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INTRODUCTION 

This paper was written in response to the following 

question: what conditions are sufficient to guarantee 

that if a compact subset A of a topological linear space 
. t 

L3 is not convex, then for every point x belonging to 

the complement of A relative to the convex hull of A 

there exists a line segment yz such that x belongs to 

yz and y belongs to A and z belongs to A? Restated in • 

the terminology of this paper the question may be given 

as follows: what conditions may be imposed upon a 

compact subset A of L3 to insure that A is braced? 

The pursuit of this problem gave rise to the 

concept of the genesis of a compact convex set. The 

class of braced sets having convex hull A could be 

considered as a propositional subset of the genesis 

of A. 

In general, the terminology and language of this 

paper is that followed by Valentine (1) in his book on 

convex sets. Terms that are newly introduced herein 

are marked by an asterisk. 

i v 



CHAPTER I 

CONVEX HULLS 

Convex sets were first studied by Brunn in 1887. 

Later, Minkowski added considerably to the body of 

knowledge that had begun to accumulate around convex 

sets. As a preliminary to the consideration of some 

theorems related to convex sets the following definitions 

are introduced: 

Definition 1.1 Suppose S is a set of elements 

with a collection of subsets called open sets which 

satisfy the following axioms: 

(a) The union of each collection of open sets 

is an open set. 

(b) The intersection of each finite collection 

of open sets is an open set. 

Then S together with its collection of open sets is 

called a topological space. The collection of open sets 

is called the topology of S. It can readily be deduced-

from (a) and (b) that <j> and S are open sets. Henceforth, 

the better known properties of topological spaces will 

be assumed. 



Definition' 1.2 The sets C£S and D£S are 

complementary iff CUD=S and CftD=<j>. 

The complement of A relative to B is the set 

denoted by B^A={x| xeB and x^A }. Obviously if C and 

D are complementary, then C=S^D. C denotes the 

complement of C, i.e. C=S^C=D. 

Definition 1.3 A closed set in a topological 

space S is the complement of an open set, i.e. A is 

closed iff A=SM3, where B is open. 

Definition 1.4 A linear space I over the field 

of real numbers R is a space for which there exist two 

binary operations, vector addition ( indicated by + ) 

from £*£ into I and scalar multiplication ( indicated 

by juxtaposition ) from Rx£ into I which satisfy the 

following axioms: 

If x,y,z e I and a,3 e I then 

(1) x+y e I (4) ax e I 

(2) x+y=y+x (5) a(x+y)=ax+ay 

(3) (x+y)+z=x+(y+z) (6) a($x) = (a3)x 

(7) (a+$)x=ax+3x 

(8) for every pair x,y e I, there exists a z e I 

such that x+z=y 

(9) if 1 is the identity of the real field R, then 

lx=x for every x e I. 



Number (8) implies the existence of an additive 

identity for vector addition since x=y is a possible 

pair. 0 will be used to denote the additive identity 

and is synonomous with the origin of a vector space. 

Definition 1.5 Let ll be a linear space with a 

topology. Let x e I. Then an open set N in the topology 

of £ such that x e N is called a neighborhood of x and 

is denoted by N(x). 

Definition 1.6 Let S be a set in I. If x e S 

then x is an interior point of S iff there exists a 

neighborhood N(x) of x such that N(x)^S. The set of 

all interior points of S is called the interior of S 

and is denoted by intS. 

It is well known that intS=S iff S is an open set. 

Definition' 1.7 Let S be a set in £ and x e t. 

Then x is said to be a limit point of S iff for every 

neighborhood N(x) of x, N (x) SS^x}^. 

Definition 1.8 Let S be a set in £. Then S' 

denotes the set of all limit points of S and is called 

the derived set of S. SuS1 is called the closure of 

S and is denoted by clS. 

One may easily verify that clS is a closed set. 

Definition 1.9 Let S be a set in I. The set 

of points x e £ such that for every neighborhood N'(x) 

of x, N(x)ftŜ (j) and N(x)ftŜ <f> is called the boundary of 

S and is denoted by bdS. 
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A boundary point of S is said to be isolated if 

it is not a limit point of S. 

Definition 1.10 Let f be a function which maps 

a subset S in a tbpological space % into a set S* of a 

topological space £*. The function f is said to be 

continuous at a point x e S iff for each neighborhood 

V[f(x)] of f(x) in 5* there exists a neighborhood U(x) 

of x in £ such that if y e SflU(x), then f(y) e V; i.e., 

f-(snu) £V. 

Definition 1.11 If a linear space £ has a topology 

then the topology is Hausdorff iff for each x e £, 

y e H, x^y, there exist two disjoint open sets containing 

x and y respectively. 

Definition 1.12 A topological linear space L is 

a linear space with a Hausdorff topology such that the 

operations of vector addition, f(x,y)=x+y denoted by 

(x+y)/(x,y), and scalar multiplication, f(a,x)=ax denoted 

by (ax)/(a,x), where x e L , y e L , a e R are continuous 

in all variables jointly. 

Definition 1.13 If x e £, y e I, the line segment 

xy joining x and-y is the set of all points of the form 

otx+(l-a)y where a e R , 0<a<l. 

Definition 1.14 A set is said to be star-shaped 

relative to a point x e I iff for each point y e S 

xy?S. 



Definition 1.15 A topological linear space L 

is locally star-shaped iff for each neighborhood U(0) 

of the origin 0 of L, there exists a neighborhood V(0) 

of 6 such that V(9)£U(0) and such that V(0) is star-shaped 

relative to 0. 

Definition 1.16 If A is a set in £ and if x e I, 

then the set A+x={y+x| y e A } is called the translate 

of A by x. 

Definition 1.17 If A is a set in I and a e R 

aA={ax| x e A } is called the scalar multiple of A by a. 

Several well known theorems are tacitly assumed 

in this paper in order to devote time to properties 

and theorems whose consequences have a greater bearing 

on the subject under consideration. So it is without 

apology that the following theorem is offered without' 

proof: 

Theorem 1.1 The continuity of vector addition 

and scalar multiplication implies that each translate 

and non-zero scalar multiple of an ope« set is open. tJ 

Theorem 1.2 A topological linear space L is 

locally star-shaped and locally symmetric. 

Proof: Let U be a neighborhood of the origin 0. 

Now ax/(a,x) is continuous at (0,0), so that by the 

definition of continuity there exists a neighborhood 

V(0) of 0 and a number 6 >0 such that if |a|<6 and if 

x e V(0), then ax e U(0). Immediately, aV?U whenever 



|a|<6. Consider the class T={aV| |a|<6 }. Then 

by definition of a topology and neighborhood uT is 

a neighborhood of 8. Also, N= uT£U(0), and N is 

star-shaped and'symmetric relative to 0. 

Theorem 1.3 If Ln is an n-dimensional topological 

linear space, then LD is linearly isomorphic with 

Euclidean n-space En. This means there exists a 
n n one-to-one linear bicontmuous map of L onto E . 

The immediate import of this theorem is that theorems 

n n 
holding in L are immediately applicable to E and 

vice-versa. For a proof of Theorem 1.3 see Valentine 

(1, pp. 7-8) . 

Definition 1.18 A set S££ is convex iff for each 

pair of points x,y e S, xy^S. 

Definition 1.19 A topological linear space L is 

locally convex iff for each neighborhood U(6) of 6 there 

exists a convex neighborhood V(0) of 0 such that V(8)£U(0), 

An obvious alternative to Definition 1.18 is that 

a set S i s convex iff it is star-shaped relative to 

every point x e S. Similarlyf Definition 1.19 could be 

altered to conform with Definition 1.15. 

Definition 1.20 A convex set in L which has an 

interior point is called a convex body. 

Theorem 1.4 The intersection of any collection of 

convex sets in a linear space £ is a convex set. 



Proof: Let C be a collection of convex sets 

in I. Consider fiC. Suppose QC has two points x and y. 

Then x and y belong to every element of C. But this 

implies that xy?;A for every A e C, so that xy£f2C. Then 

ftC is convex. If QC does not have at least two points, 

then the conclusion is obvious. 

Definition 1.21 The convex hull of a set SsL is 

the intersection of all convex sets in L containing S 

and is denoted by convS. 

S is convex iff convS=S. 

Definition 1.22 A set S of a topological linear 

space L is bounded iff for each neighborhood N(0) of 0 

there exists a positive scalar multiple of N(0), aN(0), 

such that S£aN(0). 

Definition 1.23 If A is a subset of S where S 

is a topological space, then A is compact iff every 

open covering of A has a finite subcover. 'In other words, 

if T is the topology of S, A is compact iff for every 

class of open sets C£T such that A^uC, there exists a 

finite subset B of C such that A£uB. 

It is well known that A£Lnis compact iff A is 

closed and bounded. 

• Definition 1.24 A flat or linear variety of a 

linear space SL is a translate of a linear subspace of 
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I. Two flats are parallel iff one is a translate of 

the other; i.e., if F and F* are flats in I, then F and 

F* are parallel iff there exists an x e I such that 

F=F*+x. Further, the dimension of.a flat is the 

cardinality of the basis of the corresponding parallel 

linear subspace. A flat of dimension 1 is called a 

line. 

Any good book on linear algebra can provide 

information concerning the basis and dimension of a 

vector space. 

Theorem 1.5 Each finite dimensional flat of a 

topological linear space L is closed. 

Proof: Suppose that V is a finite dimensional 

flat of L. Assume, by way of contradiction, that 

x e clVM#<f>. Then there exists a flat of minimal 

dimension containing V and x. Let W be such a flat. 

Describe a relative topology on W as follows: let 

T={WftU | U e T*, where T* is the topology of L }. 

Now if x is in the closure of V relatiye to W, Theorem 1.3 
• i 

implies that x e V, a contradiction. Thus, there exists 

a neighborhood N(x) of x relative to W such that N(x)ftV=(j>. 

But by definition of T there exists a neighborhood of x, 

U (x) e T* such that U(x)ftW£N(x). Since V£W, U(x)ftV=<j>. 

But then x £ clV. Thus clV'vV=({) and V is closed. 

The next theorem relates a convex set to its line 

segment subsets. For a proof see Valentine (1, p.16). 



Theorem 1.6 Let S be a set . in the n-dimensional 

linear space &n. Let be defined recursively as 

follows: 

Sx= u
 xy S.= u xy 

y«i x ^ i " 1 

y si-i 
in~l i n 

Then = convS if in satisfies the inequality 2 <n+l<2 n. 
n 
Theorem 1.7 If A and B are two convex sets in £, 

then conv(AuB)= u [aA+(l-a)B] = D. 
0£a£l 

Proof: If x e A, y e B, then ax+(l-a)y e conv(AuB) 

when O^oKl. Thus D^conv(AuB) immediately. Now suppose 

z e D, w e D. By definition of D there exist points 

x,x* e A and y,y* e B such that z e xy, w e x*y*. But 

xx*£A, yy*CB, so that conv(xx*uyy*)CD. Then zw is a 

subset of conv(xx*uyy*) so that zw?;D. Thus D is convex 

and (AoB)£D. Immediately, D=conv(A B). 

Definition 1.25 Let SQl. The kernel K of S is 

the set of all points z e i such that zx^S for every 

x e S. In other words, the kernel K of S is the set of 

all those points with respect to which S is star-shaped. 

Notice that S is convex iff S=K where K is the kernel of 

S. Also, note that K is itself a convex set follows 

immediately from the definition of K, so that K is often 

referred to as the convex kernel of S. 
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Definition 1.26 The interior of a set ScL 

relative to the minimal flat containing it is denoted 

by intvS. For a linear space SL, if x e I, y e I, 

x^y, then intvxy denotes the set of all points of the 

form ax+(l-a)y, where 0<a<l. If x e I, then intvx=x. 

Definition 1.27 A point of x e S is a core point 

of S iff for each point y el, with y^x, there exists a 

point z e. intvxy such that xz£S. The set of all such 

core points of S is called the cores. 

Theorem 1.8 If S£L is star-shaped relative to a 

point p, then the clS is star-shaped relative to p. 

Proof: Let y e clS. Choose some point of yp, 

say Ay+(1-A)p where 0<^£1. Now, Ax+(1-A) p/(x) is continous 

in x, so that for each neighborhood U of Ay+(1-A)p in L 

there exists a neighborhood V(y) of y such that 

Ax+(1-A)p e U whenever x e V(y). Since y e clS, let 

x e VfJS. Then Ax+(1-A)p e UftS. But this implies that 

Ay+(1-A)p e clS. Then yp^clS. 

Corollary 1.8 Let C be a convex set in L. Then 

the closure of C is convex. 

Proof: Let z e clC, w e clC. As in Theorem 1.8 

Ax+(1-A)y/(x,y) is continuous, so that if some point of 

zw is chosen, say Az+(1-A)w where 0<A<1, then, as in 

Theorem 1.8, zw£clC, so that clC is convex. 
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1.8 implies immediately that 

as a result cconvS£cl(convS). 

Dsed convex set which contains S. 

as cl (cojivS) ccconv. Therefore, 

Theorem 1.9 If S is a set in a topological 

linear space L, then the closed convex hull of S, denoted 

by cconvS is the same as the closure of the convex hull 

of S. 

Proof: Corollary 

cl(convS) is convex, and 

Note that cconvS is a clc 

Hence, convS^cconvS. Thi 

cl(convS)=cconvS. 

Theorem 1.10 Supbose S is a set in L and S is 

star-shaped relative to ja, point p. If p e intK, where 

K is the convex kernel 0]E S, and if y e clS, then 

intvyp^intS. 

Proof: Let.y e clS, and without loss of generality 

let y=4>. Now all that is necessary is to show that 

apcints for all 0<os<l since y=<f>. Since p e intK, there 

exists a neighborhood V(<f>) of <f> such that p+V(<J>) £intK. 

Then, for 3=-a/(l-a) , by Theorem 1.1, the set 3v() is 

open. Since e clS, there exists a point u e $[V(c)>) ] QS. 

Thus, there exists a point v e V(tj>) such that $v e S. 

is an open set contained in S, 

Also, x=(1-a)6v+a(p+V)=ap and 

The set U=(1-a)Bv+a(p+V) 

since v e S, p+V^intK. 

ap e U?intS. Thus intvypsintS. 
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Corollary 1.10 Let C be a convex set in a linear 

topological space L. If x e intC, y.e clC, then 

intvxycintc. 

Proof: Since intC=intK, Theorem 1.10 implies that 

intvxy^intC immediately. 

Theorem 1.11 Let S be a set in L and suppose 

that S is star-shaped relative to a point p. Then, if 

p e intS; the intS is star-shaped relative to p. 

Proof: Let y e intS and without loss of generality 

suppose that p=9, and choose x=ay, 0<a<l. Since 

y e intS, there exists a neighborhood U(y) of y such that 

U(y)£intS. Since p e K, aU(y)£S, and since aU(y) is open, 

ay e aU(y)£intS, for 0<a<l. Thus yp£intS, and intS is 

star-shaped relative to p. 

Corollary 1.11 If S is a convex set in L, then 

intC is convex. 

Proof: The proof is immediate from Theorem 1.11 

since C is star-shaped relative to every point in intC. 

Theorem 1.12 If S^L, then intS^coreS. 

• Proof: Suppose z e intS. Let U be a neighborhood 

of z with U^intS. Let y e L^{z}. Since F(a)=z+a(y-z) is 

continuous at a=0, there exists a 6 such that if 0<a<6, 
r S=3 * 

then x=F(a) e U. Thus x e intvzy and xy£U£intS. Then 

z e cores. 
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Theorem 1.13 If C is a convex set in I, then 

coreC is convex. 

Proof: Let x e coreC, y e coreC. Hence y e C 

and C=K, where K is the convex kernel of C. Without 

loss of generality assume that y=0. Then, let z=ax, 

where (Ka<l. Consider any vector u where u^0. Since 

x e coreC, there exists a constant <5>0 such that 

x+gu £ C for 0<s3<6. C is star-shaped relative to y=0 

so that a(x+3u)^C for 0<;3<6. But this implies that 

ax e coreC and thus xy^coreC. Then coreC is convex. 

Theorem 1.14 If C is a convex body in L, then 

coreC=intC=int(clC). 

Proof: Let y e coreC and x E intC. Since 

y e coreC, there exists a point z such that y e intvxz 

and such that zy£C. Hence, z-e clC. By Corollary 1.10 

intvxz^intC, so that y e intC. Consequently, coreC^intC^ 

Theorem 1.12 implies that intC^coreC; hence, intC=coreC. 

Now, let y £ int clC, x e intC. There exists a point 

z £ clC such that y £ intvzx. Again by Corollary 1.10, 

intvzx<;intC. Hence, y £ intC so that int clC^intC. 

Since C^int clC, then int clC=intC. 

Theorem 1.15 If S is an open set in L, then 

convS is open. 

Proof: Corollary 1.11 implies that int convS is 

convex. Since S^convS, and Sft(bd convS) =<p, then 
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Spirit convS. But int cortvS is convex, so that the 

previous sentence implies convS£int convS. Also, 

int convS£convS, so that convS=int convS. Thus, 

convS is open. 

It should be pointed out that the convex hull 

of a closed set need not be closed. As an example con-

sider the the set S in Euclidean two-space E2 with 

rectangular coordinates (x,y) defined by 

S={(x,y)| x2y2=l, 0<y<«> } 

S is closed but convS={(x,y)| y<0 } is not closed. 



CHAPTER BIBLIOGRAPHY 

1. Valentine, Frederick A., Convex Sets, New York, 
McGraw-Hill Book Company, 1964. 

15 



CHAPTER II 

SUPPORT THEOREMS 

The concepts of 'hyperplanes and half-spaces 

are very useful in the formulation and proof of various 

theorems concerning convex sets. As soon shall become 

apparent, hyperplanes are related to flats in a very 

intimate manner. In order to define a hyperplane the 

notion of a linear functional is introduced. 

Definition 2.1 Recall that a real valued function 

is often called a functional. A linear functional is 

a function from & to R which is additive and homogeneous, 

that is 

f(x+y)=f(x)+f(y) x £ y e & 

f(ax)=af(x) x £ a e r. 

Definition 2.2 Suppose HC&, then H is said to be 

a hyperplane iff there exists a non-identically zero 

linear functional f and a real constant ot e r such that 

H={ x e £| f(x)=a } denoted by H= [f ;<*] . 

Theorem 2.1 A hyperplane is a flat. 

Proof: Suppose that f is a linear functional 

and that f(x)£o, x e I. Let H=[f:0t]. Since ffo, let 

16 
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z £ £, with f(z)^0. Choose an arbitrary point q e It 

and since f(z)j^0, define p= [-f (q)/f (z) ] (z)+y where 

y e H. Since f is linear, 

f (p)=f{ [ — f?(q) /f (z) 3 (z)+y} 

f(p) =-f(q)+f(y) so that 

f(p)+f(q)=f(p+q)—f(y)=a. 

Thus p+q e H. But this statement together with the 

definition of p implies that &=H+Rz. Consequently, 

H is a flat. 

Definition 2.3 If f is a linear functional and 

if AC&, then f(A)>a means f(x)>a for every x e A. 

Similar definitions may be made for inequalities that 

are strict or reversed. 

Definition 2.4 The hyperplane H=[f:a] bounds 

the set A££ if either f(A)>a or f(A)<a holds. 

Definition 2.5 The sets {x e H| f(x)>a }, 

{ x e £| f(x)<a }, { x e £ | f(x)!>a }, and { x £ 11 f(x)<ot } 

are called half-spaces of I. 

Axiom 2.1 A partial order on a set S is a subset 

0 of SxS such that if (x,y) e 0, then (y,x) £ 0, and if 

(x,y) e 0 and (y,z) e 0 then (x,z) e 0. Suppose that 

S is a partially ordered set, then S contains at least 

one maximal linearly ordered subset, where a linear order 

is a partial order with the additional condition that 

(x,y) i 0 implies that (y,x) e 0. 
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Examples of partially ordered relations are 

less than or equal and set inclusion "5." Zorn's 

maximal principle is useful in the proof of a number of 

theorems concerning convex sets. It is equivalent to 

the axiom of choice and also to the Hausdorff maximal 

principle. For a proof of this equivalence and a 

discussion of related topics see Kelley (1, pp. 31-36). 

Zorn's Maximal Principle If T is a partially 

ordered set and each linearly ordered subset of T has 

an upper bound in T, then T contains at least one 

maximal element. 

Theorem 2.2 If A and B are disjoint convex sets 

in a linear space £, then there exist complementary 

convex sets C and D of £ such that A^C and B^D. 

Proof: Consider the class P={(A^,B^)}, where 

A^ and B^ are convex sets in £ such that Â flBj_=(j), A^A^, ( 

B^B^. P is not empty since (A,B) e P. Now define a 

partial order on P as follows: 

(Ai,Bi)<(Aj,Bj) if A ^ A j and B^Bj. 

The union of every linearly ordered subset of elements 

in P belongs to P. By Zorn's Maximal Principle there 

exists a maximal element (C,D) in P. 

Now all that remains is to show that C=D. : 

Suppose that p e £^(CuD) . By Theorem 1.7 

conv(Cu{p})= u [aC+(1-a){p}] and also 
0 < a < l 
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conv(Du{p})=0<u<;L[aD+(l-a) {p}] . Since (C,D) is maximal, 

there exist points x e Dftconv(Cu{p}), y e Cftconv(Du{p}), 

such that x fj: C and y £ D. But the above implies that 

there exist points c e C, d e D such that x e intvcp, 

y e intvdp. The points c, d, p determine a triangle'and, 

like medians, dxQcŷ tf). Since dx^D, cy^C, then C£JD̂ (f>, 

a contradiction. Thus C=D. » 

Theorem 2.3 If f and g are linear functionals in 

I such that [f :a] = [g:3] , then there exists a constant X^O 

such that f=Xg, a=X3-

Proof: If f or g is identically zero, the theorem 

is trivial. Suppose f^O and g|0. If 3=0, choose 

z e &Mg:3]. If 3^0/ choose z e [g: 3 3 - Thus g(z)?*0. 

Let p e Si. Then there exists a t e [g:3] such that p=t+yz, 

where y e R. Now, f(p-t)=yf(z), and g(p-t)=yg(z). Then 

g(p-t)/g(z)=y so that f(p-t)=[f(z)/g(z)][g(p-t)]. Let 

X=f(z)/g(z). Thus f (p) -f (t) = Xg(p)-Xg (t) , and hence 

f(p)-a=Xg(p)-X3. Since the previous statement is true 

for all p e l , then it is true for.p=z. Consequently, 

a-X3=f(z)-Xg(z)=0. Hence a=X3« Immediately, f(p)=Xg(p). 

Definition 2.6 A hyperplane H is said to support 

a set S at a point x e S iff x e H and H bounds S. 

Theorem 2.4 Suppose A and B are convex subsets of 

a linear space £, and that coreB̂ fj), Â <J>, and AftcoreB=4>. 

Then there exists a hyperplane H=[f:a] such that f(A)<a 

and f(B)>a. 
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Note that in a finite-dimensional linear 

topological space "core" corresponds, to "interior." 

For a proof of Theorem 2.4, which is a fundamental 

separation theorem, see Valentine (3, p. 24). 

Theorem 2.5 Suppose that B is a convex body 

in a topological linear space L, and suppose that F 

is a flat in L such that FfiintB=<J>. Then there exists 

a hyperplane H containing F which bounds B. 

Proof: By Theorem 2.4 there exists a hyperplane 

H*=[f:a] such that f(F)<ot and f(B)>a. Then there 

exists a translate H=H*+x of H* such that F?H and 

H bounds B. 

Theorem 2.6 A hyperplane H=[f:a] in L bounds a 

nonempty open set iff f is continuous and'f|0. 

For a proof of Theorem 2.6 consult Valentine 

( 3, pp.25-26). 

Theorem 2.7 A hyperplane H=[f:a] is closed iff 

f is continuous with f^O. 

Proof: Suppose H is closed. Since H^L, there 

exists a point x £ H and since H is closed, x $ clH so 

that there exists a neighborhood N(x) of x such that 

N(x)QH=<f>. Now by Theorem 2.6, f is continuous since H 

bounds N(x). 

Suppose that f is continuous with f£0. Then 

{ x | f(x)<a } and { x | f(x)>a } are open convex sets and 

H=L^[{x|f(x)<a}u{x|f(x)>a}] so that H=[f:a] is closed. 
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Theorem 2.8 Suppose that C is a closed convex 

set in a locally convex space L and that x e I>C. 

Then there exists a closed hyperplane H through x such 

that HflC=4 . 

Proof: IAC is a neighborhood of x. Then there 

exists a convex neighborhood N(x) of x such that 

N(x)CL^C and N(x)ftC=<}> since L is Hausdorff, locally 

convex, and C is closed. The interior of N(x)̂ <}>, so 

that Theorem 2.4 implies the existence of a closed 

hyperplane H* separating N(x) and C. Now consider the 

translate H of H* such that x e H. HflC=4>. 

Theorem 2.9 If C is a convex body in a topological 

linear space L, then through each bour*dary point of C ,, 

there passes a closed hyperplane of support. 

Proof: If C=L the conclusion is trivial. Suppose 

that C^L. Let x e bdC, and note that {x} is a convex 

set. By Corollary 1.11 intC is convex. But Theorem 2.4 

implies that there exists a hyperplane H* which separates 

intC and {x}. Now consider a translate H of H* such that 

x e H. Then H is a hyperplane of support at x. 

Theorem 2.10 Suppose that S is a set in a 

topological linear space L and that int convŜ <{>. A point 

p e int convS iff each hyperplane H through p strictly 

separates at least two points of S. 

Proof: Suppose that p e int convS and that there 
? 

exists a hyperplane H=[f:a] such that p e H and H does 
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not separate at least two points of S. But this 

statement means that all points of S belong to a closed 

half-space determined by H, say {x|f(x)<.a}, since f is 

continuous by Theorem 2.6. But now it is apparent that 

p e bd convS, a contradiction. Thus each hyperplane 

through p separates points of S. 

Now suppose that each hyperplane through p 

strictly separates at least two points of S. And further 

suppose, by way of contradiction, that p ^ int convS. 

By Theorem 2.5 and Theorem 2.7, since int convŜ <J>, there 

exists a closed hyperplane through p bounding S, a 

contradiction. Thus p e int convS. 

Theorem 2.11 A line through the interior of a 

compact convex body A intersects bdA twice. 

Proof: Let p e intÂ tj). Since A is compact, A^L. 

Consider a ray Q from p. A is bounded, but Q is 

unbounded so that there exists some point y e (L'vA)QQ. 

Now let Q={x e L | x=ay+(l-a)p, a>0 }. Consider line 

segment py={ x e Q | O^a^l }. Order the elements of py 

as follows: if w e py, z e py, where w=3y+(l-g)p and 

z=Ay+ (1-A) p for some CK3, A<1, then z>w iff A>$. The 

pyQA is bounded above by y. Then there exists a least 

upper bound k for pyflA. Obviously, k e bdA and also 

k e QfibdA. Similarly, for a ray Q*={x e L | x=ay+(l-a)p, 

a<0} the same conclusion as before is obtained. So that 

QuQ* is a line through p and QoQ* intersects bdA in at 
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least two points. In addition, to intersect in more 

than two points contradicts the convexity of A. 

Theorem 2.12 Let S be a closed set in a 

topological linear space L, and suppose that intŜ <}>. 

Then S is convex iff through each boundary point of S 

there passes a hyperplane of support to S. 

Proof: The necessity is provided immediately 

by Theorem 2.9. 

Now suppose that through each boundary point of 

S there passes a hyperplane of support to S. If S=L, 

then S is convex. Suppose S^L. Then let x e intS and 

y e I/vŜtj). As in Theorem 2.11, there exists a z e bdS 

such that z e xy. By hypothesis, there exists a 

hyperplane of support H=[f:a] through z. y £ H, for if 

y e H, then x e H since x, y, and z are colinear. But 

x e H would contradict that H is a hyperplane of support. 

Thus the closed half-space H+={x|f(x)>a} determined by 

H and containing x contains S but not y where y is any 

point in the complement of S. Let T be the class of 

all such half-spaces that contain S but no point y 

external to A. Thus, OT=S. By Theorem 1.4, S is convex 

since each element of T is convex. 

A finite dimensional normed linear space is sometimes 

called a Minkowski space. Consult the Appendix for a more 

formal definition of a Minkowski space. For a proof of 

the following theorem see Valentine (3, p. 40). 
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Theorem 2.13 If S is a compact set in a Minkowski 

n 

space L , then convS is compact. 

The closed convex hull of a compact set is also 

compact in a Ban'ach space. A Banach space is a normed 

linear space in which the Cauchy criterion is sufficient 

for the convergence of sequences. For a proof of 

Theorem 2.13 in Banach spaces see Taylor.(2). 
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CHAPTER III 

EXTREMAL CHARACTERIZATION OF CONVEX SETS 

Sufficient notions have now been introduced to 

enable an examination of some sets which share a convex 

hull, in particular, those sets which are minimal and 

generate a given convex hull. The theorems in this 

section culminate in extremal characterization of 

convex sets including the Krein-Milman Theorem and 

other related results. 

Definition 3.1 A point x e bdC, where C is 

convex arid Cc;L, is called an exposed point of C iff there 

exists a hyperplane of support H to C through x such 

that HflC={x}. 

Rather than introduce a norm in order to define a 

n 

Minkowski space L , the following theorem is offered 

without proof and only the comment that En is a Minkowski 

space so that the theorem is intuitively correct. For 

a proof consult Valentine (2, p. 52). 

Theorem 3.1 Let C be a closed convex set in a 

Minkowski space L2 (E2). Each compact connected portion 

of the boundary of C which is not contained in a line 

26 
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segment contains an exposed point of C. If C is a line 

segment, it has two exposed points. 

Definition 3.2 If S is a convex set in Z, then • 
* 

a point x e S is an extreme point of S iff no non- ' 1 

degenerate segment in S exists which contains x in its 

relative interior. 

Note that x is an extreme point of a convex set S 

iff S^{x} is convex. Also, the above definitions imply 

that the exposed points of S are extreme points of S. 

Definition 3.3 A non-empty set M of a set K£L 

is called an extremal subset of K iff x e K, y e K, 

and Mf2intvxŷ <}> implies that {x}u{y}£M. 

An extreme point of a set K is an extremal subset 

of K consisting of just a single point. 

Definition 3.4 If C is a compact convex set of 

a topological linear space L, then extC denotes the set 

of extreme points of C and expC denotes the set of 

exposed points of C. 

Definition 3.5 A real valued function is often 

called a functional. Let p be a function defined on a 

subset of Z. Then p is a convex functional defined on 

a convex subset S of £, iff 

p[ax+(1-a)y]=ap(x)+(1-a)p(y) 

holds for all x, y e S and 0<a<l. 
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Definition 3.6* Let A bo a compact convex subset 

of LU. Then the set denoted by gA={x | x£A and convx=A) 

is called the genesis of A. 

The elements of gA are called the generators of A. 

The set y e gA such that y£x for every x e gA ( if such 

a set exists ) is called the antecedent of A. If gA is • 

considered to be partially ordered in the usual sense • < 

of partially ordering sets, then the antecedent of A is 

a minimal set analogous to Zorn's maximal element. 

The following examples provide some clue as to 

the nature of sets having antecedents: 

Example 3.1 The antecedent of a closed line 

segment is the set of its endpoints. 

Example 3.2 The antecedent of a closed triangular 

region is the set of its vertices. Further, the 

antecedent of a solid polyhedron is the set of vertices 

of the polyhedron. 

Example 3.3 The antecedent of A={x c En: Ix-pl^r} 

is the set {x e ,En: |x-p|=r}. 

Example 3.4 Consider the open ball A where 

A={x e En: |x-p|<r}. Although A is not closed and hence 

not compact, it is informative to note that there are 

infinitely many subsets of A which share A as a convex 

hull, but no smallest such set. On the other hand, the 

set B={(x,y) e E2| y>x2} is unbounded and thus not 
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compact but has a smallest set {(x,y) e E2| y=x 2H B 

whose convex hull is B. 

Notice that in examples 3.1 - 3.3 the antecedent 

of each convex set was the set of exposed points of the 

convex set. One might be led to conjecture that the 

exposed points of a compact convex set in Ln is the 

antecedent of the compact convex set. Example 3.5 

quickly dispels this notion. 

Example 3.5 Let A={x e E2: |x-s|=r} and p e E2^A. 

Let B=conv(Au{p}). The antecedent of B is not the set 

of exposed points of B. Let pw and pz be the tangents 

from p to circle A where w, z e A. The antecedent of B 

is the set {closed major arc zw}u{p}. But z and w are 

not exposed points of B. They are, however, extreme 

points of B. 

From the definitions of expC and extC, it is 

obvious that expCi;extC. But Example 3.5 clearly shows 

that extC is not a subset of expC. However, both extC 

and expC are subsets of bdC. 

Theorem 3.2 If the antecedent of a compact 

convex set A Ln exists, it is unique. 

Proof: Suppose x is the antecedent of a compact 

convex set A. Now suppose, by way of contradiction, 

that there exists a y e gA such that y is an antecedent 

for A and y^x* But by definition of antecedent x?y and 
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yCx. Then y=x, a contradiction. So that if the 

antecedent of A exists, it is unique. 

Theorem 3.3 If F is a family of extremal 

subsets of a set K, then a non-empty intersection of 

any subfamily of F is an extremal subset of K. 

Proof: Let f^ e F, i e A. Choose x e K, y e K. 

If ( Q f.) fJintvxŷ cj), then f. f2intvxy?*(j>, so that for 
ieA i i 

each f•, {x}u{y}?f•, i e A. Hence, {x}u{y}£ Q f.. 
i i i^A 1 

Definition 3.7 * Let S be a set. Let T be a 

collection of subsets of S, then (S,T) is said to be 

a restricted topological space iff for every non-empty 

subcollection F<;T 

(a) uF e T and 

(b) if F is finite, ftF E T. 

Theorem 3.4 The genesis of a compact convex set 

having an antecedent is a restricted topological space. 

Proof: Let F be a finite subset of gA where A 

is a compact convex subset of Ln such that A has an 

antecedent. Let x be the antecedent of A. Obviously, 

xcy for every y e F. Then x£ftF£A. But, convx^conv(QF) 

and conv(AF)£A. Now convx=A, so that conv(QF)=A. But 

this implies that fiF e gA. A similar argument produces 

that if F*CgA, then uF* e gA. 
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Theorem 3.5 If K is a non-empty compact set in 

a locally convex topological linear space L, then K has 

at least one extreme point. 

Proof: Let F be the collection of all compact 

extremal subsets of K. Then F is not empty since KCF. 

Partially order the collection F by set inclusion. 

Since K is compact, any non-empty linearly ordered 

subset of F has a compact non-empty intersection, which 

by Theorem 3.3( is an extremal subset of K. By Zorn's 

Maximal Principle, the set F has a minimal element, 

denoted by F*. 

Now all that remains is to show that F* is an 

extremal subset of K consisting of exactly one point 

and thus an extreme point of K. Suppose, by way of 

contradiction, that F* contains two distinct points 

x and y. Now {x} is a closed convex set and y e IA>{X}. 

By Theorem 2.8, there exists a closed hyperplane H such 

that y e H and HJHx}=<f>. Then x £ H and F*ftHj*<j>. Since 

F*QH is clearly an extremal subset .of K, and since 

x £ F*ftH, the set F* is not minimal. Hence F* can 

contain at most one point. This statement implies that 

F*e K is an extreme point of K, since an extreme point 

is an extremal set consisting of exactly one point. 

Theorem 3.6 Let S be a compact convex set in a 

locally convex topological linear space L. Then for each 

closed hyperplane of support to S, HfiextSĵ <j>. 



32 

Proof: Let H be a closed hyperplane of support 

to S. HQŜ <j>, where H=[f:a] and S is a subset of one of 

the half-spaces determined by H, say H+. Since H is 

closed, HQS is a non-empty, compact convex set and by 

Theorem 3.5 HQS has an extreme point x. If y e S'v-H, 

z e S, then f(y)<a, f(z)jca, where without loss of 

generality H+={x e L| f(x)<a }. Since*f(x)=a, then 

x £ intvyz. Also, if y e HQS, z e HQS, then since 

x is an extreme point of SQH, x £ intvyz. Thus x is 

an extreme point of S. 

The Krein-Milman Theorem, which follows, is a 

well known theorem that describes a convex set in terms 

of its extreme points. For a different proof of 

Theorem 3.7 see Krein and Milman (1). 

Theorem 3.7 If S is a compact set in a locally 

convex topological linear space L, then the closed 

convex hull of S is the same as the closed convex hull 

of the set of extreme points of S. 

Proof: Ŝ Lnce extS£S, then cl conv extS is a 

subset of the closed convex hull of S. Now it remains 

to show that S£cl conv extS. Suppose, by way of 

contradiction, that S is not a subset of cl conv extS, 

and then choose x from S^cl conv extŜ cJ). Since L is 

a locally convex space, Theorem 2.8 implies that there 

exists a closed hyperplane H*=[f:B] through x, where 
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without loss of generality, f(y)<$ for y e cl conv extS. 

But S is compact, so that a hyperplane H=[f:a], a>3, 

exists such that HftŜ <|>, f(S)<a, and thus HQcl conv extS=<f>. 

But Theorem 3.6 'implies that since H is closed, Ii 

contains an extreme point of S. This is a contradiction. 

Thus, it is false that S is not a subset of cl conv extS. 

Then cl conv S= cl conv extS. 

Theorem 3.7 may be restated as follows: 

Theorem 3.8 Suppose that C is a compact convex 

subset of a locally convex Hausdorff linear space L and 

x is a subset of C. Then C is the closed convex hull 

of x iff each extreme point of C lies in the closure of x. 

A finite dimensional normed linear space Ln is 

locally convex, so that Theorems 2.13, 3.7, and 3.8 now 

imply that every compact convex subset of Ln has an 

antecedent, namely the set of extreme points of the 

compact convex set. Recall also that Ln is linearly 

isomorphic to En. These statements then form the proof 

of the following: 

Theorem 3.9 If S is a compact convex set in a 

finite dimensio-nal normed linear (Minkowski) space Ln 

or En, then S has an antecedent. 
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CHAPTER IV 

A PROPOSITIONAL SUBSET OF 

THE GENESIS OF A SET 

An advantage of defining the genesis of a compact 

convex subset of Ln is to discuss some properties of 

some of the propositional subsets of the genesis. As a 

case in point, the following definitions l^ad to one 

such subset of gA, where A£E3: 

Definition 4.1* If X is a set property and A 

is a compact convex subset of Ln, then PA(X) will be 

used to denote the subset of gA consisting of those 

elements having property X, i.e., PA(X)={y e gA|y has X}. 

Definition 4.2* Let A be a subset of L, then the 

set denoted by augA= u xy is the augmentation of A. 
xeA 
yeA 

Definition 4.3 A maximal connected subset of a 

set A in a topological space S is called a component of A. 

A set A in L is simply connected iff each component 

of the complement of A is unbounded. 

Alternately, a set is simply connected iff any 

closed curve within it can be deformed continuously to 

a point of the set without leaving the set. 
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Definition 4.4* Let A£Ln, A not convex. Suppose 

x e convA^A and that there exists points z and y 

belonging to A such that x=az+(l-a)y for some 0<a<l, 

then x is said to be braced relative to A. zy is an 

A-relative brace of x. If every point of convA^A has 

an A-relative brace, then A is said to be a braced set. 

Definition 4.5 A crosscut of a set S^L is a 

closed segment xy such that intvxy^intS and such that 

x e bdS and y e bdS. 

Theorem 4.1 If an open set K has no crosscuts, 

then it i-s the complement of a convex set. 

Proof: Let x, y £ K. If xy£2K̂ <j>, then K has a 

crosscut which is a subinterval of xy since K is open. 

Hence xŷ K=(f> and K is convex. 

Definition 4.6 If S is a set in a linear space I 

and if V is a K-dimensional flat, then SflV is called a 

K-dimensional section of S. If H is a hyperplane of I, 

then SQH is called a plane section of S. 

Definition 4.7 A continuum in a topological 

linear space L is a compact connected set. A closed 

connected set in a Minkowski space Ln is called a 

generalized continuum . A generalized continuum is 

automatically boundedly compact. 

Definition 4.8* If A£L3 and A is not convex and 

x e convA^A implies that there exists a plane H such 
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that x c H and AilH is connected and x e conv(AflH), 

then A is said to be rigid. 

Note that the set of braced sets whose convex 

hull is convA is a propositional subset of g(convA). 

If B is the property of being braced and C is a convex 

set then The following lemma is presented 

preparatory to determining a sufficient condition for 

a set in L2 to be braced. Because of Theorem 1.3, a 

proof in E2 is adequate. 

Lemma 4.1 ; If A is a connected subset of E2 

and p e A and q e augA^A and x=ap+(l-a)q for 0<a<l, 

then x e augA. 

Proof: If x e A, the result follows immediately. 

Suppose x £ A. q e augA^A iff there exist 0<3<1 and 

w, z e A such that q=f3w+(l-3)z. Let 

[f:a]={y e E2| y=Ap+(l-A)q, A e R}, 

[g:S]={y e E2| y=Az+(l-A)x, A e R}, 

[h:y] = {y e E2 | y=Aw+(l-A)x, A e R} . 

Note that if f(w)>a, then f(z)<a. 

If g(p)>6, then g(q)<6, g(w)<6. 

If h(p)>y, then h(z)<y, h(q)<y. 

The above statements may be adopted without loss 

of generality. 

Clearly, p and w are elements of a connected set 

A separated by Cgx 63 . Then D=AQ [g: otherwise A is 
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a subset of the union of the two open half-planes 

determined by [g:6], contradicting that A is connected. 

Case I: Suppose T^=Dft{x| f (x) Let t^ e T^. 

Then there exists 0<A<1 such that x=Az+(1—A)t^. But 

t^ e A, thus x e augA. 

Case II: Suppose that T̂ =4>. Then Dfi[f:a]̂ (J) or 

T2=Dfi{x | f (x) <a}ĵ(j). But DQ[f:a]̂ <{> implies that x e A, 

a contradiction. Thus T2̂ <J>. Let t2 e T2" Then there 

exists 0<A<1 such that t2=Az+(1-A)x. Thus h(t2)<Yr and 

t2 and p are separated by [h:y]. 

Let £ T̂ =Aft [h: y] ft{x | f (x) <a}fi{x | g (x) >6 . Then 

t =Ax+(l-A)w where A>1. Now x=(1/A)t--t(1-A)/A]w, and 
3 

x=-[(l/A)-l]w+(l/A)t3. Let A=l/A. Then 0<A<1 so that 

x=Xt^+(l-X)w. The last statement implies that 

x e augA. 

Theorem 4.2 If A is a compact connected subset 

of E 2, then augA=convA. 

Proof: Obviously augA<;convA. 

Now suppose that x e convA. Since A is compact, 

if x e bd convA, then x e extA^A or x belongs to the 

relative interior of some maximal line segment zy where 

zy^bd convA. Now line zy bounds A so that by Theorem 3.6 

and Definition 3.2, z, y e extA^A. Thus if x e bd convA, 

then x e augA. 
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Suppose that x e int convA. Let p be an extreme 

point of A, thus p e bd convA. Consider the line 

q=Ax+(1-A)p. qftint convÂ cj> so that by Theorem 2.11, 

qflbd convA^{p} consists of exactly one point, say k. 

Note that q=Ak+(l-A)p and for some 0<A<1, x=Ak+(l-A)p. 

If k e A, then x e augA. 

If k £ A, k e augA and by Lemma 4.1, x e augA. 

Thus, in either case, convA^augA, so that augA 

and convA are identical, i.e., augA=convA. 

It is now obvious that if A is a compact connected 

subset of L2, then augA is the convex hull of A. 

Theorem 4.3 now follows immediately. 

Theorem 4.3 If A is a compact connected subset 

of L2 or E2, then A is braced. 

Observe also that Theorem 4.2 together with 

Theorem 1.7 implies the following: 

Theorem 4.4 If A and B are disjoint subsets of 

E2, and A is a compact connected set and B is a compact 

connected set, then AUB is braced. 

One should not be too hasty and conclude that 

connectedness is sufficient for a compact set to be 

braced in L3. The following example illustrates: 

Example 4.1 Let A be a subset of E3 formed by 

taking the union of three non-coplanar line segments 

having a common point of origin. A is compact and 
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connected, but no point in the interior of the closed 

solid tetrahedron which is A's convex hull has a 

brace relative to A. 

Other examples may be easily constructed to show 

that connectedness is not necessary for.a set to be 

braced in E2 or E3 and consequently L2 and L3. 

For a proof of the following theorem consult 

Valentine (1, pp. 91-93). 

Theorem 4.5 If S is a compact set in L3 and if 

each plane section of S is a simply connected continuum, 

then S is convex. (The converse is obviously true.) 

Theorem 4.6 If A is a subset of E3 or L3 and 

A is rigid, then A is braced. 

Proof: The theorem follows immediately from the 

definition of rigid and Theorem 4.3. 

The results of Chapter IV are now summarized in 

terms of. Definition 4.1. 

Theorem 4.7 Let B be the property of being braced. 

Let C be the property of being connected. Let R be the 

property of being rigid. Now suppose that X is a convex 

subset of L2 and Y is a convex subset of L3, then 

PX(CKPX(B) and Py(R)cPy(B). 

Proof: The results are immediate from Theorem 4.2 

and Theorem 4.5. 
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APPENDIX 

Definition A.l A set S^i, star-shaped with 

respect to the origin Q, is called linearly bounded iff 

each line through Q intersects S in a line segment. 

Definition A.2 Let S be an open set in L which 

is star-shaped with respect to 0 and which is linearly 

bounded. Then the Minkowski distance functional p is 

a real valued function defined on L as follows: 

p(x)=A>0 where \x*=x, x* e bdS, and ax*^intS, 0<a<l. 

If x e S, then p(x)£l. 

Definition A.3 A topological linear space L is 

said to be normable if it is locally convex and if it 

contains a non-empty bounded open set. 

Definition A.4 A normable topological linear 

space L with a norm (as for example, the Minkowski 

distance functional) is called a normed linear space. 

Definition A.5 A finite-dimensional normed '! 

linear space is called a Minkowski space. 

AO 



BIBLIOGRAPHY 

Books 

Kelley, J. L., General Topology, Princeton, N. J., 
D. Van Nostrand Company, Inc., 1955. 

Taylor, A. E., Introduction to Functional Analysis, 
New York, John Wiley & Sons, Inc., 1958. 

Valentine, Frederick A., Convex Sets, New York, 
McGraw-Hill Book Company, 1964. 

Articles 

Krein, M. G. and D. P. Milman, "On Extreme Points of 
Regular Convex Sets," Studia Mathematica, 
IX (1940), 133-138. 


