1}-y_{1}=z_{1} \in I$ with $y_{1}, z_{1} \in I$, then $x_{1}=z_{1}+y_{1} \in I$. Hence (IT) $T^{-1} \subset I$. Since (IT) $T^{-1} \subset I$ and also $I \subset(I T) T^{-1}$, then $\left(I I^{1}\right) T^{-1}=I$.

If $I_{1} \neq I_{2}$, then without loss of generality there exists soms $x_{1} \in I_{1}$ and $x_{2} \in I_{2}$ such that $x_{1} \neq x_{2}$. Sinco (IT) $T^{-1}=I$, then $x_{1} \in\left(I_{1} T T^{-1}, x_{2} \in\left(I_{2} T\right) T^{-1}, x_{1} T \in I_{1} T\right.$ and $x_{2} T \in I_{2} T$. Suppose $I_{1} T=I_{2} T$, then $x_{2} T \in I_{2} T=I_{1} T$. Hence $x_{2} T \in I_{1} T$ and $x_{2} \in\left(I_{1} T\right) T^{-1}=I_{1}$. It follows that $x_{2} \in J_{1}$ which is a contraalction. Therefore, T Is one to one between I_{1} of R and \bar{I}_{1} of \bar{R}.

If $x_{1}, x_{2} \in \bar{I} T^{-1}$, then $x_{1} T, x_{2} \in \bar{I}$, by derinition of T^{-1}. Since $\left(x_{1}-x_{2}\right) T=x_{1} T \cdots x_{2} T \in \bar{I}$, then $x_{1}-x_{2} \in \overline{I T}^{-1}$. If $x_{1} \in \bar{I}^{-1}$ and $r \in R$, then $x_{1} T^{\prime} \in \bar{I}$ and $x^{T} \in R^{\prime}$. Hence $\left(x_{1} \cdot r\right) M^{\prime}=x_{1} T \cdot r^{\prime} \in \bar{I}$ and $x_{1} \cdot x^{\prime} \in \bar{I}^{-1}$. Likewise, $r \cdot x_{1} \in \bar{I} T{ }^{-1}$ for any $r \in R$ and $x_{1} \in \overline{I T}^{-1}$.

From the above discussion, it can be concluded that for every ideal. \bar{I} of $\bar{R}, \bar{J} T^{-1}$ is an ideal of R. Suppose this praimage $\overline{\mathrm{I}} \mathrm{T}^{-1}$ of $\overline{\mathrm{I}}$ doss not contain N, then there exists $x \in N$ such that $x \notin \overline{I T}^{-1}$ and $x_{T}=0 \nmid \bar{I}$. But \bar{I} is an ideal of R and this leads to a contradiction. F'herefore, guery
proimage $\overline{\mathrm{I}}$ or $\overline{\mathrm{R}}$ is an ideal of R containing N . Since T is an onto mapping, then for every $\overline{\mathrm{I}}$ of $\overline{\mathrm{R}}$ there exists ${\overline{\mathrm{I}} \mathrm{T}^{-1} \text { of }}^{-1}$. R such that $\left(\bar{I}^{-1}\right) T=\bar{I}$. If $I_{1} T=\bar{I}_{1}$ and $I_{2} T=\bar{I}_{2}$ such that $I_{1} \subset I_{2}$, then $\bar{I}_{1} \subset \bar{I}_{2}$ because for every $i_{2} \in I_{2}$ and $i_{2} \notin I_{1}$, then there exists $I_{2}{ }^{T}=i_{2}^{\prime} \in \bar{I}_{2}$ such that $i_{2}{ }^{T}=i_{2}^{\prime} \& \bar{I}_{1}$. If $I_{2}^{\prime} \in \bar{I}_{1}$, since $I_{1} T=\bar{I}_{1}$ and $\left(I_{1} T T^{-1}=I_{1}\right.$, then $1_{2}^{1} T^{-1} \subseteq I_{1}$. But $i_{2}^{1} T^{-1}=i_{2}$ implies $I_{2} \in I_{I}$ which is a contradiction. Since for $i_{1}^{\prime} \in \bar{I}_{1}$ and $\left(i_{1}^{\prime}\right) T^{-1} \subseteq I_{1} \subset I_{2}$, then $i_{1}^{\prime} T^{-1} \subseteq I_{2}$. Note that $\left(i_{1}^{\prime} T^{-1}\right) T \in I_{2} T=\bar{I}_{2}$ and $\left(\overline{I T}^{-1}\right) T=\bar{I}$, then $\left(i_{1}^{\prime} T^{-1}\right) T=i_{1}^{1} \in \bar{I}_{2}$. Therefore, $\overline{\mathrm{I}}_{1} \subset \overline{\mathrm{I}}_{2}$.

T is a homomorphism from R onto $\overline{\mathrm{R}}$. By lemma $2-1$, there exists a natural homomorphic mapping f_{2} from $\overline{\mathrm{R}}$ onto $\overline{\mathrm{K} / \mathrm{I}}$. Define a mapping $T_{1}=T \cdot f_{2}$ such that T_{1} is a homomorphism from R onto $\overline{\mathrm{R} / \mathrm{I}}$. Also define $\mathrm{XT}_{1}=\overline{\mathrm{X}} \mathrm{f}_{2}=\overline{\mathrm{X}} \in \overline{\mathrm{R} / \mathrm{I}}$, where $\mathrm{xT}=\overline{\mathrm{x}}$ and $\mathrm{x} \in \mathrm{R}$. Suppose $\bar{x}_{1} \neq \overline{\bar{x}}_{2}$ for $\bar{x}_{1}, \overline{\bar{x}}_{2} \in \bar{R} / \bar{I}$. Since f_{2} is a function, then $\bar{x}_{1} \neq \bar{x}_{2}$. Since T is also a function, hence $x_{1} \neq x_{2}$. Therefore, T_{I} is a function. For any $\overline{\bar{x}} \in \bar{R} / \bar{I}$, there exists $\bar{x} \in \bar{R}$ such that $\bar{x} f_{2}=\overline{\bar{x}}$ and there exists $x \in R$ such that $x^{\prime} T=\bar{x}$. Therefore, \mathbb{T}_{1} is onto. For $x, y \in R$, then

$$
\begin{aligned}
(x+y) T_{1} & =(\overline{x+y}) f_{2} \\
& =[(x+y) T] f_{2} \\
& =(x T+y T) f_{2} \\
& =(\bar{x}+\bar{y}) f_{2} \\
& =\overline{x f}_{2}+\overline{y s} f_{2} \\
& =x T_{1}+y T_{1}
\end{aligned}
$$

$$
\begin{aligned}
(x \cdot y) T_{1} & =(\bar{x} \cdot \bar{y}) f_{2} \\
& =(x \cdot y) T_{2} f_{2} \\
& =(x T \cdot y T) f_{2} \\
& =(\bar{x} \cdot \bar{y}) f_{2} \\
& =\overline{x f}_{2} \cdot \overline{y f} f_{2} \\
& =x T_{1} \cdot \mathrm{yT}_{1}
\end{aligned}
$$

Therefore, T_{1} is a homomorphism from R onto $\overline{R / L}$. By theorem 1-17, $\overline{R / I}$ is a ring. Now lot $N b \in \in \operatorname{Kar}\left(T_{1}\right)$. If $x \in N$, $X T \in \bar{R}$ and $(x T) f_{2}=0 \in \overline{R / I}$, then $x T \in \operatorname{Ker}\left(f_{2}\right)$ and $x T+\bar{I}=\bar{I}$. Since $x T \in \bar{I}$ and $x \in(\bar{I}) T^{-1}=(I T) T^{-1}=I$, hence $N \in I$. If $x \in I=(I T) T^{-1}, x T \in I T=\bar{I} \subset \bar{R}$ and $x T+\bar{I}=\bar{I}$, then $x T \in \operatorname{Ker}\left(f_{2}\right)$,
 $I=N$. By theorem $1-18, \mathrm{H}_{1}$ is a homomorphism fron a ring R onto a ring $\overline{R / I}$ and I is the $K e r\left(T_{1}\right)$ and an idoal. of R. Therefore, the quationt ring R / I is isomorphic to \bar{R} / I.

Theorem $2-4$. I_{m} is a maximal ideal of R if and only if R / I_{m} has no ideals but itself and (0).

Proof: Py lemma 2-1, there exists a natural homomorphism f from R onto its quotient ring R / T_{m}. By lemma 2 m , there exists a one to ono inclusion preserving mapping between ideals of R / I_{m} and jdeals of R. If I_{m} is a maximal ideal of R and if there exists I_{1}^{\prime} in R / I_{m} such that $I_{1}^{\prime} \neq R / I_{m}$ and $I_{1}^{\prime} \neq(0)$, then becguss I is onto there exfstis I_{1} in R such that $I_{1} T=I_{1}^{\prime}$, Since $I_{m}^{T}=I_{n} / I_{r}=(0), R T=R / I_{m}, I_{1}^{\prime} \neq(0)$,
and $I_{I}^{\prime} \neq R / I_{m}$, and also T is an inclusion preserving mapping, $I_{I} \neq(0)$ and $I_{I} \neq R$, hence $I_{m} \subset I_{1} \subset R$. But I_{m} is a maximal ideal in R; therefore, I_{1} does not exist. Conversely, if R / I pas only two ideals (0) and R / I and suppose I is not maximal, then there exists I_{1} in R such that $I \subset I_{1} \subset R$. Since I is 9 one to one inclusion preserving mapping from R onto R / T, then there exists I_{1}^{\prime} in R / I such that $I_{I} I=I$. Since R / I has only ideals (0) and R / I, then $I_{I}^{\prime}=(0)$ or $I_{I}^{\prime}=R / I$. If $I_{1} I_{I}=I_{2} / I_{1}=(0)$, then $I_{1}=I$ which leads to a contradiction. It $I_{1} T=I_{1}^{\prime}=R / I_{1}$, then $I_{I}=R$, which also leeds to a contradiction. Therefore, I is a maximal ideal of R.

Theorem 2-5. If R is a combative ring with identity, then Ifs maximal if and only if K / t is a field.

Proof: By theorem 1-13, E / I is a field if and only if R / I has no proper ideals. By theorem $2-4, I_{m}$ is maximal if
 then by theorem l-j9, F / I has an jontity. Therefore, the proof is completed.

Theorem $2-6$. In a ring with identity, any maximal ideal is prime.

Proof: If I_{m} is a maximal ideas of R, then R / I_{m} has, by theorem 2-4, no proper ideals. By theorem $1-13$, if $\mathrm{R} / \mathrm{I}_{\mathrm{m}}$ has no proper ideals, then R / I_{m} is a field. If K / I_{m} is a field, then E / I_{m} has no zero divisors. Then, by theorems $2-3, I_{m}$ is a prime ideal of R .

43

Theorem 2-7. Let T be a honomorphisin of a ring R onto a ring $\overline{\mathrm{R}}$ with kernel N . If I is an ideal in K containing N , then I is rospectively prime or maximal if and only if IT is respectively pximg or maximal. If \bar{I} is an ideal in \bar{R}, then \bar{I} is respectively prime or maximal if and only if $\overline{I T}^{-1}$ is respectively prime or maxinal.

Proof: Since $I=R$ if and only if $I T=\bar{R}$ and T is a one to one inclusion preserving mapping from ideals of R onto ideals of \bar{R}, then I is prime if and only if IT is prine.

If I $\neq R$, by theorem $2-3$, I is prime if and only if R / I has no zero divisors, and $\overline{R / I T}$ has no zero divisors 10 and only if IT is prime. By lonma 2-2, there oxists an isomorphism g from R / I into $\overline{R / I T}$, and R / I has no zero divisors if and only if $\bar{\pi} / I T$ has no zero divisors. If ($I+r_{1}$) $\left(I+r_{2}\right)$ and $I+r_{1} \neq I+0$ for $I+r_{1}, I+r_{2} \in R / I,\left(I+r_{1}\right) g=\bar{I}+r_{1}$ and $\left(I+r_{2}\right) g=\bar{I}+r_{2}^{\prime}$, then

$$
\begin{aligned}
{\left[\left(I+r_{1}\right) \boxminus\left(I+r_{2}\right)\right] g } & =(I+0) g \\
\left(\bar{I}+r_{1}^{\prime}\right) & \left(\bar{I}+r_{2}^{\prime}\right)
\end{aligned}=\bar{I}+0^{\prime} .
$$

But $\left(I m_{1}\right) g \neq(I+0) g$ implies $\bar{I}+y_{1}^{\prime}=\bar{I}+01$, and $\left(I+r_{2}\right) g=(I+0) g$ impiies $\bar{I}+r_{2}^{\prime}=\bar{I}+0^{\prime}$. Hence, if $\left(\bar{I}+r_{1}^{\prime}\right) \square\left(\bar{I}+r_{2}^{\prime}\right)=\bar{I}+01$ and $\overline{\mathrm{I}}+\mathrm{r}_{1}^{\prime} \neq \overline{\mathrm{I}}+0$, , then $\overline{\mathrm{I}}+\mathrm{ra}_{2}^{\prime}=\overline{\mathrm{I}}+0$. Since g is one to one and if $\left(\overline{\mathrm{I}}+\mathrm{r}_{2}^{\prime}\right) \boxminus\left(\overline{\mathrm{I}}+\mathrm{r}_{2}^{\prime}\right)=\overline{\mathrm{I}}+\mathrm{O}^{\prime},\left(\mathrm{I}+\mathrm{r}_{1}\right) \boxminus\left(\mathrm{I}+\mathrm{r}_{2}\right)=\mathrm{I}+0$ and $\overline{\mathrm{I}}+\mathrm{r}_{1}^{\prime} \neq \overline{\mathrm{I}}+0^{\prime}$, then $I+r_{1} \neq I+0$. Since g is a mapping and $\bar{I}+r_{2}^{\prime}=\bar{I}+0^{\prime}$, it follows that $I+r_{2}=I+r$. Therefore, I is prime if and only if IT is prime.

By theorsm 2-5, if $I \neq R$, then I is maximel if and only if R / I is a fisld. Since g is an isomorphism, it follows that R / I is a field if and only if $R / I T$ is a field, and $\overline{R / I T}$ is a field if and only if $I T$ is a maximal ideal of \bar{R}. Since T is inclusion preserving, then there exist no idesle between IT and \bar{R} if ard only if there exist no ideals between I and R. By lomma $2-2$, it follows that $\bar{I} M^{-1}$ is an ideal containing N , and $\left(\overline{\mathrm{I}}^{-1}\right) \mathrm{T}=\overline{\mathrm{I}}$. Therefore, $\left(\overline{\mathrm{I}}^{-1}\right) \mathrm{I}=\overline{\mathrm{I}}$ is respectively prime or maximal if and only if $\overline{\mathrm{IT}}{ }^{-1}$ is respectively prime or maximal.

CHAFTER BIBLIOGRAPHY

1. Zariski, Oscar and Pierme Samuel, Commutative Algebra, Vol. I, New York, D. Van Nostrand Company, 1958.

CHAPTER III

BOOLEAN RINGS

Boolean rings are special types of rings which are of great interest. This chapter will investigate some interesting properties of these special types of rings.

Definition 3-1. An element a of a ring R is idempotent if $a^{2}=a$ for $a \in R$.

Definition 3-2. A Boolean ring B is a ring such that all of its elements are idempotent, that is, $a^{2}=a$ for every $a \in B$.

The following systems are examples of Boolean rings.
Example 3-1. A simple Boolean ring is a ring with only two elements, that is a zero element 0 and an identity 0 , because $0 \cdot 0=0$ and $0 \cdot 0=0$. As another example, consider the set $S=\{a, b, c, d\}$ with addition and multiplication defined by the following tables.

+	a	b	c	d
a	d	c	b	a
b	c	d	a	b
c	b	a	d	c
d	a	b	c	d

\cdot	a	b	c	d
a	a	d	a	d
b	d	b	b	d
a	a	b	c	d
d	d	d	d	d

Note that c is an identity for (S, \cdot) and d is a zero element for ($\mathrm{S},+$). By construction, we know the sot S is a Boolean ring.

Example 3-2. Let R be a comutative ring (R,+, $)$ with identity and $B \equiv\left\{a \in R \mid a^{2}=a\right\}$. B is the set consisting of all idempotent elements of R.

Define operations © and © as follows:
$\oplus \equiv\left\{(a, b),(a+b-2 a \cdot b) \mid a, b \in R\right.$ and $\left.a^{2}=a, b^{2}=b\right\}$
$\odot \equiv\left\{(a, b),(a \cdot b) \mid a, b \in R\right.$ and $\left.a^{2}=a, b^{2}=b\right\}$.
If $a_{1}=a_{2}$ and $b_{1}=b_{2}$ for $a_{1}, a_{2}, b_{1}, b_{2} \in B$, then

$$
\begin{aligned}
a_{1} \oplus b_{1} & =a_{1}+b_{1}-2 a_{1} \cdot b_{1} \\
& =a_{2}+b_{2}-2 a_{2} \cdot b_{2} \\
& =a_{2} 0 b_{2} \text {, and } \\
a_{1} \odot b_{1} & =a_{1} \cdot b_{1} \\
& =a_{2} \cdot b_{2} \\
& =a_{2} \odot b_{2} .
\end{aligned}
$$

Hence \oplus and 0 are binary operations.

$$
\begin{aligned}
(a \oplus b) \oplus c & =(a+b-2 a \cdot b) \oplus c \\
& =(a+b-2 a \cdot b)+c-2(a+b-2 a \cdot b) \cdot c \\
& =(a+b-2 a \cdot b+c)-2(a \cdot c+b \cdot c-2(a \cdot b) \cdot c] \\
& =(a+b-2 a \cdot b+c)-[2 a \cdot c+2 b \cdot c-4(a \cdot b) \cdot c] \\
& =(a+b+c-2 a \cdot b)-[2 b \cdot c+2 a \cdot c-4(a \cdot b) \cdot c] \\
& =(a+b+c)-[2 a \cdot b+2 b \cdot c+2 a \cdot c-4 a \cdot(b \cdot c)] \\
& =a+(b+c)-[2 b \cdot c+2 a \cdot b+2 a \cdot c-4 a \cdot(b \cdot c)]
\end{aligned}
$$

$$
\begin{aligned}
& =a+(b+c-2 b \cdot c)-2 a \cdot(b+c-2 b \cdot c) \\
& =a \oplus(b+c-2 b \cdot c) \\
& =a \Theta(b \oplus c) \\
a \oplus a & =a+a-2 a \cdot a \\
& =a+a-2 a^{2} \\
& =a+a-2 a \\
& =(a+a)-(a+a) \\
& =(a+a-a)-a \\
& =a+0-a \\
& =0 \\
a \Theta O & =a+0-2 a \cdot 0 \\
& =a+0-0 \\
& =a
\end{aligned}
$$

a (c) $b=a+b-2 a \cdot b$
$=b+a-2 b \cdot a$
$=b \oplus a$
(a 0 b) $0 c=(a \cdot b) 0 c$

$$
=(a \cdot b) \cdot c
$$

$$
=a \cdot(b \cdot c)
$$

$$
=a \odot(b \odot c)
$$

$$
a \odot(b \oplus c)=a \odot(b+c-2 b \cdot c)
$$

$$
=a \cdot(b+c-2 b \cdot c)
$$

$$
=a \cdot b+a \cdot c-a \cdot(2 b \cdot c)
$$

$$
=a \cdot b+a \cdot c-2 a \cdot(b \cdot c)
$$

$$
=a \cdot b+a \cdot c-2 a^{2} \cdot(b \cdot c)
$$

$$
\begin{aligned}
& =a \cdot b+a \cdot c-2 a \cdot a \cdot(b \cdot c) \\
& =a \cdot b+a \cdot c-2(a \cdot b \cdot a) \cdot c \\
& =a \cdot b+a \cdot c-2(a \cdot b) \cdot(a \cdot c) \\
& =(a \cdot b) \theta(a \cdot c) \\
& =(a \odot b) \odot(a \odot c)
\end{aligned}
$$

$$
a(0) b=a \cdot b
$$

$$
=b \cdot a
$$

$$
=b \odot a
$$

Therefore, B is a commutative ring with the property that every $a \in B$ is such that $a^{2}=a$. Hence B is a Boolsan ring.

Some basic properties of a Booleen ring aro stated in the following theoroms.

Theorem 3-1. Let ($B,+, \cdot$) be a Boolean ring; then if $a \in B$, the inverse of a under + is a itself, that is, $a+a=0$.

Proof: If $a, b \in B$, then $a^{2}=a \cdot a=a, b^{2}=b \cdot b=b$.

$$
\begin{aligned}
(a+b)^{2} & =(a+b) \cdot(a+b) \\
& =(a+b) \cdot a+(a+b) \cdot b \\
& =(a \cdot a+b \cdot a)+(a \cdot b+b \cdot b) \\
& =(a+b \cdot a)+(a \cdot b+b)
\end{aligned}
$$

On the other hand, $(a+b)^{2}=(a+b) \cdot(a+b)=(a+b)$ for $(a+b) \in B$, hence $\quad(a+b)=(a+b a)+(a \cdot b+b)$.

$$
\begin{aligned}
(a+b) & =(a+b \cdot a)+(a \cdot b+b) \\
& =(a+b \cdot a+a \cdot b+b) \\
& =(a+b \cdot a+b+a \cdot b)
\end{aligned}
$$

$$
\begin{aligned}
& =(a+b+b \cdot a+a \cdot b) \\
& =(a+b)+(b \cdot a+a \cdot b) .
\end{aligned}
$$

Since B is a ring and $-(a+b) \in B$, then

$$
\begin{aligned}
-(a+b)+(a+b) & =-(a+b)+[(a+b)+(b \cdot a+a \cdot b)] \\
0 & =[-(a+b)+(a+b)]+(b \cdot a)+(a \cdot b) \\
0 & =b \cdot a+a \cdot b
\end{aligned}
$$

Let $b=a$, then $0=a \cdot a+a \cdot a$. Therefore, $0=a+a$.
Theorem 3-2. Every Boolsan ring is commutative.
Proof: Let $a, b \leqslant B$ and $b \cdot a \in B$. By theorem 3-1, $b \cdot a+a \cdot b=0$
and $(b \cdot a)+(b \cdot a)=0$. Hence $(b \cdot a)+(a \cdot b)=(b \cdot a)+(b \cdot a)$.

$$
\begin{aligned}
(b \cdot a)+(a \cdot b) & =(b \cdot a)+(b \cdot a) \\
(b \cdot a)+[(b \cdot a)+(a \cdot b)] & =(b \cdot a)+[(b \cdot a)+(b \cdot a)] \\
(b \cdot a+b \cdot a)+(a \cdot b) & =(b \cdot a+b \cdot a)+b \cdot a \\
0+a \cdot b & =0+b \cdot a \\
a \cdot b & =b \cdot a \quad \text { for any } a, b \in B .
\end{aligned}
$$

Definition 3-3. If there exists a positive integer n such that $n a=0$ for every a in R, then the smallest such positive integer is called the characteristic of R.

Definition 3-4. An element a of R is said to be nilpotent if there exists a positive integer n such that $a^{n}=0$.

Theorem 3-3. If B is a Boolean ring, then
(1) B has characteristic 2
(2) If B contains at least three elements, then overy element of B except an identity (if B has one) is a zero divisor.

Proof: (1) By theorem 3-1, for every a in B, $a+a=2 a=0$. Hence 2 is the least positive integer which satisfies $2 a=0$.
(2) B contains at least three slements, then there exists $a, b \in B$ such that $a \neq b$. Suppose $a \neq b \neq 0$ and $a+b=0$, then $a+0=a+(b+b)=0+b$ which implies that $a=b$. This leads to a contradiction. Therefore, if $a \neq f=0$, then $a+b \neq 0$. But B is a ring ; hence $(a+b) \in B$ and $a \cdot b \in B$. Then

$$
\begin{aligned}
(a \cdot b) \cdot(a+b) & =(a \cdot b) \cdot a+(a \cdot b) \cdot b \\
& =a \cdot(b \cdot a)+a \cdot(b \cdot b) \\
& =a \cdot(a \cdot b)+a \cdot(b \cdot b) \\
& =(a \cdot a) \cdot b+a \cdot(b \cdot b) \\
& =a \cdot b+a \cdot b \\
& =0 .
\end{aligned}
$$

If $a \cdot b=0$, then a, b are zsro divisons. If $a \cdot b \neq 0$, then for $(a+b) \neq 0,(a+b)$ and $(a \cdot b)$ are zero divisors in B.

Theorom 3-4. If B is a Eoolean ring, then it has the following propertiss :
(1) $a+b=0$ if and only if $a=b$, where $a, b \in B$.
(2) $a+b=a-b$ if and only if $a, b \in B$.
(3) If $a+b=c$, then $a=c+b$ for $a, b, c \in B$.

Proof: (1) By theorem 3-1, then $a+a=0$ for every $a \in B$. If $a+b=0$, then

$$
\begin{aligned}
a+b & =a+a \\
a+(a+b) & =a+(a+a) \\
(a+a)+b & =(a+a)+a \\
0+b & =0+a
\end{aligned}
$$

Hence, $a=b$. By theorem 3-1, it follows that $a+b=a+a=0$.
(2) By theorem 3-1, $b+b=0$. Since b is an olement of the ring B and $-b$ is in B such that $b-b=0$, then by uniqueness of the additive inverss in the Boolean ring, hence $b=-b$. Therefore, $a-b=a+b$ for $a \in B$.
(3)

$$
\begin{aligned}
a+b & =c \\
(a+b)+b & =c+b \\
a+(b+b) & =c+b \\
a+0 & =c+b \\
a & =c+b .
\end{aligned}
$$

Definition 3-5. A ring R_{1} is said to be embedded in a ring R_{2} if thers exists a subring R_{2}^{\prime} of R_{2} such that R_{1} is isomorphic to R_{2}^{\prime}.

The embedding theorem describes an algebraic structure with prescribed properties which contains a substructure isomorphic to a given structure.

Theorem 3-5. A Boolean ring ($\left.\mathrm{B}_{1},+, \cdot\right)$ without identity can be embedded in a Boolsan ring ($\left.\mathrm{B}_{2},+, \cdot\right)$ with an identity.

Proof: Let B_{1} be a Boolean ring and B_{2} be the set of $B_{1} \times I /(2)$, that is, $B_{1} \times I /(2) \equiv\left\{(a, i) \mid a \in B_{1}\right.$ and $\left.i \in I /(2)\right\}$, and $\left(a_{1}, i_{1}\right)=\left(a_{2}, i_{2}\right)$ if and only if $a_{1}=a_{2}$ and $i_{1}=i_{2}$. Define addition and multiplication in B_{2} as follows:

$$
\left.\begin{array}{r}
t_{2} \equiv\left\{\left(\left(a_{1}, i_{1}\right),\left(a_{2}, i_{2}\right)\right),\left(a_{1}+a_{2}, i_{1}+i_{2}\right) a_{1}, a_{2} \in B_{1} \text { and } i_{1}, i_{2} \in I /(2)\right\} \\
a_{2} \equiv\left\{\left(\left(a_{1}, i_{1}\right),\left(a_{2}, i_{2}\right)\right),\left(a_{1} \cdot a_{2}+i_{1} a_{2}+i_{2} a_{1}, i_{1} \cdot i_{2}\right) a_{1}, a_{2} \in B_{1}\right. \\
\text { and } i_{1}, i_{2} \in I /(2)
\end{array}\right\}
$$

If $x_{1}=\left(a_{1}, i_{1}\right), x_{2}=\left(a_{2}, i_{2}\right), x_{3}=\left(a_{3}, i_{3}\right)$ and $x_{4}=\left(a_{4}, i_{4}\right)$ where $x_{1}, x_{2}, x_{3}, x_{4} \in B_{2}$ such that $x_{1}=x_{3}$ and $x_{2}=x_{4}$, then by definition $\left(a_{1}, i_{1}\right)=\left(a_{3}, i_{3}\right)$ and $\left(a_{2}, i_{2}\right)=\left(a_{4}, i_{4}\right)$ if and only if $a_{1}=a_{3}$, $i_{1}=i_{3}, a_{2}=a_{4}$ and $i_{2}=1_{4}$. Since $a_{1}+a_{2}=a_{3}+a_{4}$ and $i_{1}+i_{2}=i_{3}+i_{4}$, then

$$
\begin{aligned}
x_{1}+_{2} x_{2} & =\left(a_{1}, i_{1}\right) i_{2}\left(a_{2}, i_{2}\right) \\
& =\left(a_{1}+a_{2}, i_{1}+i_{2}\right) \\
& =\left(a_{3}+a_{4}, i_{3}+i_{4}\right) \\
& =\left(a_{3}, i_{3}\right) i_{2}\left(a_{4}, i_{4}\right) \\
& =x_{3}+x_{4} .
\end{aligned}
$$

Since $a_{1} \cdot a_{2}=a_{3} \cdot a_{4}$ and $i_{1} \cdot i_{2}=i_{3} \cdot i_{4}$, then

$$
\begin{aligned}
x_{1} \cdot z_{2} & =\left(a_{1}, i_{1}\right) \cdot i_{2}\left(a_{2}, i_{2}\right) \\
& =\left(a_{1} \cdot a_{2}+i_{1} a_{2}+i_{2} a_{1}, i_{1} \cdot i_{2}\right) \\
& =\left(a_{3} \cdot a_{4}+i_{3} a_{4}+i_{4} a_{3}, i_{3} \cdot i_{4}\right) \\
& =\left(a_{3}, i_{3}\right) \cdot\left(a_{4}, i_{4}\right) \\
& =x_{3} \cdot x_{4} .
\end{aligned}
$$

Therefore, t_{2} and j_{2} are binary operations. Other propertios are then found as follows:

$$
\begin{align*}
&\left(a_{1}, i_{1}\right)+_{2}\left[\left(a_{2}, i_{2}\right)+\left(a_{3}, i_{3}\right)\right]=\left(a_{1}, i_{1}\right)+_{2}\left[\left(a_{2}+a_{3}, i_{2}+i_{3}\right)\right] \tag{1}\\
&=\left[a_{1}+\left(a_{2}+a_{3}\right), i_{1}+\left(i_{2}+i_{3}\right)\right] \\
&=\left[\left(a_{1}+a_{2}\right)+a_{3},\left(i_{1}+i_{2}\right)+i_{3}\right] \\
&=\left(a_{1}+a_{2}, i_{1}+i_{2}\right)+_{2}\left(a_{3}, i_{3}\right) \\
&=\left[\left(a_{1}, i_{1}\right)+\left(a_{2}, i_{2}\right)\right]+_{2}\left(a_{3}, i_{3}\right)
\end{align*}
$$

$$
\begin{align*}
\left(a_{1}, i_{1}\right)+_{2}(0,0) & =\left(a_{1}+0, i_{1}+0\right) \tag{2}\\
& =\left(a_{1}, i_{1}\right)
\end{align*}
$$

(3) $\left(a_{1}, i_{1}\right)++_{2}\left(-a_{1},-1_{1}\right)=\left(a_{1}-a_{1}, 1_{1}-i_{1}\right)$

$$
=(0,0)
$$

(4)

$$
\begin{aligned}
\left(a_{1}, i_{1}\right)+a_{2}\left(a_{2}, i_{2}\right) & =\left(a_{1}+a_{2}, 1_{1}+i_{2}\right) \\
& =\left(a_{2}+a_{1}, i_{2}+i_{1}\right) \\
& =\left(a_{2}, i_{2}\right)+_{2}\left(a_{1}, i_{1}\right)
\end{aligned}
$$

(5) $\left(a_{1}, i_{1}\right) \dot{i}_{2}\left[\left(a_{2}, i_{2}\right) i_{2}\left(a_{3}, i_{3}\right)\right]$

$$
=\left(a_{1}, i_{1}\right) \cdot_{2}\left[\left(a_{2} \cdot a_{3}+i_{2} a_{3}+i_{3} a_{2}, i_{2} \cdot i_{3}\right)\right]
$$

$$
=\left[a_{1} \cdot\left(a_{2} \cdot a_{3}+i_{2} a_{3}+1_{3} a_{2}\right)+i_{1}\left(a_{2} a_{3}+i_{2} a_{3}+i_{3} a_{2}\right)\right.
$$

$$
\left.+\left(i_{2} \cdot i_{3}\right) a_{1}, i_{1} \cdot\left(i_{2} \cdot i_{3}\right)\right]
$$

$$
=\left(a_{1} \cdot\left(i_{2} a_{3}\right)+a_{1} \cdot\left(i_{2} a_{3}\right)+a_{1} \cdot\left(i_{3} a_{2}\right)+i_{1}\left(a_{2} \cdot a_{3}\right)\right.
$$

$$
\left.+i_{1}\left(i_{2} a_{3}\right)+i_{1}\left(i_{3} a_{2}\right)+\left(i_{2} \cdot i_{1}\right) a_{1}, i_{1} \cdot\left(i_{2} \cdot i_{3}\right)\right]
$$

$$
=\left\{a_{1} \cdot a_{2} \cdot a_{3}+i_{2} a_{1} \cdot a_{3}+i_{3} a_{1} \cdot a_{2}+1_{1} a_{2} \cdot a_{3}\right.
$$

$$
\left.+i_{1} \cdot i_{2^{a}} a_{3}+1_{3} \cdot i_{1} a_{2}+1_{3} \cdot i_{2} a_{1},\left(i_{1} \cdot 1_{2}\right) \cdot i_{3}\right]
$$

$$
=\left\{a_{1} \cdot a_{2} \cdot a_{3}+1_{1} a_{2} \cdot a_{3}+1_{2} a_{1} \cdot a_{3}+i_{1} \cdot 1_{2} a_{3}+1_{3} a_{1} \cdot a_{2}\right.
$$

$$
\left.+i_{3} \cdot i_{1} a_{2}+i_{3} \cdot i_{2} a_{1},\left(i_{1} \cdot i_{2}\right) \cdot i_{3}\right]
$$

$$
=\left[\left(a_{1} \cdot a_{2}+i_{1} a_{2}+i_{2} a_{1}\right) a_{3}+\left(i_{1} \cdot i_{2}\right) a_{3}\right.
$$

$$
\left.+i_{3}\left(a_{1} \cdot \varepsilon_{2}+i_{1} a_{2}+i_{2} a_{1}\right),\left(i_{2} \cdot i_{2}\right) \cdot i_{3}\right]
$$

$$
=\left(a_{1} \cdot a_{2}+i_{1} a_{2}+i_{2} a_{1}, i_{1} \cdot i_{2}\right) \cdot{ }_{2}\left(a_{3}, i_{3}\right)
$$

$$
=\left[\left(a_{1}, 1_{1}\right) \cdot \cdot_{2}\left(a_{2}, 1_{2}\right)\right] \cdot_{2}\left(a_{3}, i_{3}\right)
$$

where the associative law has been used repeatedly.

$$
\begin{align*}
& \left(a_{1}, i_{1}\right) \cdot a_{2}\left[\left(a_{2}, i_{2}\right)+_{2}\left(a_{3}, i_{3}\right)\right] \tag{6}\\
& =\left(\varepsilon_{1}, i_{1}\right) \cdot 2\left[\left(a_{2}+a_{3}, 1_{2}+i_{3}\right)\right] \\
& =\left[a_{1} \cdot\left(a_{2}+a_{3}\right)+i_{1}\left(a_{2}+a_{3}\right)+\left(i_{2}+i_{3}\right) a_{1}, i_{1} \cdot\left(i_{2}+i_{3}\right)\right] \\
& =\left(\left(a_{1} \cdot a_{2}+a_{1} \cdot a_{3}\right)+\left(i_{1} a_{2}+i_{1} a_{3}\right)+\left(i_{2} a_{1}+i_{3} a_{1}\right)\right. \text {. } \\
& \left.\left(i_{1} \cdot i_{2}\right)+\left(i_{1} \cdot i_{3}\right)\right] \\
& =\left(\left(a_{1} \cdot a_{2}+i_{1} a_{2}+1_{2} a_{1}\right)+\left(a_{1} \cdot a_{3}+i_{1} a_{3}+i_{3} a_{1}\right)\right. \text {, } \\
& \left.\left(i_{1} \cdot i_{2}\right)+\left(i_{1} \cdot i_{3}\right)\right] \\
& =\left(\left(a_{1} \cdot a_{2}+i_{1} a_{2}+i_{2} a_{1}, i_{1} \cdot i_{2}\right)+i_{2}\left(a_{1} \cdot a_{3}+i_{1} a_{3}+i_{3} a_{1}\right),\right. \\
& \left.\left(i_{1} \cdot i_{3}\right)\right] \\
& =\left[\left(\varepsilon_{1}, i_{1}\right) i_{2}\left(a_{2}, i_{2}\right)\right] t_{2}\left[\left(a_{1}, i_{1}\right) i_{2}\left(a_{3}, i_{3}\right)\right] \\
& \left(a_{1}, 1_{1}\right) a_{2}(0,1)=\left(a_{1} \cdot 0+i_{1} 0+1 a_{1}, i_{1} \cdot 1\right) \tag{7}\\
& =\left(a_{1}, i_{1}\right)
\end{align*}
$$

Hence, B_{2} is a ring with identity. If $\left(a_{1}, i_{1}\right) \in B_{2}$, then

$$
\begin{aligned}
\left(a_{1}, 1_{1}\right) \cdot_{2}\left(a_{1}, 1_{1}\right) & =\left(a_{1} \cdot a_{1}+1_{1} a_{1}+1_{1} a_{1}, 1_{1} \cdot 1_{1}\right) \\
& =\left(a_{1}, 1_{1}\right)
\end{aligned}
$$

Hence every element in B_{2} is idempotent. Therefore, B_{2} is a Boolean ring with identity $(0,1)$.

Now consider the subset E_{2}^{\prime} of B_{2} such that $B_{2}^{\prime} \equiv\left\{\left(a_{1}, 0\right) \mid a_{1} \in B_{1}\right.$ and 0 is the zero element of $\left.I /(2)\right\}$. For any $\left(a_{1}, 0\right)$ and $\left(b_{1}, 0\right) \in B_{2}^{\prime}$, then $\left(a_{1}, 0\right)++_{2}\left(-b_{1}, 0\right)=\left(a_{1}-b_{1}, 0\right) \in B_{2}^{\prime}$ and $\left(a_{1}, 0\right) \circ_{2}\left(b_{1}, 0\right)=\left(a_{1} \cdot b_{1}+0 b_{1}+0 a_{1}, 0\right)=\left(a_{1} \cdot b_{1}, 0\right) \in B_{2}^{\prime}$. Hence B_{2}^{\prime} is a subring of B_{2}.

There remains to be shown that there exists an isomorphism π from $\left(B_{1},+, \cdot\right)$ to $\left(B_{2}^{\prime},+, \cdot\right)$. Define π by $a_{1} \pi=\left(a_{1}, 0\right)$ for all $a_{1} \in B_{1}$. Now π is a mapping for suppose there exists $a_{1}, a_{2} \in B_{1}$ such that $a_{1} \pi=\left(a_{1}, 0\right), a_{2} \pi=\left(a_{2}, 0\right)$ and $\left(a_{1}, 0\right) \neq\left(a_{2}, 0\right)$. If $a_{1}=a_{2}$, then $\left(a_{1}, 0\right)=\left(a_{2}, 0\right)$ which leads to a contradiction, Hence, $\left(a_{1}, 0\right) \neq\left(a_{2}, 0\right)$ implies $a_{1} \neq a_{2}$ which shows that π is a mapping. Now

$$
\begin{aligned}
\left(a_{1}+a_{2}\right) \pi & =\left(a_{1}+a_{2}, 0\right) \\
& =\left(a_{1}, 0\right)+_{2}\left(a_{2}, 0\right) \\
& =a_{1} \pi+a_{2} \pi, \text { and } \\
\left(a_{1} \cdot a_{2}\right) \pi & =\left(a_{1} \cdot a_{2}, 0\right) \\
& =\left(a_{1}, 0\right) a_{2}\left(a_{2}, 0\right) \\
& =a_{1} \pi \cdot_{2} a_{2} \pi .
\end{aligned}
$$

Therefore, π is a homomorphism. If $a_{1} \pi=\left(a_{1}, 0\right)$ and $a_{2} \pi=\left(a_{2}, 0\right)$ with $a_{1} \neq a_{2}$ and if $\left(a_{1}, 0\right)=\left(a_{2}, 0\right)$, then $a_{1}=a_{2}$ which contradicts the definition. Hence $a_{1} \neq a_{2}$ implies $\left(a_{1}, 0\right)=\left(a_{2}, 0\right)$. Thus π is one to ons. For any $\left(a_{1}, 0\right) \in B_{2}^{1}$ there exists $a_{1} \in B_{1}$ such that $a_{1} \pi=\left(a_{1}, 0\right)$, then by the construction of the set B_{2}^{\prime}, π is an isomorptism. 'iherarore, every Boolean ring without an identity can be omboddedin a Boolean ring with identity.

In certain algebraic systems, the conditions required for a Boolean ring as stated in definition $3-2$ may be replaced by other properties which are stated and proved in theorem 3-6.

Theorem 3-6. If $(A,+, \cdot)$ is an algebraic structure such that A has at least two eiements, there is an identity element
for multiplication, and for all $x, y, z, w \in A$ such that
(a) $x+(y+y)=x$,
(b) $[x \cdot(y \cdot y)] \cdot z=(z \cdot y) \cdot x$,
(c) $x \cdot[(y+z)+w]=x \cdot(w+z)+x \cdot y$,
then $(A,+, \cdot)$ is a Boolean ring with identity.
Proof: By (a), every x in A has $y+y$ as a zero element on the right. Let $x=9 \in A$. By (c) then

$$
\begin{aligned}
e \cdot((y+z)+w) & =e \cdot(w+z)+\theta \cdot y \\
(y+z)+w & =(w+z)+y .
\end{aligned}
$$

Let $z=y+y$, then

$$
\begin{aligned}
& {[\mathrm{y}+(\mathrm{y}+\mathrm{y})]+\mathrm{w}=\mathrm{y}+\mathrm{w} \quad \text { and }} \\
& {[\mathrm{w}+(\mathrm{y}+\mathrm{y})]+\mathrm{y}=\mathrm{w}+\mathrm{y} .}
\end{aligned}
$$

Since $(y+z)+w=(w+z)+y$, then $y+w=w+y$ for all $w, y \in A$.
Therefore, ($A,+$) is comutative. By (a), $x+(y+y)=(y+y)+x=x$.
Hence x in A has a zero element on the left. If there exjsts $z \in A$ such that $z+x=x+z=x$ for all $x \in A$, then

$$
z=z+(y+y)=(y+y)+z=y+y .
$$

Hence $y+y$ is unique. Denote $y+y=0$ and let $w=0$ in (c), then

$$
\begin{aligned}
x \cdot\{(y+z)+0\} & =x \cdot(0+z)+x \cdot y \\
& =x \cdot z+x \cdot y \\
& =x \cdot y+x \cdot z .
\end{aligned}
$$

Hence $x \cdot(y+z)=x \cdot y+x \cdot z$, and $(A,+, \cdot)$ is distributive. Let $x=z=\theta \in A$ in (b), then

$$
\begin{aligned}
{[\theta \cdot(y \cdot y)] \cdot e } & =(\theta \cdot y) \cdot \theta \\
(y \cdot y) \cdot \theta & =y \cdot e \\
y \cdot y & =y \text { for svery } y \in A .
\end{aligned}
$$

Therefore, every element in A is idempotent. Now consider (b). Let $z=\theta \in A$, then

$$
\begin{aligned}
(x \cdot(y \cdot y)) \cdot e & =(0 \cdot y) \cdot x \\
x \cdot(y \cdot y) & =y \cdot x \\
x \cdot y & =y \cdot x
\end{aligned}
$$

for $x, y \in A . A l s o$

$$
\begin{aligned}
{[x \cdot(y \cdot y)] \cdot z } & =(z \cdot y) \cdot x \\
(x \cdot y) \cdot z & =x \cdot(z \cdot y) \\
(x \cdot y) \cdot z & =x \cdot(y \cdot z)
\end{aligned}
$$

Therefors, (A,+,) is a Boolean ring with identity.
With the following definition of the complete direct
sum S of the rings S_{i} where $i=i, 2, \cdots, k, S$ can then be shown to be a ring.

Definition 3-6. Let S_{1} be a given family of rings, whare $i \in N$ and $N=1,2,3, \ldots, k \quad$ Let $S=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid a_{i} \in S_{i}\right\}$ and define operations t_{s} and 's $^{\text {as follows: }}$

$$
\begin{aligned}
& t_{s}=\left\{\left(\left(a_{1}, a_{2}, \ldots, a_{k}\right),\left(b_{1}, b_{2}, \ldots, b_{k}\right)\right),\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{k}+b_{k}\right)\right. \\
&\text { such that } \left.a_{i}, b_{i} \in s_{1}\right\} \\
& s_{s}=\left\{\left(\left(a_{1}, a_{2}, \ldots, a_{k}\right),\left(b_{1}, b_{2}, \cdots, b_{k}\right)\right),\right.\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \ldots, a_{k} \cdot b_{k}\right) \\
&\text { such that } \left.a_{i}, b_{i} \in S_{i}\right\}
\end{aligned}
$$

For simplicity, the same notations of operations for the family of rings ($\left.S_{i},+, \cdot\right)$ are used. S so defined is called a complete direct sum of the rings S_{i}, where $i \in N$ and $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ if and only if $a_{1}=b_{i}$.

Let $x_{1}, x_{2}, x_{3}, x_{4} \in S$ and $x_{1}=\left(a_{1}, a, \cdots, a_{k}\right), x_{2}=\left(b_{1}, b_{2}, \cdots, b_{k}\right)$ $x_{3}=\left(c_{1}, c_{2}, \cdots, c_{k}\right), x_{4}=\left(d_{1}, d_{2}, \cdots, d_{k}\right)$ such that $x_{1}=x_{3}$ and $x_{2}=x_{4}$, that is, $\left(a_{1}, a_{2}, \cdots, a_{k}\right)=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{k}\right)=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$. By definition, $a_{i}=c i$ and $b_{i}=d_{i}$ where $a_{i}, b_{i}, c_{i}, d_{i} \in S_{i}$. Then

$$
\begin{aligned}
x_{1} t_{s} x_{2} & =\left(a_{1}, a_{2}, \cdots, a_{k}\right) t_{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right) \\
& =\left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{k}+b_{k}\right) \\
& =\left(c_{1}+d_{1}, c_{2}+d_{2}, \cdots, c_{k}+d_{k}\right) \\
& =\left(c_{1}, c_{2}, \cdots, c_{k}\right) t_{s}\left(d_{1}, d_{2}, \cdots, d_{k}\right) \\
& =x_{3}+_{s} x_{4} \quad, \text { and } \\
x_{1} \cdot_{s} x_{2} & =\left(a_{1}, a_{2}, \cdots, a_{k}\right) \dot{s}_{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right) \\
& =\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \cdots, a_{k} \cdot b_{k}\right) \\
& =\left(c_{1} \cdot d_{1}, c_{2} \cdot d_{2}, \ldots, c_{k} \cdot d_{k}\right) \\
& =\left(c_{1}, c_{2}, \cdots, c_{k}\right) \dot{s}_{s}\left(d_{1}, d_{2}, \cdots, d_{k}\right) \\
& =x_{3} \cdot x_{4} \quad
\end{aligned}
$$

Therefore, t_{s} and 's are binary operations. Other properties are shown as follows.

$$
\begin{align*}
x_{1}++_{s} & =\left(a_{1}, a_{2}, \cdots, a_{k}\right)++_{s}\left(o_{1}, o_{2}, \cdots, o_{k}\right) \tag{I}\\
& =\left(a_{1}+o_{1}, a_{2}+o_{2}, \cdots, a_{k}+o_{k}\right) \\
& =\left(a_{1}, a_{2}, \cdots, a_{k}\right) \\
& =x_{1}
\end{align*}
$$

(2) $x_{1}+{ }_{s}\left(x_{2}+_{s} x_{3}\right)=x_{1}+\left\{\left(b_{2}, b_{2}, \cdots, b_{k}\right) t_{s}\left(c_{1}, c_{2}, \cdots, c_{k}\right)\right\}$

$$
=\left(a_{1}, a_{2}, \cdots, a_{k}\right)+_{s}\left(b_{1}+c_{1}, b_{2}+c_{2}, \cdots, b_{k}+c_{k}\right)
$$

$$
=\left[a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{2}+c_{2}\right), \cdots, a_{k}+\left(b_{k}+c_{k}\right)\right]
$$

$$
=\left[\left(a_{1}+b_{1}\right)+c_{1},\left(a_{2}+b_{2}\right)+c_{2}, \cdots,\left(a_{k}+b_{k}\right)+c_{k}\right]
$$

$$
=\left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{k}+b_{k}\right)++_{s}\left(c_{1}, c_{2}, \cdots, c_{k}\right)
$$

$$
=\left[\left(a_{1}, a_{2}, \cdots, a_{k}\right)+_{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right)\right]
$$

$$
+_{s}\left(c_{1}, c_{2}, \cdots, c_{k}\right)
$$

$$
=\left(x_{1}+x_{2}\right)+_{s} x_{3}
$$

(3) $x_{1}+_{s}\left(-x_{1}\right)=\left(a_{1}, a_{2}, \cdots, a_{k}\right)+_{s}\left(-a_{1},-a_{2}, \cdots,-a_{k}\right)$

$$
\begin{aligned}
& =\left(a_{1}-a_{1}, a_{2}-a_{2}, \cdots, a_{k}-a_{k}\right) \\
& =\left(o_{1}, o_{2}, \cdots, o_{k}\right) \\
& =0 .
\end{aligned}
$$

(4) $\left.x_{1}+x_{2}=\left(a_{1}, a_{2}, \cdots, a_{k}\right)+b_{s}, b_{2}, \cdots, b_{k}\right)$

$$
\begin{aligned}
& =\left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{k}+b_{k}\right) \\
& =\left(b_{1}+a_{1}, b_{2}+a_{2}, \cdots, b_{k}+a_{k}\right) \\
& =\left(b_{1}, b_{2}, \cdots, b_{k}\right)+_{s}\left(a_{1}, a_{2}, \cdots, a_{k}\right) \\
& =x_{2}+x_{s} \quad .
\end{aligned}
$$

(5) $x_{1} \cdot s\left(x_{2} ; s x_{3}\right)=\left(a_{1}, a_{2}, \cdots, a_{k}\right) \quad$ is $\left(\left(b_{1}, b_{2}, \cdots, b_{k}\right) ; s\right.$

$$
\begin{aligned}
& \left.\quad\left(c_{1}, c_{2}, \cdots, c_{k}\right)\right] \\
& =\left(a_{1}, a_{2}, \ldots, a_{k}\right) \cdot\left[\left(b_{1}+c_{1}, \cdots, b_{k}+c_{k}\right)\right] \\
& =\left[a_{1} \cdot\left(b_{1} \cdot c_{1}\right), a_{2} \cdot\left(b_{2} \cdot c_{2}\right), \cdots, a_{k} \cdot\left(b_{k} \cdot c_{k}\right)\right] \\
& =\left[\left(a_{1} \cdot b_{1}\right) \cdot c_{1},\left(a_{2} \cdot b_{2}\right) \cdot c_{2}, \cdots,\left(a_{k} \cdot b_{k}\right) \cdot c_{k}\right] \\
& =\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \cdots, a_{k} \cdot b_{k}\right) \cdot s\left(c_{1}, c_{2}, \cdots, c_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} s\left(x_{2} \cdot x_{3}\right)=\left\{\left(a_{1}, a_{2}, \cdots, a_{k}\right) \text { is }\left(b_{1}, b_{2}, \cdots, b_{k}\right)\right] \\
& \cdot_{s}\left(c_{1}, c_{2}, \cdots, c_{k}\right) \\
& =\left(x_{1} \cdot s x_{2}\right) \cdot x_{3} \\
& \text { (6) } x_{1} \cdot s\left(x_{2}+_{s} x_{3}\right)=\left(a_{1}, a_{2}, \cdots, a_{k}\right) \cdot{ }_{s}\left(\left(b_{1}, b_{2}, \cdots, b_{k}\right)\right. \\
& \left.t_{s}\left(c_{1}, c_{2}, \cdots, c_{k}\right)\right] \\
& =\left(a_{1}, a_{2}, \cdots, a_{k}\right) \cdot s\left(b_{1}+c_{1}, b_{2}+c_{2}, \cdots, b_{k}+c_{k}\right) \\
& =\left[a_{1} \cdot\left(b_{1}+c_{1}\right), a_{2} \cdot\left(b_{2}+c_{2}\right), \cdots, a_{k} \cdot\left(b_{k}+c_{k}\right)\right] \\
& =\left(\left(a_{1} \cdot b_{1}+a_{1} \cdot c_{1}\right),\left(a_{2} \cdot b_{2}+a_{2} \cdot c_{2}\right), \cdots\right. \text {, } \\
& \left.\left(a_{k} \cdot b_{k}+a_{k} \cdot c_{k}\right)\right) \\
& =\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \cdots, a_{k} \cdot b_{k}\right){ }_{s} \\
& \left(a_{1} \cdot c_{1}, g_{2} \cdot c_{2}, \cdots, a_{k} \cdot c_{k}\right) \\
& =\left(a_{1}, a_{2}, \cdots, a_{k}\right) \cdot_{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right) \\
& +_{s}\left[\left(a_{1}, a_{2}, \cdots, a_{k}\right) \cdot s\left(c_{1}, c_{2}, \cdots, c_{k}\right)\right] \\
& =\left(x_{1} \cdot s x_{2}\right) t_{s}\left(x_{1} ; s x_{3}\right)
\end{aligned}
$$

Therefore, S is a ring and S has an identity if and only if S_{i} has an $1 d e n t i t y$ for overy $i \in \mathbb{N}$.

There remains to be shown that there exists an onto homororphism θ_{i} betwesn S and S_{i} where $i \in \mathbb{N}$. Define θ_{i} as follows: ($\left.a_{1}, a_{2}, \cdots, a_{k}\right) \theta_{i}=a_{i}$ for $\left(a_{1}, a_{2}, \cdots, a_{k}\right) \in S$. Let $x_{1}=\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ and $x_{2}=\left(b_{1}, b_{2}, \cdots, b_{k}\right)$ be in S such that

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \cdots, a_{k}\right) \theta_{i}=a_{i} \\
& \left(b_{1}, b_{2}, \cdots, b_{k}\right) \theta_{i}=b_{i}
\end{aligned}
$$

where $a_{i}, b_{i} \in S_{i}$. If $a_{i} \neq b_{i}$, then $\left(a_{1}, a_{2}, \cdots, a_{k}\right) \neq\left(b_{1}, b_{2}, \cdots, b_{k}\right)$.

Hence θ_{1} is a mapping. For every $a_{1} \in S_{i}$ there exists $x_{1} \in S$ such that $x_{1}=\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ and $x_{1} \theta_{i}=a_{i} \in S_{i}$. Then

$$
\begin{aligned}
\left(x_{1}+_{s} x_{2}\right) \theta_{1} & =\left[\left(a_{1}, a_{2}, \cdots, a_{k}\right)+_{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right)\right] \theta_{i} \\
& =\left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{k}+b_{k}\right) \theta_{i} \\
& =a_{1}+b_{1} \\
& =\left(a_{1}, a_{2}, \cdots, a_{k}\right) \theta_{i}+t_{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right) \theta_{i} \\
& =x_{1} \theta_{1}+x_{s} \theta_{i}, \text { and } \\
\left(x_{1} \cdot s x_{2}\right) \theta_{i} & =\left(\left(a_{1}, a_{2}, \cdots, a_{k}\right) ;\left(b_{1}, b_{2}, \cdots, b_{k}\right)\right) \theta_{i} \\
& =\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \cdots, a_{k} \cdot b_{k}\right) \theta_{1} \\
& =a_{i} \cdot b_{1} \\
& =\left(a_{1}, a_{2}, \cdots, a_{k}\right) \theta_{i} \dot{s}\left(b_{1}, b_{2}, \cdots, b_{k}\right) \theta_{i} \\
& =x_{1} \theta_{i} \dot{s}_{s} x_{2} \theta_{i} .
\end{aligned}
$$

Hence θ_{i} is an onto homomorphism.
Definition 3-7. Let T be the subring of the complate direct sum S of rings S_{i} where $i \in N$. Let θ_{i} be the homomorphism from S onto S_{i}. If $\mathrm{TO}_{i}=S_{i}, i \in N$, then T is a subdirect sum of the rings $S_{i}, i \in N$.

Before proving the next theorem, two more lermas will be stated without proof.

Definition. A ring is saíc to be subdirectly irreducible if it bas no non-trivial representation as a subdirect sun of any rings.

Dafinition 3-8. If a ring R is fomorphic to a subdirect
sum T of rings $S_{i}, i \in N$, then T is said to be a representation of R as a subdirect sum of the rings S_{i}, it N.

Lerma 3-1. Every ring R is isomorphic to a subdirect sum of subdirectly irreducible rings.

Lemma 3-2. A subdiractly irreducible commatative ring with more than one elemont and with no non-zero nilpotent olements is a field.

Theorem $3-7$. A ring is isomorphic to a subdirect sum of fiolds $I /(2)$ if and only if it is a Boolean ring.

Proof: Clearly, $I /(2)$ is a commutative ring. Since $I /(2)$ satisfies the conditions of a field, $I /(2)$ is a field. Moreover, every glement of $I /(2)$ is idempotent, since $0^{2}=0$ and $2^{2}=1$. Let S be the complete direct sum of these fields $I /(2)$ and T be any subdirect sum of the fields $I /(2)$. It follows that T is a subring of S. For any $x_{1}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ $x_{2}=\left(b_{1}, b_{2}, \cdots, b_{k}\right) \in T, i \in N$, and $a_{i}, b_{i} \in S_{i}$, then

$$
x_{1}^{2}=\left(a_{1}, a_{2}, \cdots, a_{k}\right)^{2}
$$

$$
=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \text { is }\left(a_{1}, a_{2}, \ldots, a_{k}\right)
$$

$$
=\left(a_{1} \cdot a_{1}, \varepsilon_{2} \cdot a_{2}, \cdots, a_{k} \cdot a_{k}\right)
$$

$$
=\left(a_{1}^{2}, a_{2}^{2}, \cdots, a_{k}^{2}\right)
$$

where $a_{i}=0$ or $a_{i}=1$. But $0^{2}=0$ and $1^{2}=1$, so $x_{1}^{2}=\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ for any $x_{1} \in \mathbb{T}$. Thus, T is a Boolean ring. If a ring B is isomorphic to T, then there exists an isomorphism ρ such that $a \rho=x \in \mathcal{T}^{m}$. Now (a.a) $\rho=a \rho$; $a=x ; x=x \in T$ with
$a \rho=x$, hence $(a \cdot a) \rho=a \rho$. Since ρ is one to one, then $a \cdot a=a$ for every a $\in B$. Therefora, B is a Boolean ring.

Now ons must show that if B is a Boolean ring, then B is isomorphic to a subdirect sum of fields $I /(2)$. By lemma 3-1, B is isomorphic to a subdirect sum of subdirectly irreducible rings. By definition of the subdirect sum T of rings, there oxist homomphisms θ_{i} such that $T \theta_{i}=S_{i}, i \in N$. B is isomorphic to T, then for any $x \in T$ there exists $a \in B$ such that $a \xi=x$ and $(a \cdot a) \xi=a \xi ; a \rho=x \cdot x=x^{2}$. But $a \cdot a=a \in B$ implies $(a \cdot a) \rho=a \rho$, and tence $x^{2}=x$ for every $x \in T$. Hence I is a Boolean ring. Therefore, if B_{1} is a Boolaan ring and also is homomorphic onto B_{2}, then B_{2} is a Boolean ring. Now there exist homomorphisms θ_{i} such that T is homomorphic onto S_{i}. Being homomorphic onto images of a Boolean ring T, the S_{i} aro Boolean rings. For every $i \in N$, a Boolean ring contains no non-zero nilpotent elements. By theorem 3-3, a Boolean ring has characteristic 2. Furthermore, by theorem 3-2, a Boolean ring is commtative. Thus by lemme $3-2$, each S_{i} is a fiold. Since each S_{i} is a Boolean ring and a field, it contains at least two olements, and overy element a_{1} in S_{i} satisfies $a_{i}^{2}=a_{i}$. Hence, at least the zero element O_{i} and the identity e_{i} must be in every S_{j}. Now if there existe $c_{i} \in S_{i}$ such that $c_{i} \neq 0_{i}$ and $c_{i} \neq e_{i}$, then $c_{i} \cdot c_{i}=c_{i}^{2}=c_{i}=c_{i} \cdot e_{i}$. Since S_{i} is a ring for overy $i \in N, c_{i} \cdot\left(c_{i}^{-\varepsilon_{i}}\right)=0_{i}$, $c_{i} \neq 0$ so $c_{i}=\varepsilon_{i}$. Hence, there exist no elements in S_{i} except O_{i} and e_{i}.

Define g_{2} by $O_{1} g_{2}=0$ and $e_{1} g_{2}=1$. By the tables below, g_{2} is a one to one mapping and is also an onto mapping. Hence S_{i} is isomorphic to $I /(2)$.

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

Define θ_{i}^{\prime} as follows: $x_{1} \theta_{i}^{\prime}=\left(x_{1} \theta_{i}\right) g_{2}=x_{1 i}^{\prime} g_{2}=x_{1 i}^{\prime \prime}$ where $x_{1}, x_{2} \in T, x_{l i}^{\prime} \in S_{i}$ and $x_{1 i}^{\prime \prime} \in I /(2)$. If. $x_{1} \theta_{i}^{\prime}=x_{1 i}^{\prime \prime}, x_{2} \theta_{i}^{\prime}=x_{2 i}^{\prime \prime}$ and $x_{1 i}^{\prime \prime} \neq x_{2 i}^{\prime \prime}$, then $x_{1 i}^{\prime} \neq x_{2 i}^{\prime}$ and $x_{1} \neq x_{2}$. Hence θ_{i} is a mapping. For every $x_{2 i}^{\prime \prime}$ there exists a $X_{1 i}^{\prime}$ in S_{i} such that $x_{1 i}^{\prime} g_{2}=x_{2 i}^{\prime \prime}$ and for every $x_{1 i}^{\prime} \in S_{i}$ there exists at least one $x_{1} \in T$ such that $x_{1} \theta_{i}=x_{1 i}^{\prime}$. Also

$$
\begin{aligned}
\left(x_{1}+x_{2}\right) \theta_{i}^{\prime} & =\left(x_{1}+x_{2}\right) \theta_{i} g_{2} \\
& =\left(x_{1} \theta_{1}+x_{2} \theta_{i}\right) g_{2} \\
& =\left(x_{1 i}^{\prime}+x_{2 i}^{\prime}\right) g_{2} \\
& =x_{11}^{\prime} g_{2}+x_{21}^{\prime} g_{2} \\
& =x_{11}^{\prime \prime}+x_{21}^{\prime \prime} \\
& =x_{1} \theta_{i}^{\prime}+x_{2} \theta_{1}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\left(x_{1} \dot{s}_{2}\right) \theta_{i}^{\prime} & =\left[\left(x_{1} \cdot x_{2}\right) \theta_{i}\right] g_{2} \\
& =\left(x_{1} \theta_{i} \cdot x_{2} \theta_{i}\right) g_{2} \\
& =x_{11}^{\prime} g_{2} \cdot x_{21}^{\prime} g_{2} \\
& =x_{11}^{\prime \prime} \cdot x_{21}^{\prime \prime} \\
& =x_{1} \theta_{1}^{\prime} \cdot x_{2}^{\theta_{1}^{\prime}}
\end{aligned}
$$

Hence θ_{1}^{\prime} is a homomorphism from T onto $I /(2)$. Therefore, B is a Boolean ring isomorphic to the subdirect sum T of the fields $I /(2)$. This conpletes the proof of the theorem.

A Boolean ring is somotimes called the ring of all subsets of a set. This will be examined in theorem 3-8. Let B be the set of all subsets of a given non-empty set A where B includes the empty set ϕ and the universal set A. If $a, b \in B$, derine the operations + and - as follows:

$$
\begin{aligned}
& +\equiv\left\{(a, b),\left(a \cap b^{\prime}\right) \cup\left(a^{\prime} \cap b\right) \mid a, b \in B \text { and } a^{\prime}=\{x / x \notin a\}\right\} \\
& \cdot \equiv\{(a, b),(a \cap b) \mid a, b \in B\}
\end{aligned}
$$

where $\left(a \cap b^{\prime}\right) \cup\left(a^{\prime} \cap b\right)=\{x \mid x \in a$ and $x \notin b$ or $x \notin a$ and $x \in b\}$.
Theorem 3-8. The class of all subsets of a non-empty set is a Boolean ring with the above operations.

Proof: For every $a, b \in B, a^{\prime} b=\left(a n b^{\prime}\right) \cup\left(a^{\prime} \cap b\right) \in B$ and $a \cdot b=a n b \in B$.
(1)

$$
\begin{aligned}
(a+b)+c & =\left[(a+b) \cap c^{\prime}\right] \cup\left[(a+b)^{\prime} \cap c\right] \\
& =\left\{\left(\left(a \cap b^{\prime}\right) \cup\left(a^{\prime} \cap b\right)\right] \cap c^{\prime}\right\} \cup\left\{\left[\left(a \cap b^{\prime}\right) \cup\left(a^{\prime} \cap b\right)^{\prime} \cap c\right\}\right. \\
& \left.=\left\{\left[\left(a \cap b^{\prime} \cap c^{\prime}\right) \cup\left(a^{\prime} \cap b \cap c^{\prime}\right)\right]\right\} \cup\left\{\left(a \cap b^{\prime}\right) \cap\left(a^{\prime} \cap b\right)^{\prime}\right) \cap c\right\} \\
& \left.=\left\{\left(\left(a \cap b^{\prime} \cap c^{\prime}\right) \cup\left(a^{\prime} \cap b \cap c^{\prime}\right)\right]\right\} \cup\left\{\left(a^{\prime} \cup b\right) \cap\left(a b^{\prime}\right)\right] \cap c\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\left[\left(a n b^{\prime} n c^{\prime}\right) \cup\left(a^{\prime} \cap b \cap c^{\prime}\right)\right]\right\} \cup\left\{\left(a^{\prime} \cup\right) \cap\left[(a n c) \cup\left(b^{\prime} \cap c\right)\right]\right\} \\
& =\left\{\left(\left(a n b^{\prime} \cap c^{\prime}\right) \cup\left(a^{\prime} n^{\prime} b n^{\prime}\right)\right]\right\} \cup\left\{\left(a^{\prime} n^{\prime}\right) \cap(a n c) \cup\left[\left(a^{\prime} n b\right) \cap\left(b^{\prime} \cap c\right)\right]\right\}
\end{aligned}
$$

$$
=\left\{\left[\left(a n b^{\prime} \cap\right) \cup\left(a^{\prime} n b \cap c\right)\right)\right\} \cup\left\{a^{\prime} n(a n c) \cup p n(a n c)\right]
$$

$$
\left.u\left\{\left(a^{\prime} \cap \operatorname{bon}\right) \cup(b \cap b \cdot n c)\right]\right\}
$$

$$
=\left\{\left[\left(a a^{\prime} b^{\prime} c^{\prime}\right) \cup\left(a^{\prime} b^{\prime} \cap c^{\prime}\right)\right]\right\} \cup\left\{\{b \cap(a n c)) \cup\left(a^{\prime} a^{\prime}{ }^{\prime} c\right)\right\}
$$

$$
=\left\{\{b \cap(a n c)] \cup\left[a^{\prime} \cap b^{\prime} \cap c\right]\right\} \cup\left\{\left\{\left(a \cap b^{\prime} \cap c^{\prime}\right) \cup\left(a^{\prime} \cap b c^{\prime}\right)\right]\right\}
$$

$$
=\left[(a n b n c) \cup\left(a n^{\prime} b^{\prime} c^{\prime}\right)\right] \cup\left\{\left(a^{\prime} \cap b n^{\prime}\right) \cup\left(a^{\prime} n b^{\prime} n c\right)\right]
$$

$$
=\left[(\phi) \cup(a n c n b) \cup\left(a n b^{\prime} n c^{\prime}\right) \cup(\phi)\right] \cup\left[\left(a^{\prime} n b c^{\prime}\right) \cup\left(a^{\prime} n^{\prime} b^{\prime} n c\right)\right]
$$

$$
=\left[\left(a \cap b^{\prime} \cap b\right) \cup(a \cap c \cap b) \cup\left(a n b^{\prime} \cap c^{\prime}\right) \cup\left(a \cap c C^{\prime}\right)\right]
$$

$$
u\left[\left(a^{\prime} \cap b n c\right) u\left(a^{\prime} n b^{\prime} n c\right)\right]
$$

$$
=\left\{\left[\left(a n b^{\prime}\right) \cup(a n c)\right] \cap b\right\} \cup\left\{\left[\left(a n b^{\prime}\right) \cup(a n c)\right] \cap c^{\prime}\right\} \cup\left\{\left(a^{\prime} \cap\left(b \cap c^{\prime}\right)\right]\right\}
$$

$$
v\left\{\left(\operatorname{a}\left(a^{\prime} b^{\prime} c\right)\right]\right\}
$$

$$
=[(a \cap b) \cup(a n c) \cap(b \cap c)] \cup\left[\left(a ^ { \prime } \cap (b \cap c ^ { \prime }) \cup \left(a^{\prime} n\left(b^{\prime} \cap c\right)\right.\right.\right.
$$

$$
=\left\{a \cap\left[\left(b^{\prime} n c\right) \cap\left(b n c^{\prime}\right)\right]\right\} \cup\left\{\left[a^{\prime} \cap\left(b \cap c^{\prime}\right)\right] \cup\left[a^{\prime} \cap\left(b^{\prime} \cap c\right)\right]\right\}
$$

$$
=\left\{a \cap\left[\left(b \cap c^{\prime}\right)_{n}^{\prime}\left(b^{\prime} n c\right)^{\prime}\right]\right\} \cup\left\{\left[a^{\prime} \cap\left(b n c^{\prime}\right)\right] \cup\left[a^{\prime} \cap\left(b^{\prime} \cap c\right)\right]\right\}
$$

$$
=\left\{a \cap\left[\left(b \cap c^{\prime}\right) \cup\left(b^{\prime} \cap c\right)\right]^{\prime}\right\} \cup\left\{a^{\prime} \cap\left[\left(b \cap c^{\prime}\right) \cup\left(b^{\prime} \cap c\right)\right]\right\}
$$

$$
=\left[a n(b+c)^{\prime}\right] \cup\left[a^{\prime} n(b+c)\right]
$$

$$
=a+(b+c) .
$$

(2) $a+\phi=(a n \phi) u(a n \phi)=a v \phi=a$
(3) $a+a=(a n a \dot{a} v(a ́ n a)=\phi \cup \phi=\phi$
(4) $a+b=\left(a n b^{\prime}\right) u\left(a^{\prime} \cap b\right)$

$$
\begin{aligned}
& =\left(b^{\prime} \cap a\right) \cup\left(b \cap a^{\prime}\right) \\
& =\left(b \cap a^{\prime}\right) \cup\left(b^{\prime} \cap a\right) \\
& =b+a
\end{aligned}
$$

(5) $(a \cdot b) \cdot c=(a n b) n c=a n(b n c)=a \cdot(b \cdot c)$
(6)

$$
\begin{aligned}
a \cdot(b+c) & =a \cap\left[\left(b \cap c^{\prime}\right) \cup\left(b^{\prime} \cap c\right)\right] \\
& =\left(a \cap b \cap c^{\prime}\right) \cup\left(a \cap b^{\prime} \cap c\right) \\
& =\left(a \cap b \cap c^{\prime}\right) \cup\left(a \cap c \cap b^{\prime}\right) \\
& =\left[(\phi) \cup\left(a \cap b \cap c^{\prime}\right)\right] \cup\left[(\phi) \cup\left(a \cap c \cap b^{\prime}\right)\right] \\
& =\left[\left(a \cap b \cap a^{\prime}\right) \cup\left(a \cap b \cap c^{\prime}\right)\right] \cup\left[\left(a^{\prime} \cap a n c\right) \cup\left(b^{\prime} \cap a \cap c\right)\right. \\
& =\left[(a \cap b) \cap\left(a^{\prime} \cup c^{\prime}\right)\right] \cup\left[\left(a^{\prime} \cup b^{\prime}\right) \cap(a n c)\right] \\
& =\left[(a \cap b) \cap(a n c)^{\prime}\right] \cup\left[(a n b)^{\prime} \cap(a c)\right] \\
& =(a \cap b)+(a \cap c) \\
& =a \cdot b+a \cdot c
\end{aligned}
$$

(7) $a \cdot A=a n A=a$. Hence A is the identity of B.
(8) $a \cdot b=a n b=b n a=b \cdot a$.
(9) $a^{2}=a \cdot a=a n a=a$.

Therefore, B is a Boolesn ring.
Lerma 3-3. If a ring R has a representation as a subdirect sum T of rings $S_{i}, i \in \mathbb{N}$, then for sach $i \in \mathbb{N}$ there exists a tomomorphism ϕ_{i} of R onto S_{i} such that if $r \in R$ and $r \neq 0 \in R$, then $r \phi_{i} \neq 0 \in S_{i}$ for at least one $i \in \mathbb{N}$.

Froof: Let ρ be the isomorphism from R to T. By definition of subdirect sum, there exists a homomorphism θ_{i} such that $T \theta_{i}=s_{i}$ for every $i \in \mathbb{N}$. Defino ϕ_{i} by $r_{1} \phi_{i}=r_{i}^{\prime} \theta_{i}=r_{1}^{\prime \prime}$ where $r_{1}^{\prime}=r_{1} \rho, r_{1}^{\prime \prime} \in S_{i}$ and $r_{1} \in R$ for $1 \in \mathbb{N}$. If $r_{1}^{\prime \prime} \neq r_{2}^{\prime \prime}$, then $r_{1}^{\prime} \neq r_{2}^{\prime}$. But θ_{1} is a rapping and \mathcal{S} is an isomorphism, then $r_{1} \neq r_{2}$. Hence ϕ_{i} is a mapping. For any $r_{1}^{\prime \prime} \in S_{i}$ thera oxists at least one $r_{1}^{\prime} \in I$ such that $r_{1}^{\prime} \theta_{i}=r_{1}^{\prime \prime}$. But ϵ_{i} is
onto and ρ is an isomorphism for every r_{i}^{\prime} in T, thus there exists a r_{1} in R such that $r_{1} \rho=r_{1}^{\prime}$. Hence for every $r_{1}^{\prime \prime} \in S_{1}$ there exists at least on s $r_{1} \in R$ such that ϕ_{i} is an onto mapping. Let $r_{1}, r_{2} \in R$ such that $r_{1} \phi_{i}=r_{1}^{\prime \prime}$ and $r_{2} \phi_{1}=r_{2}^{\prime \prime}$. Then

$$
\begin{aligned}
\left(r_{1}+r_{2}\right) \phi_{i} & =\left(r_{1}+r_{2}\right)^{\prime} \theta_{1} \\
& =\left(\left(r_{1}+r_{2}\right) \rho\right] \theta_{i} \\
& =\left(r_{1} \rho+r_{2} \rho\right) \theta_{i} \\
& =\left(r_{1}^{\prime} r_{s} r_{2}^{\prime}\right) \theta_{i} \\
& =r_{1}^{\prime} \theta_{i}+r_{2}^{\prime} \theta_{i} \\
& =r_{1} \phi_{1}+r_{2} \phi_{i}, \quad \text { and } \\
\left(r_{1} \cdot r_{2}\right) \phi_{i} & =\left(r_{1} \cdot r_{2}^{\prime}\right) \theta_{i}^{\prime} \\
& =\left[\left(r_{1} \cdot r_{2}\right) \rho\right] \theta_{i} \\
& =\left(r_{1} \rho \cdot r_{2} \rho\right) \theta_{i} \\
& =\left(r_{1}^{\prime} \cdot r_{2}^{\prime}\right) \theta_{i} \\
& =r_{1}^{\prime} \theta_{1} \cdot r_{2}^{\prime} \theta_{i} \\
& =r_{1} \phi_{i} \cdot r_{2} \phi_{i} .
\end{aligned}
$$

Hence ϕ_{i} is a homomorphism from R onto S_{i} for $i \in \mathbb{N}$. If $r_{1} \in R$ and $r_{1} \neq 0$, and since ρ is an isomorphism and $r_{1} \rho=r_{1}^{\prime} \in \mathbb{T}$, where $r_{1} \neq 0 \in \mathbb{T}$, then for some $1 \in \mathbb{N} \quad r_{i} \phi_{i} \neq 0_{i} \in S_{i}$. This completes the proof of the lemma.

Theorem 3-2. Every Boolean ring B is isomorphic to a ring of subsets of sone non-empty set.

Proof: If B is a Boolean ring, by theorem 3-7, B is isomorphic to the subdirect sun T of fields $I /(2)$. By lemma 3-3, since B has a representation as a subdirect sum of fields $I /(2)$, then there exist homomorphisms ϕ_{i} of B onto $I /(2)$ such that if $r \in B$ and $r \neq 0 \in R$, then $r \phi_{i} \neq 0 \in I /(2)$ for at least one i $\in \mathbb{N}$. Let H be the set of homomorphisms of B onto $I /(2)$, that is

$$
H \equiv\left\{\phi_{i} / i \in N\right\}
$$

By lerma 3-3, if $a \in B$ and $a \neq 0 \in B$, then $a \phi_{i} \neq 0$ for at least one $1 \in \mathbb{N}$. For every $a \in B$ there must be either $a \phi_{i}=0_{i}$ or $a \phi_{i}=I_{1} . \quad$ I εt

$$
H_{a} \equiv\left\{\phi_{i} / a \phi_{i}=l_{i} \text { and } i \in \mathbb{N}\right\} .
$$

Suppose $H_{a} \neq \mathrm{H}_{\mathrm{b}}$. Then by definition, $\mathrm{a} \phi_{i} \neq \mathrm{b} \phi_{i}$ which implies that $a \neq b$ for ϕ_{i} is a mapping. Hence $a \rightarrow H_{a}$ is a mapping from B to a certain subset H_{a} of H. Since ϕ_{i} is an onto maping fror B onto $I /(2), i \in \mathbb{N}$, then for any subset of H there exists at least one element in B such that the mapping from B to the subsets of H is onto. Suppose $H_{a}=H_{b}$. By derinition, $a \phi_{i}=b \phi_{i}$ and $a \phi_{i}-b \phi_{i}=o_{i}$. Since ϕ_{i} are homomorphisws, then

$$
\begin{aligned}
(a-b) \phi_{i} & =o_{i} \\
a-b & =o_{i} \\
a & =b
\end{aligned}
$$

Therefore, the mapping from B onto $I /(2)$ is one to one. Since $(a \cdot b) \phi_{i}=a \phi_{i} \cdot b \phi_{i}$ and $(a \cdot b) \phi_{i}=l_{i}$, then $a \phi_{i}=l_{i}$ and $b \phi_{i}=I_{i}$. It follows that $\phi_{i} \in H_{a}$ and $\phi_{i} \in H_{b}$ if $\phi_{i} \in H_{a b}$. Hence $H_{a b}=H_{a} \cap H_{b}=H_{a} \cdot H_{b}$. For $(a+b) \phi_{i}=a \phi_{i}+b \phi_{i}$ and $(a+b) \phi_{i}=l_{i}$, either $a \phi_{i}=1_{i}$ and $b \phi_{i}=0_{i}$ or $a \phi_{i}=0_{i}$ and $b \phi_{i}=1_{i}$ can be obtained. It follows that $\phi_{i} \in H_{a}, \phi_{i} \notin H_{b}$ or $\phi_{i} \& H_{a}, \phi_{i} \in H_{b}$. Define

$$
\phi_{i} \equiv \equiv_{0}\left\{x \mid x \in H_{a} \text { and } x \notin H_{b} \text { or } x \notin H_{a} \text { and } x \in H_{b}\right\} \text {, }
$$

then $\phi_{i} \in H_{a}+H_{b}$ which implies that

$$
\mathrm{H}_{\mathrm{a}+\mathrm{b}}=\left(\mathrm{H}_{\mathrm{a}} \cap H_{b}^{\prime}\right) \cup\left(\mathrm{H}_{\mathrm{a}}^{\prime} \cap H_{\mathrm{b}}\right)=\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{b}} .
$$

Therefore, the mapping from B to the subsets of H is homomorphic, and the mapping $a \rightarrow H_{a}$ is an isomorphism.
I. Halmos, Paul R., Lectures on Boolean Algebras, New York, D. Van Nostrand Company, 1963.
2. McCoy, Neal H., The Theory of Rings, Now York, MacMillan Company, 1964.
3. Warnsr, Soth, Modern Algebra, Vol. I, Englewood Cliffs, Prentice-Hall, 1965.

BIBLIOGRAPHY

Halmos, Paul R., Lectures on Boolean Algobras, Now York, D. Van Nostrand Compeny, 1963.

Horstoin, I. N., Sopics in Algebra, New York, Blaisdell Publishing Company, 1904 .

McGoy, Neal H., The Theory of Rings, New York, MacMillan Company, 1964.

Waerdor, B. L., Modern Alggbra, Vol. I, translated by Frod Blum, New York, Frederick Ungar Publishing Co., 1949.

Warner, Seth, Moderm Algobra, Vol. I, Englowood Cliffs, Prentice-Fal1, 1965.

Zariski, Oscar and Piorre Samuel, Cormatative Algebra, Vol. I, New York, D. Van llostrand Company, 1958.

