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INTRODUCTION

This paper was written in response to the following
gquestion: what conditions are sufficient to guarantee

°

that if a compact subset A of a topological linear space.
L® is not convex, then for every point x belonging to a
the complement of A relative to the convex hull of A
there exists a line segment yz such that x belongs to

yz and y belongs to A and z belongs to A? Restated in
the terminology of this paper the question may be given
as follows: what conditions may be imposed upon a
compact subset A of L?® to insure that A is braced?

The pursuit of this problem gave rise to the
concept of the genesis of a compact convex set. The
class of braced sets having convex hull A could be
considered’as a propositional subset of the genesis
of A.

In generai, the terminology and language of this
paper is that followed by Valentine (1) in his book on
convex sets. Terms that are newly introduced herein

are marked by an asterisk.
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CHAPTER I

CONVEX HULLS

Convex sets were first studied by Brunn in 1887.
Later, Minkowski added considerably to the body of
knowledge that had begun to accumulate around convex
sets. As a preliminary to the consideration of some
theorems related to convex sets the following definitions
are introduced:

Definition 1.1 Suppose S is a set of elements

with a collection of subsets called'open sets which

satisfy the following axioms: |
(a) The union of each collection of open sets ﬂ

is an open set. |
(b) The intersection of each finite collection

of open sets is an open set.

Then S together with its collection of open sets is

called a topological space. The collection of open sets

is called the topology of S. It can readily be deduced:

from (a) and (b) that ¢ and S are open.sets. Henceforth;'

the better known properties of topological spaces will

be assumed.



Definition' 1.2 The sets CrS and DzS are

complementary iff CuD=S and CQD=¢.

The complement of A relative to B is the set
denoted by BvA={x| xeB and x4¢A }. Obviously if C and
D are complementary, then C=SAD, C denotes the
complement of C, i.e. C=SnC=D.

Definition 1.3 A closed set in a topological

space S is the complement of an open set, i.e. A is
closed iff A=S"B, where B is open.

Definition 1.4 A linear space % over the field:

of real numbers R is a space for which there exist two
binary operations, vector addition ( indicated by + )
from &x2 into £ and scalar multiplication ( indicated
by juxtaposition ) from Rx% into & which satisfy the
following axioms:

If x,v,z2 € 2 and o,B € £ then

(1) %ty € & (4) ox € 2
(2) x+y=y+x (5) o(xty)=ox+ay
(3) (x+y)+z=x+(y+2z) (6) a(Bx)=(aB)x

(7) (o+B)x=ax+Bx
(8) for every pair x,y € %, there exists a z ¢ 2
such that xtz=y
(9) if 1 is the identity of the real field R, then

lx=x for every x e 2.



Number (8) implies the existence of an additive
identity for vector addition since x=y is a possible
pair. 6 will be used to denote the additive identity
:and is synonomous with the origin of a vector space.

Definition 1.5 Let % be a linear space with a

topology. Let x e %. Then an open set N in the topology
of % such that x € N is called a neighborhood of x and-
is denoted by N(x).

Definition 1.6 Let S be a set in %. If x ¢ S

then x is an interior‘point of S iff there exists a
neighborhood N(x) of x such that N(x)zS. The set of
all interior points of S is called the interior of S
and is denoted by intS.

It is well known that intS=S iff S is an open set.

Definition 1.7 Let S be a set in £ and x € %.

Then x is said to be a limit point of S iff for every
neighborhood N(x) of x, N(x)QSv{x}#¢.

Definition 1.8 Let S be a set in %. Then S'

denotes the set of all limit points of S and is called
the derived set of sS. SuS' is called the closure of
S and is denoted by clS.

One may easily verify that clS is a closed set.

Definition 1.9 ILet S be a set in £. The set

of points x e % such that for every neighborhood N{x)
of x, N(x)QS#¢ and N(x)0S#¢ is called the boundary of

S and is denoted by bdS.



A boundary point of S is said to be isolated if
it is not a limit point of S.

Definition 1.10 Let £ be a function which maps

a subset S in a tobpological space £ into a set S* of a
topological space £*. The function f is said to be
continuous at a point x € S iff for each neighborhood
V{f(x)] of £(x) in E* there exists a neighborhood U(é)
of x in £ such that if y € SQU(x), then f(y) ¢ V; i.e.,
£(sQU) gVv.

Definition 1.11 If a linear space % has a topology

then the topology is Hausdorff iff for each x ¢ 2%,
vy € %, X#y, there exist two disjoint open sets containing
x and y respectively.

Definition 1.12 A topological linear space L is

a linear space with a Hausdorff topology such that the
operations of vector addition, f(x,y)=xt+y denoted by
(x+y) /(x,y), and scalar multiplication, f(a,x)=0x denoted
by (ax)/(o,x), where x ¢ L, y € L, a ¢ R are continuous
in all variables jointly.

Definition 1.13 If x e &, v € 2, the line segment

Xy joining x and-y is the set of all points of the form
ox+(l-a)y where a € R, 0<a<l.

Definition 1.14 A set Sgl is said to be star-shaped

relative to a point x ¢ & iff for each point y € S

XyrS.



Definition 1.15 A topological linear space L

is locally star-shaped iff for each neighborhood U(6)

of the origin & of L, there exists a neighborhood V(9)

of 6 such that V(6)zU(8) and such that V(6) is star-shaped
relative to 6.

Definition 1.16 If A is a set in 2 and if x ¢ &%,

then the set A+x={y+x| y € A } is called the translate

of A by x.

Definition 1.17 If A is a set in £ and o € R

oA={ax| x € A } is called the scalar multiple of A by a.
Several well known theorems are tacitly assumed

in this paper in order to devote time to properties

and theorems whose consequences have a greater bearing

on the subject under consideration. So it is without

apology that the following theorem is offered without'

proof:

Theorem 1.1 The continuity of vector addition

and scalar multiplication implies that each translate
and non-zero scalar multiple of an open set is open.

Theorem 1.2 A topological linear space L is

locally star-shaped and locally symmetric.

Proof: Let U be a neighborhood of the origin 6.
Now ax/(o,x) is continuous at (0,6), so that by the
definition of continuity there exists a neighborhood
V(6) of 8 and a number 6§ >0 such that if |a|<§ and if

X € V(8), then ax € U(8). Immediately, oVgU whenever



la|<s. Consider the class T={oV| |a|<§ }. Then
by definition of a topology and neighborhood uT is
a neighborhood of 6. Also, N= yTzU(6), and N is
star-shaped and 'symmetric relative to 9.

Theorem 1.3 1f 1" is an n-dimensional topological

linear space, then Ln is linearly isomorphic with
Euclidean n-space E". This means there exists a
one-to-one linear bicontinuous map of Ln onto E".

The immediate import of this theorem is that theorems
holding in " are immediately applicable to'En and
vice-versa. For a proof of Theorem 1.3 see Valentine
(1, pp. 7-8).

Definition 1.18 A set Sgf is convex iff for each

pair of points x,y € S, XytS.

Definition 1.19 A topological linear space L is

locally convex iff for each neighborhood U(6) of 6 there

Qxists a convex neighborhood V(6) of 6 such that V(8)zgU(s).
An obvious alternative to Definition 1.18 is that

a set Szf is convex iff it is star-shaped relative to

every point x € S. Similarly, Definition 1.19 could be

altered to conform with Definition 1.15.

Definition 1.20 A convex set in L which has an

interior point is called a convex body.

Theorem 1.4 The intersection of any collection of

¢onvex sets in a linear space % is a convex set.



Proof: Let C be a collection of convex sets
in 2. Consider QC. Suppose {QC has two points x and y.
Then x and y beiﬁng to every element of C. But this
implies that xytA for every A e C, so that xyzQcC. Then
QC is convex. If QC does not have at least two points,
then the conclusion is obvious.

Definition 1.21 The convex hull of a set SzL is

the intersection of all convex sets in L containing S
and is denoted by convS.
S is convex iff convS=S.

Definition 1.22 A set S of a topological linear

space L is bounded iff for each neighborhood N(6) of 6
there exists a positive scalar multiple of N(8), aN(8),
such that SzaN(0).

Definition 1.23 If A is a subset of S where S

is a topological space, then A is compact iff every
open covering of A has a finite subcover. 'In other words,
if T is the topology of S, A is compact iff for every
class of open sets CgT such that AzZuC, there exists a
finite subset B of C such that AruB.

It is well known that AfZL™is compact iff A is
closed and bounded.

Definition 1.24 A flat or linear variety of a

linear space & is a translate of a linear subspace of



L. Two flats are parallel iff one is a translate of
the other; i.e., if F and F* are flats in %, then F and
F* are parallel iff there exists an x € £ such that
‘F=F*+x. Further, the dimension of a flat is the
cardinality of the basis of the corresponding parallel
linear subspace. A flat of dimension 1 is called a
line.

Any good book on linear algebra can provide
information concerning the basis and dimension of a
vector space.

Theorem 1.5 Each finite dimensional flat of a

topological linear space L is closed.

Proof: Suppose that V is a finite dimensional
flat of L. Assume, by‘way of contradiction, that
X € clVavV#¢p. Then there exists a flat of minimal
dimension containing V and Xx. Let W be such a flat.
Describe a relative topology on W as follows: let
T={WQU | U € T*, where T* is the topology of L }.
Now if x is in the closure of V relatiye to W, Theorem ;33
implies that x € V, a contradiction. Thus, there exists
a neighborhood N(x) of x relative to W such that N(x)Qv=¢.
But by definition of T there exists a neighborhood of x,
U(x) e T* such that U(x)QWgN(x). Since VgW, U(x)QV=¢.
But then x ¢ clV. Thus clVaw=¢ and V is closed.

The next theorem relates a convex set to its line

segment subsets. For a proof see Valentine (1, p.l1l6).



Theorem 1.6 Let S8 be a set in the n-dimensional

linear space &P, Let Si be defined recursively as

follows:
Sl=xgsxy Si:xeg- Xy
yE€Si-1

in-1 i
Then S; = convS if i, satisfies the inequality 2 n;n+l;2 n,
n

Theorem 1.7 If A and B are two convex sets in &,

then conv(AuB)= v l[aA+(l-a)B] = D,
o<

Proof: fxe A, v € B, then ox+(l-a)y & conv(AuB)
when 0<a<l. Thus Dgconv(AuB) immediately. Now suppose

z e D, w ¢ D. By definition of D there exist points

X,x* ¢ A and y,y* € B such that z € xy, w € x*y*, But
XX*rA, yy*rB, so that conv(xx*uvyy*)zD. Then zw is a
subset of conv(xx*vyy*) so that zwgD. Thus D is convex

and (AvB)zD. Immediately, D=conv(A B).

Definition 1.25 Let Sz%. The kernel K of S is

the set of all points z € £ such that zxzS for every

X € S. In other words, the kernel K of S is the set of
ali those points with respect to which S is star-shaped.
Notice that S is convex iff S=K where K is the kernel of
S. Also, note that K is itself a convex set follows
immediately from the definition of K, so that K ié often

referred to as the convex kernel of S.
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Definition 1.26 The interior of a set StgL

relative to the minimal flat containing it is denoted
by intvsS. For a linear space &, if x ¢ &, y € 2,

X7y, then intvxy denotes the set of all points of the
form ax+(l-a)y, where 0O<a<l. If x € &, then intvx=x.

Definition 1.27 A point of x € S is a core point

of 8 iff for each point y € %, with y#x, there exists a
point z € intvxy such that xzzS. The set of all such
core points of S is called the coreS.

Theorem 1.8 If StL is star-shaped relative to a

point p, then the c¢lS is star-shaped relative to p.

Proof: Let y € clS. Choose some point of yp,
say Ay+(l-1)p where 0<A<l. Now, Ax+(l-X)p/(x) is continous
in x, so that for each neighborhood U of Ay+(l-A)p in L
there exists a neighborhood V(y) of y such that
AX+(1l-A)p € U whenever x ¢ V(y). Since y e clS, let
X € VQRS. Then Ax+(l-A)p € UQRS. But this implies that
Ay+(1-A)p e clS. Then ypgcls.

Corollary 1.8 Let C be a convex set in L. Then

the closuﬁe of C is convex.

Proof: Let z ¢ ¢cl1C, w € clC. As in Theorem 1.8
Ax+(1-A)y/(x,y) is continuous, so that if some point of
zw is chosen, say Az+(l-A)w where 0<)A<1l, then, as in

Theorem 1.8, zwgclC, so that clC is convex.
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Theorem 1.9 If S is a set in a topological

linear space L, then the closed convex hull of S, denoted
by cconvS is the same as‘the closure of the convex hull
of S.

Proof: Corollary 1.8 implies immediately that
cl(convS) is convex, and‘as a result cconvSzgel(convs).
Note that cconvS is a closed convex set which contains S,
Hence, convSgcconvS. Thus cl(convS)cconv. Therefore,
cl(convs) =cconvs. |

Theorem 1.10 Suppose S is a set in L and S is

star-shaped relative to a point p. If p ¢ intK, where
K is the convex kernel of 8§, and if y € clS, then
intvyptintSs. . Oy
Proof: Let.y € clS, and without loss of generality
let y=¢. Now all that is necessary is to show that
apzintS for all 0<a<l since y=¢. Since p e intK, there
exists a neighborhood V(¢) of ¢ such that p+V(¢)zintK.
Then, for B=-a/(l-a), by Theorem 1.1, the set BV(¢) is
open. Since ¢ e clS, there exists a point u eB[V(@)]QS.
Thus, there exists a point v € V(¢) such that Bv € S.
The set U=(l-a)Bv+o(p+V) is an open set contained in S,
since v & S, p+VgintK. Also, x=(l-a)Bv+a(p+Vv)=ap and

op € UzintS. Thus intvyptints.
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Corollary 1.10 Let C be a convex set in a linear

topological space L. If x € intC, y. e clC, then
intvxygintC.

Proof: Since intC=intK, Theorem 1.10 implies that
intvxyzintC immediately.

Theorem 1.11 Let S be a set in L and suppose

that S is star-shaped relative to a point p. Then, if
p £ intS; the intS is star-shaped relative to p.

Proof: Let y € intS and without loss of generality
suppose that p=6, and choose x=oay, 0<a<l. Since
y € intS, there exists a neighborhood U(y) of y such that
U(y)zintS. Since p € K, aU(y)tS, and since aU(y) is open,
ay € oU(y)zintS, for 0<a<l. Thus ypgintS, and intS is
star-shaped relative to p.

Corollary 1l.11 If S is a convex set in L, then

intC is convex.
Proof: The proof is immediate from Theorem 1.11
since C is star-shaped relative to every point in intC.

Theorem 1.12 If SzL, then intSgcoreS.

Proof: Suppose z € intS. Let U be a neighborhood
of z with UzintS. Let y e Ln{z}. Since F(a)=z+a(y-z) is
continuous at a=0, there exists a ¢ such that if 0<o0<§,
then x=F(a) € U. Thus x ¢ intvzy and xchcintS.‘ Then .

Z € coreS.



13

Theorem 1.13 If C is a convex set in %, then

coreC is convex.

Proof: Let x ¢ coreC, y ¢ coreC. Hence y ¢ C
and C=K, where K is the convex kernel of C. Without
loss of generality assume that y=6. Then, let z=oux,
where 0<o<l. Consider any vector u where u#f. Since
x € coreC, there exists a constant §>0 such that
x+Bu € C for 0<B<§. C is star-shaped relative to y=0
so that a(x+Bu)zC for 0<B<§. But this implies that
ox £ coreC and thus xygcoreC. Then coreC is convex.

Theorem 1.14 If C is a convex body in L, then

coreC=intC=int (clC).

Proof: Let y € coreC and x € intC. Since
y & coreC, there exists a point z such that y e intvxz
and such that zyzC. Hence, 2z € clC. By Corollary 1.10
- intvxzgintC, so that y e intC. Consequently, coreCcintC:’
Theorem 1.12 implies that intCgcoreC; hence, intC=coreC.
Now, let y € int clC, x € intC. There exists a point
z € clC such that y e intvzx. Again by Corollary 1.10,
intvzxgzintC. Hence, y € intC so that int clCgintC.
Since Cgint clC, then int clC=intC.

Theorem 1.15 If S is an open set in L, theh

convS is open.
Proof: Corollary 1.1l implies that int convS is

convex. Since SgconvS, and SQ(bd convS)=¢, then
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Szint convS. But int convS is convex, so that the
previous sentence implies convSgint convS. Also,
int convSgconvS, so thgt convS=int convS. Thus,
convS is open.

It should be pointed out that the convex hull
of a closed set need not be closed. As an example con-
sider the the set S in Buclidean two-space E? with
rectangular coordinates (x,y) defined by

s={(x,y)| x?y?=1, O<y<e }

S is closed but convS={(x,y)| y<0 } is not closed.
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CHAPTER II

SUPPORT THEOREMS

The concepts of ‘hyperplanes and half-spaces
are very useful in the formulation and proof of various
theorems concerning convex sets. As soon shall become
apparent, hyperplanes are related to flats in a very
intimate manner. In order to define a hyperplane the
notion of a linear functional is introduced.

Definition 2.1 Recall that a real valued function

is often called a functional. A linear functional is

a function from % to R which is additive and homogeneous,

that is
f(x+y)=£f(x)+£(y) X € 2) y € 4%
f (ox)=af (x) x € &, o € R,

Definition 2.2 Suppose HZ%, then H is said to be

a hyperplane iff there exists a non-identically zero
linear functional f and a real constant 0 € R such that
H={ x € &| f(x)=0 } denoted by H=[f:0].

Theorem 2.1 A hyperplane is a flat.

Proof: Suppose that f is a linear functional

and that £(x)¥0, x € %, Let H=[f:0]. Since ff0, let

16
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z ¢ ¢, with £(2)#0. Choose an arbitrary point q ¢ &,
and since f(z)#o, define p=[-f(q)/£f(z)] (z)+y where
Y ¢ H. Since f is linear,
f(p)=f{ [-£(q) /£(2)] (2)+y}
f(p)=-£(q)+£(y) so that
f(p)+£(q)=£ (pt+q)=£ (y)=a.
Thus p+q ¢ H. But this statement together with the'
definition of p implies that 4=H+Rz. Consequently,
H is a flat.

Definition 2.3 If £ is a linear funétional and

if Az, then f£(A)2a means f(x)20 for every x € A,
Similar definitions may be made for inequalities that
‘are strict or reversed.

Definition 2.4 The hyperplane H=[f:0] bounds

the set Agf if either f(A)2>a or f£(A)<o holds.

Definition 2.5 The sets {x € &| f(x)>a },

{ xe 2| £(x)<a }, { xe 2] £(x)20 }, and { x € &| £(x)20 }
are calléd half-spaces of £.
Axiom 2.1 A partial order on a set S is a subset
O of SxS such that if (x,y) € O, then (y,x) ¢ O,and if
(x,y) € O and (y,z) € O then (x,2) € O. Suppose that
S is a partially ordered set, then S contains at least
one maximal linearly ordered subset, where a linear order
is a partial order with the additional condition that

(x,v) ¢ 0 implies that (y,x) € O.
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Examples of partially ordered relations are
less than or equal "<" and set inclusion "r." Zorn's
maximal prinéiple is useful in the proof of a number of
theorems concerning convex sets. It is equivalent to
the axiom of choice and also to the Hausdorff maximal
principle. For a proof of this equivalence and a
discussion of related topics see Kelley (1, pp. 31-36).

Zzorn's Maximal Principle If T is a partially

ordered set and each linearly ordered subset of T has
an upper bound in T, then T contains at least one
maximal element.

Theorem 2.2 If A and B are disjoint convex sets

in a linear space %, then there exist complementary
convex sets C and D of £ such that AgC and BgD.

Proof: Consider the class P={(Ai,Bi)}, where
Ai and B; are convex sets in £ such that AiQBi=¢, A;Ai,.
BzB;. P is not empty since (A,B) ¢ P. Now define a
partial order on P as follows:

(Ai,Bi)<(Aj,Bj) if AicAj and Bi;Bj.
The union of every linearly ordered subset of elements
in P belongs to P. By Zorn's Maximal Principle there
exists a maximal element (C,D) in P.

Now all that remains is to show that C=D.

Suppose that p e 2v(CuD)#¢. By Theorem 1.7

conv(Cv{p}l)= v [aC+(l-a){p}] and also
0<a<l
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conv(Du{p})=0<8<l[aD+(l-a){p}]. Since (C,D) is maximal,
there exist p;i;ts x € DQconv(Cu{p}), y € CQconv(Du{p}),
such that x ¢ C and y ¢ D. But the above implies that
there exist points ¢ ¢ C, d ¢ D such that x € intvcp,

Y € intvdp. The points ¢, d, p determine a triangle 'and,
like medians, decy#¢. Since dxgD, cyrC, then CQD#¢,

a contradiction. Thus C=D. .

Theorem 2.3 If f and g are linear functionals in

% such that [f:al=[g:B], then there exists a constant A#0
éuch that f=Ag, a=AR.

Proof: If £ or g is identically zero, the theorem
is trivial. Suppose f}0 and g30. If B=0, choose
z ¢ nv[g:R]. If B#0, choose z ¢ [g:Bl. Thus g(z)#0.
Let p € . Then thereexists a t é [g:B8] such that p=t+yz,
where y € R. Now, f(p-t)=yf(z), and g(p-t)=yg(z). Then
g(p-t)/g(z)=y so that f(p-t)=[£(2)/g(z)][g(p-t)]. Let
A=f(z)/g(z). Thus f(p)=-£(t)=Ag(p)-Ag(t), and hence
f(p)-o=Ag(p)=AB. Since the previous statement is true
for all p ¢ &, then it is true for p=z. Consequently,
a-AB=f(2)-Ag(z)=0. Hence a=Af. Immediately, f(p)=ig(p).

Definition 2.6 A hyperplane H is said to support

a set S at a point x ¢ S iff x ¢ H and H bounds S.

Theorem 2.4 Suppose A and B are convex subsets of

a linear space £, and that coreB#¢, A#¢, and ARcoreB=¢.
Then there exists a hyperplane H=[f:a] such that f(A)<a

and f(B)>a.
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Note that in a finite-dimensional linear
topological space "core" corresponds. to "interior."
For a proof of Theorem 2.4, which is a fundamental
separation theorem, see Valentine (3, p. 24).

Theorem 2.5 Suppose that B is a convex body

in a topological linear space L, and suppose that F
is a flat in L such that FQintB=¢. Then there exists
a hyperplane H containing F which bounds B.

Proof: By Theorem 2.4 there exists a hyperplane
H*=[f:a] such that f(F)<a and f(B)>a. Then there
exists a translate H=H*+x of H* such that FzH and
H bounds B.

Theorem 2.6 A hyperplane H=[f:a] in L bounds a

nonenmpty open set iff f is continuous and'fio.
For a proof of Theorem 2.6 consult Valentine
( 3, pp.25-26).

Theorem 2.7 A hyperplane H=[f:a] is closed iff

f is continuous with f#0.

Proof: Suppose H is closed. Since H#L, there
exists a point x ¢ H and since H is closed, x ¢ clH so
that there exists a neighborhood N(X) of x such that
N(x)QH=¢. Now by Theorem 2.6, f is continuous since H
bounds N(x).

Suppose that f is continuous with f$0. Then
f x| f(x)<a } and { ¥ | £(x)>a } are open convex sets and

H=L~n [{x|£(x) <a}u{x|f(x)>a}] so that H=[f:q] is closed.
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Theorem 2.8 Suppose that C is a closed convex

set in a locally convex space L and that x ¢ LVC.
Then there exists a closed hyperplane H through x such
that HlC=¢ .

Proof: LvC is a neighborhood of x. Then there
exists a convex neighborhood N(x) of x such that
N(x) tLnC and N(x)QC=¢ since L is Hausdorff, locally
convex, and C is closed. The interior of N(x)#¢, so
that Theorem 2.4 implies the existence of a closed
hyperplane H* separating N(x) and C. Now consider the
translate H of H* such that x ¢ H. HQC=¢.

Theorem 2.9 If C is a convex body in a topological

linear space L, then through each bourdary point of C |
there passes a closed hyperplane of support.

Proof: If C=L the conclusion is trivial. Suppose
that C#L. Let x ¢ bdC, and note that {x} is a convex
set. By Corollary 1.1l intC is convex. But Theorem 2.4
implies that there exists a hyperplane H* which separates
intC and {x}. Now consider a translate H of H* sﬁch that
X ¢ H. Then H is a hyperplane of support at x.

Theorem 2.10 Suppose that S is a set in a

topological linear space L and that int convS#¢. A point
P € int convS iff each hyperplane H through p strictly
separates at least two points of S.

Proof: ?uppose that p € int convS and that there

exists a hyperplane H=[f:a] such that p ¢ H and H does
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not separate at least two points of S. But this
statement means that all points of S belong to a closed
half-space determined by H, say {xlf(x);a}, since f is
continuous by Theorem 2.6. But now it is apparent that
p ¢ bd convS, a contradiction. Thus each hyperplane
through p separates points of S.

Now suppose that each hyperplane through p
strictly separates at least two points of S. And further
suppose, by way of contradiction, that p ¢ int convs.

By Theorem 2.5 and Theorem 2.7, since int convS#¢, there
exists a closed hyperplane through p bounding S, a
contradiction. Thus p e int convSs.

Theorem 2.11 A line through the interior of a

compact convex body A intersects bdA twice.

Proof: Let p € intA#¢. Since A is compact, A#L.
Consider a ray Q from p. A is bounded, but Q is
unbounded so that there exists some point y & (L"VA)QQ.
Now let Q={x ¢ L | x=ay+(l-a)p, a>0 }. Consider line
segment py={ x ¢ Q | 0<a<l }. Order the elements of py
as follows: if w e py, z € py, where w=Ry+(l-8)p and
z=)\y+(1l-1)p for some 0<B,A<l, then z>w iff X>B. The
pyQA is bounded above by y. Then there exists a least
upper bound k for pyQA. Obviously, k & bdA and also
k ¢ QQbdA. Similarly, for a ray Q*={x € L | x=ay+(l-a)p,
0<0} the same conclusion as before is obtained. So that

QuQ* is a line through p and QuQ* intersects bdA in at
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least two points. In addition, to intersect in more
than two points contradicts the convexity of A.

Theorem 2.12 Let S be a closed set in a

topological linear space L, and suppose that intS#¢.
Then S is convex iff through each boundary point of S
there passes a hyperplane of support to S.

Proof: The necessity is provided immediately
by Theorem 2.9.

Now suppose that through each boundary point of
S there passes a hyperplane of support to S. If S=L,
then S is convex. Suppose S#L. Then let x € intS and
-y € LuS#¢. As in Theorem 2.11, there exists a z € bdS
such that z € xy. By hypothesis, there exists a
hyperplane of support H=[f:a] through z. Yy ¢ H, for if
y ¢ H, then x ¢ H since x, y, and z are colinear. But
X € H would contradict that H is a hyperplane of support.
Thus the closed half-space H+={x|f(x);a} determined by
H and containing x contains S but not y where y is any
point in the complement of S. Let T be the class of
all such half-spaces that contain S but no point y
external to A. Thus, QT=S. By Theorem 1.4, S is convex
since each element of T is convex.

A finite dimensional normed linear space is sometimes
called a Minkowski space. Consult the Appendix for a more
Pormal definition of a Minkowski space. For a proof of

the following theorem see Valentine (3, p. 40).
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Theorem 2.13 If S is a compact set in a Minkowski

space Ln, then convS is compact.

The closed convex hull of a compact set is also
compact in a Banach space. A Banach space is a normed
linear space in which the Cauchy criterion is sufficient
for the convergence of sequences. For a proof of

Theorem 2.13 in Banach spaces see Taylor. (2).
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CHAPTER IIIX

EXTREMAL CHARACTERIZATION OF CONVEX SETS

Sufficient notions have now been introduced to
enable an examination of some sets which share a convex
hull, in particular, those sets which are minimal and
generate a given convex hull. The theorems in this
section culminate in extremal characterization of
convex sets including the Krein-Milman Theorem and
other related results.

Definition 3.1 A poiht X € bdC, where C is

convex and CgL,is called an exposed point of C iff there
exists a hyperplane of support H to C through x such
that HQC={x}.

Rather than introduce a norm in order to define a
Minkowski space Ln, the following theorem is offered
without proof and only the comment that E" is a Minkowski
space so that the theorem is intuitively correct. For
a proof consult Valentine (2, p. 52).

Theorem 3.1 Let C be a closed convex set in a

Minkowski space L? (E2?). Each compact connected portion

of the boundary of C which is not contained in a line

26
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segment contains an exposed point of C. If C is a line
segment, it has two exposed points.

Definition 3.2 If S is a convex set in £, then

a point x € S is an extreme point of S iff no non-
degenerate segment in S exists which contains x in its
relative interior.

Note that x is an extreme point of a convex set S
iff sv{x} is convex. Also, the above definitions imply
that the exposed points of S are extreme points of S.

Definition 3.3 A non-empty set M of a set KgL

is called an éxtremal subset of K iff x € K, y ¢ K,
and MQintvxy#¢ implies that {x}v{yl}zM.

An extreme point of a set K is an extremal subset
of K consisting of just a single point.

Definition 3.4 If C is a compact convex set of

a topological ljinear space L, then extC denotes the set
,of extreme points of C and expC denotes the set of
exposed points of C.

Definition 3.5 A real valued function is often

called a functional. Let p be a function defined on a

~subset of 2. Then p is a convex functional defined on

a convex subset S of &, iff
ploax+(l-a)yl=ap(x)+(1-a)p(y)

holds for all x, y € § and 0ga<l.
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Dofinition 3.6% Let A be a compact convex subsct

of Ln. Then the set denoted by gA={x ]XQA and convx=A}
is called the genesis of A.

The elements of gA are called the generators of A.
The set y € gA such that yix for every x € gA ( if such
a set exists ) is called the antecedent of A. If gA is
considered to be partially ordered in the usual sense
of partially ordering sets, then the antecedent of A is
a minimal set analogous to Zorn's maximal element.

The following examples provide some clue as to

the nature of sets having antecedents:

Example 3.1 The antecedent of a closed line
segment is the set of its endpoints.

Example 3.2 The antecedent of a closed triangular

region is the set of its vertices. Further, the
antecedent of a solid polyhedron is the set of vertices
of the polyhedron.

Example 3.3 The antecedent of A={x ¢ E": |x-p|<r}

is the set {x ¢ E": |x-p|=r}.

Example 3.4 Consider the open ball A where

A={x € E™: ]x—pl<r}.‘ Although A is not closed and hence
not compact, it is informative to note that there a¥re
infinitely many subsets of A which share A as ‘a convex
hull, but no smallest such set. On the other hand, the

set B={(x,y) ¢ E*| y>x?} is unbounded and thus not

ot
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compact but has a smallest set {(x,y) € E?| y=x%}¢ B
whose convex hull is B.

Notice that in examples 3.1 - 3.3 the antecedent
of each convex set was the set of exposed points of the
convex set. One might be léd to conjecture that the
exposed points of a compact convex set in Ln is the
antecedent of the compact convex set. Example 3.5
quickly dispels this notion.

Example 3.5 Let A={x ¢ E?: |x-s|=r} and p e E2nA.

Let B=conv(Av{pl}). The antecedent of B is not the set
of exposed points of B. Let pw and pz be the tangents
from p to circle A where w, 2z € A. The antecedent of B
is the set {closed major arc zwlu{p}. But z and w are
not exposed points of B. They are, however, extreme
points of B.

From the definitions of expC and extC, it is
obvious that expCrextC. But Example 3.5 clearly shows
that extC is not a subset of expC. However, both extC
and expC are subsets of bdC.

Theorem 3.2 If the antecedent of a compact

convex set A Ln exists, it is unique.

Proof: Suppose x is the antecedent of a compact
convex set A. Now suppose, by way of contradiction,
that there exists a y € gA such that y is an antecedent

for A and y#x. But by definition of antecedent xgyvand
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vix. Then y=x, a contradiction. So that if the
antecedent of A exists,'it is unique.

Whoqﬁém 3.3 If F is a family of extremal

subsets of a set K, then a non-empty intersection of
any éubfamily of F is an extremal subset of K.

Proof: Let fi e F, 1 ¢ A. Choose x € K, yv & K,
If (igAfi)Qintvxy#¢, then fiQintvxy#¢, so that for

each £, {x}u{y}gfi, i € A. Hence, {x}viylz @ £..
i€p 1

Definition 3.7 " Let S be a set. Let T be a
collection of subsets of S, then (S,T) ié said to be
a restricted topological space iff for every non-empty
subcollection FgT

(a) VF ¢ T and

(b) if F is finite, QF e T.

Theorem 3.4 The genesis of a compact convex set

having an antecedent is a restricted topological space.
Proof: Let F be a finite subset of gA where A
is a compact convex subset of L™ such that A has an
antecedent. Let x be the antecedent of A. Obviously,
xry for every y € F. Then xrQFzA. But, convxgconv(QF)
and conv(QF)cA. Now convx=A, so that conv(QF)=A. But
this implies that QF € gA. A similar argument produces

that if F*ggA, then uF* g gA.
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Theorem 3.5 If K is a non-empty compact set in

a locally convex topological linear space L, then K has
at least one extreme point.

Proof: Let F be the collection of all compact
extrémal subsets of K. Then F is not empty since KgF.
Partially order the collection F by set inclusion.
Since K is compact, any non-empty linearly ordered
subset of F has a compact non-empty intersection, which
by Theorem 3.3Kis an gxtremal subset of K. By Zorn's
Méximal Principle, the set F has a minimal element,
denoted by F*.

Now all that remains is to show that F* is an
gxtremal subset of K consisting of exactly one point
and thus an extreme point of K. Suppose, by way of
contradiction, that F* contains two distinct points
x and y. Now {x} is a closed convex set and y & Lr{x}.
By Theorem 2.8, there exists a closed hyperplane H such
that y ¢ H and HQ{x}=¢. Then x ¢ H and F*QH#¢. Since
F*QH is clearly an extremal subset of K, and since
X ¢ F*QH, the set F* is not minimal. Hence F* can
contain at most one point. This statement implies that
F*c¢ K is an extreme point of K, since an extreme point
is an extremal set consisting of exactly one point.

Theorem 3.6 Let S be a compact convex set in a

locally convex topological linear space L. Then for each

closed hyperplane of support to S, HRextS#é.
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Proof: Let H be a closed hyperplane of support
to S. UNS#¢, where H=[f:0a] and S is a subset of one of
the half-spaces determined by H, say H+. Since'H is
closed, HQS is a non-empty, compact convex set and by
Theorem 3.5 HQS has an extreme point x. If y e S"H,

z £ 8, then f(y)<o, £(z)ga, where without loss of
generality H+={x € L| f(x)<o }. Since®f(x)=a, then
x ¢ intvyz. Also, if y € HQS, z € HQS, then since

X is an extreme point of SQH, x ¢ intvyz. Thus x is
an extreme point of S.

The Krein-Milman Theorem, which follows, is a
well known theorem that describes a convex set in terms
of its extreme points. For a different proof of
Theorem 3.7 see Krein and Milman (1).

Theorem 3.7 If S is a compact set in a locally

convex topological linear space L, then the closed
convex hull of S is the same as the closed convex hull
of the set of extreme points of S.

Proof: %ince extSgS, then cl conv exts is a
subset of the closed convex hull of S. Now it remains
to show that Stcl conv extS. Suppose, by way of
contradiction, that S is not a subset of ¢l conv exts,
and then choose x from Snvcl conv extS#¢. Since L is
a locally convex space, Theorem 2.8 implies that there

exists a closed hyperplane H*={[f:8] through.x, where
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without loss of generality, £(y)<B for v € cl conv extS.
But S is compact, so that a hyperplane H=[f:a]l, o>R,
exists such that HQS#¢, £(S)<a, and thus HOcl conv extS=¢.
But Theorem 3.6 'implies that since H is closed, H
contains an extreme point of S. This is a contradiction.
Thus, it is false that S is not a subset of cl conv extS.
Then cl conv S= cl conv extS. |
Theorem 3.7 may be restated as follows:

Theorem 3.8 Suppose that C is a compact convex

subset of a locally convex Hausdorff linear'space L and

X is a subset of C. Then C is the closed convex hull

of x iff each extreme point of C lies in the closure of Xx.
A finite dimensional normed linear space " is

locally convex, so that Theorems 2.13, 3.7, and 3.8 now

imply that every compact convex subset of L™ has an

antecedent, namely the set of extreme points of the

compact convex set. Recall also that Ln is linearly

isomorphic to E”, These statements then form the proof

of the following:

Theorem 3.9 If S is a compact convex set in a

finite dimensional normed linear (Minkowski) space L

or En, then S has an antecedent.
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- CHAPTER IV

A PROPOSITIONAL SUBSET OF

THE GENESIS OF A SET

An advantage of defining the genesis of a compact
convex subset of L is to discuss some properties of
some of the propositional subsets of the genesis. As a
case in point, the following definitions lead to one
such subset of gA, where ArE?:

Definition 4.1* If X is a set property and A

n .

is a compact convex subset of L , then PA(X) will be
used to denote the subset of gA consisting of those
elements having property X, i.e., PA(X)={y e gAly has Xx}.

Definition 4.2*% Let A be a subset of I, then the

set denoted by augA=XUAxy is the augmentation of A.
€
YeA
Definition 4.3 A maximal connected subset of a

set A in a topological space S is called a component of A.
A set A in L is simply connected iff each component
of the complement of A is unbounded.
Alternately, a set is simply connected iff any
closed curve within it can be deformed continuously to

a point of the set without leaving the set.
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Definition 4.4* Let AgLn, A not convex. Suppose

X € convAVA and that there exists points gz and y
belonging to A sﬁch that x=az+(l-a)y for some 0<oa<l,
then x is said to be braced relative to A. zy is an
A-relative brace of x. If every point of convAVvA has
an A-relative brace, then A is said to be a braced set.

‘Definition 4.5 A crosscut of a set SrzL is a

closed segment xy such that intvxygintS$S and such that
x € bdS and y € bdS.

Theorem 4.1 If an open set K has no crosscuts,

then it is the complement of a convex set.

Proof: Let x, vy € K. If xyQK#d, then K has a
crosscut which is a subinterval of xy since K is open.
Hence xyfK=¢ and K is convex.

Definition 4.6 If S is a set in a linear space %

and if V is a K-dimensional flat, then SQV is called a
K~-dimensional section of S. If H is a hypérplane of &,
then SRH is called a plane section of S.

Definition 4.7 A continuum in a topological

linear space L is a compact connected set. A closed
connected set in a Minkowski space 17 is called a
generalized continuum . A generalized continuum is
automatically boundedly compact.

Definition 4.8% If AzL? and A is not convex and

x € convAVA implies that there exists a plane H such
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that x ¢ H and AQH is connected and X e conv(AQH),
then A is said to be rigid.

Note that the set of braced sets whose convex
hull is convA is a propositional subset of g(convA).
If B is the property of being braced and C is a convex
set then PC(B)qu. The following lemma is presented
preparatory to determining a sufficient condition for
a set in L? to be braced. Because of Theorem 1.3, a
proof in E? is adequate.

Lemma 4.1 + If A is a connected subset of E?
and p € A and g e augAvA and x=ap+(l-a)g for O<oa<l,
then x ¢ augA.

Proof: If x ¢ A, the result follows immediafely.
Suppose x ¢ A. g e augAvA iff there exist 0<B<l and
W, z € A such that g=pw+(1-B)z. Let

[f:al={y ¢ E?| y=Ap+(l-A)d, X € R},

[g:8]1={y ¢ E?| y=xz+(1l-A)x, X € R},

[h:yl={y € E?| y=aw+(1-A)%, X ¢ R}.

Note that if f(w)>qa, then f(z)<oa.

If g(p)>8, then g(q)<§, g(w)<S§.

If h(p)>y, then h(z)<y, h(qg)<y.

The above statements may be adopted without loss
of generality. |

Cléarly, p and w are elements of a connected set

A separated by [g:8]. Then D=AQ[g:8]1#¢, otherwise A is
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a subset of the union of the two open half-planes
determined by [g:8], contradicting that A is connected.
Case I: Suppose T1=DQ{x|f(x)>u}#¢. Let t; & Ty.

Then there exists 0<A<1l such that x=Az+(l-A)tl. But
tl € A, thus x € augA.

Case II: Suppose that Tl=¢. Then DQ{f:al#¢ or
T2=D9{x|f(x)<a}#¢. But DQ[f:al#¢ implies that x € A,
a contradiction. Thus T,#¢. Let ty € T2.' Then there

exists 0<A<l such that t,=Az+(l-A)x. Thus h(t2)<y, and

2
t, and p are separated by [h:y].

Let t4 € T.=A0 [h:y]Q{x|£(x)<al}Q{x|g(x)>8}#¢. Then

3
t3=Ax+(l—A)w where A>1. Now x=(1/A)t3—[(l—A)/A]w, and
x=—[(l/A)—l]w+(l/A)t3. Let A=1/A. Then 0<A<l so that
x=Até+(l—A)w. The last statement implies that

X € augh.

Theorem 4.2 If A is a compact connected subset

of E2, then augA=convA.

Proof: Obviously augAgconvA.

Now suppose thaf X € convA., Since A is compact,
if x € bd convA, then X € extAgA or x belongs to the
relative interior of some maximal line segment zy where
zytbd convA. Now line zy bounds A so that by Theorem 3.6
énd Definition 3.2, 2z, y € extAcA.l Thus if x € bd conva,

then x e augA.
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Suppose that x € int convA. Let p be an extreme
point of A, thus p € bd convA. Consider the line
g=Ax+(1l-A)p. qhint convA#¢ so that by Theorem 2.11,
qfbd convAv{p} consists of exactly one point, say k.
Note that g=Ak+(l-A)p and for some 0<A<l, x=Ak+(1-A)p.

If k € A, then x € augA.

If k ¢ A, k € augA and by Lemma 4.1, X € augA.

Thus, in either case, convAtaugA, so that augA
and convA are idenﬁical, i.e., augA=convA.

It is now obvious that if A is a compact connected
subset of L?, then augA is the convex hull of A.
Theorem 4.3 now follows immediately.

Theorem 4.3 If A is a compact connected subset

of L? or E?, then A is braced.
Observe also that Theorem 4.2 together with
Theorem 1.7 implies the following:

Theorem 4.4 If A and B are disjoint subsets of

E2, and A is a compact connected set and B is a compact
connected set, then AUB is braced.

One should not be too hasty and conclude that
connectedness is sufficient for a compact set to be
braced in L®. The following example illustrates:

Example 4.1 Let A be a subset of E® formed by

taking the union of three non-coplanar line segments

having a common point of origin. A is compact and
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connected, but no point in the interior of the closed
solid tetrahedron which is A's éonvex hull has a
brace relative to A.

Other examples may be easily constructed to show
that connectedness is not necessary for . a set to be
braced in E? or E® and consequently L? and L3.

For a proof of the following theorem consult
Valentine (1, pp. 91-93).

Theorem 4.5 If S is a compact set in L® and if

each plane section of S is a simply connected continuum,
then S is convex. (The converse is obviously true.)

Theorem 4.6 If A is a subset of E? or L3 and

A is rigid, then A is braced.

Proof: The theorem follows immediately from the
definition of rigid and Theorem 4.3.

The results of Chapter IV are now summarized in
terms of;Definition 4.1.

Theorem 4.7 Let B be the property of being braced.

Let C be the property of being connected. Let R be the
property of being rigid. Now suppose that X is a convex
subset of L2 and Y is a convex subset of L%, then
PX(C)QPX(B) and PY(R)QPY(B).
Proof: The results are immediate from Theorem 4.2

and Theorem 4.5.
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APPENDIX

Definition A.1l A set Sgyg, étar—shaped with

respect to the origin ¢, is called linearly bounded iff
each line through g intersects S in a line segment.

Definition A.2 Let S be an open set in L which

is star-shaped with respect to g and which is linearly
bounded. Then the Minkowski distance functional , is
a real valued function defined on L as follows:
p(x)=A;0 where )x*=x, X* ¢ bdS, and gxX*rints, Oéu;l.
If x ¢ S, then p(x);l.

Definition A.3 A topological linear space L is

said to be normable if it is locally convex and if it
contains a non-empty bounded open set.

Definition A.4 A normable topological linear

space L with a norm (as for example, the Minkowski
distance functional) is called a normed linear space.

Definition A.5 A finite-dimensional normed

linear space is called a Minkowski space.
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