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CHAPTER I 

INTRODUCTION 

In 19*1-1 Landau developed a theory of quantized hydro-

dynamics.^ This was included in the same paper with his 

famous successful phenomenological explanation of liquid 

helium, which predicted the existence of second sound in 

helium II. The two sections of his paper were apparently 

unrelated. 

More recent attempts have been made to obtain a quantized 

theory of hydrodynamics similar to Landau's by approaching 

the problem through the many-particle Schroedlnger equation. 

This renewed interest in quantum hydrodynamics has been 

stirred by the success of current algebra in describing 

strongly interacting particles,or hadrons.2 In attempting to 

formulate theories of quantum mechanics in terms of densities 

and currents as the dynamical variables, authors have chosen 

nonrelativistic quantum mechanics as a testing ground for 

their theories. If a theory Is to be applied to high energy 

physics, it should first be shown to describe correctly 

nonrelativistic quantum mechanics, where the dynamical equa-

tion is the Schroedlnger equation. This interest in quantum 

mechanics using currents and densities as variables naturally 

leads to a renewed interest in quantum hydrodynamics. 



The quantized hydrodynamical theories are written in 

operator form. To obtain a complete description of quantum 

hydrodynamics, however, the theories must be cast in terms 

of expectation values. No one has yet done this with theories 

derived from the many-particle Schroedinger equation using 

the current algebra approach, because eigenstates of the 

Hamiltonian written in terms of the density and current or 

velocity are unknown. Hydrodynamical theories written in 

terms of operators are called quantized hydrodynamics in 

this paper, while theories written in terms of expectation 

values are called quantum hydrodynamics. 

All of the theories of quantized hydrodynamics reviewed 

in this paper contain mathematical defects. The quantization 

procedure used by Landau* to obtain a quantum mechanical 

Hamiltonian from the expression for the energy of a classical 

fluid Is dubious, since he did not use canonically conjugate 

coordinates and momenta. The derivations of quantized 

hydrodynamics from the many-particle Schroedinger equation 

rely upon the use of nonexistent Inverse field and density 

operators.3'^ Some of the theories are derived using manipu-

lations of operators that are not even formally correct, 

such as replacing operators with functions to facilitate 

rearranging the order of the operators. No one yet has suc-

cessfully derived Landau's quantized hydrodynamics from the 

Schroedinger equation. 



The object of this paper is to derive Landau's theory of 

quantized hydrodynamics from the many-particle Schroedinger 

equation. Landau's results are obtained, together with an 

additional term in the Hamiltonlan. This term leads to a 

quantum correction in the equation of motion for the velocity 

operator, which is a quantum pressure term in operator form. 

One term in Landau's equation of motion for the velocity 

operator'*" is shown to be incorrect. Although the derivation 

used contains the Inverse density operator, the manipulations 

are formally correct. 

The most satisfactory derivation of quantum hydrodynamics 

from the many-particle Schroedinger equation to date seems to 

be the derivation from the Gross-Pitaevskll e q u a t i o n . T h i s 

derivation gives hydrodynamical equations which are written 

in terms of functions. The Gross-Pltaevskii equation approach 

7 

is a rigorous one. Although the final result is an approx-

imation, the neglected terms are known, and could in theory 

be calculated. 

Landau's theory of quantized hydrodynamics'*' is reviewed 

in Section II, and a correction is made to his equation of 

motion for the velocity operator. The current algebra formu-
O Q Q -lA 

latlon of nonrelativistic quantum mechanics ' is 

reviewed in Section III and shown to be of doubtful validity. 

Landau's quantized hydrodynamics is derived from the current 

algebra approach to the many-particle Schroedinger equation 



in Section IV. A theory of quantized hydrodynamics in terms 

of density and phase operators^ is also reviewed in Section 

IV. In Section V the Fock space form of the hydrodynamic 

operators is shown, and the inverse field and inverse density 

operators are shown not to exist in Fock space. In Section 

VI an explicit form of the velocity operator as the gradient 

of a phase operator is derived in the coherent state repre-

sentation."^ Section VII is a review of the Gross-Pitaevskll 

equation approach to quantum h y d r o d y n a m i c s . ^ ' ^ * ? Section VIII 

presents the conclusions. The systems discussed in this paper 

are "boson systems. 



CHAPTER II 

LANDAU'S QUANTIZED HYDRODYNAMICS 

In this section a review of Landau's quantized hydro-

dynamics^ is presented for completeness and for comparison 

with more recent work. Landau's quantization procedure Is 

explained first, and then his operators are defined. The 

commutation relations for the operators are given, and these 

relations are used to develop the Helsenberg equations of 

motion for the operators. 

Landau's quantization procedure consists essentially of 

substituting operators for the density and velocity functions 

in the classical expression for the energy of a unit volume 

of a liquid. This substitution results in Landau's Hamlltonian 

density. The Hamlltonian operator is then the volume integral 

of the Hamlltonian density. This quantization procedure Is 

somewhat dubious, for the reasons which are explained next. 

The usual quantization procedure for quantizing a clas-

sical equation is to replace the canonical coordinates and 

momenta In the classical equation-with the corresponding 

quantum operators which satisfy the canonical commutation 

relations. If the classical density is taken to be the 

generalized coordinate, then the velocity is not Its conjugate 

momentum. The density and velocity operators are thus not 



canonical, so we cannot use the usual procedure of field 

quantization. 

Landau defined the density operator oCx) for a system 

of N identical particles as^ 

IV/ 
>̂(5?) = m Z L £(x-r.) > 

i=i 
(2.1) 

where m is the mass of a particle and P. is the position 

coordinate of the 1th particle. The current density operator 

A 

J"(^) is defined as 
N 

^ *z ̂  ft ^ " j ) + * ] % (2 .2) 

where pj is the usual momentum operator, 

6 • 
In this paper the terms current and density will always refer 

to mass current and mass density, respectively, rather than 

to particle current and particle density. These definitions 

give operators which have the same form as the density and 

current operators of second quantization In the N-particle 

subspace of Fock space, which will be considered later. 

The velocity operator VCx) which Landau used in his 

Hamiltonian is defined aŝ " 

Vcx) = _l (2.3a) 



which Is manifestly Hermitlan. This definition seems reasonable 

A - l 
until one tries to write ^ (X) , which for a one-particle system 

would look like 

<T (x-r) r 00 " 

so that one could write 

1-1 
= 1. 

Such a function would have to be infinity everywhere except 

at the point x- f, , where it must be zero. Since such a 

function apparently does not exist, Landau's procedures which 

utilize V or 
A 
^ must be taken as merely formal procedures 

which are not rigorously established. It is nevertheless 

possible that meaningful physical results could ultimately be 

obtained by these formal procedures. Landau also wrote the 

current operator in terms of the density and velocity opera-

tors as 

TCX) »JL 
t 

A 

f ooVc*)
+ Vcxya) (2.3b) 

This equation may be considered as an implicit definition of 

V ̂ x) » and is consistent with Eq. (2.3a) and the commutation 

relations between the operators, as is shown In Appendix A. 

Once the density-density and current-density commutators are 
A 

known, "J(X) may be replaced by Eq. (2.3b) in the current-

density commutator to obtain the velocity-density commutator. 
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Then the current-current commutator may be found, and this 

gives an equation which may be solved for the velocity-velocity 
A 

commutator upon replacing -TOO by Eq. (2.3b). This procedure 

avoids the use of the inverse density operator. The density-

density commutator is obviously zero. The current-density 

and current-current commutators are calculated in Appendices 

B and C» respectively, and sore found t:o be the same as those 

obtained when the density and current operators are written 

in terms of the field annihilation and creation operators 

of second quantization, as is discussed in Sections III and 

IV. Since the current operator has the same definition in 

terms of the density and velocity operators in Landau's theory 

and in second quantization, the equivalence of the velocity-

density and velocity-velocity commutators In Landau's theory 

and second quantization follows immediately. The velocity-

density and velocity-velocity commutators are given in Section 

IV. The values of the commutators are given below: 

J * O , (2.4a) 

o G ) f jiCy) - l> (x) V* <f (x-^) J (2.4b) 

(2.4c) 

-i 
GO - 3VKC*) 

3x„ 

(2.4d) 



and 

A A 

9. 

&(x-y) JkOc) + ^ A. ^"(x*y)^Cy) • 

9 

(2.4e) 

Yk 

Equation (2.4d) differs In sign from Landau's result. 

Landau obtained the Hamiltonian density for his theory 

by substituting operators for functions in the classical 

expression for the energy of a unit volume of a liquid. 

(2.5) 

where jat?) is the density of the liquid, rs~(x) is the velocity 

of the unit volume of the liquid, and &Lp) Is the internal 

energy of a unit mass of the liquid."1" Upon substituting the 
A 

operators ^ , V , and for the classical function, 

Landau obtained the Hamiltonian density operator 

H -J_ Vy> V + (2.6) 

•which is written in a symmetric form. The Hamiltonian opera-

tor was then obtained by Integration over the volume of the 

liquid. 
A w - V f V + f £ ( f ) U 3 r . (2.7) 

Landau then used the commutation relations in Eq. (2.4) 

and the Hamiltonian of Eq. (2.7) to derive the Heisenberg 
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equations of motion for the density and velocity operators.^" 

The equation of motion for the density operator is 

(2.8) Cx) = - V*0 Of) = - V*Jl + V(x) p(x) 
a 2 r 

which is the operator form of the equation of continuity and 

is derived in Appendix D. The equation of motion which 

Landau obtained for the velocity operator is 

00 

d\ 
fix) 

Px f A 
v„ (a 3v, + 3v< ce v£oo 

3x„ 3XK 

which is Euler's equation in operator form. 

Equation (2.9) is shown to be incorrect in Appendix E, 

? d C ® ) 
iV 

(2.9) 

r 

where the following equation of motion for the velocity 

12 operator is derived: 

(§(S> • v) \ ts) + (v \{6o)*V (x) d\GO 
at 

- - - 3 4 ~lL(p 
d*. i? I 1 

(2.10) 

A dimensional analysis of the term on the right side of 

*7 2 

Eq. (219) shows that It.has dimensions of length' (mass 

x time^) which are not the required dimensions of accelera-

tion. The dimensions in the term on the right of Eq. (2.10) 

are indeed those of acceleration as required. 

Two derivations of Eq. (2.10) are given in Appendix E. 

In the first derivatlon,^-^) is treated as a function of yO 

and expanded as a power series in to facilitate calculating 

its commutator with 00 . In the second derivation, the 
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term in the Hamiltonian involving £-(g) is treated as a 

functional of p (*) , E 3̂ 
r 

, to show explicitly the similarity 

to the results that are obtained in Section IV. The 

functional £ 
A 

f . is defined as 

r\ 

r. (2.11) 

The functional treatment is the more general of the two, and 

is shown to give the results of the first treatment as a 

special case. The more general result is 

d\l% 00 Vex) * VVA {*) + (VVj UOj • V CO 
L -~d (2.12) 

f^co 

Since neither ordinary differentiation nor functional 

differentiation with respect to an operator is well defined, 

the derivatives with respect to the density operator in Eqs. 

(2.10) and (2.11) must be interpreted as formal manipulations 

in which the operators are replaced by functions, the dif-

ferentiation is done, and the operators are reinserted into 

the resulting expression. 

It is at this point that Landau's theory of quantized 

hydrodynamics stops.* It is thus an incomplete theory, since 

a complete theory of observables should have its dynamical 

equations in expectation value form. As far as we know, the 

only useful application of Landau's quantized hydrodynamics 

13 
was obtained by Pitaevskii, J who rederlved Feynman's theory 
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for the energy spectrum of superfluid helium from Landau's 

quantized hydrodynamics. 

Landau's original 19̂ -1 paper goes on to discuss other 

aspects of Helium II, such as Its energy spectrum, heat 

capacity, and heat conductivity.^" It was in this paper and 

14 

another in 19^6 that Landau developed his famous excitation 

spectrum for Helium II which includes the "roton dip." It 

was also in this paper that Landau made the famous prediction 

of the existence of second sound in Helium II. 



CHAPTER III 

CURRENT ALGEBRA APPROACH TO NONRELATIVISTIC 

QUANTUM MECHANICS 

In this section the current algebra approach to non-

relativistic quantum mechanics Is reviewed. First the original 

motivation for the theory is given. Then the current and 

density operators are defined and their commutation relations 

in second quantization given. The Hamiltonlan operator is 

then defined, and a functional representation of nonrelatlvls-

tic quantum mechanics is developed. 

Current algebras have been used to describe strongly 

2 

interacting particles, or hadrons. The formulation of a com-

plete dynamical theory of hadrons in terms of currents is 

more physical thanistaslng the underlying fields, since the 

currents are more closely related to experimental quantities. 

A nonrelativistic quantum system of many particles was first 

Investigated as a proving ground for the current algebra, 

because of its simple nature and because its dynamical behavior 

is well known. 

The current algebra approach to nonrelativistic quantum 

mechanics is related to Landaufs quantized hydrodynamics by 

its use of density and current operators and Its formulation 

of the Hamiltonlan In terms of density and current operators. 

13 
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It was not originally developed as a hydrodynamical theory, 

however. Thus one is lead to the possibility of deriving 

Landau's theory from the current algebra approach. The 

theory is written in the formalism of second quantization, 

which is natural for systems of many particles in which the 

number of particles can vary. 

Current Algebra 

The mass density operator for a system of several inter-

acting particles is written as^ 

~ tx) H'Cx) y (3*1) 

^ A 

where and *+*00 are the field creation and field annihila-

tion operators, respectively, of second quantization for bosons 

satisfying the commutation relations 

--o, 

.$00, Y^y'J 

( 3 - 2 ) 

( 3 - 3 ) 

The mass current density operator is defined as 

T'oo(vYc»)-(v'Too) ¥ « ) TOO =1S 
& 

The commutation relations for these operators are the 

same as those for the corresponding operators in Landau's 

2 
theory. The density-density commutator is 

(3-4) 
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pCx), fly) - o. (3-5) 

which is derived in Appendix F. The density-current commu-

tator is 

^ <y> - - it) c) 

a t 

|o(a) fa~y) (3-6) 

which is derived in Appendix G. The current-current commu-

tator is 

A A . ^ A 

^(x),^ (y) -- tn_£_ (x) + t"h c> nx-y)^(y) 

2; % 
(3-7) 

which is derived in Appendix H. In deriving Eq. (3.6) and 

Eq. (317) 1 use is made of the identity^ 

F(x) ^y^Cx-^) = y(y) Vvy ̂ (x-•+ (3.8) 

which is obtained by differentiating the equation 

F(x^Cx-^) = F(y) <T (x -y) . (3.9) 

The identity 

V* F (*) Vy Rx-y) 4 h(30 Vx'Vy (fCx-y) 
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= F(y) %-Vyhx~)) + Vx&CX-y) • Vy F(p (3-10) 

is also used, which is obtained by differentiating Eq. (3.8). 

Equations (3.8) and (3.10) are quite useful in dealing with 

current and density commutators in general. 

The Hamiltonian in Terms of Current 

and Density Operators 

The Hamiltonian may be written in terms of the field 

annihilation and creation operators a s ^ 
A A A A 

H =T + U + V , (3.11) 
j 

where the kinetic energy is 

A 

T = -
J 

^ Cx)V (3.12a) 

the external potential is 

r 
U = f * CO u (x̂ Cx) J (3.12b) 

and the two-body potential is 

^ . ,3.120) 

V(tx-y|) is the two-body potential between a pair of particles, 

and U(a) is the external potential at the point X . 
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The form of the Hamiltonian written In terms of current 

and density operators of Eq. (3*1) ®nd Eq. (3**0 is derived 

from the Hamiltonian of Eq. (3«H) in Appendix I and issjstawn 

below:' 

A A / A / A / 
H - T u * V , 

where the kinetic energy is 

I (VaCX)} - l\T(x) f •h 

* tTi|0 (50 

im 
d3* 

(3-13) 

(3-l^a) 

the external potential is 

>O0Uax|) Ax, 
A i — 
U -J_ 

m 
J r 

and the two-body potential is 

V = _L_ 1 V(ix-yi) A3x d3y + J V(o) ^ (y) d3^ 

(3.Wb) 

(3. l^c) 

The second term in the operator V is a (possibly 

infinite) constant which may be subtracted from the Hamiltonian 

without ch&nging the form of any subsequent equations in the 

theory. 

The presence of the Inverse density operator in Eq. (3.14a) 

renders the Hamiltonian invalid, since the inverse density 
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operator does not exist in Fock space, as will "be shown In 

Section V. Further calculations involving the Hamlltonlan 

must therefore be regarded as merely formal. 

Functional Representation of the 

Current Algebra 

The basic formulation of the theory is completed with 

the introduction of a functional representation of the com-

mutator algebra given by Eqs. (3*5)» (3*6), and (3-7).® It 

is assumed (erroneously) that eigenvectors of the density 

operator exist and form a complete set in terms of which 

any state in Hilbert space may be expanded. Eigenvectors of 

the density operator are labeled by their eigenvalues: 

[i3) Y°°|/°> * ( 3* 1 5 ) 

The set of components of an arbitrary vector along the 

basis formed by the eigenvectors of jsCX) is then a wave 

functional. 

(3-16) 

It is shown in Appendix J that the commutation relations of 

Eqs. (3.6) and (3.7) are satisfied if the actions of TkCx) 

and jtfO on the wave functional in the density eigenvector 

basis have the following realizations: 

Cx) -> ̂cx)^ (3.17a) 
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and 

\i%) 9- -fy>(x)JL i (3.17b) 

3xK ff>(x) 

f where — denotes the functional derivative with respect to 
U*) 

the eigenfunction of o(x) • 

2 
The total momentum operator is given by 

P=J;rt$)<l3x. (3-18) 

The energy spectrum of the system is determined by the 

Schroedinger equation in the functional representation, 

H $ C p ) - - J (3.19) 

where the current and density operators in the Hamiltonian 

operate according to Eq. (3.I?)* This form of Schroedinger's 

equation is obtained by noting that the Hamiltonian whose 

operators have the realizations given by Eqs. (3.17a) and (3.17b) 

has the same effect when operating on the wave functional 

^(^>) as when the Hamiltonian operates in the usual sense upon 

a wave vector \$^,and the inner product of the result is 

taken with an eigenvector of the density operator, 

faif) |"5) * (j=) 

The scalar product in the functional representation is 

given by 
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<($1$)= $*(*) $ (f,) P<jo) J (3.20) 

J 

where j D(jp) signifies a functional integral over all functions 

j>U0 such that p00^0 and 

_L pOOd3* = N 
rn I ^ 

where N is the number of particles in the system. 

Thus a complete functional representation of nonrelatlvls-

tic quantum mechanics has been developed. The next step is to 

obtain solutions to Eq. (3-19) for various systems. It should 

be noted, however, that the assumed eigenstates of (̂j?) in 

Eq. (3.15) do not have the desired properties of a basic set. 

The properties of the eigenstates of are demonstrated in 

Section V. 

The "eigenvalues" of Aft) are shown by Gross10 to be 
H 

(*) - rmZ. <f(x-r;) (3-21) 

for a system of N particles. As is pointed out in Section V, 

however, this is just the form of the operator in the N-particle 

subspace of Fock space. Furthermore, the "eigenvalues" of 

fa) given m Eq. (3.21) consist of only one eigenvalue. 

Since Pardee, e±_al..9 claim that the functional Integral in 

Eq. (3.19) is over the eigenvalues of fa), it is not a valid 

functional integral. The scalar product in the functional 
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representation is therefore undefined. The functional repre-

sentation is thus of doubtful value. 



CHAPTER IV 

DERIVATION OF QUANTIZED HYDRODYNAMICS FROM THE 

MANY-PARTICLE SCHROEDINGER EQUATION 

Landau's theory of quantized hydrodynamics"1" is derived 

from the many-particle Schroedinger equation in this section. 

In practice, the derivation of the theory from the many-

particle Schroedinger equation means that second quantization 

is used. The density and current operators are first defined 

in terms of the field operators, and their commutation rela-

tions are derived.. The velocity operator is then defined in 

terms of the density and current operators, and its commutation 

relations are derived. These commutation relations between 

the density, current, and velocity operators are the same as 

those obtained in Section II. An explicit form of the velocity 

operator in terms of the field operators which is used in 

one theory^ is given and shown to be incorrect. 

The Hamiltonian written in terms of the density and cur-

rent operators Is cast in a form which is equivalent to 

Landau's Hamiltonian except for a term which may be identified 

as a quantum pressure term. This Hamiltonian contains the 

inverse density operator and was derived using the Inverse 

field operators. These operators are shown in Section V not 

to exist, so the derivation of Landau's theory must be 

22 
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considered as merely a formal one. The Helsenberg equations 

of motion for the density and velocity operators derived from 

the many-particle Schroedlnger equation are therefore the same 

as the equations of motion obtained by Landau, except for the 

quantum pressure term in the velocity equation of motion. 

A formulation of the theory in terms of density and phase 

operators is also given,3 although it is shown in Section V 

that the phase operator does not exist in this formulation. 

Finally, mention is made, at the end of this section, of a 

theory in which the boson fluid is assumed to have a rotational 

and an lrrotational part.-*-? 

Hydrodynamlc Operators In Second Quantization 

The first step In the derivation of Landau's theory of 

quantized hydrodynamics from the many-particle Schroedlnger 

equation Is to show that the density, current, and velocity 

operators of second quantization have the same commutation 

relations as do those of Landau's theory. The density and cur-

rent operators were defined in terms of the field operators 

in Eqs. (3.1) and (3*^) in Section III, and their commutation 

relations were also given there in Eqs. (3.5), (3.6), and (3.7), 

These are repeated for convenience below: 

L 2nt L 

pca,|0(p =0, (it.lb) 



Zk 

and 

- _'ili d 

3A ( 

4 iti c) 6 (x-y) (y) 

Vk 

( i t . l c ) 

•where the density Is 

r\ 

r 
O0 = ^0$ * (fc.ld) 

and the current Is 

T o a = k 

t 
^ ( v v c a ) - ( v r o o ^ u ) (4.1e) 

The velocity operator may "be defined implicitly in terms of 

density and current operators as 

3" GO - J_ 
2. 

^x)V<x) + VQO ^Cx) (^.2) 

This definition avoids the use of the inverse density operator, 

11 17 

and is used by several authors. ' 

The commutation relations between and VC*) can be 

found using the above definition of ^00 without recourse to 

the use of any nonexistent Inverse operator. The velocity-

density commutator is 

SoO, V, if - % 3 ^ Cx-^) 

1% 

(*.3) 

which is found using the known value of the density-current 

commutator In Appendix K. 
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The velocity-velocity commutator may then be calculated 

using Eq. (4.3) a^d the known value of the current-current 

commutators. The result is 

VKtx) ̂ Yt Cy) =• & <f (X- y) 

fa 

-~N A 

(4.4) 

which is calculated in Appendix L. All the commutators given 

so far in this section, with the exception of Eq. (4.4), agree 

with the commutators obtained by Landau for the density, cur-

rent, and velocity operators in his theory.1 Equation (4.4) 

differs in sign from Landau's result, but agrees with other 

authors. 

Derivation of Landau's Hamiltonian 

The second step in the derivation of Landau's theory 

from second quantization is to derive Landau's Hamiltonian of 

Eq. (2.7) from the Hamiltonian of second quantization. The 

first step in the derivation of the Hamiltonian is taken in 

Section III, where the Hamiltonian written in terms of the 

density and current operators is derived from the Hamiltonian 

of second quantization and 3s shown in Eqs. (3.13) and (3.14). 

The terms u' and v' in Eq. (3-13) are already in the form of 

the first two terms in a series expansion for the term b 

in Eq. (2.11). 

A 

L 
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If € 
t. 

is expanded as 

r. 
oo 

n=i 
J 

f (X,... ^tfn) d
3A, 

then the first two terms are given by Eq. (3*1*0 as 

f A 
P I- j 

JL +_L V(o) r\ 

f 
(x)<i3x,+ J__ V(^y)^ C^pCy) (i4- - 5a.) 

and the second quantization approach has given an explicit 

form for E £ . The kinetic energy term in the second 

quantized Hamlltonian may be manipulated to obtain the term 

in Landau's Hamlltonian involving the velocities plus a term 

which Is a function of the density operator and may be con-

sidered a quantum correction term since it contains a factor 

of . The result is 

?rn" 

which is derived in Appendix M. The full Hamlltonian derived 

from the second quantized Hamlltonian is thus 

vr-
J liL™ 

v c o y ( X ) v e a p~\>o ( v ^ o o ) • y o o ) + E ' } (4.6) 

where E ^ is given in Eq» (Jj-»5a) • This is the same as Landau's 

Hamlltonian except for the quantum correction term "Hq, 
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* V 
J 

i l P~xi?) (Vp(x) <*3* , (4.7) 

A 

which explicitly involves T I . H q also contains a divergent 

term which may be neglected, since it is a constant and does 

not enter into the equations of motion. 

This form of the Hamiltonian has been derived by some 

authors^ by using an Incorrect formulation of the second 

quantization Hamiltonian in terms of density and phase 

operator and then replacing operators by complex functions. 

Other authors2* have replaced the operators in the Hamilton!an 

of Eq. (3-12) with complex functions and reordered the 

functions to obtain a Hamiltonian of the form of the one in 

Eq. (4.6). Although the Inverse density operator in Eq. (4.6) 

renders that form of the Hamiltonian Invalid, the derivation 

in this paper is at least formally correct, andisdens without 

recourse to replacing operators with functions. 

Equations of Motion in the Many-Particle Theory 

The commutation relations between the density and velocity 

operators are the same in Landau's theory and In the second 

quantization formulation. The Hamlltonians are also the same, 
A, 

except for the term in the Hamiltonian derived from the 

second quantization Hamiltonian. The equations of motion 

for the density and velocity operators should therefore be 



28 

the same In both cases, except for terms due to HQ in the 

theory derived from the many-particle Schroedinger equation. 

Since the density operator should commute with functions of 

the density operator, the operator form of the equation of 

continuity obtained by Landau follows Immediately when the 

Hamiltonian of Eq. (4.6) is substituted into the Heisenberg 

equation of motion for the density operator. 

d 
—j 
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-_L - |o(.x)H = - V • 3" CO . (4.8) 

The equation of motion for a component of the velocity opera-, 

tor in second quantization is the same as that of Eq. (2.12) 

with the addition of a term given by 

IS 
=Ji_ i L ^ ~ (x)̂ s (tij til 2 l 

J V d 

Vf(x)-^(x)jS-\x)VfS(X) (4.9) 

which is derived In Appendix N. 

This term may be manipulated to obtain a term of exactly 

the same fbmasth£ofttequantum pressure term In the form of 

Euler's equation which is derived from the Gross-Pitaevskli 

equation in Section VII. The entire equation of motion for 

the velocity operator is 

dy x CO = -^vpj-V^tfi-j/vVjoa) • % ) +jf_ _2_ 

ft t e cht. v 1 ' 
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-Hl 2. 
C)K 

Vfo;) - 9 <r 

J! 

/° (4.10) 

where E |b is defined, in Eq. (4.5a) in terms of the micro-

scopic theory. Equation (4.10) is a fundamental result of 

this paper. 

An Incorrect Form of the Velocity Operator 

It would be desirable, if only for completeness, to write 

the velocity operator explicitly in terms of the field opera-

tors of second quantization. Fanelli and Struzynski write 

the velocity operator in terms of the field annihilation and 

creation operators as^ 

V(50 

2-vm 
v ^vh -cd ) - (v r *®) ( : 

(4.11) 

This must be considered as merely a formal equation, since 

the Inverse field operators do not exist, as is shown in 

Section V. It is shown in Appendix 0, however, that this 
A 

expression for V is inconsistent with the definition of the 

velocity operator which is written in terms of the density 

and current operators in Eq. (2.3), when the density and cur-

rent operators are written in terms of the field operators 

of Eqs. (3*1) and (3.4). The succeeding derivations of 

Fanelli and Struzynski which depend on the form of the 
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velocity operator given In Eq. (ty.ll) are thus not even 

formally correct. They do obtain correct results for the 

density-velocity commutator, however. 

They show that the velocity-velocity commutator must 

be zero, and that the curl of the velocity operator is also 

zero. This makes their zero result for the commutator con-

sistent with the results of Landau and others.^ This would 

17 

also make Yee's assumption ' of the existence of a rotational 

component of the fluid unnecessary. However, they make use 

of inverse density and field operators to obtain their zero 

results. It has not been possible in this paper to obtain a 

zero result for the velocity-velocity commutator rigorously. 

It is suspected that although the curl of the velocity can 

be taken to be zero as shown by lee1'' and Turski,11 this does 

not necessarily follow from the commutation relations. 

The Phase Operator 

An interesting aspect of the theory of quantized hydro-

dynamics as derived from the many-particle Schroedinger equa-

tion is the result that the velocity operator is the gradient 

of a velocity potential operator. Fanelli and StruzynskP 

arrive at this result by defining what they call Hermitian 
A 

operators n(x) and <f>C0 by the following equations:3 

* * ' 

A ^ <" —-

4*00 = exp j (fc.l2a) 
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and 

f+C*> - Jn(x) ocp -i^(X) (4.12b) 

where 

n(x) - J_ 
m 

pC*> (4.13) 

is the particle density operator. 
A 

It must be noted, however, that the phase operator 

is not correctly defined by Eqs. (4.2a) and (4.2b). This is 

shown in Section V. The result that the velocity operator is 

the gradient of a velocity potential operator^ is obtained 

more rigorously in Section VI, however. The coherent state 

representation is used to obtain that result. 

The following commutation rules are postulated for ri(x) 

and 4*^ 

a
 A . r 

n(;Vjfitf)} = i*a~y) (4.14a) 

n(A) , nry) - 4>(x), <j)(f) = O. (4.14b) 

That is, and <|> are assumed to be canonical variables. 

From Eqs. (4.14a) and (4.14b) additional commutation relations 

may be obtained: 

Ĵ 00 ) ~ -i- (pffl) £ Cx-y) j (4.15a) 
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and 

<T?5) ; V|) Lj) 

L 

Vy &Lx~y) (4.15b) 

When these forms of the field operators are substituted Into 

Eq. (3-4) for the current density operator, the result is 

f 
o c*) -JL 

2.i 
-i(j)(x)J V (ê p jj'<j>(X) 

~ Vnn(x) exp -i$(x) jexp i (f)(x) ir>(x)~ (4.16) 

= (vficxlfj Ifi&T . (4.17) 

Applying the commutation relation, Eq. (4.15), we obtain 

3~(x) 

2. L 

n(x)(v<j)(Aj) + (v£(x)) n(x) (4.18) 

Comparison with Eq. (4.2) leads one to assume that the velocity 

operator may be written as 

v«> -- ji v<f>a> 
m 

(4.19) 

Thus the phase operator serves as a velocity potential 

operator. 

As the gradient of a potential, the velocity operator 

would have a zero curl. The zero result of Fanelli and 

Struzynskl for the velocity-velocity commutator is thus 
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compatible in this formulation with the commutator of Landau-*-

k 

and Bierter and Morrison, which containsthe curl of the 

velocity operator as a factor. 

Rotational and Irrotational Current 

Yee develops a theory of quantized hydrodynamics in 

•which the current is assumed to have a rotational and an ir-

17 

rotational part. ' He then assumes that Eq. (^.4) for the 

velocity-velocity commutator may be satisfied by two separate 

components of the velocity operator. One component has the 

form 
^ A 

v.a) - - v4> w , w-2o) 

so that 

v, v,oo - o . (i>.2D 

This accounts for the irrotational component of the current. 
A 

lee then assumes as second component V^(x) such that 

VxV^.00 ? 0 > (4.22) 

This accounts for a rotational component of the current. 

A Treatment of the Inverse Density Operator 

17 

Yee also treats the Inverse density operator in an 

interesting manner. He writes the density operator as an 
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average density, which is a function, plus an operator which 

represents the deviation of the density from the average, 

~ + £(*) j (4.23) 

where £ (x) is considered small. He then expands the Inverse 

density operator as 

, - i 

! — — ; (4.2K) 

j&o (a) + 

/* A A l 

-- X _ £(x) + £ CO 
(4.25) 

He is then able to write equations without resorting to 

explicit use of the Inverse density operator. 

This procedure is simply complicating the confusion. A 

nonconvergent series is not very useful, and the nonexistence 

of the inverse density operator implies that the series, 

Eq. (4.25), is not convergent. 

Although the formal derivation of Landau's quantized 

hydrodynamics from the many-particle Schroedinger equation 

accomplished in this section is satisfying, it should be re-

emphasized that it is only a formal derivation. The 

Hamiltonian which was used was derived using inverse field 

operators, and contains the inverse density operator. In 

the next section these operators are shown not to exist. 
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Also, the equations of motion derived in this section are in 

operatorfam, and arenot written in terms of functions. The 

equations of motion for the density and Telocity are derived 

in terms of functions in Section VII. 



CHAPTER V 

FOCK SPACE FORMULATION OF 

THE CURRENT ALGEBRA 

In this section the hydrodynamlc operators of density, 

current, velocity and phase dealt with in the previous 

section are shown in their Fock space forms. Fock space is 

the natural space of the second quantization formulation 

of many-particle quantum mechanics. It is also the space 
A. 

in which the field annihilation and creation operators, H-W 
A 

and are defined. Since the hydrodynaiBic operators of 

the theories previously reviewed, except Landau's theory, 

are defined in terms of the field operators of second 

quantization, they operate in Fock space.18 

It Is shown that the density operator does not have an 

inverse in Fock space. The velocity-density and velocity-

velocity commutators are derived in the formalism of second 

quantization without the use of inverse field operators 

or the inverse density operator. The Fock space appearance 

of the density-phase formulation of the hydrodynamlc opera-

tors given in Section IV is used to show that the phase 

operator-^ cannot be defined. 

36 
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Fock Space 

A general Pock space vector may be written as 

&>) 

16 

(5-1) 

f > f 

(n) 

4 W (sr.) 

where the superscripts denote the number of particles in the 

subspace, the symbol » indicates that the column vector is 

a particular realization of the general Pock space vector, 

-r (*0 

and £ is the N-particle wave function. The Pock space 

is the direct sum of the Hllbert spaces for zero, one, two, 

up to an infinite number of particles. 

The inner product of two Fock space vectors is defined 
as 
16 

< 5 i f > = £ ( V " \ r * ) , 
n=o x 

(5-2) 

where is the inner product in the n-partlcle sub-

space. The vectors are normalized. 

= \ 
(5-3) 

so that is the probability of finding the system 

with N particles. 
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The annihilation operator annihilates a particle at a 

point, and when operating on a Pock space vector has the 

form 

Y O O i f ) 

r 
\ 

O (vJTplY,f(x-r;| 

0 

0 

vfi" 

VI 

xf3 

0 

0 

0 

0 

0 o 

(3) 
(r„3) 

r- -T tM> 

^ * (rtJ,.,r(N_0x) 

to) 
0... $ 

T«> 
0 ... $ /F (n) 

o... $?,iF0 

(5-^) 

(5 -5 ) 

where X is considered a fixed parameter rather than a vari-

able in the a r d e n t of the «ave functions. The annihilation 

operator thus reduces by one the number of particles in each 

subspace, and shifts each element in the Fock space state 

vector up one place, m particular, there esists a vacuua state 
such that 



(X) vaĉ > - 0, 

39 

(5.6) 

and jv«aĉ  is realized in Pock space by 

.Co) 

K> i 
0 

o 
(5-7) 

y(0) 

where ^ is a complex number of unit modulus. Noting that 

"5 (x) has zeros all along the diagonal m its matrix form, 

it is apparent that V (̂ ) does not exist. 

The creation operator creates a particle at a point.16 

Operating on a Fock space vector it has the form 

0 0 

VT 5,£(x-t0 o 

0 

0 0 

o 0 

0 

0 

o 

o 

0 

o 

$ r 
1°) 

IV 

(̂ ,n) 
(5.8) 

o o 
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tr 

Nfr 

{n 

o 
5 (TCx-r,)^ (0) 

\ f (.X-t-l) (r,) 

(5-9) 

.here 5„ l s t h e^ symmetrlzer f „ b o s o n s o r a n t l s y m I D 6 t r l z e r 

for fermions. 5 N is defined as 

A 

X 
W! 

•IPI 
•a- f 

>» 
0 - N ) 

(5-10) 

«here the sum is over all the permutations of the N particles, 

P is the operator „hlch carries out the permutations, cr 

1. one for bosons and minus one for fermlons. and Ipl l s 

the order of the permutation. The c r e a t l o n o p e r a t o r ^ ^ 

a particle „lth a delta function „ave function to the system 

and symmetrizes or antisymmetries the resulting „a T e function. 

Since the determinant of the matrU form of i s 2 e r 0 > 

s^tx) also has no inverse In Pock space. 

Density and Current Operators In Pock Space 

The density operator In Pock space has the form** 
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p(x) ¥*(*) ̂ (x) 

r o 

m 
kx-7.) 0 

ftx-rO-i-fY x-rj,) 

O 
r< 

£ ̂ X~r. ) 
i = l 

(5-11) 

Although the density operator Is diagonal, its determinant 

is zero, and it thus has no inverse in Fock space. The element 

of the density operator which operates in the N-particle sub-

space is the same as the density operator given by Landau for 

an N-particle system in Eq. (2.1). 

If the form of the density operator for a one-particle 

system is investigated, it is easy to see that eigenfunctions 

of the density operator do not have the necessary properties 

to serve as a basis set. Since merely multiplies the 

wave function by a delta function in the one-particle sub-

space, the operator is apparently the same as its "eigenvalue," 

0̂ 00 
n 

(5-12) 

This form of the "eigenvalue" of jSOO . which is assumed by 

Pardee, _et_al.,9 i s responsible for some of the difficulties 

"with nonrelativistic quantum mechanics formulated in terms 
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of currents and densities, tfhicft are discussed in Section III. 

When one attempts to calculate the expectation value of the 

density, the result for a one-particle system is 

iCx-Oi^rr) i 3r, - m 
7Tj ̂  
x 00 (5-13) 

Since the expectation value must be equal to an eigenvalue 

if taken for an eigenstate, the above results apparently 

require 

(*> -£(x-n) • (5-14) 

Thus although any wave function' seems to satisfy the eigeftvalue 

equation for 

fc-n)f0,(i=i)-i"(x-p;)f M(?() ) 

to give the correct expectation values, the function must 

apparently have the form 

(5-15) 

-^(d) (5-16) 

from Eq. ($.14), which is hardly suitable to serve as a basis 

soli' • 

The form of the current density operator in Fock space 

is given below: 



TOO 

2; 

<—> 

^3 

(5-17) 

4-> ft | O 

IT 

o 

o 
o 

(v,fa-r,)<-fc,-n)v.) 

o 

. (5-18) 

•, „»,i, operates on the N-partlole 
4- *V\is diagonal matrix oper 

An element of this a s d o e s the 
- F o c k Space. An element has the sa 

s u t s paceof ( 2. 2 ) f o r a system of N-particles in 

current opera or • o a n „ e 

landau's theory. This iorm 
^ t h e field operators given 

, +.4 4.,1+-'inc: the forms of trie x 
flprived by substituting 

, . V n (C 17) and letting them 
jn E qs. (5-« (5-8' l n t 0 E q- 1 5 7 ) 

operate on a general Foe, space -ctor. 

The Density-Phase Formulation in Foci Spaoe 

T he Fock .pace for. of the creation and annihilation 

operators aay he used to she that these operators may not 

,e written in the density-phase formulation of Section IV. 
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In that formulation, the creation and annihilation operators 

were written as* 

V(x) = 

^+(x) = J n(X) e.xp i (j)(x) 

(5.19a) 

(5.19b) 

Equations (5.19a) and (5.19b) are supposed to define Hermitian 

operators <f>(A) and n(X) , where 

n(x) --J_/o(x). 
m 

In the one-particle subspace of Fock space, \fn(x) 

have the form 

(5-20) 

would 

I n(x) - i^ ) (5.21) 

Even if this strange function and its inverse exist, the phase 

operator $>(*) is not properly defined by Eqs. (5.19a) and 

(5.19b). 

The phase operator must satisfy both Eqs. (5.19a) and 

(5.19b), and the unitarity condition 

î (x) ~i£h(x) ~id>(x) A 

£ - e. ^ e " ' X (5 .22 ) 

It is shown that the phase operator cannot satisfy both of 

these conditions. 



The Fock space form of fA(x) must be 
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in(X)*—*• 

O 

O 

V f f a - r : ( * - * " , ) + 6 ( x - r v ) 

M 

O 

2— i ( x ~ r j 

L 
Therefore to satisfy Eq, 

Pock space form 

(5.19a), exp 
J 

(5.23) 

must have the 

ex ? 4(50 4—^ 

< t M „ H ' t 4> 
* ' OIL. 

<t> ... 
03 

(f> 4> 
' 2-0 1 U 

(5-24) 
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"where f o r example, Is the element of the Fock space 

matrix for in the zeroth row and the first column shown 

in Eg. (5.4 ), and the (fiij s are as yet undetermined elements 
A "1 

of exp i'0a) • Similarlyf fch6 adjoint op6p&torf 

t 

- i (f) (X) - (^p )+ t 
must have the Pock space form 

A, 
exp 

4 > , 

* 

oc 

<t>* 
1 &2 

<P 

oz 

* 

03 

T10 

boCirv). 

$.3 ("W)„ 

* 
Zo 

K 

P 
'/t 

* (5.25) 

If (n(x)) is written formally as 

vUx) 
-1 A 

= ^ tx) r (x) (5.26) 
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then the formal result of the multiplication exp ifax) 

exp Jj1U)J is the unit operator only if all the are 

zero. When the order of multiplication is reversed, the 

result is 

ex P •exp 

<•—> O 

o 

o 

0 

o o 

o 

o 

0 

o 

o . 

(5-27) 

Therefore exp is not unitary, and a phase operator 

4>O0 has not been properly defined. 

The preceeding proof of the nonunitarity of exp jj^OO] 

closely parallels the treatment of the phase operator for 

a quantum mechanical single harmonic oscillator given by 

Sussklnd and Glogcer.1? They sho» that the phase operator 

for a quantum mechanical single harmonic oscillator Is not 

correctly defined by the exponential form. They then define 

Hermitian operators 



co5 4>Cx) 
'4>0() 

e + e 
* 1 , A -i^CX) 

sin ^ U) = _L 
ti 

* i<p(x) 
€ 

A 

e. 
-i^Or) 

where the exp i^OO operators are no longer considered to 

define a phase operator. They then go on to show that cos (ptf) 

and sin4^*) are observable dynamical variables. In doing so, 

they make use of the existence of the inverse of the number 

operator for a single harmonic oscillator. 

The number operator for a single harmonic oscillator in 

the treatment of Susskind and Glogower enters their calcula-

tions in the same way as does the operator n(x) in the treatment in 

this p a p e r . T h e operator Aft) i s the number density 

operator for Fock space. In the Fock space treatment, opera-

tors corresponding to the cos4> and sln<f> have not been defined. 

This is due to the presence of terms such as 

£ (*- o 

which would appear in the definition. 

Since the phase operator is not properly defined, the 

derivation by Fanelli and Struzynski^ showing that the velocity 

operator is the gradient of a phase operator is invalid. 



49 

Similarly, the curl of the velocity operator, which Is the 

value of the velocity-velocity commutator, is not necessarily 

zero. 

In Section VI a form of the velocity operator which 

overcomes some of these difficulties is developed, in which 

the velocity operator Is the gradient of a velocity potential 

operator."'""1' This veloci' 

sarlly a phase operator. 

11 
operator. This velocity potential operator is not neces-



CHAPTER VI 

THE VELOCITY POTENTIAL OPERATOR IN THE 

COHERENT STATES REPRESENTATION 

In this section a form of the velocity operator as the 

gradient of a potential operator is rigorously derived. 

These operators are written in terms of the coherent states. 

A brief summary of the properties of the coherent states is 

first given. 

Coherent States 

The coherent states used in this derivation are the 

20 

eigenstates of the field annihilation operator. They are 

the tensor products of the coherent states developed by 

Glauber as eigenstates of the particle annihilation operator. 

The particle annihilation operator eigenstates satisfy the 

equation 

|H1)= IHj), <6-i) 
where cl^ is the particle annihilation operator, ^ is a 

complex eigenvalue, and k] i s tiie s e t o f • Tlie 

particle annihilation operators may be written in terms of 

the field annihilation operators as 

r 
dxd)_\x) $(30 j (6.2) 

' K 

A 

cn 
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where (x) Is the wave function of the annihilated particle, 
H 

The states J J^kJ ̂  satisfy the equation,, 

YCO) H ) = I. Hffl e. 'h * [ - < - < < 4 H ) • 

Their form in occupation number space is 

(6.3) 

( 6 A ) 

where the symbol denotes the set of occupation number 

states of the system, and the sum is over all the occupation 

numbers from zero to infinity. 

The coherent states are over complete and nonorthogonal, 

although they are normalized.20 The scalar product of two 

coherent states never vanishes and is given by 

K M | P J ) = € xP - -L 'Hi1, - j_ 
where the inner product is 

P (6.5) 

r 

(*\f) - * * /5_ - dx * * (*)/&(*) (6.6) 

and 

°M| - <S H ) • 
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The unit operator may "be written in terms of the coherent 

states as 

A 

I -

l r 

> < M D H (6.7) 

J 

where 

d1-*- - A Re (<".5) d X m (* s) J 

and D M indicates that the integral is a functional Integral 

over all complex functions °< (*). The states j ** > shall 

be written [ °<} hereafter to simplify the notation. 

The Velocity Operator in t he, Coherent... 
State Representation 

The matrix elements of the density and current operators 

11 
are given in the coherent states as 

< ^ ° < | p ( x ) ^ y - <\°< J w i ' f + C x ) % ) j 1$ ) * * ( x ) | 3 ( > 0 } 

and 

T(x) I p + 

' 2~ t 

* o o ] \ f > > 

J_ £l 
2- i 

°< \x)V|3Cx)-(v°<^Cx)) f > a ) 

(6 .8 ) 

(6.9) 

As the first step in finding the coherent state repre-

sentation of the velocity operator, it is shown in Appendix P 
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that an arbitrary operator © may be written using the reso-

lution of the unit operator given by Eq. (6.7X as 
20 

© = 1 £Xp/ ~ ! ihf - t 6(r*,A>b>< t\ (6.10) 

where is defined in terms of the matrix element of © 

as 

0 (**^j6)-<{*< |© |̂5 y exp|jjHI + J_ )• (6.11) 
2— 2. 

The functions 0 corresponding to the operators and 
A 

T Cx) have the following forms: 

p ; x ) - - m ^ ( x ) ^ ) e x p | H 0 ) 

T O O —"> x) "-1 t I^U^V/SOO) 

- (v* * (x)) j6Cx)I e*p (* I p) 

(6.12a) 

(6.12b) 

The product of two operators 6? and 0^ may be written as 20 

A A A 
© =• <9, 0 V • (6.13) 

The functions & , 0, , and 8^ , defined as in Eq. (6.11), 

obey the equation 

e e , (6.14) 
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•which is derived in Appendix Q. Turski states that Eq. (6.14) 

determines the function if the functions and 0 are 
A 

known. If ©,_ is an unknown operator, then the function 

may be inserted into Eq. (6.12) to give the form of the unknown 

operator . 

This is the way in which the form of the velocity opera-

tor will "be found. The velocity operator is defined implicitly 
by 

L 
^ (X) V(K) + V <x) f (*) (6.15) 

Since the form of the functions and are 

known, the function which satisfies the equation of 

the form of Eq. (6.14), 

— f -

r •>&))*{u*/5;a)«p(HpOmr) 

r 
•+ I 

L 
"f &!(»•* /Sjx) exp^-Hrll^ 5 « ] (6.16) 

may be found andmsy be aabetituted into Eq. (6.11) to give the 
A 

operator V (JO . 

It is worthwhile to note that if Eq. (6.14) determine 
A 

the form of uniquely, then the form obtained for Vex) 

would rule out the existence of a rotational component for 

the boson system. Yee's assumption1^ of such a rotational 

component would then be unnecessary. It is not apparent, 
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though* that the form obtained for V(x) in this section Is 

necessarily unique. 

In order to eliminate divergent terms of the form of 

~>K which would appear in the solution of Eq. (6.17), 
h 

the velocity operator is redefined as 

A 

i (X) V(x+£) -+ v (x+e) ̂  (x) T O O 5 i 
e~>o L r (6.17) 

The operators defined as in Eq. (6.17) obey the same com-

mutation relations as when they are defined by Eq. (6.15). 
A 

It is shown in Appendix B that when the form of J"(x) given 

in Eq. (6.17) Is used, Eq. (6.16) may be written as 

(i(«* fl;x) -
0 , (£—>0 I 

+ \%_ exp 

L i 
(*||3)J 91^u <f(e) . 

e—>o 
(6.18) 

In solving Eq. (6.18) for » the following 

pA 
identity and its complex conjugate are used: 

r 
r v ̂  2. 

*-0 ^ 
Or 

K ) (6.19) 

This Identity is proven in Appendix S. 

It is shown in Appendix T that the function Y"^* jS;x) given 

below in Eq. (6.20) is a solution^-1 to Eq. (6.18): 
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Y (" * x) e-xp (°̂ |/3) 

Z. i m /3(x) 

VpLx) V-<*(><) 

*00 
(6 .20) 

It is shown in Appendix U that if °<(x) is written in polar 

form as 

* 00 = fot GO ocp \4«00 

then Y(**p;x) may be written as 

(6.21) 

(6 .22) 

When the form of Y(°<*fox) given by Eq. (6.22) is inserted 

into Eq. (6.20), the result is 

Vi<(x) = <°< |V(x) |<*> = j^ V & Cx) . ( 6 . 2 3 ) 
rn 

The operator VOO may now be found by substituting 

Y(°<* fijx) into Eq. (6.10). The result, which is calculated 

in Appendix V, is11 

V(x) " I V (j) Cx) I V (*) . 
m 

(6.2fc) 

The velocity operator V(x) has thus been shown to be the 

gradient of a velocity potential operator <§&), 

A 

V®) ~~ll (*) ; 
)m (6 .25) 
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where 

<t>OQ ^ (a) I | (6 .26) 

Equations of Motion 

Turski writes the expectation value of the Hamiltonian 

in the coherent states as 11 

L m 
^cx)V^(«- v^cx)a3A 

L m j 

+ \\ ̂  ^ ^ (y) Nj V\ Cp^ } (6 .27) 

A 

where H is the Hamiltonian given by Eq. (3.13), \J (x,y) is 

the two-tody potential, and ^«Cx) is defined by 

^ (K) ^ (f* (*>) % __i_ exf i ̂  (x) (6 .28) 

He then says that by functionally differentiating 

with respect to 4* and ^ the continuity equation and the 

Bernoulli equation for the many-boson system in the state Ĵ >̂ 

may be obtained. These are the equations of motion for 

and 4-c^) a*id are shown below: 
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~ ^ Jl V'(^,(a)V = 0} 

^ at- 2- ̂  

1. 

Equations (6.28) and (6.29) are the same results „hlch 

are given by the Gross-Pltaevskll equation approach to quantum 

hydrodynamics. However, the means Turgkl used to obtalh these 

equations Is Incorrect, because the coherent states are time 

Independent. Therefore, the expectation values of the 

operators in the coherent states are time Independent. The 

functional differentiation .ill not give the time dependent 

equations, but ,111 give only their time independent form. 

The coherent states approach has rigorously shown the 

velocity operator to be the gradient of a velocity potential 

operator. The equations of quantum hydrodynamics, i.e., the 

time dependent continuity equation and the Bernoulli equation 

In expectation value form, have still not been rigorously 

derived. It Is sho«n In Section VII h o„ they may be rigorously 

derived from the Gross-Pltaevskli equation. 



CHAPTER VII 

THE GROSS-FITAEVSKII EQUATION AND 

QUANTUM HYDRODYNAMICS 

The Gross-Pltaevskll equation is derived in this section. 

It is obtained by making a simple-shift canonical trans-

formation on the field operators. Equating the coefficients 

of the unit operator in the Heisenberg equation of motion 

for the transformed field operator gives the time-dependent 

Gross-Pltaevskll equation.2-*- Since it is not mathematically 

rigorous to equate the coefficients of the unit operator, 

mention is made of a more rigorous derivation. 

Euler's equation and the Bernoulli equation for functions 

are derived from the Gross-Pltaevski1 equation. The conden-

sate wave function is written in hydrodynamical form by 

writing it in terms of a modulus which is the square root 

of the density and a phase which turns out to be proportional 

to the velocity potential. Equating the real and Imaginary 

parts of the resulting equation gives the equation of con-

tinuity and the Bernoulli equation. 

The Gross-Pltaevskll equation approach to quantum hydro-

dynamics has several advantages over the current algebra 

approach. The main advantage is that the hydrodynamical 

equations which are obtained are for functions rather than 

59 
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for operators. The quantization of circulation condition 

also follows more readily from the Gross-Pitaevskii approach. 

Although the Gross-Pitaevskii equation is an approximation, 

the terms neglected in making the approximation are known.? 

These terms could be calculated in theory. 

Gross-Pitaevskii Equation 

The first step in obtaining the Gross-Pitaevskii equation 

is to make a canonical transformation on the field operators.^ 

The transformation has the form 

=- <j>(x,V) + £ (XjY), ( 7.D 

where *s a function which measures the "average value," 
A 

in some sense, of the field operator, and X(x,Y) is an 

operator which measures the deviation of the field operator 

from the average. The time dependence of the operators 

depends on their being in the Heisenberg picturej 

The function <$> (̂ Y) is defined as 

<(> - < * (*,+)> • (7.2) 

A A 

Since measures the deviation of f(x^) from the average, 

it satisfies 
< X <x-+)>-0. (7.3) 
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The field creation operator is obtained by taking the Hermltian 

conjugate of Eq. (7-1)5 

y f (*>) = <p* or,*-) * (7.t) 

where 

and 

(7-5) 

< X
+ (*,*)) - o . (7-6) 

If the transformation is to be canonical, the operators 
A A 

X and x + must satisfy the same canonical commutation 

relations in Eqs. (3*2) and (3*3) as do ths field operators. If 

the form of the field operators given by Eqs. (7.1) and (7«*0 

is inserted into Eqs. (3*2) and (3«3)» the result is 

[x C5;+>, X Cy,V) - 0 

and 

-or (x-y) . 

(7-7) 

(7.8) 

4 

Thus the operators X and X , which are called devion 

operators, are canonical. It should be noted that the com-

mutation relations Eqs. (7*7) and (7.8) are "equal time" 

commutation relations. 
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The "average value" of the field operator can be calcu-

lated between the (n-1) and n particle subspaces of Fock 

space''; 

< f w ) - nw 
j (7-9) 

where $ > is the n-particle wave function. The order parameter 

oan also be calculated for a general Pock space state : 

$ (x^)|f ) . 

<j>(x» Is known as the order parameter of the system,,or the 

"condensate wave function.« If the expectation value of the 

density Is calculate* uSlns"the transfixed field operators, 

the result is 

(i 1̂ 3 ft+)j $ y = p (x,i) - | r cx,v) $ (A^) j f 

- < 4 |(4)*(x,f) + X'1'(x,1j) (4>or,t)+ | f ) 

+ ( 7 . 1 0 ) 

Applying Eqs. (7.3) and (7.6) to E q . ( 7. 1 0), M e o b t a l n t h , 

final result 

PU^)'- m |(j> Cx^)| 4 «> < X + (ĵ t) X <X,t) } . 
(7.11) 



63 

These results are not used In the derivation given In this 

section, but are used in the mathematically rigorous deriva-

tion which will be mentioned later. 

The Hamiltonian for a system of many identical bosons is 

rr 
A 
H= Y+(x>)T(x)n*A) a v i n W t y t ) (7 • 12) 

where 

T(x) = V j + U 0 0 , (7-13) 

(Lm 

and U(x) is the external potential. When this Hamiltonian 

is inserted into the Heisfenberg equation of motion for the 

field annihilation operator, the result is 

A A 

iUTOfl - 4W),H --ToOYtt^ (7.14) 

which is shown in Appendix W. When the transformed field 

operators of Eqs. (7*1) and (7«^) are substituted into Eq. 

(7.1*0, the result IS 

'\h 2%x,+) --T(x-)(j)(x̂ )-

3 V 

+ (terms involving the devlon operators). (7.15) 

Equating the coefficients of the unit operator in Eq. (7.15) 

gives 



6^ 

;h ^ V'-^OfA) + U(x)<jx*,+) 

D)r 2-VA 

-t* ̂ y ^ W f o ^ t y ^ ^ C x A i ^ y • (7-i6) 

Equation (7-16) is the Gross-Pitaevskii equation. 

Although the derivation of the Gross-Pitaevskii equation 

given above is straightforward and reasonable, it is not 
O 

mathematically rigorous. The terms in Eq. (7*15) Involving 

the devlon operators modify the average value ^ of the field 

operator. The Gross-Pitaevskii equation also has the dis-

advantage that it can not be applied to a system where the 

two-body potential V(x,y) has a strongly repulsive core, as 

is the case with liquid helium. This Is because the last 

term, which is the average field due to all the other particles, 

becomes divergent. Equation (7*16) is a Hartree-like equation. 

A modified Gross-Pitaevskii equation may be derived 

rigorously, however, which is applicable to systems with two-

body potentials with strongly repulsive cores.'' This is a 

correction to the Gross-Pitaevskii equation given by Eq. 

(7*16), which is then the first order approximation to the 

exact equation. The modified Gross-Pitaevskii equation is 

obtained by first finding the equation of motion of the 

order parameter. The term in that equation which describes 

the average potential due to the other particles is then 
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expanded In a perturbation series in which the coherent state 

representation is used* The perturbation expansion is then 

partially resummed to give an average field in which the 

potential has been replaced by the T matrix. This gives a 

finite average effective field.? 

Quantum Hydrodynamics 

The equation of continuity and the Bernoulli equation 

are derived from the Gross-Pitaevskii equation given by 

Eq. (7.16) by first assuming that the second term on the 

6 
right in Eq. (7.11) may be neglected, 

Cx,t)X 0 • (7.17) 

This is equivalent to assuming that the two-body interaction 

is small. In this case, the density expectation value is 

jo(X/t)~ m • (7.18) 

The order parameter may then be written as 

t . | — ifUx.̂ ) 

'A. • (7.19) 
\|m 

where is a real function. 

The expectation value of the current is approximately 

-y Ltf) ^ (*,*)(Xji) - 4) (x,f) fc_V (A» (7-20) 
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so that 

-jr (*,+)» / o O i » t . v H c x J v ) , ( 7. 2 1 ) 

when use Is made of Eq. (7.19). 

The current is related to the velocity VCx_,̂ ") by 

Y e » s - ( i , k ) . ( 7 t 2 2 ) 

Equations (7.21) and (7.22) imply that the phase R(x,l) is 

the velocity potential, 

v - M = i . v i U x A ) . ( 7. 2 3 ) 

Identifying the velocity as the gradient of a phase implies 

that its curl must be zero. Stokes' theorem then states that 

the line integral of the velocity around a closed path is 

zero, 

r 

Vx V R -nda. = Vf^ - dJl - 0. 

J 

However, when the integral is around a singular point, the 

result is 

=_h_ f V R • <di - t, ft, 
YY) 

n 
J 

m 
A = 0 ^ 0 . ... 

»hloh folio., from the slnsle-valuedness of the order parameter. 

This Is the quantization of circulation condition for a boson 

system. 
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It is shown In Appendix X that substituting cj5 Cx/ty 

given by Eq. (7*19) into Eq. (7*16) gives the result 

ih 3 / ° W ) 
m 

/o(x» - -ViX _ 
f m 

dk 
d\ 

{ v u J ) VXRCXA) 

* + If(xA) 1 ^7A) 
v m m 

(7.24) 

Equating the imaginary parts of the above equation, we obtain 

the continuity equation 

V * ^-(x/V) - 0 (7-25) 

which is derived in Appendix Y. Equating the real parts of 

the above equation and taking the gradient of the resulting 

equation gives Euler's equation for a boson fluid, 

• v W x , } ) / v Y f Cx,V)j'A-1 Fext. +1 Fint, , 
^ X 7 2L m1" /.Jt / ) m m J (7-26) 

^ Y 

where the third term on the left side is the quantum cor-

rection term. The terms Fext and Fini. are the external and 

Internal forces on the fluid. They are defined as 

Fexi. = ~ V U O O (7.27) 
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and 

S ~ V f t * ' ) 4 3 x ' ' ( 7 ' 2 8 ) 

m 

Equation (7.26) is the force equation for the boson fluid. 

The term Involving \\ is known as the quantum pressure term, 

since it may be written in terms of a pressure. 

The essential equations of quantum hydrodynamics have 

thus been derived in expectation value form and the quantiza-

tion of circulation condition has been derived. These equa-

tions have been shown to be approximations, but the terms 

neglected in the approximations are known. The mathematically 

dubious operation's used in the operated"derivations describe!7, 

in the previous sections have been avoided. 



CHAPTER VIII 

CONCLUSIONS 

Although It has been satisfying to derive Landau's 

theory of quantized hydrodynamics from the many-particle 

Schroedinger equation in a manner that is at least formally 

correct, we seem to be no closer to a useful theory of 

quantized hydrodynamics. The use of the inverse density 

operator renders the derivation doubtful. Also, the equations 

obtained are in terms of operators, not functions. The 

Gross-Pltaevskll equation approach still seems the most 

fruitful, since it rigorously leads to the same form of 

hydrodynamlcal equations asdoestte current algebra approach. 

However, the results are equations which are written in 

terms of functions and can therefore be in principle solved. 

The similarity of the results given by the two approaches is 

nevertheless interesting. Perhaps a current algebra approach 

could be formulated which would not require the inverse 

density or inverse field operators, or a mathematical justi-

fication might be given for spaces other than Pock space.1® 
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APPENDIX A 

DEMONSTRATION OF THE CONSISTENCY OF THE TWO 

DEFINITIONS OF THE VELOCITY OPERATOR 

Equations (2.3a) and (2.3*>) are shown to be consistent 

•with each other and vdth the commutation relations between the 

operators as follows: 

A A A 

T -_L 

V-- _i_ 
2L 

A 
1_3" J J . 

/ f 
A 

i . p v + _i_ + v rtr |500 A 

r r r 

1 

A A 

V i- V 4-

/• 
(x) 

A 

y°(*)V(x) + JiJ7 ̂ (x-y) 

* = ' 

+ V ( * ) Ŝ(x) — V* <T(x-y) 

7 60 

1 

f A 
L V + V + V + ~J2y>;k*-y) 

x=y j X1' 

= V 
(Al) 

*71 



and 

A 

T = 

72 

= J 

T \ r f - * * r r p t r i ± . 

~ % % - * ) 

[ l x + L $ j 

A 

= 3~ 

T h e t B o d e«nitlo n e o f t 
c°nslstent. Velocity 

(A2) 

operator are thus 



APPENDIX B 

CALCULATION OF LANDAU'S CURRENT DENSITY COMMUTATOR 

Equation (2.9b) Is calculated by substituting Eqs. (2.1) 

and (2.2) into the current-density commutator as follows: 

A 

^(x) 

H 

j A I 
l i i-i 

2 ^(x-r.) + 6(£ - r. \ ̂  

7 
Ki 

rsa 

*i (V 

± * I 
L \ 1=1 

jl § Cx-r.) 

N 

4 \TL £<V-r.\ 

?r« ' *' J 

^°(y) uK(; .*) 

N 

i t l 
L ! i-l 

2 <f(x-r; 

'Dr. . 
Ki 

<•/» x-r) 

K{ 

4 • - . L &(%-r.) ^ f (y-r.)' 

7^ 



N 

± % z *< 
L i i=j 

2 + £ <T(x~r.) 7) 

D 
Hi 

N 

1 ̂  ™ l <r o -
2 . T " M 

^ C v-r.) 

3 r Kt 

N 

2 Z l(x-r.) ̂  £" _•== \ 
', i=\ ' O Kl \} 

W 

7 
r* 

2 
1H 

V 

71* 

^L^Cx).^ £ Cv-/ 

7 

o p ) 

h 

GO _2 <5 Cy-5i> 

3 
) 

(Bl) 

which is Eq. (2.*tt>). 



APPENDIX C 

THE CURRENT-CURRENT COMMUTATOR FOR 

LANDAU'S CURRENT OPERATOR 

The current-current commutator of Eq. (2.9e) is calcu-

lated in this Appendix by substituting Landau's definition for 

the current operator, Eq. (2.2), into the commutator as follows: 

A A 

--.L 

4 
i ^ G(x-r,-?.) Vi ̂  \ 

I \ \ S 

H 2 iVy-r.) + t\ i"/y-F.O 

"r<V J i T j V 

N M 

_iZ.II 
f T-i j--l 

y^-r.)+ ^ / 

' V ' ' T 3 7 ) > 
I * 

^ "̂(y-r.N + 5"Cy- ifei 

i 2r* J ^ ^ « ' 3, 

M 

I 

1 
• ^ ^ i ~r —K" 7 • ' 
3r K > 2* A 

75 



76 

^ "H £(x-r.) , Ji ^(rr) d 
' V ' 1 3r.' 

t ^ (*-<M 2 , t 2 _ (̂?-r) 
" ' 3,* 1 ^ 

I I 

t\J(X-?.)_2_ , i. iry-r.̂ 2 
3r? ' 1 • V 

M f 
- I Z t 2 _ 0&-7.ltjL_ i O?-) 
^ W [ 1 9r" ' •• ̂  

I t 

-"K D -̂n)̂ 5_J"(y-f;)̂  
"T" ~\ S ' 1 ! ̂  vc 1 !^K t '• 2 V > 3r 2r 

-\i<f(y-r.)c) 1R d f(x-r.^1S ^Cx-r.\ c) jft 3 S(yr.) 

T ' 'XIT V T ^ * 1 
1

 or, * 0r, Or. ? i i 

- ~K ^ d(v-r.)̂  <?(x-r.)Z) + 1r> £(x-r") "h (̂\f'r.) d 
-TTTT ' ''"T ' ~̂K T „ v • ' ' o « V 3 r. V •' K 

S £ (x-?) _c) ( 
' ' V i 3/ 

t I > 
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±I 
1 i-i 3r"3r» 

+ 1wJYy-r.) 
I ̂  K 

r 
i I 

3r*3 

" "hL<f(x~r.) 

3r« 

3fa-r;) 

5 

3rf 

9<rpf-r;) 3 

7)r 

3 +-̂ S cKy-r.} 

>? 
x-n) 

2r 

3 

9 7 

% - r ) 3Vfc-n) 
I 

-Wa-F.) 

2)r. ̂ r* 
i i 

-1s1* <T (x-r;) 

A * 3r' 
I I 

3rK 

j) Khyr,) 

3 ^ 

'J-TCx-r) 

'3' 

3 

9 / 

V" S (x-r) 3 fci-*;) Q +^ci(y-r.) 
1 

9rK 

1 
3rl 

t 
dr* 

1 
X * 

j> (CI) 

where the brackets Indicate that the derivatives are no longer 

operators, but operate only on the teras within the brackets. 

Applying Eqs. (3*8) and (3.10) to Eq. (CI) gives 

*4 
• D t f 
1 •>--> 

(x-v -Jji l)E(yr) 

Dr 1 

1 

d^n-r.\ 

^ " 3 , 
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- Z t f 3d"(y- r.) 

h *• 

^cCx-r 

m?. 
o d £ ( y - >•) 

2r.K 

3 

9 7 

IV T̂Of-rj) 

<D<SVh) 

3 + 4 ^ i 6 ( y - * ) c)<fbf-r.) 3 

3r* 
1 

3c' 

J>?P 3 - iV 

2r* 

C^y-x) 3(T̂ x-r) 

"I 
<=* X 

\ 

3c* 
t 

dt^q-jy 

JL /• 

3Tfe-r.) + i t f ? f c y - r . ) 
r r 

o S a - r . ) 

1 K 
£/x <sV j 3r* 1 

6p"~(x-y) 

l ¥ 

J. 5. 
i 
dfty-'O 

3f
J 

Iholi 2^yr) 3 
/ ' * 

V j 
2r!> 
t 

+ taf(x-y) 3 

9 / a 3rf 

-;fc 3<tVx-y) 

3*' 

"Sf̂ -r.y i rri
--

X
I t -<
l 

Iz
rf
 

<?<f(y-r.) 3 
£ i 2)r*' 

1 
i 

3 / 3rK 
» 

- \h <f (x-y) 3 fc 

2* ii 
3r* i 
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•>K 

' 3r! ~ -2** 

? 

N 

1=1 

3rK 

i / 

i U fe-y) Jjs) + ih 2 fe-y)0(.(y) 

- 31K * 

= & ^ ^x-y) (J) * A j)_ f(x-y) Ojj (y) 

3 / r) * 01 

(C2) 

which is the same as Eq. (2.4e). 



APPENDIX D 

CALCULATION OP THE EQUATION OF MOTION 

FOR THE DENSITY OPERATOR 

The Hamiltonian, (2.6) Is inserted into the Heisenberg 

equation of motion, 

(X) -i_ 

T * 
(x) 

) (Dl) 

to obtain 

Dpti) =!> 

+ 2. 

Since 

)*(*)-f(z)V(J)y(fV<j) 

.jo (y)<L̂ o)̂ o (x) ~ (*)jO (y)£.^S) j d y - (D2) 

A n 

p>r 
the last two terms in the integral cancel. 

0 

giving 

( 
Dpi*) =a \_0 V ( ^ < y ) V(y)^(x)Y&)V(y) 

* V H 

J* / 

V(^(x)-^(x)V(y) - fOfVim A j 
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J 
1 
L i 

Vy f(y-x) / 

J 

Vy £ ̂y-x) a3^ 

(D3) 

which then gives Eq. (2.8) 



APPENDIX E 

CALCULATION OF THE EQUATION OF MOTION FOE 

THE VELOCITY OFERATOB 

Equation (2.10) is calculated in this appendix. When 

the Hamiltonian of Eq. (2.7) is inserted into the Heisenberg 

equation of motion for one component of the velocity operator, 

3t * 

) (El) 

the result is 

n - i i 

3i 

r 
V(*)'pCst)V(*),Vxw i3-x + 

f * 
' |C>(x)(!l̂ )A3X;\̂ (y) 

J 
(E2) 

The first term on the right side of Eq. (E2), denoted by T^, 

•will be treated first. The second term, denoted by T 2. will 

then be treated in the two ways described in Section II. When 

the dot product in is taken the result is 

t 

*1 I 
Ju 

.VOc) '̂ o(x)V(x)̂  Vjj(y) A3; 

2& 
Wjt (x) +• V w (xy>(x)Vjj (y) A (E3) 

where k, 1, m, denote components 1, 2, 3» wot necessarily in 

that order. 
8? 



Expanding the commutator gives 
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V i VK(x)p(x) ' \w,\ ^GUiOUO^y) V KS) 

+ VlW^Cx)[vi(ii))V1(y)j+ Vj(«) 

+ V ® , Vs(y) Vm(xl|d
3/ 

a r > s r 
\(*),VA(y) + Vi *00 / H V y > V K ( S ) 

Vŷ Cx) J Vjly) * \(%) . V, Vfl (x) 

V * ) ; ^(x)V^) + V w (x) ̂3 (jc) Vy^x) ;VA(y) 

+ Vm(x) I?, 
yo(x) , Vjj (y) Vm(3<)-t- Jvw(x);\^(y) 

VnV c^X (EU) 

Inserting the values of the commutators given in Eqs. (2.4c) 

and (2.4d) into Eq. (E4) gives 

- I 

"5 
\(x)hf(x-y )/jVh6() _ V^(x)^p X (x-y) 

J 3x. 9* A 

^k(X) 



+ti/cx-y)^xi/^ _ 3fc-y) Vj,ft) 

\3*n dxj, J ' X 

•jjpi-y)p(x)f2%® _ 

\ 2**, Sxo / 

84 

V ^ A h * - f h ) \ a ) _ ^ W 
a 00 

m ^Xi 

3_ kx-fl\/n(?)U\. 
A 

(E5) 

When the integration is done the result Is 

^ - ^ V y ) ^ V K y PVK(y) 

2 
/i 

^ v^y) V ? ) + P V y ) - V,(y) 

% % h 3 y* 

^ j^'V' ^ + + ( 2 ^ _ £>Vm(^\ V„(r,j 

31> V3!- a l J V l - V 

(7) (̂ ) + \J^ (y) 3 V ^ 

3 y*. 3 
(E6) 
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•where the following equation, which follows simply from Eq. 

(Z.kc), was used to obtain Eq. (E5) s 

_ 9Vk(x) J ) o(x) 

2, ill 
K
 AX 

When terms are combined in Eq. (E5) the result is 

= o 
<E 7) 

V H/y) (y) Vfc<y) + V|(y) f)V((y) 

(. 3 y* 3 
7i 

4- (7). Vj(y) + Vm(y) ^(y) -+ ̂  (y) \/w(y) 

3/: 3 
V-

A- j ' ' W,<y)' (E8) 

which is the final result for . 

The value of the term T 2 in Eq. (E2) will now be cal-

culated. In this first calculation of T 2. the term jto)L(j>) 

is treated as a function of ̂ (x) ' 

^ - ' 
"K 

i3x. 
(E9) 
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Expanding £-(j>) as a power series In ^(k) gives 

" 2L Cj j>*00 ' 

Then the following expressions may be written: 
A 0 0 

j=> (*)£- (p(x)) "21 *~j ̂  J 00 j 

(E10) 

(Ell) 

and 
A. 

= IC; 
j = 0 

- j*1 X v% 
|0 0 0 , % ^ (E12) 

Since p commutes with the commutator r 
f 

V 
. ̂ -1 

T 

/>> 

t 
V 

A \/ /\V , the relation 

may be used to obtain 

OCJ 

j>i*)L(pr)); Vj,̂ ) = I- C.fy\)^}ix) 

o© 

- - J L C: (H) c5 00^ 
j=° J J T \ 

5 f (x-p 

9 

(E13) 

Substituting the above expression back into the Integral gives 

r 

T, -- \ ( - E . c ^p'feiVi. 
* * *0 J I 1 

d ££x-^ 

\ 
A3x 

2 1 C-6,+>) _£L ( p'(1) ̂ G-y) 

*-Z . cj fj+0 
i-O J J 

3 

2 y» 

/ > ' ( ? > ftp 

% 
(E1*0 
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Equation (E14-) may be put in the form 

T, - — P Cj (j+i) A J Cy) 
j"° I d h 

- - 9 d (El 5) 

The final result for the Heisenberg equation of motion of the 

velocity operator is thus 

o'V, (f) - T, +' 

3t 

\ f A \ £1 ( % / / - % , r " 

= -l](VV,^))- v'y>+ V17) ' ̂ Y«(y)[ -_i. i _ p<y)£-/(?) 

\ ^ L ' 

(E16) 

which then gives Eq. (2.10). 

The value of T 2 will now be calculated by treating the 

internal energy term in the Hamiltonlan of Eq. (2.7) as a 

functional. That is, 

j> (*)£_ (̂0 (x)̂  A3X E r\ r (E17) 

The term T 2 may then be written as 

1s r > X v. If, (E18) 
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When Ejpj Is expanded as 

E 
t 

-L £(x, ... &%xt "i3Xn (E19) 

and Inserted into Eq. (E18), the result Is 

Z 
ia=i 

"f (x.... Xf,} 
A 

(E20) 

Since the density operators commute with each other, it is 

apparent that must be symmetric with respect to its 

arguments. Using this fact and Eq. (2.4c) in Eq. (E20) gives 

OO p 

^ 2. 1— ̂  \ ̂  I ̂  ' * "•> ̂ * 0 ^ n-t) tT(x-y) 

i ̂  
J)iI 

i V -

— a z— *\ 
^ n=t 

ow 

% 
^ (xt,... j X t> (Xri y) d Aj-** ̂  X^ (E21) 

Doing the integration over Xn gives 

11 ~ — ^ j • * • j ̂  r> -<Jy ̂ ^h-i) cj ̂ , - • • ̂  * n - \ • 

ft 

2 £ 

fjS^ 
/• (£22) 
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This form of T2 gives the more general form of the equation 

of motion for the velocity operator 

3v.t?) V(j)) + Vty) J _ £[« 

* 2 ( J ^ L' 
which Is the same as Eq. (2.11). 

In the special case where f OT,...xn) has the form 

~j" (x,... X r,) ~ C. & C\t ~ Xj) . .. 6(*t r̂i) j 

(E23) 

T 2 has the form 

\ -- - 2 - T . nCri-i ;""'(?) . 
^ H I 

Defining j as 

r\~1 
p c7] 

(E24) 

(E25) 

y n-i 

gives the result 

T l * 5 Ci (E26) 

h 
•Which is the same as Eq. (E16). Equation (2.10) has thus 

"been shown to be a special case of Eq. (2.11). 



APPENDIX F 

CALCULATION OF THE DENSITY-DENSITY COMMUTATOR 

IN SECOND QUANTIZATION 

The calculation of the density-density commutator In the 

formalism of second quantization proceeds as follows: 

$+oo ^y) 

= ̂  c*) f (a) 

A. A 

to<), J+(y) ^<y)+ $+(s)H>+cy) fCx^^Nf) 

r ^ ) [fVx), $ Cf\H»G0 + fk), ̂ +Cy) VCy) V Cx) * (Fl) 

Substituting the commutation relations for the field operators, 

Eq. (3.2) and Eq. ( 3 - 3 ) . into Eq. (F2) gives 

A. 

( /-T T-A Qi /n\ s /I (F2 ) l> (y) = y+G0<fa-7) - ̂ y ) iCf-*) 4̂ (50 * 0 } 

which is the same as Eq. ( 3 * 5 ) • 
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APPENDIX G 

CALCULATION OF THE DENSITY-CURRENT COMMUTATOR 

IN SECOND QUANTIZATION 

The 1-th component of the current operator is given by 

(Gl) 

Upon substituting the expressions for ^(x) and 3*£y) into 

the density-current commutator, one obtains 

A, 

f 
rfeOS'feO.fr - 3 r « ) tCy) 

% \ 
-- no 

. " \ 
^+o0 W . Y . H'ty) 

a.; 3 

TO -

. a \. 
2.< 2 

^+(y) YCfyi. c)^(y) + Y+«) 

V\ . 

I* 

Y t f ) , $ + £y> 

^ 0 0 

% 

^ ^x)2)<hy) VObjVGj) 

- 1 Zl\ 
. ^ 

+Cy) 

en 
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a 

-\L'drj$ 

* *|i 

H'liO Tlwjl 

h 

Ti$j 

Vis) 

n 

A A 
9^g)_WCx) 

h-
t\ ?1 Jt J 

1l 

(G2) 

Equations (3.2) « * (3-3) - y *e differentiated ,1th 

respect to y-̂  to obtain 

and 

^(S>,++Cf) - J L 

\ 

C 
y*a\ 3v*cf) 

b J 
d' % 

= 0 (G3) 

% 

** 

" 3 l J 

- 2)(T(XVN) 

Substituting Eqs. «*> « * (G3) m t o E,. «fc > gives 

«&) 

-ix rahz-y -'h. ^ 

9 
1* 

K 
'li 

-*» ^ 2 ) f e - ^ to + 1 . 2 ^ . • 

* \ \ 

Applying the identity in Eq. (3-8) to Eq. (05) gives 

(G5) 
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Utt-j) ^ ^ +(x) 3 ^ 

& 3., 2j \ ̂ X, 
fx A 

4- 1s H i ) ̂ (.x) <T C*-y) ^00 2>f &-V ^00 

K * 2>% 

\\ a cx-y Z ^ i ^ b A ^ ® ^ ^ ̂  «> 

& 1 3s/ / ^ ^ 
'1l 1A 

= - \K f W ) ' c ) W > -Wc*->j) 2v*a) %*)- \ k % y ^ l * ) 

3*r d*0 2)* 
7 

A 

= 

a x * 

(x) y> 
(G6) 

which Is the same as Eq. (3*6) 



APPENDIX H 

CALCULATION OF THE CURRENT-CURRENT COMMUTATOR 

IN SECOND QUANTIZATION 

The value of the commutator of the components of the 

mass current density operator Is calculated in this Appendix. 

The 1th component of the operator is 

3T0D -"h f^(x)oYa) - ^ 0 0 f(x)\ . (HI) 

When the components of the operator are Inserted into the 

commutator, the result is 

frcy) ^ 

\ cl\ dx* / \ 9is h 
(H2) 

Expanding the commutator gives 

(\j) 1 
, f+<y) 

dxk 3 

1 

2fc)0 

9, & 
' f t 
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+ V" 

T 

1-

A -1 

W ) 3fco , ̂  

3rgi) ̂  3 y ^ yq) 

3x, 3 

l l *00 

i 

+1^ d r ^ ) 

1 

3fG), h f ^ > 

3*.* dyf j 

D\ 

-A v fhyty ^4JC^ 

. 3ft 

3rtx) 

2x„ 

T 
, fydn?) 

dx d'< » 
fta) 

^ 41 Vjjfe) , gfc;) M'Cy) 

t 3. «K 
7i 

T ckt 

fe), 3r(y) Wy) 

a 
h 

t 

t 

n o , 3fta H'cjJ 

- ^ • 

2>4rx) 

2)*k 

2n*), 3 h * 

^XK 6^ 

?) ^/) 

Expanding the commutators further gives 

P k < M df09 J 
r\ A -

3f(y) 

4 dxK "1
 

>^£ 

i 
dmi v^i 

"d*„ 

5igi - £ n ^ 

\ 1 
. ^ 

D n a 

7)%* 

(H3) 
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_tiv 

T 

dk^2m + t t 2 ^ * + < y ) "dWy) 

. ' V 

v W 

t a , 

y(A,rij) ^(y) 3r|w, f % > 

ayt t 

Vft) 

+ 1^ 
T Saw 

.to +^Vcx)3^) 

4 h 2 h 

fajQ ,Vc j) 

+ ii'HJ+C)0 

2K 3^ 

H>ty) + 1r̂  2)^) Vtytcp 2)t(x) 

1" ^ 3Xk 

1 

n a , W y W ^a) -^d^a) 
^ ^ \ \ 

^ *» 

tv2i!s) 

""d*« 

H'laVYvf 
Q h 

VG)-K dfa) 
1 \ 

A A 
a n a .^q) 

Si 

n*) 

4 

2¥oa . 2v*cf 
ckK 9 h 

A ^ 
(H4) 

Inserting the commutation relations, Eq. (3 *2) and (3*3)t and. 

their derivatives, into Eq. (H4) gives 
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- J 4 2>*K 

^ ^ ^ - v ) £+<?) + 1 l fe~y) , ^ f y ) 

^xk ^ ^*K % 

-1T~ dxHa~\) VtfVoo + £ ^hx-f ^ o o t c ^ 

1 O x K ^ f t * 

- t f " fc-v) 6>ft+(y) - V" 9 fe -y ) Vty 

i- ^ 9*K ^ ^ 

-1r\" ^ O H ) ^H^tNf) ^O0 . (H5) 

t ^ 

Applying the i d e n t i t y in Eq. (3-8) t o Eq. (H5) g ives 

vl^ Ck) J\ty) ~ -IT ^fc~^) 9$(>p 

^ 9** ^ 7 ) ^ 

jcL 2<fcx-y) ^C<) 9fef l fox-y> ^*<y) 2 f 6 0 
1 ^ 9* s * % a <« 
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*}i cfrrH) ̂ q ) TOO -IT S i a _ Tex) 

+ 2*ŷ  ^ ^x*. 

tt\v 9Ya-y) r t i r o + I 1 E S 4 ) 
4 ^ 4 \ ^ 

- V " Sfg-fl'Too - il ^ o o 

4 9Xk \ 1 2** 

+ j[l" ̂ fo-v) "*"(*! "fOO +il" 

^ 3xk 4 

- ^ 9 f e y ) ^ n y ) ^y) - j f fc-y) 3 f ^ ) 3i(^} - (H6) 

4 \ \ ^ h \ 
Applying the identity in Eq. (3-9) and again applying Eq. (3.8) 

to Eq. (H6) and rearranging terms gives 

a-joo^qj® = tffo-y)9fcsi hx-f2VcfDkf 
1 2U, L \ 3Jk 
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-\± ^fc-y) y+oo Dftoo + ^fcy) 

L ^ ^ \ 

voo - V c ) ^ - y ) 2y*ty) ^y) 

£• ^ 9ak 1 

+V" i O y ) 'c^K*> 3 T O - ̂  jGHy> c)y4q) 3 ^ q ) 

^ c K d*fi ^ 3jk 

-£L ?£t*l> ^y) - iL 

1 \ h f ^ 3/, 

+ lsv hi a-)) V w ) 2 m ^ + ^ kx-fd?\f cMiy . ( H 7 ) 

4 ^ \ ^ fiK d)t 

Upon rearranging terms In Eq. (H7) and adding zero to It In 

the form 

0 - - K £ o ? - y ) | W ) y f a - ^ xV 4oo fOO' 

^ C '̂Jt K ^ K 

V" f(x-y) j H y __ X i ^ 3 ) ^ ) i ; ( h 8) 

L f- 3 1 * \ V V j i J 

the result is 
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Jyiz) -X(y) = 3 f c - y ) f - d f o * ) TO 

\ \ 3xK 3*,< 

+ ^h*) - 3*y+ofl W 

3*^ 3A K 3^jl3Ak 

. 6
r ( g - p m x ) 3 % ) ~ 2roo 

\ 3Xa3Xk 3** 

.tf pfej)/T(y)?fg) _ 

L L \ V \ ' 3ft 

* t (z-yf2rq) 2lS' - 2 ! i s L ^ 

\ ^ 2i«3yi 

+ I ( a - p { V*<$ ^vq) - at*q) 

3 y A ^ i 31* 

= _ 'iti ) 'dhfr-f \60 + S(7.-y) 23;ft) 
) 

2> 

iti) 3fc-y) 

U . 

3*i J 

3 ^ y ) + f f x - y ) ^ (y) ( J 

\ 
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d x . 

$ ( x ~ y ) Jj, ( x ) •+ I i f ) c ) 

a 

^a-p i; (f> j (H9) 

h 

which is the same as Eq. (3.?). 



APPENDIX I 

CALCULATION OP THE HAMILTONIAN OPERATOR IN TERMS OP 

THE CURRENT AND DENSITY OPERATORS 

The Hamiltonian operator is written in the formalism of 

second quantization as 

A A * « 
H - T + u + V 

where the kinetic energy is 

(ID 

T 5 \ r < 5 0 / - j £ V T ( a ] 4 3 x , 

V 

(I2a) 

the external potential is 

0 s-
* A 
f W o o U f l A j ) d3* , 

and the two body potential is 
r 

V * 60 f IfV(|X-y|) Y tt) r (y) a3x d3 y . 

(I2b) 

V = i 
2. 

(I2c) 

^6*1) l s t h e external potential and V(|x-yj) is the two-

body internal potential. 

Upon substituting Eq. (3.1) into Eq. (12b), the result is 

U '-J_ 

m 
^ (x) U (|x|) - U (13) 

which is the same as Eq. (3.14b). 

102 



103 

Upon rearranging Eq. (I2c) and applying the commutation 

relations, Eq. (3-2) and Eq. (3-3)» the result is 

V --L 
L 

W i 1)^ (50 tyx) V
+Cy) - £&-y) & 3 y . (1^) 

J 

** 4. 

Applying the commutation relations for and f and inte-

grating the second term over X gives 

f * V 
V(l*-yl)p(K)^(y>^di3|+_L V(o)^(y)4y= V ^ ( I 5) V s i 

. m 

which is the same as Eq. (3«l^c). 

To cast Eq. (I2a) in the form of Eq. <3*3a)« it must 

first be rewritten as 

T ~ t+(*)i v • A Y v t w ) . 

i|Zm/ \ i(Zm/ 

( 1 6 ) 

The hermiticity of_V_ may be used in Eq. (16) to write 

A I JL_ X 
T = h 

2_ m 

uv^ocij^vnx)) <i3
x. 

Z.YY* 1 

(17) 

Now if one writes the gradient of the density operator as 

VflOO - roV^ooHY*)) = % ) + , (18) 



and notices the following identities: 

JL ViSfl) + L± -- z$+(j0 V$(x) 

ro I -fc J 

104 

(19) 

no 
Vp(x) ~2=i ^Cx) = ̂ V f O i ) ) ^ ) 
1 tl J 

then one may write 

(roof L |̂S(x) +jL'I T o o 
m 

V)(W(xj) 

(110) 

!VfC5?) 

and 

I 

L v ^ ) _|i T ] ( m y == i f r y t y ^(foc)) nr, 
-I 

(111) 

= W f ( s r ) . 
(112) 

The use of both inverse field operators and the inverse 

density operator in E q s . ( I I 1, a n d a u ) flnd ^ ^ ^ 

follows, should l>6 noted q« ̂  , 4 
5 1 n o e " l s sh°«« m Section V that 

these operators do not exist « 
1st, the derivation of Eq. (115) 

must be regarded as merely formal. 



Since 

a — A 

r Cx) (*) i(rcx))J J 
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(113) 

Eq. (Ill) and Eq. (112) may be combined with Eq. (113) to give 

MBoa-jy J oo -o 
m I t, J 

*"'O0 L V^(x)+&0(*) 

rr\ 

<&, (Ii4) 

or 

t ' = tf \ 
— * A "* 

\ VpOO-ZA T(x) * p V*) \ SIafr) + &JT(x) A5x = T , (115) 

L J 
m 1 * J 

I m ( ^ 

which is the same as Eq. (3.14a). Thus the Hamiltonian written 

in terms of currents and densities, Eq. (3.13), has been 

derived from the Hamiltonian written in the formalism of 

second quantization. 



APPENDIX J 

VERIFICATION OF THE OPERATION OF AND Ĵ (K) 

ON THE WAVE FUNCTIONAL 

Since the operation of pOd on^C^ is just multiplication 

of by the function jo(x)f it is easy to see that the func-

tional realizations given in Eq. (3*l?a) and (3.17b) satisfy 

Eq« (3-5)» Since 

= 0 (Jl) poo, fob 

Eq. (3*5) be realized in the functional representation by 

|OO0; ̂ o(y) • 5 ^ ~0 ' (J2) 

That Eq. (3«6) is satisfied by the functional represen-

tation may be seen by writing the commutator with pOQ and 

3^ 00 replaced by their functional representations as follows: 

pOOj Oj, <.y) $ i*go j ~ iti aty) c) _£ 

3ys jo(y)_ 

^l|0) 

rty>&y>ty) 3 <f + iiy> (y) 9 <T fo^) $ 
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10? 

= ftp) + '.ty (y)j)_ 

^ 3ft ' ' 3v 

fe-V, 

4-; y - t ) 2 
3 y s 

p(x) 

Ay60p(y 9 ft (ft -4- fcptyaQfl 21 ^itWyjp 

^ ^y) ' ^ Ifi) ' ^ 

= i y ? ) <̂TCX-y) 

^ J 

5(^) + ')y>̂ )sr6(-y) d f^) 

3. » 
ifl ty) 3<rre-y) *t/4 , 

where the identities 

(y) = (fCx-'y) 

GO 

(J3) 

(J4) 

and 

J< r)= 0 

7s 

were used. Applying the Identity, Eq. (3.8), toEq. (j3) 

C J 5) 

gives 

pwAyty-1- <̂TC3T-V 

3^ 

c?-y) 5^o) — ifiiTCx-y) 1) p(x) 
\J 

iit) 
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= -<kJL hz-yp&i $cp>, 

A 

which Is the same as Eq. (3.6) In the functional 

tatIon. 

(J6) 

represen-

That Eq. (3.7) is satisfied by the functional repre-

sentation may be seen by substituting the functional 

representation for 3;« into the commutator as follows: 

* A r 
(/,)- j _ -\1wy)S X 

i f , 

d [ Mp(V) 9 

9xk <̂ CK) _ 0^ 

facp) 

^C>j) 

+',V)i)-l_ _L_ 
2jeĈ ) _ 

fit & 
L 

- -'fypfl 3 

2k 

- TCx-y) 3 & C & 

fa 

6>Xu 3 
n 

ii LVy }. 

^Cx) <f^y^ 

ity.(y) 3 ~ 'li fa-y) 2) 

7|L 9a 
l £ L 
<y>oo 
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+ (y) c) - \\)p ix) ^ <f (p) 

= - ^U) 3<fT(x-y) ̂  

3 

ftECf) 

fyty) 

• is ̂o(x) <r̂ -y) y <r$fp) 

2)Xk9\ 

• tyC^Cy) 3 

dx^y* 

Cp) 

_̂ |0(x)̂ aCy) 

+ dfa-p _? 

% ^ 
•1y>(y)fc-y) ̂  

dyA3xK ĉ (x) 

+ ̂ y><yy>60 3* 

<̂ Cx) 

\ 3 X K |̂  fyCx) i^y) 

-V^(x) 3<f(x-y) 3 

3, ** 3y» 

fe<p> 

-^pGOtiCx-y) 3 

_fy(y) 

&(f) 
|̂o(.y) 

jŷ y) dfg-y) 3 

tl 

£ 
^C7) 

4- tec# 

K L <Y»eo 
(J7) 
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where Eq. (J4) .was used in the third step. Applying the 

identity in Eq. (3.8) to Eq. (J7) gives 

"SUp) ~2£(x~y) 9 

A h 

+K fyoo Z (-*-)) Ji 
dx L % 

Sic?) 

+ \\^0p (f(x~y) 

£tt>j 

^ (x) 0<fcx-y) 2) 

2) 
4 

cTo(x) 

p̂(x) 

- VflGO^-y) 9"- «r$f(o) 

3*,,3ys . 

Applying the property of the delta function, Eq. (3.9), t o 

Eq. (J8) gives 

(J8) 

_•>*(*), j,cj) ̂ t p > — • > W d f » - y ) 

\ /̂j, i^fy) 

+ fo-y)^l« J L _ £ _ + /or-fVW J" \ $ w 
^ /f(f) r i — — 1 <* 

^ /̂°(x> 3) r -K(d[GL-i)^)H i 
dx< dx,y, <f̂>60 



r o h f 

^ c?xK fa 

f If) 

- - thl) 
3A, 

hx-p^OO $ Cf>) 
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!) &cx-y) ^(j) 5̂ o) ̂  

7K 

(J9) 

which Is the same as Eq. (317) in the functional representation. 



APPENDIX K 

CALCULATION OF THE DENSITY-VELOCITY COMMUTATOR 

IN SECOND QUANTIZATION FOBMULATION 

In this appendix the density-velocity commutator is 

calculated rigorously in the formulation of second quanti-

zation. The implicit definition of the velocity operator 

given "by Eq. (^.2) is used, and no recourse is taken to 

inverse operators. The result in Eq. (^.3) is obtained by 

using the known value of the density-current commutator. 

When the form of the current operator given in Eq. (^.2) 

is substituted into the density-current commutator, the 

result is 

p),i(p-y)Vy> + 

+ _L ô(x), V ^ ^ C y ) 

V^tj) + JL I fG),pej) Vf 

(Kl) 

Applying Eq. (3*5) for the density-density commutator to 

Eq. (Kl) gives 
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(x^ Ĵ (y) •±fiffGOjVxly) * _L fM>Vx(p fty (K2) 

Substituting the value of the density-current commutator 

given in Eq. (3*6) into Eq. (K2) gives 

\^2. 
3*j 1! 

kt fe-9) 
r 

^y) V/f) 

l 
£̂x), VJ (y) / < ? » 

Working with the left side of Eq. (K3) gives 

-iVT? p(j$ 
9x 

•r 
kx-^-'ffyspQ d fcx-f) = - p 

9/t, 3K i 

Applying the identity Eq. (3.8) to Eq. (k4) gives 

-vK 9 

2*, I! 

j>G& <f (x-̂ ) - - ili 2 . A Oy) 

Substituting Eq. (K5) into Eq. (K3) gives 

1 
1 

f f \t.f pfr) j Vy) Ay) ® - ih -O (y)_£>_/ Cf-9) 
' 2x0 

which is s&fcisf*led if 

/>(*>, % Cy) - -it=i ^ <T(x-y) 

a 
CiL (*-y> 

a 
Ti 

which is the same as Eq. (4.3). 

) 

(K3) 

(KU) 

(K 5) 

(K6) 

(K7) 



APPENDIX L 

CALCULATION OF THE VELOCITY-VELOCITY COMMUTATOR IN 

THE FORMALISM OF SECOND QUANTIZATION 

In this appendix the value of the velocity-velocity 

commutator is calculated rigorously in the formalism of 

second quantization. Equation (4.4) is calculated using the 

form of the density operator given in Eq. (4.2) and the known 

values of the density-density, current-current, and density-

velocity commutators. When Eq. (4.2) is substituted into 

the current-current commutator, the result is 

(X) V K tx) + \ (x)^0D); ^S if % if + V / y ) f (f 
2> 

4 

•J p(x) 

4 

+ 

1 
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GO VK cx\ vx (y) j>(f •+ ̂  ^ 00, VJ cy)^ y V K«) 

V K « 

+ ± VKoo / a ); V ) > ^ 
+ J 
4 L 

0, *LA's A [&) 

Expanding the commutators further gives 

A A 

J k W ^ J " ̂  f&fCf VK(x)^(y) + J_̂ (x) V?> 

+_L 
1 

oo, v t ) VKC>0 + _J_ 
4 
p(x\ f()) 

/v A 
Vx(Sj)\i*) 

1' 
(y) \ /O 00 

r 
M-/*'1 , ̂  Cy) 

V y ) K oo '/»,V yj 

+ -L^ ̂*ysiy) ̂  (s), ty) 

rt ^ 11 

V k ^ V^y) 

4 J. V oo 
4 K 

f«0 

Vfc (a) 

%CP 

*ircf t (•') 

1 

L VK (*) V, (y) •+ J- Vh fx) 
1 " 

-v ' Vk(x), ̂ Oy) ̂o(a) + 

1 L 

\ 60, ̂(y) VJ fy)yO (x) 

Vĵ y) /f?) 

* A 

(LI) 

(L2) 
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Substituting Eqs. (̂ 4--3) * (3*5) a n & (3*7) into Eq. (L2) gives 

crK (*);T/y)J -I f(x)^cf k -1 1 
in Jkfx-j) 

% 

+ 1 IVi 

T 
Do Cx-y) ptf %()$ _ j_ ;in dfa-y) ' 
\ j 

4. 
-

A 

t ft) Vjl <?) 

I p (x) 
V 

%uo yV/f (•$ •+ i fk 
J / n T 

(*-y) 

'ft 

•+ I & 6̂ cT̂ -y) VKCx)^y) -t- J_/°ty \0*y Vj}(y) 
,A. * 

/° fit) 

3<r (̂ -x) 

2* 

Vti (o) (jĈ ) + _! 
4 

3tTa-

3 
£ 

yjt 

% 
1 

^Cy-x) GO + 

1 
V ^ V / y ) ô(y) ̂ x) 

- c) 
2A t 

r * 6 (x-y) ̂  (a) 
4- & 9 fe-y> ̂  cy) 

7K 

<L3) 

Expanding the last two terms in Eq. (L3) gives 



y] 9tT g - j ) 

a 

VKa) 
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a 

cfe-v) 

3xo 

VkOO^C?) -J^fe-^) ^(/(x) fyffl) 

£ 

<TCx-N) 

Z. 
"9(VKCx)^xf + '& 

^JL 
a 

fLf%cf 

+ i*L 
2. 2 

V,c<|) M ) + k*-y) 3 ^»q) Vy)) 

+ \Vs 6 (K~yj) 

I A 
Applying the identity,Eq. (3.8), to Eq. (14) gives 

y) 

2. 

ffe-y) \ N/^OO -V jk 3fc-y) 

;h 

VKCx)2(v » / < ? > 

£(x-y) 
Z5 
(*) c'VkCx) + c)VL(x) /oOO 

3*< 
r 

(14) 

L 

9fej) 

3*. 

^ />(*) -

I 
2fC*->|) 

3** 

c>î  
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+ * (J-y) 
I 

PLf ty) 

h ^ 
(L5) 

When Eq. (L5) Is combined with Eq. (L3)» the result is 

± Hx) f f + 
J 4 L 

V ^ V ^ y ) 

+ _l_ pCx) 

4 f 
V*>,Vy> ^y) + J_ |o6y) V^eO, 

/V 

r &) 

~-\\\ &(x-y) L 

\V\ <T(.X-̂ ) 

I 

^Ct) ^V^C*) + V̂y,(x) ,o(x) 

3v. ty + t-y) ^(y) 

2 
(L6) 

7* 

The right side of Eq. (L6) may be manipulated to give 

- \Vv £(x~y) 

jta fOt-y) 

2-

PCi) 2>%a) ~ 2xi 

> fe-y) 

Cx) 

9Av 

T 

y) 3V(x-y) 

9x„ 9 A^Ah 
(L?) 

where Eq. (4-.3) was used to obtain Eq. (L7). If the density-

operator commutes with the velocity-velocity commutator, 

Eqs. (L6) and (L7) may be combined to give 



f (50 Vk 00 , Vn (?) - ih £(x-y) 2 % on _ 2vhoo 

2 
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(L8) 

which Is consistent with the condition of the density operator 

commuting with the velocity-velocity commutator, and is the 

same as Eq. (4.4). 



appendix m 

DERIVATION OP THE KINETIC ENERGY TERM IN LANDAU'S 

HAMILTONIAN PROM THE SECOND 

QUANTIZATION HAMILTONIAN 

In this appendix Eq. (4.5b) for the kinetic energy term 

in the Hamilton!an of Eq. (k.6) is derived from Eq. (3.14a). 

When Eq. (4.2) for the current operator is substituted into 

Eq* (3»l^a), the result is 

— i , 
I 

3vr> 

Vf (*) _ i f^Cx) VOf) + V(x) p 

- -I N *vyo (X) -L 00 •+ Jl. fx) V(X) •+• V(*>^ (X)) 

£ 

SVr 
V,p (x)Ĵ  (*) - VnrjS Cx) V(x)^ "V*) - Y(x) 

Is "K 

m 
^ + J_ (x) V(x) •+ V (jCj ̂  (.x)̂  

% 
a3x 

£ ^(Vf00> ^ o o f y w ) _ i _ % , . ̂  
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f ~0 { V^*>) 
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A A 
•>~l(VfrX>) ' V<*> + ~ 1° 63 V«) • V(x) + rr, V(J) • i(x) V « ) 

•K tf-' i 

- i . • v o y o o + ^ fafitojs-'M . fail*) 

A A 
•+ Vot) • VCx) PCx) 

' ' 
A3a . 

(Ml) 

Rearranging terms allowsT to be written as 

T.-it 

$mn 
°°)' f ~ t o ( ^ ^ - W ( x ) ' ^ 0 0 - ^ V « - V^a) 

V(/) -;" oo V/ (x) + W v;(4 - vck) 1 ' > J 

•ityaj) • v w + ^ ( v ^ ) • f w p w , ^ 

-V* jqcl V (x) * o(x) "V (x) m 
^ ^ r t*}. Vort • V(x) 
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m V[x) ' G 6<)V(x) •+ _m_ ^>)*P(x)V{x) 
1 f 

m 
1. 

t, 
«>, Vor) A -I j2 (x)' V(x)yO(x) + m \ M 

V _ 

~ ~ ~ A 

+ JG2. V(x) \/(x) + ̂  \?6?) 
V ' ^ 

/> 

Wx), ̂  (x) <±3x. (M2) 

Since the density-velocity commutator is the gradient of a 

delta function, it will commute with the velocity operator. 

Using this fact and further rearranging terms gives 

A f C C * 

T i J 4_ Vfry^tx) V(x) +j/v^x))-^*b)(y^)) 

jL* V(x)j+ ^~(X) Vex) , js(jl) 

• m /° £x), V(k) A r 6f) V(X) y*6c) d3x 
(M3) 

The third term In Eq. (M3) is a n 
JJ is an infinite constant which may 

be neglected without altering the equations of motion. The 

result of evaluating the density-velocity commutator of 

Eq. (4.3) is 

fa) Voo ;kvx SCx-y) 0 ( m ) 

x-y 
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since the derivative of the delta function is an odd function. 

This result may be substituted into Eq. (M3) to obtain 

t ' * j vc*> m p "(x) ( v f ( x ) - ( v f o o j 
) (M5) 

which is the same as Eq. (4.5b). 



APPENDIX N 

DERIVATION OF QUANTUM CORRECTION TERM IN 

VELOCITY OPERATOR EQUATION OF MOTION 

Equation (4.9) is derived In this appendix as follows: 

- i t L /O 

- - \\ 
i >\y\ J 

+ Wry) 

Z3 (y) foo £y)) * /ih 3 &Cy-x) 

I a 

'cy) Vyŷ cy)y \^a) 'Vjo(y) 

a3 

3 

3x{ 

V -

A 
S W 

r. 

J 

A 
y , « y (y^>) jjy 
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3_ V-(fJa)Vfcxi) +£_ d_ (Vfo^-s->oo0-\i)VpM 
4m7" ̂ Xjj ^ dxx 

) 
(Nl) 

which is the same as Eq. {4.9)* 



APPENDIX 0 

DERIVATION OF THE VELOCITY OPERATOR IN TERMS OP 

THE FIELD OPERATORS OF SECOND QUANTIZATION 

In this appendix the form of the velocity operator given 

by Eq. (4.11) is shown to be Inconsistent with the definition 

of the velocity operator in terms of density and current 

operators given by Eq. (2.3)» when the density and current 

operators are written in terms of the field operators in 

Eqs. (3.1) and (3«4). If the inverse density operator is 

written as 

t m 
) 

(01) 

and Inserted into Eq. (2.3) along with the form of the current 

operator given in Eq. (3-*0» the result is 

v«> \ U i f 1 \•<? \*)(v f oy) - ( v r ® ) na 

<L\ 

C-» I rn 

= tv j 

)̂mi 
- ( y f n o ) ? w 

4 (02) 
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In the succeeding manipulations of the second two terms 

in Eq. (02), it is assumed that the annihilation and creation 

operators commute with their inverses as follows: 

.too, 4-'"'«)] -- - O 

and 

^(2), 
A A 

= 0 • 

(03a) 

(03b) 

These are merely formal equations since the inverse operators 

do not exist, as 3s shown in Section V. If the velocity operator 

is now written 

vtt) (y,co + v̂ cs). (Oif) 

vjhere 

t£,«> - (vfei)-(vriio)(i"(x))" , (05) 

and 

A 

V too
2 " f ^ v t c o ) r ' v o f r o t f ~ +(xj)"'(vy*(x>)4-(a, (06) 

JL 
then the terms included in Vz(x) may be manipulated separately. 

A 
Commuting terms in \/tCx) gives 

-- r'(s)(vfO()) + r c o , 

-{yV(X))Tt3d- ¥"'<*) |vf+o3)^4orj)~^ $ c o (07) 
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- i L (V{Cx)+ Vt(5f)j 

irni 
) 

= t) 

2vni t-

where 

rv«(vtcx))-(vr(x))(v*K)j + t) R (x) 

4™i 

(08) 

ft®: 

n , } (09) 

If HOD Is zero, then Eq. (08) i s equivalent to Eq. (4.11). 

This Is not the case, however, as is shown below. 

Expanding the commutators in giTes 

- ^ ( v r a ) ^ ) ) ' ] 4*00 

The commutators 

^ ' o o . v n a . 

r h ) (vfaoX^(a)}"1 

( 0 1 0 ) 

and. 

V$+0f) , 4>Cx) 

may be written as 



V, 1 Y
f(x), y) Vy £(X~p 

x~ 
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(oil) 

and 

'l t+(y)^(x)jl _ ~ Vy cTft-y) 

"y 
, respectively, (Q12) 

*7 

«here the t„o variables are set e9ual after the differentia-

tion has been done. Thus 

Vfa) V1"a}, too 
J 

and 
A 

A "T 

~ Cx-y) 

If it is now noted that 

- rVx) 
A A 

and 

X j v-i A 

f 

(013) 

(014) 

V~(t)~-f(x~-yjfbf'a); (015) 

rofl), *<y>j <$•<*/• {^(?), ̂ O 0 ^ " = (016) 

A \ ^ 

then f}(̂ ) may be written as 

jA 

H«> = fa-yr'ca) ^(xj (v r csj) (y 

" 2-t"'(x)('f'tx))"1 [vjftf-y) 
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(017) 
X - 1 

•where the delta functions are evaluated at the point x=y-
A 

may thus be written as 

{(x)~-r[x) V, fe~y) ( X - ; 

7 

, (018) 
x-y 

which is not zero unless V,00 zero, in which case the 

velocity operator would be zerQ and any theory using the 

velocity operator would have little value. It has thus 

been shown that the form of the velocity operator given in 

Eq. (4.11) is Inconsistent with the definition of the velocity 

operator iii terms, of.. 1 lie.49̂ /sity and current opê afcgrs.. 



APPENDIX P 

CALCULATION OF THE RESOLUTION OF AN ARBITRARY OPERATOR 

IN THE COHERENT STATES REPRESENTATION 

In this appendix the identity, Eq. (6.10), is derived by 

applying the unit operator given by Eq. (6.8) twice to the 
A 

operator © . The result Is 

A A A A 

© " I © I 

J 

Pj O ( * * |3) < W - i | | 1 - JL j /3jj ( P i ) 
v i " " "ril 

where /3) is defined as in Eq. (6.11). This equation is 

the same as Eq. (6.10). 
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APPENDIX Q 

DERIVATION OP EQ. (6.1*0 

If the operator & of Eq. (6.13) is Inserted Into Eq. 

(6.11), which defines ©(°< */S) , the result Is 

&(«*, £ > ) ' 
A A 

ete. p > « p ( •+ _L 
a 

rt')- (Ql) 

Applying the unit operator in Eq. (6.7) to Eq. (Ql) gives 

® (** ft) ~ ̂  I e» X I £ ? e*P^-

<^|evj X ) 0 | 6 t| |5) txp/l 

II 2-
!°M + 

D « ) - (Q2) 

Equation (6.11) may be written as 

<<*[©|£>= e(**,fi) exp^-lfnf- -L\\$\Z) • (Q3) 

Using Eq. (Q4) to substitute for the matrix elements in Eq. 

(Q3) gives 

©(**, (5) 

J 

e, (" * P) «p(-11 Ml - 1 
£ 2. 

©«.(*»* 

** ten1 iipii i) m 1 * — irti) o(?) 

1 



s . ( * * , / 3 ) « p ( - I N r ) 
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(Q*0 

which is the same as Eq. (6.1*1-). 



APPENDIX R 

DERIVATION OP EQ. (6.18) 

In order to derive Eq. (6.18), it Is necessary to insert 
A 

the form of T(X) given by Eq. (6.1?) into the defining equa-

tion for » E<i* (6.11). The result is 

1 X) A; *)=<-< I fzr0 

i_v(x+e)^oo «p^J|°<] 
L \p 

£} j \ n / 

= i^a)V(x+6) +JL va+£)^^)j |/3)e^Ue 

Let 

V t 

y = x +£. . 

(hi) 

Commuting V(x + £)^oO0 according to Eq. (^.7) gives 

^ («*, P', *) = ̂ -<^1^0?) V (*+£) tx-^ X 

exp^l fM +J_ 
2. W V 

Q i / r r v < ^ * J |0(x)V (X-̂ ) J £>̂£*p̂_|j°<||Z + J_ jj^j 

1f\_ Vy £(.*->() {* I •+ _L |6|f\ 
Y~>x 2\ N 1 ' U a l! / 
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(R2) 
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Applying the Identity operator given by Eq. (6.7) to Eq. (R2) 

gives 

£—>0 
(«* p;x) Y(k* p- x) w f 

+ H w p r H P ) ! S i — V. £ce) 
2-\ 1 1 e~>o £ J (B3) 

which is the same as Eq. (6.18) 



APPENDIX S 

DERIVATION OF THE IDENTITY EQ. (6.19) 

The identity, Eq. (6.19X is most easily proven by first 

proving the simpler identity given below; 

j_ j exp^j3*°< - H 1 ) ( ° * * ^ n &%c< ) (SI) 

where the k subscript has been dropped since It is common to 

all the variables. If °< is written in polar form, 

®< <x! te (32) 

then 

d"1^ - d A xiYVV(=<) = |<*| A 1̂ 1 A© (S3) 

The key to the proof lies in expanding the exponential, 

and noticing that only one term remains after doing the 

integral over 3. This is shown below: 

If 

= I 
Tr 

rr • j ii 

J s 
o o 

yu 

j 
o o 

4* (A*) £. *+ 

1 +j6* |°<| e
,e + H2" e 'ie •+ ... 

2-1 

<̂+t ->*\8 

m 
£ "" de<i |°<| 
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(sb) 
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o£ r 
2-7r 

Or 

Zvt+\ 
(p) 

yv. 

" w v 11 
e d[< <v = 

= Lpf , (S5) 

•which is the same as Eq. (SI). Integration by parts was 

used. 

If F(r*) Is analytic it can be expanded in a power series 
oO 

F(]f*) - I C B (ir-r • (S6) 
m^O 

Then by using Eq. (SI) the Integral identity 

( . . r 

tr 

= T 

<3*) tf-f ^1.. e x p ^ n - W ^ C ^ A n 

c m £ « r ^ ̂  t-*), 
m ^ 

(S7) 

is obtained. Differentiating Eq. (S7) with respect to °<* n 

times gives 

fl_X nr 
H**) A n 

Tr 
w p ^ y - M 1 " ) * " f or) ArK 

--flS F (-*) 
(S8) 

which is Eq. (6.19) 



APPENDIX T 

VERIFICATION OF THE FORM OF THE FUNCTION Y(f**,£}x) 

GIVEN IN EQ. (6.20) AS A SOLUTION OF EQ. ( 6 . 1 8 ) 

In this appendix It is shown that the function 

given by Eq. (6.20) is a solution to Eq. (6.18) by simply 

substituting this form of Y(«**_, into Eq. (6.18). When 

the form of ^(<**;|9;x) given in Eq. (6.12a) and the explicit 

form of -̂(?<*,|2>)x) given in Eq. (6.12b) are substituted into 

Eq. (6.18), the result is 

0 gj 
YOOexp (̂ jK)+(*!£>)-IM! ~ Vj3(x) _ VV*(x) 

/3(x) Y*Lx) 

V(t) 

+ ft e*p 

U 

iL̂ nr-u V̂ r- (f (€) 
' ' J £—>O 

(Tl) 

This may be broken into three terms, I^» l2» and I-j, which 

are 

f 
= **ooY&ix) 

t\ /5O0 

V(x)e*p («i|lf) + (lf|jJ) O(jr) (T2) 

X = -1- 2_ 

and 

•ft. **<*) WCOexp r(*\s)+onp)-||x||l 

2a J 1 J 

yy*oo vu) 

Y*00 
(T3) 
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X e*p [Wfl)] Vjj"ce-) . 
2_; £->0 
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(T4) 

The sum of these three terms must be equal to the form of 

(*<*; £jx) given by Eq. (6.12b). 

The term is treated first. Expanding and the 

exponential gives 

X, --^*1*)tg>j(? V , c - ' ^ T r ^ 
Zs 1\ 

\\ °t*00\rj5call U.TT [ e w ^ V ^ I V - U f ) A X 
n poo j J J * L u . 

(T5) 

If the identity in Eq. (6.19) is applied to Eq. (T5) with 

V-* A, 
F(y*) = e ^ J ; n - - l 

the result Is 

X °<*(x)Vfl(x) I . 
a\ 

•j-* 

"* I 
IT 

2«* J K*J j3tx) J 

Applying the same Identity again, with 

" p f s v c / v w ' )
T < ^ i 
K ^ 

(T6) 

t— PK 
^ , « = o , 

the result is 
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3T, V̂ 0C5C) Z ! 

2-i /3(x) j 
3^* J A J "IT e 

^k/SK 

2 * T 
; 

= iL**COV/S0o/Z & . z V r * ) h e * * * * 
Is 

•—' \ - I J 
/kx) \ J 

& **eo Vfioo / 3 U ) € C ^ ( j ) v & & ) e m ) 

21 /5O0 Zx 
(T7) 

Thus the first term on the left side of Eq. (6.12b) has been 

obtained. The second term is obtained in the same way as 

follows: 

2- \ 
X(x)e^[(o(\Y)H^\^-i[C] V^C30 If <W-

V OQ K t( 

_v^*a)Ux)e^pbis)^a p-||if] V / Z Y * e" ̂  *) IT dxV 
2.1 l L J V w m / K — 

T* £-is*) T/ 

-J^L^CO 
2- < 

Ux)exj> (e<|v)+(jr|)s)~i X f - i m ^ e r ^ i i r n 
vr* \ 

v* -m-x 
IT 

^ < * * 0 0 
2. \ 

(f 

\l x - j 
* -tm*x 
m X 

y* Y~\ 
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K *x] 

Or 
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'Vw^Cx c. 

J 

I 1 ; e ~ w * 
Y> 

v n A x - | \ r ) £ i 

Applying the Identity in ( 6 . 1 9 ) t o E q > ( T g ) 

r ik'7\P I t = 

2. i 
- i h 

—iK-* <** 
" p e —tt c 

L K * -iK-x ^ I p > - v\ —̂ 
€- +2L y 

* ~'n-* 

n^k 

xTT 
nA " p f a V O n - C ) A X 

It 

(T 8) 

x 7J Y° 

V
I 

-fj 

-'•"•A »« , 
e €l H 

-* -°< K C. •>K-x y" -in • 
•+L-)fZe. 

X 

r\tK 

. ^ i r m pm - ^
 x ) 

lr j (T9) 



Another application of Eq. (6.19) gives 
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*(X) Z 
iK** 

2- i 

-iK*x 
£• ex 

•$t — i K 'X \—-
*k e + Z •<* e 

n^K * 

-in-* 

+ r 
yŷ K 

9 
2«* 

' *Vr>e* * ~lm*x / _ v, * 

-ik-s ZH ~ z n 
otH e £ < 4—7. Y\ 

-in * x 

n^K 

(T10) 

Carrying out the differentiation leaves 

e®'* x 
2. ( K 

J 

-|k'* ^A) _.uA * -ik-x 
K ̂  «• T - * -" * e 

in-x^ 

-\*vx 

•tK-x 
* ( - i S e M ^ 



+ 1 . 
r v ^ h 

-»m*X , (jAp) -
/ & * £ < * * C X ) 

* * 0 0 

1 4 3 

. , N , • * —\vr> • X - \ K • X 

< * * 0 0 

2 L • * * ( * ) ) * * 0 0 
2A (x) 

e e. 

+ °<* (x ) 
v - - i k - x „ / \ ~ 
•*—— / ^ K | ^ — ~ ~ ' m v y \ € -

K 1 \ W K 

* - i m - X (<*|£) 

r * _ ' ^ ' x / - m * • ' ^ ' • x (*<M) 
4 = - e e C _ | H j °<K e e 

Z L e e " ' k 5 Z . - ' . » * < t ' " " ' * e 6 ^ ' 

i t 
2. i 

w P 
K e ^ ' * ( - i k ) °< * t - ' * ' * e W 



4 
K ' \ hrt̂K 

im«.* 

2 M 

CK̂ OC) K * 

- \ e M ^ 
O<* 0() K YV\?!K 

_1_̂ _ 
2- i 

(3ts) V« *00 e w W + X -\V, e
 w w 

e M » + e-S-5^ 

^ c i r * v 

t. e W W 

i. i 
i ^ V ^ o O - Z f - i K ) - J ^*(30-7**00 

J. W 0 ^ 
a. i 

/5C?t)V-<*(x)-^ (-\k) 

Expanding the delta function term in 1^ gives 

I +L t W » Vtf(€) .J.* t
M « (L_ v / l t"'*®' 

| £—>0 * 1 

(Til) 
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H -ike."'k'£ 
2- i £~>0 K 

= l W < " i ) I I (-ift) . 
Z. i k 

-here the volume has been set equal to one. 1 combines 

with I2 to give 

(T12) 

V6 f a), .± ̂  e W ) 

2.T 
£—>0 2_ \ 

The final result is 

/SCO V* *co 
(T13) 

^ v 6 < r c g ) 

2. 1 £->0 

-L fe_ t M H 

e- i 
o< 

(T14) 

>£>)*) as given by Eq. (6. 

of Eq. (6.18). 
20) is therefore a solution 



APPENDIX U 

DERIVATION OF EQ. (6.22) 

Equation (6.22) Is derived in this appendix "by simply-

substituting Eq. (6.21) into Eq. (6.20). The result is 

given below: 

P> Vffeope'fy00) , V(fo<(X)e 

Z- trn 

e 'V x ) Cx) < 
-'4> CO 

t im 

''be?) 
e Y ^ ' vIa^) 'fgU) g- ^ v<|yoo 

f
 r ->4^00 i£ -i^C*) 
vfceoe -4,00 e 7^(x)> 

" L « 

= 1 
+ i?(j) ft) _ % C K ) + 

IW\ / _ r — 2. w 
L f/3 Cx) 
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" r \ e ^ L e i - ^ a & > ] 

-f^s (X) 

W ) f 
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m "K e 

Z m |v + ^ o o - • A v ^ - L v L Y 

tf/, A 

- 1 "fc e ^ ' ^ I v 
I'm J L' + 'VJ^ t c « / ^ ( x ) (ui) 

•which is the same as Eq. (6.22). 



APPENDIX V 

DERIVATION OF THE VELOCITY OPERATOR FROM THE 

FUNCTION 

In this appendix the form of the velocity operator given 

in Eq. (6.2*0 is obtained by substituting the form of Y^/Sjx) 

given by Eq. (6.20) into Eq. (6.10). The results are shown 

below: 

V ( # s ± J l 
t. im 

eM8) £--kihir - i iwt V fl(jO — 

pa) (jo 

= \ 

2. tm 
< H P ) V Jl/rx |5(x) - W ^ 'X^l D(*)D(£) 

=J_ 
Z- im C>) H X " ! fi)<Ai PMDCfi) 

= i L v J U p ^ h x - < | / 5 x A I ^ W P ( W 
£Vb,J 

i M v £U-< * (./.) |*x.-< |p}<&| cc«)W/j) 
2. im ' 
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i i . 
2- im 

VJUu|5(*) [|3><jB| \)(|8) - J t>_ 

2. im 
V iUv "*(a) j°^°<| P(^) 

^ Tm t ^ (^x)/0** $ ) | D M . (VI) 

Substituting for «P<.(xJ from Eq. (6.21) into Eq. (VI) gives 

V00 = * t 

Im 
vsu. 

J ~ 1 ̂  6) 
"L (*) £ 

7 r P H 

I k 
2L im 

7 & w 
^ ( x ) 

p w 

2- im 
2-iV^U-) I - X M ° M - S r \ V ^ O E ) 

(V2) 

which is the same as Eq. (6.2). 



APPENDIX W 

CALCULATION OF THE HEISENBERG EQUATION OF MOTION 

FOR THE FIELD ANNIHILATION OPERATOR 

Equation (7- l^) Is calculated by insert ing the Hamiltonian 

of Eq. (7.12) in to the Heisenberg equation of motion. The 

resul t i s 

W ) , H 

I 
I 

' W y O v ( . n , ^ t Li,\) 1 

<A3\ 

= 1 
L 

n v ) vm n y j 

•4- 9+(y,f)V(i,y;$Cy,t) £(*,*)( <±3zA3y 

<T(x-y) 1 (y) $(y,i) a3y + ± ^a-i) y ^i)Vc^y)fcyy f)y ̂ i ) a3* <13y 

2. 
? (*», V(£,y) ? <y/f )?(£,+) 

+ 4 W ) , r c y i ) v ( i , j ) n ^ ) n ^ ) / 

I (x) y (x,}) + JL 
L j 

^+<7A) V tS,y) Y Cy.t) + CS,+) 
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+_L 
I 

V(i>y) y(y>+) PzAly 

A *, 

= Too y a+)+J- y 'ojfi Y c?,t) v at) d3y 

+ . 
L 

r(€,v) vc^x) (Wl) 

Since V(x,y) = VCy>X) , the dummy variables of integration, in 

Eq. (Wl) may be relabelled to give 

f 

& 
(W2) 

which is the same as Eq. (7*1^)• 



APPENDIX X 

GBOSS-PITAEVSKII EQUATION IN TERMS OF DENSITY AND PHASE 

Equation (7.2k) is calculated In this Appendix by sub-

stituting Eq. (7.19) for the order parameter into the Gross-

Pltaevskii equation, Eq. (7.16). Since the order parameter, 

the density, and the phase are all functions of the position 

and time, they will be written without their arguments to 

simplify the notation. That is, 

3 e, 

f<-*'A) - f'-

Making the substitution described above gives 

Jt 2 /pV f i). -_i £ 7 1 

ŷrT ~c)\- L Vr* fe;) 
i l / ^ 

+ u f e ) 4 

v t M ' j 
'/i 1R 

e (xi) 

Expanding the derivatives in the above equation results in 

to 
ft 

'k (fif * _2« 
L m 
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4- \ e. i7t\ ) * u A0 \ e-
nn J 

^ t ' M v C M ' ) r ' A V . (X2) 

tR 
On further manipulation. Including division by e , we obtain 

-itL 
<?. m 

¥z ' ^ 

w>1 frf r " *"fef 

4- fef (X3) 

which is the same as Eq. (7.2*0 



APPENDIX Y 

EQUATION OF CONTINUITY PROM THE 

GROSS-PITAEVSKII EQUATION 

Equation (7.25) Is obtained, in this appendix by setting 

the imaginary terms on each side of Eq. (7.24) equal. The 

result is 

* - - i t ! 
2. m 

L 

O f 

Noting that 

2_ ^ 
hi 

- I 

^ Y H * -v 
v W 2k 

mJ 

and 

7 
- v r > 

•k -K 1 

f 

we see that Eq. (Yl) may be written as 

(Yl) 

hp =_i -h 

W 

2- (VR) *IVfl) +* cL V R 

7'/c.%, Vfi] = V ' J 
J m J t 

(Y2) 

where Eq. (7.21) was used in the last step. This is the same 

as Eq. (7.25). 1 til 



APPENDIX Z 

THE BEBNOULLI EQUATION FROM THE 

GROSS-PITAEVSKII EQUATION 

Equation (7.26) Is derived In this appendix by setting 

the real terms on each side of Eq. (7.24) equal. The result 

is 

W W ^ ^ 

&f'f *«•''>(&)jv • 
Dividing the above equation by - ^ gives 

2>f 2. m 

(ft*) 
'A 

( r 
~ U _ 1 

m 

(Zl) 

V f t x ' J / d Y . 
/ (22) 

Identifying J_ j Vftxyd 5* as the total Internal potential 

and dividing by m gives the Bernoulli equation 

2B. = i t l 
m 2. rn1-

- W - x . 
m m 

fSvr)71" 

Taking the gradient of the above equation 

(7>23) gives 
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(Z3) 

and using Eq. 



where 

F e*V. - ' V 

and 

F \nV, ' 7 U 

which is "the same as Eq. (7 • 16) 
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