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CHAPTER I
INTRODUCTION

The comparatively new field of neutron physics has introduced many
problems arising from the detection and quantitative measurement of
these minute nucleons. It has become necessary to investigate and
evaluate by theoretical means some of the errors which arise from the
inherent qualities of the materials used in experimental procedures.
An important method of obtaining neutron measurements has been the use
of foil materials which absorb neutrons and subsequently become radio-
active. The rate of emission of product particles from the reaction
may be measured, and from a knowledge of thé absorptive qualities of
the detector an estimate of the incident neutron flux can be obtained.

Because of the absorptive qualities of a detector, the neutron
density to be measured will be lcwered.1 The ratio of the average
neutron current density incident on the surface of the detector to the
average current density in the same region in the absence of the de-
tector is defined as the foil depression factor. By the use of the
depression factor a compensation for this error may be made. If the

detector is placed in a flux of fast neutrons, the neutron density is

1. Bothe, Zeit. f. Phys. 120, 437 (1943).



only very slightly depressed, since the supply of neutrons is con-
stantly replenished;? but if the detector is placed in a flux of
thermal neutrons, the depression may be considerable.

A treatment of flux depression due to a spherical detector has
been presented by Bot;he3 and revised by Tittleh to fit more nearly
experimental results. Cor'inaldesiS investigated the depression for a
vlain infinite detector. These authors also presented associated
solutions for disc-shaped detectors. Workmané calculated depression
factors for disc-shaped detectors using oblate spheroidul coordinates.
Trammell ,7 using solutions of the diffusion equation in oblate spheroidal
coordinates which did not depend upon the density inside the detector,
calculated a foil depression factor for a disc-shaped detector which
agreed with the experimental data of Bothe.

Workman and Trammell, with whom the writer has had the pleasure
to work personally, worked more in an exploratory mammer, making many
of the "blind alley® calculations and investigating many less profit-
able numerical methods, thereby making a more straightforward task of

the determination of foll depression factors. The generalized data

°Tbid., L37. 3vid,, L37.

be, w. Tittle, Nucleonics 9, 60 (1951).

5E. Corinaldesi » Nuovo Cim. 3, 131 (1946).

6B. J. Workman, "A Method for Calculating Foil Depression Factors,"
Unpublished Master'!s Thesis, Department of Physics, North Texas State
College (June, 1953).

7M. R. Trammell, ""Neutron Density Depression Due to An Oblate
Spheroidal Detector,® Unpublished Master's Thesis, Department of
Physics, North Texas State College (January, 1954).



which are presented in this thesis are the culmination of the deter-
mination of the foil depression factor using oblate spheroidal co-

ordinates.,



CHAPTRRE il
THRORY

~

1. The Density Function

The measurement of a neutron flux by means of a detector is made
difficult by the fact that the very presence of tne detector depresses
the flux in its vicinity, thus leading to a low response by the detector.
This depression is dependent upon the size, shape, and composition of
the detector. The medium between the neutron-source and the detector
also has a considerable influence on the degree of depression. The
absorption of neutrons both within the detector and intervening mediunm
is dependent woon the energy of the neutrons as well as upon their

direction.

1.1. The general sclution.--let us consider an infinite homo=-

geneous medium which produces neutrons at a rate & neutrons per second
per cubic centimeter and which may absorb them. t us further assume
that these neutrons arc in thermal equilibrium with the surrcunding
medium. It is then possible to assume an average energy for the

neutrons. The neutron density in the medium is given byl

[FEvees]r.q, (1)

1S. Glasstone and M, C. Edlund, The Elements of Nuclear Reactor
Theory (D. Van Nostrand Co., inc., New York, 1952), first editiom,
Pe TO%.




where EE is the transport mean free path, anc:léaL is the macroscopic
absorption cross section of the medium. If a detector were introduced
into the field, the equation for the density in its interior would be
analogous.

A disc-shaped detector can be satisfactorily approximated by
oblate spheroidal coordinates.2 In this system the shape of the de-
tector is determined by p which fixes the eccentricity of an ellipse,
and by f the interfocal distance of the ellipse which determines the
radius of the detector for a given g. Rotation about the minor axis
gives the desired effect of a disc. Figure 1 shows the relation between

the oblate srheroidal and the rectangular coordinate systens.

X = 3f coshy sin® cosg
8 = const.
¥ = 3f coshy 8ind sing

Z = %f sinhy cosb

-—5\\\\\\\ . = distance between foci
_.MM,/////]///) = 2(a2 - bz)%
-

P 2a « major axis

2b « minor axis

axis of rotation

Fig. l.--Coordinate system

%, M. Morse and H. Feshbach, Methods of Theoretical Physics,
Part II (McGraw-Hill Book Co., New York, 1953), first edition,
p. 1502.
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In cblate spheroidal eoordinates Egq. (1) becomes

1 6 8" b 6 bt. v R
L2 cosrp O, 2 O LI TI N
ot &) cos Bt o s SN0 gE - of(eosTy v 8inh%u)e w 0,

. 2L/ i
where ¢ « ¥ - & and ©%¢ 4 ngq;x, £,
,. sl-xE
2 £
Ascurdng the product solatinsn
¥« R{s) 3(0)
and sepuratiyg tle oguations, we et
! d di 3 o
T gp— o g w | + ~tgdoaht Y )
;’D{(!}&L d“ cary a;a‘; L‘b S M }L/h s O
:‘ . $ 4 \V}:’\ o)
siad 30 gind 5 + (B~ c%cost@)3 4 o,

where B is the separatior coustant. Making the substitutions
£ = 1 sinhp and i, . Cuel

we get for the se arat=d eguetions

; ‘ R -3 ;
s kiaff;g; +4hmu2g‘)ki,«)
e LU

d 2 dS ?
¥, (1 - ﬂ")“a;fj B = Cé"';‘z)s = O«

(3)

(L)

(6)

(7)



Thése equations are seen to be identical. Their gemeral solutions
will, of course, be the same, but the ranges of the two variables are
different, since i0, £ £ i0and - 1£n £ + 1, The solutions to
be used will differ, since they must be analytic in different regions
of the complex plane.

When c? 0, Eq. (6), or Eq. (7), is simply Legendre's equationj

hence we try to find solutions in the forﬁ
R 2m Iy QO (£) (8)
5 =2 sy Pn(n), (9)

where P_(n) and Q (&) are legendre polynomials. These particular
choices are made since im(n> is well-behaved for - 1% n% + 1,
whereas Qn(£) is not§ and Q (%) is well-behaved for all pure imaginary
positive £, whereas P i7) diverges at v = 100. If we substitute

Eq. (8) into Eq. (6), we find that the coefficients Iy satisfy the

equation

£(mr, o + [g(m) = Bl + h(n) 1y = O, (10)

where

, 2
mim = 1)c
O TR

(?_m2 + 2m - 1)4:2

eln) = T a3y a1

h(n) . (¥ 2)(m + 2)e?
= T@n+5)(2m + 37




The coefficients s, satisfy the same equation since the gm's satisfy

the same recurrence relations as the Qm's.

For the case c° = 0, Eq. (10) reduces to

B - m(m + 1)] r, =0,

which implies that unless B = k(k + 1) where k = 0, 1, 2, . . . ,

all the r 's vanish, If B = k(k + 1), ry = 0, if m ¥ k, but r, is

arbitrary, as it must be since our differential equation is just

legendre's equation in this case.

solutions of the system

[g(0) - H rg * h(O)r2

: f(2)r0 + [g(2) - B]r2 + h(2)rh

In order that the system of Eq. (11) be compatible

In general the _x_:m's will be

=0

=0

£(h) r, + [g(h) - B r, *+hll)r, =0

determinant must vanish, that is,

g(0) - B
£(2)
0

0

h(0)
g(2) - B
£(4)

0

0
h(2)
g() - B

[}

0
0

h(l)

©

c . (11)

its secular

= 0. (12)



Let us denote the infinite set of roots of Eq. (12) by
By, B B2, e ey Bk’ .. Let us call gﬁ the set of r,'s
corresponding to Ek" The system of Egs. (11) determines the ratio
of the gﬁ's only; one member of each sst is still arbitrary. We see
that for even k only even m's occur, and for k odd only odd m's occur.
The secular determinant, for the case when c2 = 0, reduces to the

infinite yroduct

k = 00
l | (kik + 1) - B} = 0, (13)
k=0

and the roots By are simply B, = k(k + 1) just as we had expected.
In this case d% = 0 unless m = k, and is arbitrary in this case. For

reasonably small values of 32, we expect gﬁ to be the most important

menber of the set g%. Iet us set

B = k(k + 1) + by, (1)

where Ek is a function of 52 and tends to zero with g?o Consider

the matrix in Egs. (11) constructed around the Kt row:

£(k - 2)dfy + [e(k = 2) = B)dfn + n(k - 2)af = 0

| ) (15)
£(k)af_, + [20) = B df + h(k)dg,, = 0

k k, K
£+ 2)d + [(k + 2) - BIdf,, + h(k + 2)afy, = o.



For reasonably small values of 32 we can solve Eqs. (15) by assuming
the expansion of Eq. (1) and by retaining only g:; with m = k,
k+2, k+l in Eqs. (15).

For ¢ tending to zero the functions Ry must béhave in the same
manner as Q. and the functions §.1< mist behave as Eko For this
reason we pick c_i.ﬁ in each case such that R (0) = Q(0) for even k,
and %E Ry(0) = %E Qk(o) for odd k. An analogous choice is made for
the functions S;. This also insures that §-k and ?-k will match at the
boundary u = O.

Finally, the solution exterior to an oblate spheroidal detector

can be expressed in the form

¥ = %, + 2 AR (£)S(n) (16)

where the é_k's must be chosen so as to satisfy the appropriate boundary
éonditions, and Y, is the solution in the absence of the foil

(YO - Qg). It will prove more convenient to define ¥ in terms of

\

the constants Ck = %, that is to say,

%
- Ry (&) X

Due to the symmetry of the foil about its central plane, only the

even functions of n can be allowed; hence we may rewrite Eq. (17) as

¥ = Yo(l +32, 00 Rox(&) )) ’

P ()] Soiln (18)

and the summation extends over all positive integral vélues of k.
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1.2. The boundary conditions.--In order to achieve unique

solutions we must insure that both the neutron flux density and the
neutron current density are continuous at the boundary of the medium

and the detector. By the use of the construct of the ''albedo," which

is defined for a surface to be3
¥ 2>\t oy
3 on
a = ) (19)
26 0¥
¥ o+ — —
3 &n

where n is a coordinate in the normal direction to the surface, we
may insure these continuity conditions. Physically, the albedo of a
surface represents the probability that a neutron will be reflected
upon striking the surface. In the case of a diffuse thermal field
it can be shown that this definition is equivalent to the reflection
coefficient calculated from current densities as in Eq. (19). The
albedo of a foil can be determined experimentallyeu For thin foils
we may designate the effective thickness by p = g = O or

§ =&y =0, that is to say, negligible thickness with a finite

absorption. Under this assumption, we getS

6?: i
gl <§g) Ceo (20)

Jg1asstone and Edlund, op. cit., p. 130.

brpid., p. 129,

5Morse and Feshbach, op. cit., Part I, p. 662.



12

A substitution of Eq. (20) into Eq. (19) yields

(1 - a)¥(0,n) = .?_%‘i gﬁlﬁ %o,n) . (21)

R 2 (1 +a
With the definitions p = X{ and B = I Crtr‘) , BEqe (21) reduces to

|*ll ¥(0,m) = ip 8%' ¥(0,m). (22)

In writing Egs. (19), (20), and (21) we have neglected the
"exprapolated end point! or "augmentation distance."6 We shall see
later in Chapter III that the magnitude of this correction will be

determined for us in a rather striking fashion!

1.3. The final solution.--The results of Sections 1,1 and 1,2

may be combined to yield the density function for the medium surround-

ing the detector. Substitution of Eq. (18) into Eq. (22) yields,

dR oy (0)

|”| *# 2y Cop |0 Spi(n) = %g'zk Cok ~4d S,,.(0). (2
—§E;%57—— 2k 3)

Multiplication of Eq. (23) by SZk(n) and a subsequent integration

over 1, gives the set of equations

6Gla:ss’c,une and Edlund, op. cit., p. 10L.
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\
| L ] o= « o .
2 (Kmk * B Cox = 7 2lapr m 7 05 s 25 ’ (24)
where
£ =3 3 a¥ag Nk = 25, agX,»
—mk P<q 2 29 "pq 2k (2)?
Lp+1
1 5 2m
Ipq 6 z 2p " 2q dz LmO Zp dgp Ipo
: O, m¥k
2 QETC) “ly m =k

bgs. (24) form a set of inririte equstions which for all practical
rurposes may be approximated by the Lirst five terms Cg, Co, Ch’ Cgs
and ClC' A high speed computer may be used for this matrix solution,
or if such 2 computer is not readily svailable, one may use the
method of iteration. This iteration is successfully performed if

Egs. (2L) are written

‘(21‘00*301‘:2*302%*30306*?%%*§o5C10>




- (2L20 * Ky Co * Ky Cp + Koy G * Ky, Cg * Kpg Clq)

C, = A
L4 —
£2 ¥ P
c
G = B (QLBO * Ky G * B3y Oy Ky O+ Ky Ot Eys 15)
AN
K
/.
o = 170 TR0 % " i %2 Be % T s B T s Clo)
K * P

. (21‘50 * Koy G * Koy Oy * Ky O + Koy Cp Ky °8> ,

Ky *+ Brog

where we have solved the first equation for CO, the second eguation
for 02, the third equation for Ch’ eteco To a first approximation we
solve the first equétion for Cy neglecting the coefficients

Cos Ch’ C6’ 08, ClO' This value for Cy is substituted into the
second equation and 02 is gotten, neglecting the terms containing
Ch’ Cgs Cgys and ClO‘ This process is repeated until a single value
is gotten for all the coefficients Czk‘ The values of

02, Ch’ Cé, 08’ and Clo are now substituted into the first equation,
and another, more accurate, value for Co is obtained. Successive
substitution and re~evaluation will give the coefficients to the

accuracy of the original matrix elements when a repetition of the

values of C2k occurs.



2. The Foil Derression Factor

The number of neutrons absorbed by a foil is proportional to
the nunber of neutrons falling on its surface; therefore the flux
depression is also proportional to the number of incident neutrons.
The foil depression factor is always less than unity and is defined
as the ratio of the number of neutrons actually lncident on the
surface @ = 0 to the number of neutrons incident on the surface if
no detector is present. By the use of the definition of the current

density the depression factor F becomes

!
: £ 2
%J?IUIY(O,T)) * ‘j')\t gg(o,n) dn .

1 £
**/;lnlyodﬂ

-
Using the results from Sections 1.1, 1.2, and 1.3, we get for the
foil depression factor

( (0)
2 R, (0) 2n
F=1+2 ¢ (K _+% 20 d). 27
Loy -m0 3P B0y~ 0 (27)

In Chapter III F is calculated for several values of the
variables shown in Eq. (27).



CHAPTER III
NUMERICAL RESULTS

In the preceding chapter the general theory of the solution of
the diffusion equation and the subsequent determination of a foil
depression factor were presented., Numerical calculations have been
made with water as a medium for variable foil albedos from 0.5 to 1.0.
By a slight adjustment of parameters it is possible to convert these
deta to a medium of paraffin or of graphite. The numerical tabulation
in Section 2 is rounded off to four significant figures for brevity.
Més£ of the calculations were originally carried out to eight significant

figures.

1. General Parameters
From the results of Chapter II, Section 2, it is apparent that
F is dependent upon the Cox's, p = %E’ and the gg'so The gﬁ's and
the 92
albedo a of the foil. From Section 1.1 we recall that c¢? ':323.25 R

k's are in turn dependent on 22. The EER'S depend also upon the

where _Za and -Ze refer to the medium. In order to tabulate numerical
results from Chapter II in a useful form, it is necessary to compile

this collection of variables into a set of dimensionless parameters.

16
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After many "trial and error' sets were tried, the set c, &, and a2
were found to be best suited for purposes of tabulation.

A choice of the medium surrounding the foil fixes & which is
defined as a2 =3 an . A selection of ¢ and & in turn fixes R
since ep = c. Finaliy a selection of the albedo a fixes the other
variables of the problem. The numerical calculations have been made
for water (€ = 0.154), for 0.5 £ a £ 1.0 in steps of 0.1, and for

0,04 ¢ £1,0. A glight adjustment of the parameters made it possible

to adapt these data for paraffin and graphite as well.,

2 Method of Calculation
A "flow diagram’ was made showing the order in which calculations
were made and the component quantities of each factor. It was found
that a diagram such as this is very helpful when cumbersome numerical
data must be evaluated; duplication of factors is eliminated and a

clear, although sometimes discouraging, understanding of the problem

is obtained. The flow diagram is shown in Figure 2,

The separation constants gm are tabulated in Table 1.



wex3eTp MOTJI--*2
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TABLE 1
THE SEPARATICN CONSTANTS By
m .1 02 ol o5 .6 o8 1.0
L | 20,0051 | 20.0203 | 20,0811 | 20.1267 | 20.1814 | 20.7249 | 20,7160
6 | 42.0891 | L2.0201 | L2.0605 | 42.31253 | L2.1812 | 42.3223 | L42.5038
8 | 72.00L8 | 72.01%4 | 72.0775 | 72.1211 | 72.174u | 72.3102 | 72.L8L6
10 | 116.0050 |{110.C200 |110.0802 |110.1253 | 110.180% | 110.3208 |110.501,
The values of r(m}, glu), uim), p.(0), i,n((;), and Q ..m (0) are tabulated
in Table 2,
TABLE 2
o T PR I
THE JALTES £(m); g(m), him), P (), ot 0)s AND (G (0)

m | f(n)c? g(r) tinde Pm(O) iQm(O) iQ;n(O)

c 0 .3333¢ .1333 1.0000 ~1.5708 1.0000

o | .o6e7 €+.5238¢° .1505 - . 5000 7854 | -2.0000

Lol o.3a29 20+, 5065¢° ,2098 37:0 - 7890 2.6667

6 | .3030 L2+.5030¢2 $21%6 - .317% L4909 =3.,2000

, S .. »

8 | .2872 72+.5018¢" 2954 22734 - 4295 3.6571
10 | .2786 | 1104.5011c2 2296 - .2L61 3866 | -4.0635
12 | .2733 | 156+.5008¢2 2321, 2256 | - .3543 | L.L329




20

f

The coefficients Qﬁ are tabulated in Table 3. It was necessary
to use more than the diagonal term and the two immediately adjacent
terms in some cases. (See page 21.)

i
The values of Ro,(0) and gzm(o) arc tabulated below in Table .

TABLE 4

THE VALUES OF Rpp(0) AND R'pp(0)

el 02 oh 05‘ 06 08 loo

~iRg 1.5708 | 1.5708 }1.5708 | 1.5708 | 1.5708 | 1.5708 | 1.5708

iR, 7853 | 7854 | .7854 | o78SL | 7854 | 7854 | .785L
-iR), «5890 .5890 5890 .5890 5890 5890 05890
iRy 4909 | L4909 | WL909 | L4909 | .L909 | L909 | 4910
~iRg <4295 | L4295 | .h295 | 4295 | 4295 | .L295 | L4307

iRyg 3866 .3866 .3866 . 3866 3866 03866 3866

iR 1.0017 | 1,0066 | 1.0264 | 1.0410 | 1.0587 | 1.1026 | 1.1569
-iR, 2,0004 | 2.0037 | 2,0153 | 2.0239 | 2.0345 | 2.0612 | 2.0959
iR, 2.6670 | 2.6680 | 2.6722 | 2.6753 | 2.6791 | 2.6888 | 2.7011
-iR, 3.2002 | 3.2008 | 3.2031 | 3,208 | 3.2070 | 3.2124 | 3.2200
iRg 3.6573 | 3.6577 | 3.6592 | 3.6603 | 3.6018 | 3.665L | 3.6799

niRiO .0636 | L.0639 | L4 0650 | L.0658 | L.00668 | 4.0693 | 4.0728
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The factors Yom and Ezm are shown in Table 5.

TABIE 5

THE FACTORS Yom AND sz

.1 .2 A .5 .6 .8 1.0

g .6370 .6380 6420 . 6LL5 .6482 . 6558 . 6640

Yy .5095 .5113 5175 .5222 .5279 .5h27 5624
Y .5031 .5035 .5051 .5063 .5078 .5115 .5163
7 .5015 .5017 5024 .5030 .5037 .5054 5078

A\ .5009 .5010 <501, .5017 .5021 .5031 5071

110 .5006 .5007 .5009 .5011 501y .5020 .5029

N, 1.9978 | 1.9911 | 1.9652 1.9461 1.9235 1.8684 1.8030

N, .Looo | .4o08 | .LO3k .L053 .L076 .L136 -L21)
N, 2222 | L2223 | L2227 .2230 .2233 .22l . 2252
N .1538 | .1539 | .15L0 -1541 L1542 <15k <1548
Ng 176 | L1177 | L1177 L1177 .1178 L1179 .1187
Nig | -0952 | .0952 | .0953 -0953 .0953 -0954 -0955

The factor B relates the albedo and the dimensionless radius.

These values are listed in Table 6.
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TABIE 6

THE COEFFICIENTIS B

a 1 .2 b .5 .6 .8 1.0

.5 3.0600 | 1.5400 L7700 . 6160 .5133 . 3850 . 3080
L6 | L1067 | 2.0523 | 1.02€7 8713 68l 5133 4107
o7 5.8178 | 2.5089 | l.u45LL 1.1635 5696 <7272 5818
3 9.2400 | 4.6200 | 2.3100 1.8430 1.5400 1.1550 «S240

.9 119.5067 | 9.7533 | L.8767 3,703 3.2511 2.4363 1.9507

Table 7 is a tabulation of the integrals I .. It is obvious from
symretry that I, = I...

The coefficients K, are also symmetric so that it is only
necessary to tabulate a portion of them. They zre tatulsted in
Table 8.

A coefficiert related to K is Emo which is tabulated in
Table 9.

The foil derression factors F for water medium are tabulated
in Table 10.

The fcil depressicn factors for media of paraffin and graphite
may be obtained from Table 10 using the adjustments for ¢ and a as

shown in Table 11.
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TABIE 8

THE COEFFICIENTS Kmn

m N .1 .2 ol .5’ .6 .8 1.0
00 4992 0967 L4869 4798 714 509 L267
10 J2h9 | .12u8 | .12k | ..1234 1229 | L1212 | L1193
20 0208 | -.0209 | -.0210 | -.0211 | -.0212 | -.0215 | -.0218
30 .0078 .0078 .0078 | .0078 .0079 | .0079 | .0079
4o .0039 | -.0039 | -.0039 | -.0039 | -.0039 | -.0039 | -.0039
50 .0023 .0023 | .0023 .0023 .0023 .0023 .00289
11 .1251 1254 <1267 +1276 .1288 L1317 .1356
21 | .0339 | .0339 | .03u0 | .03u3 031 | L0343 | .03L6
31 | -.0062 | -.0063 | -.0063 | -.0063 | -.0063 | -.006L | -.0065
L1 .0025 .0025 .0025 .0025 .0025 .0026 .0026
51 | -.0013 | =.0013 | -.0013 | -.0013 | -.001L | -.001k | -.c0L
22 .0703 | .070k .0705 0706 | L0709 | L0711 | .0716
32 .0202 .0202 .0202 .0202 .0202 L0203 | 0203
u2 .| -.0037 | -.0037 | -.0037 | -.0038 | -.0038 | -.0036 | -.0038
52 .0015 | .0015 0015 | .0015 .0015 0015 | L0015
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TABIE 8--Continued

commmt

= — -
mn 1 .2 o .5 .6 .8 1.0
33 | 0BG .0488 .0L8Y .0u89 .| .ou%0 .0491 0492
L3 | .0LL5 O1U5 L0L45 OIS L01L5 L0LL5 016
53 | -.0027 | -.0027 | -.0027 | -.0027 | -.0027 | -.0027 | =-.0027
ul 02374 0374 L0374 <0374 .C374 0375 .0378
Sho| .Cl113 L0113 0113 7113 .0113 011y 011k
55 0303 0303 .0303 0303 .C303 .0303 -0304
TABLE 9
THE CIEFFICTETS Lo
< .l T“ 2 i oL ; T j{ .6 .8 1.0
. ha
0 L9 L0 RICET a9t | L uasy L7k .46
1 .1251 L1256 L1274 <1287 | .1303 <13L4 L1397
2 | -.,0208 | -.0228 | -.0706 | -.02C5 | -.0203 | -.0199 | -.0193
3 007t .0078 .08 0078 | .0078 .0077 .0077
4 | -.0039 | -.0039 | -.0039 | -.0039 | -.0039 | -.0039 | -.0039
5 .0023 0023 0023 .0023 .0023 .0023 .0023




THE FOIL DEPRESSION FACTORS FOR WATER MEDIUM
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TABLE 10

C
x 1 .2 A .5 .6 .8 1.0
.5 | 1.046L .8635 .6552 5924 5467 L4895 | JLb22
.6 | 1.0367 .8871 . 7026 6433 .5988 5408 | .5113
.7 | 1.0271 L9127 . 7580 . 7048 . 6633 L6068 | 5757
.8 | 1.0179 . 9399 .8238 . 7800 L7452 L6945 | L6642
.9 | 1.0088 . 9689 . 9029 .8759 .8527 .8169 | .793L
TABLE 11
PARAMETER ADJUSTMENTS FOR F
Water Paraffin Grapnite
¢ 1 ' 106 : .35
.2 .212 .070
Wi 423 .140
.5 529 174
.6 .635 .209
.8 .8Lé 279
1.0 1.058 <349
a .5 .520 .022
6 .617 .165
.7 71 .328
.8 .810 517
.9 . 905 <737
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The graphs of foil depressior factor F versus ¢ for constant a
for water, paraffin, and graphite are shown in Figures 3a, La, and %a.

Plots of F versus a for constant ¢ are shown in Figures 3b, 4b, and 5b.

3. Discussion of Results

The augmentation distance that was referred to in Chapter II,
Section 1.2, may be readily obtained from Figures 3a or La, It is
obvious from these graphs that for all values of albedo there is
effectively no depression for ¢ = 0.13. This can be interpreted as
implying an effective augmentation distance of ¢ = 0.13, which in
turn eorresponds to O.BOlt. This value is intermediate to the value
of 2/3 A, for a plane surface and the value of L/3 Ay for a surface of
infinite curvature.l In using the curves of Figures 3, L, and 5, for

experimental corrections one should compute ¢ from the relation

c= 0,13 +

17

where R is the actual radius of the foil.

The data of Bothe have been plotted in Figure 6 and the correspond-
ing theoretical data are shown. By choosing ¢ to correspond to the
disc radius of 0.7 cm. and 1.4 cm. values of F were found for different
a using Figure ha. It can readily be seen that the experimental and

theoretical results check to within the accuracy of the experiment.

lo1asstone and Edlund, gp. cit., p. 10L.
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Fig. 3a.-~F vs. ¢ with constant a (water medium)
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Fig. 5b.-=F vs. a with constant ¢ (graphite medium)
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CHAPTER IV
CONCIUSIONS AND SUGGESTIONS FCR FUTURE STUDY

The results of this paper show that a depression factor can be
determined which corresponds to the experimentally determined depression
factors by Bothe. However, the experimental data are not extensive and
further work on experimental depression factors should be made.

Agreement of theoretical and experimental data indicates, to some
degree, the validity of the "eimplifying" assumptions which wers made
in Chapter II. The approximation that a disc could be considered as
having a negligible thickness but a finite absorption was quite helpful
and does not seem to introduce any large errors in the final results.

A theoretical verification of the augmentatibn distance of 0.80n

for these geometries would be exceedingly interesting.
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