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Landau's theory of guantized hydrodynamics ls derived
using the current algebra approach to nonrelativistic quantum
mechanics. Upon reviewing Landau's theory, his result fof
the velocity=-veloclty commutator 1s shown to have the wrong
slgn, and his result for the equation of motion of the veloclty
operator is shown to be incorrect. The quantum mechanlcal
Hamiltonian is written in terms of density snd veloclity. An
explicit expression is obtalned for the term in Landau's
Hamiltonlan which corresponds to the internal energy of the
boson fluid. In additicn to the terms in lLandau's Hamiltonian,
the quantum mechanlcal Hamiltonlan contalns a quantum pres-
sure term. The equatlion of motlion obtained for the velocity
operator thus contains a quantum pressure term. This term has
exactly the same form as that obtained using the Gross- |
Pitaevsgkil equation. The Fock space reallization of the current
algebra 1s used to show the nonexlistence of the phase operator
and the inverse density operator. The coherent state repre-
gsentation 1s used to show that the veloclty operator is the
gradient of a potential operator. The derivation of quantum
hydrcdynamics from the Gross-Pltaevskil equation 18 shown to
glve equatiéns of thé same form as the current algebra
derivation, with the equations being written in terms of

functlions rather than operators.
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CHAPTER 1
INTRCDUCTION

In 1941 Landau developed a theory of quantized hydro-
dynamics.1 Thls was included 1n the same paper with his
famous successful phenomenological explanation of liquid
helium, which predicted the exlstence of second sound in
helium II. The two sectlons of hls paper were apparently
unrelated.

More recent attempts have been made to obtain a guantized
theory of hydrodynamics similar to Landau's by approaching
the problem through the many-particle Schroedinger equation.
This renewed interest in quantum hydrodynamics has been
stirred by the success of current algebra in describing
strongly interacting particles, or hadrons.2 In attempting to
formulate theories of quantum mechanics in terms of densities
and currents as the dynamical variables, authors2 have chosen
nonrelativistlec quantum mechanics as a testing ground for
their theorlies. If a theory ls to be applied to high energy
physles, it should first be shown to describe correctly
nonrelativlistic quantum mechanics, where the dynamical equa-
tlon is the Schroedinger equation. This interest in guantum
mechanlecs using currents and densitles as variables naturally

leads to a renewed interest in quantum hydrcdynamics.
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The quantized hydrodynamical theorles are written in
operator form. To obtain a complete description of quantum
hydrodynamics, however, the theorles must be cast in terms
of expectatlon values. No one has yet done this with theories
derived from the many-particle Schroedinger equation using
the current algebra approach, because elgenstates of the
Hamiltonian written in terms of the density and current or
velocity are unknown. Hydrodynamical theories written in
terms of operators are called quantized hydrodynamics in
this paper, while theories written in terms of expectation
values are called quantum hydrodynamics.

All of the theorles of quantlized hydrodynamics reviewed
in thls paper contaln mathematical defects. The quantization

procedure used by Landau1

to obtain & quantum mechanical
Hamiltonian from the expression for the energy of a classical
fluid is dublious, since he did not use canonically conjugate
coordinates and momenta. The derivetions of quantized
hydrodynamics from the many-particle Schroedinger equation
rely upon the use of nonexistent inverse fleld and density
Operators.3'h Some of the theorles are derived using manipu-
latlons of operators that are not even formally correct,

such as replacing operators with functions to facilitate
rearranging the order of the operators. No one yet has suc=-
cessfully derived Landau's quantized hydrodynamics from the

Schroedinger equation.



The object of this paper is to derive Landau's theory of
quantized nydrodynamics from the many-particle Schroedlnger
equation. Landau's results are obtalned, together with an
additional term in the Hamiltonian. This term leads to a
quantum correction in the equation of motion for the veloclity
operator, which is a quantum pressure term in operator form.
One term in landau's equation of motion for the velocify
operator1 is shown to be incorrect. Although the derivation
used contains the inverse density operator, the manipulatlons
are formally correct.

The most satisfactory derivation of quantum hydrodynamics
from the many-particle Schroedinger eqﬁaticn‘to date seers to
be the derivation from the Gross-Pitaevskil equation.5'6 This
derivation gives hydrodynamical egquations which are written
in terms of functlons. The Gross-Pltaevskll equatlion approach

7

is a rigorous one. Although the flnal result 1ls an approx-
imation, the neglected terms are known, and could in theory
be calculated.

Landau's theory of quantized hydrodynamicsl

1s reviewed
in Section II, and a correction is made to hls equation of
motion for the veloclty operator. The current algedbra formu-

lation of nonrelativistic quantum mechanicsz’8’9’10

is
reviewed in Section III and shown to be of doubtful validity.
Landau's quantized hydrodynamics is derived from the current

algebra approach to the many-particle Schroedinger equation



in Section IV. A theory of gquantized hydrodynamics in terms
of density and phase operators3 is also reviewed in Section
IV. 1In Section V the Fock space form of the hydrodynamic
operators 1s shown, and the inverse field and inverse density
operators are shown not to exist in Fock space. In Section
VI an expliclt form of the veloclty operator as the gradient
of a phase operator 1s derived in the coherent state repre-

sentation.11

Section VII is a review of the Gross-Pltaevskii
equation approach to quantum hydrodynamics.5'6'7 Section VIII
presents the concluslons. The systems discussed in this paper

are boson systems.



CHAPTER II
LANDAU'S QUANTIZED HYDRODYNAMICS

In this section a review of Landau's quantized hydro-
dynamicsl is presented for completeness and for comparison
with more recent work. lLandau's quantization procedure 1is
explained first, and then his operators are defined. The
commutation relations for the operators are given, and these
relations are used to develop the Helsenberg equations of
motion for the operators.

Landau's gquantization procedure consists essentially of
substituting operators for the density and veloclity functions
in the classical expression for the energy of a unit volume
of a 11qu1d.1 This substitution results in landau's Hamiltonlan
density. The Hamiltonlan operator 1s then the volume integral
of the Hamiltonlan density. This quantization procedure 1is
somewhat dublous for the reasons which are explained next.

The usual quantization procedure for quantizing a clas-
sical equation is to replace the canonical coordinates and
momenta 1ln the classlcal equatlionwith the corresponding
quantum operators which satisfy the canonical commutation
relations. If the classical density is taken to be the
generallized coordlinate, then the velocity is not its conjugate

momentum. The density and velocity operators are thus not

5



canonical, so we cannot use the usual procedure of field
quantlizatlon.
Landau defined the denslty operator /3(5?) for a system

of N identical particles asl

/o(x) Z § (x- v (2.1)

where m is the mass of a particle and Fl i1s the position
coordinate of the ith particle. The current density operator

':):‘(;“() 1s defined as
N
T(x) Z LP [(x r)+(5-(x -7) PJ ) (2.2)

where FJ. l1s the usual momentum operator,

In this paper the terms current and density will always refer
to mass current and mass density, respectively, rather than
to particle current and particle density. These definitions
give operators which have the same form as the density and
current operators of second quantization in the N-particle
subspace of Fock épace. which wlll be considered later.

The velocity operator V(:‘() which Landau used in his

Hamiltonian is defined asl

<b

(R):_\i [F"(x)?(x)af%(i)/é‘"&)] ) (2.3a)



which 1s manifestly Hermitian. This definition seems reasonable
-1
untill one tries to write F (x) , which for a one-particle system

would loock like

/3"00 = @cx-ﬂ] ) )
so that one could write

§(7-7) E(x-?,)]" =1,

Such a function would have to be infinity everywhere except
at the point X=Y, , where 1t must be zero. Since such a

function apparently does not exist, Landau's procedures which

A

A

utilize V or f-\must be taken as merely formal procedures
which are not rigorously established. It is nevertheless
possible that meaningful physical results could ultimately be
obtained by these formal procedures. Landau also wrote the
current operator in terms of the denslty and velocity opera-
tors as

T®=1 [/3@)\7(2) + \7(70/160] : (2.3b)
2

This equation may be consldered as an implicit definition of
%(ﬁ), and is consistent with Eq. (2.3a) and the commutation
relations between the operators, as is shown in Appendix A.
Once the density-density and current-density commutators are
known, 37@ may be replaced by Eq. (2.3b) in the current-

denslty commutator to obtain the velocity-density commutator.



Then the current-current commutator may be found, and this
gives an equation which may be solved for the veloclty-veloclity
commutator upon replacing §?X) by Eq. (2.3b). This procedure
avoids the use of the inverse density operator. The density-
density éommutator is obviously zero. The current-density

and current-current commutators are calculated in Appendices

B and C, respectively, and are found to be the same as_ those
obtalned when the density and current operators are written

in terms of the fleld annihilation and creation operators

of second quantization, as is discussed in Sections III and
IV. Since the current operator has the same definition in
terms of the density and velocity operators in Landau's theory
and In second quantization, the equivalence of the veloclity~
density and velocity-velocity commutators in Landau's theory
and second quantization follows immediately. The velocity=~
density and velocity-velocity commutators are given in Section

IV. The values of the commutators are given below:

“‘3(';)}]3(7) ]- o (2.4a)

E):G() , /8(71 : '_F_.\__(';U()—V_x ff(x—?{) ) (2.41)
§

j/ G«))fs(?)f h Y, £GP, (2.4¢)
{

[ A ~ ] -1 N -

V@), Ng )| 2 _1?_{(7—7) &3@)} 9\/}(70 - IV ® ) (2.44)

FBKK axx



and

[3'\4(%), Jﬂcy} - ih 73“ E&x-y) J‘K(x)] +ih P (’i~7)31(7):]- (2.ke)
"3 Uy

Equation (2.44) differs in sign from Landau's result.1
Landau obtained the Hamiltonlan density for hls theory
by substituting operators for functions in the classical

expression for the energy of a unit volume of a llgquid,
=1 ,o(?).r‘(?)*r(a(?)é(f) , (2.5)
[

where f(F) is the density of the liquid, (¥ 1is the velocity
of the unit volume of the liquid, and ﬁﬁﬂ is the internal
energy of a unit mass of the liquid.1 Upon substituting the
operators ﬁ . @ , and f(ﬁ) for the classical function,

Landau obtalned the Hamliltonian density operator
AA R
’H =_‘_V'/3\/ + /oC(IS), (2.6)
2
which 1s written 1ln a symmetric form. The Hamiltonlan opera-

tor was then obtalned by integratlion over the volume of the

liguid. .
Weld VAV 4+ plepn & (2.7)

Landau then used the commutation relations in Eq. (2.4)

and the Hamiltonlan of Eg. (2.7) to derive the Helsenberg
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equations of motion for the denslity and velocity operators.l

The equation of motion for the density operator ls

Py - = - + 2.8
25 = -V d(x) V- [f(x)\/(x) V(x)f(x)} 5 (2.8)

which is the operator form of the equatlion of continuity and
is derived in Appendix D. The eguation of motlon whilch

Landau obtained for the velocity operator 1ig

AN A ; ~{
D V; &) *ZI_ \/ (%) aV + O \/K(X) = -%(X)] _9_ d_%(ﬁ) , (2.9)
9+ Dx, O, Ixy dp

which 1s Euler's equation in operator form.
Equation (2.9) 1s shown to be incorrect in Appendix E,
where the followlng egquation of motlion for the velocity

operator 1is derived:l2

2% ® ﬁi (\7(%)-?) Y, ® +(\7 \Aé(i))‘\ﬁ/ iiq =-d d [/Dé(/o] (2.10)
o %y f

A dimensional analysis of the term on the right side of

Eg. (219) shows that 1t. has dimensions of length? (mass2

X timez) which are not the required dimensions of accelera-
tion. The dimensions in the term on the right of Eq. (2.10)
are indeed those of acceleration as required.

Two derlivations of Eq. (2.10) are given in Appendix E.
In the first derlvatlonilﬁ) is treated as a function of /§
and expanded as a power series in ﬁ‘ to facllitate calculating

its commutator with \Q(ﬂ . In the second derivation, the
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term in the Hamiltonian involving ﬁ(ﬁ) is treated as a
functional of ﬁ(z) .EIF} , to show explicitly the similarity
‘to the results that are obtained in Sectlon IV. The
functional E [[c’»‘] is defined as

Em =j/8(7)(i(/3(y)) A’y. (2.11)
The functional treatment 1s the more general of the two, and

is shown to give the results of the first treatment as a

special case. The more general result is

—

Qf/j(x) + f/(z)'V\A/K(RH(V\Z(R))' V) =-d_ ‘g_ﬂﬁl . (2.12)
Dt 2 axk Slzs(i)

Since neither ordinary differentiation nor functional
differentiation with respect to an operator is well defined,
the derivatives with respect to the density operator in Egs.
(2.10) and (2.11) must be interpreted as formal manipulations
in which the operators are replaced by functions, the 4dif-
ferentiation 1s done, and the operators are reinserted into
the resulting expression.

It is at this point that Landau's theory of quantized

hydrodynamics stops.1

It is thus an incomplete theory, since
a complete theory of observables should have its dynamical
equations in expectatlion value form. As far as we know, the
only useful application of Landau's gquantized hydrodynamics

was obtained by Pitaevskii,13 who rederived Feynman's theory
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for the energy spectrum of superfluid helium from lLandau's
quantized hydrodynamics.

Landau's original 1941 paper goes on to dilscuss other
aspects of Helium II, such as its energy spectrum, heat
capaclty, and heat conductivity.1 It was in this paper and
anotherlh in 1946 that Landau developed his famous excitation
spectrum for Hellum II which includes the "roton dip."‘ It

was also in this paper that Landau made the famous prediction

of the existence of second sound in Helium IT.



CHAPTER III

CURRENT ALGEBRA APPROACH TO NCNRELATIVISTIC
QUANTUM MECHANICS

In this sectlion the current algebra approach to non-
relativistic quantum mechanics is reviewed. First the’original
motivation for the theory is given. Then the current and
density operators are defined and thelr commutation relations
in second quantization glven. The Hamiltonlan operator is‘
then deflned, and a functional representation of nonrelativis-
tic quantum mechanics 1s developed.

Current algebras have been used to describe strongly
interacting particles, or hadrons.2 The formulatlion of a com-
plete dynamical theory of hadrons in terms of currents 1is
more physical thaniswusing the underlying flelds, since the
currents are more closely related to experimental quantitles.

A nonrelativistic quantum system of many particles was first
Investigated as a proving ground for the current algebra,
because of its simple nature and becaﬁse its dynamical behavior
i1s well known.

The current algebra approach to nonrelativistic quantum
mechanlics is related to lLandau's quantized hydrodynamics by
its use of density and current operators and its formulation

of the Hamiltonlan in terms of density and current operators.

13
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It was not originally developed as & hydrodynamical theory,
however. Thus one 1s lead to the possibllity of deriving
Landau's theory from the current algebra approach. The
theory is written in the formalism of second quantization,
which i1s natural for systems of many particles in which the

number of particles can vary.

Current Algebra
The mass density operator for a system of several inter-
acting particles 1s written a52

/S(i) = m‘?* Lx)‘i'(i)) (3.1)

where V') and YRX) are the field creation and field annihila=-
tion operators, respectively, of second quantization for bosons

satlisfying the commutation relations

-l

}P"Lﬂﬁ*(y)» = [‘i‘(x))‘i’(y)} =0, (3.2)
Yo, vy = fap. (3.3)
The mass current density operator 1s defined as
TR =Y\_h”&)(ﬁkz>)—(w*(z)) P |- (3.4)
2

The commutatlion relations for these operators are the
same as those for the corresponding operators in Landasu's

theory.2 The density-density commutator 1is
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[{5()?)) f“)(y)] = 0, (3.5)

which is derived in Appendix F. The density-current commu-

tator 1s
{{3("‘)) 3, ‘7)} -ih d. [f?@ [(7“?)} ) . (3.6)
s,
which is derlved in Appendix G. The current-current commu-
tator 1is
[@(R)ﬁ;(y)}-;’ﬁ_g_ [&x-y)ﬁ; (x)} h o P{x-y)\%(y)-! ) (3.7)

% Iy

K

which 1s derived in Appendix H. In deriving Eq. (3.6) and
Eq. (317), use is made of the 1dentity15

F® [Vy &(ﬂ)} Fq)[i, § (:-y)} 6 &-9) [V} Fq):l ) (3.8)
which is obtained by differentiating the equation
FREGEP = T d&p . (3.9)

The ldentity

[\7,( F(z)]- [Vy § (_x-y)} + F®) [Vx-ﬁy d (R-Y)]
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= FQ) V;VYJ(X~7) + Vedap + Vy Fp (3.10)

i1s also used, which 1s obtained by differentiating Eq. (3.8).
Equations (3.8) and (3.10) are quite useful in dealing with

current and density commutators in general.

The Hamiltonian in Terms of Current
and Denslity Operators
The Hamlltonian may be written in terms of the field

annihilation and creation operators asl6
A

N ) A
H=T+U+vV (3.11)

where the kinetic energy is
:_: _‘_\‘L A-} T A _ 3
V= -h YV YRk, (3.12a)
2w
the external potential 1is
Iy ~ ~
U9 " QURY® , (3.121b)
and the two-body potential is

e L POV b & &y . (3.12¢)

V(h«YD ls the two-body potential between a pair of particles,
and U(R) is the external potential at the point X .
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The form of the Hamlltonian written in terms of current
and density operators of Eq. (3.1) and Eq. (3.4) is derived
from the Hamiltonlan of Eq. (3.11) in Appendix I and i< shown

below:2

=T+ 0"+ V¥ , (3.13)

where the kinetlc energy ls

T'=h _l_(ﬁf(i))-a_'e_fa) o ) (}_(B(x)% 36 (dx (3.14a)
B | L™ + ™

the external potential 1is

0= 1 | p@VUon) &, (3.14b)
w | [

and the two-body potential is

e I \VUx-y) pesq) & dPy+ 1 VO p) &y . (3.14
2t R R TR 3.14e)

The second term in the operator Q 1s a (possibly
infinite) constant which may be subtracted from the Hamiltonian
wlthout changlng the form of any subsequent equations in the
theory.

The presence of the lnverse density operator in Eq. (3.14a)

renders the Hamiltonian invallid, since the inverse density
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operator does not exist in Fock space, as will be shown in
Section V. Further calculatlons involving the Hamiltonlan

must therefore be regarded as merely formal.

Functional Representation of the
Current Algebra
The baslic formulation of the théory i1s completed with
the introduction of a functional representation of the com-
mutator algebra given by Egs. (3.5), (3.6), and (3.7).8 It
1s assumed (erroneously) that eigenvectors of the density
operator exlst and form a complete set in terms of which
any state ln Hilbert space may be expanded. Elgenvectors of

the denslty operator are labeled by thelr eigenvalues:
/E(i) f»>=(o(2) /o> | (3.15)

The set of components of an arbitrary vector]§£> along the

basis formed by the eigenvectors of fkﬁ is then a wave

functlional.
@(p%ﬂ?) , (3.16)

It 1s shown in Appendix J that the commutation relations of
A

Eqs. (3.6) and (3.7) are satisfled if the actions of Jy (X)

and %GO on the wave functional in the density elgenvector

basls have the following realizations:

/8(2) —> ,0(70) (3.17a)
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and
i&ﬂ—-ﬁ~—mﬁﬁta_ i S (3.17b)
DXK [fn(x)
where —g- denotes the functional derivative with respect to
the eiéﬁggunction of ﬁ(i).

The total momentum operator is glven byz

P=J T &, (3.18)

The energy spectrum of the system is determined by the

Schroedinger equation in the functional representation,

HEG -ETg (3.19)

where the current and density operators in the Hamiltonian
operate according to Eg. (3.17). This form of Schrecedinger's
equatlon is obtalned by noting that the Hamiltonian whose
operators have the realizations given by Eqs. (3.172) and (3.17b)
has the same effect when operating on the wave functional

'?(P) as when the Hamliltonian operates in the usual sense upon

a wave vector \ﬂ?),anﬁ the inner product of the result is

'taken with an elgenvector of the density operator,
A "
HE¢p) ‘(HH!{E) B2 -

The scalar product in the functional representation is

given by
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@i@>=J?*(,D) @(,o) L (3.20)

where DQ@ slgnifies a functional integral over all functions

F(X) such that IO()’()>/D and

L op(x)d3x = N
f:f(x) X )

where N is the number of particles in the system.

Thus a complete functional representation of nonrelativisg-
tic quantum mechanics has been developed. The next step 1s to
obtain solutions to Eg. (3.19) for various systems. It should-
be noted, however, that the assumed elgenstates of /5()‘() in
Eq. (3.15) do not have the desired properties of a basic set.
The properties of the elgenstates of F(X) are demonstrated in
Section V.

The “"elgenvaluesg" of {Z)‘(z) are shown by Grosslo to be
N

) (3.21)

]

f(ﬂﬂﬁ% £ x-

for a system of N particles. As is pointed out in Section v,
however, this is Just the form of the operator in the N-particle
subspace of Fock space. Furthermore, the "elgenvalues" of

,3(?) given in Eq. (3.21) consist of only one eigenvalue.

Since Pardee, atal.g claim that the functional integral in

Eq. (3.19) 1s over the elgenvalues of ,3(2). 1t is not a valigd

functional integral. The scalar product in the functional
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representation is therefore undefined. The functlonal repre-

sentation is thus of doubtful wvalue.



CHAPTER IV

DERIVATION OF QUANTIZED HYDRCDYNAMICS FROM THE
MANY~PARTICLE SCHRCEDINGER EQUATION

1 ls derived

Landau's theory of quantized hydrodynamics
from the many-particle Schroedinger equation in this section.
In practice, the derivation of the theory from the many-~
partlicle Schroedinger equation means that second quantization
is used. The density and current operators are first defined
in terms of the field operators, and their commutation rela=-
tions are derived. The veloclty operator is then defined in
terms of the density and current operators, and its commutation
relations are derived. These commutation relations between
the density, current, and velocity operators are the same as
those obtained in Section II. An explicit form of the velocity
operator in terms of the field operators which is used in
one theory3 1s given and shown to be incorrect.

The Hamiltonian written in terms of the density and cur-
rent operators is cast in a form which is equivalent to
Iandau's Hamiltonian except for a2 term which may be identified
as a quantum pressure term. This Hamiltonian containsg the
inverse density operator and was derived using the inverse
fleld operators. These operators are shown in Sectlon V not

to exlst, so the derivation of Landau's theory must be

22
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considered as merely a formal one. The Helsenberg equations
of motion for the density and velocity operators derived from
the many-particle Schroedinger equation are therefore the same
as the equations of motion obtained by Landau, except for the
quantum pressure term in the velocity equation of motion.

A formulation of the theory in terms of density and phase
operators is also given.3 although 1t 1s shown in Section V
that the phase operator does not exist in this formulation.
Finally, mention is made, at the end of this section,of a
theory in which the boson fluld is assumed to have a rotational

and an irrotational part.17

Oydredyramic Cperdtors 'n Second Quantization

The first step 1n‘the derivation of Landau's theory of
quantlized hydrodynamics from the many-particle Schroedinger
equatlion 1s to show that the density, current, and velocity
operators of second quantization have the same commutation
relatlons asdothose of Landau's theory. The density and cur-
rent operators were defined in terms of the fleld operators
in Egs. (3.1) and (3.4) in Section III, and thelr commutation
relations were also glven there in Eqs. (3.5), (3.6), and (3.7).

These are repeated for convenience below:

[[am,:s;qﬂ = _Wh [{am <i—Y>J ) (%-1a)
9)(1

{fﬁ)) ,5<7)J =0, (4.1b)
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and

[’3'“ ®,% (x>]= ko [X (m)iﬁo} 35_9___[5 (?-7”1(7)] ) (4. 1c)
a/‘i BYK

where the density 1is

/3&)=mCP*(x)4’(x) s 0 (4.148)

and the current ls
Fa :3_{@*00@@&3) —(V@’*&)):ﬂi)} . (¥.1e)
)

The velocity operator may be defined implicitly in terms of

density and current operators as

TR = {660\7&) ¥ \./(x){m) ) (.2)
2

This definition avolds the use of the inverse denslty operator,
and is used by several eun:}'xo:rs.ll'1‘7
The commutation relatlons between ﬁ&) and @OO can be
found using the above definition of %%X) without recourse to
‘the use of any nonexistent inverse operator. The velocity-
denslty commutator is
Ea))\/xq);] N PIR IS 5.3)
oY,

which 1s found using the known value of the density-current

commutator in Appendix K.
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The veloclty-veloclity commutator may then be calculated
using Eq. (4.3) and the known value of the current-current

commutators. The result is

ﬁ<x)[%x>,@cyﬂ=it5(x-y) [—Q_\f/iw ~ W@ (b .4)
].axk laxl

which is calculated in Appendix L. All the commutators given
so far In this sectlon, with the exception of Eq. (4.4) agree
with the commutators obtained by Landau for the density, cur-
rent, and veloclty operators in his theory.1 Equation (4.4)
differg in sign from Landau's result, but agrees with other

authors.11’17

Derivation of Landau's Hamiltonian

The second step 1n the derivation of lLandau's theory
from second quantization is to derive Landau's Hamiltonian of
Eq. (2.7) from the Hamiltonian of second quantization. The
flrst step in the derivation of the Hamiltonlan is taken in
Sectlion III, where the Hamiltonian written in terms of the
density and current operators is derived from the Hamiltonian
of second quantization andis stown in Eqs. (3.13) and (3.14).
The terms U' and Q' in Eq. (3.13) are already in the form of
the first two terms in a series expansion for the term EZEﬂ
in Eq. (2.11).
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If E[('?] is expanded as

E[ﬁ] l %zl f (... Xn)/"{m"'(g(in) dx . Ex, )

then the first two terms are given by Eq. (3.14) as

E[‘ = UR 4 VO Amdx ] 1 VR R @) 8% (.
oo oot om

and the second quantization approach has given an explicit
form for E[F} . The kinetic energy term in the second
quantized Hamiltonian may be manipulated to obtain the term
in Landau's Hamiltonian involving the velocities plus a term
which 1s a function of the density operator and may be con-
sldered a quantum correction term since it contains a factor

of T\L . The result is

o

T V& s0Vm+h 3 @ T40-T40) &
(E—T“V(X) (D(X)V(X)'*_i\_:[o () f(x) /07‘> X, (4.5b)

which 1s derived in Appendix M. The full Hamiltonian derived
from the second quantized Hamiltonian is thus

A

B Ztmvw /o(x)\/(x)+ f " (Vf(")) Vﬂ”)“* EH (4.6)

where E[f] 1s glven in Eq. (4.5a). This is the same as Landau's

Hamiltonian except for the quantum correction term \"—qQ,
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He= [ 1" (3"00 (75 (V/am) dx (4.7)

Bn

which explicitly involves h. QQ also contains a divergent
term which may be neglected, since it 1s a constant and does
not enter into the equations of motion.

This form of the Hamiltonian has been derived by some
authors3 by using an incorrect formulation of the second
quantization Hamiltonian in terms of denslity and phase
operator and then replacing operators by complex functlons.

Other authorsu

have revlaced the operators in the Hamiltonian
of Eq. (3.12) with complex functions and reordered the
functions to obtaln a Hamiltonlan of the form of the one in
Eq. (4.6). Although the inverse density operator in Eq. (4.6)
renders that form of the Hamiltonlian invalid, the derivation

in thls paper is at least formally correct, andisdane without

recourse to replacing operators with functions.

Equations of Motion in the Many-Particle Theory
The commutation relations between the density and velocity
cperators are the same iIn lLandau's theory and inthe second
quantization formulation. The Hamiltonlans are alsc the same,

except for the term \4Q in the Hamiltonian derived from the

second quantization Hamiltonian. The equations of motion

Tor the density and velocity operators should therefore be
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the same in both cases, except for terms due to QQ in the
theory derived from the many-particle Schroedinger equatlon.
Since the density operator should commute with functions of
the density operator, the operator form of the equation of
continuity obtained by Landau follows immediately when the
Hamiltonian of Eg. (4.6) is substituted into the Helsenberg

equation of motion for the density operator,

gﬁmz\[fM‘fWﬂ'““th) (4.8)

The equation of motlon for a component of the velocity opera-.
tor in second quantization is the same as that of Eq. (2.12)

with the addition of a term gliven by

LB \VE) :fh_ PR (x)VlO(K)) t‘ﬁ. _D_rv (x) "5 VAR
which is derived in Appendix N.

This term may be manipulated to obtaln a term of exactly
the same ftrmastha of the quantum pressure term in the form of
Euler's equation which 1g derived from the Gross~Pitaevskii

equation in Sectlon VII. The entlre equation of motion for

the veloclty operator is

?___Qx()'() z - V V\A/L x)—- i(VV (x)) V(x) +__T_f__ Q_ﬁ(s"w{}/g@)

)
ot L & 4m 5&1
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"'__‘E:_ i[(’v'aa) . /\-I(X.) Aq()‘() V*(X—)] - 9 'y £ il) (4.10)
Trm® axﬂ f ) f : f 2)()2 J}';(;‘r) [ﬁ

where E[F] is defined in Eq. (4.5a) in terms of the micro-

scopic theory. Equation (4.10) is a fundamental result of

thls paper.

An Incorrect Form of the Velocecity Operator
It would be desirable, if only for completeness, to write
the velocity operator explicitly in terms of the field opera-
tors of second gquantization. Fanelli and Struzynski write
the veloclty operator in terms of the field annihilation and

creation operators a53

s [Valsie)- Qo] .11

[v—

ALY

This must be considered as merely a formal equation, since
the inverse fleld cperators do not exist, asis shown in

Sectlion V. It ls shown in Appendix 0, however, that this

A

expression for V 1s inconsistent with the definition of the
velocity operator which is written in terms of the density
and current operators in Eq. (2.3), when the density and cur-
rent operators are written in terms of the fleld operators

of Egs. (3.1) and (3.4). The succeeding derivations of
Fanelli and Struzynsk! which depend on the form of the
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velocity operator given in Eg. (4.11) are thus not even
formally correct. They do obtain correct results for the
density-veloclty commutator, however.

They show that the veloclty-veloclity commutator must
be zero.‘and that the curl of the veloclty operator is also
zero. This makes thelr zero result for the commutator con-
sistent with the results of Landau and others.l‘P This would

17 of the exlstence of a rotational

also make Yee's assumptlon
component of the fluld unnecessary. Houwever, they make use
of inverse denslty and field operators to obtain their zero
results. It has not been possible in thls paper to obtaln a
zero result for the velocity-velocity commutator rigorously.
It 1s suspected that although the curl of the velocity can

be taken to be zero as shown by Yee17 and Turski.11 this does

not necessarily follow from the commutation relations.

The Phase Operator
An interesting aspect of the theory of quantized hydro-
dynamics as derived from the many-particle Schroedinger equa~
tlon 1s the result that the velocity operator is the gradient
of a velocity potentlal operator. Fanellil and Struzynsk13
arrive at this result by defining what they call Hermitian

operators n(X) and ®® by the following equations:-

b = exp [!Q)(x)}\ff@ ) (4.12a)
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and

“!A’+(x)=\lr"1a) exp [—il’f)(X)}) (4.12Db)

where
aE = f?m = Q’(i)%’m (4.13)
™

is the particle density operator.

It must be noted, however, that the phase operator &Mﬂ
is not correctly defined by Egs. (4.2a) and (4.2b). This is
shown in Sectlon V. The result that the veloclty operator 1is
the gradlient of a veloclity potential operator11 is obtalned
more rigorously in Section VI, however. The coherent state
representation 1s used to obtain that result.

The following commutation rules are postulated for n®
anda PX) ;3

[ﬁ(m)gb(y)] = Sf(x-y) ) (4.14a)
[ﬁo-o , ﬁ(y)] = Ejg(x), cfuy)] = 0. (4.14b)

That is, n and ¢ are assured to be canonlical variables.

From Eqs. (4.14a) and (B.14b) additional commutation relations
may be obtained:

[J_?T(—X_) ) cﬁpq)]—. i (G(i))% £ &y),
2

(4.15a)
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and

[J hw) ) T (y)] =1 (r“v(y))% [67 J(;~y)] (4.15b)
2

When these forms of the fleld operators are substituted into

Eq. (3.4) for the current density operator, the result is

T ’ﬁ {Tfoﬂf[ c}xx)] V (e | [%)] hw)

§< Nx) exF{: idﬂ)(?()]) exp [i(j)(x)j“ F\(x) ] (4.16)
= F i (?%(z)) he . (4.17)

Applying the commutation relation,Eg. (4.15), we obtain
Tw=h [ﬁ(x) (76%) + (7p) ﬁ(x)J : (4.18)
2

Comparison with Eq. (4.2) leads one to assume that the velocity

operator may be written as
H:h Vo) . (4.19)
m

Thus the phase operator &*X} serves as a veloclty potential
operator.

As the gradient of a potential, the veloclty operator
would have a zero curl. The zero result of Fanelll and

Struzynski3 for the veloclty-veloclty commutator is thus
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compatible in this formulation with the commutator of Landaul
and Blerter and I\’xor:c'ison,"L which containsthe curl of the

velocity operator as a factor.

Rotational and Irrotational Current
Yee develops & theory of guantized hydrodynamics in
which the current 1is assumed to have a rotational and an ir-
rotational part.17 He then assumes that Eq. (4.4) for‘the
velocity-veloclty commutator may be satlsfied by two separate
components of the velocity operator. One component has the

form

)*

<

% =-Y0® (4.20)

so that

V. V() = 0. (4.21)

This accounts for the irrotational component of the current.

Yee then assumes as second component V,(X) such that

VsV, ) 20 - (4.22)

This accounts for a rotational component of the current.

A Treatment of the Inverse Density Operator
Yee17 also treats the inverse density operator in an

interesting manner. He writes the density operator as an
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average density, which is a function, plus an operator which
represents the deviation of the density from the average,

A _ _ ~
ﬁ(x) Fpe(x) Ewx, (4.23)

where E(x) is considered small. He then expands the lnverse

density operator as

A -l _
(lo (x)) ) ) (4 .24)
/ooor) + E£(x)

=T _ E€® 4 E® 4 ... .

”fa (X /O: ( %) . (D: (X)

(4.25)

He l1ls then able to write equations without resorting to
explicit use of the inverse density operator.

This procedure is simply complicating the confusion. A
nonconvergent serles 1s not very useful, and the nonexistence
of the inverse density operator implies that the series,

Eq. (4.25), 1s not convergent.

Although the formal derivation of Landau's quantized
hydredynamics from the many-particle Schroedinger equation
accomplished in this section 1s satisfying, it should be re-
emphaslzed that it 1s only a formal derivation. The
Hamiltonian which was used was derived using inverse field
operators, and contains the inverse density oprerator. In

the next section these operators are shown not to exist.
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Also, the equations of motion derived in this section are in
operator fam, and arenot written in terms of functlons. The

equations of motion for the density and velocity are derived

in terms of functions in Section VII.



CHAPTER V

FOCK SFACE FORNULATION OF
THE CURRENT ALGEBRA

In this section the hydrodynamic operators of density,
current, veloclty and phase dealt with in the previous:
sectlon are shown in theilr Fock space forms. Fock space is
the natural space of the second quantization formulation
of many-particle quantum mechanics. It is also the space
in which the field annihllation and creation operators, @%w
and Q”G),are defined. Since the hydrodyramic operators of
the theorles previously reviewed, except Landau's theory,
are defined in terms of the fleld operators of second
quantization, they operate in Fock space.18

It is shown that the density operator does not have an
inverse in Fock space. The velocity-density and velocity~
velocity commutators are derived in the formalism of second
quantization without the use of inverse field operators
or the lnverse density operator. The Fock space appearance
of the density-phase formulation of the hydrodynamic opera=-
tors glven in Section IV 1s used to show that the phase

operator3 cannct be defined.

36
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Fock Space

A general Fock space vector may be wrltten as
o ~

( ;
(7 %) (5.1)

where the superscripts denote the number of particles in the
subspace, the symbol «—> 1indicates that the column vector 1is
a particular realization of the general Fock space vector,
and qz“” is the N-particle wave function. The Fock space
1s the direct sum of the Hilbert spacesfor zero, one, two,
up to an infinite number of particles.

The inner product of two Fock space vectors is defined

16 _
(EI19)= %O(?M) 57) , (5.2)

as

")
where(@ , @(ﬂ) 1s the inner product in the n-particle sub-
space. The vectors are normalized,

kS

)
$

EY= ?_;0 (ﬁzw,@_m) - Z:OI =\, (5.3)
so that H@Lﬁlr

is the probability of finding the system
with N particles. ‘
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The annihilation operator annihilates a particle at a

point,16 and when operating on a Fock space vector has the

form
YW T) <
- , ) ﬂfﬂ i
o (JTJA r‘{(i—r.)) 0 0 O.. ¥
Q)
0 0 (i Jdrg(x R) O 0.. T
(5.4)
9
0 0 0 (ﬁjd3r3£(x-§)) O... 7I’((".,ﬁ.)
0O 0 ) @)
A J
- o B
= 1T T
vz 7Im(‘,,?c)
)
G P 7, 7) 5 (5.5)

where X 1ig considered a fixed parameter rather than a vari-
able in the argument of the wave functions. The annihilation
operator thus reduces by one the number of particles in each

subspace, and shifts each element in the Fock space state

vector up one place. In particular, there exlsts a vacuunm state
such that
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@(x)} vy =0,

(5.6)
and |\/ac> is realized in Fock space by
‘Vx) ‘?tw
° 1, (5.
0
L

vwhere ’_Td(o)
T

1s a complex number of unit modulus. Noting that

has zeros all along the diagonal in its matrix form,
A _
it 1s apparent that Y ‘(x‘) does not exist.

The creation operator creates a particle at a poi.nt:.l6

Operating on a Fock space vector 1t has the fornm

$* @) (‘Tc‘? -

r~

0 ®) 0 0 gf“”
75,607 o o o .. o
o 5 (e 0 0 @
2! (2 'G_) ZE(T:)F\) ( 8)
A 5.
o O 35, {57 o ... :
A (W)
© O O Whdaw) O e o)
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>

TR fe & S
Jx-7) B2 5y

5
‘NU‘ >

(5.9)

where gN is the symmetrizer for bosons or antisymmetrizer

for fermions. §N is defined asg

A | P}
SN“ -‘-—}ZP o ? ) (5.10)

(\...N)

where the sum isg over all the permutations of the N particles,
ﬁ ls the operator which carries out the bpermutations, o

i1s one for bosons and rinus one for Termions, and ,P‘ is
the order orf the bermutation. The creation operator thus adds
& particle with a delts function wave function to the system,
and symmetrizes or antlsymmetrizes the resulting wave function.
Since the determinant of the matrix form of @*GU is zero,

b+ also has no Inverse in Fock space.
(X)

Density and Current Cperators in Fock Space

The density operator in Fock Sspace has the formlé
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b =m0 P —
|

(5.11)
Sx-t)+L(x-7)

N
e > 5(;?—?;)
i=)

b

Although the density operator is diagonal, its determinant

is zero, and 1t thus has nolimverse in Fock space. The element
of the density operator which orerates in the N-particle sub-
space ls the same as the density operator given by Landau for
an N-particle system in Eq. (2.1).

If the form of the density operator for a one-particle
system is Investigated, it is easy to see that elgenfunctions
of the density operator do not have the necessary properties
to serve as a basis set. Since éﬁ) merely multiplies the
wave functlon by a delta function in the one-particle sub-

space, the operator is apparently the same as its eigenvalue,"

[(53)] = mg(f-ﬁs . (5.12)

This form of the "elgenvalue" of ﬁ(@ » Which 1s assumed by
Pardee,_gp_g}..9 1s responsible for some of the difficulties

with nonrelativistic quantum mechanics formulated in terms
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of currents and densitles vwhiti are discussed in Sgction I1II.
When one attempts to calculate the expectation value of the

density, the result for a one-particle system 1is

(2 pem |§“‘> - chf(x—ﬁ)IvIz(f}

k=

. (5.13)

8 )
d*r, =m|§ (X)

Since the expectatlon value must be equal to an eigenvalue
if taken for an eligenstate, the above results apparently

require
bR

:g(X‘F) . (5'114)

)
g €]

Thus although any wave functlion séems to sstisfy the eigsehvalue

equation for ﬁlfh

SRt =@ | (5.15)

to glve the correct expectation values, the function must

apparently have the form

- {1
%@ Vo) | (5.16)

from Eq. (5.14), which is hardly sultable to serve as a basis

set.

The form of the current density operator in Fock space

1s gzlven below:
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Tk [@nx)(v@m) -(F9*w) @(x)l e | (5.17)
2i
“h |0 o o . i
C
& (-V—, lf(i"ﬁ)*rc{(;‘(,-ﬁ)ﬁ.) o -
. (5.18)
N
o 0 PR A E A
1=l

An element of this dlagonal matrix operates on the N-particle
subspace of Fock space. An element has the same form as does the
current operator of Eq. (2.2) for & system of N-particles in
Lendau's theory. This form of the current operator can be
derived by substituting the forms of the field operators given
in Egs. (5.4) and (5.8) into Eq. (5.17) and letting them

operate on a8 general Fock space vector.

The Density-Fhase Formulatlon in Fock Space
The Fock space form of The creation and apninhilation
operators may pe used to show that these operators may not

pe written 1in the density-phase forrulatlon of Section IV.
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In that formulation, the creation and annlhilation operators

were written a33
PR = exp E&(x)]\/ﬁoa ) (5.19a)

“,P+(>'<') :Jﬁ(X) e.xp[—igg(x‘)] . : (5.19b)

Equations (5.1%9a) and (5.19b) are supposed to define Hermitian

operators (&) and A(X), where
N (X) L Am. (5.20)
m

In the one-particle subspace of Fock space, Vh (X) would

have the form

[Jﬁcx‘)] = $i-7) . (5.21)

M !

Even if this strange function and its Inverse exist, the phase

operator ¢Mf) 1s not properly defined by Egs. (5.1%9a) and
(5.19b).

The phase operator must satlisfy both Egs. (5.19a) and
(5.19b), and the unitarity condition

&~i¢(i) e_upcx) - _-L_“—- . (5.22)

en'(b(i) o b (%)

It 1s shown that the phase operator cannot satlsfy both of

these conditions.
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The Fock space form of Yn()  must be

B ]
®
n(x) 4>
\}[(X'-F,)
(5.23)
(-7 §(x-%.)
O
|
JZ_ § (x-7)
i=1
i "

Therefore to satisfy Eq. (5.19a), exp [}4)()‘()J must have the
Fock space form ’

exp M) (70] «

- ) -

o 14, @w), (w) f 6 6

CPm ¢, @(z))n (\R(zﬁ% ¢
0. o 4

(5.24)
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A
where (‘-}’(X))m for example, is the element of the Fock space

matrix for LP(X) in the zeroth row and the first column shown

in Eq. (5.4), and the CPU 's are as yet undetermined elements
of exp [i(f)(i)J - Slmilarly, the adjoint operator,

exp [—igg(x)} = (ex,o E(f)(i)]f ,

must have the Fock space fornm

exp E"(f?()'()} >
|l 6. o)

b (), g L -

2!

i . (5.
b oM G w), or L. 5+25)

T

.

"'VL .
o o, (), Gw) -
2o,

N s

~ -l
If (m(x)) 1s written formally as

~ -\ ~ o ~ e -
Eﬂ(iﬂ =¥ X [‘V (Xﬂ , (5.26)
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A
then the formal result of the multiplication exp [I¢KX{]x
)
exp[:-i'a)(x)] 1s the unit operator only if all the $ii’s are
zero. When the order of multiplication is reversed, the

result is

exp [~ i (;(X)] exp [j(ﬁ(g)il s

- [o o 0 o ...
O | O O .
. (5.27)
®) O I
0 O ‘
- J

Therefore exp E&%Kﬂ is not unitary, and a phase operator
&(X) has not been properly defined.

The preceeding proof of the nonunitarity of exp E&CU]
closely parallels the treatment of the phase operator for
& quantum mechanical single harmonic oscillator glven by
Susskind and Glogower.l9 They show that the Phase operator
for a quantum mechanical silngle harmonic oscillator is not
correctly defined by the exponential form. They then define

Hermitian operators
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\ C [vw -icbcx)]
LOS(I)LY):_’_[e te
l

/

sin b = 1
2

/

[« i<f>(f) A ““p(}_)
€ -~ &

where the exp ;fb(X) operators are no longer considered to
define a phase operator. They then go on to show that cos 43(7()
and s'in ¢>(7<) are observable dynamical variables. In doing so,
they make use of the exlstence of the lnverse of the number
operator for a single harmonic oscillator.

The number operator for a single harmonic oscillator in
the treatment of Susskind and Glogower enters their calcula-
tions in the same way asdos reoperator n(X) in the treatment in
this paper.lg The operator NG is the number density
operator for Fock space. In the Fock space treatment, opera-
tors corresponding to the 06s4> and s’in(b have not been defined.
This 1s due to the presence of terms such as

“h
[«S' (X- r,)] }
which would appear in the definition.

Since the phase operator 1s not properly defined, the
derlvation by Fanelll and Struzynsk13 showing that the velocity

operator 1s the gradient of a phase operator 1s invalid.



b9

Similarly, the curl of the velocity operator, which 1s the
value of the veloclity-velocity commutator, is not necessarily
zero.

In Sectlion VI a form of the velocity operator which
overcomeé some of these difficulties is developed, in which
the velocity operator 1s the gradient of a velocity potential
operator.11 This veloclity potential operator is not neces-

sarily a phase operator.



CHAPTER VI

THE VELOCITY POTENTIAL OPERATOR IN THE
COHERENT STATES REPRESENTATION

In this section & form of the velocity operator as the
gradient of a potentlal operator is rigorously derivéd;
These operators are written in terms of the coherent states.
A brief summary of the properties of the coherent states ls

first glven.

Coherent States
The coherent states used in this derivation are the
elgenstates of the field annihilation operator.20 They are
the tensor products of the coherent states developed by
Glauber as eigenstates of the particle annihilation operator.
The particle annihilatlon operator elgenstates satisfy the

equation

oy H"‘ K {‘*?D ) (6.1)

where a_g is the particle annihilatlion operator, Xz 1ls a

complex eilgenvalue, and {Qfgg ls the set of all =g . The

particle annilhilation operators may be written in terms of

the fleld anmnihilatlon operators as
a, = dxcp @Yo, (6.2)

N
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where 4%;(2) 1s the wave function of the annihilated particle.
The states erps '{w;j) satisfy the equation,

b|H) = X kile "

’ {«R-bew@[["‘b : (6.3)

Their form in occupation number space is

(T IS T D

A

where the symbol {nﬁ} denotes the set of occupation number
states of the system, and the sum 1s over all the occupation
numbers from zero to infinity.

The coherent states are over complete and nonorthogonal,
although they are normalized.2% The scalar product of two
coherent states never vanishes and 1s given by

[x] {[8 o H"‘“L |
CET[B]) = p [y = LMD - s

where the inner product is

T

) (6.5)

(q\{s) = Z q: Ao =de <« () B&) (6.6)

and

[ = (= f=)
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The unit operator may be written in terms of the coherent

states as

ﬁ=ji{#ij><%< AT AT Eﬂlf*‘l X (*l‘ D (=, (6.7)
Yo

where

i

d"~_

K

dRe (x3)d T, (),

and D&) indicates that the integral 1s a functlional integral
over all complex functions (X). The states E°( > shall
be written iq7 hereafter to simplify the notatlon.
The Veloclty Cperator in thne Ccherent
State Representation ‘ '
The matrix elements of the density and current operators

are given in the coherent states as11
By =< [mPTRYD | )= m WD, (6.8)

and
{x lf:(x) Ip >ag__’gﬂu![@*(xﬁ‘;"(x)‘(Vq’(i)):l/(;‘()]l/S 5
1

1 ’,Ew_[f* *R VR - (T *w) A cz)} : (6.9)
2 i
As the first step in finding the coherent state repre-

sentation of the velocity operator, 1t is shown in Appendix P
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that an arbltrary operator © may be written using the reso-
(6.10)

~

lution of the unit operator glven by Eq. (6.7), as20
LT - L ialT) elx A= D (=) D(B)
& gexP( L I _a_{[pll) (=% 8)1=)< 8l )

where 9 (=%B) 1s defined in terms of the matrix element of &
(6.11)

as
A N T
8 («*,8)=<~|6 ex(¢:|«||+_:_ .
«*,) =<1 [y exp (LI + L Al)
The functions & corresponding to the operators /ﬁ(ﬂ and
(6.12a)

I%IX) have the following forms:
@R R (<%, 3T = m M@ PR exp el
b [«*@(Tpw)
)
(6.12b)

TR & (=, 8% ‘—_15
—(ﬁ«*(:))fﬁ(?)i exp («}gs)l :

5 and éL may be written aszo
(6.13)

The product of two operators 62
A A A
6= éﬁ B,

The functions © , &, , and ©&,, defined as in Eq. (6.11),
(6.14)

obey the equation
&=, p) =Je, &* ¥y e, (¥) B)e (-INIT) PO
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which is derived in Appendix Q. Turskil states that Eq. (6.14)
determines the function &, Aif the functions ©, and & are
known. If éL ‘1s an unknown operator, then the functlon &,
may be inserted into Eq. (6.12) to give the form of the unknown
operator ©,.

This i1s the way in which the form of the velocity opera-
tor will be found. The veloclty operator is defined implicitly

by L 2 A R
J ()= /5(2) V) + Vo?)/wz) . (6.15)

2
2

Since the form of the functlons gr(aj‘{a; ¥) and ?ﬁlu’jﬁ;}) are
known, the function 'Y(qfﬁ,'?) which satisfies the equation of
the form of Eq. (6.14),

Ges gL RES @Y pi7)erp CHIT) o

LY Sy R g5 exp (HINT) o ) (6.16)
2
may be MAMUQ be afdtituted into Eq. (6.11) to give the
operator V) .
It is worthwhile to note that if Eq. (6.14) determine
the form of ©, uniquely, then the form obtained for \i/('i)
would rule out the existence of a rotational component for
the boson system. Yee's assumption17 of such a rotational

component would then be unnecessary. It 1s not apparent,
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~

though, that the form obtalned for i&f) in this sectlion 1s
necessarily unique.

In order to eliminate divergent terms of the form of
2;‘4R which would appear in the solution of Eq. (6.17),

K
the velocity operator 1s redefined as

T® = Q_*,m i [{%(X)\A/(R»«é)* \7(S<‘+é)/3(f)J . ©(6.17)
E—0 L

The operators defined as in Eq. (6.17) obey the same com-

mutation relations as when they are defined by Eq. (6.15).

It is shown in Appendix R that when the form of fo) glven

in Eq. (6.17) is used, Eq. (6.16) may be written as

By £330 o | B (<5380 Y 063,05 742) enp (1) W)

€ —>0

ﬁ_exp[("‘l@)] B Uz 4B -

YA E—0
In solving Eq. (6.18) for ‘Ylafﬁ;$ , the following
identity and its complex conjugate are used:20
* _ v Nz _ - n *

M o=t
1.3
This identity is proven in Appendix S.

It is shown in Appendix T that the function i?éwfp;i) given
below in Eq. (6.20) is a solutiont? to Eq. (6.18):
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m = *(x)

Y <“fﬂ;i>%_‘l_ﬁx?[(°*lﬂﬂ%\ Vo - L__ ﬁ**m] © (6.20)
B(%)

It is shown in Appendix U that if =(X) is written in polar

form as
< (X) ——&( (%) exp [\CPO( (X)] ) " (6.21)

then ¥ («% B;X) may be written as

When the form of DV(«*)‘/&;)?) given by Eq. (6.22) is inserted
into Eq. (6.20), the result is

(D= N@ | =B To_ ). (6.23)

The operator VO?) may now be found by substituting

Y(=% p5%) into Eq. (6.10). The result, which is calculated
in Appendix V, 1511

V@ < h g T, 0 [0 ). (6.28)

The veloclty operator V(i) has thus been shown to be the

A
gradient of a velocity potential operator Cp(i),

< 1>

® =h Vo x), (6.25)
™
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where

e - ¢, @) | %)<~ | P) - (6.26)

Equations of lMotion

Turskl writes the expectation value of the Hamiltonian

in the coherent states asll

<°‘lﬁl°‘)‘* th;‘ {Oc((x)'\_?%(x)-'v'd)q(x)d%

4
i

1R ff@ @))‘/L v <><<>"<))|/L 4x +
2 m
- = - - 3., =
ol 5) VED @G EEYER (o, 0 (6.27)

where W 1is the Hamiltonian given by Eq. (3.13), V(x,§) 1s
the two-body potential, and qu;) 1s deflined by

= () = (,o,,ﬁ))"/”__i__ exp [341( (i)] - (6.28)

m
He then says that by functionally differentiating )4(ﬁx,¢q)
with respect to d%( and ﬂx the continulty equation and the
Bernoulll equation for the many-boson system in the state“*}
ray be obtained. These are the equations of motion for f*(X)

and ¢ﬁ66 and are shown below:
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_% PR _:_?\_ V'((oo?)‘\? Cf)q(x))

82w ) (6 (vap pp ey
™ Ot Lot "

2 ‘%_ 1 Ly o
-1 h o V = .
) (f ) (fq(x)) (6.29)

Equations (6.28) and (6.29) are the same results which
are given by the Gross~Pitaevskii equatlion approach to quantum
hydrodynamics. However, the meang ‘Turski nsed to obtain these
equations is incorrect, because the coherent states are time
Independent. Therefore, the expectation values of the
operators 1n the coherent states are tinme independent. The
functional differentiation will not give the time dependent
equations, but will glve only their time independent form.

The coherent states approach has rigorously shown the
velocity operator to be the gradient of a velocity potential
operator. The equations of quantum hydrodynamics. l.e., the
time dependent continuity equation and the Bernoulli equation
in expectation value form, have still not been rigorously
derived. It 1is shown in Section VII how they may be rigorously

derived from the Gross-Pitaevskii equation.



CHAPTER VII

THE GROSS~PITAEVSKII EQUATION AND
QUANTUM HYDRODYNAMICS

The Gross-Pitaevskll equation is derived ln this sectlion.
It is obtained by making a simple~shift canonical trans-
formation on the fleld operators. Equating the coeffilcients
of the unit operator in the Helsenberg equation of motion
for the transformed field operator gives the time-~dependent
Gross-Pitaevskil equation.21 Since it is not mathematically
rigorous to equate the coefficlients of the unit operator,
mentlion 1s made of a more rigorous derivation.

Euler's equation and the Bernoulll equation for functions
are derived from the Gross-Pltaevskil equation. The conden-
sate wave functlion is written in hydrodynamical form by
writing 1t In terms of a modulus which is the square root
of the denslty and a phase which turns out to be proportional
to the velocity potential. Equating the real and Imaginary
parts of the resulting equation gives the equation of con~-
tinuity and the Bernoulli equation.

The Gross-Pltaevskil equation approach to quantum hydro-
dynamics has several advantages over the current algebra
approach. The main advantage 1s that the hydrodynamical

equatlions whlch are obtained are for functions rather than

59
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for operators. The gquantizatlon of circulation condition
also follows more readlly from the Gross-Pitaevskll approach.
Although the Gross-Pitaevskil equatlion ls an approximation,
the terms neglected in making the approximation are known.7

These terms could be calculated in theory.

Gross-Pitaevskil Equation
The flrst step 1n obtalning the Gross-Pitaevskil equatibn

1s to make a canonical transformation on the field operators.6
The transformation has the form

~ A

Y& = oz )+ X (Y, (7.1)

where ¢(2A) 1s a functlon which measures the “average value".
In some sense, of the flileld operator, and 5E(i)+) is an
operator which measures the deviation of the field operator
from the average. The time dependence of the operators

depends on their being in the Helsenberg plctures

V(x,}) = LA e H/h

The function @(Xﬁ) is defined as

dn =< ¥ SR (7.2)

Since_xlgﬁy measures the deviation of W(Xﬂ? from the average,

it satlsfies
X (5,1))=0. | (7.3)
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The field creatlion operator is obtained by taking the Hermitlan

conjugate of Eg. (7.1):

‘1'A’+ (xH = M (xh+ JAC"(U)) (7.4)
where
¥ b =¥ Gh) 75
and
(KT (b)) =o. (7.6)

If the transformation is to be canonical, the operators
&: and j%* must satisfy the same canonical commutation
relations in Egs. (3.2) and (3.3)asco the field operators. If
the form of the field operators given by Egs. (7.1) and (7.4)

is inserted into Egs. (3.2) and (3.3), the result is
[fc G4 JAC(Y)H} =0, (7.7)

and '
A A
- + - (/= =
[x (X1 ) e (y)’rﬂ =0 (x-y) . (7.8)
Thus the operators X and X', which are called devion
ocperators, are canonical. It should be noted that the com-
rutatlon relations Eqs. (7.7) and (7.8) are "equal time"

conmutation relations.
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The "average value" of the field operator can be calcu-

lated between the (n-1) and n particle subspaces of Fock
space7:

bzt = (8 | P ‘5? Y (7.9)

where 'i(n)is the n-particle wave funection. The order parameter

can also be calculated for a general Fock space state:
Peh =[P G|y,

Cp(x+) 1s known asg the order barameter of the system, or the

"condensate wave function." 1If the expectation value of the

density is caleulated usins the trensformed field operators,

the result is

SEHDE JRNICHRING:

$* Go8 S (x4 lﬂz p

™ <7*E ,(C})*(;}JF)-:JAC*(X,%D @J(X,‘r)ﬂ‘ i(i,’r)) I ¥ >

i

v ¢" (51 G + w{( X (Y )Y ¢* (b

P {ETEN) @ BN w K b X s, - (7.10)
Applying Eqgs. (7.3) and (7.6) to Eq

final result

. (7.10), we obtain the

PED=m |6 ([

N m<f+(i,ﬂf Gt Y. (7.11)
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These results are not used in the derivation glven in thls
section, but are used in the mathematlcally rigorous derlva-
tion which will be mentioned later.

The Hamiltonian for a system of many identical bosons is

gzjklAJ*(X))T(i)‘?(Xﬁ) x4 @+(i,¥)@*(y,¥)V(X,y)CP(y,’r)\A}’(iﬁr)&xc\FY) (7.12)
E N

rhere

o

T
TRy =-h_Vy vu®, (7.13)
L
and U(X) is the external potential. When this Hamiltonian
is inserted into the Helscenberg squation of motion for the

field annihilation operator, the result is

th 2860 - G, =Ty [T NG Y a0 EH &, (7.14)
ot

which 1s shown in Appendix W. When the transformed field

operators of Egs. (7.1) and (7.4) are substituted into Eq.
(7.14), the result is

ih DO =T(g)¢<x,’c)+ b* (7)%)\/(x)?)¢(7,’r)q>(i,{—) C\BY
oF

+ (terms involving the devion operators). (7.15)

Equating the coefflclents of the unit operator in Eq. (7.15)

glives
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R IOGEH = -F VOGEY + VRS &)
ot 2

=1 0MG NG OGN PRy . (7.16)

Equation (7.16) is the Gross-Pitaevskil equation.

Although the derivation of the Gross-Pltaevskll equation
glven above ils straightforward and reasonable, it is not
mathematically rigorous.7 The terms in Eq. (7.15) involving
the devion operators modify the average value 4) of the fleld
operator. The Gross-Pitaevskil equation also has the dis-
advantage that it can not be applied to a system where the
two-body potential’V(%?) has a strongly repulsive core, as
is the case with liquld helium. This is because the last
term, which is the average fleld due to all the other particles,
becomes divgrgent. Equation (7.16) is a Hartree-like equation.

A modified Gross-~Pltaevskil equation may be derived
rigorously, however, which is applicable to systems with two-
body potentials with strongly repulsive cores.7 This is a
correctlon to the Gross-Pltaevskil equation given by Eg.
(7.16), which is then the first order approximation to the
exact equation. The modified Gross-Pltaevskiil equation is
obtained by first finding the equation of motion of the
order parameter. The term in that equation which describes

the average potential due to the other particles is then
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expanded in a perturbation series in which the coherent state
representation is used. The perturbation expansion is then
partially resumred to glve an average field in which the
potential has been replaced by the T matrix. This gives a

finlte average effective field.’

Quantum Hydrodynamics
The equation of continuity and the Bernoulll equatlon
are derived from the Gross~Pitaevskilil equation given by
Eq. (7.16) by first assuming that the second term on the
right in Eq. (7.11) may be neglected.6

m{ X EHX (N HZ 0 - (7-17)

This 1s equivalent to assuming that the two-body interaction

is small. In this case, the density expectation value l1s
_ ~ _ N
PENT m N (7.18)

The order parameter may then be wriltten as

iR
b =L (Fam
fm

where R(X}) is a real function.

The expectatlion value of the current 1s approximately

5 G =_2\_.[¢* GHRTOEN - S HRTE* (xﬁr)] ) (7.20)
{ |

(7.19)
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so that

%(fﬁ) = .,o(Xﬁ)I\h:-ﬁP\(i,*) P (7.21)

when use 1s made of Eq. (7.19).
The current is related to the velocity V(XY) by

FEN = pERNTEY. . (7.22)

Equations (7.21) and (7.22) imply that the phase R 1s

the velocity potential,
VEN=h VREY - (7.23)
v

Identifying the velocity as the gradient of a phase implies
that its curl must be zero. Stokes' theorem then states that
the line integral of the velocity around a elosed path is

zero,

V VR -nda = $TR-41 = 0.

However, when the integral is around a singular point, the

result is
fv,aszaﬁ VRAL=H2mn,  neoi1.. .
™ ™
which follows from the single-valuedness of the order parameter.

This is the quantization of ecirculation condition for a boson

system.
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It is shown in Appendix X that substituting Cb(iﬁ)
glven by Eq. (7.19) into Eq. (7.16) glves the result

ya a
h o ;‘QOH’) - FF_%'E)' _Qfx_cx,‘r) - _w{v‘“e‘fjﬁ)Jf\(va(z}D. V@_{gﬁ?)
- 0
ot

+ \@m,ﬂ)-@(@»"j - [eG (TR0 JPER) TTRGY
+ U(g)@ +@g V(x,H) L(Y,_’r_) ABY . (7.24)

Equating the imaginary parts of the above equation, we obtain

the continuity equation
Qf_(x;r) - W-%@ﬂ =0, (7.25)
ot

which is derived in Appendix Y. Equating the real parts of
the above equation and taking the gradient of the resulting

equation gives Euler's equatlion for a boson fluid,

AV 1 e = =
TGN (T V)& -1 h v =1 Felitl Fidt
. CIRCRERY GHLE /W w9) )L Fabel Bidk, o
ff)(iﬁr)
where the third term on the left side is the quantum cor-

rectlon term. The terms ?iﬁ_ and Fi. are the external and

internal forces on the fluid. They are defined as

Fext, = “‘§7\J(?)) (7.27)
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and

—— —

P = - VLV (?/;(')f()?') d3x' . (7.28)
’ m

Equation (7.26) is the force equation for the boson fluid.
The ternm 1nvolving'h 1s known as the quantum pressure term,
since 1t may be written in terms of a pressure.

The essential equations of quantum hydrodynamics have
thus been derived in expectation value form and the quantiza-
tlon of circulation condition has been derived. These equa~-
tions have been shown to be approximations, but the terms
neglected 1n the approximations are known. The mathematically
dublous operatlcns used in'the‘opéfﬁﬁb%fderi§at1Cné deéﬁiibeﬁ“

in the previous sections have been avoided.



CHAPTER VIII
CONCLUSIONS

Although it has been satisfying to derive Landau's
theory of quantized hydrodynamlcs from the many-particle
Schroedinger equation in a manner that 1s at least formally
correct, we seem to be no closer to a useful theory of
quantized hydrodynamics. The use of the lnverse density
operator renders the derlvatlion doubtful. Also, the equations
obtalined are in terms of operators, not functions. The
Gross-FPltaevskil equation approach still seems the most
fruitful, slnce it rigorously leads to the same form of
hydrodynamical equatlons esdestie current algebra approach.
However, the results are equations which are written in
terms of functions and can therefore be in principle solved.
The similarity of the results glven by the two approaches is
nevertheless interesting. Perhaps a current algebra approach
could be formulated which would not require the inverse
density or inverse fleld operators, or a mathematical justi-

fication might be glven for spaces other than Fock space.l8
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APPENDIX A

DEMONSTRATION OF THE CONSISTENCY OF THE TWO

DEFINITIONS OF THE VELOCITY OPERATOR

Equations (2.3a) and (2.3b) are shown to be consistent

with each other ad wththecommutation relations between the
operators as follows:

ro—Py
<>
+
< >
\9\
ol
| Em———
o
~
R
é
jf—
<3
o
~
><
L~;::~J
x|
-~

(A1)
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AFPENDIX B
CALCULATION OF LANDAU'S CURRENT DENSITY COMMUTATOR

Equatlon (2.9b) is calculated by substituting Egs. (2.1)

and (2.2) into the current-density commutator as follows:

- gé‘ }_}% Z[%rm g(X-F,I)] /)(?) +/D(7)?_ [(7-?)%_:;

73



=R (0(?)2___ 5(7—2)
T

which is Eq. (2.4b).

(B1)
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APPENDIX C

THE CURRENT~-CURRENT CCMMUTATOR FOR

LANDAU'S CURRENT OPERATOR

The current-current commutator of Eq. (2.9e) is calecu-~
lated in this Appendix by substituting Landau'’s definition for

the current operator, Eq. (2.2), into the commutator as follows:

A—A‘ z %-¥, )+ i—F-)F‘D
Se50) %Lzlif:_%g( 8¢ )Tg ,




’D
i i 1

-w{ (7-%}@.[5._3__ §
: (%- ) Z‘L RV}D -\:1 9
D q
r ‘ B\" Y

D ,
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N
= 1 Z ; -R J(x r)li a(‘i }} +T\1J(Y‘_"—;)FLJ(*‘?;)
[ Dr.g DYK

-t

2 x-v)| 2

x
Q)
-
e
| IS |
Q)
-
Q)
-
x

‘T\l(g(i?‘{» GF) 172 *ng(?‘ﬁ)

'Br% | ‘Dr? \ ’DT:
e [den] 2w [256) 2 g; (c1)
Kb o I

where the brackets indicate that the derivatives are no longer
'operatcrs, but operate only on the terms within the brackets.

Applying Eqs. (3.8) and (3.10) to Eq. (Cl) gives

=J.'Z—|{ZT\ D ix- V> Ay |+ 20 S| dgm)
1 PRl D\,“arf



.

- 2w DS(Y 3.] D(g(x )| - 4h - ) ba((y-r) P
9\/ J Dr Lar; Br.‘r

+4H ?o‘(z-ﬁ) S r) J + 4K §G-%) ElcE I
EE x [ ot J o

-4 g [de D - 2k [0 aﬂxrﬂ
ot ) x| ot |

-2k $G- %) 0" bGey |+ 2R N g-¢ ”9 8 (x-7,) i
PR det Jpﬁ

2 [iﬁ[af(x-“z)}_a_ i[@&“-ﬁ)

2T

\/

9r D\f £\ ar?

D +3ﬁ&xy)[9 h[g&f;)J

K

"3’5{}95()‘(—'{1_) 1R [D rJ} ‘\hé(x )_{9‘%( ")—’
2 e j r
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RGP B LGy 3 ~Hleylh fxr) 2
A P rE

=h 2 [gb’(-?)ﬁ; (i)} + R _a___ [g(;uy) 3}(7):[ , (c2)

]

N
)
—
=

which 1s the same as Eq. (2.4e).



APPENDIX D

CALCULATION OF THE EQUATION OF MCTION
FCR THE DENSITY OPERATCR

The Hamiltonian, (2.6) is inserted into the Helsenberg

ool s e

equation of motion,

to obtain

la)

%,g’(_(fc) -%_\ﬁ_ﬁ V(y) -/?(y)v (7)/3<x)—f“(x)’v'(7) /o (7)V<7)

+ 1/5(7)ﬁ(/3)/3(x) - &ﬁ(z)ﬁ(y)f_(/‘;)f d )/ . (D2)

Since

£

{ } the last two terms in the integral cancel,
A A :O}

giving

D = L N AR F/vmx)— ’mf\h-)}
gt;’i T |z P |V p T R



= v -—x-\i/*“‘+“\f’-') d>
_%J_E_ [Vy ‘5()’ ﬂ [ (7)/0(7) /o(/v) (7/} y
: j [VYS (y-x)] : ?(y) d’y

==V eJ(x),

which then gives Eq. (2.8).
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APPENDIX E

CALCULATION OF THE EQUATICN OF MOTION FOR
THE VELOCITY OFERATOR

Equation (2.10) is calculated in this appendix. When
the Hamiltonian of Eq. (2.7) 1s inserted into the Helsenberg

equation of motion for one component of the velocity operator,

9\94(;{,& =_% [HVX TARANCAY H} ) (E1)
t

the result is

A 4 A s A . A ¢
_9_34 =11 [\/(i)f(i)\/(i))v}(i)} 4> + 1 {J(R)&{s)c\3x)\§(7) . (E2)
9 L h

t .
The flrst term on the right side of Eq. (E2), denoted by Tl'
will be treated first. The second term, denoted by Tz, will
then be treated in the two ways described in Section II. When
the dot product in Ty 1s taken the result 1is

Jﬁ EV&) '/3(?)\7(2)) Vi &

;' !:-_A__A‘+A‘A—'\' AI_:\-A_A_ 3 .
.Z\i%.\&!:(\/k(x)/ﬂ(x)\/x(x) \/R(x)/b(x)\/x(x)+\/m(x)/a(x)\/m(x)>)\/1(Y)] Ax) (E3)

where k, 1, m, denote components 1, 2, 3, not necessarily in

that order.
]2
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Expanding the commutator glves

T=i \A/K(x)”(x) [V,‘(x)}\&q)} [\A/K(‘i)/é(i) ,\A/,()'l) J V@)
T

A N . N |
+ i (P-() [3 (%) \/,Q(i)) Vﬁ (7)] + [\/1 (i)/;(i) ) Y1 (7 (X)

@ o _Q’m@) A (ﬂ . [\7.,1 m/?tz),% 5) Vo2 § 4%

= V 805 (x[ (x)V()] ) (x)\/(] Ve )
a’r\ji PR NG “R% !

. [\A/“(so Y q)} /o @V, G + \A&m[ S @} V, ®)

~

+ [\75{()_() ) QQ(.Y\} f?&){/ﬁ&) A \jm (R)f(g)[\’\/m(ﬂ ){/X(YJ

+ Qm(i) [/5(2) ,\A/ﬁ(yﬁ \A/m(z)‘* ﬁ?m(z))%(y)] /c?(z)\“/y,,mgfx . (EY)

Inserting the values of the commutators given in Egs

and (2.44) into Eq. (E4) gives

T;:?‘.%Jg k(X>JF\(.(x ‘Y) DV OV DV@ ﬁ-\(’(x)‘{\o((xy‘) VK(X)

. (2.4¢)
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+h &z-y)/a*‘cz) Nw ~ & /O(XNK(X)%V(x) ) Vow
! Dx,,‘ ng ! 9)(

*J?\(S(x y)/o (x)(av(x BVM(X))f(K) Ve &)
Dxm Oxﬁ

m(x)‘h 3(x- y)(DVx& D\Iw\ ()0)“?‘\ V(&) D S(X (X)j d | (E5)
a)( BXI ' X

When the integration ig done the result is

Tl {% PG - ?9K<7'>>+ e Ve
N Oy 2)’1

L

+ BVK(V) Q/K(:/) + E\A/j q) — DQ\«G,) \A/K(y)ﬂ“\A/R(y) J Q/g 52
o UM D\/R

| D\l}crp V(Y) + Am(\/) DVRL\{) . D\/m(y> éV § - Nag) DVM) )
D\/R a\{m \B\ D\{g

DV ) V (Y +V §) oV Z)V S50 g ) (E6)
a‘/& an
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where the followlng equation, which follows simply from Eq.

(2.4c), was used to obtain Eq. (E5):

D O

When terms are combined in Eq. (E5) the result is

T =- Z’" { vk(y) 9\“/!(5{) 4 V) V@) + V@) Bviq)

a)/y. DYK DY&

<%0 Yy Koy~ Ny Vﬂ?’j
K, N Oy,

-1 [(‘\7\“/@) g+ Vg - v‘vﬂy)i )

which 1s the final result for Tl'

gi\/l(i) - 9\7K(i) ) {3(?) =0 .

E7)

(E8)

The value of the term Ty in Eq. (E2) will now be cal-

culated. In this first calculation of Tz, the term

1s treated as a function of ﬁca

T, -_%_S {{3(2)5.68(2)) , iny)} &x.

A </8)

(E9)
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Expanding ilf\as a power series in fVZ) gives

é ((O(x)> G /o ‘R . (E10)
d'_‘.
Then the following expressions may be written:

/o(x)f_(f(x)) Z /Sdl(x) (E11)

J

and

{ﬁ(i)ﬁéﬁ(ﬂ))fl } JZ:C[ i ) Vﬁ(YJ . (E12)

Sinceza commutes with the commutator [ ) ], the relation

Y

may be used to obtaln

{/A( Fe), VM)J i ¢, e @,m }

2 Y)} : (E13)

Z C (J*‘\)f) (K
9\&

Substituting the above expression back into the lntegral glves

5 Z-. C £+\§r‘(x))ﬁ{a g(i—ﬂJ &’x

DH

:"Z CJ(J-%\)P ‘g(ﬁ (x\({(x )(\X}
J-O
bh

- "Zi.::-o Cj (3+) J /OJ(Y) = "Z; CJ <3+\)J/SJ-|(7 J A(Y) . (E1k)
Dyﬁ 9)/1
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Equation (El4) may be put in the form

-2 4 [/B(y)é?f(y))] : (E15)

The final result for the Helsenberg equation of motion of the

velocity operator is thus

/ A N fa — A ~
= TV, @) VPV WV - d | s 56)
g{k L)V Vg VM)E 3 AALD(Y) /’/J ) (E18)

which then gives Eq. (2.10).
The value of Tz will now be calculated by treating the
internal energy term in the Hamlltonlan of Eq. (2.7) as a

functional. That is,

Jf(x)f_<ﬁ(2)> A3 = E{ﬁ] . (E17)

The term T, may then be written as

TZ. ::;:\_ [E%‘J ) \/}(7)} . (E18)
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When E[F] 1s expanded as

= g;‘ J%(}?, .‘.in)/?)(i,).../a(in) a3x, ... &%xq ) (E19)

and inserted into Eq. (E18), the result 1is

o

T A

. - n o _ ~n o - 3 3

1, =1 %J\C(XI...XH) [fo(x.).../o(xn))v}(y) c\x,,.. X - (E20)
K

Since the density operators commute with each other, it 1s

apparent that g—(f\in) must be symmetric with respect to its
arguments. Using this fact and Eq. (2.4¢) in Eq. (E20) gives

\.

IR

%_;lnj‘g‘(x,) xn)/:(x) /o(xn_,)[ha § (- y)}& 5

gl

~
¢

A
OY}

Doing the integration over X, gives

>
1
—_

hj{' h}/a(x‘) A (K- .)S(xn y)Ax . (E21)

%

2

=_2 & ey .
EQT;(Y) H

(E22)
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This form of T, glves the more general form of the eguation
of motion for the veloclty operator

A

@_\L_@ =_ 1 (V\?ﬁ@) \/ \77 \A{Q V)7 - 9 { E[ﬁ] , (E23)
fair 2 979\ g{;(‘f

which is the same as Eq. (2.11).

In the speclal case where %(FV..yn) has the form

P&t = G S6x) Gy o 6 RmR) | (E24)
Tz has the form
_ 2 2 nCnas " @) (E2
. 5)
o, e r Y
Defining J as
J=n-l

glves the result

(E26)

which is the same as Eq. (E16). Equation (2.10) has thus
been shown to be a special case of Eq. (2.11).



APPENDIX F

CALCULATION OF THE DENSITY-DENSITY COMMUTATOR
IN SECOND QUANTIZATION

The calculatlon of the density~-density commutator in the

formalism of second quantizatlion proceeds as follows:
= Y& [‘P(x),qf*r)@(y)] + F"Zx))@ﬂ?) g (ﬂ Y&
- V@ [%), Cv*(y)}f}’(-) + W) [@cx), \P(c@

A + ~ ? A . ~ g ~ L] ~
Y ) [‘Wﬁ), ¥ q)] VE) + {w &), ‘P*cy)} ‘#’q) Y (). (F1)
Substituting the commutation relatlons for the fleld operators,

Eq. (3.2) and Eq. (3.3), into Eq. (F2) gives
[f’ m,ﬁq)} = PR IG) b @) - CW«/) S Y= 0 ) (F2)

which is the same as Eq. (3.5).

g0



APPENDIX G

CALCULATION OF THE DENSITY~CURRENT COMMUTATOR
IN SECOND QUANTIZATION

The 1-th component of the current operator 1s glven by

7 4 /4 WD @ - W@ Y6 . (G1)
a aYn 9‘/1

A
Upon substituting the expressions for ,6('2) and 3}(7) into

the density-current commutator, one obtains

{f(ﬂ)ﬁxﬂ = P*@@(&%(@*@) DQ’G;) - D@"(\p @(7))}
dyo 9,

- P %& R h & Q_W_Jg@ - %0 ’?\ 99" q) LV(Y
2.\ ah DYI

+[W’(JO éF\W (Y)_L!’_(Y_) \U(ﬂ - l‘P(ﬂ}Y‘\ 9“?’ () W(\p \Vtx)

= 2.\
| DY& 971
= ¢ NOR X ) }}P(x))%\_ I¥¢ ¥)} ‘ b LP Y Q9§
! DYl 2i . Dy}

-5 ‘?’*ci)D@*q) F’(X\)q’(ﬂ -k @ ¥R, D@*ci‘) “I’Ly)
- X “ N,

a1
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o Y Y, 0 | Y@+ Yo V1) D) ¥ &)

Y 2\
D‘ln 911
=y Dh*vi) XQ*L&%M}}?’@) ’_@_{\h\’*&‘s)'ac}“éﬂ \th)G?G«\ . (62)
: ™
B0y 0y

Equations (3.2) and (3.3) may be differentiated with

respect to MY to obtaln

0 {@*L&),@"q)] =_D__%(z)ﬁ@}‘f?*as)a®*q - b, 0%@| =0, (63

N %, %, D‘/&
and
Ta N Ta A
2__ v’&))\u*q)} = r(ﬂ) D‘F*L’)} = Dcﬁiv‘j) ] (Gl4)
9 Xy oy

substituting Egs. (cl) and (G3) into Eq. (G2) glves

V»m]f& q\] = ihf Yo iep 289 - % b 286D PO

fa)
4 %
| -% b d-9) b + R DC\”q} R T (G5)
“ % . Dh

Applying the jdentity in Eq. (3.8) to Eq. (G5) gives
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[/Scx),ﬁi(y}l = R 5&—7) $*x) Z)C}Jq) - _’gw_ Q’*m b @_} u—y))
2\ p) \
Ix ]

4 ¥0 %@ fap -8 5 Ay Y&
A DX& [A) BT&\

+h § e[ oMY YE)+ R 69 W b,
= ah '\ ah

= -G PP - G- V'R Y- kS a-'pqﬁ@\?a))
D 0%, xq

= -0 [S &) }B(i)} ) (G6)
Oxy

which is the same as Eq. (3.6).



APPENDIX H

CALCULATION OF THE CURRENT~CURRENT CCMMUTATOR
IN SECOND QUANTIZATION

The value of the commutator of the components of the
mass current density operator ls calculated in this Appendix.

The 1lth component of the operator is

517(,—0 =E <‘V*(;)D Y = 29w :P(i)) . (H1)
2 (axi Dxﬁ

When the components of the operator are inserted into the

commutator, the result 1is

Fk(x)ﬁ;(?)} Y02 - 0 da)k (Y 8 - ). (xe)
N % & N QYx

Expanding the commutator gives

[Jh(x‘) X (\d = ~JF\ ‘P (x) 9; &), ‘P (\/)f%‘fél)
X Y

- 12¥ 0 %o ) %)
Y »__)!.
dr O %

o4
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+ R [‘@*{x) V) ) Pl @) ‘;’(7)1:

Lo %

= R ¥ P‘F&) L4 24)@} - k‘ﬁ?x)) ¥ 9@(?‘0] o)

—5);_ DXQ 4—“ DY 1 EX K

AR 0% ¥ )@*(7) D@rx)q‘ + R0 ‘JA"ZY; %) Vi)
4 DXK 9)/} J EX axK 871

r

+h ‘3"&)% 096 | PARS) )| + R ‘3"’(2)) 2t Y3 | 2R
1 [ Ox, 9/!2 1 9)2 Oxg

- ¥ CP(X))DQ”(;) C}’(y) WV, My Q"(p ¥6z). (#3)
z} aXK a)& 4}, DXK 9>/9

Expanding the commutators further gives

50,59 -§@+(3>LP+<7) [D%@ , D@cy)}
I oy

-Z{i‘?"“ﬁ) | 9“50) CP*@)J?@Q) -”E_qﬁ(?) ‘;’*(il}DCP"‘Q) YR
% h Ny |
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_T\L[‘:W(X) )‘ﬁy)}m’(g) Ww +h V) L]’*q,) LAP*({;)) )
T DYQ EKK 4 {DKK aY \

T ?ﬂ@.[“’ CXV,‘I’*éy)]?E’ﬂ) +H ‘AP’Z?) W DCP(?) &)
-ZF BXK ah axK a‘l hi

+R" jf:@, q’*(:{) ?C)’(g) ,CP(R) +ELCP+cR)BCP*5TQ ?CP(R) )CPL;:)
97& 4 87& 9"\«

Ak

| %, oYy PG+ R ¥ [fvz,—o)@@} pe)
Af D)(K a‘h L" KD\{& BXK

+ }_\_L qJ*(;‘()) Bqﬁ { [) q)@ D"%’G) B E 33\"’50 ny*ﬂ?}p(ﬁ))@ Gj{l
Dh PN % BYL

- ff}f 4®) F’G«),%_@—' C\’q) RN W Y G P&
Yg }

"BXK 4 91& 'D)(“
-E" bf&’*a),’aﬁl*<:{)] Yo, ¥ - (58)
PN J |

Inserting the commutation relations, Eq. (3.2) and (3.3), and

their derivatives, into Eq. (H4) gives
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[%y,cfo )3'1(\7)]'- .__E[f Dgx—‘x) Y %@zg}
* h

+H 9&2~‘1) ‘;’*(y) _?)_‘Il(g)_ +h° X(R—y) P ; 9@()7)
4 9)12 a‘x 4 ng D)’p.

SR Sy b b oW Dl b ¥6)

4 9)'1‘ 1 - 97} g
R U W Ve | (s5)
4 Oy 9‘1&' i

Applying the identity in Eq. (3.8) to Eq. (H5) gives

[ﬁ‘h m)ﬁ;ap} - W W) V¥ & e ote 2%
A (ax“ KD\U 4 DXK 919\

1 Uep Vo b - 569 0g 2¢w
! % o 1 U %
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+h S &-y) 2w o Q’(z) - h 'S (x-Y) LI’ % ‘;U(x)
Af D)(H gyf 4 9’(\-’\ DYX

B Dy D e - By e Ya
4 Oxy 97& & /372 Dk

R ey Pabn 1 ey Ve ke

4 (kagyx 4 DYR iy

R A te kg - B (e oba Qe

4 {BXK (BT)'l 4 919\ DXK

B ey 28 Yo + 1 6 28R 2w
D O 4 0 D

B ey o) g - B ey Ot dg (86)
Yooy f M9,

Applying the identity in Eq. (3.9) and again applying Eq. (3.8)

to Eq. (H6) and rearranging terms gives

5 @3] B o9 Wa da - lapale duy
Z_ DXK D)(R Z. ah DYK



AP ) ‘JA“(X) vx + R Pl (X-y) @77) 9‘?’(1)

E Oxy D2 %

+h Gy %@ Yo ~jf&f(z-y) 9%7) ‘7’<7)
Z. axx D)(K 4 ’a)ly‘ DY}

VWG Ve M - Wi 'y 2¥vg
4‘ ’c)xx Bxg % U\U\ a\{K

ey Vg Y - Wien2by b
t 97\4 971 1 971 DTK

PR 6P Y@y « W LG o 2%y .

LN % 4 Ne

99

(H7)

Upon rearranging terms in Eq. (H7) and adding zero to it in

the form

0= -h by Z Vo be - TVe %o}
Z DX,Q DXK Dxx BxK

+:¥_\1 dr(f"y) {\;ﬁ(ﬁ) quJ(’!) — 91‘; +(7) qj(;/)j )
- NNy Iy

the result 1is

(H8)



Z

Ijvk‘*);‘:fﬁ)} Ul g‘_a&*yﬁ(q%D@(i) - V) b

(axg ka

+ S(z-y)(?fp*‘o—o WE - TR %D
DXﬂ a)(K DKADXK

+ § (x—?) ")\"'(70 qu’(i) - 9‘?’*(7«) DQ’(R))
'aX’QBX‘K DXK axﬂ

+R {98&-3) (@’*(7) Df\%g) - D@)’@ CPQ))

¢ oy oy Dh

+ § &) <9§”c7) 9@(7) - 91@(7) CP(?))
DYK BYQ B‘f“ 9\/2

+ &(x—y)<@*(y)}‘?q) - 2% 9%@)}
IR P

= _h {98@7) SR + §G-p %y (x)i
BXR DX R

4 ih{BScx-y) 39 + fep 2% (ﬁi,
oy, 2

K

D

)

)

100



101

= _3#2 [é—(p)‘/)j_,((iil + iﬁi F[)F‘)j}(yﬂ y (H9)
BXR DYK

which is the same asg Eq. (3.7).



APPENDIX I

CALCULATION COF THE HAMILTONIAN OPERATOR IN TERMS OF
THE CURRENT AND DENSITY OFPERATORS

The Hamlltonian operator is written in the formalism of

second quantizatlion as

R=T+U+V (1)
where the kinetlc energy 1is
T= “?”(i)/_jj:‘@ﬁ’ @\ &% (12a)
\ 2m
the external potentlial is
\J Ej@w—o ex U ) d*x (12b)
and the two body potentizsl is
VEL P b pVem Yot ady . (120)

U(IX]) 1is the external potential and \(P@?l) is the two-
body internal potential.

Upon substituting Eq. (3.1) into Eq. (12b), the result is
J

A‘ R
U= (o(x)U(m) &% = U (13)
m

which 1s the same ag Eq. (3.14b).
lo2
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Upon rearranging Eq. (I2c) and applying the commutation
relations, Eq. (3.2) and Eq. (3.3), the result is

i\/ =.LJV(1X-7}) L‘}\)*(7() [@(X}@"q} - S(X—Y)} ‘;’(y) d*x 4 3}/ . (I4)
c.

A

~ +
Applying the commutation relations for ¥ and Y and inte-

grating the second term over X glves
A

g rompppsnsys fopg ey ¥, as

which 1s the same as Eq. (3.1l4c).
To cast Eq. (I22) in the form of Eq. (3.3a), it must

first be rewritten as
2 m K‘\ L

The hermiticity of_ii may be used in Eq. (I6) to write
i

T =£J(§_@*(f<}> <~§7_\P(x)) d’x
Cm [} |

= S(V@*m)-(ﬁ%)) &Fx . (17)
L

Now 1f one writes the gradient of the density operator as

ol A A

'V“:fg @ = I @) = m(TVR) ¥ + b ), (18)



lo4
and notices the following identities:

1 VA® + 21 31'()?) = a\?}*(x) _\7‘?’(2) ) (I9)
m h

1 V-2 T - E(W*w) b ) (110)
m f ﬁ

then one may write

[ 2 U“:@J (o) v (Fha)

1
m

AR (112)

1 ?,23(2)- _@_35\: (‘P(x))-' = &(57‘%*(29 “}A’(X)(‘P(x))-’

The use of both inverse fielg operators and the Inverse

density operator in Egs. (I11) and I12) and in Eq. (I13), which

follows, should be noted. Since it ig shown in Section V that

these operators do not exist, the derivation of Eq. (I15)

must be regarded as merely formal.



105

Since
oot @1

Eq. (I11) and Eq. (I12) may be combined with Eq. (I13) to give

i —‘7@’ (x) TR dx=|1 V-2 ﬁx)J- A7 VAR + Z.\J(x) dX, (114)
LY Fop T

or

TR\ -2 '3_'@’)‘1'/3—\&)!’\ VpR+2 I &Fx =T, {115)
Pl - B

which 1s the same as Eq. (3.14a). Thus the Hamiltonian written
in terms of currents and densities, Eq. (3.13), has been
derived from the Hamiltonian written in the formelism of

second quantization.



APPENDIX J

VERIFICATION OF THE OPERATION OF (2(2) AND J; )
ON THE WAVE FUNCTIONAL ’I’@

Since the operation of f’S(x) on @(‘o) s Jjust multiplication
of T(f) by the function /3(;?). it 1s easy to see that the func=-
tional realizations given in Eq. (3.17a) and (3.17b) satisfy
Eq. (3.5). Since

[/?»o—o ,/am] - 0, (72)

Eq. (3.5) may be realized in the functional representation by

[[So—o, (Scﬂ ?(f) — [f’@’/"(ﬂ =0 - (72)

That Eq. (3.6) 1s satisflied by the functional represen=-
tatlion may be seen by writing the commutator with /J(x) and

J'KCK) replaced by thelr functional representations as follows:

®,3 (me)-—»[m ~ihed 4| B
st o

\t‘\/O(x)/a()/ ) :( ﬁ(/,) + d;\/o( ) d 0 c( l:/o(x)ip(/a):[
% 5 & §9

106
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*-\’F\/D(x W2 [ ﬁ[{g + mf(y) 0 [«.x y)itf)]

o &) oy
+ 1k (Y)B o @_@
oy f()’)
_-eﬁo(x)ﬁ()pa g@g( n%fcy)nwaa Xg@m +d}a<7)9 Q, yﬂ«(a)]
& il WP %
) f()/)l,;i;(x‘y}:] g’;([a) + alﬁ/o()/) {x- -y 99 E’(/a)
4 )
-
) a{gif;) ¥ p) (93)
x [?% ] "
wWhere the identitiles
ﬁ.@l = {G-y) (J4)
§ )
and
DYR

were used. Applying the identity, Eq. (3.8), to Eq. (J3) gives

hb(x)ﬂjcy]‘}(/a)—a 1#/00()[92{()( yJi(/o) 1%5(}()/ [3&)] {P(f)
) X
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- ”"\ __D__ {5(2*7)/0(30}?(‘0) ) (J6)
O
which is the same as Eq. (3.6) in the functional represen-
tation.

That Eq. (3.7) 1s satisfied by the functional repre-~
sentation may be seen by substituting the functiohal

representation for 3}(3) into the commutator as follows:

[ﬁ(ﬂ,@q)]ﬂi(ﬂ-.[_',’F\lo(i)_g_ é{a” \/o( )D [(,( )] (f) 5
w b Y

= _hp 0 N 2D [ §3,)
/DDXK {O(x)[ ! D‘f [@J}

Y N [_\\ﬁ SRS T®
f chy) szy) I T

Ky

_h fa(x)_a_ —H (x;)
O a?'ﬁ

/°
+ f(y) J [ltg(wy) 0 [ ]‘1
Qy}‘,

L f@i[_mm.y@__ F’{cﬁ?
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+ lT"\(O( ) 0 [ijﬂ{o{x [ (ﬁ) }
B)’g /0(7) Sf(x)

=-\h‘f(x)9&x-y> > §%¢) _‘h‘/uz) fiey) 0 £2p)
D%, BYR S[’Q’) DX“BY,\ é"p(?)

-)F\f(x)/ﬁ(\f) J §* g (a) + T\F(y)_a_{@-y) P, _g{p_
a)(KDY,q gf(x)gf(‘f Dh a)(\g {o(x)

+T\f:(y g(x o0* éﬁ——(f_ +)h ‘7)/"(")9 XIQLE)
aylaxx S(xx) ayﬁaxk g’u(i) c%(y)

;_’y\‘/o&) AHae-y 0 FH&@J + ’Fx?o(y) B&‘iﬁ) J [ST()J

Ox,, D)’x _g(" G

- ‘h‘p(ﬁ)& (x-3) 0 rﬁ%(‘pﬂ
ax@h i S(D(T/)

+hoaG) SG-y) 2° )
f’()’) ( y)m é’?({:) J (57)
DY,Q ()’{K (5(0(70'4
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where Eq. (J4) was used in the third step. Applying the

identity in Eq. (3.8) to Eq. (J7) gives

[:5'«(*’)3;<7>}3‘1‘P> —hep by 2 [
%, a‘/i g(')(?’)

W opm LGy 2 [Eﬁ @J

X DY& § P

+‘F\?J(y) fop J° F%ﬂ] N h‘/, ®) O z-) K [ %J

Byl BX « %ﬂ(}'ﬂ) DY} 9)( K {, £ (%)

-HEGy) 3/3@ 0 [@@J—%}m&x-y) P [ @(p)] (78)

an Bxk ff(x) QXK()YQ g{o(Y)
Applying the Property of the delta function, Eq. (3.9), to
Eq. (J8) gives

[3;(70)3’1(7):]’13()——9?\1 KV ) D ¢
t — Y
DYK an rf(a(y)

+{(X~7)_§£(j«) 2 & Jor»y)/o(y) - >§(f)

W _Qgg-?)f&)lim + 8GN D
(ng Dxy Jlo(x) Si Oxe  boix
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+{(i—7)/o(x)?‘ § )‘hf)
| D;&BxK ng(X)

=-ho [5 (x—y)‘ﬁﬁ)]y ¢

O,
+'|’ﬁ_9__[£ (x-y) @(y)} §(In) ) (39)
Oy,

which 1s the same as Eq. (317) in the functional representation.



APPENDIX K

CALCULATION OF THE DENSITY-VELOCITY COMMUTATOR
IN SECOND QUANTIZATION FORMULATION

In this appendix the density-veloclty commutator 1s
calculated rigorously in the formulation of second quanti-
zation. The implicit definition of the velocity operator
given by Eq. (4.2) is used, and no recourse is taken to
inverse operators. The result in Eq. (4.3) 1s obtained by
using the known value of the density-current commutator.

When the form of the current operator given in Eq. (4.2)
1s substituted Into the density-current commutator, the

result is

+,12:_\§(7) [/s(a), /?(7)} + _xi [Ig &), \/1(7)] f(r/) . (K1)

Applying Eq. (3.5) for the density-density commutator to
Eq. (K1) gives

112



[{5(0 %(Y)J = > /QLY)&D & VA(YJ + .L[/a(x) V, (Y)] /O(Y)

Substituting the value of the density
glven in Eq. (3.6)into Eq. (K2) gives

oo
-h D | X(i{/ﬂ =1 2 pw), V(yﬂ

+ La[/-?(i), \Q(y)J /3()7) .

Working with the left side of Eq. (K3) gzives

\‘\’\ 0 lo(x) fo- 9= 1":)3(2) J dex ) *—~";ﬁ_2«_ r/ﬁf_?‘)f&#?)" .
f?x& } Z)xl o f_ ]

Applying the identity Eq. (3.8) to Eq. (K4) gives

-\)F\_Q__ f(id o {X- y] -3 ) 6r(7\-7) .
B)(g f /AY DXR

Substituting Eq. (K5) into Eg. (K3) gives

| ( &,V + X v = ~-\hoG (=g
_7: l}ﬂx) R(YJ 3[;0()) 'Q(YJ/O(Y) JF\/Ofy)_g___dO(Y))

Xg

which i1s satisfied if

[/3(50)\%(7)] - -i‘ﬁ[_:d___ 5(;-74)] - 118[2__ c((x'-)?)] )
p o

%3 i j

which 1s the same as Eq. (4.3),
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(K2)

~current commutator

(k3)

(E4)

(k5)

(K6)

(K7)



APPENDIX L

CALCULATION OF THE VEILOCITY-VELOCITY COMMUTATOR IN
THE FORMALISM COF SECOND QUANTIZATION

In this appendix the value of the veloclty-velocity
commutator is calculated rigorously in the formalism of
second gquantization. Equation (4.4) is calculated using the
form of the density operator given in Eq. (4.2) and the known
values of the density-density, current-current, and density-
veloclty commutators. When Eq. (4.2) is substituted into

the current-current commutator, the result 1is

q

[ el T(Y:} =1 (/o (%) Vgtx)*\/x(x)/o(x)) </3 §+ VX(Y)[D 7J

)

HEEh, 9 V“‘ﬂ ) %{f YR ﬂ?ﬂ

Qk(i}/a(x),/?q)%ty) A}‘ [\/ (x)/s(x) V (y)/’ }

-

=13 3 (%) \/(x)) (y)\/() + 1| p@), “(')\Allcy) \A/K(R)
PO PN 4[’0 &
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+q{_ﬁ (0 [:VK (X)j VX (7)/3(?)} + {;/')\(7(), VX (y)/Sl)v:I VK (x)

-

IV w[rm, s V)l + 1 [\A/ ), 56) V. (‘)] 5(X)
4K[f’//"7“’} el i Uy
+# VK(X)[*@)) Vi /SmJ + %_[VKCR),Vch\f%?)J /3(50 . (L1)

Expanding the commutators further gives

Fal

%f —/6‘ y [Vk(x) V(Y):} + lf(x)!i K(x)/qf)J V, (
®, \A@q)} \A/,,\(;) +4‘_l[/3(i),/8(7>J \A/X(gj Qk(i)
1 PO %@ 20+ 1 sl e 2 )
f 1Y[“}7] —~ [“)ﬁY] Y
_ SRV, i

e [ 70, /3(7>} Vo + ! [ FEN (y)J RAne

LN

Y )

,_______
\
=
=
—~
L_.\i_l
+
<
~
R
—
~,
Q
\
~<
[ I |
e

+‘_‘}(_ %(‘?)[QK (R)) F(:/)J/?(i) + _%_{AKO‘\)) \/fy\(\—lﬂ /’3\(?){3(7'() . (L2)



Substituting Eqs. (4.3), (3.5) and (3.7) into Eq.

[3’ ) 3—(7} =1 f()d/D()/) \/H(;() V(y -1 lidgfi,~’g%‘ f;{x)\éty)
)(

+lkﬁao i) ()\/(x)- J\’V'raxfx (x)v()
4[97 % S [2; ]f Y
l K

+~|__(8(X)[VK(X) V(y] (y +_4L\JF\ ac((x }f(?) VK(;\)
' 20

+ 1 ik 9!(2-3)\7 ®AE) + 1 AL [V R, \7(‘)} 5 (%)
' dev TR

1 \)F\ BJ(iR V}q(y) {0()() + | ‘{;1 9(({)&—¥ K(X)/;F/)
g o 4 BYSL

i }){( R VGER + 1 [\A/ ® \"/c-% 3¢} p(X)
?{BKK} Y)f 4 \«)17’/07(0

= 73% [X (%ﬁiﬁﬂ + ik _99_;; [c((x-y)ﬁj(y)]

Expanding the last two terms in Eq. (L3) gives
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(L2) gives

(L3)
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[:j;&))_}l (,'Y'i = It\ [DS J /)(X) VK(XJ
0y

_ ik FJ{.R-;;‘)J Ve ) /?cx) _w (g_y)[m
a)(ﬂ 2,

2 %

- \JF\ S(x Y)i: f\/ (x)e(x)}-% \)F[Dor(x J L\PQ(\{)

D’&l 'BYY\

4 i
z

Dcﬁ'(x j) V (‘f) f?LY) \kw § (- Y) o (p(Y) V (y))
BYK : 2 BT\«

- i Ee9) 2 (Yo ps). (1)
a ka
Applying the identity, Eq. (3.8),to Eq. (L4) gives

[ﬁ(x),icy)} =i r@éﬁ_{—?) Ay Ve + I (5-y) V() /acy)
2 2

an an
j ‘ /0(70 av}g(x) + D_\/_ch) f(x
c Oxy %y
i\_ K z-9) -y \/ @ AR - \)F\ 059 - @V &)
2 [ EXK J \{ (3 Ij 0%y [) .
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+E_JF1 6 (z-Y) /’34?) D'Q(A(y) + 5‘:’1(?) f’(?) : (L5)
¢ B%ﬁ 2&“

When Eq. (L5) is combined with Eq. (L3), the result is

1R A6 {\7 @ \“/ﬁr)}~ 1 [\7@ \A/c-ﬂ 36) A
4(’ RN ryf

>

1A [Vy\(?)) Y, (7)} 6§ + | “q)[\“/\ka),%q)] A ()
4 /J /J 4 (D /o

;‘% 5G9 I:{,?(x) MN® + N /B(x)}

aﬂg 9;&9\
Q;A § (m)[{&y) 85/9 Q) + %\_/,q_y_ﬂ O e
k )

The right side of Eq. (L6) may be manipulated to give

& S(i-y) [fq) 8\7\«&) - IEQ) D\A/!G()j!

B/‘Ul D)(\(
e ) - _\iﬁ_ 5(2-? bl((%—y) o
2 {a,(@xx } 2 xon] ()

where Eq. (4.3) was used to obtain Eq. (L7). If the density
operator commutes with the velocity-velocity commutator,

Egs. (L6) and (L7) may be combined to give
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F(X) [%(x),\?ﬂg@ = théE-p | IV® - IVy (%) ) (L8)
| Ixy Dxy.

which i1s consistent with the condition of the density operator
commuting with the veloclity-veloclity commutator, and 1s the

same as Eq. (4.4}.



APPENDIX M

DERIVATION OF THE KINETIC ENERGY TERM IN LANDAU'S
HAMILTONIAN FROM THE SECOND
QUANTIZATION HAMILTONIAN

In this appendix Eq. (4.5b) for the kinetic energ& term
in the Hamiltonian of Eq. (4.6) 1s derived from Eq. (3.14a).
When Eq. (4.2) for the current operator 1s substituted into
Eq. (3.14a), the result 1is
T4 S[Lﬁ/?(x) - L(/Sm V&) + Ve ﬁ(x)‘l

h o

S, ooy g

I

Al (V2 S S S
.YY\/J (X) [_\n; V["O‘)‘*%(f’(") \/(x)—*-\/(x)/o(x))J 43

- V“(x})“‘@ - AR A .'i_vp_ﬂh/‘(i)J

[_\_ V(a(x) £ ( f?(sa)f'/(i) + 3\7(;0 /3 (i))] d’x
.h

12 a)

- g\i g[%\ (?me)- /3"50 (V'/scxa) __éf ®) - B
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:#f*

(x)/o x - V(x)/oﬁ) + /OLx)\/(x)/a RX) - \/(x)/o(x7
+ Vo ®) - \A/(x)fu] &Fx
1

Al

Rearranging terms allows T to be written asg

T =3 S[&ﬁ{sm) - ﬁ“@)(?ﬁ@{ﬁ\?ﬂ -'V'/z(x) _\_\A—/m : V/Scx)
g JLT s

' PN L_‘A'—\_—_A_. \ &h- .‘A‘_
-%' [}3(;\) , V(XJ ? (x)v/o (€3 %(V/o(x)) V(x)

+%(§7/3&)) . @(x) + %<§f&}> . ﬁ-\w[\ij’(xxﬁa)]

121

(M1)
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+ _%n_L [/3(2), \/(x)} f (V&) PR+ _J\%J&F(X) , /5‘ (SE)]

+m \70?) -/?b?) \ﬁ/(z)+ m \7()7) . [V(i),/é‘(z)J d3x. (M2)
Jﬁz. 4’1;‘7.

Since the density—velocity commutator is the gradient of a
delta function, it will commute with the velocity operator.

Using this fact and further rearrangling terms gives

T_Tﬁji 4 V- ) Vo - l‘%@ /f@( 7))

B

o

v 2 ﬁ(x)J V(XJ (V/a(x)/S [\/(x /5(2)]

A £

AL " - - Ay

ro A6, VR 4 - V(x))f(x) d’x. (13)
e /

The third term in Eq. (M3) is an infinite constant whlch may
be neglected without altering the equations of motion. The

result of evaluating the density-velocity commutator of

Eq. (4.3) 1s

=0 (Mik)

[ﬁ(y)f\?a)] = - BV 6G-9) )
1 X:y
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since the derivative of the delta function is an odd function.

Thls result may be substituted into Eq. (M3) to obtain

Ay ”

T= L\?(x) : 7%(}0 Ve +% ) (?:(x»( 57—/3(2)) &%, (n5)

which is the same as Eq. (4.5b).



APPENDIX N

DERIVATION OF QUANTUM CORRECTION TERM IN
VELOCITY OPERATOR EQUATION OF MOTION

Equation (4.9) is derived in this appendix as follows:

%_[QQ,\A@&J =1 iﬁo “(30@?(7)) »(ﬁ/uy))) \A/jcx)J Yy

‘h Xm
_ Py =3 Iy, A,AJ ra—t = - - 7_‘,\’ 3
-h ﬁ Fo e il ofa), 4, WJT(V/?(P)} a
-ih 1) e Ve Uy (iR 2 |-\ 4+ 3 ')@[”(‘),V ®)|-V5)
me P T)-7, i}“] PPV Ay XJN

+(§/3@) .[/34% \4(»@] @&y})} d3Y
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a ’(/3"(2)25(70) + __T_\: __2__ [(7/3 (X})'/’,‘"(i)/{,‘"’(f) v/a(y):l) (N1)

Sl
4t QXR It a)(i

which is the same as Eq. (4.9).



APPENDIX O

DERIVATION OF THE VELOCITY OPERATOR IN TERMS OF
THE FIELD OPEBRATORS OF SECOND QUANTIZATION

In this appendix the form of the velocity operator given
by Eq. (4.11) is shown to be inconsistent with the definition
of the velocity operator in terms of density and current
operators given by Eq. (2.3), when the density and current
operators are wrlitten in terms of the f;eld operators in
Egs. (3.1) and (3.4). If the inverse density operator is

written as

/8"(2) =1 ¥ @*(z)).' ) (01)
— .

and inserted into Eq. (2.3) along with the form of the current
operator given in Eq. (3.4), the result is

Ve = § 1 ¢ (x)(t?ﬂ(x))"fh (7 ) - (75 ) wx]
m 2i

*_g, A+X>< ‘VX)) ( x)‘P(K)) § (x)‘f’ (f))f
=_‘E\___{“f’ G ((’\7%)) AN m ‘}’ (x)(‘i’ w) (W (x))‘P(x)
(

+ ¥R W&)) L?"'(x) ‘f)"‘(x)) . (02)
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In the succeeding manipulatlions of the second two terms
in Eq. (02), it 1is assumed that the annihilation and creation

operators commute with thelr inverses as follows:

P

[\f <i)j HAD"O?)} - E}\)i-(g)) (L;x\)*(y)).j = 0 (03&)
and

x[h ), §- (yﬂ = [\-& (P(X))‘;’_‘(y)] =0 . (03b)

These are merely formal equations since the inverse operators
do not exlst, ssisshown in Section V. If the veloclity operator

is now written

<—/U<) =h (\A/\(x) + Q(x))) (04)
where i
TR #Fhe)-Fhe) (@), (05)
and

V,60= @*(2)(?7%)) @_‘(i)<@+(2»~,- @"(x)(’“?’*@—\(ﬁ )@, (06)

2
then the terms included in V,(X) may be manipulated separately.

Commuting terms in i&(i) glves

AEE @(ﬁ)"f"'\(x)@q’(i))@*(i))_‘ - CP'\(R)C’\:Z‘?*&))@*(R))- Y&,
= @"(X)(ﬁ‘}ﬂ’(z)) + [‘@ ‘®), Q’"m(?@a)}(@ *cz))-‘

(o) b - e (TPela)’, dol . (07)



128
thus

Vo =h (V@ + \7,,(2) ,

Ami
= [‘f’"m (V"Po‘o) —(W’*(i))(@*(&))-] +h R , (08)
Cei L A
where
fﬁi(x) = [AY ))“}A’(; k“}' (x))-‘
- [(W*(xy(ﬁ*(xﬂ"/ ‘ﬁ(x)] . (09)

Ir H(X) ls zero, then EKq. (C8) is equivalent to Eq. (4.11).

Thls is not the case, huwever, as 1s shown oelow

A

Expanding the commutators in ﬂ(&) gives

Ron= (x)[\i’(x) (V?’(x)}( V@) [@*&)}@"(%(W(i))(@?i))‘l

- ‘P (x)(V“f”(X))[(LP (x)) : 4}( ):l [V“F KX) "}’()(] <‘1"+(x)) (010)

The commutators

[‘f“oo) v cxﬁ
[W*cz) , @(i)]

may be written as

and
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=+ [ﬁy cf(x-y)]_ _ (011)

) respectively, (012)

where the two varlables are set equal after the differentia-
tion has been done. Thus

[‘?’*(X), W’(:)] = - l:?q’*a)) ‘P(x)]) (013)
and

e = [‘f’*cx), ‘?“(x}] (¥ Pe)(% ‘=f'- 7 (W*(R))RCP*G))—; %'c)]

24" (“'P*(xy_’ [\7,‘ cf(z-\])]_ _ (014)
X=

If it is now noted that

[ G, J ¥ IE“X v WJ"’ (%)= d(x- y)LP wY *, (015)

and

[(\P (x)) H?’ty)] (\P (x) [\P(y) "P(x)}(“w(x) SG-Y) @’uf(\“ (x)> (016)

then R(x) may be written as

Roo= § GPE' @ 4’"(2)(@%)}@ +(x))“ (

- 297 ()\”Zx))’I [:Vx § U‘“Y)J 7

%=3
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; (017)

ot (o) S

x=7

where the delta functions are evaluated at the point R:Y.

2
R (X) may thus be written as

RV o (Ve dap

Z=f

which 1s not zero unless 6ﬁx)is zero, in which case the
velocity operator would be zerqg and any theory uslng the
velocity operator would have little value. It has thus

been shown that the form of the veloclty operator given in

Eq. (4.11) is inconsistent with the definlition of the velocity

operator ln terms ¢f the Jonslby and current opersiors.



APPENDIX P

CALCULATION OF THE RESOLUTION OF AN ARBITRARY OPERATOR
IN THE COHERENT STATES REPRESENTATION

In this appendix the identity, Eq. (6.10), is derived by

applying the unit operator given by Eq. (6.8) twice to the
A
operator ©. The result is

A A NN

6=To1 | =)( 6 B><B| DD B

:j 1c_<>< p%@@- * 3y “F(“a“"‘ﬁ " é_;‘@‘il> DLDCE,  (RL)

where 9(°<"§ p) 1is defined as in Eq. {6.11). This equation is

the same as Eq. (6.10).
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APPENDIX Q
DERIVATION OF EQ. (6.14)

A
If the operator & of Eq. (6.13) is inserted into Eq.
(6.11), which defines ©(=*8), the result is

o, B) =< {éélt B exp (é—“"‘”l ! H@“z> . | (1)

a1
2
6.7) to Eq. (Ql) gives

Applying the unit operator in Eq. (

Q(cx*) ﬁ) :<°<! é‘ _/'\—: S, lﬁ’> ex?(%—: “q“ ) +“él‘ “ﬁ”z)

=j<=<[é\{ Y] 6, | p) exp(_z\ruosna+_é_”p”2) D (¥). (@2)
Egquation (6.11) may be written as
<*[8]ey = 8=, ) exp(~L1 - L A") - (@3)

Using Eq. (Q4) to substitute for the matrix elements in Eq.
(Q3) gives

9(o<*) p)

(o5 9 ooy 2,6

oo (I ) o3 1472 ) 000

T2

1
l
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=je, cupy e (78 e (<% P, ()

which 1s the same as Egq. (6.14).



APPENDIX R
DERIVATION OF EQ. (6.18)

In order to derive Eq. (6.18), it 1s necessary to insert
A
the form of J(X) given by Eq. (6.17) into the defining equa~
tion for gr(q*){fs}i), Eq. (6.11). The result is A

9(“ @)") <°(

Commuting @(iﬂ?){{;(x) according to Eq. (4.7) glves
o % STy = O ; A S 7+Z) =" st -3
b (= ;) %l::;<°<f<f3(x)\/(x 0% LG \{))!/8>x

oL L 1)

Q;_,:;<o< ‘ ‘o(x)\/ -9 { [5) exp (_%:“d“z +%: ”@”7

+ Q;,:( *g‘ Vg § G-K= ), exP(.\a.H‘*Hz * H(b[f)- (R2)

13
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Applying the ldentity operator given by Eq. (6.7) to Eq. (R2)

gives

B %) - gg_;gjﬁ B0 Y%, B3 %) exp (o0

o 3] L V. £
hoep[elp)] b T 8@, ()

which is the same as Eq. (6.18).



APPENDIX S
DERIVATION OF THE IDENTITY EQ. (6.19)

The identity, Eq. (6.19) 1s most easlly proven by first

proving the simpler ldentity given below:

‘%3 exp((prec=1=]") ()" A% = (897 (s1)

where the k subscript has been dropped since it is common to

all the variables. If &« 1ls written in polar form,

ie ,
= °<! € y (52)

then

&' = AR ) ddomn (=)= || d ]| A6 . (53)

The key to the proof lies In expanding the exponential,
and noticing that only one term remalns after doing the

integral over ©. This is shown below:

e 2 Y

o — lox T AR = - s &_Hloc " -ing 4ol
J’;r exp(p =) (=" 4 _:;;Jjex?(p*{ e ) " =,
- ) | 00 |
:;”J E—Hl E‘PP*“X! e'® *(Ej)} Mz. Qlae+ N
2 3 2!
+ ( *‘)"‘ e\ﬂe l""h R :’ ‘q' N+l e-'me Jed | (st)
nt
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7 2n+ -le(\Z- n
: HJM @) e did = (55)

which is the same as Eq. (Sl). Integration by parts was

used.
Ir F(Y*) 4s analytic 1t can be expanded in & power series

ol
Fe = ™ - (s6
(6¥) ,.};ocm(” . (s6)
Then by using Eg. (S1) the integral ldentity

| j ep (= Y-\ F () ¥ = 2 == S exp(=*¥-\117) (1) &Y

—

g

a

=) Con (=07 = F (29 (57)

m
i1s obtained. Differentiating Eq. (S7) with respect to =«™ n
times glves

-

=L

=<_:()D_;_;> R (58)

which 1s Eq. (6.19).

S exp(=*Y-W\") ¥7 F (1) &Y



APPENDIX T

VERIFICATION OF THE FORM OF THE FUNCTION Y{&*, ;%)
GIVEN IN EQ. (6.20) AS A SCLUTION OF EQ. (6.18)

In this appendix it 1s shown that the function ¥(=*,pB;X)
given by Eq. (6.20) is a solution to Eq. (6.18) by simply
substituting this form of “Y(«* p,%) into Eq. (6.18). When
the form of ﬁjd*)@;i) given in Eq. (6.12a) and the explicit
form of 9'@”3@32) given in Eq. (6.12b) are substituted into

Eq. (6.18), the result 1is

%.(cx T—\ o (X)JX(x) cxp[(ﬂ)b’)ﬂll@) !ﬂl][vp(‘) 't (x)J V(x)
B ¥ * ()
+h exp [(«lp)] Qw:LO Ve £(8). (T1)

lt

This may be broken into three terms, Il' 12, and 13. which

are
=1 =% Vo) | Y@ exp [+ (ng) - o] oy (r2)
2i B
.= =¥ LK)SXOQQXP [+ i) - ] ] Vi*z) D) (13)
& ¥ ()
and
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T, =k exp [(«\p)} PN V‘ €y . (T4)

2 €—0

The sum of these three terms must be equal to the form of
Q,(og*)ﬁ}i) given by Eq. (6.12b).
The term I is treated first. Expanding ¥& and the

exponential gives

-
I, =h d*(x)‘lé@ Z\( e )(Tre_ ) ﬁ)( '“P""Xﬂ e l(“\)TT 4%

2. /5 AR

(T5)

..JF\°< Z Apf et +
= ()&)V{,ﬁiﬁ) ; € jKW[e P( Yot ¥y Py V¥ ) A,,” } .

If the identity in Eq. (6.19) is applied to Eq. (T5) with

- -
F(xs*) =ed ™ , n=ly

the result 1s

T = ‘ﬁ**uvuz Be wXy +Y* g 1y ) A L
2 x}%xi) d{ < jxfa[exf)(h'( KP“\OKC?E e

Applying the same ldentity again, with

*

. ¥
Fy)=e % Px , n=0 ,

the result is
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T, = = (x)Vﬁ(x) Z &U x{ at’. TI' atxhﬂﬁ}

2] ﬁ(") J Da* k¥
J
iex %
=h < LﬂVp(x}( ﬁ)e y )'ﬂ' 60(\“6“
o AR\ 9 b
b =0 T pwe ™ =t @Tpm e G )
2\ /500 (A

Thus the first term on the left side of Eq. (6.12b) has been

obtained. The second term is obtained in the same way as

follows:

=_ ) e (Jm exp[@\x)*(xm—ilﬁﬂVx*m T &,
L e *or

_T\q*(x)SX(x}&xp [(eﬂ\%)*@.( B)- HXH ﬁZ Y e ) Tl
o Enem)

-4 T«*mgxcm? [(«]Y)*r(l(lﬁ)“HXH & Gimere™) =

(Z XX e'm’i)
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rerncne) ]
n

Z ™

= _ J_F;c(*(i)g e ‘R'XJXR(Z ¥ e_“;;\.i)
t

% T}Z iexp(txi Y+ Y: ﬁb\,\-rﬁkfl) éi*h} .

(T8)
w
Applying the ldentity in Eq. (6.19) to Eq. (T8) gives
I, -—lhd*(i)}; e”""‘[f& [‘l}ﬁq*e k xﬁdkﬁk X
21 K [J o=
X —_
[ ce 4y Yre MY
nEK
xT cxp("‘h“Kh*X‘: Bn - Kh?—) 40
n¥k N
—im X *
N mZ#K 2 | -imy* o T e x Px
O T R
-1\K- i AT
=Xk € +Z Y: e
n#EK _[
r
X T | expfa L e —-{L)”‘X
m#K P LAl 7 ﬁm ™ d/”hn (T9)
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Another application of Egq. (6.19) gives

I,_z_ x)ze ih7

[, -
x)d ~-)k°‘:el

gﬁ*f(@‘iﬁk*zﬁ )|

'*Zo(*eiﬁi

[ n{k N
T ;
\ —-im- X
21D [t T g fan g 0T g
P
. ik —5-—%- ‘ N7k . (T10)
" ~ik-X Z —lﬁ-;
-+ o(
| N¥ER

Carrying out the differentiation leaves




- il e TR TR )

[o&* ® L]

21 d* ®"

g s fonpen e

T -
+ Ey\: e (~iK) FKO(K e («\(5)}
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d*(x) K om7k

ZZ S -ia-i ecqw)g

Z‘Y\_{ﬁﬁx}v* ) eS8 Y ik e 8
\ Y

%% (%)

~ o 1B) Z(\/w w»f\\w -g—ys
X

o (8)
ia‘ﬁ {p(x)w (x)- Z( ik) - \*(_)[Vﬂ*a}fﬁd*&)ﬂ

\2\: E-\__e(adm[/&(i)_‘—]**éi)“z (*'\Tﬂ)] .
' X

Expanding the delta function term in I3 gives

he®® 0 T 6@ =1k P

| G T -ik-€
Z €0 2\ E—0 §2(§§<1 ,>
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(T11)



RS

- . (T12)

where the volume has been set equal to one, I

3 combineé
with Iz to give

: I o~ - (=\B) —
T,+1h B o F §@)=-1 1 £ RIV=*R).
25 ,‘ e € 7T g (T13)
The final result is
I, ~T, + l”h g i) N A § (&)
2 1 €0

=L g &R [“*L?)vﬂ(i)—ﬁti)_v—d*(i)J . (T1k)

& |

qfé**,ﬁ;i) as given by Eq.

(6.20) 1g therefore g solution
of Eq. (6.18),



 APPENDIX U
DERIVATION OF EQ. (6.22)

Equation (6.22) is derived in this appendix by simply
substituting Eq. (6.21) into Eq. (6.20). The result is

given below:

_ (0( —_— ‘ ()—() — ""l G)
VespR)e 1 he ”}){ Vswe ") e ™ )8
im - oG
fa e P (e =P

IR h (D=
L e L il e BT V0

E im

€ oy e (Pe®)
F/g()()e. p

- ® -if,, (%)

- (?7 faie ~Lwe de,((x))

{lﬁ( (X) e_~.‘¢)=< (R)

( ‘ ) b - ] = =1
hoe 18 {__,évg @+ V@ - Yhw + V@,
f‘p(i) &(2)
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=%Y‘,._ e("‘m{%ﬁ&)fﬁ@é@*.‘ L - "7%3602
im

4«60 {%(i{)

e “"‘*"{v 8.6 + 4,6 +1/1 7L Whllj
T

=1 Ee(ﬂlﬁ)g\? EP X+ ¢, (x)
2 m

+ T Lo [&(Q‘) {:/5 0‘4]} ) | (1)

Wwhich is the same as Eq. (6.22).



APPENDIX V

DERIVATION OF THE VELOCITY OPERATOR FROM THE
FUNCTION % (=%, p35%)

In this appendix the form of the velocity operator glven
in Eq. (6.24) is obtained by substituting the form onQY«jﬁgi)
given by Eq. (6.20) into Eq. (6.10). The results are showuwn

below:
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(V1)

Substituting for X (& from Eq. (6.21) into Eq. (V1) gives
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2. i

which 1s the same as Eq. (6.2).
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APPENDIX W

CALCULATICN OF THE HEISENBERG EQUATION OF MOTION
FOR THE FIELD ANNIHILATION OPERATOCR

Equation (7.14) is calculated by inserting the Hamiltonian
of Eq. (7.12) into the Helsenberg equation of motion. The

result 1is
E@(x,%)} ?4] J [\@(X,ﬂ) @”(yﬁ)“rq)@qﬁ)] &y
o 5 G, ) POV EPIEN ED e
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4_25:53’*@,%) §x-7) VED) \P(y,ﬂ Yz A’f_dgy
\V(X )+ L S\P (Y )‘f’(?,lr) v (x4 dzy

&J%’ (EN VIEN YD P E B &= (W1)

Since \/(2,7)=V(‘Y',X) , the dummy variables of integration in
Eq. (Wl) may be relabelled to give

[ﬁ’(i,%)) \“4] = h ¥R, 1) =T(x)§’(x,¥)+ﬁ*q,&)\&&,ﬁ)ﬁ)qﬁ)ﬁ) GHN,  2)
oF

which is the same as Ea. (7.14).



APPENDIX X
GROSS~PITAEVSKII EQUATION IN TERMS OF DENSITY AND PHASE

Eqﬁation (7.24) is calculated in this Appendix by sub-
stituting Eq. (7.19) for the order parameter into the Gross-
Pitaevskii equation, Eq. (7.16). Since the order parémeter,
the denslty, and the phase are all functions of the position
and time, they will be written without their arguments to
simplify the notation. That is,

[a(z‘)+) = Ia',

Making the substitutlion described above glves

%gi %% (P%Eﬁv ‘-:é%ngl <£;>% eﬁﬁ +—u<%%§ﬁ,5m

R : ' ta iR
L V(x)x){od&(ﬁ_;) e (X1)

Expanding the derivatives in the above equation results in
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On further manipulation, including division by e‘R » We obtaln

’ﬁ'aép_;/" 69 v\aa

2 2_:’%?[\7(?“) T+ i (VR) Vé,gmj/‘ + 1(7R)- V(rpﬁ_)"‘
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which is the same as Eq. (7.24).



APPENDIX Y

EQUATION OF CONTINUITY FROM THE
GROSS~PITAEVSKII EQUATION

Equation (7.25) 1s obtained in this appendix by setting
the imaginary terms on each side of Eq. (7.24) equal. The

result is

12 %&)h :-é% ]:?-(Vﬁ) V{/g__ ( > % F{] (Y1)
e

Noting that

and

- we see that Eq. (Y1) may be written as

_f; _;_?l[& (7R) -(V}) 2 v‘RJ
"9 o m

v.('_‘?ja) - 75 _ (x2)

where Eg. (7.21) was used in the last step. This is the same
aS qu (7025)0 S ch ’



APPENDIX Z

THE BERNOULLI EQUATION FROM THE
GROSS~-PITAEVSKII EQUATION

Equation (7.26) 1s derived in this appendix by setting

the real terms on each side of Eq. (7.24) equal.
is

h(?‘%?«))/ﬂﬁ%& EY\“_[ (79_) éL) (VR)J+U@9/‘

The‘result

[

*(ﬁy_‘,\)g’/‘] V()?,X’}(%) a3 . (z1)

Dividing the above equation by 0ﬂ )A gives

p g .
RR - e_f; A A VEIEE.

( 70_&)'/1

Identifying \ V(Z, X)/o'd3

as the total internal potential v
and dividing by m gives the Bernoulli equation

B OOR =k (f" ~ (VR)' | -u - v .
™or A - "o (23)
(QM))/L,

Taking the gradient of the above equation and using Eq.
(7.23) gives
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|
where
Fext = -VV
and
Fok = - TV

which is the same as Eq. (7.16).
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