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This thesis exhibits a collection of proofs of theorems 

on ideals in a commutative ring with and without a unity. 

Theorems treated involve properties of ideals under certain 

operations (sum, product, quotient, intersection, and union); 

properties of homomorphic mappings of ideals; contraction and 

extension theorems concerning ideals and quotient rings of 

domains with respect to multiplicative systems; properties 

of maximal, minimal, prime, semi-prime, and primary ideals; 

properties of radicals of ideals with relations to quotient 

rings, semi-prime, and primary ideals. 

The thesis is divided into three chapters: "Introductory 

Concepts," "Properties of Ideals and Their Radicals Under 

Certain Operations," and "Properties of Maximal, Prime, and 

Primary Ideals." 

In Chapter I, basic definitions and theorems assumed 

are stated. For proofs of the theorems stated in Chapter I, 

the reader is referred to Zariski and Samuel, Co rami] tat i ve 

Algebra, Vol. I and II, 1958. It is assumed that the reader 

is familiar with basic properties of sets and commutative 

rings. 

Chapter II is sub-divided into four parts: "Some 

Properties of Quotients of Ideals," "Some Properties of 



Ideals Under a Homomorphism," "Some Properties of Radicals 

of Ideals," and "Some Properties of Extensions and Con-

tractions of Ideals with Respect to a Quotient Ring." 

In Chapter I I I , some properties of maximal, minimal, 

prime, primary, and semi-prime ideals are presented under 

various hypotheses. One of the most interesting theorems 

in this chapter states that, if an ideal A of a ring is con-

tained in the intersection of a finite set of prime ideals 

such that no prime ideal is contained in another, then A 

must be contained in one of the prime ideals. The chapter 

concludes with a proof that a ring with no divisors of zero 

such that each of its subrings is an ideal must be a 

commutative ring. 
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CHAPTER I 

INTRODUCTORY CONCEPTS 

This thesis exhibits a collection of proofs of theorems 

on ideals in commutative rings with and without a unity. 

Basic definitions and theorems which are assumed in developing 

proofs of the theorems in this thesis are stated in this 

chapter. For proofs of the theorems stated in this chapter 

see (1) • 

Theorems treated involve properties of ideals under 

certain operations (sum, product, quotient, intersection, 

and union); properties of homomorphic mappings of ideals; 

contraction and extension theorems concerning ideals and 

quotient rings of domains with respect to multiplicative 

systems; properties of maximal, minimal, prime, semi-prime, 

and primary ideals; properties of radicals of ideals with 

relations to quotient rings, semi-prime, and primary ideals; 

a certain ring with the property that every subring is an 

ideal. 

As the title indicates, all rings considered are 

commutative, and the property of having or not having a 

unity is specified for each theorem or groups of theorems. 

It is assumed that the reader is familiar with basic prop-

erties of sets and commutative rings. For all rings the 

additive identity is denoted by 0 and the unity element 



(if it exists) by 1. 

Addition of elements of rings is always denoted by + 

regardless of its meaning when used in different systems. 

If an element x of a ring is to be used in a sum n times, the 

symbol nx will denote this. It is understood that n is not 

necessarily an element of the ring, and the symbol nx should 

not be mistaken as a product involving elements of the ring. 

Multiplication is denoted by • , but the symbol is not 

used unless confusion would, otherwise, result. In cases 

where it is necessary to raise a binomial sum to a power, 

binomial coefficients are used to simplify the notation. 

Set containment is denoted by d and proper containment by < . 

J denotes the set of integers, and J 0 denotes the set of 

positive integers. 

A subset A of a given commutative ring R is called an 

ideal of R if and only if: (1) x,y e A implies that x - y e A, 

and (2) a e A and r e R implies that ar = ra e A: i.e., the 

product of any element of A with any element of R remains in 

A. 

For the remainder of this chapter, reference to "the ring 

R" or simply "R" will be understood to denote a commutative 

ring. 

Notice that the definition of an ideal makes no guarantee 

that either of the elements of a product are in the ideal 

just because the product itself is in the ideal; in fact, 

the foregoing property is reserved for a special class of 



ideals. If A is an ideal in R, then for a, b e R such that 

ab e A and a £ A, it is not necessary that b e A. However 

since a ring is a group under addition, if a + b £ A, and 

a e A, then b must be an element of A. 

An ideal A in a ring R is called a proper ideal of R if 

and only if A is not the zero ideal (the ideal whose set 

contains only the additive identity) and not R itself. A is 

a principal ideal of R if and only if there exists an element 

x of R so that any element of A is the product of x with 

some element of R: that is, if 

A = { x r | r e R } (sometimes denoted by (x) or xR ). 

A is said to be a prime ideal of R if and only if a, b e R, 

and ab e A, such that b^A, implies that a c A. A is a 

primary ideal of R if and only if c, d e R, and cd e A, such 

that d i- A, implies that c n e A for some positive integer n. 

Note that if A is a prime ideal in R, then A is a primary 

ideal of R, but the converse is not always true. A is a 

maximal ideal in R if and only if there is no proper ideal 

of R which properly contains A: that is, if B is any ideal of 

R such that A < B CI R, then B = R. A is said to be a minimal 

ideal of R if and only if A / (0), and there is no ideal B 

of R such that (0) < B < A. 

If A is an ideal in R, then C is called the radical of A 

(denoted by /A) if and only if 

C = { x e R l x n e A , n e J } . 
1 o 

If A = /A then A is called a semi-prime ideal of R and 



conversely. If P is a prime ideal of R, then P is said to be 

a minimal prime ideal of A if and only if A C P, and there 

exists no prime ideal P' of R such that A CI P' < P. The 

minimal prime ideals of the zero ideal are said to be the 

minimal primes of R. 

If A and B are ideals in R, the sum of A and B is de-

fined in the obvious manner as 

A + B = { a + b | a £ A, and b e B } , 

and the sum of A and B is also an ideal in R. In order to 

insure closure for the module, it is necessary to define the 

product of A and B as 

A*B = ^ £ ai^i I ai e A, b^ e B, and n e J 0 J 

so that A•B is also an ideal in R. The set of products of a 

single element x in R with elements in an ideal C of R is 

denoted by xC where 

xC = { xc [ c e C } . 

T h e quotient of A b^ B is defined as 

A:B = { x e R | x B C A } . 

A non-zero element a in a ring R is called a zero-divisor 

if and only if there exists a non-zero element b in R such 

that ab = ba = 0 . A commutative ring with a unity and without 

zero-divisors is called an integral domain, or more simply, 

a domain. Note that the requirement that there be no divisors 

of zero is equivalent to the cancellation law for multipli-

cation: i.e., if a, b, and c are non-zero elements in D 



(a domain) such that ab = ac, then it follows that b = c only 

if there are no divisors of zero in D. An integral domain D 

which contains at least two distinct elements (1 and 0) is 

called a field if for each non-zero element d of D there 

exists an element c. of D such that cd = dc = 1. 

Let D be a domain and let 

E = { (a,b) [ a,b e D, and b f 0 } . 

Define a relation ^ in E by 

(a,b) ^ (c,d) if and only if ad = be. 

Now ^ is an equivalence relation in E and defines a partition 

of E. Denote an equivalence class by where (a,b) e E, and 
b 

- = { (x,y) | (x,y) ^ (a,b) } . 
b 

Now let 

U,b) e E J 
and define two binary operations such that if —, — e K then 

b d 

a + £ = ad + be 

b d bd 
9 

and . 

b d bd 

Then the algebraic system consisting of K and the operations 

+ and • defined on K is a field which is called the quotient 

field of D. 

A non-empty subset S of a ring R is a multiplicative 

system in R if and only if 0 £ S, and a, b e S implies that 

a*b e S. Let S be a multiplicative system in D, then Dg 



such that Dg = — [ a,b e D, and b e S j 

is called the quotient ring of D with respect to the multi-

plicative system >S. If P is a proper prime ideal of D, then 

D\P defined by 

D\P = { x e D | x i P } 

is a multiplicative system in D, and Dj)\p is usually denoted 

simply as Dp so that 

Dp = — | a,b e D, and b f. P ^ . 

If A is an ideal of D, then ADg defined by 

f m i \ 
ADg = ^ 2 ai^i I ai e ^i e Dg, and m £ J Q J 

is called the extension of A to Dg (or A extended to Dg). 

If B is an ideal of Dg, then B H D is called the contraction 

of B in D (or ]3 contracted to Dg) . 

If A is an ideal in a ring R and r e R, then the set 

r + A = { r + a | a e A } 

is called the coset or residue class determined by r̂  and A. 

Now let R/A be the set of all cosets of A in R and define the 

binary operations + and • in R/A as follows: for c,d e R 

(c + A) + (d + A) = (c + d) + A, 

and (c + A) • (d + A) = c*d + A. 

Then the algebraic system consisting of R/A with the operations 

+ and • is a ring called the quotient ring (or residue class 

ring) of R modulo A. The zero element of R/A is an element 

(z + A) such that z e A. 



A homomorphism of-a ring R onto a ring R' is a function 

f from R onto R' such that if a, b e R, then 

f (a + b) = f (a) + f(b), 

and f(ab) = f(a)* f(b) 

where f (a) , f(b) e R'. Furthermore if x' e R', then there 

exists x e R such that f(x) = x'. It is easily shown that 

(1) f(0) is the additive identity for R'. 

(2) fC1) is the unity element for R'. 

(3) If x is the inverse of y for a given binary operation 

in f, then f(x) is the inverse of f(y) for the 

corresponding operation in R'. 

(4) Any properties of the operations in R will be pro-

perties of the corresponding operations in R' . 

If f(a) = f(b) implies that a = b for a, b e R, then f 

is said to be a one-to-one function, and there exists a 

function denoted by f"^ called the inverse of f such that 

f~^(x') = x implies that f(x) = x', where x' e R', and x e R. 

If f is a homomorphism and K is a set of elements in R such 

that x e K implies that f(x) = 0, then K is called the 

kernel of the homomorphism (or the kernel of f), and 

K = { x e R | f (x) = 0 } . 

An element a is said to be idempotent if and only if 

n 

a = a. An element b is said to be nilpotent if and only if 

b n = 0 for some positive integer n. 

A set S is said to be partially ordered if and only 

if there exists a binary relation < defined for certain 
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ordered pairs (a,b) of elements of S such that: 

(1) a £ a for all a e S (reflexive); 

(2) if a _< b, and b £ a, then a = b (antisymmetric); 

(3) if a £ b, and b £ c, then a £ c (transitive) . 

A subset of a partially ordered set S is called a 

chain (or totally ordered) if and only if for a, b e S^, 

either a < b, or b < a. An element u of S is called an 

upper bound of a subset of S if and only if a < u for all 

a e S-p An element m of S is maximal if and only if there 

is no element s e S such that m < s, or, equivalently, if 

m <_ s for some s e S, then m = s. (a < b means a _< b, and 

a / b). S is said to be inductive if and only if every 

totally ordered subset of S has an upper bound in S, or 

equivalently, if every chain in S has an upper bound in S. 

Theorem 1.1: If A and B are ideals of a commutative ring 

R, then A + B, and A*B are ideals of R such that A and B 

are contained, respectively, in A + B; also A*B is contained 

in each of A and B. 

Theorem 1.2: If A and B are ideals of a commutative 

ring R, then A:B is an ideal of R. 

Theorem 1.3: If {Ij_} i = 1,2,... such that for any i, 
oo 

Ii is an ideal of a commutative ring R, then D I- is an 
i=l 1 

ideal of R. 



Theorem 1.4: If T = {Aa} is a chain of ideals in a 

commutative ring R, then B = U A a is an ideal in R. 

Theorem 1.5: If A is an ideal of a commutative ring 

R, then /A is an ideal of R, and /K contains A. 

Theorem 1.6: Let Q be a primary ideal in a commutative 

ring R. If P = /Q, then P is a prime ideal in R. Moreover 

if ab e Q, and a i- Q, then b e P. Also if A and B are ideals 

such that AB CZ Q, and A C£ Q, then B CZ P. 

Theorem 1.7: Let Q and P be ideals in a ring R. Then 

Q is primary and P is its radical if and only if the following 

conditions are satisfied: 

(1) Q C P ; 

(2) if b e P, then bm e Q for some positive integer m; 

(3) if ab e Q, and a £ Q, then b e P. 

a condition equivalent to (3) is: if ab e Q and b £ P, then 

a e Q. 

Theorem 1.8: If A is a maximal ideal in a commutative 

ring R with a unity, then A is a prime ideal in R. 

Theorem 1.9: If f is a homomorphism from a ring R onto 

a ring R', and if A is an ideal of R, then f(A) such that 

f (A) = { f (a) | a e A } 

is an ideal of R'. 

Theorem 1.10: If a partially ordered set S is inductive, 

then there exists a maximal element in S. (Zorn's Lemma) 



CHAPTER II 

PROPERTIES OF IDEALS AND THEIR RADICALS 

UNDER CERTAIN OPERATIONS 

Theorems in this chapter involve various properties 

of ideals under operations of +, • , : , fl , and U ' 

that is, the sum, product, quotient, intersection, and union 

of ideals. It can be shown (1) that if A and B are ideals 

in a commutative ring R, then each of the following are 

also ideals in R: A + B, A'B, A:B, APlB, and A U B (if either 

A C B or B CZ A). Also, for any ideal C in R, /C is an ideal 

in R. 

Some Properties of Quotients of Ideals 

The following theorems develop some useful relation-

ships concerning quotients of ideals in a commutative ring 

with a unity. Each of the theorems in this section has 

the following general hypothesis: A, B, and C are ideals 

in a commutative ring R with a unity. 

Theorem 2.1: If A CZ B, then A:C CI B:C, and C:A D C:B. 

Proof: Let x e A:C so that xy e A for any y e C. Now 

since A CZ B, it follows that xy e B for any y e C, and 

x e B:C. Thus 

A: C C B : C . 

If w e C:B, then wz e C for any z e B. Therefore, since 

10 
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A C B, wh e C for any h e A. Now w e C:A, and 

C:A DC:B. 

Now the proof is complete. 

Theorem 2,2: A:BC = (A:B):C. 

Proof: If x e A:BC, then xBCd A. Now, for any c e C, 

xcB C xCB CI A, and hence xc e A:B. Therefore xC C A:B, and 

x e (A:B):C,which shows that 

A:BC C (A:B) :C. 

If y e (A:B):C, then yC C A:B. Now, for any c e C, yc e A:B 

so ycB (Z A. Any element ycb, with c e C and b e B, is in A. 

Thus, if z e yCB, then 

/ n ^ n 
z ~ .^^ci^iy~ .^^^ci^i' ci £ C, e B, and n e JQ; 

therefore, z e A, and yCB<= A. It follows that y e A:BC; hence 

(A:B):C C A:BC, 

which completes the proof. 

Theorem 2.3: A:Bn+1 = (A:Bn):B = (A:B):Bn for any n £ J . 

Proof: Using the results from Theorem 2.2, it follows 

immediately that 

A:Bn+1 = A:BnB = (A:Bn):B, 

and A:B n + 1 = A:BBn = (A:B):Bn. 

Now the transitive property of equality completes the proof. 

Theorem 2.4: A:B = R if and only if B C A. 

Proof: Let x £ B. Now, since 1 e A:B, l«x e A; hence 
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x £ A, and B C A. 

Conversely, suppose that B CI A. It is clear that 

A:B C R. 

Let y £ R. I f b e B , then b e A, and yb £ A; thus, y e A:B, 

and R CZ A: B. 

Therefore A:B = R. 

Theorem 2.5: A:B = A:(A + B). 

Proof: If x £ A:B, then xp e A for all p e B, and 

xq e A for all q e A; thus (xq + xp) £ A, and x(q + p) e A. 

Therefore, x e A:(A + B), and 

A:B C A: (A + B) . 

If y e A:(A + B), then (ya + yb) e A for all a e A, and b e B. 

Now, since ya e A, it follows that yb e A; so y e A:B, and 

A: (A + B) CZ A:B; 

therefore A:B = A:(A + B). 

m ra 
Theorem 2.6: A: Z B,- = f| (A:B-). 

i=l i=l 
m / m \ 

Proof: If x e A: S Bj, then x* S B^iClA; hence 
_ i = l \i=l J 

m 
Z (bî j e A, where e Bĵ  for i = l,2,...,m. Now since 

i = l J 

(xb^ + xb2 +...+ xbin) e A, and ^x(O) + x(-b2) +...+ x(-bm)J £ A 

it follows that xbi £ A. It can be shown in a like manner 

that xbj[ e for i = l,2,...,m. Therefore, it is clear that 

m 
x £ n (A:Bi), and 

i = 1 m m 
A: E B. C 0 (A:B-). 

1=1 i=l 1 
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ra 
I f y e f) CA:B±) , t h e n yBj, CI A f o r any i = 1 , 2 , . . . ,m; and so 

i = l 

y b i e A f o r any e B ± , i - l , 2 , . . . , m . Thus yj E b - J e A, 

( m \ m 
and y | E Bj, CZ A. I t f o l l o w s t h a t y e A: E B - ; hence 

\ i = l / i = l 
m m 
D (A:Bj ) CZ A: E B-j , 

i = l i = l 

m m 
and t h e r e f o r e A: E B- = F] (A:B j). 

i = l i = l 

/ m \ m 
Theorem 2 . 7 : { 0 A± :B = fl (A,- :B) . 

\ i = l j i - 1 

f m \ m 
P r o o f : Let x e f) :B, t h e n xB CZ f) A, C A- f o r 

V i= l / i = l 1 

i = 1 , 2 , . . . , m ; so t h a t , x e A ^ B f o r i = 1 , 2 , . . . , m . Thus , 
m 

x e D (A- :B) which shows t h a t i = 1 

m \ m 
fl : B C D ( A ^ B ) 

t i = l / i = l 
m 

I f y e fl (Aj^:B) , t h e n yB C A; f o r any i = 1 , 2 , . . . ,m; t h u s 
i = l 

% f m \ 
yB CZ fl A i . I t f o l l o w s t h a t y e f j A. :B, and 

i = l \ i = l i J 

m / m 
n (Ai :B) CZ [ n Ai J:B. 

i = l \ i = l 

/ m \ m 
T h e r e f o r e f) :B = ft (A,-:B) . 

I i - 1 / i = l 
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Some Properties of Ideals Under a Homomorphism 

The theorems in this section exhibit some general re-

lationships between ideals in the range of a homomorphism 

from a commutative ring onto a ring. The general hypothesis 

is A and B are ideals in a commutative ring R, and f is 

a homomorphism from R onto a ring R'. 

Theorem 2,8: f(A + B) = f(A) + f(B). 

Proof: If x e f(A + B), then 

x = f(a + b) 

= f (a) + f(b), 

where a e A, and b e B. Thus, x e f(A) + f(B), and 

f (A + B) C f (A) + f (B) . 

If y e f(A) + f(B), then 

y = f (c) + f (d) 

for some c e A, and some d e B; hence, 

y = f (c + d) , 

and y £ f(A + B) . 

Therefore f(A) + f(B)C f(A + B), 

and it follows that 

f (A + B) = f (A) + f (B) . 

Theorem 2.9: f(AB) = f(A).f(B). 

Proof: If x e f(AB), then 

(n \ 
x = fl £ c^djl with C-L e A, d^ e B, and n e J0; 
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thus 

x = £ ( C l) * f (d-̂ ) + f(c2)-f(d2) +...+£(cn).f(dn) 

= I f ( C i) • £(d^) ; 

i=l 

so x e f(A)•f(B), and it is clear that 

f (AB) C= £ (A) • f (B) . 

I£ y e f(A)»£(B), then 
m 

y = Z £(a ).£(bi), 
i = l 1 

where a^ e A, and b^ e B. It follows that 
m 

y = £ fCa-'b-) 
i=l 

= f ^ S ^ - b ^ e f (AB) ; 

hence, f (A) •f(B) C f(AB) , 

and therefore f(AB) = f(A)-f(B). 

Theorem 2.10: f(ADB) CI f(A) O f(B) (with equality if 

either A or B contain the kernel of the homomorphism). 

Proof: If x e f(ADB), then 

x = f(a), where a e A, and a e B. 

Thus, f(a) e f(A), and f(a) e f(B); consequently 

x e f (A) 0 f (B) , 

and £ (A 0 B) C f (A) D f (B) . 

Now suppose A CZ kernel f. If y e f (A) fl f(B), then for some^ 

a e A, and some b e B 

y = f(a) , 

and y = f (b) ; 
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so, £ (a) - f(b) = 0, 

and f(a - b) = 0 . 

Therefore (a - b) e A, and, since a e A, it follows that 

b e A; hence, b e AHB, and 

f (b) e f (A OB) . 

Thus, f(A) H f(B) C f(ACiB), 

which completes the proof that 

f (A O B) = f (A) fi f(B)}if A ID kernel f. 

(Clearly, the same result is obtained if B D kernel f.) 

Theorem 2.11: f(A:B) CI f(A):f(B) (with equality if 

A contains the kernel of the homomorphism). 

Proof: If x e f(A:B), then,for some c e A:B, x = f(c). 

But c e A:B implies that cB CI A; so that cb e A for any b e B; 

hone c 

f(cb) = f(c)«f(b) e f(A) , 

and x = f(c) e f(A):f(B). 
Therefore f(A:B) C f(A):f (B) . 

Now suppose A ID kernel f. If f(r) e f(A):f(B) for some 

r e R, then 

f(r).f(B) C f(A) , 

and f(r)«f(b) = f(a) for some b e B, and some a e A; hence, 

f(r)•f(b) - f(a) = 0, 

so f(rb - a) = 0 . 

Therefore rb - a e A, 

and, since a e A, rb e A: that is, r e A:B so that 

f(r) e f(A:B), and 

f (A) :f (B) CI f (A:B) . 
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Now, having shown containment both ways, it is clear that 

if A ZD kernel f, then 

f (A:B) = £ (A) : £ (B) . 

Some Properties of Radicals of Ideals 

The theorems in this section develop some useful re-

lationships concerning radicals of sums, products, and 

intersections of ideals. Each of the theorems in this 

section is under the following general hypothesis: A and 

B are ideals in a commutative ring R. 

Theorem 2.12: /SB" = /A 0 B = /I (1 /H. 

Proof: If x e /AB, then 
k 

x n E a^b^, a- e A, b- e B, and n,k e J . 
i=l 

Since A and B are ideals, 
k 
E ajbi e A H B ; 

i=l 

hence x e /AHB, 

and /KS CI /AHB. 

Let y e /AHB, then 

y m e AflB for some m e J Q; 

so that y m e A, and y m e B. 

Now it follows that y e /K, and y e /B: i.e., 

y e /KD/E. 

Therefore /AHB C /Xn/B. 

Let w e /3in/B, then 

wP e A, and w0! e B for some p,q e J 0 
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Now, since wP+c^e AB, it follows that 

w e J/SB , 

and / i n / F c vOT. 

Now it is clear that 

/AB CZ /ATTB" C /K /B CZ /KB ; 

hence /KE - /A n B = /A H /B . 

Theorem 2.13 : /A + B = \/fK + /F D /K + /B. 

Proof: If x e /A + B, then 

x m = a + b, for some a e A, b e B, and m e J0, 

But (a + b) c /K + /B, so 

xm e /A + /B. 

Thus x e + /B, 

and therefore /A + B CZ \//K + /B. 

If y e + /B, then 

y11 = a + b, where a^ e A, and b^ e B for some p,q e JQ. 

Consequently 

^ y n y P + q ) = (a + b)(P
+q)> 

and it is easily seen that each term of the expansion of the 

right member above, up to and including the term, is 

a member of the ideal A, and, likewise, the sum of the q^h 

thru the (p+q)t^1 terms is a member of B; hence 

y(np+nq) e A + B> 

and y e /A + B. 

Therefore \//K~+ /F CZ /A + B, 

and so /A + B = \//K + /B. 

It can be shown (1) that /K and /B are ideals in R, so that 
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(/K + /B) is an ideal in R; therefore, it follows directly 

from Theorem 1.5 that 

~\/fk + /B 13 SK + /B. 

Theorem 2.14: If A k C B for some positive integer k, 

then /A CI /B. 

Proof: If x £ Jk, then xm e A; so 

(xm)k e Ak. 

But Ak CI B; 

therefore x m k e B, 

and x £ /B. 

Now it follows that /k CI /B. 

Theorem 2.15: = /A. 

Proof: If x e }/SA, then 

xm £ JK for some m e J Q, 

and (xm)P £ A for some p £ JQ. 

Therefore x £ /A, 

and 

Since the radical of any ideal in R contains that ideal 

(Theorem 1.5), it follows that 

JK CI 

consequently 1 M = /A. 
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Some Properties of Extensions and Contractions 
of Ideals with Respect to a Quotient Ring 

Recall from Chapter I that the extension of an ideal A 

in a domain D to the quotient ring of D with respect to 

some multiplicative system S (denoted by Dg), is the pro-

duct of A with Dg: i.e., ADg. The contraction of an ideal 

B in Dg, to Dg is the intersection of B with D: i.e., BHD. 

Various properties of these contractions and extensions will 

be constructed in this section. For each of the theorems 

D is an integral domain with 1 ^ 0 . D\P and S are multipli-

cative systems in D (P is a proper, prime ideal of D). 

Theorem 2.16: Let D be a domain with 1 ^ 0 and 

quotient field K. Let S be a multiplicative system in D. 

Then Dg = ^ iL | a,b e D, and b e sj> is an integral domain 

with I f 0, and D C Dg C K. 

Proof: For any d e D, fi is an equivalence class in K, 
1 

so D<Z K. Obviously, Dg is a subset of the field K, so the 

following properties of a domain are hereditary in Dg: 

associativity and commutativity of addition and multiplication, 

distributivity for multiplication over addition, no zero 

divisors, and 1 ^ 0 . 

Dg is a module since, if £, £ e Dc, then it is clear that 
b d 

a _ c _ ad - be e Dg. 
b d bd 

That Dg is closed under multiplication follows almost 

immediately from the definition of Dg. For any £, £. e Dc 

f h b 
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e.g. = e£ e D 
£ h £h 

Thus, Dg is an integral domain with lj^O, and D C D g C X. 

Theorem 2.17: If A is an ideal of D, then ADg is an 

ideal of Dg. , 

Proof: That ADg is a subset of Dg can be seen as 

follows: if x e ADg, then 

n 
x = E aib-̂ ; e A, bj[ e Dg, and n e J0. 

i=l 
n c. 

x = E a-; ; Ci , d̂  e D, di e S. 
i = l di 

X = alcld2d3-••dn+a2c2didg...dn+...+ancnd]d2 >••dn_1 

dld2••-dn 
n n 

But each a^ci n d; , (where di = 1), e A, and II d- e S; 

j=l J j-l 3 

hence x e Dg, and ADg C Dg. 

For any x,y e ADg, it was shown above that 

x = a for some a e A, b e S, 
b 

y = £ for some c e A, d e S. 
d 

Thus x - y = a d - be 

bd 

where ad - be e A (since A is an ideal in D), and bd e S; so 

x - y e ADg. 
If z c ADg, and w e Dg, then 

z = ®. for some e e A, f e S, 
f 

w = £ for some g e D, h e S. 
h 



22 

zw = ££. e ADq; 
fh 

hence ADg is an ideal in Dg. 

Theorem 2.18: If B is an ideal of Dg, then B H D is 

an ideal of D. 

Proof: Obviously, B O D CI D. Since B and D are ideals 

in Dg, x,y e B O D implies that 

x - y e B f! D. 

If r e B H D , and s e D, then s e Dg: thus 

rs e B (since B is an ideal in Dg). 

It is clear that rs e D; therefore 

rs e B H D , 

and B H D is an ideal in D. 

Theorem 2.19: A H S f 0 if and only if ADg = Dg. 

Proof: It was shown in Theorem 2.17 that 

ADg C Dg. 

If x e Dg, then 

x = fL where a, b e D, b e S. 
b 

Let y e A d S , then 

x = = 2Z. 

b y by 

But ay e A, and by e S; therefore 

x = a y 1_ e ADg. 

by 

Thus Dg d ADg, and ADg = Dg. 

Conversely, if ADg = Dg, then for any x e S, it is clear that 
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x _ a 

x s 

for some a e A, s e S. Thus 

which implies that s = a. 

Therefore AflS f 0. 

Theorem 2.20: If A is an ideal in D, and P is a prime, 

proper ideal of D such that P ZD A, then 

}P ADp = < — | a,b £ D, a e A, b P 
b 

Proof: Recall that D\P = { x e D | x ^ P } , and 

Dp\p is denoted by Dp. Since 1 £ D\P, it follows that 

ADp f Dp if and only if P contains A. From the first part 

of Theorem 2.17, it is clear that 

ADp C I a,b £ D, a e A, b ^ P j . 
If y e | i | a,b e D, a e A, b i Pj1 , then 

y = £. where r,seD, r e A , s ^ P ; 

y = r.jL where r e A, i e Dp, 
s s 

so 

Therefore y e ADp, 

and ^ a , b e D , a e A , b £ p J c i ADp; 

hence ADp = | £ | a,b £ D, a £ A, and b £ P 

Theorem 2.21: If A and B are ideals of D, then 

(A + B)Dg = ADS + BDS. 

Proof: If x e (A + B)Dg, then 
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x = § + h; g e A, h e B, and f e S, 

£ 

Now it follows easily that 

X " £ + K 
£ £ 

therefore x £ ADg + BDg, 

and (A + B)Dg C ADg + BDS. 

If y £ ADg + BDg, then 

y = + £.; where a £ A, c £ B, and b,d £ S. 
b d 

y = ad + be 
bd 

y = (ad + bcV — V 
V bd/ 

But ad £ A, be £ B, and 1_ £ Dc; therefore 
bd 

y £ (A + B)D s, and A D S + BDG CI (A + B)DG. 

Now it is clear that 

(A + B)Dg ~ ADg + BDg. 

Theorem 2.22: If A and B are ideals of D, then 

(AB)Dg = ADg-BDg. 

Proof: a £ (AB)Dg implies that 

a = x £ AB, and s £ S. 
s 

But if x £ AB, then 
n 

x = E a^b^; a^ £ A, and b^ e B. 
i = l 

Therefore n 
£ a^bi 

a = i=l = a; .b!s + a2.b2s +...+ a „.b„s 
s s s s s s s 
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S ince ^ i . e ADg, and because B i s an i d e a l i n D w i t h s e D. 
s 

i t f o l l o w s t h a t 

b i s e B; so t h a t ^ i 5 e BDg. 
s 

Now i f = f - [ , and ^ i s = g x , i t i s c l e a r t h a t 
s s 

n 
a = E f i g i e ADg-BDg, 

i = l 

and hence (AB)Dg C ADg'BDg. 

I f y e ADg*BDg, t h e n 
m 

y = £ C£d^; c^ e ADg, and d i e BDg. 
i = l 

L e t c i = P i ; pj- e A , and s^ e S, 
s i 

d i = S_i; e B> and t i e S. 
*-i 

Now c i d i = p i q i f 1 

Siti 

Le t zj_ = Pj^qi £ AB, 

w± = 1 e Dg. 
Siti 

Then 
m 

y = Z z i w i e (AB)Dg, 
i = l 

and i t i s c l e a r t h a t ADg'BDgCZ (AB)Dg; 

hence (AB)Dg = ADg•BDg. 

Theorem 2 . 2 3 : I f A and B a re i d e a l s i n D, t h e n 

(AOB)Dg = ADg 0 BDg. 

P r o o f : I f x s (AflB)Dg, t h e n i t f o l l o w s t h a t 
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n 
x = Z risi; ri e A B, S; e Do. 

i = l 

Since r i e A OB, it follows that 

risi e ADS> and risi e BDg • 

Now, because ADg and BDS are ideals in Dg, 

x e ADg, and x e BDg; 

hence x e ADg n BDg, 

a n d (AOB)Dg CI ADg HBDg. 

If y e ADg HBDg, then 
m 

y ~ Pi^i» Pi e AOBJ e Dg. 

Therefore y e (AflB)Dg, 

and ADgH BDg CI (AnB)Dg. 

Thus (A H B) Dg = ADg fi BDg. 

Theorem 2.24: If A is an ideal in D, then 

(/A)Dp = /ADp. 

Proof: If x e (/A)Dp, then 

x = a; a e l/j> an(j d ^ p_ 
d 

Now a11 e A for some n e JQ. It follows that 

x
n
 = a". an e a, d

n £ P, 
dn 

and therefore x
n e ADp. 

This implies that 

x e /ftD̂ "; hence, ( / T ) D p C 

If y e /ADp, then 

y m e ADp for some m e JQ. 

Therefore ym = SL; q e A, and r £ P. 
r 
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Now it follows that 

rym = q j 

(ry)m = qrm~^" e A, 

ry e /A, 

ry = z e /A, 

y = 1. 

r 

Therefore y e (/A)Dp, and /AD^ CI (/A)Dp, 

and it follows that 
(/A) Dp = /SDJ. 

Theorem 2.25: If A1 and B' are ideals of Dp, then 

(A* D B'jflD = (AT) D) n (BTlD), and (/F)OD = /STHT. 

Proof: The first part is easily shown as a consequence 

of properties of sets, but it is important to note that 

the statement shows that the contraction of the intersection 

of two ideals in a domain is precisely the intersection 

of the contractions of those ideals in the domain. 

Here is a proof of the second part: 

I f x e (/A r)riD, then 

xm e A', and xm e D for some m e JQ; 

thus x e /ATI D, and (/FjflDC /ATI D. 

If y e /ATl D, then-

yn e A'; n e JQ; 

so that y e /Ar. 

But y e D (since A'OD is an ideal in D) ; thus 

y e (/A7") Hd, 
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and / F r T D C y ^ f l D . 

Therefore (/A7") D D = /rHTD, 

and the proof is complete. 



CHAPTER III 

PROPERTIES OF MAXIMAL, PRIME, AND PRIMARY IDEALS 

This chapter displays properties of prime, semi-prime, 

primary, maximal, and minimal ideals under various hypotheses. 

The last theorem in this chapter shows an interesting rela-

tionship between the subrings of a certain ring and the 

commutativity of that ring. With the exception of the latter 

theorem, all theorems in this chapter are under the following 

general hypothesis: R is a commutative ring with a unity. 

Theorem 3.1: If A is an ideal in R such that A f R, 

then A is contained in a maximal ideal. 

Proof: Form a set T such that if I is an element of T 

then I is an ideal of R which contains A, and I f R. T is 

not empty since A e T. T is partially ordered by the re-

lation of containment. Also any chain in T has an upper 

bound in T (namely the ideal formed by the union of the ideals 

in the chain). Now by Zorn's Lemma (see Theorem 1.10) there 

exists a maximal element M in T. M is also maximal in R 

because if there exists an ideal Q in R such that Q f R, 

and M < Q, then A < Q so Q e T: that is to say, M is not 

a maximal element in T; hence, a contradiction. Thus, M 

is maximal in R and M contains A. 

29 
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Theorem 3.2: If R has exactly one maximal ideal M, then 

the only idempotent elements in R are 0 and 1. 

Proof: Suppose there exists an element b in R such that: 
O 

b f 0, b f 1, and b = b. Now, since M is maximal in R, 

M is prime in R (see Theorem 1.8); so, because (b - l)»b = 0, 

either b is in M or (b - 1) is in M. However, both of the 

elements b and (b - 1) cannot be in M because, if they are, 

then b and (1 - b) are in M which implies that 1 e M, and 

M = R; thus contradicting the hypothesis that M is maximal 

in R. 

Let A and B be principal ideals in R such that 

A = { x b | x e R } 

B = { y(b - 1) | y £ R } . 

1 A, since this would imply that 1 = qb for some q in R, 

thus producing the contradiction that b = 1. Therefore, 

A f R. Now, using the conclusion from Theorem 3.1, A is 

contained in M (since M is the only maximal ideal in R); 

and so b e M. Similarly, 1 f. B, since this would imply 

that 1 = p(b - 1) for some p e R, producing the contradiction 

that b = 0. Thus B f R, and, using the same argument as 

before, B is contained in M; thus (b - 1) e M. Now the fact 

that both b and (b - 1) are contained in M is a contradiction; 

thus, b cannot exist. 

Theorem 3.3: An ideal A in R is semi-prime if and 

only if R/A has no non-zero nilpotent elements. 

Proof: Assume there exists an element a e R such that 
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a £ A, and (a + A)^-=0 + A = A for some k e JQ. Then it 

follows that a^ e A, so a e /A = A which is a contradiction. 

Therefore, the element a does not exist; hence (a + A) 

does not exist. 

Conversely, if R/A has no non-zero nilpotent elements, 

let x m e A for some m e J Q, and suppose x £ A. Then 

(x + A)m = x m + A = A; thus, contradicting the hypothesis 

that R/A has no non-zero nilpotent elements. Therefore, 

if x e /K, then x e A, and / I C A . It is already known 

(see Theorem 1.5) that A CI/A. It follows that A = /A, 

and A is semi-prime. 

Theorem 3.4: An ideal A in R is primary if and only 

if every zero divisor in R/A is nilpotent. 

Proof: Let a,b e R such that a,b £ A. Furthermore, 

suppose that (a + A)(b + A) = ab + A = A; i.e., ab e A. 

Then, since A is primary, and a £ A, it follows that 

b n e A for some n e J Q. Hence, (b + A)n = 0 + A; thus, 

(b + A) is nil-potent. 

Conversely, suppose every zero divisor in R/A is nil-

potent. Let a,b e R such that ab e A, and b £ A. If a e A, 

then A is primary, but if a £ A, then (a + A) and (b + A) are 

zero-divisors in R/A. Therefore, for some n e J c, 

(a + A)n = an + A = 0 + A, and, consequently, a11 e A; thus 

A is a primary ideal in R. 
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Theorem 3.5: If Qi,...,Qn is a finite set of primary 

ideals of R such that y'Qi = P for i = l,2,...,n , then 
m 

Q = fl Qi is a primary ideal of R and /Q = P. 
i = l 

Proof: It can be shown (1) that if {Q^,...,Qn} 
n 

is a set of ideals in R, then Q = fl Qi is also an ideal 

i=l 

of R. Let a,b e R such that ab e Q, and b £ Q. If ab e Q, 

then ab e Qi for any i = l,2,...,n, but since b f. Q, there 

must exist some Qj (j e {l,2,...,n} ) such that b £ Qj. 

Furthermore, since Qj is primary, aPj e Qj for some p^ e J0; 

hence a e v ĵ"> and, since /Qj = /Qi for any i = l,2,...,n, 

it is clear that a e /Qi, and for any i = l,2,...,n there 

exists pi such that a^1 e Qi- Let K be the largest pi, 

then a^ e Qi for each i = l,2,...,n. Therefore a^ e Q, 

and Q is a primary ideal of R. 

Let x e /Q", then 

xr e Q for some r e J0; 

thus xr e Qi, and x e /Q7 for any i = l,2,...,n, and 

^ C P . 

If y e P, then 

y e yqj for any i = 1,2,...,m. 

Let M be an integer such that 
M 
y e Qi for any i = l,2,...,m; 

m 
then y M e fl Qi = Q. 

i=l 

Thus y e /Q, and P CZ 

hence = P . 
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Theorem 3.6: If Pi and P2 are ideals of R such that 

Ct P2, and P2 Ct P^, then Pi^P2 is n o t a prime ideal. 

Proof: Suppose a*b e P 1nP 2-for some a,b e R such 

that a e P 2 but a £ P 1 ? and b e P]_ but b £ P2. Then 

a jt P 1 n P 2 , and b £ P^n P2; hence, PinP 2 is not a prime ideal 

Theorem 3.7: If {Pi> i = 1,2,... is a chain of prime 
CO 00 

ideals of R, then A = fl Pi, and B = U pi a r e prime ideals 
i=l i=l 

of R. 

Proof: A is an ideal in R. If ab e A, and b £ A 

then there exists some Pj Z> A such that b £ Pj, and, since 

Pj is prime, a e Pj. Furthermore, for any P^ such that 

PjjC Pj, b £ P^ so a e P^. For any Pq such that Pj CI Pq, 

a e Pq, since a e Pj. Therefore 
00 

a e fl Pi , 
i=l 

and A-is a prime ideal of R. 
00 

It can be shown (1) that if B = U Pi> then B is an 
i=l 

ideal in R. If xy e B, and y £ B, then y £ Pi for any 

i = 1,2,... . Therefore a e Pi for some i = 1,2,... , and 

hence, a z B. Therefore, B is a prime ideal. 

Theorem 3.8: If A is an ideal of R, and P is a prime 

ideal of R containing A, then P contains a minimal prime 

ideal of A. 

Proof: Form a set T such that if I e T, then I is 

contained in P, and I is a prime ideal of R containing A. 
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T is not empty since P is in T. Let T be partially ordered 

by the relation £ such that if B and C are elements of T, 

B £ C if and only if C is contained in B. Now T is inductive 

since any chain in T has an upper bound in T (namely, the 

prime ideal which is the intersection of all the prime ideals 

of the chain). So T contains a maximal element M, and M 

is a minimal prime of A, for if A C J < M C Z P , then M <_ J; 

hence M = J, which is a contradiction. 

Lemma 3.9: If a prime ideal contains a finite inter-

section of ideals, then it contains at least one of the 

ideals. 

Proof: The proof is by induction, and the case for 

n = 2 will be shown below. 

Let A and B be two ideals such that their intersection 

is contained in a prime ideal P. Certainly AflB contains 

AB. Now if P 3 AH B , then P 3 AB. Suppose P I/) A, then 

there exists x e A such that x f. P. If y e B, then xy e P 

since P 3 AB; but P is prime, so y e P. Therefore, P ZD B. 

Theorem 3.10: Let A be an ideal in R, and let 

P]_, P2, P3,...,Pm be a finite set of prime ideals of R such 

that if i f j , then P^ (£ Pj . If A (£ Pĵ  for i = 1,2,...,m, 
m 

then there exists an element a e A such that a £ (J PJ ; 
m i=l 

hence A (£ (J • 
i=l 

Proof: Consider the set A C\ ( f| P.^ . Now 
3) 

A H / f| p-\ ct Pi for i = 1,2,...,m, because if so, then 
V 
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Pi ZD A (which is a contradiction), or Pj_ ZD ( fl ̂ iV anc^ 

hence ZD Pj for some j f i (which is also a contradiction). 

So there exists ai e AH / f] P A such that ai £ Pi, and in 

U/j V 
general there exists a; e AH / f) Pj\ , such that a^ £ P^ . 

U * j ) 
m m 

Let a = Z a^. Certainly a e A, and a £ U Pi because if 
i=l i=l 

m m m 
E a4 e (J Pi > then Z a^ e P.: for some j = l,2,...m. Hence, 
i=l i=l i=l J 

' m \ 
S a^j - aj e Pj, which implies that aj e Pj resulting in 

a contradiction. Therefore the element a does exist, and 
m 

consequently A (J Pi. 
i= 1 

With the prime ideals under the same hypothesis, the 

contrapositive of Theorem 3.10 is worth taking note of: 
m 

that is , if A C (J P̂  , then A CI P-; for some j . 
i=l J 

Theorem 3.11: A proper ideal of R is maximal if and 

only if, for every element r £ M, there exists an element 

b e R such that 1 + rb e M. 

Proof: If r £ M, consider the ideal (r) + M, and denote 

it by I. I consists of elements of the form ar + d, where 

a e R, and d e M. Now since M is maximal, and I contains M, 

it follows that I = R; hence, every element in R is of the 

form ar + d. In particular, there exists c e R, and x e M 

such that 

1 = cr + x, and 1 + (-cr) = x e M. 
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Conversely, suppose there exists an ideal A such that 

M C A , and M f A. Then there exists x e A such that 

x p M, and it follows that 1 + xc-e M for some c e R. 

Therefore, 1 + xc e A, and, since xc e A, it follows that 

1 e A; hence A = R, and M is maximal in R. 

Lemma 3.12: If f is a homomorphism from R onto a ring 

R', and I is an ideal in R containing the kernel of f, then 

f(a) e f(I) implies that a e I. 

Proof: f(I) = { x e R' | x = f(a) for some a e I }. 

If b is any element of R such that f(b) e f(I), then there 

exists a e I such that f(b) = f(a). Therefore, f(b) - f(a) = 0, 

and f(a - b) = 0: i.e., (a - b) e I; thus, b e I. 

Theorem 3.13: Let f be a homomorphism from R onto a 

ring R'. If M is a maximal ideal of R containing the kernel 

of f, then f(M) is a maximal ideal of R'. 

Proof: Suppose M is a proper ideal, and let A' be 

any ideal in R' such that f(M) < A'. Then there must exist 

a e R with f(a) e A1 so that f(a) £ f(M), and a t M. Now 

it has been shown (see Theorem 3.11) that there exists an 

element b e R such that 1 + ba e M, and so f(l + ba) e f(M). 

Since f is a homomorphism and f(M) is contained in A', it 

follows that 

f(l) + f(b)•f(a) e A'. 

Since A' is an ideal, f(a) e A' implies that 

f(b)•f(a) e A', 
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and so it follows that £(1) e A1 which means that A' = R; 

hence, £(M) is maximal in R'. 

If M is the zero ideal, then f(M) contains only the 

zero of R'. Suppose there exists a proper ideal A' of R1. 

Then, f^(A') = { x e R | f (x) e A' } is a proper ideal of 

R which contradicts the fact that M is maximal in R. Hence, 

A1 cannot exist, and f(M) is maximal in R'. 

Theorem 5.14: Let f be a homomorphism from R onto a 

ring R'. If M' is a maximal ideal of R', then 

f-l(M') = { x e R | f(x) e M' } is a maximal ideal in R. 

Proof: Suppose M' is a proper ideal. If there exists 

an ideal A in R such that f~1 CMT) < A, then there is some 

x e A such that x f"l(M'), and f(x) $. M'. Therefore, for 

some f(b) e R', it follows that 

f(l) + f (b) f(x) e M' 

so that f(1 + bx) e M', 

and 1 + bx £ f_1(M') < A. 

Now, since bx e A, it follows that 1 £ A, and A = R: that is, 

f-l(M') is a maximal ideal in R. 

If M' is the zero ideal, then fl(M') is the kernel of 

the homomorphism. If there exists an ideal B in R such that 

f~1(M1) < B < R, then: f(B) is an ideal of R', f(B) f M', 

and f(B) f R'. So the existence of B contradicts the 

hypothesis that M' is maximal in R*; hence, B cannot exist, 

and fl(M') is a maximal ideal in R. 
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Theorem 3.15: let £ be a homomorphism from R onto a 

ring R'. Then the mapping M £(M) defines a one-to-one 

correspondence between the maximal ideals of R which contain 

the kernel of f and the set of all maximal ideals of R'. 

Proof: It was shown in Theorem 3.14 that if M' is any 

maximal ideal in R 1, f~l(Mr) will be a maximal ideal in R 

containing the kernel of f. So, any maximal ideal in R' is 

the image of some maximal ideal in R which contains the 

kernel of f. If f(Mi) = f(M2), then, for any xi £ Ml, 

f (xi) e f (M2) ; so xi £ M2 , and M2. For any X2 £ M2, 

f(x2) £ f (Ml) ; so X2 £ Mi, and M2CI M-j_. Hence, = M2. 

(The latter argument is based on the conclusion of Lemma 3.12.) 

Now the one-to-one correspondence is seen. 

It will now be shown that each of the theorems above 

concerning maximal ideals under a homomorphism is valid 

for prime and primary ideals. For each of the theorems 

3.16 - 3.21 below, the following general hypothesis will 

apply: f is a homomorphism from R onto a ring R'. 

Theorem 3.16: If P is a prime ideal of R containing 

the kernej. of f, then f(P) is a prime ideal in R'. 

Proof: If x,y £ f(R), and xy £ f(P) such that y i f(P); 

then y = f(a), and a £ P. Let x = f(b) so that 

xy = f (b) • f (a) = f(ba). 

It follows that ba £ P; hence, b e P, and x = f(b) £ f(P). 

Thus, f(P) is a prime ideal in R'. 
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Theorem 3.17: If P' is a prime ideal of R', then 

f-1 (Pf 3 = { x e R | f(x) e P' } is a prime ideal in R. 

Proof: If x,y e R, and xy e f'l(P') such that 

y £ f'-'-(P'), then f(y) f, P'. f(xy) = f(x)*f(y) e P', 

and, since P' is a prime ideal in R', f(x) e P'. Hence 

x e f"l(P'), and therefore fl(P') is a prime ideal of R. 

Theorem 3.18: The mapping P f(P) defines a one-to-one 

correspondence between the prime ideals of R which contain 

the kernel of f and the set of all prime ideals of R'. 

Proof: The proof is constructed in the same manner as 

the proof of Theorem 3.15 and will not be given here. 

Theorem 3.19 : If Y is a primary ideal of R containing 

the kernel of f, then f(Y) is a primary ideal of R'. 

Proof: For any x,y e R' such that xy e f(Y) and y £ f(Y), 

let x = f(a), and y = f(b). Since y £ f(Y), it follows that 

b £ Y. f(a)*f(b) e f(Y); hence ab e Y, which implies that 

a11 e Y for some n e J Q, and thus f(an) e f(Y). But 

f(an) = [f(a)3n = xn e f(Y). Now it is clear that f(Y) is a 

primary ideal in R'. 

Theorem 3.20: If Y* is a primary ideal of R', then 

f-l(Y') = { x e R | f(x) e Y' } is a primary ideal in R. 

Proof: Let r,s e R' such that rs e f"1(Y'), and 

s i f_1(Y'). Now f(s) £ Y', but f(rs) = f(r):f(s) e Y* ; 

so it follows that [f(r)]n e Y*. Hence f(rn) e Y', 

which implies that r11 e f"^-(Y'), thus completing the proof 
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that f^(Y') is a primary ideal in R. 

Theorem 3.21: The mapping Y -+• £(Y) defines a one-to-one 

correspondence between the primary ideals of R which contain 

the kernel of f and the set of all primary ideals of R'. 

Proof: The proof is constructed in the same manner 

as the proof of Theorem 3.15 and will not be given here. 

Theorem 3.22: If and M2 are distinct maximal ideals 

in R, then M^M2 = 

Proof: It is clear that M]M2 CI If p e 0 M2 , 

let y e M-̂  so that y f. M2 • Then there exists b e R such 

that 1 + by e M 2. If 1 + by = q, then 1 = q - by. Now 

p = pq + p[-Cyb)] where the product pq is composed of an 

element p from and an element q from M2; and the product 

p[-Cyb)] is composed of an element p from M2 and an element 

-(yb) from M*L . So, it follows that p e M^M2; thus, 

MinM2CZ M2M2, and therefore M]_M2 = 

Theorem 3.23: Let M be a proper ideal of R. M is 

maximal if and only if, for each ideal A of R, either 

A CI M or else A + M = R. 

Proof: If AC£ M, then, since M is maximal, M (£ A; 

so there exists x e A such that x £ M; hence, for some 

b e R, 1 + xb e M. Since xb e A, it follows that -(xb) e A, 

and [-(xb) + (1 + xb)] e A + M. Therefore, 1 e A + M: 

that is, A + M = R. 

Conversely, suppose there exists an ideal A' such that 
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M < A' < R. Then it follows that A1 + M = R, so there 

exists a' e A' and m e M such that 1 = a1 + m. But m e A', 

so 1 e A', and A' = R. Hence, the existence of A' produced 

a contradiction, so A' does not exist and M is maximal in R. 

Theorem 3.24: A non-zero ideal B of R is minimal if 

and only if bR = B for every non-zero element b e B. 

Proof: If b e B, then bR = { bx | x e R } , and 

certainly bR e B. But, since bR is an ideal for any b e B, 

it follows that for every non-zero b e B, bR = B because B 

is minimal, and no non-zero ideal of R can be properly con-

tained in B. 

Conversely, if bR = B for every non-zero element b e B, 

suppose there exists an ideal A such that (0) < A < B. 

Any element of B is in the set aR where a e A < B; hence, 

any element of B is in A,which contradicts the hypothesis 

that A < B. Therefore, A does not exist, and B is minimal. 

Theorem 3.25: If P is a proper ideal of R, then P is 

a prime ideal of R if and only if T = R\P = { x e R | x ^ P } 

is a multiplicative system. 

Proof: T is not empty since P is a proper ideal of R. 

Also 0 jt T since 0 e P. Suppose a,b e T. Now if ab t T, 

then ab e P,which means either a e P or b e P; thus con-

tradicting the hypothesis that a,b e T. So ab e T, and T 

is a multiplicative system. 

Conversely, if T is a multiplicative system, and if 
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ab e P, then either a e P or b e P because, if neither a nor 

b is in P, then a,b e T, and ab e T. The latter statement 

contradicts the hypothesis that ab e P; hence, P is a prime 

ideal. 

The following theorem, though not directly related 

to the theorems of this chapter, is a fitting climax to 

this study of ideals in a commutative ring. 

Theorem 3.26: Let R be a ring with the property that 

every subring of R is an ideal of R. If R has no divisors 

of zero, then R is a commutative ring. 

Proof: Consider any elements a and b in R. Form the 

following set: 

C(a) = { r e R j a r = r a } . 

To prove that C(a) is a subring of R, it must be shown that: 

(1) The collection <^C(a), +̂ > is an algebraic system 

and an abelian group. 

(2) The set C(a) is closed under multiplication. 

Proof of (1): <^C(a), +)> is an algebraic system since 

the set C(a) contains at least one element, namely a. The 

operation + is associative in C(a) by heredity. Consider any 

elements x and y in C(a). It follows that 

ax = xa 

ay = ya 

ax - ay = xa - ya 

a(x - y) = (x - y)a, 



43 

and thus, if x and y are in C(a), then (x - y) is in C(a). 

The operation + is commutative in C(a) by heredity; there-

fore, the system is an abelian group. 

Proof of (2): Consider any elements x,y in C(a). 

It follows that 

ax = xa 

ay = ya 

(ax)(ay) = (xa)(ya) 

[(ax)a]y = (ax) (ya) 

[a (xa)] y = a[x(ya)] 

a[(ax)y] = a[(xy)a] 

a[a(xy)] = a[ (xy)a] , 

and, since there are no zero-divisors, 

a (xy) = (xy) a. 

Therefore, xy z C(a); thus completing the argument that C(a) 

is a subring of R. Now it must follow, from the hypothesis, 

that C(a) is an ideal of R; hence, ab is in C(a), and 

a(ab) = (ab)a 

a(ab) = a(ba) . 

Now it is clear that 

ab = ba, 

thus completing the proof that R is a commutative ring. 
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