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CHAPTER I 

GENERAL PROPERTIES OP RINGS AND IDEALS 

The purpose of this thesis is to investigate certain 

properties of rings, ideals, and a special type of ring called 

a Boolean ring. 

Definition 1-1. Let A be a given set, A binary operation 

© on A is a correspondence that associates with each ordered 

pair (a,b) of elements of A a uniquely determined element 

a © b of A. 

Definition 1-2. A non-empty set G on which there is 

defined a binary operation © is called a group (with raspect 

to this operation) if G satisfies the following conditions: 

G1. The operation © is associative. 

If a,b,c £ G, then (a © b) © c = a © (b 9- c). 

G2. There exists in G a unique zero element 0 such that 

a © 0 = G © a = a for every element a in G. 

G3. For each element a in G, there exists a unique 

element -a in G such that a © (-a) = (-a) ® a ~ 0. 

Operation notation. In order to simplify the notation 

we writs a © (-b) as a-b for a,b € K 

Definition 1-3. A group (G,@) is an abelian group if 

a © b = b ® a for every asb £ G. 



Definition 1-1?,. A non-empty set R, in which two binary 

operations © and 0 are defined, is called a ring if the 

following conditions are satisfied: 

Rl. (R,®) is an abellan group. 

R2. The operation ® is associative. 

If a ,b,c £ R, then (a 0 b) 0 c ~ a ® (b 0 c). 

R3. If a,b,c £ R, then 

(1) a © (b c ) = a 9 b © c 0 c . (left distributive 

law), and 

(2) (b © c) 0 a = b 8 a © c @ a (right distributive 

law). 

Some basic properties of a ring are stated and proved in 

theorem 1-1. 

Theorem 1-1. If (R, ®, 0) is a ring, then the following 

properties hold for any a,b,c 6 R: 

(la) a 0 (b-c) = a @ b - a ® c 

(lb) (b-c) 0 a ~ b 3 a - c 0 a 

(2) a $ 0 = Q ® a = 0 

(3) - (-a) = a 

ik) (-a) 9 c • s= a 0 (-c) = - (a 0 c) 

(5) (-a) ® (-c) ~ a © c 

Proof: (1) (a ® ( b-c)} 0 ( a 3 c) = a 9 ((b-c) © c) 

= a © (b @ ( -c ffi c)J 

~ a 0 (b © 0) 

--a 0 b . 

Hance fa 0 (b-c)} © (a 8 c) ~ a 0 b, Now -(a 0 c) is 

in R for a 0 c in R. Therefore, 



|(a 0 (b-c) J © (a 9 c)J ©[-(a & c)J = f(a 9 b)J © (-(a Q c)] 

a © (b-c) ® ((a @ c) ® {-(a ® c )jj = (a @ b) ®(~(a 9 c)] 

a 0 (b-c) ® ((a S c) - (o © c)J = (a © b) - (a 0 c) 

a @ (b-c) = a @ b - a ® c 

In similar manner, (b-c) 0 a = b © a - c 9 a can be shown. 

(2) From (1) we have for every u,b,c 6R, 

a 0 (b-c) = a 0 b - a 0 c and 

(b-c) 3 a = b © a - c ® a. 

Now, let b = c, ws ses that 

a 8 (c-c) = a © c ~ a © c = 0 

a © 0 = 0 , and 

(c-c) © a c 0 e - c © a = 0 

0 0 a - 0 . 

Therefore, a ® O = O 0 a = O 

(3) If a = 0, the proof is trivial. 

If a / 0, then 

a = a ® 0 = a ® | (-a) © ( - (-a )jJ 

= (a 9 (-a)] © (-(-a)] 

= 0 © (-(-a)} 

= -(-a) 

(i|) From (la), 1st b = 0, then 

a ® (0 -c) « a 0 0 - (a 3 c ) 

a 9 (-e} = 0 - (a © c) 

= - (a S c). 

Therefore, a 0 (-c) = -(a © c). 



Prom (lb), 1st b-0, then 

(0~c) ® a = 0 S a - c @ a , 

(~c) ® a = 0 - (c 0 a) . 

Therefore, (-c) 0 a = -(c ® a) = a ® (-c). 

(5) If a € R, then -at R. 

From (la), let b - 0, then 

(-a) 0 (0-c) = (-a) S O - ((-a) 0 c], 

(-a) 8 (—c) = - f (-a) 0 c ] 

- (-(-a) Q c] 

= a 0 c , 

Therefore, (-a) © (-c) ~ a 8 c . 

Before stating and proving theorem 1-2, the following 

definitions are needed: 

Definition l-5« A ring (R, ©, ©) is a commutative ring 

if a 3 b = b 0 a for every c,b in R. 

Definition 1-6, A ring (R,©,0) is a ring with identity 

if there exists an element e in R such that a ® e = e @ a = : a 

for every a in R. 

Definition 1-7« If (ft, 8,3) is a ring with identity and 

there exists an element a*"̂- in R such that a 0 a""^=a~^9 a = e 

for a £ R, then a~̂ " is called the inverse of a under- 0 . 

Definition 1-8. If an element a in R is such that its 

inverse a"-*- is also in R, then a is called a unit, in R. 

In the ring of integers (I, +, x) the only units are 1 

and -1. 

The set of units in a ring with identity is denoted by 

U - Ja £ R [ a'1e RJ 



With the preceding definitions, theorem 1-2 can now be 

stated and proved. 

Theorem 1-2. Let (R,©,0) be a ring with identity; and 

R has at least two elemsr.ts. Then 

(1) (R,0) is not necessarily a group, but (U,0) is a 

group. 

(2) The identity e of R is distinct from the zero 

element of R and there exists no inverse for the zero element 

of R under 0. 

Proof: (1) Consider U s j a € R J a"̂ " e Rj ; U ^ 0 since 

e 6 U for e e R and e 0 e = e so e"^- e € R. Clearly, a e U 

implies that a"""* * U. For any a ,b e U, we have a"^,b"^ e R 

and b""-*" 0a"^£ R. The inverse of a 0 b is b""̂  0 a"^, since 

(a 0 b) 0 (b"1 0 a"1) - ((a 0 b) 0 b"1] 0 a"1 

= (a 0 (b 0 b"1)] 0 a"1 

= (a 0 e) 0 a""'" 

= a Q a""'" 

- e £ R. 

Since b~̂ ' 0 a""*"k R, we conclude that a 0 b £ U. U - II so 

the associative property holds in U. Hence, (U,0) forms a 

group. 

(2) Let a 6 R such that a / 0, then a O O — Q O a ^ O 

and a 0 s = e 0 a = : s . Therefore, e ^ 0. Since 

a 0 0 = 0 0 a = 0 ^ q, it follows that 0 has no invarse under 0. 



The terms zero divisors and free of zero divisors are 

introduced in definition 1-9. 

Definition 1-9« An element a not equal to the zero 

element of a ring (R,@>9) is called a left (right) zero 

divisor if there exists in R an element b not equal to the 

zero element of R such that a©b = 0 (b @ a = 0), An element a 

is called a zero divisor if it is a left and right zero 

divisor. An element a not equal to the zero element of R is 

called free of left (right) zero divisors if a 0 b = 0 (bQ a = 0) 

implies b=0. The element a is called free of zero divisors if 

it is free of left and right zero divisors. 

Theorem 1-3. If a t U £ | a t £ R J , then a is free 

of zero divisors. 

Proof: Prom theorem 1-2(2), a /0 if a eU. Prom theorem 

1-2(1), if a € U, then a - 1 e U. If a 0 b =0 for b £ R , then 

a~^@ (a 0 b) =(a"^8a) 0b = e 0b=b. On the other hand, 

a 0 (a 0 b) -- a @ 0 = 0 implies that b = 0. Hence, a is free 

of left zero divisors. If c 0 a = 0 for c e R, then 

(c 0 a) 0a"^ = c 0 (aO a***̂ ) = c 0 e = c. On the other hand, 

(c0a)0a~^ = O0a"^=O implies that c = 0. Hence, a is free 

of right zero divisors. Since a is free of left and right 

zero divisors, therefore, a is free of zero divisors, 

The following two theorems deal with generalised properties 

of a ring. 

Theorem 1-ij.. If a and b are elements of a ring (R,®>, G), 

then the following relations are true: 



n n 
(1) b 0 (b 0 a^) , and 

n c 
(2) ( 2 7 a J 0 b = 51 (a 0 b ) . 

i=l i i=l i 

Proof: This theorem can bo easily proved by mathematical 

induction. 

(1) The relation is true for n = 1, since 

1 1 
b®*ET a. = b ® a J = S Z b 0 a. . 

i=l 1 i i=i i 

Let us now assume that the relation is true for n - k, that is 

k k 
b 0 2 : a = XL* b 0 a . 

i=k 1 i-k i 
Then, 

k+1 k 
b O ^ T a = b 0 ( X " a , © a ) 

i=l 1 i=l 1 k+1 . 

= (b 0 ZZ a. ] © f b 0 a ] 
V 1=1 A 1 k+1 J 

= f i (b 6 a )] ® (b 0 a, ) 
1i=l i k+1 

k+1 
- I T ( b 9 a ) . 

i=l 1 

The above result shows that it is true for n = k+1. This 

completes the proof. 

(2) In the similar manner the relation (2) can be proved. 

For n = 1, the relation (2) is true. 

1 1 
( Z Z a ) 0 b = a 0 b = 5Z a 0 b . 
i=l i 1 1=1 i 

Assume that it is true for n = k, that is 
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ic k 
( r: a ) 9 b = s: (a, 0 b). 
i=l 1 i=l 1 

Then ws obtain the following result : 

k+1 k 
( r a ) 0 b = ( X a © a ) 0 b 

i=l 1 i=l 1 k+1 

k 
= f ( 2ET a ) 0 b] ® fa 0 b) 

i=l 1 L k+l J 

= [ r (a. 0 b)l© I a 0 b 1 
1 i=l 1 1 k+1 J 

k+1 
-- r ( a . 0 b ) . 

1=1 1 

The result shows that n = k+1 is true, and hence we have 

verified theorem l-i|(2). 

Theoren 1-5« If a and b are elements of a ring (R,®,@), 

then ths following property is true, where n is an arbitrary 

positive integer: 

n(a 0 b ) = (na) @ b = a ® (nb) . 
Proof: Let b =b =b - • • • -~l), =b =•••=b ='o- Then it is 

1 2 3 ^ k+1 n 

easy to verify b = nb by mathematical induction. If 
i=l 1 

n 
n=l, then jgr b. = nb obviously holds, since b, =b~lb. If the 

i=l -L 

same holds for n=k, then for n=k+l, 

k+1 k 
2Z. b = JET b © b = kb S> b - kb S> b~- (k+l)b . 
i=l i i=l 1 k+1 k+1 

n 
Hence, by induction, for any positive integers n, ZZ b,=nb. 

' 1 = 1 1 
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Now we obtain the following results: 

n 
a 0 5L "b. =• a 0 rib, and 

i-1 1 

n 
•21 (a 0 b ) = n (a © b}, if a 0 b =••«-a 0 b =a 0 b. 
i=l 1 I n 

Prom theorem 1-1+ (1), hence we have a 0 (nb) = n(a 0 b). 

Similarly, we have 

n n 
(a, ©b) = n ( a 0 b) and ( S T a,) 0 b = (na) 0b, 

1=1 1=1 1 

if a ^ 0 b = ag 0 b aR Q b = a 0 b , and " a2 ~ * * *~a
E "

 a • 

From theorem 1-14.(2), hence we have n(a 0b) = (na) 0b. 

Therefore, n(a 0b) - (na) 0 b = a 0 (nb). 

The commutative property under © is necessary for a 

ring with identity. This is discussed in the next theorem. 

Theorem 1-6. If (R,©,0) is an algebraic system 

satisfying all the conditions for a ring with identity with 

the exception of a © b = b © a, then the relation a © b - b © a 

must hold in R and R is thus a ring. 

Proof: Let e be the identity of R, and (a © b)£ R and 

(a © e)€ R for every a,b in R. Then 

(a © b) © (e © e) = ((a © b) © a) © [(a © b) 0 e] 

- ((a 0 q ) © (b 0 e)] © ((a 0 e) © (b 0 8)] 

- (a © b) © (a © b), 

and also (a © b) 0 (e © e)= (a0 (o © e)] © (b 0 (e © ©)] 

- ((a0 e)©(a0 a)] © [(b 0 a)©(b 0 e)J 

- (a © a) © (b © b). 
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H9nc8, (a © b) © (a ® b) = (a © a) © (b ® b) . 

Now, since a,b€R implies -a,-bf R , then 

-a ®((a © b) © (a © b)] © (-b) ~ -a ©((a © a) © (b © b)J © (~b), 

[(-a) © a] f ((b © a)] © [b © (-b)]=((-a) © aj@ ({a © b )|©fb©( -b)], 

0 © ( b © a ) © 0 = 0 © ( a © b ) © 0 , 

hence b © a = a © b . 

Therefore, a © b = b © a holds and R is a ring, and the 

proof is completed. 

The necessary and sufficient conditions for a subgroup 

and a subring are discussed in the following definitions. 

Definition 1-10. A non-empty subset S of a group (&,+) 

is a subgroup if (S,+) itself is a group. 

If (S,+) is a group, then for any element c in S there 

exists -c in S such that a + (-c) = a -c 6 S whenever a f S, 

If S is a non-empty subset of G- such that a - c fr S , 

then a-a = 0 6 S and 0 - c = -c eS. Now -(-c) - c by 

theorem 1-1(3), w8 therefore see that a-(-c) = a+c£S, 

Since S - R , hence S is a group. Therefore, for any a,c £ S, 

a-c € S is a necessary and sufficient condition for a non-empty-

subset S to be a subgroup in G. 

Definition 1-11, A non-empty subset B of a ring (R,®,@) 

is a subring of R if (B,©,©) itself is a ring. 

If (B,©,8) is a ring, then (B,©) must be a subgroup of 

(R,©) which implies a-c 6 B for any a,c£B. Furthermore, 

a 0 c f B, If B Is a non-ampty subset of R and a-c <• B for-
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any a,c (. B, then (B,©} is a subgroup of (R,$). The condition 

a 0 cfiB assures us of all conditions necessary for (B,©,Q) to 

be a ring. Therefore, for any a,c e B, a-c €. B and a 0 c « B 

are necessary and sufficient conditions for a subring B in R. 

The identity of a ring and the identity of its subring 

ar9 of great interest. They are discussed in theorem 1-7• 

Theorem 1-7• Lst S be a subring of (R,+,»)« The 

following statements are true: 

(1) If R has identity e, then S may not have one. But 

if e is in 5, than e is an identity in S, 

(2) If e Is an identity of R and e' is an identity of 

S and e ̂  S, then e ^ e!, 

(3) If S has the identity e' and R does not have one, 

then e1 is necessarily a zero divisor of R. 

Proof: (1) Consider the ring of integers I and let S 

be the set of all even integers in I, For any a,c <? S, a~c e S 

and a x c £ S, S is a subring of I. I has the identity 1 whsra 

1 ^ 1 but l i s . Hence (S,+,x) forms a subring in I without 

an identity. However, if e e S such that e is the identity of 

R, then a 0 e = e © a = a for any a € R. Suppose thsre axists 

an element b in S such that b 0 8 / b, and S £ R implies that 

b fc R. This leads to a contradiction. Therefore, 8 Is the 

Identity of S. 

(2) Consider the set R s |(a,b)^a f A and b t R } whers 

(A,+,•) and (B,H- •) are two rings. Define 
'& a b b ° 
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+ = |((a,b),(c,d)] ,(a+ c, b +d)j a,cf A and b,dtBj , and 

,b), (c,d)] , (a ̂  c, b ̂ d) j a,c £ A and b,d£ Bj , 

where (a,b) =(c,d) if and only if a = o and b = d. 

(R,+,•) is a ring and the proof is as follows. Let 

= (a,b), r2 = (c,d), r^ = (a* ,b
f) and r^ = (c' ,d1 ). If r-̂ =r̂  

and "then a=a', b-b' , c=c' and d=d'. It follows that 

a -*• c = a1 + c1 j, b + d = b' + d' and (a+c, b + d) = (a'+c'jb' + d') • 
a a b b a b a b 

Henpe (a,b) + (c,d) ~ (a1,b5) + {c,,d')j that is, 

rl + r2 " r3 + \ ' 

Therefore, + is a binary operation. Since a • c = a' . c' 
S & 

and b • d = b' • d', then 
b b 

rl ' r2 ~ ' (c»d) 

= (a • c, b • d) 
a o 

= (a» - c*, b» £ d«) 

= (a',b«) • (c',d») 

= r 3 * % ' 

Hence r^ • r£ = r^ • r^. Therefore, • is a binary operation. 

For (a,b),(c,d),(e,f)€ R, we have 

f(a,b) + (c,d)} + (e,f) = (a + c, e +d) + (e,f) 
a b 

= ((a + 0) + M b g <J) J f) 

= (a + (c + b), b g (d £ f)] 

= (a,b) + (c + o, d + f) 
St D 

= (a,b) + ((c ,d) + (e,f)] . 
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Since A and B are rings for any a€A and b e B, there exists 

-a £ A and -b £B. For any (a,b) € R, wa have 

(a,b) + (~a,-b) = (a~a,b-b) = (0,p) € R , 
a o 

(0,0) + (a,b) = (0 + a, 0 + b) = (a,b) , and 
a b a a b b 

(a,b)+ (e,d) =(a + c, b + d) = (c + a, d + b) = (c,d) + (a,b). 
a b a b 

Therefore, (R,+) is an abelian group. 

(a,b)• ((c,d)•(e,f)j = (a,b) . (c • e, d • f) 
a b 

= f a • (c . s), b . (d . f)} 
a a b b 

= ((a + c) . e, (b • d) • f) 1 a a b b 

= ({a • c, b . d) • (e,f)] v a b ' 

=•• f(a,b) • (c,d)J • (e,f) . 

(a,b) • ( (c,d) + (s,f )J - (a,b) • (c + e, d + f) 
' a D 

- fa * (c + e), b * (d + f)) 
a a b b ' 

= f(a * c) + (a • e),{b . d)+{b»f)] 
*• a a a b b b * 

~ (a * c, b ,• d) + (a«e, b»f) 
a b a b 

- ((a,b)<(c,d)J + ((a,b)•(e,f)] . 

A similar proof holds for right distributive law. Hence 

(R,+,•) is a ring. 

Let S s |(a,0)j a 6 A and 0 is zero element in Bj . 

A 0 and B ^ 0 imply that S f- 0, For any (a,0), (b,0) £ S, 

we have 
(a,0) + (b,0) = (a+ b, 0 + 0) « (a +b,0) « S 

a b a 

(8,0) . (b,0) =(a . b, 0 • 0) = (a • b,0) 6 S 
a b a 



Ik 

-b 6 A for b £ A implies (-b,0) = -(b,0)€ S , 

hence, (a, 0) - (b,Q) = (a-b, 0+0} = (a-b,0) £ S. Therefore, 
b 

(S,+,*) forms a subring of (R,+,*)-

Sines (a,0) • (g,0) = ( , 0^0) = (a,0) for any (a, 0)« S, 

if A is a ring with identity, than S is a ring with identity. 

Since (a,b) * = ^aa!* bbf>̂  = f o r a ny (a*b}£ R, if 

B is also a ring with identity, then R is a ring with identity. 

Let e = (e,s) and e' = (e,0). The ring R has an identity 

if and only if A and B both are rings with identities. From 

theorem 1-2(2), it follows that g / j3 . Hence , we have 

8 = ^ (|J0) = 91 e - ( | ^ 3. Therefore, we 

conclude that identity e of a ring may be different from the 

identity e' of its subring, if e is not an element of the 

subring. 

(3) Let e» be the identity of S. From theorem 1-2(2), 

we have e'^O' £ S. Suppose e' «a = b ^ a for some a c- R, then 

e'*b = e!*(e'«a) = (e,*e,)*a = e'*a which implies e'*b -e'.a. 

Since -(e'«a)£R, then (el *b) + (-(e!*a)] = (e''a) + £-(e' -a)} =0. 

By theorem 1-1 (1|), it follows 

(e' • b) + £e' • (-a)] = e' • £b + (-a)] 

= e'• (b-a) 

= o 

Since b ^ a implies b-a ^ 0, hence e' is a left zero divisor. 

A similar proof holds for s1 being a right zero divisor. 

Therefore, e' of S in this case is a zero divisor. 



15 

Ideals are non-empty subsets of a ring. They play 

important roles in the study of rings. 

Definition 1-12- A non-empty subset I of a ring R ia 

said to be a left (right) ideal of R if 

(1) (X,®) is a subgroup of (R,$), and 

{2} i € I, r <R implies that r 0 i £ I ( i 0 r t I ) . 

If I is a left ideal and is also a right ideal, than I 

is called an ideal. 

Some important properties of ideals are stated and proved 

ir. the following set of theorems. 

Theorem 1-8. If R is a cororautative ring and a £ R, then 

T = a 0 R is an Ideal, where a O R = | a 0 r J r t R j . 

Proof: Since R f- 0 , it follows that T ^ 0 . If a 0 r-̂  

and a © are two elements in T, then 

( a 0 P 1 ) © (- (a 0 iv,)] = (aOr-jJ © (a 0 -(r2)] 

-A 0(r1 + (~i*2)J 

= a 0 (r1-r2) (•. T 

for (r^-r2) £ R. Hence, (T,©) is a subgroup of (R,#). 

For any a 0 r^ T and r^ £ R, (a 0r^)0 r^ = a 0 (r^ 0 r ) £ T. 

Hence, T is a right ideal In R. Since TS R for any a 0 r 6 T, 

therefore, a 0 r=r 0 a * T which proves that T is an ideal in R. 

Theorem 1-9• If R is a ring and a t R, and 1st 

r(a) = |xfeR[a0x = 0j- , then r(a) is a right ideal in R. 

Proof: It Is trivial that r(a) / 0. For every 

x,y£r(a)£R, by hypothesis, RQX~0 and a0y=0. This Implies 

that a Ox - a0 y = 0 and a 0 (x-y)~ 0. Hence, x-y 6 r(a). 
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Therefore, (r(a),&) is a subgroup of (R,©). If y«r(a) and 

b 6- R, then a 0 (yQb) = (a3y) 0 b = 0 fi b = 0. Hence 

y0b fe r(a) and the proof is completed. 

Theorem 1-10. L9t I . and I be two left ideals in R 

and suppose (I 0 I I ̂  0S then the intersection of two left 
J . JL 1 « £ 

ideal3 is a left Ideal. 

Proof: Since (I^A fi ^ ^ a n d 

b 6 1:raPli9S that ~b €-1^ and -b By the 

uniqueness of the inverse of b under $. it follows -b*( I at ) 
11 12 

Furthermore , a©(-b)=a-b fe (I^A 1^ p) for any a ,b in 

Hence ( i s a sufclgroup of (K,®). For R, 

r, 0a 6 I and r 0a 6 1 which imply that r.0s ̂  (I AI ) 
x x x J- 12 1 11 12 

for a <c (I^ni^). Therefore, ^ I
1 1

A I
1 2^

 i s a l e f t ideal of R. 

A similar proof can be shown that the intersection of two 

right ideals is a right ideal. 

How consider the intersection of a right and a left ideal 

of R and (I,AT) ^ 0 . Since (I..A1 ) £ 1 and (I.* I ) £ I 
J. r ± r i 1 r r 

for any then (a-b) e (1^1 ) • Hence {Ifl ,9) 

is a subgroup of (R, ©). If R is a commutative ring, and 

r £ R, r,0a£I and aOr £ I where a & (I-./* I ), then r 0a=a9r,€l 
x x x i v JL r \ 1 r 

and r, 0a €• I, . This implies r, 0a = aQr..4( I-.il ) and (I s\l ) x x i l l r 1 r 

is an ideal. If R is not a commutative ring, then (I /)I ) is 
1 r 

not an ideal, 

A ring R has at least two ideals; the entire ring R and 
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the sst (0) consisting of the zero element only. An ideal of 

R distinct from (0) and R will be called a proper ideal. 

A special type of ideal known as principal ideal is 

introduced and discussed in the following definition and 

theorem 1-11. 

Definition 1-13« An ideal I is called a principal ideal 
P 

of a ring R if every element of I is some multiple of a. 

Denote I by (s) for such an ideal, that is, (a) = £x»ajx k R • 

The or 5'.?. 1-11. i'vary ideal in the ring of integers is 

principal. 

Proof: (1) If I~- (0), then I is a principal ideal. 

(2) If If- (0), then c/0 for some c« I. Since c 4 I and 

-c 6 I, it follows c>0 or -c>0. Let a be the smallest positive 

integer in I, then there exists b fI such that 

b = qxa + r , where q f R and 0~r<a. 

Since qxa € I and -(qxa) 6 I, it follows b-(qxa)=(qxa +r)-(qxa) 

=(qxa) - (qxa) +r = 0 + r - r and b - (qxa) - r t I a being the 

smallest positive integer- such that Q& r<c. Hence 

b-(qxa) = r - o and b - qxa . Therefore 1= (a), 

A afield and a field can not have proper ideals. This 

will be shown in the next two theorems. 

Definition 1-llfc. A ring D v is called a afield if it 

contains mors than one element, and for evary a <•* D"" , a^0 3 

the equation a•x-b has a solution for any b t D". 
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Theorem 1-12. A sfield (D"", + **", .*"*) has no proper ideals. 

Proof: Let I" be an Ideal in D"'f such that I" ^ (0), 

i"* / 0, and I"* £ D". Suppose that s,b i D""*, where a / 0, b^O ; 

• f t 

then, by the definition of sfield, there exists D such 

that a x = b and also ye D" such that x= b y, that is, 

a x = a •" (b*"y) = (a."b) y = b 0 

which implies, by definition of sfield, a ^ 0 and b / 0. It 

follows a <<:' b / 0 . Therefore, D""' has no proper zero 

divisors. Let a,8f D" such that- a/0, e^O and a •" e - a. Then, 

a •" e^ = a •w (a •*"* e) 

-• (a •*&) •"*e 

= a •" s 

It follows (a e2) - (a . ~:c" e) - 0 

a (e2 - e) = 0 
o 

Therefore, e^ = e. Furthermore, for any cf D , v/e have 

c • " e4- = c *" e and (c»~"e - c) e = 0. Since e/Q, we 

obtain c •" e = c . Similarly, we also obtain e • " c = c. 

For any ce D'"', c e = c =• e c . Therefore, e is the 

identity in D'"'. 

By the same definition, a x = e has a solution in D~'r 

which implies a""̂ € D". If b i I w and b~^ * D", then 

b •""" b'1 = e e I" . Since e.*""y = y"*e = y e I"" and D" - I" 

and I* ̂  D'"~, therefore, I'" = D*"\ 

Definition 1-15» A commutative ring F is called a field 

if the following conditions are satlfied : 
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F^. F has at least two elsmnts. 

P^. F has an identity. 

P^. Every a € P such that 0 has an inverse in P. 

Theorem 1-13» A commutative ring R with identity is a 

field if and only if R has no proper ideals. 

Proof: If R is a field and if I is an ideal of R such 

that I ^ (0), then there exists an element aĵ O such that 

a £l. For R to be a field, a"^ must be in R. Hence, by 

definition of ideal, a«a~"*" = efl. Let y e R, then e*y s I. 

i>ince Rc I and I C R , therefore, I = R. Conversely, if R 

ia a commutative ring with identity and R has no proper ideals, 

and also if a i R and af- 0, then consider the set 

RQ = | r • a j r e R | . By theorem 1-8, is an ideal in R. S3 nee 

R„ ^ (0) implies R = R, and e 6 R R„ implies e = x*a for 
0 ci 

some x 6 R, hence R is a field. 

The following definitions concern certain important 

mappings between rings, and some basic properties of 

homoruorphisms are stated and proved in theorem I-II4. through 

theorem 1-16. 

Definition 1-16. (1) A mapping from a ring R into a 

ring R' is a correspondence that associates with each element 

V6 R a unique r' * R' . 

(2) A mapping T from a ring (R,+,•) into a ring (Rf 

is a homomorphism if 

(a+b)T = aT + ' bT , and 

(a • b ) T = aT •1 bT for all a.btR. 
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(3) A mapping T is said to be from a ring R onto a 

ring R' if for any b1€ R' there exists at least one element 

a £ R such that aT = b1, 

(Ij.) A mapping T is said to be a one to one mapping of 

a ring R into R' if for any a,be R with a ̂  b, then aT^bT. 

(£) If T is a one to one homomorphic mapping from ring 

R onto ring R1, then T is called an isomorphism. 

Definition 1-17. If T is a homomorphic mapping from a 

ring R into a ring R1, then the ksrnal of T (denoted by 

ker(T)) is the set of all elements of R which are mapped 

into the zero element of R'. 

Theorem l-llj.. If T is a hcmomorphisra of a ring (R, +, •) 

into a ring ( R 1 , then 

(1) OT = 0« 

(2) (-a)T - -(aT) 

(3) Ker(T) is a subring of R. 

Proof: (1) 0 = 0 + 0 

OT = (0 + 0)T 

= 0T +* OT 

Since OT = 0' +« OT, then 0' +« OT = OT ~ OT +» OT. Now 

-(OT)€ R» if OT 6 R». It follows that 

(0' + « OT) - (OT) = (OT +« OT) - (OT) 

0' +' (OT - OT) = OT + » (OT - OT) 

0' = OT 

(2) 0 = (a + (-a)) 

OT = ((a + (-a) )T= &T + » (-a)T 
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From (1) we have 0' - GT, hence 0' = aT +5 (-a)T. Since 

aT +1 (-(aT)) = 0' , thus we obtain the relation 

aT + » (-a)T = aT + « (-(aT)) = 0' 

R' is a ring, hence if aTf R1, then -(aT)€ R'. Therefore, 

we have 

-(aT) +« (aT +» (-a)T) = -(aT) +«(aT + ' (-(aT) } 

(-(aT) +' aT] +' (-a)T = f-feT) +' aT] + « (-(aT)J 

(-a)T = -(aT) 

(3) Let 0' be the zero element of R* and for any 

a,b 4 Ker(T) , then 

(a-b)T = (a + (~b)]T 

= aT +' (-b)T 

- aT - bT 

= 0 ' - 0 ' 

= o* 

Hence (a-b)£ Ker(T), and (K.er(T), + ) is a subgroup of (R, + ). 

Also (a•b)T = aT •1 bT = 0' 0' - 0' . Hence a»b £ Ker(T), 

and (Ker(T),+,•) is a subring of the ring (R,+,•)• 

Theorem 1-1$. A homomorphism T from ring (R,+,•) onto 

ring ( R r i s an isomorphism if and only if Ker(T) 

consists of zero element of R only. 

Proof: Suppose T is a isomorphism. For a,b <• R , aT = a* 

and bT = b' with a',b'£ R', and if c is any element in Ker(T), 

then (c+a)T = (a+c)T = aT +' cT = aT +' 0' = aT = a1 and 

(a+c)T = aT +' cT = aT t-' 0' . Since T is isomorphism and 
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OT = 0», hence CT = OT = 0! and c = 0 t R . If Ker(T)=(0), 

than let r-,,r0 R such that r,T' = r T . Since 
1 2 1 2 

(rx - r2)T - rxT + (-r«2)T 

= rs T - r T 1 2 
= 0' , 

hence r^-r2 * Ker(T). Since Ker(T) = (0) , it follows that 

r*i - r 2 = 0 and r^ - r 2 « So we have shown that T is a 

one to one mapping. Therefore, with hypothesis, T is an 

isomorphism. 

Definition 1-18. A commutative ring with identity and 

having no zero divisors is called an integral domain. 

Theorem 1-16. Let f be a homomorphic mapping from a 

ring (R, +, •) with identity e into a ring ( R ' ) with 

Identity e' , then e(j> is the Identity of 

R(j> = ̂  r' e R'/ 3 r 6 R rO-r' J 

where e<|s is not necessarily equal to e' 6 R1 . If R1 is 

an integral domain or Rf is any ring with <j) an onto 

mapping, then e<|> = e1 . 

Proof: Since e| •' a^ = (e*a)<j> = a|> and â -'ê j5 = (a*e)<j> 

~a<J> for any a(|> 6 r|>, hence e(| Is Identity of R(| . If a'b t R, 

a+b f R, and af,b|6R|, then 

a(|> •' bfs - (a«b)|) e r| 

af + ' bj> = (a+b)<J e . 

For a-b ( R, we have a|-b^ - af +' (-(b(|)) =(a+ (-b)) ̂  

= (a-b) <|> 6 Rj). Therefore, (R|, +' , •1 ) is a subring of ( R 1 ) . 
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By theorem 1-7* ws see that e(J=e" e RcJ) is not necessarily 

equal to e' of R ; . l i H1 is an integral domain and suppose 

e' / e(| for e'£R» and e(}> € R(j), then e(j> -'a' = b' / a1 for 

some a'f R'. Now we have 

e<j> •' b' « s<j> •1 (e|) •1 a' ) 

~ (s<Jj •' e(f>) •! a' 

- •' a' i 

hence e$ •' b» = e(j) •' a' . Since ef •1 (b'-a'J = 0 ' , by 

hypothesis, R® is an integral domain and e(j> 0' . Hence 

b* = a 1 . This leads to a contradiction. Therefore, e'-ep. 

If ^ is a homoriorphic mapping from R onto R', then for any 

a' 6 R' there exists at least an element a t R such that a$=a' . 

Since e(|) e R|) £ R', and also 

s(| • ' ac|) - (s • a)f = a<| = a' and 

a<|> ~ (a »e )$ = a^'eij) , 

hence we obtain e| •' s(j> - a| • ' e$ = a<j) = a' . Therefore 

e$ is the identity of R> for any a' £ R' . 

V/ith the aid of the definition of ideal, a special type 

of ring called quotient ring can be constructed. Soma 

basic properties of the quotient ring will be examined in 

the remainder of this chapter. 

Dsfinitios 1-19» If R is a ring and I Is an ideal of 

R, then the set Q = I + r = j" i+r J 1 6 ij, where r £ R, is 

called a rosiduo class in R. 

If I+r> I+r 0 , and if there exists an element c £ I+r, 
«L. ,JL 
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and c i I+1*2 , then there ex i s t s £ I such t h a t c= i^+r^ 

and c=ip+r . Since I i s an i d e a l and - i f I f o r i U , 
€L X I 

then 
i x + P i = i 2 + r 2 

( - i ^ i + C i ^ + r ^ ) = ( - i ^ ) + ( i 2
+ r 2 ) 

{ - i + i ) + l* = ( » i 1 + i ) + r 
1 1 1 l 2 2 

Let ~ i , + i = i J hence r . ,= i +r_ and I + r , = I + ( i +r )= ( I+1 ) + r „ 
x d 3 x 3 d l 3 2 3 2 

- I + r . We conclude tha t f o r any I + r , I + r € Q, i f I + r ^ I + r 0 , 
2 X d X 2 

then I+r^ and 1+r have no elements i n common. 
1 2 

Theorem 1-17» The set Q of residue classes of an I dea l 

I i n a r i n g (R ,+ , * ) i s i t s e l f a r i n g . 

Proof : Define B and fa i n the set Q as f o l l o w s : 

BE) = [ ( I + a , I + b ) , I+(a+b) / I+a , I+b 6 Q ] 

B = j ( I + a , I + b ) , I+ (a*b) j I+a , I+b € Q }. 

For x , y ,w ,z £ Q, suppose x=I+a , y=I+a , z--I+a , w=I+a such 
X d 3 i | 

t ha t x=z and y=w. Let s sl+(a. j+s ) , then there ex i s t s i f I 
2 1 

such t ha t s= i 1+(a,+a ) = ( i +a,)+a~. Since I+a =I+a . there x x 2 l i e 1 3 

ex i s t s i „ 6 I such t ha t i , + a , = i +a„ 1 hence 
2 1 1 2 3 

a = U z +a 3 > +a2 

= i „ + (s +a ) 
2 3 2 

=( i2+a 2 )+ 

Since I+a^-I+a, , then there ex is ts i £ I such t ha t 
4- 3 

i 2 +a 2 = I^+a^ . Hence s=(i^+a^)+a^= i^+(a^+a^) = i^+ta^+a^} 

which Is an element of I+{a +a, ) . This imp l ies t ha t * 
3 k 
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I+(a +a ) £ I+(a +a }. If t i I+(a + a ^ ) , thsn there exists 
1 2 3 k 

I s u c h that t = i ^ + (8^+8^)= ( i | +
+ a ^ ^ +aj|* S i n c e I + a - ^ I + a y 

t h 8 r a exists i^ * I such that ^ £ + a 3 _ = ^ + a 2 

t = ( i 5 + a ^ 

~ i_- + (a-,-*®. ) 
5 q-

= H + ( W 

= 1 W + a x 

S i n c e I+a 0=I+a, , there exists I 6 I such that i +a =1 +a . 
1|. O D c p 4. 

H e n c e t = ( i 6 + a 2 ) + a 1
 = 1 k + ( a

2
+ a

1 )
 = i

6
+ ^ a

i
+ a

2 ^ I + l a ^ a ^ • 

T h e r e f o r e I+(a_+a, ) l+(a +a ) and I+(a-.+a )=I+(a„ k+a )* 
3 l { . I d x d •> t\-

T h e r e f o r e ED is a b i n a r y o p e r a t i o n . 

S u p p o s e s'e I + a i * a 2 J then there exists i | f I such that 

t f 

i» = i^ + a 1 « a 2 . Since I + a ^ I + a ^ , there exists i ^ l ^ s l s u c h 

that i 2 + a
1
= 1 3 + a 3 * s i n c 9 ( 1 > + ) i s a s u b g r o u p of (R, + ), then 

t h e r e exists - i 2
€ 1 s u c l a " i

2
+ ^ i

2
+ a i ^ = - i 2

+ ^ i 3 + a ' 3 ^ * ^ 

f o l l o w s that ( - i 2 + i 2 ) + a 1 = ( ~ i 2 + i ^ ) + a ^ . Let i ^ - i ^ i ^ I, then 

a-,-i'+a . Since I+a^=I+a , there e x i s t s i L i ' t I s u c h that 

1 1+ 3 d k ? 6 

iL+a =i'+a and -i' 6 I. N o w 
5 

- l 5 + = " S + ( 1 6 4 \ ' 

( - i S + 1 5 ) + a
2
 = ( " 1 5 + 1 6 ) + \ 

L e t i =-i ,+i' , then a 0=i' 7+a, . 
7 5 6 2 ( k 

s' = i' + a *a_ 
1 1 2 
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s' = *1 + V a 2 

- - a ^ j - t y . ^ ) 

= i'i + (^+a3).r? + (i^ 3)-a 4 

*.1i + ' V 1 ? + V S " + ( il'% + Y V 

= (i'n+i, • i'+a • i'+i' *a. ) + a *a, 
1 1|. i 3 / k 4 3 k 

Let (i'^+i^'i^+a^'i'^+i^a^) = l'Q€ I , than i'Q+ay a^ 6-I+a^ • . 

Therefore I+a,«a^ - I+a *8, 
1 2 3 b 

In a similar manner it can be shown that I+a^*a^-I+a^-a2» 

Hsncs I+a^»8p = I+a^«a^ . Therefore, 0 is a binary operation, 

For any I+a-j , I+a~ , I+a £ Q, , 
3 

1. (I+a3) E((I+a2) B (I+a3)]= (I+a^ B3 (1 + Ug+a )] 

= I + a.+(a_+a ) 
1 2 3 

= I + (a-,+3 )+a 1 2 3 

= (I+a-ĵ +a ) EH (I+a ) 

=- ((I+a^) m ( I + a ^ E (I+a^) 

2. (140) B (I+aJ = I+(0+a ) = I+a, 
1 1 1 

3. (I + (-a^)] m (I+a^) = 1+ ((-a^)+a^]= 1+0 

^ I + al^ ® (I+a )= I+(a1+a2)= I + Ca^fa^^ ( I + a ^ E d + a ^ ) 

Hence, (R/l,E) is an abelian group. 

5. (1+82) a[(l+a2) CD (1+8^)]= (I+a1) a (I+a^a ) 

~ I + 82_*(®2*®3^ 

= (I+a-j .a2) m (I+a^) 

= ((l+a1) h (I+a3)JS(I+a3) 
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6. (I+a1) EJ ({I+a^) m (I+a^)] = (I+a^ B (i+U^a^H 

= I + a^.(a2+a^) 

= I + + ax.a^) 

= (I+a «a ) 83 (I+a,»a ) 
1 2 -*• J 

= ( I + a 1 ) a ( I + a 2 ) 0 i ( I + a 1 ) r o ( I + a 3 ) 

A similar proof holds for right distributive law. 

Therefore (Q,ffl,S) is a ring. 

Definition 1-20. The set of residue class Q, defined 

in definition 1-19 is a ring and is called the quotient 

ring of R by I (denoted by R/l). 

Theorem .1-16. Let T be a hornomorphic mapping from a 

ring {R, +, •) onto a ring (R1,+',•') and 1st I be the set of 

elements in R which map onto the zero element 0' of R', then 

I is an ideal and the quotient ring R/l is isomorphic to R'. 

Proof: Since T is isomorphic onto mapping, then by 

theorem 1-li}., the set (!, + ,•) is a subring of (R,+,*)« For 

any a e R and i * I, (i *a)T = iT•'aT - 01 •1 aT = 0' and 

(a-i)T = aT •' iT = aT •' 0' = 0 ' , which implies that i«a«- I 

and a•i e I. Hence I is an ideal of R. If x^€ R/l, then 

there exists a, £• R such that x =I+a . Define <j> by x l|=a T. 
I X -L JL 

Let x^,x^ £ R/l and x̂ <j>=x̂  , x^=x^ . If x^/ x^ , then there 

exists a ,a 4 R such that x =I+a and x =I+a . How 
jL £. >*> -*» 2 2 

( I + ai)| = xx<|) = a^T = x^ , and 

(I+a2)(j> = x2(f = a2T = x' . 
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Since x'^x^ , it follows that . Suppose x^=x^, then 

I + a-, = I + a 1 2 

(I+ai)T = (I+a^)T 

0' + » anT = 0' + * a0T 

a T = a T 
1 2 

This leads to a contradiction. Therefore $ is a mapping. 

Now let x, fx_f R/l , I+a,=x and I+a =x , then 1 2 l i 2 2 

(x1 m x2)$ = ( (I+a^) El (I+a2)]<p 

= (I + (a1+a2)J^ 

= (a^+a^T 

= a, T +' a T 
1 2 

*= +' x ^ , and 

(x^ a x^)| = ((I +a 1) ta (I+a2)J <j) 

= (I + (a1-a2)J (J 

= (a^a )T 

= axT •' a2T 

= xj • ' x2j) . 

Therefore (jl is a homoraorphic mapping. 

Now if x ^x for x ,x & R/l, then I+a^I+a implies 
J. 2 1 2 l 2 

a-j/a . Suppose x ty~x (js , then x,(|-a1T=a T=x <| , Hence 
^ X 2 2 2 

alT=a2T * S i n c 8 -(a-̂ T) $ R' implies 
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(a-jT) +» (-a^T) = a?T +• (-a^T) 

Now 

0' = a?T - a T 
X 

0' « (a2-a )T , 

and a2-a^ € I . Therefore, I+Ca^-a^) =1+0 

(I+a2) B3 (I-
a
1) = 1 + 0 

((I+a2) EH (I-a )] B {I+a )= (1+0) EH (I+a ) 

(I+a2) E»f(I-a1) 0 (X+an )J = I + (0+a^) 

I + a - I + a, 
2 1 

The above result implies that x-^x^, which is then contrary 

to the assumption. Therefore, if x ^ x
2 implies x-̂(j>/x2(J> , 

then (J is one to one. 

For every x^£ R' there exists at least one a^£ R such 

that a-^T-x^ . Since x̂ <j>={I+â )(j)-- a^T = x^ for any x^£ R' , 

so $ is onto. 

Therefore, $ is an isomorphic mapping from R/l onto R*. 

Theorem 1-19. If R is a commutative ring with identity, 

then R/l is also a commutative ring with identity, and 

moreover, if R is an integral domain, then R/l is an integral 

d oma in, 

Proof: For x^,x2 < R/l there exists aj_»a2 6 R such that 

x,=I+a, and x =I+a„ . Now 
1 1 2 2 

X E) x = (I+a.) m (l+a„) 
1 2 1 2 

— 1 + (a ̂•a 2) 

= I + 
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W Kg ~ I + (a2*a1) 

= (I+a2) E (I+a1) 

= x 2 e x x . 

Hence, R/l is a commutative ring. 

For I+a^=x^* R/l , then I + e& R/l where 0 fR, hence 

(I+e) E3 (I+a1)= (I+e»a1)= (l+a]L). Therefore, R/l has the 

identity I+e. 

If R is an integral domain, then for a,b £ R such that 

a^O , a-b=0 . Then b=0 . Consider x^,x €• R/l such that 

x., =I+a ĵ I+O which implies a ^ O . If x x m ~ 1+0 and 

(I+a]L) E3 (I+a2) -- I + < V
a 2 ~ 1 + 0 ' t h 0 n al* a2 = 0 * B u t 

R is an integral domain and a ^ O , so a2=0 leads to 

x = I+a = 1+0 . Therefore, R/l is an integral domain. 
2 2 
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CHAPTER II 

SPECIAL TYPES OP IDEALS 

In the preceding chapter, some general properties of 

ideals have been discussed. Prime ideals and maximal ideals 

are special types of ideals which have many interesting 

'properties. This chapter will investigate some properties 

of these special types of ideals. 

Definition 2-1. The product of two ideals A and B in 

a ring R is the set 

AxBsf *r- a, -b, I a. *A and b, €-3. n is any arbitrary positive 1 
'£=1 k k' k k integer ) 

Theorem 2-1. The product of two ideals In a ring R is 

itself an ideal of R. 
rj 

Proof: Let x,y,6 AxB, then x = XI a, «b and 
k=l 11 k 

i»ii 
y = il a »b where k - ~ l » 2 , , n and k' =1,2,3. • • • ,m. 

k« =1 ki k' 

Note that ~j~ - a *b = 3E2 (-a, . } *b,_. . Let •b = S Z (-a, , ) *b. , . 
' k' kt=i k« k' k' =]. k' k' k'=i 

-a, , - & and b, . = b , then 
k' n+k« k« m+k' 

n m 
* - y = ( £ i v V -

32 
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c m 
y « JET a -b + 3ET (-a ) *b 

k=l k k k ! = 1 k« k> 

i E A * ^ +
 1 S L / D + k . - V k . 

m 
= <£. a *b, ̂  AxB 

k*l k k 

where a^ €• A and b^.6 B. For r 6 R, then 

r*x = r*£. a *b. - jr (r»a ) *b 
k=l k k k=l k k 

where r'a^€A and b ^ B, Therefore, r-x f AxB for x£AxB. 

Similarly, x«r £ AxB for x i AxB. Therefore, AxB is an ideal 

of R. 

Definition 2-2. Let I be an ideal in R. I is prime if 

for any b,c in R such that b*e f I, then at least one of thorn 

is an element of I. 

Definition 2-3. An ideal of R is maximal if I •/•!{ , 
— — ™ m m 

and if there is no ideal properly contained betvreen R and 1^, 

Examples of prime ideals and maximal ideals are given 

in the following: 

Example 2-1. The ring of integers J itsslf is a prime 

ideal* since by definition of pr-itne ideal, if b*cf J, then 

b (r J or c * J. Also the principal ideal (0) of J is a prims 

ideal, since J is free of zero divisors. If b*c 6 (0), then 

b*c=0. So if bf'O , then c-=0 and c £- (0). Therefore f (0) is 

a prime Ideal of J, 
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Example 2-2. If J is the ring of integers and n ̂  1 such 

that n € J, then the principle ideal (n) is prime if and only 

if n is a prima number. If n is a prime nur.ifcsr and if a'b*{n) 

then a*b ~ kn so either a-"k̂ n or b-k^n for k^,k^ k J. Hence 

a i (n) or b €• (n). Therefore, (n) is s prime ideal in J. 

Suppose n is not a prime number. By definition, there exists 

a,bt J such that a*b~n with 0<a<n and 0<b<n so a j. (n) and 

c j. {n). Hence, if (n} ia a prime ideal, thai) n is a prima 

number in J. Moreover, every prixae ideal {n} in J is maximal. 

If I .is an ideal in J such that {n} c I c J, than there exists 

m i l cuch that m 4 (n). It follows that (in»r?) is relative 

prime, There exists no cocanon divisors between m and n except 

1-1. Than there exists aibt J jiueh that •&*a+n *b~l 6 I. Since 

n*b 4 (n)cl and m tl, so 1 £ I implied that any x& J, then 

x• 1 € I. It follov;3 that Jcl ana I c J. Hence I=J. 'therefore 

{n} is a maximal ideal of J, 

Theoren 2~2, If I is a prima ideal in R and &isd I__ 

are ideals in R such that I,xl C I , than I C I or I. C I. If 

1 2 1 d 
I is not prime, then there exists I- and I such that 

1 2. 
I C I. 0 , I C I , I_xl C 

1 2 I 2. 
Proof: Suppose I ^ I and I I and let I be a prime 

-t £ 

ideal in R such that I xl CI, then there exists a, € I , 
1 c. X 1 

&2 £ ̂ 2 suc!l
 "that I. Since I is a prima iosal in R, 

then a - a I implies I, xl I . This leads to a contra-

diction. If I is not a prime ideal in R, then there exists 
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b^ and b^ such that b^,bo^ I and b^«b^€ I . Now let 

X1 = 1 + (bx) s [ i + (bx) I 1 k I } 

I p = I + (bg) s {I + (b2) / i f I }. 

For x,y n+(b ) , there exists i..,i t I and p,qtR such 1 •*•2 
that x=î +pb^ and y^i^+qb^ . But 

x - y = (ix + pb^ - (i + qbx) 

= ( i1 + pbx - i2) - qbi 

= (1^ - + pbx) - qbn 

= (ix ~ ±z) + (p - q)bx^ I + (bx) , 

and for r e R , 

r«x = r • ( i1 + pb1) 

- r • i^ -4 r • (pb^) 

= r»ix + (r'pjb^f I+(b ) ' 

Similarly, x*r 6 I + (b^) for r tR and xf i l . Therefore, 

I^=I+(b^) is an ideal of R . A similar proof holds for 

I^-I+Cb^) being an ldea'1 of R. 

For any i^61, since 0 £- R and i^^i^+O'b^t I+(b^) , 

hence I c I =I + {b ). Likewise, I C I+(b ). For any r-^r 6 R 
«*» Ji 2 

and x 4 L x l . = I+(bn ) x 14(b„) , there exist i . , i 6 I such J- 2 J- c. 1 2 

thet 
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* = ( W V * (i2+b2*I,2) 

= + {l1+r1-b1).(b2.r2) 

= l1*
s-2

 + *^2 + il* tb2"r2* + ^rl*bl^ ' ̂ b2*r2) 

= l1-i2 + (r1-b1).i2 + i1-(b2.r2) + V ^ l ' V ' ^ 

Since b^,*bp « I and , by definition of ideal, hence xfl. 

Therefore, Inxl cl. 
X d 

The next lemma concerns a hoinomorphic mapping of a 

ring onto its quotient ring. 

Lemma 2-1. There exists a homoraorphic mapping f from a 

ring R onto its quotient ring R/l such that b* c tI if and 

only if bf ©cf = 1+0 . 

Proof: Let x^£ R/l , then there exists R such that 

x-,- I+a . Define f such that a^f ~ I+a for a £ R and 
X X I 

I+a * R/l. Suppose I+ax •/ I+a and a, = a , then there exists 
J* <£* 4*1 

i,( I such that i, +a = i +a which leads to a contradiction. 
1 1 1 1 2 

Therefore, f is a mapping. For any x-̂  e R/l there exists 

a-̂ S R such that a^f = I+a1 ~ x^. Hence f is onto, for 

a-j, a^ e then 

(a1+a2)f = I+(a1+a2) 

= (1+ ax) S3 (I+a2) 

= a.f © a0f , and 
1 d 

( a i ^ K ~ I+(a^*a
2) 

= (l+a1) E (I+a2) 

- axf o a2f 
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Hence f is a homomorphisra. The homomorphism f is called the 

natural homomorphism from ring R onto its quotient ring R/l. 

Since b*c € Ic R, then 

bf 0 cf = (b'c)f 

= I + b»c 

= • 1 + 0 . 

On the other hand, if bf sa cf = 1+0, then 

bf 0 cf = (I+b) B (i+c) 

= 1 + (b * c) 

= 1 + 0 

« 1" . 

Therefore, b • c fI. 

The preceding lerama prepares the way for theorem 2~3• 

Theorem 2-3« Lot I be an ideal such, that I ^ R. Then 

I is a prime ideal if and only if R/l ha3 no zero divisors. 

Proof: R r $ implies R/l j- If R/l has no zero 

divisors, then for t R/l such that x^ ^ 1+0, 

and x^=I+0. By lemma 2-1, there exists a natural homomorphism 

f from R onto R/l. Then anf= I+a = x and a0f~ I+a = x 
JL X I d c. 

such that a -a € I for some a ,a?€ R. Also a f ~ I+a0- x = 1+0 

and I+a^ = 1+0, then there exists i^»i0
 € 1 such that 

i + a - i^+0 = i 6 I. Since (I, + ) is a subgroup of (R, +), 
1 2 2 

then i-.-i„ = a j I. Therefore, I is a prime ideal of R. 
^ 1 2 

If I is a prime ideal of R and i-j_«ip£ I, then there 

exists at least o«3 of i or i o , say i^ , that is in I. 
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By lemma 2-1, for if igf =( I + i
1) ® (I+ig^I+O, 

then ixf = 1+0. Hence, if i-jfra i2f = 1+0, then i ^ = I+O. 

Definition 2-l±. The inverse transformation at a of 

a ring R into a ring R is the set of all elements of R 

having a as T-iraage, where a fR. 

The following lemma is rather important- and has frequent 

application in the remainder of the chapter. 

Lemma 2-2. Let T be a homomorphism of a ring R onto a 

ring R, with kernel N. Then there exists a one to one 

inclusion preserving mapping between the ideals of R and the 

ideals of R which contain kernel N, such that if I and I 

correspond, then IT = I and IT = I, and R/l is isomorphic 

to a/i. 

Proof: If I is an ideal containing N, then IT- I is an 

ideal. If x,7-^tI such that x^T = x^ and x^T = x^ where 

X 1 , X 2 * 

xi - 4 = xi T " V 

» (Xj-X )T H I . 

| | -*»» 

This implies that For any x^ 6 IT and r 6 R such 

that rT=r', then 
r' • x^ = rT • X]_T 

- (r-x^ )T i IT , 

which implies I. Likewise, x^ • r* <f IT. Hence I--IT 

is an ideal in R*. Every ideal I of R has its image IT being 

an ideal of R. 
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Before proving that T is one to one from ideals of R 

onto ideals of R, one must show that (IT)T""1 = I. For any 

x^6 ICR such that x^T = x^e IT, then x^ e (IT)T""1. Therefore 

icdTjT" 1. If (IT)T"1, then 6 IT, so x ^ = y^T with 

y € I. Hence (x,-y ) Hi c I. Let x-, -y ,=2^ e I with y ,z e I, 
JL x x *L 

then x,=z +y * I. Hence (IT)T~Xd I. Since (IT)T"1c I and x 1 1 

also IC(IT)T""1, then (IT)T"1 = I. 

If 1^ ^ Ig t then without loss of generality there exists 

some x-̂ 4 1^ and x^ t 1^ such that x^ ^x^ . Since (IT)T""1 = I, 

then X-. € (I TJT"1, x 6 (I-T)T"1, x T £ I T and x„T4LT. 
1 1 2 d - L I d d 

Suppose I-jT-I^T, then x^T 6 IpT^I^T. Hence x^T6 I^T and 

x.t (ITTJT"1n I . it follows that x € I which is a contra-
<£ <** JL d 1 

diction. Therefore, T is one to one between 1^ of R and 1^ 

of R. 

If x.,x £ IT"1, then x, T, x T 6 I, by definition of T"*1. 
V 2 1 2 

Since (x^-xp)T = x-̂ T - x^T tT, th3n x^-x^ 6 IT If x^ £ IT""1 

and r fr R, then x^T t I and rT 6 R1. Hence (x^*r)T=x^T*rT 6 I 

and x^*r 6 IT"1. Likewise, r*x^ e IT"1 for any r 6 R and 

x x * IT"
1 . 

Prom the above discussion, it can be concluded that for 

every ideal "T of R, IT""1 is an ideal of R. Suppose this 

preimage IT""1 of I doss not contain N, then there exists 

x t N such that x fIT"1 and xT-0 ̂  I. But I is an ideal of R 

and this leads to a contradiction. Therefore} every 
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preimage I of R is en ideal of R containing N. Sines T is 

an onto mapping, then for every I of R there exists IT"""*" of 

R such that (IT-1)T - T. If 1-^=^ and I ^ I g such that 

IlCI , then I 1C I^ because for every i^ 6 and i2 $ 1^, 

then there exists i^T-ip^ 3 U C^ that i2T-i2 ̂  1^. If 

i^tl^ since I1T=T1 and (I^)!"
1^ I1> then i^T"'

1^ 1 ^ But 

ig.T""'̂ ! implies i2€ 1^ which is a contradiction. Since 

for i^ & T x and (i^jT"
1^ l̂ C. I , then i^T"1eIg. Note that 

(i^T"1)! € IpT = I 2 and (IT"
1)T=I, then 

Therefore, L C I 
1 2 

T is a homomorphism from R onto R. By lemma 2-1, there 

exists a natural homoraorphic mapping f 2 from R onto R/l. 

Define a mapping T-^T'f such that T-j_ is a homomorphism from 

R onto R/l. Also define xT_̂ =xf 2~x €R/l, where xT=x and x £R. 

Suppose x± ^ x2 for 31!̂, x ( e R/l.. Since f 2 is a function, 

then 3c ^ x^ . Since T is also a function, hence . 

Therefore, T is a function. For any xfeR/l, there exists 

x €-R such that xf2~x and there exists x £- R such that xT=x". 

Therefore, T^ is onto. For x,y 6 R, then 

(x+y)Tx = £+y)f 

~ ((x+y)T]f2 

= UT+yT)f 

- (x+y)f2 

= xf2 + yf 

XT± + yTx 
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(x-y)T^ = (x-y)f2 

= (x-y)T f 

- (xT-yT)f2 

= a*.y)f2 

= xf2-yf2 

= . 

Therefore, Is a homomorphlsia from R onto R/l. By theorem 

1-17, H / i is a ring. Now let N bs € Ker(T1). If x e N, xT«R 

and (xT)f2=0 t R/l, then xT (• Ker(f2) and xT+ 1 = 1. Since 

xT«I and x fe (Y)T'1 = (IT)T"1 = I, hence M c. I. If 

x i I=(IT)T**1, xT * IT=I c R and x T + M , then xT 6 Ker(f2), 

(xT)f2-0 <• R/l and x t Ker (T-j )=N. Hence IcK. Therefore, 

I = N. By theorem 1-18, 1'̂  is a horaornorphlsra from a ring R 

onto a ring R/l and I Is the Ker(T^) and an Ideal of R. 

Therefore, the quotient ring R/l is isomorphic to R/l. 

Theorem 2-ij-. I is a maximal Ideal of R if and only If ——•» — 

R/l has no ideals but itself and (C). 
' m 

Proof: By lemma 2-1, there exists a natural homomorphism 

f from R onto its quotient ring R/l . By lemma 2-2, there 
XH, 

exists a one to one inclusion preserving mapping between 

Ideals of R/l and ideals of R. If I is a maximal ideal of 
' m m 

R and if there exists i! in R/l such that i' 4 R/l and 
1 m I ' m 

1^ f- (0), then because T is onto there exists 1^ in R such 

that I. T = I* , Since I T - I /l *= (0), RT = R/l , I,V(0), 
x x m vi in m x 
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and I* 5* R/l , and also T is an inclusion preserving 
1 m 

mapping, # (0) and I /• R, hsnce I^c I^c R, But I m is a 

maximal ideal in RJ therefore, I does not exist. Conversely, 

If R/l has only two Ideals (0) and R/l and suppose I. is not 

maximal, then there exists 1^ in R such that I c i ^ c R , Since 

X Is 9 one to one inclusion preserving mapping from R onto 

R./l, then there exists 1^ in R/l such that Since R/l 

has only ideals (0) and R/l, then I^=-(0) or 1^ = R/l. If 

I^T= I->/l = (0), then 1-^=1 which leads to a contradiction. 

If J^T = 1^ = R/l^, then I^=R, which also lends to a contra-

diction. Therefore, I is a maximal ideal of R. 

Theorem 2~5« If R Is a commutative ring with identity, 

then I Is maximal If and only if R/l is a field. 

Proof: By theorem 1-13, R/l is a field if and only if 

R/l has no proper ideals. By theorem 2-1]., I 5s maximal if 

and only if R/^has no proper Ideals. If R has an identity, 

then by theorem 1-19, R/l has an identity.. Therefore, the 

proof Is completed. 

Theorem 2-6. In a ring with Identity, any maximal ideal 

is prime. 

Proof: If I is a maximal ideal of R, then R/l has, by 
m m 

theorem no proper Ideals. By theorem 1-13, if R/l has 
m 

no proper ideals, then R/l is a field. If R/l is a field, 
' m m 

then Ft/1 has no zero divisors. Then, by theorem 2-3, I is 
U * VI 

a prims ideal of R. 
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Theorem 2-7 . Let T be a homo mor phi sin of a ring R onto 

a ring "R with kernel N. If I is an ideal in R containing N, 

then I is respectively prime or maximal if and only if IT is 

respectively prime or maximal. If I is an ideal in R, then 

I is respectively prime or maximal if and only if IT"""*" is 

respectively prime or maxima].. 

Proof: Since I~R if and only if IT-R and T is a one to 

one inclusion preserving mapping from ideals of R onto ideals 

of R, then I is prime if and only if IT is prime, 

If I / R, by theorem 2~3, I is prime if and only if R/l 

has no zero divisors, and R/lT has no zero divisors if and 

only if IT is prime. By lemma 2-2, there exists an isomorphism 

g from R/l into R/lT, and R/l has no zero divisors if and only 

if R/IT has no zero divisors. If (I+r^)© (I+r^) and I+r^/l+O 

for I+r^,I+r0 £ R/I, (I+r^)g^I+r^ and (I+r2) g^+ri, , then 

((I+r^s (I+r2)]g = (l+0)g 

(I+rJ)s (T+r^) = 1+0* . 

But (I-sr̂ )g ̂  (l+0)g implies H r | - HO' , and (I+r2)g={I+0)g 

implies T+i'2 = 1+0' . Hence , if (I+r^) is(I+ri^-I+O1 and 

I+r^ ^ 1+0' , then I+r^ - 1+0'. Since g is one to one and 

if (I+r|)E3 (I+r^)=I+0' , (I+r^jEJ (I+r^i-I+O and I+r^ ^ I+O', 

then I+r ji 1+0. Since g is a mapping and I+rl = 1+0' , it 
x 2 

follows that I+r^ = 1+0. Therefore, I is prime if and only 

if IT is prima. 
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By theorem 2-5» if I ^ R, then I is maximal if and only 

if R / l is a field. Since g is an isomorphism, it follows 

that R/l is a field if and only if R/lT is a field, and R7lT 

is a field if and only if IT is a maximal ideal of "R. Since 

T is inclusion preserving, then there exist no ideals between 

I T and R if and only if there exist no ideals between I and 

R. By lemma 2 - 2 , it follows that IT~^ is an ideal containing 

to, and (IT~^}T = I. Therefore, (IT"^)T - I is respectively 

prime or maximal if and only if IT""*" is respectively prime 

or maximal. 
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CHAPTER III 

BOOLEAN RINGS 

Boolean rings are special types of rings which are of 

great interest. This chapter will investigate some interesting 

properties of these special types of rings. 

Definition 3-1, An element a of a ring R is idempotent 

2 
if a =a for a e R. 

Definition 3-2. A Boolean ring B is a ring such that 

2 

all of its elements are idempotent, that is, a -a for every 

a e B. 

The following systems are examples of Boolean rings. 

Example 3-1* A simple Boolean ring is a ring with only 

two elements, that is a zero element 0 and an identity e, 

because e-e=e and 0*0=0. As another example, consider the 

set S= fa,b,c,dj with addition and multiplication defined by 

the following tables. 

+ a b c d • a b c d 

a d c b a a a d a d 

b c d a b b d b b d 

c b a d c a a b c d 

a a b c d d d 
• 

d d d 
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Note that c is an Identity for (S,«) and d is a zero element 

for (S,+). By construction, we know the set S is a Boolean 

ring. 

Example J>-2. Let R be a coBimutative ring (R, + , •) with 

identity and Bs [ a £ R j a^-aj . B is the set consisting of 

all idempotent elements of R. 

Define operations © and © as follows: 

© =|(a,b), (a+b-2a.b) j a,b ( R and a^=a, b^=b} 

© s|(a ,b), (a«b) j a,b { R and a^=a, b^-b]• . 

If a,=a„ and bn =b„ for a^.a^.b ,b € B, then 1 2 1 2 1 2 1 2 

ai ® bi = ax + bi " 2 v b i 

= a2 + b £ - 2 a2-b2 

= a„ © b , and 
2 2 

8.̂  0 •""* 8^ * b 

= a2 • b £ 

= & 2 G bg 

Hence ® and © are binary operations. 

(a © b) © c = (a+b-2s*b) © c 

= (a+b»2a*b)+c- 2(a+b-2a*b)«c 

= (a-!-b-2a*b+c) - 2[a*c+b'c»2(a«b) *c] 

« (a+b-2a*b+c) - (2a*c+2b*c-lj.(a*b)-c] 

- (a+b+c-2a*b) -(2b• c+2a• c-[(.(a «b) *c] 

= (a+b+c) - [2a »b+2b • c+2a • c-ifa • (b*c)J 

= a +{b+c) - [2b • c+2a »b+2a • c-I|.a • (b.c)J 
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a © a 

a © 0 

a © b 

(a © b) © c 

a © (b © c) 

a + (b+c-2b•c) - 2a*(b+c-2b*e) 

a o (b+e-2b*c) 

a @ (b ® c) 

a+a~2a * a 

a+a-2a^ 

a+a-2a 

(a+a) - (a+a) 

( a+a -a ) - a 

a+O-a 

0 

a+0-2a*0 

a+0-0 

a 

a+b-2a-b 

b+a-2b•a 

b © a 

(a«b) © c 

(a*b)»c 

a*(b *c) 

a © (b © c) 

a © (b+c-2b»c) 

a»(b+c-2b•c) 

a . b + a • c - a • ( 2 b * c ) 

a*b+a«c-2a*(b-c) 

a « b + a • c - 2 a ^ . ( b . c ) 
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= a'b+a»c-2a»a*(b*c) 

- a «b+a• e-2(a *b.a).c 

- a«b+a.c-2(a *b)•(a • c) 

= (a*b) © (a«c) 

= (a © b) © (a © c) 

a 0 b - a*b 

= b • a 

= b 0 a 

Therefore, B is a commutative ring with the property 

that every a 6B is such that a2=a. Hence B is a Boolean 

ring. 

Some basic properties of a Boolean ring are stated in 

the following theorems. 

Theorem 3-1« Let (B,+,*) be a Boolean ring; then if 

a tB, the inverse of a under + is a itself, that is, a+a=0. 

Proof: If a,b€B, then a^=a«a=a, b^=b*b=b. 

(a+b)2 = (a+b)•(a+b) 

= (a+b)*a + (a+b)*b 

= (a*a+b*a) + (a«b+b*b) 

= (a+b*a) + (a»b+b). 

On the other hand, (a+b)^=(a+b)•(a+b)=(a+b) for (a+b)£ B, 

hence (a+b)=(a+b a)+(a*b+b). 

(a+b) = (a+b*a)+(a-b+b) ( 

= (a+b«a+a-b+b) 

= (a+b• a+b+a »b) 
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= (a+b+b•a+a «b) 

= {a+b)+(b*a+a*b) . 

Since B is a ring and -(a+b)e B, then 

-(a+b)+(a+b) = ~{a+b)+ ((a+b) + (b*a+a*b)J 

0 - [ - (a+b} + (a+b )J + (b • a) + (a *b) 

0 = b • a + a • b . 

Let b=a, then 0=a«a+a*a . Therefore, 0=a+a. 

Theorem 3-2. Every Boolean ring is commutative. 

Proof: Let a,b« B and b*a $B. By theorem 3™1» b*a+a*b=0 

and (b • a) + (b • a) =0. Hence (b*a)+(a*b)=(b«a)+(b»a). 

(b.a)+(a«b) = (b*a)+(b*a) 

(b«a)+ £(b.a ) + (s »b)] = (b'a)+((b»a) + (b*a)} 

(b*a+b*a) + (a*b) - (b*a+b*a) + b*a 

0 + a-b = 0 + b • a 

a-b = b'a for any a,b<-B, 

Definition 3-3« If there exists a positive integer n 

such that na=0 for every a in R, then the smallest such positive 

integer is called the characteristic of R. 

Definition jMj-. An element a of R is said to be nilpotent 

if there exists a positive integer n such that an=0. 

Theorem 3-3• If B is a Boolean ring, then 

(1) B has characteristic 2 

(2) If B contains at least three elements, then every 

element of B except an identity (if B has one) is a zero 

divisor. 
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Proof: (1) By theorem 3-1* for every a in B, a+a=2a=0. 

Hence 2 is the least positive integer which satisfies 2a=0. 

(2) B contains at least three slements, then there 

exists a,b€ B such that a / b. Suppose a^b^O and a+b^Q, then 

a+0=a+(b+b)=0+b which implies that a=b. This leads to a 

contradiction. Therefore, if a^b^O, then a+b^O. But B is 

a ring *, hence (a+b) 6 B and a*b t B. Then 

(a«b) * (a+b) - (a*b)*a + (a-b)'b 

= a*(b•£) + a•(b *b) 

= a • (a • b) + a»(b • b) 

= (a*a)*b + a«(b*b) 

~ a -b + a «b 

= 0 . 

If a*b=0, then a,b are zero divisors. If a«b^O, then for 

(a+b}#0, (a+b) and (a*b) are zero divisors in B. 

Theorem 3-U-* If B is a Boolean ring, then it has the 

following properties : 

(1) a+b=0 if and only if a=b, where a,b f- B. 

(2) a+b=a-b if and only if a,b£B. 

(3) If a+b=c, than a=c+b for a,b,c 6 B. 

Proof: (1) By theorem 3~1» then a+a=0 for every a €• B. 

If a+b=0, then 

a + b = a + a 

a + (a + b) = a + (a + a) 

(a + a) + b = (a + a) + a 

0 + b = 0 + a 
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Hence, a = b. By theorem 3-1, it follows that a + b = a + a = 0 . 

(2) By theorem 3-l» b + b = G. Since b is an element of 

the ring B and -b is in B such that b - b = 0, then by uniqueness 

of the additive inverse in the Boolean ring, hence b=~b. 

Therefore, a - b = a + b for a 6 B. 

(3) a + b - c 

(a+b)-i-b = c + b 

a + (b + b) — c b 

a + 0 = c + b 

a = c + b . 

Definition 3-5* A ring is said to be embedded in 

ring r?2 if there exists a subring Rp of such that R^ is 

isomorphic to Rg . 

a 

The embedding theorem describes an algebraic structure 

with prescribed properties which contains a substructure 

isomorphic to a given structure. 

Theorem 3-5« A Boolean ring (B^,+,•) without identity 

can be embedded in a Boolean ring (B2#+,0 with an identity. 

Proof: Let B-̂  be a Boolean ring and B^ be the set of 

B-jXl/(2), that is, B1zl/(2) ={{a,i)|a^B1 and i £ 1/(2)} , 

and (a-j_,î ) = (a2»i2) if only if and i-ĵ ig* Define 

addition and multiplication in B2 as follows: 

+a s{( (a-Lji^), (a2#i2))»(
a
1
+a2

,1i+i2^ al'a2 € B1 a n d il,i2€l/^2^] 

•2 s {^(al,il^ * ( a2» i2^ ' ̂ al"a2+ila2+i2ai,il*i2^ a i ? a 2 ^ B l 

and i-^i^ 1/(2) 
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I f x = ( a , i ) , x = ( a „ , i 2 ) , x = ( a , i ) and x = ( a , i , ) where 
i l l 2 d d. 3 3 3 4 i|. 4-

x n , x , x _ # x * B s u c h t h a t x =x and x =x , t h e n b y d e f i n i t i o n 
1 2 3 I4. 2 1 3 2 1| 

( a 1 , i 1 ) = ( a ^ , i ^ ) and ( a 2 , i 2 ) = ( a ^ , i ^ ) i f and o n l y i f a ^ a ^ 

and i ^ = i ^ . S ine© a ^ + a ^ a ^ a ^ and 

t h e n 

X 1 \ x
2 ~ ^ l * 1 ^ **> ^ a 2 ' i 2 ) 

- { , i^-M^) 

= ( a 3 + a ^ , i 3 + i ^ ) 

= ( a y V +* ( V V 

= x 3 +2 x ^ . 

S i n c e a-, * a =a_ . a, and i-> • i = i 0 • i . » t h e n 
1 2 3 lj„ 1 2 3 k 

X ! *2 X 2 " ( a l ' i l ) *2 

( 8 l * a 2 + i l a 2 + i 2 a l ' i l * i 2 ^ 

= ( a 3 . a 4 + i 3 8 4 + i u a 3 f i 3 . i 1 | _ ) 

« ( a 3 , i 3 ) .2 ( a ^ i ^ ) 

= x
3 •, \ • 

T h e r o f o r e , +z and «2 a r e b i n a r y o p e r a t i o n s . O t h e r p r o p e r t i e s 

a r e t h e n f o u n d a s f o l l o w s : 

( 1 ) ( a 1 , i ] L ) \ ( ( a 2 , i 2 ) + ( a 3 , i 3 ) j = ( a - ^ ^ >+z« a 2 + a 3 , i g + i ^ ) ] 

~ ( a i + ( a 2 + a 3 ) , i x + ( i ^ + i ^ ) J 

( ( a
1

+ a
2 ) + a 3 , ( i 1 + i 2 ) + i

3 J 

( a 1 - » a 2 , i 1 + i 2 ) +2 ( a 3 , i 3 ) 

" ( ^ a l , i l ^ + ( a 2 ' i
2

) J +2 ^ a 3 , i 3 ^ 
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(2) ( a i ' V +2 (° .°) = (a1+0,i1+0) 

= { f ) 

(3) +a = ^ a l ~ s i , i l " i l ^ 
= (0,0) 

(i|) ( a 1 , i 1 ) +2 ( a 2 , i 2 ) = (a ̂ a ^ i ^ i ^ 

— (a2^^2^ ^ 

(3) ^ *i ^ * ^3) J 

~ *2 ( ( a 2* a 3 + i 2 a 3 + i 3 a 2 ' i2*^"3^ 

~ (al* ^a2*83+ i2a3+ i3a2^ + 1 i ^ a 2 a 3 + 1 2 a 3 + i 3 a 2 ) 

(^2 * i 3 ^ a^ * ^1 * ^ ̂ "2 * i 3 3̂ 

-- ( a
1* ( i 2

a 3^ + a i* ( i 2
a 3^ + a l* ^3 a2^+^l^ a2* a3^ 

+ i 1 ( i 2 a^)+ i 1 ( i ^a 2 ) + ( i 2 ' i 1 ) a 1 , i 1 . ( • ± 3 )J 

— J a^«a2« a3+i2a^* a^+i^a^.a2+l-^a2*a^ 

+ i l * i 2 a 3 + i 3 * i
1

a 2 + i 3 * i 2 a i » ^ l * * 2 ^ **3 ) 

= f a-. •ao.a-1+i-,a„.s>i„a. .a +i, «i a +i,a., .a_ * 1 * 3 J - 2 3 2 1 3 1 2 3 3 1 2 

+ "̂3* *la2+^3* *2 a l ' (^1*^2^ *̂ "3 J 

= ( ^ a l * a 2 + i i a
2

+ i 2 a l ^ a 3 + ^ i l * i 2 ^ a 3 

+ i^ (a 1 . a 2 +I 1 a 2 +i 2 a 1 ) , ( i ^ i ^ ) *1^ J 
= (a^•a2+l^a2+l^a^» 1^*1^) •^(S3»i^) 

((a^>"'"i^ '2 (a2*^2 ^ *2 ( a3 # ) 

where ths associative law has been used rapsatsdly . 
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(6) ( a 1 , i 1 ) ( ( a 2 , i 2 ) +2 

= (61»i-L) *2 [ (a 2 +a^ , i 2 +i^ )J 

= ( a ^ « ( a 2 + a ^ ) + i 1 ( a 2 + a ^ ) + ( i 2 + i ^ ) a i , i 1 * ( i 2 + i ^ ) J 

= ( ( a 1 ' a 2 + a 1 ' a 2 ) + ( i 1 a 2 + i 1 a ^ ) + ( i 2 a 1 + i ^ a 1 ) , 

- ( { a i « a 2
+ i i a

2
+ i 2 a l ) + { a i * a 3 + l l a 3 + i 3 a x ) ' 

( i 1 . i 2 ) + ( i 1 . l 3 ) ] 

= ( (a-p a ^ l ^ + i g a ^ i ^ J ^ ) +z (a -^a^+ i - ja^+ i^a^ , 

d i - i j i ] 

~ ( ( a i * i ^ ) '2 ^ a 2 ' \ ^ a l ' ^ z ( a ^ , i ^ ) j 

(7) ( v V ^ (0,1) = ( 8 1 - 0+ i 1 0H- la 1 , i i . l ) 

= ( a 1 , I 1 ) 

Hence, i s a r i n g w i th i d e n t i t y . I f ( a^ , i ^ ) < then 

(a^»i^) (a^ii-^) *™ (a^• ^ ) 

~ ^ a l ' i ^ ) 

Hence every element i n B2 i s idempotent. Therefore, B0 i s 

a Boolean r i n g w i th i d e n t i t y (0 ,1 ) . 

Now consider the subset B2 of B2 such tha t 

B2 = -[(8-^,0)13^6 B^ and 0 is the zero element of l / ( 2 ) j . For 

any (a-j^O) and (b^O) « , then (a1 ,0)+2 ( -b 1 , 0 ) = (a1-b ] L ,0) ^B2 

and (a^,0)-j, (b^,0) = (a^.b^+0b^+0a^ ,0) ~ (a^b]_,0) « B^. Hence 

B2 i s a subring of B2 . 
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There remains to be shown that there exists an iso-

morphism 7T from (B-̂ , + ,0 to (®2' + »* ) • Define rr by 

= (a-̂ ,0) for all € B^. Now f is a mapping for suppose 

there exists a^>a2 fe 3 U C^ that â tf = (a^,0), â rr = (a^O) 

and (a-̂ ,0) ̂  (a^f0). If then (a^,0)=(a2,0) which leads 

to a contradiction. Hence, (a.̂ ,0) {b^sO) implies a-̂  / a^ 

which shows that f is a mapping. Now 

(aj+a )TT = (a1+a2,0) 

= (s^jO) "̂2 

= â Tt \ a27T > and 

(a^-a )1T s (a-L*a2,0) 

= (a^O) 'z (a2,0) 

= â ff -z a2iT . 

Therefore, -j[ is a homomorphism. If a-̂ tr =(a^,0) and agtr =(8^,0) 

with a-̂ / a^ and if (a^O^ta^jO), then a^=a^ which contradicts 

the definition. Hence a ^ a implies {a ,0) = (ap,0). Thus 
J» ci X ^ 

it is one to one. For any (a^,Q) t BL, there exists a^£ B^ such 

that a-̂IT = (a^,0), then by the construction of the sat B^, tt 

is an isomorphism. Therefore, every Boolean ring without an 

identity can be embedded in a Boolean ring with identity. 

In certain algebraic systems, the conditions required 

for a Boolean ring as stated in definition 3-2 may be replaced 

by other properties which are stated and proved in theorem 3-6* 

Theorem 3-6. If (A,+,•) is an algebraic structure such 

that A has at least two elements, there is an identity element 
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for multiplication, and for all x,y,z,wf A such that 

(a) x+(y+y) = x , 

(b) (x- (y.y)) -z = (z.y)-x , 

(c) x* ((y+z) +w J = x• (w+z) + x»y , 

then (A,+,-) is a Boolean ring with identity. 

Proof: By (a), every x in A has y+y as a zero element 

on the right. Let x=3 ( A, By (c) then 

e • [(y+z )+w} = e • (w+z )+e »y 

(y+z)+w = (w+z)+y 

Let z=y+y, then 

(y+(y+y)] +w = y+w and 

(w+(y+y)]+y = w+y . 

Since (y+z)+w = (w+z)+y, then y+w = w+y for all w,y € A. 

Therefore, (A,+) is commutative. By (a), x+(y+y)=(y+y)+x=x. 

Hence x in A has a zero element on the left. If there exists 

ztA such that z+x=x+z=x for all x f A, then 

z = z+(y+y) = (y+y)+z = y+y . 

Hence y+y is unique. Denote y+y=Q and let w=0 in (c), then 

x*((y+z)+0) = x'(0+z)+x*y 

= x*z + x-y 

- x-y + x«z 

Hence x»(y+z) = x«y + x*z , and (A,+,•) is distributive. 

Let x=z=e i A in (b), then 

(e • (y*y)] . e s= (e«y) »e 

(y«y)»o = y«e 

y.y = y for BVQTJ J€k. 
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Therefore, every element in A is idempotent, Now consider 

(b). Let z=s & A, then 

(x» (y-y)J -e = (o • y) -x 

x- (y«y) = y x 

x • y = y x 

for x,y 6 A. Also 

fx- (y y)) *z = (z-j)-x 

(x-y)«z = x-(z-y) 

(x-y) .z = x» (y z) 

Therefore, (A,+,*) is a Boolean ring with identity. 

V/ith the following definition of the complete direct 

sum S of the rings where i-i,2,• • • ,k , S can then be shown 

to be a ring. 

Definition 3-6. Let be a given family of rings, where 

i « N and H= 1,2,3* • • • . Let S=|(a-^,a2> • * * *8^) |a^ f S^J and 

define operations +s and *5 as follows: 

+s = {((a1»a2* *' *
 ,ak^ ̂bl'b2» *'' >bk̂  ̂' ̂ sl+bl,a2+b2' * * * '\+bk^ 

such that a ,b £ S, j 
i i iJ 

'5 ~ ? ̂ al,a?'"" ' ,ak^' ̂ bl,b2# *' * ,bk.^ ̂ ' ^al*bl,a2'b2» * *' ,ak'bk^ 

such that â,bj. 6 J 

For simplicity t the same notations of operations for the 

family of rings (Si,+,.) are used. S so defined is called a 

complete direct sum of the rings S^, where it N and 

(a-^,32, * • •, a^) = (b-^b^, • • • ,bk) if and only if a^ = b ^ 
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Let x ^ x ^ x y x ^ c S and x ^ U - ^ a ^ • • • ,ak), x ^ b - ^ b ^ • • • ,bk) 

x3 =( c
1»

c
2,*«•»c k), x^=(d 1,d 2 >*.•,d k) such that x.|=x and 

^2=^|| * that is, arid 

(bijb^i••*,bk)=(di,d2,..•,dk). By definition, a^=c^ and 

b =d. where a.,b.,c.,d,€ . Then 
i i i* i' i' i i 

X1 +s X 2 " ( a
1 '

a 2 , " * , a k } +« < bl» b2' * ** , bk 5 

= ( a 1 + t 1 , a g r t 2 , . . . , a k + b k ) 

= (o 1+d 1,o 2+a 2,.-.,c k+d k) 

= ( t °2>' ' ' * ) +s * * * ,(^k^ 

= x^ +3 x^ , and 

X 1 's X 2 = ^ al , a2' * * ' ,ak^ 's ̂ bi , b2' * * * 

= (a 1*b 1,a 2.b 2,...,a k.b k) 

= '* *,ck*^k^ 

~ ^C1'C2* *' * ,ck^ 's ̂ 1*^2'*' * ,(^k^ 

= x 3 .< x^ . 

Therefore, +5 and *s are binary operations. Other properties 

are shown as follows. 

(1) x ± + $0 = (ai,a2, •••,ak) +s (O-^Og,.. . ,0k) 

= (a 1+0 1,a 2+0 2 >•••*
a +0 k) 

— (a^,a2>...,a^) 

" x i 
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(2) x 1 + s ( * 2 +s* . j )= v 4 ( V 2 ' - ' \ H < 0 l ' c 2 ' " - ' 0 k ' } 

= ( a
1 » a

2 » • * * ' \ ) + s ( b i + c i ' b 2 + C 2 ' • • • » b
k

+ c
k ) 

" ( a l + * b l + C l * , a 2 + ( b 2 + ° 2 ) ' ' ' ' , a k + ( b k + c k ^ 

= ( ( a 1 + b 1 ) + c 1 , ( a 2 + b 2 ) + c 2 , • • • , ( a
k

+ b
k ) + c

k ) 

~ ( a
1

+ b i » a 2
+ b

2 » • * * » a k + b k ) + s t c l ' c 2 » * " »ck* 

= ( (a1 , a 2 , . . . , a k ) + s ( b ^ , • • • >b k ) ] 

+$ (c2,' ° 2 ' * * * *
 c

k ^ 
= ( V s X 2 } +s x

3 * 

(3) + s ( - x . , ) - ( a - , , a 0 , . « . , a v ) +s (-a., , - a o J • • • , - a v } 
'l>"2 1 ' "2 ' 

= ^ a l ~ a l > s 2 " a 2 3 " * * ' a k~ S k^ 

~ (0-j^1021 • * •,0^,) 

(1+) Xx +s x 2 = ( a 1 , a 2 , * * * , a k ) +s * • • , b
k ) 

= ( a
1

+ b i > a
2

+ b
2 » * * * > a

k
+ b

k ) 

= ( b 1 + a 1 , b 2 + a 2 , . . . , b k + a k ) 

= ( b 1 , b 2 , . . . , b k ) +s ( a 1 , a 2 , - . . , a k ) 

= x 2 +s x 1 

^ X
x*s ( x

2*s *3) - ( a i , a 2 , * ' # , a k ) *s ( { b l , b 2 ' * " , b k * 5 

^c l *C2J > * * * ' ) 
= t a l * a 2 » * * * , a k^ 5 ̂ b l " f c l » ' " * , b k + ° k ^ J 

= ( a 1 . ( b 1 - o 1 ) , a 2 - ( b 2 . o 2 ) , - - . , a k . ( b k . o k ) ) 

= ( ( a ^ ' b i ) . c 1 ( ( a 2 . b 2 ) - e 2 , • • • , ( V b k > -o k J 

= ^ a l * b l , a 2 * b 2 , " * , a k * b k ^ *5 ^ C 1 * C 2 ' * ' ' * C k ^ 
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V s ( V S X3)=: ̂ a l , a 2 , " " , a k ) *5 ( W ' " , b k > ' 

'$ tci*c
2^ *' *

 ,ck^ 

(*1 *s x2)*s *. 

(6) x]L's (x2+s x^)= (a1>a2, • •-,ak) «3 ((bx,b2, • • • ,bk) 

+s (ci,c2,-..,ck)] 

= (al'a2' * * * »ak)*« ( V " V V ° 2 ' ** , bk + Ck } 

= [ V < W ' V ' V C 2 » ' ' " " ' V ( W 1 

= ((a-^'b^+a^'C^), {a2«b2+a2« c2), • • •, 

(VVV0k>) 
= (a1*l'1,a2>l)2,-••,ak-blc) +5 

(a1.o1,a2-c2,---,ak.ok) 

~ ( ai , a2' * * * ,ak^ *5 ( bl» b
2' ** *

 ,bk^ 

+
s((

al>a
2» * * * »

a
k) *s (

ci»°2> " ' ,ck^ J 

= Ux's X 2) +5 (x1'5x3) 

Therefore, S is a ring and S has an identity if and. only 

if has an identity for every it U. 

There rainains to be shown that there exists an onto 

homomorphism between S and where itN. Define 0^ as 

follows: (ai»a
2> * * * *

ak^®i = a^ for ( a ^ a ^ • • * ^ s* ket 

xl=^al*a2» * * * ,ak^ anc^ * * * ,bk^ b e ^ s u cb that 

(a1,a2,---,ak)9i = 

( W " ' V 6 I = \ 

where a ^ b ^ S . If â ^ / b^, then (a-^a^ • * • ,a )^(blft>2, • • • ,bfc) 
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Hence 0^ is a mapping. For every there exists S 

such that Xx=(al,a2' * *' >8k^ a n d Xl 0i = ai^ Si * fr,ien 

(ll+JX2)Si = f(al'a2''",ak>+i ( bi' b2'"' , bk^ ei 

= ta 1+b 1,a 2+b 2,---,a k ;+b k) e ± 

a i + b I 

= +s ( V
b 2 ' - " ' b k ' 6 I 

= +5 *
 a n d 

(x1's x2)0i = ( U - ^ a ^ • • • ,ak) O ^ b g , • * • ,bk)J Q± 

= (a1-b1,a2-
b
2,"-,ak.bk)ei 

= 

= (V a2'""' ak>® 1 5 ( bl' b2'""' bk , ei 

= xl 6
1 "5

 x2®1 • 

Hence 0^ is an onto homomorphism. 

Definition 3-7. Let T be the subring of the complete 

direct sum S of rings where i f K. Let 0^ be the homo-

morphism from S onto S . If TO.-S ,i£ N, then T is a subdirect 
i i i 

sum of the rings S^, ife K. 

Before proving the next theorem, two more lemmas will be 

stated without proof. 

Definition. A ring is said to be subdirectly irreducible 

if it has no non-trivial representation as a subdirect sum of 

any rings. 

Definition 3-8. If a ring R is isomorphic to a subdirect 
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sum T of rings S^, i£ K, th9n T is said to be a representation 

of H as a subdirect sum of the rings , ie N. 

Lemma 3-1. Every ring R is isomorphic to a subdirect 

sum of subdiroctly irreducible rings. 

Lemma 3-2. A subdiroctly irreducible commutative ring 

with more than one element and with no non-zero nilpotent 

elements is a field. 

Theorem 3-7• A ring is isomorphic to a subdirect sum 

of fields 1/(2) if and only if it is a Boolean ring. 

Proof: Clearly, l/(2) is a commutative ring. Since 

1/(2) satisfies the conditions of a field, l/(2) is a field. 

Moreover, every element of l/(2) is idempotent, since 0 W =0 

2 
and 1 =1. Lst S be the complete direct sum of these fields 

l/{2) and T be any subdirect sum of the fields l/{2). It 

follows that T is a subring of S. For any x2~(al,a2* * *",ak^ 

x9=(bi,b2, • • • >b^) (. T, if K, and s^,b^* , then 

2 2 = (a^j 

~ *$ ^al*a2* *# * *ak^ 

= (a-j *a2,>a2*a25 # * *5 

~ ^al'a22*'* *,ak^ 

where a^-G or a^~1, But 0^=0 and 1^=1, so xf~(ai»a2»''* >sk^ 

for any < T. Thus, T is a Boolean ring. If a ring B is 

Isomorphic to T, then there exists an isomorphism j* such 

that &$ =x f T, How (a*a).f = a f «s a = x ^ x ~ j (T with 
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a3=x, bancs (a• a)S =aj1. Since f is one to one, than a• a=a 

for every a £ B. Therefore, B is a Boolean ring. 

Now one must show that if B is a Boolean ring, then B 

is isomorphic to a subdirect sum of fields l/(2). By lemma 

3-1, B is isomorphic to a subdirect sum of subdirectly 

irreducible rings. By definition of the subdirect sum T of 

rings, there exist homomorphisms & such that T0^=S^, i * N. 

B is isomorphic to T, then for any x «T there exists a fe B 

such that a i - x and (a*a)f ~af *4 a£=x *5 x= x^. But a*a=a £ B 

implies (a«a)i=a£, and hsnce x2=x for every x * T. Hence 

T is a Boolean ring. Therefore, if is a Boolean ring and 

also is homomorphic onto Bp, then B^ is a Boolean ring. Now 

there exist homomorphisms such that T is homomorphic onto 

S^. Being homomorphic onto images of a Boolean ring T, the 

are Boolean rings. For every if K, a Boolean ring contains 

no non-zero nilpotent elements. By theorem 3-3* a Boolean 

ring has characteristic 2. Furthermore, by theorem 3-2, a 

Boolean ring is commutative. Thus by lemma 3-2, each is 

a field. Since each S^ is a Boolean ring and a field, it 

contains at least two elements, and every element a^ in 

satisfies af=a.. Hence, at least the zero element 0. and the 
1 i 1 

identity e^ must be in every S . Now if there exists S^ 

such that c^Q^ and c ^ e t h e n ci*°i~0^ =c±~ Ci*si * S*nce 

is a ring for every i e li, c^* (c^-e^)=0^. c^/0 so c^-e^. 

Hence, there exist no elements in except 0^ and e^. 
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Define gr by 0 g =0 and e.g =1. By the tables below, g 
di •*» 2 

is a one to one mapping and is al3o an onto mapping. Hence 

Is isomorphic to l/(2). 

°i ei 
• °i ei 

°i °I 8i °i °i °i 

ei ei °i si 0i ei 

+ 0 1 • 0 1 

0 0 1 0 0 0 

1 1 0 1 0 1 

I U 

Define e| as follows: x - ^ = ( x i 0 i ^ 2 -
 x n & 2 ~ x±± 

where x-^x^e T, x ^ t and x ^ t l / { 2 ) . If. x]_®i=;x^ * X2^i=X2i 

and x ^ f x 2 i , then x ^ ji x'2± and x1 / xp. Hence 6± is a 

mapping. For every x ^ there exists a in S± such that 

Xlis2 = x2i a n d f o r 3very x^^ there exists at least one 

T such that x^0. = Also 

(x-̂  X 2 ^ i = ^X1 ~*s ®i 

= (x101 + x2e1)g2 

= * x z i)s z 

~ Xlig2 + X2iS2 
n tt 

X - + X2i *li 

= x, G* + x09' i i '-I 
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<Z1 *S x 2 ) e l = ( ( xl "S x2 ) ei) S 2 

= ( x 1 0 ± . g 2 

= xn^2 ' X21S2 

tt it 

" *li ' X2i 

= xl 9i * x2 0l * 

Hence Is a homomorphism from T onto l/(2). Therefore, 

B is a Boolean ring isomorphic to the subdirect sum T of the 

fields 1/(2). This completes the proof of the theorem. 

A Boolean ring is sometimes called the ring of all subsets 

of a set. This will be examined in theorem 3-8• Let B be the 

set of all subsets of a given non-empty set A where B includes 

the empty set (J) and the universal set A. If a,b £ B, define 

the operations + and • as follows: 

+ = ̂ (a ,b), (aOb' )U(a*A b) j a ,b b B and aT = {x/x ̂  ajj 

• = |(a,b), (a/)h) j a,b 6 B J-

where {aQb' )U(a'nb) = £x|x ea and x ^ b or x ^ a and x t bj. 

Theorem 3r_8. The class of all subsets of a non-empty 

set Is a Boolean ring with the above operations. 

Proof: For every a,b e B, a-s-b=(aob' )U(a'fl b) & B and 

a*b=anb fc B. 

(1) (a+b)+c = [{a+bjnc'ju ((a+b)'ncj 

= |[(anb' )u (a'n bjjfic'jujj^anb' )U (a'nb)] n cj 

= |((aflb'ac' )v (a'obnc' )jju|̂ aflb' /o (a'n b))fl cj-

= |( (anb'o c' JuCa'nbnc' )|uf((a'u b)fl (aub1 )] n cj 
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= { ((anb'nc)u(a/ibAc)j|u ^(aVb)n ((anc)u(bAc))J 

= | [(aobAc)u (a'nbAc) j | u [(a'nb)A(anc)U ((a'nb)O(bnc Jjj' 

= {((ant>Ac) U (a'nbAc )Jj. tf ̂  a'n (a ac )u[b a (an c )j 

u(( a'nbAc) u (bnbn c)]} 

= ^[(aAbnc)y(anbnc)j|u|(bA(aAc))u{anbnc)^ 

= {(bn( anc)}^ [a'nbVicj|u| ((aab'nc)U(d!nb1c)]J 

= ((aAbnc)ufanbnc)]u [(a'nbnc) 0 (a'nb'n c ) 3 

= {(<|>) 0{aACAb)u(anbrtc)u(($)]U {(anbAC)u(aAb'nc)j 

= £ (aob'nb)u (ancob) u {anbnc) cKancnc )J 

U^a'rtbnc) u(a'obnc)} 

- {((aob) U(aoc)]Abj y £(( a Ab) uUac )] oc Ju|(an(bAc)j| 

V J((a«il3nc)JJ' 

= [(anb)u (aoc)a(bnc )j0 ( (a'n(bAc) u(an(bAc) 

= | a a [(bnc )n (b/>c)]J-V £(a'<\(bAc)Ji>£a A(b ac)]^ 

= fl£(bnc) A (bAc) Jjy ^a'r>(bAc)JU £a'A(bAc)JJ 

-- | a A((bAc )U (bnc )j'| u£a'A((bAc)U(br\c)]J-

= £an(b+c)'ji/£a'n(b+c)j 

~ a + (b + c) . 

(2) a + (J) s= (aofj>) u(a*A$) - au|> = a 

(3) a + a = (ana)u(ana) = ^wf) = | 

(Ij.) a + b = (anls) v(a'ob) 

= (bAa)u(bAa') 

= (bAa)u(bAa) 

= b + a 
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(5) (a «b) • e = (anb)oc = an(bnc} = a•(b * c) 

(6) a» (b+c) = an ((bnc)u (bnc)J 

= (snbnc)u(anbflc) 

= (anbrtc)if(ano/)b) 

anboc)] u ((|s)u(anc/>b}j 

= J(anbna')u (aabnc)J U [(aAar»c )\> (brtanc) 

= ^(anb)n (a'yc)]u ((a'vb)rt (anc) j 

= [(anb)o(aAC )'] [(aob)n(a c)J 

= (anb) + (anc) 

a «b + a. c 

(7) a»A = anA = a. Hence A Is the identity of B. 

(8) a-b = anb - bna = b-a 

(9) a^ -- a*a ~ ana = a . 

Therefore, B is a Boolean ring, 

Lercma 3-3.if a ring R has a representation as a subdirsct 

sum T of rings S , i * N , then for each it N there exists & 

homomorphism (ĵ  of R onto S i such that if r € R and r / O d R , 

then r ^ ^ 0 for at least one i*N. 

Froof: Let J be the isomorphism from R to T. By 

definition of subdirect sum, there exists a homomorphism 

such that 1 % = S 1 for every i t N. Define by r ^ ^ e ^ r ^ 

where r^ = r-^J, r^ 6 and r^ t R for i £ N. If r^ ^ r!J * then 

r' / rl . But © is a raapping and $ is an isomorphism, then 
*• <C X 

rl ^ v2 ' ^ e n C 9 is a mapping. For any r^f there 

I $ IT 
exists at least one T such that r-j© = • But 6^ .̂s 
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onto and $ is an isomorphism for every r^ in T, thus there 

exists a in R such that r-^ - . Hence for every r2 € Si 

there exists at least one r* 6 R such that is an onto 

j. " A " 
mapping. Let r^»r2 6 R s u c b that and r2f±=r2 ' T h 0 n 

^ r l + r
2 ^ i

 = ^rl+r2^' 0i 

= Oj+^isj ®i 

= (r1-f +s TjS)
0! 

* (ri r2 ) ei 

= riei + r2ei 

~ , and 

= (rl"I'2)' ei 

~ ('rl"r2'^]®i 

= •Jr2J)el 

= <rI s r2>®1 

= r{Q1 • r!,®. 

= rlCi ' r2ti • 

Hence <j)̂  is a homomorphism from R onto for i 6 N. If r^f R 

and r^y 0, and since £ is an isomorphism and r = r ^ 6 T, where 

r ^ 06 T, then for some i ̂  N r ^ ^ f 0^6 S^. This completes 

the proof of the lemma. 
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Theorem 3-9. Every Boolean ring B is isomorphic to a 

ring of subsets of some non-empty set. 

Proof: If B is a Boolean ring, by theorem 3-7# B is 

isomorphic to the subdirect sura T of fields 1/(2). By lemma 

3-3» since B has a representation as a subdirect sura of 

fields 1/(2), then there exist homomorphisms <|)̂  of B onto 

1/(2) such that if r 6 B and r / 0 c R, then r<J>̂  f- 0 £ l/(2) 

for at least one i 6N. Let H be the set of homomorphisms 

of B onto 1/(2), that is 

H = {$±1 1 t H } • 

By lernma 3-3$ if a € B and a / 0 £ B, then a^j^ 0 for at least 

one i 6 N. For every a€ B there must be either a ^ = 0^ or 

a^i = 1^. Let 

H a = { ti / ~ an(^ i £ N ] . 

Suppose Ha f H^. Then by definition, a(jh ^ b<J)̂  which 

Implies that a / b for 6.. is a mapping. Hence a —> H is 
X 

a mapping from B to a certain subset H & of H. Since ^ is 

an onto mapping from B onto l/(2), i tK, then for any subset 

of H there exists at least one element in B such that the 

mapping from B to the subsets of H is onto. Suppose H a =11^. 

By definition, a ^ = b ^ and a ^ - b ^ = 01. Since (Ĵ  are 

homomorphisms, then 

(a-b)^ = 

a-b = 0 ± 

a = b 
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Therefore, the mapping from B onto 1/(2} is one to on9. 

Since (a*b)<j)̂  = a ^ «b(j)j and (a«b)(}ŝ  = 1^, then a(Jh ~-l̂  and 

b(j)j=l̂ . It follows that ^ k Hg and (j)̂  y if Eence 

Hab ~ Ha
nHb ~ Ha'Hb* P o r ^a+b'ti " ^ i + a n d (a+bjt^l^, 

either a^=l^ and. h^-0^ or 3^=0^ and b^-lj can be obtained 

It follows that (ĵ  t H , <f>̂ | or j)̂  $ E&, H^. Define 

t i ~ 6 ( x J x ^ - ^ a a n d x $ K b o r x $ H a a n t ^ x 6 * 

then (j)̂  fc Hfl + which implies that 

Ha+b s (HanHi)u(H;nHb) = Ha + Hb . 

Therefore, the mapping from B to the subsets of H is homo-

morphic, and the mapping a —> Hfl is an isomorphism. 
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