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CHAPTER 1
GENERAL PROPERTIES OF RINGS AND IDEALS

The purposs of thls thesis is to Investigate certaln
propertiss of rings, idesls, and e special type of ring callsd

a Boolean ring.

Definition 1-1, Let A be & given set. A binary opsration

® on A is & correspondencs that associstss with sach ordsrad
pair (s,b) of slemsnts of A o unicuely dstorminsd slement

a & b of A.

Definition 1-2. A non-smpty set G on which thsrs 1s

defined a binary opsration & is callsd a group {with recspect
to thils copesratlon) if G satisfies the following conditions:
Gl. Ths opsration 4 is assocliative.
If a,b,c ¢G, then (a € b) 8 c =2 & (b & ¢).
G2. There exists in G a unique zsro slsment O such that
a®0=08&a2a=a for svery element a in G.
G3. Por each slement a in G, there exists & unigue
eisment -a in G such that a ¢ (~a) = (-a) @ & = &,

Operation notatlion. In order tc simplify the notatlen

we writs a & (-b} as a-b for a,b ¢ R

e

L

inition 1-3. A group (G,®) is an abelian group il

a @b =b @ & for every a,b € G.



Definition 1-l.

A non-zmpty set R, in which two binary

operations @ and @ are defined, i1s called a ring if the

following conditions are satisfied:

Rl. (R,®) is an abelian group.

R2. The opsration @ 1is associative.

If a,b,c € R, then (a @ b) 0 ¢

S

a ® (b @ c).

R3. If a,b,c ¢ R, then

(1) a2 (b@c) =a0®b &e @ c.(left distributive

law), an

(2) (b ®c)®a=b@adcae

law).

P

Q

{right distribvutive

o

Soms beaslc propertiss of a ring ars statsd and proved in

theorsm 1-1.

Theorem 1~-1,

If (R,%,9) is & ring, tHen the fcllowing

properties hold for any s,b,c & R:

(la) 3 @ (bwc) =2 ® b -2 @ ¢

(1b) (b-c) ®a=b ® g -¢ 9 s

(2) a ®0=08a=290

(3) - (-8) =a

(L)  (-a) @ c'=a @ (~¢c) = - (2 0 c)
(5)  (-a) @ (-c) =3 ® ¢

Proof: (1) f{a @ (b-c)] ® (a8 c)=2a0 ((b-c) & c)
=a @ [b& (-c9ec))
=a 0 (v @& 0)
= a @ b.

Honce fa © {(b=c)) & (2 @ ¢c) = a ® b. Now -(2 9 ¢) is

in R for a @

Therefors,



@

{[a o] (b—c)] & (a c)} ] [-(a @ c)] = [(a @ b)]@[u{a & ¢)l
a @ (b-c) © f(a ©@ c) ® (-(a @ c)l}==(a o b) &f(a@c)]
g ® (b-c) ® ((a 8c) ~(aB®c)] =1(a0Db) - (a0ec)

&

a & (b-c) =4 @b ~-80c
In similar manper, {(b-c) ® a = b ® a - ¢ ? a can be shown.
(2) FProm (1) ws have for svery s,b,c €R,
a ® (b-c) =a @b - a @c and
(b-c) 9a=b@a-~-c 9 a.

Now, let b = ¢, ws ses that

"
O

a @ (c-Cc) =828 € cCc -2 0cC
a & 0 = J , and
(cec) 3 =¢c 3 a -¢c ®a =20
006 a = Q.
Tharefore, a &8 0 = 0 @ a = 0
(3) If a = 0, tho proof is trivial.

If a # 0, then

e =a8®0=a?®d [(ma) 9 [~(-a)]}
=f{a 8 (-2)] & [-(-a)]
= 0§ {~{~-5)]
= -(-2)

() From (ls), lst b = 0, then

a ® (0 -c) 2 ®0 - (a @ ¢)

i

a & {-c) =0 ~ (g & ¢)

had (a @ G)t

Therefore, a @& (-c}) = «-{a & ¢).



From (1b), let b=0, then

(O~c) ®a =08 a8 -c@a,
(-c) @ a =0« (c @ a) .
Therefors, (-¢) @ & = -(c @ a) = a © (-c).

(%) If a €R, then -2 ¢ R.
From (la), lst b = 0, then
(-a) @ (0-c) = (-a) € 0 - [(-a) @ ¢],

(-a) @ (-c) =~ {(-a) @ ¢]
= {~{-a) @ c]
=a 0 ¢

Therafore, (-a2) € (-c) = a @ ¢ .
Refore stating and proving thsorem 1-2, ths following
definitions are nesdsd:

Definition 1l-5. A ring (R,9,9) 1s a commutative ring

if a @ b = b @ a for svery a,b in R.

Definition 1-6. A ring (R,2,8) is a ring with ldentlty

if thers sxists an elasment » in R such that a ®© 8 = e @ g8 = a
for svery a in R.

Definition 1l-7. If (I,%,8) 1s a ring with identity and

thers exists an elsment a“l in R such that a & a‘1=a"19 a =g
for a¢ R, then a”l is calied the invsrse of & under @ .

Definition 1-8, If &n slement & in R is such that its

inverse a~t is also in B, then a is called a3 unit in R.
In the ring of integers (I,+,x) the only units are 1
and -1.

The set of unlts in & ring with identity is denoted by

U = {ae Rl a'lé R} .
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With ths preceding definitions, theorem 1-2 can now bs
stated and proved.

Theorem 1-2. Let (R,9,0) be a ring with identity; and

R has at lsast two eslemants. Then

(1) (R,0) is notl nscessarily a group, but (U,0) is a
group.

(2) 7The 1dentity e of R is distinct from the zero
elemont of R and there exists no ilnverse for the zero slement
of R unds» 0.

Proof: (1) Consider U={ac¢ R/ a te R}; U # ¢ since

6c¢U for e ¢R and e®e =s so o~1= g € R. Clearly, aedU

impliss that a™d e U. PFor any a,beU, we have a~t

,b'le R
and b~ 0a"le¢ R. The inverse of a0b is bt o a‘l, since

(a @ b) 6 (L™ @ a~) -1

Y

[(a @b) @ pL)o e
1

(ae (bobvd)oa”

1
i

(a ©8) 0 a=t
-1

a 0 &

"

s € R.

Sincs b'l o a“le R, ws conclude that a @ beU. U E€ R =590

the azsociative property holds in U. Hance, (U,0) forms a
group.

(2) Let s eR such that a # 0, then a 0 0 = 0 © a = 0
and a 8 8 = e 0 & = 5. Therefore, e # 0. Sincs

a®0=00a=04#%e, 1t follows that ¢ Las no invarse under O.



The tesrms zero divisors and fres of zero divisorz ars

Iintroducsd in dsfinition 1-9.

Definition 1-~G. An elemsnt a not equal to ths zero

element of a ring (R,9,0) 1is callsd a left (right) zero
divisor 1f thsrs exists in R an element b not sgual to the
zero elsment of R such that a @b =0 (b@a=0). An elemsnt a
is called a zero divisor if it 1s a left and right zsro
divisor. An selsment a not equal to the zero elsment of R is
called frees of left (right) zero divisors if a®@b=0 (b8 a=0)
implies b=0. The selement a is called free of zerc diviscra if

it is free of left and right zero divisors.

Theorsem 1-3, If ae¢ U = {as:R[a”le R} , then a is fres
of zero divisors,

Proof: From theorsm 1-2(2j, a F0 if a ¢U. From thesorem
1-2(1), if 82 ¢ U, then 2"t ¢ U, If a®b=0 for be R , then
a=10 (a@b)=(a"16a)Ob=c6b=b. On the othar hand,
a~l @(a 0b)=2a > @0=0 implies that b=0. Hencs, & is free
of left zero divisors. If ¢c®ea = Q0 for ce¢ R, thsn
(c6a)oa"t =co (a0 a“') = ¢ @ 6 = ¢c. On the other hand,

(c Oa)(aa'l =00a"t=0 implies that ¢ = 0. Hence, a is fres
of right zero divisors. Sincs a is fres of lsft and right
zsro divisors, thsrefore, a is free of zsrc divisors.

The follewing two theorsms deal with gensralized propsrtics

of a ring.

Theorem 1-L. If a and b ars elements of a ring (R,®,0),

then the feollowing relations ars trus:



n n
2 Z- a2 )0b=3 (a Ob) .
(2) i=1 i) i=l i

Proof: This theorem can bs easily proved by mathematical

induction.

(1) Ths relation is trus for p = 1, since

n

Then,
k+1 Kk
b O@E" a, =b 0 (37 a, ¢ a
1=1 1 =1 1 k+1

=[‘o(-)2';‘1ai]€1>(b9a

H

[ os)]smoa )
i=1 i k+l

k41

2. (0o a) .
1=1 i

it

The above result shows that it 1s trus for n = k+1l. This
completes the proof.
(2) In the similar manner the relation (2) can be provsd,
For n = 1, the rslation (2) is trus.
1 1
(3~ a)ob=85_0b=3_a obv .
i=1 i 1 j=3 1

Assume that 1t is trus for n = k&, that is



K k
(= a8, )0b=% (a, @Db).
1=1 1 i=1 ¢

Then we obtaln the following result

k+1 k
( 2Z a,)0b=( = 2a 62 )0b
i=1 1 1=1 1 K+1
= [« = a,) ov]efa 0]
1=1 k+1

1
Tne rosult shows that n = k+) is true, and hsnce ws have
verifisd thsorem 1-&(2).'

Theorsen 1-5., If a and b sre elsments of & ring (R,8,0)
- ] 3 ’ ?

thenr ths following preperty is trus, where n is an arbitrary
positive intsger:
n{ia @b) = (na) @ b = a @ (nb)

‘e o = = N
Proof: Let bl b2 b3 by

sasy to verify 2& b, = nb by mathematical induction. If

=bh -'-mbnzb. Then it is

K+l

¢
n=1l, then 3= bi = pb obviously holds, since b,=b=1lb. If ths

i=1 1

same holds for n=k, then for n=k+l,

k+1 k .
ST b =2b 8b =kb &b _=kb 9 b= (k+tl)b .
3= 1 i=1 1 k41 k+1 _

n
Hence, by induction, for any positive integers n, = biznb.
i=]



Now we obtain the following rssults:

n
aOz:bi'-:a@nb,and
i=

n
2 (a @b, )=nla 6 b), if a0 b, =-+=a 0 b =a 0 b.
i=1 n

i 1

From theorsm 1-}(1), hsnce ws have a O (nb)=n(a®Db).
Similarly, ws have

n n
= (&i @b} =n(a & b) and ( ai)@b=z (na) 0b,
i=1 i=1

if &1 0 b= azeb:«-am anGb:—"-aOb, and 8 Tap Feee=a, = A,
From theorsm 1-4(2), hence we have n(a 0b)= (na) 0b.
Thersfors, n(aOb) = (na) @b =g 0 (nb).

The commutative propsrty under @ is necessary fov a

ring with identity. This is discussed in the nsxt theoren.

Theorem 1-6. If (R,8,0) is an algsbraic system

satisfying all the conditions for a ring with identity with
the oxcsption of a & b=b & a, then ths relation « & b=b & &
must hold in R and R 1s thus a ring.
Proof: Let & bs the identity of R, and (a & b)€ R and
(s ® 8)€ R for avery a,b in R. Then
(8 €Db) 6 (e @0) =[(s ®b) @8] @ [(a &Db) O o]
=((a 0e) @ (bo s)}@[(a(-)e) & (b@&}}
= (a &b) 6 (a ®b),
and alsc (a © )0 (c @ 8)= (a0 (o © )] ©[DO (e 0 0)]
{(e0e)0(a0 e)) @ [(voe)o(ve 6)]
(a @ 2a) @ (b © b).

i

H
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Hsnce, (a ®#b) & (a ® b) = (a @ a) & (b & b) .
Now, since a,bé R impiies «a,-béeR , then
-2 @{(a ®b) & (a 8b)]® (-b)= -2 8{(a & a) & (b & b)]& (-b),
[(-a) 8 a] 8((v 6 a)lofb & (-b))=((-a) & a)s [(a & blofva(-b)],
08(b€a)@o0=086 (a®b) @0,
hence b @& a =a &b .
Therefore, a ® b = b ® a holds and R is a ring, and ths
proof 1s complsted.
The necsssary and sufficient conditions for a subgroup
and a subring are discussed in the following definitions.

Definition 1-10. A non-smpty subset S of a group (G,+)

is a subgroup if (S,+) 1itssif is a group.

If (S,+) is a group, then for any elsmsnt ¢ in S there
exists =c in S such that a + (-c) = a ~c¢ S whenever aeS.

If S is a non-smpty subset of G such that a - c &5 ,
then a-2 = 0€S3 and 0 - ¢ = -c ¢35, Now =-(-c) = c by
thesorem 1-1(3), ws therefore see that a-(-c) = atc e 3.

Since S € R, hence S is a group. Therefors, for any a,c ¢S,
a-c ¢S 13 8 necessary and sufrficlent condition for a non-smpty
subget S to be a subgroup in G.

Definition 1-11. A non-empty subsst B of a riﬁg (R,9,8)

is & subring of R if (B,9,0) itself is a ring.
If (B,%,8) is a ring, then (B,®) must bs s subgroup of
(R,®) which implies a-cé¢ B for any a,c €B. Furthsrmors,

a 0 ceB. If B is a non-empty gubsst of R and a-c éB for
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any a,c € B, then (B,®) is a subgroup of (R,%). The condition

a O ¢ ¢B assuress us of all conditions necsssary for (B,®,0) to

be a ring. Therefore, for any a,ce¢ B, a~ce¢ B and a 0 c€¢B

are nscsessary and sufficisnt conditlons for a subring B in R.
The identity of a ring and the identity of its subring

ars of great interest. They are discussed in theorem 1l-7.

Theorsm 1-7. Lst S bs a subring of (R,+,-.). The

following statsments are true:

(1) If R has idsptity e, ther S may not have ons. But
if e is in 3, then e is an identity in S,

(2) If e 1is an 1dsntity of R and e' 1is en identity of
S and e ¢S, then s # o!,

(3) If S has the identity s' and R doss not have ons,
then e' is necessarily a zsro divisor of R.

Proof: (1) Consider ths ring of integers I and lst S
bs the sst of all even intsgers in I. For any a,cé S, a~c €9
and axcéS, S is a subring of I. 1 has the identlty 1L whsareo
1¢1 but 1¢S. Bence ($,+,x) forms a subring in I withoat
an 1dsntity. FHowsver, if ee & such that s is the identity of
R, then a 9 ¢ = 8 6 & = a for any 8 € R. Supvoss there sxists
an element b in S such that b © e # b, and SR implies that
beR. This lsads to a contradicticn. Thsrsfore, s l1s the
idsutity of S.

(2) Consider the set R = {(a,b)/ae»A and bé'ﬁ} whers

(A,g,é) and (B’ﬁ’g) are twe rings. Define
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o}

M

{[(a,b),(c,d)] ,(a;—c, bgd)/ a,c €A and b,deB} , and

M

{((a,p),(c,a}] ,(a.c, b:d)f a,ceh and b,de¢ BY,
where (a,b) =(c,d) 1f and only if a = ¢ and b = 4.
{(R,+,+) 1s a ring and the proof is as follows. Let

rq =(a,b), r2==(c,d), r = {at,b!) and Ih“=(c’,d'). if rl=r3

3
and r2=ra, then a=at', b=b!', c=c¢! gnd d=d4d'. It follows that

a+c=a'+ ¢!, b+d=bt+3" and {(a+¢c, b+d)= (a'+ct,bt +41),
a a b b < ( a ' b )= a b i)

Hence (a,b) + {c,d) ={(a',b?) +{(c?,d?), that is,

ry + r, = r3 + ru .
Therefore, + 1s a binary operation. Since a ; ¢c = g! & ct
and b N d = b! 3 dt, then
rl € rra = (&,b) . (C,d)
= (a é c, b 3 d)

= (a! H c!', b? 5 da')

= (al',bt) - (ct,dr)

=ry J:'LL .
Hencs ry - rp = r3 . ru. Thersfore, « 1s a binary operation.
For (a,b),(c,3),(s,f)¢ R, we have
{(a,b) + (c,d)] + (e,f) = (a fe, e gd) + (8,f)
= [(a fe) £o,(0 3 ad)

b8
:[ag(cgb),bg(dgi
)

(a,b) + (¢ + e, d s f

(asb) + [(C’d) + (esf)]

i
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Since A end B are rings for any a€ A and beé¢ B, thers sxists
-2 €A and -beB. For any (a,b) ¢ R, we have

(a,b) + (~2,-b) = (a-a,b-b} = (g,g) €R,

.(g,g) + (a,b) = (g ; a, % g b) = (a’b) , and
(a,b)+ (c,d) =(a g ¢, b g d) =(c ; a, d g b} = (c,d) + (a,b).
p‘

Therefore, (R,+) is an abelian grou

(a,b): [(c,d)-(e,f)] = (a,b) - (c é e, d E £)

[a : (c : 8), b : (d : r)]

=[(a;c)ée, (béd){)f]

= (s Y b : d) -+ (s,f)]

"

{(a,b) * (c,d)] - (o,f) .
(a,b) [(c,d)+(e,f)] = {a,b) « {c Loes d ¥ T)

1

[a ; (e ; s), b é (a g f)]

((a g e) # (a; e),(bsd)i(br)]

]

- . .{ " .
(s : c, b : d) (aae, bbf)

4

((a,b)-(c,d)] + {(a,b)+(e,1)] .

A simllar proof holds for right distributive law. Hsnce
(R,+,+) is a ring.

Let S = {(a,O)/ ae A and 0 is zero slement iﬁ B} .
A# g and B# ¢ imply that S # #. For any (2,0),(b,0)¢ 3,

ws have
(2,0) + (b,0) = (ag b, o;o) = (a;b,o) €3

(8,0)« (b,0)=(a-%, 0-0)={a :b,0)e8
a b a
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_~b €A for be A 1implies (-b,0) = -(b,0)€S ,
hencs, (2,0) -~ (v,0) = {(a=b, Oto) = {(a~b,0) ¢ S. Therefors,
(S,+,°) forms a subring of (R,+,+).
‘0) = (a,0) for any (2,0)¢S,

b
if A is a ring with identity, then S is a ring with idsntity.

Since (2,0) - (g,0) = (a.g, 0

Since (a,b) - (S’%) = (853’ béﬁ) = (a,b) for any (a,b)é¢ R, 1if
B is also a ring with identity, then R is a ring with identity.
Let & = (2,§) and s!' = (E,O). The ring R has an 1idsntity
if and only if A and B both are rings with idsntities. From
theorem 1-2(2), it follows that Q # g - Henmce , we have
e = (g,g) # (8,0} = o' and e = (g:g)¢ S. Therefore, we
conclude that 1dentity s of a ring may be different from the
identity e' of its subring, if e is not an slement of the
subring.
(3) Let e' bs the identity of S. From thesorem 1-2(2),
we have e'#0!' € S, Supposs et.a = b # a for some a ¢ R, then
gteh = gte(etea) = (8'+s')ea = 9'ea which implies o'+t =o!.a.
Since ~(o'-a) éR, then (s'‘b) + [-(s'-a)] = (st -a) +[4(e'-a)]=0.

By theorem 1-1(4), it follows

th

(e7+b) + {s'+(-a)]= st+ [b + (-a)]

gt (b-a)

Since b # a implies b-a # 0, hencs e' is a left zero divisor.
A similar proof holds for o' being a right zesro divisor.

Therefors, e!' of S in this case is a zero divisor.



Ideals are non-empty subssts of a ring. Thsy play
Important roles in the study of rings.

Definition 1-12. A non-empty subset I of a ring R is

said to bs a left (right) idesl of R if

(1) (1,8) is a subgroup of (R,®), and

(2) 1€I, reéeR impliss that r0ielI ( 10rel ).

If I is a left idesl and 1is zlso a right ideal, then I
is called an ideal.

Some important propertiss of ideals ars statsd and proved
ir the following set of thesorsms.

Theorsm 1-8, If R is a commutativs ring and a ¢ R, then

T = a®R is an 1deal, whers aOR = {aOrf reR} .
Proof: Silnce R# £ , 1t follows that T # g . If a @1y

and a®r2 are two elements in T, then

(adr; )@ {_(aOrz)] (aory) @ (a0 -(r,))
= a G[rl + (-ra)]

a 0 (r Ye T

177

for (rl-rz) ¢ R. Hence, (T,®) is a subgroup of (R,9).

5

For any a ®ri¢T and € R, (a G}rl)(-)‘ r, = a0 (:-1@ r2) €T,
Honco, T 1s a right ideal in R, Since TER for any a®refT,
thersfore, aCr=rQ0a ¢T which proves that T is an ldsal in R.

Theorem 1-9., If R is a ring and a8 ¢ R, and lst

r{a) = {f:ew[ 80 x = O} s, then r{a} is a right ideal in R.
Proof: It is trivisl that r{a) # g. For every

X,y ér{a) &R, by hypothesis, adx=0 and a®y=0. This impliss

that a9x - a@y = 0 and a0 (x~y)= 0. Hence, x-yeér(a).
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Thersefore, (r(a),®) is a subgroup of (R,®). If yer(a) and
b¢R, then.a 0 (y9b) = (a%y) © b = 0 © b = 0. Hencs
yOb ¢ r(a) and the proof is complsted.

Theoram 1-10. Let Ill and I12 be two left ideals in R
and suppose(Illﬂ Ilg # @, then the interssction of two left

ideals is a left ldsal.

Proof: Sincs (I, N & =
roof inca(lll 112) Ill , (1111\112) 112 and

b e(Ilfﬁl ) impliss that -b éIll and -b &112. By the

uniqusnsss of the lnverss of b undsr 9, it follows -be&(l 1"1

Furthermors, ao(-b)=a-be¢ (I ) for eny a,b in (I

1 11 lP)

Hence { 1 nz #) 1s a subgroup of (R,%). For r € R,

12’
o L I M’ Y
r 0a &I, and rloaé 112 which imply that r, Oe 6(11)n11:)
for =2 e(lll 13) Therefore, (Illnll2) is a left ideal of R.

A similar proof can be shown that the intersection of two
right idsals is a right idsal.
Now consider the intsrssction of a right snd a left ideal

. 1 & I n &
of R end (I;NI ) # & Since (Ilnlr) .11 and { IP)
for any a,bé(llﬂlr), then (a-b) e (Ilhxp)° Hence (I ;9)

1s 2 subgroup of (R,®). If R is & commutative ring, and

r.¢ R, rl@aE.Il and a@rlé Ir where a e (1

1 NI ), then r_0az=adr 6Ir

1l "»r . 1

and rlOa el This impliss r.0a = alr.e&(I ﬂlr) and (IiﬁI )
r

1 1 1 1
is an idsal. If R is not a commutative ring, then (IiﬂI ) 1is

r
not an idsal,

A ring B has at least two ideals; the entire ring R &nd
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the set (0) consisting of the zero slement only. An ideal of
R distinct from {(0) and R will be called a propsr ideal.

A special type of idsesl known as principal 1ldeal is
introducsd and discussed in the following definition and

thsorsm 1-11.

Defipibion 1-13. An ideal Ip i1s called a principal idesal
of & ring R if eveory elemant of Ip Is some multiple of a.

Denots Ep by (s} for such an idsal, that 1s, (a)g{x-aIXérR} .

Thaorexn 1-11., KEvery ideal in the ring of intsgers is

principsal,

Proof: {1} If I= {3}, then I is a principal ideal.

(2) if 1# {0), then 2¥0 for some c€¢ I. Since cé 1 and
-c &1, it fellows ¢70 or -0»0. Lsv a be the smallest positivs
intesgzer in I, then theve oxists b el such that

b = gxa + r , whars g ¢ R and O%r<a.

Since qsa €1 and -{gxa) ¢ 1, it rollows b-{gxa)=(gxa +r)-{qxa)
=(gxa) - {qxa) +r = 0 + r = pr and b-{qual)=rel , a being the
gmallest positive Intsgsr such that 0% res. Hence
b-(qxa) = v = 0 and b = qxa . Toorsfore 1= (a).

sfield and & field cen not have proper ideals. This

-
e
L5
i

will be shown in the next two theoreas.
Definiticn 1-1Lk. A ring D" 1s callad a si'lsld if it

containg mors thap one slsment and for every a¢D , a0 ,

the sguation a+x=b has a scluticn for ary beD”.
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Theorem l-12. A sfield (D*,+*,-*) has no proper ideals.

Proof: Let I” be an idsal in D™ such that I # (0),
I* # g, and 1¥ ¢ D*. suppose that a,b ¢ D¥, where a ¥ 0, b0 ;
then, by the definition of sfisld, thers sxlsts x¢ D" such
that & ¥ x'= Db and also ye D such that x= b ¥ y, that is,
y=Db#O0

which implies, by dsfinition of sfield, a # 0 and b # 0. It

S

a ot X = a o (bowy) = (a.‘“‘b) o "

follows a ¥ b # 0 . Therefors, D° has no propsr zero

divisors. Let a,s €D” such that 2#0, 870 and a+"e= a. Then,

a L B2 = g i (o i &)

= g . 8
It follows (a <% e2) - (a ¥ @) = O
* (0% - 8) = 0

a
3*
Therefore, 82 = g, Furthermore, for any c¢eée D, ws havs

# o % % 3
C . e(_ - C . e and (Ct"e - C) . a - o. Siﬂca S?!O, wa

S
"~

3% .
obtain ¢ «" e = ¢ . Similarly, ws slso obtain s " ¢ = c.

M,

For any ce¢ D, ¢ +¥ & = ¢ = ¢ «¥ ¢ . Thersfore, e is the
identity in D¥.

By the same dsfinition, a .¥ x = & has a solution in D*

-1

wbich implies a™te¢ D¥. If be I and b-te D, then

3 g - o % ¥ ¥* s 3=
b +*b L = 68eI” . Sincs e. y=y""8 =yel” and D &I

and I¥ € D, thersfore, I = D".

Definition 1-15. A commutative ring F is called a fisld

if the following conditions are satified
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Fl. F has et lsast two slsmants,

F F hasg an idsntity.

2.
Fy. Every a¢F such that &# 0 has an invsrss a~t in F.

Theorem 1-13, A commutative ring R with ildentity 1s a

field if and only if R has no proper idsals.

Proof: If R is & field and if I is an ideal of R such
that I % (0}, then thers exists an slesment a#O guch that
a ¢l. For R to bs a field, a1 must be in R. Hence, by
definition of ideal, a-a™t = e &I. Let yeR, then seyel.
Since RC 1 and I¢ R, therefore, I = R. Converssly, if R
ia a cowmmutative ring with identity and R has no proper ideals,
and also if a ¢ R and a# 0, then consider the sst
Ra ={ r-a’re R} . By theorem 1-8, Ra is an idesl in R. Since
R, # (0) implies Ra = R, and e € R = R, implies s = x+a for
soms X € R, hence R 1s a field.

The following definitions concern certain important
mappings batween rings, and some basic propertiss of
nomomorphisms are steted and proved in thsorem 1-1li through

theorem 1-16.

Definition 1-16. (1) A mapping from a ring R into s

ring R' i1s a correspondence that asscocliates with each elemsnt
re¢e R a unique prte R'.
(2) A mapping T from a ring (R,+,.) into a ring (R',+‘,-')
is a howmomorphlism if
(a+b)T = aT +' bT , and

(a+d)T = aT «' b? for all s.b &R.
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(3) A mapping T 1is said to be from a ring R.onto &
ring R' 1f for any b'€ R! thers sxists at least onse slemsnt
& ¢ R such that aT = bt',

(L) A mapping T is said to be a one to ons mapping of
a ring R intec R!' if for any a,bé R with a # b, then aT #DbT.

(5) If T is a ons to ons homomorphic mapping from ring
R onto ring R', then T is callsd an 1somerphism,

Definition 1-17. If T is & homomorphic mapping from =

ring R into & ring R', then the kernal of T (dsncted by
ker(T)) is the set of all elements of K which ars mapped
into the zero slemsnt of R'.

Thsorem l-1li. If T i:c a homomorphism of a ring (R,+,-)

into a ring (R!',+',-'}), then
(1) oT = Ot
(2) (-a)T = ~(aT)
{(3) Ker(T) 1s a subring of R.

Proof: (1) 0=0+0
o7 = (0 + 0)7
= OT +! OT

Sincs 0T = Q' +' OT, then O!' 4! CT = 0T = OT +' OT. Now
~{0T)€ B 1f OTe R', It follows that
(0v +t 0T) - (07) = (OT 4+t OT) ~ (OT)
0' +1v (0T = OT) = OT +' (0T - OT)
Ot = QT
(2) 0= (a + (~a))
0T = ({a + (~a))T= &T 4+t (-a)T
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From (1) we have 0! = (T, hence 0! = aT +!' (-a)T. Since
aT +' (-(aT)) = 0* , thus we cbtaln ths relation

aT +! (-a)T = aT +t' (=(aT)) = O
R' is a ring, hence if aT ¢ R', then -(aT)é¢ R'. Thersfore,
we have

-{aT) +' [aT +! {(-a)T]

i

-(eT) +!{aT +' (-(aT) ]
(-(aT) +' aT] +' (-a)T = [(-&T) +' aT]+' (-(aT)]
(-a)T

|

-(aT)
(3) Let O' be the zsro elemsnt of R!' and for any
a,b ¢ Ker{(T) , then

(a~b)T

H

fa + (~b)]T

= aT +' (-b)7T

= aT - bT

= 0! - O

= Ot
Hence (a-b)é Ker(T), and (Ker(T),+) 1ls a subgroup of (R,+).
Also (a+b)T = T ' bT = 0! .' 0! = 0 , Hence a-bé€ Ker(T),
and (Ker(T),+,.) is a subring of the ring (R,+,<).

Theorem 1-15. A homomorphism T from ring (R,+,+) onto

ring {(R',+',.') is an isomorphlsm 1f and only 1f Rer(T)
conslsts of zero element of R only.

Proof: Suppose T is g isomorphism, For a,bé¢ R , aT = gt
gnd LT = b' with at,bt¢ R', and if ¢ is any elsment in Ksr(T),
then (c+2)T = (a+c)T = aT +' c¢T = aT +' 0! = aT = a' and

{a+c)T = aT +' ¢T = aT +t 0! ., Sincs T 1s 1somorphism and
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OT = 0!, hence CT = 0T = 0' and ¢ = 0 ¢R . If Ker{(T)=(0),

R such thaet r,T = r T . Sincs

;
then lst rl,r2 1 5

(rl - rz)T =r T + (-r2)T

= I‘l‘T had I’2T

= (! R
hence rl—reé Ker(T). Since Ker(T) = (0) , it follows that
ry - r, = 0 and rl = r2 « So ws have shown that T is a

one to ons mapping. Therefore, with hypothesls, T 1is an
isomorphism.

Definition 1-18. A comnmutstive ring with identity and

having no zero divisors is called an integral domaln.

Theorem 1l-16. Let ¢ be a homomorphic mapping from g

ring (R,+,¢) with identity e into s ring (R',+!',+') with
identity e', then e is the identity of

R} =fr‘e R'/ Irer > rO*—*—r'}
whers e@ is not necessarily sequal to s8'¢ RY., If R' is
an integral domain or R' is any ring with @ an onto
mapping, then ef = ot .

Proof: Sincs s{ S af = (e+a)$ = ap and ad'ef = (a's)¢
=a¢ for any a@é R¢, hencs aq is identity of R} . If a*be &,
a+b ¢ R, and a¢,b¢& Rp, then

a¢ ' b = (a-b)$ e R}
a¢ +' b = (a+b)§ e RP
For a-b éR, we have ad-bh = af +' (~(b)) =(a+ (-b)) ¢

= (a~b)¢€:R¢. Thereforas, (R@,+‘,e’) is a subring of (R',+',.").
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By theorem 1-7, we see that e(=e"¢ R} 1is not necessarily
equal to s' of R¥., Ii R' is an intsgral domain and supposs
o7 # el for e'e¢R' and s} € Rp, then s -'a' = bt # a' for
soms a'é R', Now we have

Bq) o bt = scp -' (e(:) .' al)

i
P
o
-~
L 3
o
=4
e
-
-
o)

it
@
-
-
jos)
-

hence e ' b1 = e@ ' a' . Since e$ -' (b'-at) = 0! , by
hypothesis, R' is an intsgral domain and a¢ # 0'. Hencs
bt = a', This lsads tuv a contradiction. Therefore, e'=e¢.
If @ is e homomorphic mapping from R onto R', then for any
a' ¢ R' thers sxists at least an element a ¢R such that a¢:a’ .
Since ey € R) € R', and also

8¢ ' ap = (e . a)} = aQ = g! and

ad = (a.e)$ = ad-ef ,
hencs we obtain e ' ¢ = ad .t ed = a} = a' . Tuerefore
e is tne identity of R! for any a'e R'.

Wita the ald of the definition of ideal, a speclal type
of ring called duotlent ring can be constructed. Soms
basic properties of the quotient ring will be examined in
ths remaindsr ¢f this chaptar.

Definition 3-19, If R is a ring and T 1s an ideal of

R, th

£2]

n tha set Q=1 4 p = {i+ﬁ{ 1€I}, whers réR, is
called a raosidus olass in R,

I I+r, # I+r_ , and i1f there exists an slemsnt ¢ & I+4r
[

1 1
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and ¢ ¢ I+r then there sxists 11,12 évI'such that c=11+r

2’ 1
and c= 12+r2 . Since I is an 1de2l and —ile I for ile I,
then
I, +r, =1_+r

1 1 2 2

(i) = (m1) + (er)

-1 _+1 + = {~3 + +
(-1+3) # oy = (34) + ey
Lst ~Ll+i2=13 s herncs 1=13+r2 and I+r1=I+(13+r2):(I+13)+r2

==I+r2 . We conclude that for any I+r yItr e Q, if I+r1#1+r

1 2’

then I+rl and 1+r2 have pno zlsments in common.

Theorem 1-17. The sst Q of residus classes of an ideal

I in a ring (R,+,*) 1is dtsslf a ring.
Proof: Define B znd ® in the set Q as follows:

3]

]

[ (I+a,T40), T+(a+b) | I+a,T+beqQ }
@

m

i(1+a,1+b), I+(a-b)l I+a,I+b € Q}.

Tor X,y.w,z é€Q, suppose x=I+a y=I+g_, z=l+a_, w=I+a such

1’ 2 3 L

that x=z and y=w. Let s eI+(al+a2), then there exists ilé I

such that s=il+(al+a2} =(i_+a.)+a,. Since I+alnI+a3, there

i 1 e

existse iBé 1 such that il+al=12+83 3 hencs

(12+83) +82

"

3

12 + (33+82)

(12+32)+ a3

then thers exists 136 I such that

il

Sincs I+a2=1+au,
12+a2=13+a . Hence s={1 _+a4 )+a = 13+(a +a_ ) = i,+(a_+a )

L 3L L "3 373,
which is an slement of I+\a3+a&). This impliss that ¢
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I+(al+a2)§ I+(a3+ah). If t € 1I+(a +au), then thsre exists

1hé I such that t=iu+(83+ah)=(iu+a3)+au. Since I+al—1+33,

thers sxists 156 I such that 15+al=iu+a3
t = (15+a l) + au

= 15 + (al+au)

= 15 + (ah+al)

= 5+ah) + 8y
Since I+92=I+au, there exists 166 I such that 1 +a ~l5+a4 .
Hsnce t=(ié+a2)+al = 6+(a2+al) = 16+(al+a2) I+(al.a2).
Therefore I+(a3+au) Ik(a1+a2) and I+(a1+az)=l+(a3+ah),

Therefore @ is a blnary opsration.

Suppose s'e I+aj.2, ; then there exists iié I such that

. ot t
37 thers exists 12,13é I such
. Since (I,+) is a subgroup of (R,+), then

1t = ii +ay+8, . Since I+aj=l+e

_ 1 gt
that 12+al—13+a3

there soxists -i;e I such that -ié+(ié+al)= ;+(i3+33) It
follows that (-1x+1)+a, = (—i;+i;)+a3. Lot 1;“1 —1Le I, then
alrii+a3 . Sincs I+a2=I+au, thsre exists i;,iéé I such that
1; 82=i; L and -i;é I. XNow

| ) [ ’
-15 + (15+a2) = -15 + (16+au)

5 (-15+1g) + &

1l

(-ig+i;) + a

Lot {.=-i +1’, thep a_=1-+a .

14
g' = 1. + a_°*a
1 1



Let (i

26

=31 + .
17 817 %

(iu+33)‘(17+au)

(iu+33)'17 + (ih+a3).au
1 iu'i7+ 2y0Ly) * (Lo * e
= (jl+ih il +a i7+ih‘ah) + 83'ah

I
-1 +i -] = i €71, then 1 +a_. I+a - .
L%y ’ S N T T

i
e
+

il
[
-

a, )

i
oy
o+

u

Therefore I+a1-a2 & I+a3.8h

In & simlilar manner 1t can be shown that I+a3-au$1+al»aa.

Hencs

I+a,+a, = I+a_-a . Therefors, [ is a binary operation.

1 72 3 L

For any I+ay , I+a, , I+a3é Qs

1.

11

(I+al) EJﬂI+aZ) E?(I+a3)] (I+al) 53(I+(82+a3)]

1 2

I+ (al+a2)+a

=1 + a,+(a.+a )
3

3}

(I+al+az) El(l+a3)

i

((T+a)) @ (1+a,)}®@ (I+a3)

(I+0) El(I+al) = I+(0+a,) = I+a

1 1

[I+(-a1)] @ (I+a. ) = I+ ((~al)+a1]= I+0

1

(I+a EJ(I+a2)= I+(a +32)= I+(32+al)= (I;aa)m(1+a )

1) 1 1

Hence, (R/I,B) is an abslian group.

(Ita)) @{(I+a,) O (I+a3))*~' (I+ay) @ (I+a,ea,)

2" 3
I+ al~(82°83)
(I+a1-ae) @ (I+a

i

Hi

3)
=[(I+al) C1(1+a33i3(1+33)
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2+a3)?

=1 + al.(a2+a3)

1°85 + al-ai)

(1+aloa2) B (I+a

fl

6. (I+ay) E3ﬁ1+a3} Ei(I+33)] (I+a)) @ [+(a

I+ (a

it

1'a3)
)E(I+a3)

(I+a1)m(1+aa)m(l+al
A similar proof holds for right distributive law.
Thersfore (Q,®,®) is a ring.

Definition 1-20. The set of resldue class Q definad

in definition 1-19 is a ring and 1s called the quotisnt
ring of R by I (dsnoted by R/I).

Thoorsm 1-18. Let T be a homomorphic mapping from s

ring {(R,+,«} onto s ring (R',+',«') and let I be the sst of
elemsnts In R which map onto the zero elemesnt 0! of R', then
I is an idsal and the quotient ring R/I is isomorphic to R'.

Proof: DSince T 1s 1scmorphic onto mapplng, then by
tasorem 1-1ly, tue sst (I,+,-) is a subring of (R,+,+}. For
any ae¢ R and 1e¢I, (1.a)T = iT+'aT = 0t «' aT = 0! and
(a+1)T = a7 -' 17 = aT .' 0' = 0' , which implies thst i.ae I
snd a.-ie I, Hepce I is an ideal of R. If x) € R/I, then

1
! s} == ! ! ! ! o k]
Let xl,xeé R/1 and xl¢ X!, x2¢ x, . If x1# x., , then thers

thore exlsts aj¢ R such that x =I+a, . Define ¢ by xl¢=alT.

exists al,aze R such that X1:I+al and x2=1+32. Now

!
x1¢ = alT = Xx_ , and

]

I+a_)¢
( ¢

i
]

1
!
(I+32)¢ x2¢ = a1 x,
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Since xi#xé , it follows that alT#aaT . Suppose x,

=x , then
P

I+ a3 = I + 82

(I+32)T

(I+al)T

0V +' a)T = 01 +1 a,T

I

T T
al 82

This lsads to a contradiction. Therefore ¢ is a mapping.

Now let XysX

¢ R/I , I+a_= d I+a = th
5 /1, a,=x, an a,=x, 5 then

il

(x1 E)xz)@ ((I+al) E1(1+a2l]®

ft

(1 + (al+32)]¢

= (al+aZ)T

a. T +'* g T
1 2

= x0 + XEQ , and

il

(x, @ x,)¢ = [(T+a)) @ (I+a,)] §

[1 + (al'ae)J¢

fl

= (al-aZ)T

- . .

= ali 32T
?

= xl¢ . x2¢

Therefors ¢ is a homomorphic mapping.

;1 1. t . oli
Now if xl#kz for X g%, ¢ R/1, then I+al#1432 implies
al#az . Supposs lezx2¢ , then x1¢=alT=aeT=x2Q . Hence

a1T=a_T . Since -(a,T) € R! implies

2 1
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il

(alT) +1 (—alT) 82T +1 (—alT)

O' = BZT - alT

0! (az—al)T

il

3
and az-alé I . Thersfors, I+(az-al)=l+0 . Now

(I+32) E}(I—al) I+0

i

((1+s,) =@ (I-2,)]®@ (I+al) (1+0) =@ (I+al)

(I+a,) m{(l-al) B (I+a))]=1 + (0+a_)

I+a =1+
82 al

The above result lmplies that xl=x2,which 1s then contrary
to the assumption. Therefore, if xlﬁxa implies x1¢%x2¢ ,
then ¢ is one to one.

For svery X, ¢ R' there sxlsts at lesast one a.¢ R such

1 1
1 ~o L] t
that a;T=x, . Since &1¢~(I+al)¢w a,T = x for any x, ¢ R',
so ¢ is onto.
Therefore, ¢ is an isomorphic mapping from R/I onto R!,

Theorem 1-19. If R 1s a commutative ring with idsntitj,

then R/I 1is also a commutative ring with identity, and

moreover, if R is an intsgral domain, then R/I is an integral

domsain,
Proof: For x,,X, ¢ R/I there exists 21,8, €R such that
xl=1+al and x221+32 . Now
X Bx, = (I+al) & (I+ay)
= 1+ (ay-.8;)
=1 + (az-al)
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i

bid T ]
@z, =1+ (82 al)

i

(I+a,) @ (I+a,)

= X, B X

2

Hence, R/I is a commutative ring.

1

For I+al=xle R/I , then I+e ¢ R/I where e é R, hence

(I+e) @ (I+ay)= (I+e-a;)= (I+a,). Therefors, R/I has ths

1
identity I+e.

If R is an integral domain, then for a,b ¢ R such that

8#0 , a-b=0 . Then b=0 . Consider x,,X, ¢ R/I such that

2

xl=I+al#I+O which impiies al#O . If x; @x, = I+0 and

(I+al) c)(I+aZ) = I + ay8, = 7+0, then aloa2=0 . PBut

R is an integral domain sng al#o s SO 32=O leads to

x,= It+a,= I+0 . Therefors, R/I is 2n integral domain.
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CHAPIER IX
SPECIAL TYPES OF IDEALS

In tha'precsding chapter, scme gensral properties of
ideals havs besn discussed. Prime 1deals and maximal idsals
are gpscial types of idesals which have many intsresting
propertles. This chapler will investigate some propertilss
of these speclial typss of ideals.

Defipition 2-1. Ths product of two 1deals A and B in

g ring R 1s the sst

3
AxBz} 5 &“'bk a,fA and b

@

€3, n Is any arbitrary positive'}
k=l ¥ :

k integer .

Theoram Z-1. Ths product of two ideals in a ring R 1s

ftself an idsal <i R,
I

Proof: Leb x,y, € AxRB, then x = = ak-b and
k=1 k
m
yF OFE.L oa b where k=l,2,3,...,n and ki=1,2,3,+¢,m.

k! :l ki ) I{.’:.'

, m m
Note thet -y= - FL 8 b =

e W - .b . Let
E{t;—;l k1 Kt k':l ( 31{1) k!

32
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n m
X-y=3a b 4+ 3 (-a )b
k=1 k k K!= Kt k!
=X a b + 2
m
= i:; a, *by & AxB

whare akeA and bk& B. For ré¢ R, then

n n
rx =r+¥ a *b_ = & {(r+a )b
k=1 ¥ kK k' "k

whare r‘ake A  and bké B, Theprsfors; r«x ¢ AxlE for x é AxB,

Simiilarly, x°r € AxB for x ¢ AxB. Therefors, AxP is an ideal
of R.
Definition 2-2, Lat I be an ideal in R. I is prime if

for any b,c in R such that bec eI, then at lsasi one of them

is an elsmant of 7I.

Definition 2-3. An idsal I of R is maximal if I #R ,
and if thers is no 1ldeal propsrly contsinad bstwssn R and Im.
Exeriples of prims ideels end maximal idesls ars gilven
in the fellowing:

Exampls 2-1. Ths ring of integers J itsslfl is a prims

ldeal, since by definition of prims idsal, if beceé J, thsn
bé&J or c¢gJ. Also the princival idssl () of J is a prlims

ree of zero divisors., If brc é¢{2), than
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Example 2-2. If Jis the ring of integsrs and n> 1 such

fie

that n € J, then the principle idesl (n) is prime i and only

s

if n is 8 prims nusber. If n is a prime pumbsr and if s-be&in)
then a+b = kn so gither a=k;n or b=k n for kl,kﬂé-J. Hence

&
a¢{n) or b € (n). Thersfors, (n) is prims idssl in J.

Suppese n is not a prims numbsy, efinition, thers exists

g
2

s,0€ J such that a-b=n with D<¢a¢n and J¢be¢n so s%.(n) and

1:¢ {n). FHences, 17 (p) 1z 2 vrims ideal, tuop n is a prims

-

pumbsy in J. Morcovsr, svery primz 1deal {n} in J is maximal.

If I ig an 1deal in J such tkat nmye I cJ,

2

ta

e
4]

thso they

&
B

%
mé&I such that md{n). It follows that (m,n) is rolative
prime, Therc axists no 2c¢omon diviscors batweesn m and n except

at meratn-o=l €I, Since

b
ol
.
3
4]
~
Ml
o~
o
e
[47)
g
>
A
[42]
r-‘_
[¥2]
Y.
.
o
L
€y
[0
T
(&
o

nsbé{n)ol and mel, so L& impilss tnat orny x& J, then

'.M
[
jo
o
[
R
oy
L ]
i
(&3
e}
¢
o
t

i}
ol
L5
o
e
o
i}
<
L
[4)]

1 EY., It follows that J¢X

() 1s & mexipsl idsal of J.

bot
o

Z‘;.
ot

Theorsm 2~2. If 1 1s a prime 1ldsal in R and

o

=
[
=

ars idsals in R such that lelgc I, thsn 116 I or
8

»iats I, and I  sueh that

o

I is pot prima, then thesrs

Fy

Precof: Suppose I, € I and 12 & 1 and lat I bs a prims

i

£
44

al in a such that leIﬂa.I, then toners exists a?é I
[
a, €1, such that al-azél. Since I is a prims idsal in R,
then a‘-aqﬁ I implies I.x7I & I . This leads to 2 contra-
e < 1 2
diction, If I is noet a prime
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. T. yo1
b, and b, such that bl,bzf I and b,b €I. HNow lot

I, =TI+ () =f{1+(v)]1e1}

1
I, =1+ (b)) ={1+ (bz)liél},
For x,y éI+(bl) , thers exists 11,12621 and p,q ¢ R such
that x=il+pb1 and ya12+qb1 . But
X -y = (il + pbl) - (12 + qbl)
= (il -+ pb1 - 12) - qbl
= (il -1, 4 pbl) - qbl
= (il - 12) + (p = Q)blf I+ (bl) ’
and for reR ,
PeX =1 -« (1l + pbl)
= r-il 4 r:(pbl)
= rely + (rop)ble 1+(b1) .

Similarly, x-re-1+(bl) for r ¢R and x¢I. Therefore,

Ilz1+(bl) is an 3deal of R . A similar proof holds for

IZ=I+(b2) being an ideal of R.

t £ e = () e b T 4
For any ilél, since 0 ¢ R and il 11*0 b, & L%(bl) y

1
hence Ic:Il=I+(bl}. Likewise, Ic:I+(b2). For any ry,r_¢HR

£

: 3 = +(b. ) gy zist 1.,1 & ¢
and x:éllxlg I (bl) X I+(b2. , there sxist l’igc I such

thet
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= + b b
(il T, 1)
) a.

1 bl

+ (r’lo

(1
:(1

i -1

2

—
-

bl)
)

1

b, b, €1

172
Therefore, I

Sincs

1x32¢ I.

The next lemma concerns

+ (i +;

36

2*°2

-r

)

*b } (b

2

r,)

i, + 1y (byery) + (rge0y) - (byers)

-1

ot iyrlbyer ) 4y

-(bl-bz)-r2

and , by definition of ideal, hence xel.

a homomorphic mepping of a

ring onto its quotlent ring.

Lemma 2-1. Thers exists a homomorphic mapping £ from a
ring R onto its quotient ring R/I such that bec ¢l if and
only 1f ©bf @cf = I+0 .

Proof: Let x;¢ R/I , then thers exists 2, ¢ R such that
X, = I+al. Defins £ such that alf = I+al for alé R and
I+a, € R/I. Suppose I+a; # Ita, and a) = 8, , then thsre exists
ilé I such that 11451 = il+a which leads to a contradiction.
Thersfore, £ is a mappling. For any Xq € R/I there exists
alé R such that alf = I+al = Xp . Hence f 1s onte. For
al,aaﬁ A, ihen

(al+32)f = 1+(al+a2)

= (I+ay) & (I+82)

= alf E?azf , end
(ag-ap)f = Iv(a;-a,)

= (I+al) &l (I+a2)

it

4
8;f 32 aaf
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Hesnce f is a homomorphism. The homomorphism f is called ths
natural homomorphism from ring R onto its gquctient ring R/I.
Since bec € TCc R, thsen

bf @ cf (bec)f

11

1

I + bec

#

I +0 .
On the other hand, if bf @ ef = 1+0, then

bf & ef (14p) @ (I+c)

it

=71 + (bec)
= I 4+ 0
=1 .
Thsrafors, bec ¢1,
The preceding lemms preparss the way for theorem 2-3.

Theorem 2-3. Lst I be an ideal such that I # R. Then

I is & prime idesl if and only if R/I has no zsro divisors.
Proof: R # ¢ implies R/I # ¢. If R/I has no zero

divisors, then for x;,X ¢ R/T such that %y # I40, x Bx,=1+0

2 1
and x2:I+O. By lemma 2-1, there exists a natural homomorphism

f from R onto R/I. Then a f= I+a = x, and ayf= I+a = x,

such that al—azé I for soms al,a2e R. Also azfx I+a22 x2= I+0

and I+32 = J4+0, thsn there exists il

'1l+a = 1,40 = 12e I. Sines (I,+} is a subgroup of (7,+),

then i?~i1 = 32 ¢ I. Thersfors, I 1s a prime idsal of R,

ioé 1 such that

-

L.

If T is a orlme ideal of R and 1;+1,€¢ I, then thars

l

exists at lsest ons of i1 or i2 » Say 1 that is in I.

1 -
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By lsmma 2-1, for il~12€1, if ilfm i1 =(I+il)cﬂ(1+12)=I+O,

then 1;f = I+0. Hemce, if 1jf@ i,f = I+0, then 1, = I+0.

1

Definition 2-4L. The inverse transformation T"" at & of

——

a ring R into a ring R is the set of all elements of R
having 3 as T-imags, whers B € R.

The following lenmna is rathsr important and has frequsni
application 1in ths rsmsinder of the chapter,

Lemma 2-2. Let T be a homomorphism of a ring R onto &

ring ﬁ, with kernsl N. Then thers sxists a ons to ons
inclusion pressrving mspping botwesn the ideals of R and ths

ideals of R which contain kernsl N, such that if I and T

1 -1, end R/ is isomorphic

corrsspond, then IT = 1 sacd 1T
to §7i.
Froof: If I 3s an idzal containing N, then IT= T is an

ideal. If xl,zee-I such tuat Xy

¢ IT, then

1 t
T = X and x.T = x wheras
. ) 2 2

x},x!

1272
1 '2 XlT - :{2‘1‘

= (xl-xz)T €17

bl
1
¥
i

This implies that xluxoe-I. For eany xie-IT and r'e'ﬁ such

that rTxr', thsn

1 LY ; )
re x, = rT « x;T

= (r-xl}T‘EIT R
i s r'é IT. Hence I=IT

is an idesl in R. BEvery idsal I of R has its image IT being

which Implies r-zlé'l. Likewiss, x

an idsal of ﬁl



Befors proving that T is ons to ons from ideals of R
onto ideals of §, ons must show that (IT)T']‘ = I. For any

xle I ¢R such that xlT = xie IT, then x € (IT)T"l. Thereforse

Ic(Im)T™d, 1If x, € (11)77Y, then x,7 € IT, so x,T = y,T with

¥, ¢ I. Hencs (xl—yl) ¢NcI. Let Xy -y =2y € I with yl,zle I,

then xy=z,+y ¢ I. Henco (17)1"Ye 1. Since (IT)T"Ye 1 and

also IC(IT)T”I, then (IT)T"l = I,
If I, # 12 , then without loss of generality thers exists

soms X, ¢ Il and xee 12 such that x3 5—’:&2 . Since (IT)T"Y = I,

-1 QL. y
then %y € (IlT)J. , xzé (IZ‘I‘)T , X.T€¢I T snd x)Té—I

TO
1 1 2 2

Supposs IszlaT, thsn XBTGIZT:::IIT. Hencs x,ZTe IlT and

x, ¢ (IlT)T"l.:I It follows that x,& I which 1s a contra-

]“’

diction. Thersfors, T 1s one to one bstween Il of R and Tf.l

of R.
If x),% ¢ Tt71, then x,7,x TeT, by definition of p-1
. s N - "l - - -1
- ] o i - m h - L1} £ U -
Sincs (xl xz)‘l xl‘l T ¢I, thsn Xy xzé T -, 1If x, ¢ IT

and r € R, then x. T¢I and rT ¢R!'. Hencs (x]“r)T:xl‘I“'rT eT

1
and xl'r ef’l‘“l. Likewise, r--xlefT'l for any r € R and

xle TT"]‘ .

From the above discussion, it can be conscluded that for
svery ideal T of R, Tr71 15 an 1deal of R. Suppose thuls
preimags fT"l of I doss not contein N, then there exists

x €N such that x¢TT™" and x7=0¢ T. But I is an ideal of R

and this leads to & contradiction. Therefore, svery
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prelimags T of R is an ideal of R containing N. Since T 1is

an onto mapping, then for every I of R there exists Tr-1l or

R such that (Fr~3)T = T. 1r IlT:-fl and 12T='f2 such that

Ilc:IZ, thsn 116.12 because for svery 126 12 and 12¢ Il’

thern there exists iZTziéé'fz

y = . iy -1_
26-11, sincs IlT—Il and (IlT)T Il, then 1

iéT‘1=12 implies 126 I1 which is a contradiction. Since

- - ‘ -
such that 1,T=i,¢ I . If

1

-1
2T g._Il. But

i

. Note that

(P ! -1 t -]
for i, € I, and (il)T cl.c 12, then 1.7 512

1 1 1

- ] R | “1 o
and (IT ~)T=I, then (ilT )T=1. €1 _.

Peelym . _ =
(1, T77)TeIpT = 1 161,

2
Therefore, 'I-lc:-l' .
2

T is 2 homomorphism from R outo R, By lemms 2-1, thers

e erven

exists a natursl homomorphic mapping f2 from R onto R/T.

Define & mapping T1=T~f? such that Ty is 8 homomorphism from

R onto R/I. Also define lemif =§§6ﬁ7&, where xT=X and X ¢R.

2
Suppose fi # ?é for §1,§q€»§7ﬁ. Sincs £, is a function,
(-4

then'?l # Eé . Since T is also a function, hence Xy # xy
Therefors, Tl is a function. For eny §:6§7E, thero sxists

i'eﬁisucb that Efzzﬁ and there exists x &R such that xT=X.,

Thersefore, Tl is onte. For x,yée R, then

[ er——

(377) ¢
Xy)z

[(X+y)TJf2
(XT+yT)f2

LI

(x+y)Tl

i

(%+3)T,

it

it

2
Efz + §f2
= le + yTl



(x'y)'ﬂ?1 (':x:-:r)f2

L]

«y)T £
(x-y) 2

(xT-yT)f2

Y

R g

(x-y)f2

= x{_-3f
2o
= le-yTl .

Therefore, T. 1s a homomorphism from R onte ﬁ?i. By theoren

1
1-17, ﬁ?i is a ring. Now let N bs e Ker(Tl). If xe N, xT ¢R
and (zT)fzﬁae-§7i, then xTé-Ker(fZ) and x7+ I = I. Since
xT €T and x ¢ (1)) = (17)T7% = I, hence NeI. If

x € I=(IT)T7, xT ¢ IT=Tc & and x1+I=1, then xT € Kex(f,),
(xT)f2'zﬁ é f{.ﬁ and x¢ Ksr(Tl):N. Hence Ic¢N. Therelors,

I = N. By theorem 1-18, Tl is a homomorphlsm from a ring R
onto a ring R/I and I 1s the Ker(Tl) and an idesl of R.

Thersfore, the quutient ring R/I is isomorphic to R/I.
Theorem 2~4, I is s maximal ideal of R if and cnly if

m

R/Im has no ideals but itszlf and {(C}.

Proof: By lemma 2-1, thors exlsts a natural homomorphlsm
f from R onto its quotient ring R/Im. By lemma 2-2, there
exlsts a one to ons inclusion pressrving mapping bstween
ideals of R/Im and ideals of R, If Im'is g maximal idsal of
R and if thers exists I; in R/Im such that I; # R/Im and
I; # (0), then bscauss T is onte thers exists I, in R such

1

. ! e, T - — 4
that I,T = I, . Since I T = J«m‘/Im = (0), RT = R/Im s Il;é(o),



and I; # R/Im , &and also T i3 an inclusion preserving

mapping, I, # (C) and 11 # R, hence I,€I,€R. But I, is a
maximal 1desl in R, thsraforse, I1 doss not sxist. Conversely,
i1f R/I was only two idesls (0) and R/I and suppese I is not

maximal, then thers exists Il in R such that Ic:IlC-Re Since

I 1s » ons to ome Incluslon preserving mappling from R onto

R/I, then there exists Ii in R/I such that I,T=I'. Since R/I

idszls (0) and R/I, then 1;=(0) or Ii = R/I. 1If

J
I37= I,/I, = (0), then I,=I which leads to a contradiction.

o= R/Il, then I;=R, which also lecds to a contra-

diction. Therefors, I is a maximel idsesal of R.

Thoorsm 2«5, If R is a commatative ring with identity,

then I is maximal 1f and only if R/I iz a field.

Proof': By thsorem 1-13, R/I is a field if and only if
R/I has no propsr ideals. By theorem 2=l Im is msximal iF
and only 1f R/I has no proper ideslz. If R has an idenitity,
then by theorem 1-19, E/I has an identity. Therelors, the
prceef i3 completed,.

Theorem 2-6. In s ring with identity, any maximal ideal
is prims.

Proof: If I is a maxlmal idssl of R, then H/Im has, by
tneorsm 2-l, no proper ideals. By theorsm 1-13, if R/Im has
no proper idsals, thsn R/im is a field. If ﬂ/lm iz a field,
then H{Im has no zero divisors. Then, by thecren £-3, Im is
g prime ideal of R.



L3

Thsorem 2-7. Let T bs a homomorphism of a ring R onto

a ring R with kernel N. If I is an ideal in R containing N,
then I 1s respsctively prime or maximal 1f and only if IT is

respsctively prims or maximsl. If I is an ideal in R, then
1

-

I 1s respectlvely prime or maximal if and only if IT7" is
respectively prime or maxinmsl.

Proof: Since I=R if and only if IT=R and T 1s a ons to
ons incluslon preserving mapping from ideals of R onto idesls
of R, then I is prime if and only if IT is prime.

If I # R, by theorem 2-3, I is prime if and only if R/I
bhas no zerc divisors, and §7ET has no zero divisors if and
only 1f IT is prime. By lsmma 2«2, there sxists an lscrnorphism
g from R/I into §7f@, and R/I has no zero divisors if and only

if ®/IT has no zero divisors. If (1+P1)E1(I+P2) and I+rl#l+0

for I+r1,1+r2é R/I, (I+rl)g=f+ri and (I+r2)g:i+ré , then
((14r) @ (I4x,)]g = (1+0)g
(T+eh) @ (Terh) = T+0' .
1 2

But (I+ry)g # (I+0)g implies ’fwi = T40' , and (1+p2)g=(1+o)g

impiies I+r; = I+0', Hemce , if (f+ri)&?Cf+ré)=f¥O' and
f#ri # T+0' , then T#ré = I+0'., Since g is ons to ons and

—— - —— . - ' —
if (1+ri)c1(l+ré):1+o' , (I+P1)Ez(1+r2)=1+0 and T+r, # T+0',

then I+rl # I+0. Since g is & mapping and Tkré w-f+0', iv
follows that I+r? = I+0. Therefore, I 1s prime if and only
if I7T 1s prims.
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By theorsm 2-5, if I # R, then I is maximal if and only
if R/I is a fisld. Since g is an isomorphism, 1t follows
that R/I is a fisld if arnd only if R/IT is & field, and R/IT
is a field if and only if IT is & maximal ideal of R. Sincs
T is inclusion preserving, then therse sxlst no ideals betwssen
IT and R if and cnly if thsre exlst no 1deals bstwsen I and

R. By lemma 2-2, it follows that T7™ %

is san idesal contalning
N, and (TT"1)? = T. Therefore, (TT"1)T = T 1s respectively
prime or maximal 1f and only if YT’l is respsctively prime

or maximal.



CHAFTER BIBLIOGRAPHY

1. Zariski, Oscar and Pierre Samusl, Commutative Algebra,
Vol., I, Nesw York, D. Van Nostrand Company, 1958.

-F.,u
i



CHAPTER III
BOOLEAN RINGS

Boolean rings ars special types of rings which ars of
great interest. This chaptsr will investigatse soms interesting
properties of these special types of rings.

Definition 3-1l. An slemsnt a of & ring R is idempotent

ir 32=a for a ¢ R.

Definition 3-2. A Boolesan ring B 1s a ring such that

all of its elements are idsmpotent, that is, azza for svery
a € B,
The following systems are examplss of Boolsan rings.

Example 3-1. A simple Boolesan ring is a ring with only

two slsments, that is a zsro slemant 0 and ap identity s,
becauss s-o=g and 0+.0=0, As another exampls, consider ths
sst S=(a,b,c,d} with addition and multiplication defined by
ths following tablss.

+la b ¢ d +{a b ¢ 4d
ald ¢ b =a ala d a d
bjc 4 a b bid b b 4
clb a 4 c¢ ala b ¢ d
dfa b ¢ d d|d 4 4 4 .

L6
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Note that ¢ 1s an idsntity for (S,:) and 4 is a zero selsmont
for (S,+}). By construction, we know the sest S 1s a Boolean
ring.

Example 3-2., Let R bs & commutative ring (R,+,:) with

identity and Bz {ae R | a2=a} . B is the set consisting of
all idempotsnt elements of R.
Define opsrations & and ® as follows:

2

® ={(a,b),(a+b-2a.0)| a,b € R and a®=a, b=b}

(0] E{(a,b),(a-b)[ a,b ¢ R and azza, b2=b} .

if 8,78, and bl=b2 for al,az,bl,bgé B, then
8, &>b1 = al + bl - 2a1°b1
= a, + b2 - 2 azab2
=a23>b2 , and

1
)
©
c‘
n

Hence & and © are binary opsrations.

(a V) & ¢ (a+b-22°b) @ ¢

it

]

(a+b-2a+b)+c~ 2(a+b-2a°*b) ¢

|

(a+b-2a-b+c) - Z(a'c+b-c~2(a-b)-c]

"

(a+b-2a+b+c) -[Za-c+2b-c-u(a-b)°c]

(a+b+c-28+b) ~{2bec+2a-c-l{a-b)+c)

(a+b+c)~[2a-b+2b-c+aa-c—ua-(b-c)]

i

a +(b+c)~[2b~c+2a-b+2a-c—ua-(b-c))



& & a

a ®O0

(s ®b) B¢

a® (b ®c)

H

]

1t

th

]

f

]

a + (b+c-2b.c) - 2ac+(btc-2bec)

a @ (b+c-2b-c)
a ® (b ®c)
ata-2a°a
a+a-22°
ata-28a
(ata)-(a+a)
(a+a-a)-a

a+0-2a

0

a+0-2a-0

a8+0-0

a

atb-2a-b
b+a-2b-a

b ®a

(a*b) ® ¢
(a<b)-c

a+{b-c)

a@ (b0 c)

a ® (b+c-2b-c)
as(b+c-2b-c)
a.btasc-a+*(2b-c)
gaeb+ta.c~2a-{b-c)

a-b+a'c—232.(b-c)

48
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asb+a+c-2a+a-(bec)

= gebt+g.c~-2{asb.a).c

L

a.bt+a.c~2(a-b).(asc)
(a+b) ® (a-c)

(a @b) ® (a @ c)

a @b = gd

]

= bea
=b@®a
Thersfore, B is a commutative ring with the propsrty
that every a ¢ B is such that a®=a, Hence B is a Boolsan
ring.
Some basic propsrties of a Boolezn ring ars statsd in
the following thesorsms.

Theorem 3-1. Let (B,+,°) be a Boolean ring; then if

a ¢B, the inverse of a under + is a 1tself, that 1s, a+a=0.
Proof: If a,béB, then a®=a.a=a, b2=b-b=b.
(a+b)© = (a+b)+ (a+b)
= (g+b)*a + (a+b)-b

= (a-a+b.a) + (g.b+b+Db)

L

(g4b+a) + (a+b+b).
On the other hand, (a+b)2=(a+b)-(a+b)=(a+b) for (a+b) ¢ B,

hence (a+b)={a+b a)+(a+b+b).

i

(a+b) (g+b-a)+(a-b+b)

1t

{a+be.a+a.btb)

1
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= (a+b+b.a+ab)
= {a+b)+(bra+a+b) .
Since B is a ring and -(a+b) e B, then
-(at+b)+(a+b) = ~(a+b)+ [(a+b)+(bsa+tasb)]
0

1

[-(atb)+{a+b)]+ (bea)+(a+D)

0 b.a + a*b .

i

Let b=a, then O=a.a+z2.a . Thersfors, O=a+sa.

Theorem 3-2. BEvery Boolsan ring is commutative.

Proof: ILet a,b¢ B and bea ¢B., By theorsem 3-1, b.ata-b=0

and (bea)+(b-a)=0, Hence (bea)+(a+b)=(b-ra)+(b-a).

i

(b.a)+(a-b) = (b+a)+(b-a)

(bea)+ [(b.a)+(a-b)]

i

(bra)+ [(b-a)+(b-a)]

(bea+b-a) + (a+b) (bra+b-a) + bea

0O+ ab =0 + bea
asb = bca for any a,b ¢ B.
Definition 3-3. If there exlsts a positive integer n

such that na=0 for every a in R, then the smallsst such posltive
integsr is callsd the characteristic of R.

Definition 3-li. An slemsnt a of R is said to be nilpotent

if thers exists a positive integsr n such that al=0.

Theorem 3-3., If B is a Boolean ring, thsn

(1) B has characteristic 2
(2) If B contains at least thres elements, then svery
slement of B except an identity (if B has one) is a zero

divisor.
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Proof: (1) By thesorem 3-1, for svery a in B, a+a=2a=0.
Hence 2 1s the least positive integer which satisfiss 2a=0.
(2) B contains et least thress slements, then thsre
exists a,b € B such that a # b, Suppose a#b#0 and a+b=0, then

a+0=a+(b+b)=0+b which implies that a=b. This lsads to a
contradiction. Therefore, if a#b#0, then a+b#0. But B is
a ring } hence (atb)é B and a*bé B. Then

(a+b) + (atb) = (a*b)ea + (a-b)-b
a+(b*a) + a+(b+b)

H

a+(eg*b) + a-(b+b)

tH

{(a+a)*d + a«(b+D)

= a-b + a.b

=0 .
If a+b=0, then a,b are zsro divisors. If a«b#0, then for
(a+b)#0, (a+b) and (a*b) are zero divisors in B.

Thsorem 3=, If B is a Roolean ring, then it has ths

following properties

(1) a+b=0 if and only if a=b, whers a,b¢ B.

(2) sa+b=a-b if and only if a,be¢ B.

(3) If a+b=c¢c, thsn a=c+b for a,b,c ¢B.

Proof: (1) By thesorsm 3-1, thsn a+a=0 for evsry a ¢ B.
If a+b=0, then

a+b=23s+a
a+ (a+b) =2+ (a + a)

(s + a) +b=(a +a) +a
0+b=0+a
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Hencs, a=b, By thesorem 3-1, it follows that a+ b=a+a=0.
{(2) By theoresm 3-1, b+b=0. Since b is an slement of
the ring B and -b is in B such that b-b=0, then by uniquensss
of the additive inverss in the Boolsan ring, hence b= -b,
Therefore, a~-b=a+b for aeB.
(3) a+b=c
(a +Db) +b=c+b
a+ (b+b)=c+b

it

a + 0 ¢ + Db

a=c¢+b .

Definition 3-5. A ring Ry 1s said to be embedded In &

ring R2 if thers exlsts a subring R; of R, such that R

> ) 3 18

isomorphic to Ré.
The embedding theorem describss an algebralc structure
with prescribed properties which contains s substructurs

isomorphic to a given structurs.

Theorem 3-5. A Boolsan ring (By,+,+) without identity
can be embedded in a Boolsan ring (B2,+,-) with an idsntity.

Proof: Let By be a Boolean ring and 82 be the set of

leI/(E), that is, leI/(2) E{ﬁa,i)]aé B, &nd ie.I/(Z)} ,

and (al,il)=(a2,iz) if and only if 2;=2, and 1;= Define

12.

addition and multiplicaticen in B, as follows:

€ By and 11,12e1/(2u

'z§{ﬁ(al’i1)’(a2’12))’(al'a +ija,tia, ,iy01,) a,,8 € B,y }

2
+J. E{( (al!il) » (32912))’(81+a2)11+12) al’a

2 271’ 2

and il,ize 1/(2)
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If xlz(al,il), X :(32,12), x,=(a ,1 ) and x =(au,iu) whers

373773 L

xl,xz,xj,xué 82 such that x1=x3 and x2=xu, then by definition

2

1:.:a s

Since a.,+a_=a +au and 11+12=i +iu,

L 1792793 3

(al,il)=(a3,i3) and (32’12)2(au’iu) if and only if a
il=13,a2=a“ gnd 12=i
then

X3 4 %, = (ay,1]) *1(32,12)

it

(al+32,il+12)

(33+au,13+1

i

)
N
= (a3,i3)‘3 (au,iu)
X3 —l"‘1 xLl- .

Since 81'82283'3q and ilcieriB-iu, then

X o, X_ = (al,il) . (32,12)

i

(81-a2+ila2+iea

10 1p01))
= (83.ah+i38h+iua3’i3.ih)
= (33313) *y (a]_";iu)

= X3 s Xh‘ .

Thersfore, + and e+, ars bipary operations. Other propartiss
ars then found as follows:

(1) (alsil) + [(32312)'*'(33113)] = (al’il‘)+l [(a2+3335~2+13)]

= [ay+(a ta,), il+(12+13)]

= [(al+a2)+33, (il+i2)+i3]
)

= (al+ 11+i2) + (33,1

855 3

= ((al,il)+ (agyiz)l +2 (8331 )

3
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(2)  (apsi)) % (9,0) = (a40,1,+0)
= (al’il)
(3) (al’il) *}(“als'il) = (31“31311“11)
= (0,0)
(h) i(alsil)'ﬂ (aZ’iZ) = (a1+a2,11+i2)
= (32+al,12+il)
= (82112) +1(a1’il)
(5) (al’il) ‘2 [(82)12) ‘2 (83}13)]

= (al,il) -2[(82-a3+12a3+1332, 12-13)]

"

1

1

where ths assoclative

Pl-(a2-93+1233+13a2) + il(aza3+i a

28 4%iq0,)

+(12'13)als 11'(12.13)J
[al.(1283)+31,(1253)+a1-(1382)+i1(a2.a3)

+1, (1,8 )+il(i332)+(12-11)a1,11.(12~i3)]

3

[alvaz-a3+12al-33+1331~ag+ila2-33
+11-1283+13.ila2+13-iZal,(11-12)-13]

(31‘32'a3+1132'a3+1281'a3+il'iga3+i3a1'az

+13.1la2+13.12a1, (1l-i2).13]

[(alca2+ilaz+12al)a3+(ilo12)83

+i3(a +i.a +i.sa

17871857408
(al-a2+ila2+igal, il-ie) -2(33,13)

)y (1)e15)01,]

[(al’il)‘.2(82’i2)].2(a3’13)

law has besn used repsatedly.
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(6) (21,11) = [(2,5,1,) +, (ag,13)]

= (e),dy) = [(agtag,1,41,)]

[alo(a2+33)+11(a2+33)+(12+13)al,il-(12+i3)}

#

[(al-a2+al-a3)+(ilaz+i133)+(12a1+i3a1),

(il’i2)+(il'13)]

= ((al-a2+ila2+izal)+(al.a3+1133+1331),
(il.i2)+{il-i3)]

= [(81-82+1182+1281,11'12) +2(al-a3+ila3+13a1),
(1;:15)]

= {(a,1,) o (ag,1,)] % [(2351;) 4 (e3,15)]

(7) (al,il) -, (0,1) = (al-O+ilO+lal,il-l)
= (al,il)
Hence, B2 is a ring with identity. If (al,il)f B2, thsn
(al,il) . (al,il) = (aloal+ila1+ilal, il-il)

= (a;,1,)

Hence every slesment in B, 1s idempotent. Therefore, B  is
[

2
a8 Boolean ring with identity (0,1).

Now consider the subset Eé of B2 such that
Bé = {(a;,0)|a; ¢ By and 0 is the zsro element of I/(Z{}. For

any (a;,0) and (bl,O) éBé » then (a;,0)+, (-b o):(al_bl,o)éB;

1’
and (al,O)s2(bl,o)z(al.bl+0bl+0al,0) = (al-bl,o)e Bé. Hence

B, is a subring of B,
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Thers remains to be shown that there exists an iso-
morphism 1 from (Bl,+,-) to (Bé,+ s»* ) « Dsfins w by
% = (a;,0) for all ale Bl' Now 7 is a mapping for supposs
such that a7 = (al,O), a,m = (32,0)

83

thsre exists a,,a, €B

1’72 " 71
and (a;,0) # (32,0). It 8,=a,, then (al,o}=(a2,0) which leads
to a contradiction. Hence, (al,o) # (32,0) impliss a, # 2,
which shows that 7 is a mapping. Now

(al+a2)7r = (al+32,0)

(alﬁo) +2 (3230)

"

alﬂ ﬁ,azﬂ , and

(al-aa)ﬁ = (81'32’0)

(al,O) 2_(32,0)
= alﬁ a_azﬁ' .
Thersfore, 7 is a homomorphism. If a7 =(al,0) and azrr=(a2,0)
with al# 2, and if (al,O)=(a2,O), then al=a2 which contradicts
the definition. Hencs al# 2, implies (al,o) = (32,0). Thus
Tis ons to ons. For any (al,O)é Bé thers sxists alé Bl such
that a;n = (al,O), then by ths construction of ths seé Bé, T
is an isomorphkism. Therafcre, every Bcoolszan ring without an
identity can be smbsddsdin a Boolsan ring with identity.

In certain algebraic systems, the conditlons rsquired
for a Boolean ring as stated in definition 3-2 may be replaced

by other propertiess which are stated and proved in thesorem 3-6.

Theorem 3-6, If (A,+,+) 1s an algebraic structure such

that A has at lsast two slements, there is an identity slement
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for multiplication, and for sll x,y,z,we A such that
(a) =x+(y+y) = x ,
(b) (x-(y-y)] -2
(c) x-{(y+z)+w]

(z-y)-x ]

f

x-{w+z) + .y ,
then (A,+,.) is a Boolsan ring with 1idsntity.
Proof: By (a), every x in A has y+y as a zero elemsnt
on the right. Let x=s ¢ A. By (c¢) tihen
e-{(y+z)+w] = ge(wtz)te.y
(ytz)+w = (w+z)+y
Let z=y+y, then
(y+(y+y)]+w = y+tw  and
(wi(y+y)]+y = wty
Since (y+z)4w = (wtz)+y, then y+w = w+y for all w,ye A.
Thersfors, (A,+) is commutative. By (a), x+(y+yi={yt+y)+x=x.
Hsncs X in A has a zero elemsnt on the left. If there exists
z ¢ A such that z+x=x+z=x for all x¢ A, then
z = z+(y+y) = (y+ty)+tz = y+y .
Hence y+y is unique. Dsnots y+y=0 and let w=0 in (c), then
xe [(y+2)+0) = x+(O+z)+x°y
= Xe2 + X+y
=Xy + Xez
Hence x.(y+z) = x+y + x+2 , and (A,+,+) is distributive.

Let x=z=e ¢ A in (b), then

Y

[8'(Y‘y)J,8 CRARE
(vyey)ese = y-&

NARN

y for svery ye€A.
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Thersfore, every slemsnt in A is idempotent. DNow consider

(b). Let z=s¢ A, then

(x.(y.y)).e (e.y)+x

x(y.y) = y-x

Xy yX
for x,y¢ A. Also

(z+y)-x

i

(x-(y¥)) -2
(xey)ez = x+(zy)
(x+3)ez = x(y°2)
Therefors, (A,+,*) is a Boolean ring with identity.
With the following definition of the complets dirsct

sum S of the rings S, where 1=i,2,-¢<,k , S can then be shown

i
to be a ring.

Definition 3-6. Let 8, be a glven family of rings, where

i1¢ N and N= 1,2,3,--+,k . Let Sz{(al,a2,---,ak)]aie si} and

defline opsrations 4 and «; as follows:
= ﬁ(alsagt"‘:ak):(blsbzy"':bk))s(al+b1,a2+b2:‘”‘:ak+bk)
c o] € S
such that a, b, sij
'5=:ﬂ(al’ag""’ak)’(bl’bZ’O"’bk))’ (al'bliaz'bgr“‘sak‘bk)
such that ai,bié Si }
For simplicity 6 the same notations of operations for the
famlly of rings (Si,+,-) ars used, S so defined 1s called g
complets direct sum of ths rings Si’ where 1¢ N and

(81’82,"',ak) = (bl’bz,"’,bk) if and Only if ai = biu
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Let Xl,Xa,XB,Xué S 81’]d Xl:(al’az’vaﬁ,ak), XZ:(bl,bZ,...’bk)

x3=(°1’02’°"’ck)’ xu=(dl,d2,---,dk) such that xl=x3 and

K2=xu s that is, (81382,"’,ak):(cl’czs"’:ck) and
(bl’bz"'°’bk)=(d1’d2""’dk)‘ By definition, ai==ci and

b,=d, where a,,db ,ci,d ¢ S,. Then

i1 | i i
xl + XZ = (31:32:"':ak) +3(bl’b2’.°"bk)
= (al+b1,a2+b2,---,ak+bk)

= (cl+dl,c2+d2,--~,ck+dk)

= (cl’cz’o.o,ck) +5 (dl’de,bcn,dk)

X, X, = (al,ae,---,ak) < (bl,bz,-;-,bk)
= (al'bl’aa'bB"’°’ak°bk)
= (e3+dy,cpedp, e e,0y0d, )
= (01,02,...,ck) . (dl’dg”"’dk)
= x3 °$xu .
Therefore, +, and *¢ ars binary operations. Other properties

are shown as follows,.

(1) Xl % 0 = (31532:'°':a

(81+01,a2+02, AL ] ’ak+ok)

k) +3(01’02""’Ok)

i

a—

(alyaz,noo’ak)

i

%
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(2) xl+$ (XE'{:{ X3):‘ X}_+5{(bl’b2’...’bk)4:‘x (cl,cag"',ck)}

= (al,aa,--:,ak)+3(b1+cl,b2+02,-‘-,bk+ck)

l 2+(b2+32)’..',ak+(bk+ck)}

= [(al+bl)+cl,(a2+b

[a1+(bl+c ),a

AL C R AL

(8401 98,%05, 0 28 # Dy ) (og 05,0050

tH

i)

-_— [(al’ae’.n.’ak)'l's (bl’bz’tcn,bk)J
+3(Cl’02’...’ck)
= (X1+s x2) +g x3

(3) X1 +$(“X1) = (al’aZ’.‘.’ak) +S('als'32:"';'ak)

(31—81,82-32,-0.,ak-ak)

H

(Ol:o2a"'yok)
=0

() x; % x = (a5,a ©sa,) * (b )

2’.. l 1’
= (al+bl,a2+b2,.‘.,ak4‘bk)

= (b1+a1,b2+82’ *e, ,bk+ak)

- (bl’baﬂ"'!bk) +$ (al’a

bz’.‘ .’bk

2"¢-’ak)
= 12 %.Xl .
(5) xl% (ng X3) = (al’az,o-o,ak) 3 [(bl’bz".°’bk)3

(cl,cz,ooo’ck)]

= (31’82""’ak)3[(b1+cl""’bk+ck)J

Y

(217 (Py er) a2y (Byrey)s e e sy (b vey )]

i

[(al;bl),cl’(32.b2)-c2’...,(ak'bk)-CkJ

= (a3:b,850b, 00 ap0b) ) o (01902,-~-’ck)
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xl's (KZ'S XS)": ((31,32:"':ak) *s (bl,bB,...’bk)]

s (cl’cg’ . .’ck)

= (.Xl"s X2) 6 X

3
(6) %1% (x2+5 X3)= (81’82’”.’81{) ‘5[(bl:b2:"':bk)
CAITLPTRRRILN)

k k
= (8- (byrey)sa s (byte, ), vy, - (b ve, )]

= [(al-bl+al~cl),(az-b2+a2-02),---,

= (al,ae,-~-,ak)°s(b1+cl,b2+02,~-,b +c, )

(a, b +a e, )]

= (a_*b ,ak-bk) +

1 l’az.bz"
(ayccysayrey,mtryay oy

= (al:ﬁ “’ak)'s (blybza"':bk)

2*’
+5((&1’a2’...’ak).5 (Cl,cz’t'-’ck)]
= (xl's XZ) + (x1~5x3)
Therefore, S is a ring and 3 has an identity if and only
if S, has an identity for svery ieN.

i
There roemains to bs shown that there exists an onto

homomorphism Gi betwsen S and Si whers 1e¢ N. Define 81 a5

follows: (al,az,“-,ak)ei = ai for (al,az,---,ak)§ S. Let

x1=(al,a?,-~-,ak) and xaﬁ(bl,bz,---,bk) be in S such that

(al,az,---,ak)ei = ai

)6, = Db

bbb .ve-
( sP i i

127 k

where a,,b é-Si. if a, # bi’ then (al,aa,---,ak)#(bl,bz,---,b ).

i
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Hence ©, 1s a mapping. For svery a,¢ S, there exists x_ ¢S

i i i 1
such that xl:(al,a2,--',ak) and Xleizaié.si . Then
(xy% %08y = [lagsay, o myap )ty (B0, 00000 )]0
= (a1+b1,a2+b2, ,ak+b ) ei
=a, + bi
= (al,aa,...,ak)e + (bl’ 50" ',bk)ei
= xlei + X291 s, and

|

(x5 %5083 = [(agse,,mmtsay) g (B 0y5000,by )} 84

= (al°b1’82.b2"'°’ak'bk)ei
= ai.bi
= (8 ,8,,00,8,)0, 3 (by, 2""’bk)ei
= X0 X8 -
Hence ©, is an onto homomorphism.

i
Definition 3-7. Let T be the subring of the complots

direct sum S of rings Si where 1€¢ N. Lot ei bs the homo-
morphism from S onto Si. If TOiﬂSi,ié N, then T is a subdirect
sum of the rings Si’ le N,

Before proving the nexzt theorem, two mors lesmmas will bs

stated without proof.

Definition. A ring 1s said to be subdirectly irreducibls

if it has no non-trivial representation as a subdirect sum of
any rings.

Definition 3-8. If a ring R is isomorphic to a subdirsct
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sum T of rings Si’ 1elN, then T is saild to bes a reprsssntation
of R as a subdirect sum of the rings Si , 1e N,

Lemma 3-1. Every ring R 1s isomorphic to a subdirect
sum of subdirectly irreducible rings.

Lemma 3-2. A subdirectly irrsducible commtativs ring
with mors than one elemont and with no non-zero nilpotsnt
elements Ig a fleld.

Theorsm 3-7. A ring is isomorphic to a subdirsct sum

of fislds I/(2) if and only if 1t is a Boolean ring.
Proof: (learly, 1/(2) is a commutative ring. Since

I/(2) satisfies the conditions of a fisld, I/(2) 3s a field.

Moreover, every slement of I/(2) is idempotsnt, since O2 =0

>
and 1 =1, Lst S be ths complets direct sum of these fislds
I1/{2) and T bs any subdirsct sum of the fields I/(2). It
follows that T is a subring of S. For any xls(al,aa,'--,ak)

xaz(bl,b coe,b T, 1€X, and a;,b ¢ Si s then

2 K¢ 1
xi = (31’32:"”ak)2

= (al,aa,..',ak) “ (31’32’...’ak)
(aloal,a2-a2,--o,ak-ak)

2
= (85’822""’&k)

230 and 12=1, 8¢ Xiz(algazs"',ak)

wheors aizo or ai=1. But O
for any X1€¢T. Thus, T is a Boolsan ring. If a ring B is
isomorphic to T, then thers exists an isomorphism § such

that af =xe T, Now (a:a)f = af a2 =x « X = x €T with
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a$=x, hence (a2-a)f=af. Since £ is ons to ons, then a‘a=a
for svery a € B. Therefors, B is a Boolean ring.

Now ons must show that if B is =& Booléan ring, then B
is isomorphic to a subdirsct sum of fields I/(2). By lemma
3-1, B is isomorphic to a subdirect sum of subdirsctly
irreducible rings. By definition of the subdirect sum T of

rings, thsrs sxist homomorphisms ei such that Tei=S ie¢N.

i’
B is isomerphic to T, thsn for any X €T thers exlists ae¢B
such that a=z and (a-a)f=al+ al=x+ X= x2, But a-a=a €£B

implies (a-2)$=2af, and hkence x°=x for every x¢ T, Hence

T is a Boolean ring. Therefore, if Bl is a Boolesan ring and

elso is homomorphic onto B?, then B, is a Boolean ring. Now

2

thsre exist homomorphisms ©, such that T is homomorphic onto

i
S;. Belng homomorphic onto images of a Boolsan ring T, the

S; are Boolean rings. For every ié N, 2 Boolean ring contains
no non-zero nilpotent elements. By theorem 3-3, a Boolean
ring has characteristic 2. Furthermore, by thsorem 3-2, a
Boolean ring is commutative. Thus by lemms 3-2, each S, 1is

i

a fisld. Since sach Si is a2 Boolean ring and a field, it

contains at lsast two elements, and svery slement ay in Si

satisfies a=sa,. Hence, at lsast the zero elemantloi and the

i1
identity ey must bs in every Sj. Now if there exists Cye Si
5 { 3 . 'vA . ::2= = .
such that ci#Ji and ci#el, then c¢j-cy ol Sey= cyey . Since

Sy 1s a ring for every le N, cicici»si)mo ci#O 50 C3®e

i° i

Hsnce, thers exlst no elsmsnts in Si except Oi and ei.

il



Defline gZ by Oigz=0 and es,g.=1l. By ths tables below, g,

182
1s a one to ons mapping and is also an onto mapping. Hence

S, 1s isomorphic to I/(2).

i
+ Oi Bi . Oi ai
01 Oi ei 0i Oi Oi
85185 01 01101 e;
+ {0 1 « 10 1
010 1 g]0 O
111 O 110 1

[ 1t

3 ! 5 ' = o =
Dsfine Gi as follows: xlgi (xlei)g2 X480 Xli

111 1 ."; fn ' _
11 € S; end xlieI/(Z). If x.8 , X6 =x

e T, X 1 i-—-Ali

where xl,x2

1t
and x;i # X543 s then X;i # xéi and xy # X, Hence &, 1s a

mapping. For every xgi there exists a Xii in Si such that

! 1 ¥
X1385 T Xpy and for avsry X946 54 there exlists at leas?t onse

x1¢ T such that x,6 = x;i. Also

vt
(x; % x,)6, = (% +3x2)ei g,

= (%8 + %8 )e,
]

+
5,08,

1
(x94
H ]
X118, * X018p
"

n
xli + X

- t
xlei +
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i

t
(Il % Xe)ei [(Xl s xz)ei] gz
= (%8 + %89 &

1
* X

ot
= %115, 2185
- ’ﬂ 1t

= Fy t *a

- v t

= X0, - X8

Hsnce 6; is a2 homomorphism from T onto I/(Z). Therefors,
B is a Boolesan ring isomorphic to the subdirect sum T of the
fislds I1/(2). This completss ths proof of the theorem.

A Boolean ring is scometimes called the ring of all subssts
of a set. This will be examined in theorsm 3-8. Lst B bs the
set of all subsets of a given non-empty set A where B includss
the empty set (p and the universal sst A, If a,bée B, defins
the operations + and ¢ ss follows:

+ 5{(a,b),(anb' )u(a'nb)}a,be B and a'r{x/x¢a}}
+ ={(a;b),(enb)[a,be B}
where (anb')U(a'nb)a"{x[x ¢a and x€b or x¢ a and xeb}.

Thsorem 3-8, The class of all subsets of a non-empty

set is a Boolsan ring with the sbove operations.

Proof: For svery a,b¢B, atb=(anb')u(a'nb) ¢B and
a+b=anb € B,

(1) (a+b)+c

((a+b)nct]u {(a+b)'nc]

{Uanb')u(amtﬁ)ncjuiﬂanb')u(awnnfnc}
= H(anb'ndf)U(a‘nbnc'U}ﬂ&anb'fﬂ(aﬂﬁb)%ﬁc}
={((anbtact)ulatnbac! >]}u{{<a'u b)N (aud! )] nc)

i



(2)
(3)
(L)

= {{(anﬁné)u(énbné)l}u{(éub)n((ano)u(b%c))}

{((anb‘nc')u(a'nbné)]} v {(£nb)n(anc)v ((dab)a(vac)l)

{((anBac)u(anbad))tv {dalancupnlanc))
Uﬁahbnc)u(bnﬁhc)]}

{[(anﬁnd)v(énbnéﬂ}vi[bn(anc)]u(énﬁnc)}

{[bn(anc)]v[énﬁﬁc]}ui[(anﬁﬂé)v(énbnd)l}

= [(anbnc)u(an‘r;nc')]u[(a’nb(\é)u(a'nb'nc)]

= {(§)u(ancab)y (aabac)u(§)]v [¢ anbac) Ju(antnc))

= {(aabab)u(ancab)u(antac)u(ancac))

f

#

uﬁénbné)u(doénc)}
= {((aqé)u(anc)]ab}u{[(anﬁ)umc)]nc’}u{[a’n(bnc'u}
u{{(énﬁnc)]}
= ((anb)u(aac)n{bad)}u [ (aalbc)u(an(bac)
= {an((the)n(vac)]}u f(an(0ad)]v [ dn(boc))}
= {anfteacYa(¥ne)]fuf(dnload)] (cnlBac)}
= fa af(bac)v (vac)] Jufs"a[(bad)u(Bne)]}
[an(b+cfju[dn(b+c)]

a + (b +¢) .
(an)u(and) = avd = a
(ana)v(ana) = pup = ¢

(anB)u(dab)

1 i

L
i

o'
1!

(bas)v(bag)

= (bad)y(baa)

b + a

H
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(5) (a:b)+c = (aab)ac = aa(bac) = a*(b-c)
(6) a+(b+c) = an{{bad)v(bac)]

= (enbnc)u(anbac)
(aabnd)u(aacab)
(($)v(anbac)]u [()v(ancab)]
[(anbad)v(aabad)] v [(dranc)v(vaaac)
[(anb}n(abé)]u[(éuﬁ)n(anc)}
[(anb)n(ancf]u[(aobfn(a c)]

1

i

1t

i

(anb) + (anc)

"

= asb + g.c
(7) a<A = anA = a. FHence A is ths idsntity of BE.
(8) a+b = anb = baa = b-a
(9) a2 = a-a = ana = 8
Tharefors, B 1s a Beolssn ring.
Lemma 3-3.If a ring R has 2 repressntation as a subdlrsct

sum T of rings S 1¢ XN, then for sach 1¢ N therse exlsts =

1,
homomorphian @i of R onto S; such that if réR and r # 0 €R,

then r@i # 0 €5, for at least one 1e€N.

Froof: Let § be the isomorphism from R to T. By

definition of subdirsct sum, there exists a homomorphism Gi

n

such that 164y = 3, for svery 1¢N. Dsfine ¢i by r1¢imriei=rl

i
where r! = ri$, r- ¢S, and r,¢ R for 1 éN. If r. # r, , then
1 199 1 o 5 1 < . . 1 I'2 P £
ri # ré . But 61 is a mapping and § is an isomorphlsm, then
. Tt .
ry # r, . Hence ¢i is a mapping. For any ry¢ S, thers
exlsts at least one rie T such that riej = r; . But €, 1is
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onto and ¢ 1is sn l1lsomsrphism for svery ri in T, thus thers

S 8 t = p! . every r.
8xists a ry in R such tha rlj ry Hence for every rleSi

there exists a2t lsast ons r, ¢ B such that ¢i is an onto

1
n

H
mapping. Let s, ¢ R such that r1¢i=rl and r2¢i=r; . Then

Fyeto

!
(Pl+r2)$i (rl+r2) o,

= [(rl+r2)ﬂ N
= (r)f Hr 08,
= (ri o ré)ei

— ' ) t

= rl¢i + r2¢1 , and

(r1~r2) ei
[(ry-r2)8] 8,

= (Plg '5 rzg)ei

(r) 2,09, -

"

(rl . re)e
1521

1

] 1
rlei rzei

Pl@i . f2¢i .

Hence ¢i is a homomorphism from R onto Si for 1 €N, 1If rieR

and rl% 0, and since £ is an isomorphism and rlg =p!

1

ri# 0eT, then for some 1€¢XN Pl¢i # 0. e Si' This complstes
i

¢ T, where

the proof of the lesmms.
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Theorem 3-9, Every Boolean ring B is isomorphic to a

ring of subsets of soms non-2mpity set.

Proof: If B is a Boolean ring, by theorsm 3-7, B 1is
isomorphic to the subdirsct summ T of fields I/(2). By lemma
3-3, since B has é representation as a subdlrect sum of
fields 1/(2), then thers sxist homomorphisms ¢i of B onto
I1/(2) such that if re B and r # 0 € R, then r; #0¢1/(2)
for at least one 1 €N. Lst H bs ths sst of homomorphisms
of B onto 1/(2), that is

H:—:‘{fbi/ieN} .
By lemma 3-3, if a2 €¢B and a# 0 ¢ B, then a@i;!o for at least
orie 1 €N. For every a€¢ B thsre rmust bs either a@i = Oi or
a@i = 11. Let
Ho={¢;/ e, =1; and ien}.
Suppose H, # Hy. Then by dsfinition, a¢i # b¢i which
implies that a # b for ¢, is a mspping. Hence a —» H, 1s
a mapping from B to a certain subsst Ha of H., Sincs ¢i is
an onto mapping from B onto I/(2), 1€XN, then for any subsst
of H there exists at least one slement im B such that the
mapping from B to the subsets of H is onto. Suppose Ha==Hb.
By definition, ay = bf; and ad, - bp; = 0;. Since ¢, are
homomorphisms, then
(a-—b)@i = O1
a-h = Oi

g =5)
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Thersfore, the mapping from B onto I/(2) is one to ons.
Sincs (a-b)gbi = a¢i-b@i and (a~b)¢i = li’
b =1,. It follows that ¢, ed and O eH 1f ¢;¢ H . Hence

then a¢i=1i and

Hgp = HNEy = Hy-Hy. For (a+d)d; = afy + bd, and (a+b)§, =1,

either a@iili and b},;=0; or a@izoj and b¢i$1i can be obtainsd.

5
It follows that ¢; ¢ H , ¢;¢H  or §,§H,, §;¢H . Dofine
q)i s_:b{x/x ¢H, and X¢Hb or X%Ha and XeHb} ,
then ¢ie Ha + Hb which implies that
Boyp = (HgnI)U(HgnH,) = H, + By
Therefors, ths mapping from B to ths subsets of H is homo~

morphlc, and the mapping a —» Ha is an lsomorphlsm.
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