

APPROVED:

Saraju P. Mohanty, Major Professor
Elias Kougianos, Co-Major Professor
Mahadevan Gomathisankaran, Committee

Member
Barrett R. Bryant, Chairman, Department

of Computer Science and
Engineering

Costas Tsatsoulis, Dean, College of
Engineering

James D. Meernik, Acting Dean of the
Toulouse Graduate School

RAPID PROTOTYPING AND DESIGN OF A FAST

RANDOM NUMBER GENERATOR

Juan Franco

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2012

Franco, Juan. Rapid prototyping and design of a fast random number generator.

Master of Science (Computer Science), May 2012, 52 pp., 10 tables, 22 figures,

references, 29 titles.

Information in the form of online multimedia, bank accounts, or password usage

for diverse applications needs some form of security. The core feature of many security

systems is the generation of true random or pseudorandom numbers. Hence reliable

generators of such numbers are indispensable. The fundamental hurdle is that digital

computers cannot generate truly random numbers because the states and transitions of

digital systems are well understood and predictable. Nothing in a digital computer

happens truly randomly. Digital computers are sequential machines that perform a

current state and move to the next state in a deterministic fashion. To generate any

secure hash or encrypted word a random number is needed. But since computers are not

random, random sequences are commonly used. Random sequences are algorithms that

generate a pattern of values that appear to be random but after some time start

repeating. This thesis implements a digital random number generator using MATLAB,

FGPA prototyping, and custom silicon design. This random number generator is able to

use a truly random CMOS source to generate the random number. Statistical

benchmarks are used to test the results and to show that the design works. Thus the

proposed random number generator will be useful for online encryption and security.

Copyright 2012

by

Juan Franco

ii

ACKNOWLEDGMENTS

I deeply acknowledge my major professor, Dr. Saraju P. Mohanty, for his time, feed-

back, and sincere encouragement for this research. His knowledge helped me to get involved

in and complete this thesis topic. I also thank my co-major professor, Dr. Elias Kougianos,

for the time and all the key suggestions he provided for this research and implementation. I

thank my committee member Dr. Mahadevan Gomathisankaran. I also thank the Depart-

ment of Computer Science and Engineering (http://www.cse.unt.edu), which is a key unit

in the College of Engineering at the University of North Texas (http://www.unt.edu), for

making all of this possible. I thank all the members of the NanoSystem Design Laboratory

(NSDL, http://nsdl.cse.unt.edu) for all the discussions we had for this research.

iii

CONTENTS

ACKNOWLEDGMENTS iii

CHAPTER 1. INTRODUCTION 1

1.1. Case Study Embedded Systems 1

1.1.1. Secure Digital Camera (SDC) 1

1.1.2. Net-Centric Multimedia Processor (NMP) 2

1.2. The Need of Security in Embedded Systems 3

1.3. Sample Applications of Random Number Generators 4

1.4. Random Number Generators: A Broad Prospective 5

1.5. Motivation of Research for this Thesis 7

1.6. Organization of this Thesis 8

CHAPTER 2. STATE OF THE ART IN RANDOM NUMBER GENERATORS 9

2.1. Analog Random Number Generator 9

2.2. Pseudorandom Number Generators 10

2.3. Digital Random Number Generators 13

2.4. Contribution of this Thesis 14

CHAPTER 3. FPGA IMPLEMENTATION OF THE RANDOM NUMBER

GENERATOR 16

3.1. Architecture of the Proposed Random Number Generator using MATLAB 16

3.1.1. The XOR Conditioner 16

3.1.2. The Pseudorandom-Number Generator 19

3.2. Rapid Prototyping using Field Programmable Gate Array (FPGA) 21

3.3. Simulation of the FPGA Prototype 24

3.4. RTL Synthesis from FPGA 25

CHAPTER 4. CIRCUIT DESIGN OF THE RANDOM NUMBER GENERATOR 32

iv

4.1. The Design Flow for the Random Number Generator Circuit 32

4.2. Transistor Level Design 34

4.3. Layout Level Design 35

CHAPTER 5. EXPERIMENTAL EVALUATIONS 39

5.1. Experiments of the Random Number Cell 39

5.2. Experiments of the 32-bit Random Number Generator using CMOS Circuit

and MATLAB 41

5.3. Experiments of FPGA Implementation 47

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 49

BIBLIOGRAPHY 50

v

CHAPTER 1

INTRODUCTION

In this chapter a brief description of some example applications of random num-

ber generators are provided that served as the motivation of the research undertaken in

this thesis. Two emerging multimedia security frameworks, a secured digital camera and a

net-centric multimedia processor are briefly discussed focusing on their security parts. An

overview of related research in random number generators is also provided along with a

classification of random number generators.

1.1. Case Study Embedded Systems

1.1.1. Secure Digital Camera (SDC)

An embedded system which is used in day-to-day life is a digital camera. The digital

camera may be a stand alone system or part of smart mobile phones. They may employ

charge-coupled-device (CCD) sensors or complimentary metal-oxide sensors (CMOS). Cam-

eras may be regular digital cameras or digital single-lens reflex (DSLR) among other forms.

However, the digital signal processor (DSP) is the key component that performs the image

of video processing in the camera. A digital camera is able to record multimedia, store them

in a digital format, or transmit them over the Internet. For images or still pictures, formats

like JPEG, TIFF, RAW, etc. are used. For videos, formats like H.264, MPEG, MPEG2,

AVI, etc. are used.

One of the key advantages of using a digital format is that it allows for high-visual

quality and easy processing. Because it is so easy to process digital media, the need for digital

rights management (DRM) [16, 15] rises. A system-level solution is a secure digital camera

(SDC). The important blocks of the SDC are provided in Fig. 1.1. The use of encryption

along with digital watermarking is necessary to accomplish effective DRM. Encryption is a

method of transforming a digital media to a secure form so that unauthorized users can not

view or tamper with the media. Encryption allows us to perform access control to the media

1

[6]. Watermarking allows us to embed digital rights on a media so that we can determine

the origin of the digital media [18, 14].

Figure 1.1. The key components of the secure digital camera (SDC).

1.1.2. Net-Centric Multimedia Processor (NMP)

Digital broadcasting is preferred over traditional analog broadcasting due to several

advantages of analog transmission: digital TV has a single standard compared to analog TV,

low production cost, low bandwidth requirements, capability of displaying computer appli-

cations over the same screen as that of the TV. Such digital signal transmission-reception is

possible over terrestrial, satellite, and cable links, carrying compressed streams. The Inter-

net Protocol (IP) is an important protocol and widely used for data transmission over the

Internet. Thus, coexistence of the digital TV and IP protocols is necessary and intuitively

will be cost effective. The net-centric multimedia processor (NMP) is a system that is needed

for this application [13, 16]. The NMP has the added features to ensure security and copy-

right issues of digital video, which will need separate engines for compression, watermarking,

scrambling, and cryptography.

A diagrammatic view of the NMP system is presented in Fig. 1.2. The NMP consists

on several processing elements (PE). In the NMP, one or more PEs process video and others

process Internet packets for broadcasting with added security and protection. Video is

one of the most important digital multimedia [13]. In [16], the Net-Centric Multimedia

Processor (NMP) was introduced along with power efficient and reconfigurability features.

This is a video processor that is able to do integrated encryption, watermarking and video

compression in real time. The advantage of such a system is that it could be integrated into

current systems to allow easy sharing of the media in existing protocols such as IP. Each

2

of the elements are optimized for specific tasks to increase performance and lower area and

power consumption [16].

Figure 1.2. Key components of the net-centric multimedia processor (NMP).

The NMP is designed using a multiple core approach for speed and power

dissipation tradeoffs.

1.2. The Need of Security in Embedded Systems

There is a growing need for security in embedded systems for multiple reasons and

perspectives. Security and copyright protection can deal with the content that embedded

systems handle. Security can also deal with the protection of the embedded system itself

from the process of reverse engineering and duplications. However, the scope of this thesis

is the security of the content and information that an embedded system handles.

One way of securing embedded systems is by using watermarked multimedia. Hard-

ware assisted watermarking in the context of embedded systems for DRM at the source has

several advantages [11]. In general watermarking is composed of three parts: the encoder,

the decoder and the comparator. The Encoder grabs the original multimedia along with a

watermark and provides a watermarked multimedia file. The decoder grabs the test image

and a watermark, then it attempts to extract the watermark. The comparator gets the out-

put from the decoder and the original multimedia and compares them by correlating them

3

and provides a number. Depending of the value of this number one can determine if the

original multimedia and the test multimedia are the same image.

Hardware assisted DRM uses simultaneous watermarking and encryption of images or

video and is suitable for real-time applications [15]. The sequence of the use of watermarking

and encryption schemes depends on the target application. The encoding process encrypts

the watermark logo using an encryption algorithm and a public key. Then the result is

embedded on to the original image to get a watermarked image. To authenticate if a given

image is the original image is done by extracting the encrypted logo from the watermarked

image and comparing it with the original encrypted logo. The decoding process needs the

original logo to compare and also needs the encryption process and the public key. This add

complexity to the system and allows for access control to the authentication process.

1.3. Sample Applications of Random Number Generators

Random number generators are used in many applications including statistical sam-

pling, statistical analysis, Monte Carlo simulation, cryptography, and watermarking. Each

of these applications actually depend very heavily on random numbers. It can be seen that

all of these application are performed today in digital computers, where the generation of

random numbers is less trivial than may initially appear.

Statistical sampling is the technique of sampling large amounts of data by just sam-

pling a small amount of data that is representative of the entire set [3]. The small amount of

samples is chosen by using rules such as probability characteristics of the set of all samples.

Random numbers are needed to select the set of data that will be used to sample so that

fast sampling can be performed as well as the representative data can be obtained.

Data analysis is the method of analyzing data to infer about their nature and fidelity

[27]. When analyzing very large amounts of data, statistical analysis can be used to analyze

a smaller amount of data. Thus random number generators are needed to determine or

predict the rest of the data that is not analyzed.

An area where random number generators are used is in simulation. Simulation

is widely used in weather prediction, IC design, material reaction, etc. Random number

4

generators becomes a crucial part of the simulation when trying to simulate complex systems.

A very well known application or process that uses this is the Monte Carlo Simulation [1].

Cryptography is the process of securing information in a way that only allowed users

can read it. Normally this process is performed by taking the information one wants to

secure and then using some algorithm to change the information in a way that it can’t be

read. An other application of cryptography is to change the data back to its original format.

These processes require the use of random numbers to generate seeds. A seed is the initial

state where a random number generator starts [19].

Digital watermarking involves hiding some form of data or information inside digital

multimedia [17]. The watermark is generated by a pseudorandom sequence generator. The

unit that generates the binary watermark consists of linear feedback shift registers (LFSR).

The LFSR is a very crucial unit in watermark security and detection. It is a sequential shift

register with combinational feedback logic around it that causes it to cycle pseudo randomly

through a sequence of binary values. The LFSR consists of flip-flops (FFs) as sequential

elements with feedback loops.

1.4. Random Number Generators: A Broad Prospective

Random number generators have been an important topic of research since the in-

vention of the digital computer. The root cause of the problem is that digital computers

cannot generate truly random numbers due to their deterministic nature of computing. A

system that can generate truly random numbers is shown in Fig. 1.3. The problem is that

this simple mechanism can’t be implemented in a digital computer to generate random num-

ber. This is because the logic functions, states and transitions of digital systems are well

understood and deterministic. Digital hardware designers always try to avoid getting into

unknown states or situations where they don’t know what the output could be. Nothing in

a digital computer happens truly randomly.

Random number generators are mainly used for encryption and security. To generate

any secure hash or encrypted word, a random number is needed. The same is true in

cryptography. Most cryptographic protocols use random number generators. However, as

5

Figure 1.3. Tossing a coin to generate random numbers.

the computers are not random, researchers have came up with random sequences. Random

sequences are algorithms that generate a pattern of values from a given seed that appears

to be random but after some time it starts repeating itself in a loop.

A true random number generator using only Complementary Metal-Oxide- semicon-

ductor (CMOS) technology is important. The advantage of this is that it makes it much

easier to include in existing circuits. This has an advantage of using the high density in

nanoscale CMOS [10]. The RNG in [5] is used as a case study for this thesis. The design

takes advantage of an unstable state of a digital system and it uses the randomness of real

phenomena to stabilize it and produce random results.

These bits will be used to manipulate a LFSR to produce good quality random num-

6

bers. The reason for this is that the cells themselves are too sensitive to process variation

and this produces a need for a conditioning logic. The final goal is to produce good random

numbers that will pass very strict randomness tests to prove that these numbers can be used

for encryption, watermarking, or other security applications.

1.5. Motivation of Research for this Thesis

The primary motivation for the research undertaken in this thesis is the urgent need

for a robust random number generator to meet security demands. The need of good random

number generation in digital systems has been around for a long time and several research and

development activities have been undertaken. Many different ideas, types, and alternatives

have being attempted. From the hardware point of view, pure digital implementation or a

mixed-signal implementation have been used.

Digital implementations predominately use CMOS technology. The problem with

this approach is that CMOS technology is very deterministic and predictable. Particularly,

the switching of devices is predictable. In these implementations, pseudorandom number

generators or a random sequence generator are being used. These are algorithms that produce

a sequence of numbers in a random like way by using two things: an initial condition and seed

[21]. The initial condition will determine where the sequence will start. The seed determines

the pattern the sequence will follow. Even though digital implementations appear to be

random, they are cyclical. In other words the pattern will repeat after certain cycles. Also

since they depend on two parameters (initial condition, seed), they can be cracked. In other

words, the sequence can be predicted if the present state can be replicated [28].

Mixed-signal implementations use both CMOS and analog components. Some of the

most common designs use some analog component such as resistors, capacitors, or even RF

receivers. Then they convert the analog signal to digital using Analog To Digital Converters

(ADC).

7

1.6. Organization of this Thesis

The thesis is organized in six chapters: Introduction, State or the Art in Random

Number Generators, Field Programable Gate Array (FPGA) Prototyping of the Random

Number Generator, Circuit Design of the Random Number Generator, Experiments and

Evaluation, Conclusion and Future Research.

In Chapter 1, the thesis discussed embedded systems and the security in them. This

chapter also discusses some application of random number generators and provide some

background in random number generators. Finally the motivation of this research has been

discussed.

In Chapter 2, State of the Art in Random Number Generators, the thesis briefly

outlines different types of random number generators. In this chapter other research that

has been done in this topic is highlighted. Analog RNG, pseudorandom RNG, and digital

RNG, are discussed. The contributions of this thesis are then presented.

In Chapter 3, Field Programable Gate Array (FPGA) Prototyping of the Random

Number Generator, the thesis discusses the implementation of the proposed design in an

FPGA. The MATLAB simulation is also performed as a proof of concept. Then the im-

plementation on the FPGA including the blocks and ports is presented. The Register-

Transfer-Level (RTL) Synthesis of the FPGA design is performed to obtain a hardware cost

perspective.

In Chapter 4, Circuit Design of Random Number Generator, the circuit and the

layout design of the RNG cell are implemented in Cadence Virtuoso.

In Chapter 5, Experiments and Evaluation, the thesis presents the experiments used

to test the designs and the results from them. This chapter describes how the RNG cell was

tested. The experimental results are also presented. The test of the FPGA and MATLAB

design are discussed.

In Chapter 6, Conclusion and Future Research, the thesis briefs the conclusions of

this research and also some future research that could be done to this thesis is presented.

8

CHAPTER 2

STATE OF THE ART IN RANDOM NUMBER GENERATORS

This chapter describes research which is related to the scope of this thesis. The

chapter is divided into sections for more clarity of the discussion. The classification of the

prior research research is presented as shown in Fig. 2.1. The first one is analog random

number generators. These are designs that require analog computing. The second one is

pseudorandom number generators. This is where the numbers are constructed by using a

function where the values appear random. The last one is digital random number generators.

These generators are designed using complementary metal-oxide semiconductor (CMOS)

technology.

2.1. Analog Random Number Generator

Many attempts to create a random number generator using analog devices have been

presented in the literature. Intel in 1999 introduce a truly random number generator using

analog components [8]. This random number generator uses a thermal noise source. It uses

the noise captured and digitalizes it to create a specific number. This is a very efficient

way to create random numbers. They only problem is the cost due to the use of analog

components. Analog components can make a chip more complex to design since they differ

is size and power requirements. They tested their results with various benchmark tests

including, DIEHARD, FIPS, and Knuth’s tests. Their design passed all of the above tests.

A random number generator for communication systems was introduced in [23]. They

demonstrated a 30 Gbit/s generator using superconductive materials. A superconductive

random number generator is designed by using a single-flux-quantum balanced comparator

and a current source. Physical phenomena such as thermal noise and electronic noise [23] are

used in this design. They used the same tool to test their results, i.e. the NIST statistical

test suite.

9

Figure 2.1. The state-of-the-art in random number generator design.

2.2. Pseudorandom Number Generators

Some research results show that by combining different algorithms to generate num-

bers that look random will generate a more robust random number sequence as depicted in

Fig. 2.2. The research presented in [26] demonstrated that the combination of the logistic

chaotic mapping [4], linear congruential method [29] , and hybrid optical chaotic mapping

[25] will generate a combined algorithm than can produce very strong pseudorandom num-

bers that will pass the randomness tests. These research works have shown the results from

various experimental runs test and they passed common randomness tests. This was only

showing a pseudorandom sequence which will eventually repeat and it can also be predicted

since it is purely deterministic.

10

Figure 2.2. Block diagram of a pseudorandom number generator.

Another way researchers have tried to generate random sequences is by using a Gauss-

ian noise simulator algorithm and obtain a sequence from there. Gaussian noise simulators

are used to generate white noise. They are extensively used in various science and engineering

applications to simulate and test radio frequency systems. In [28], the author implemented

a Gaussian random number generator (GRNG) using hardware. Similar to our research, the

authors used a LFSR based implementation to test it. So in other words, they used a GRNG

instead of the random number generator cells. They have compared their results (presented

in Table 2.1) with a Tausworthe implementation.

Table 2.1: Statistical test results for randomness of vari-

ous designs in the prior related research

TEST Tausworthe [28] LFSR [28] Sugiura ([23]) Thamrin [24] Kwok(T=2,

M=1) [12]

Birthday 0.908125 0.718022 N/A N/A 0.5468

OPERM5 0.659361 0.894649 N/A N/A 0.7081

Binary

Rank (31 x

31)

0.782536 0.894649 N/A 0.294517 0.3917

11

Binary

Rank (32 x

32)

0.357046 0.768956 N/A N/A 0.9890

Binary

Rank (6 x

8)

0.324027 0.261791 N/A N/A 0.8859

Bitstream 0.598578 0.443253 N/A N/A 1.0000

OPSO 0.431957 0.571626 N/A N/A 1.0000

OQSO 0.492004 0.559064 N/A N/A 1.0000

DNA 0.432068 0.525910 N/A N/A 0.3098

Stream

Count-the-

1

0.459779 0.564513 N/A N/A 0.9977

Byte

Count-the-

1

0.609182 0.560009 N/A N/A 0.0212

Parking

Lot

0.941697 0.460448 N/A N/A 0.5201

Minimum

Distance

0.337831 0.999999 N/A N/A 1.0000

3D Spheres 0.952286 0.634016 N/A N/A 0.6350

Squeeze 0.113189 0.855206 N/A N/A 0.7088

Overlapping

Sums

0.139815 0.717343 0.066882 0.587053 0.5779

Runs Up 0.555513 0.575984 0.017912 0.572333 0.0239

Runs

Down

0.253845 0.552341 N/A N/A 0.9794

12

Craps 0.395120 0.841941 N/A N/A 0.7242

Frequency:

Monobit

N/A N/A 0.122325 0.326473 0.6789

Frequency:

Block

N/A N/A 0.122325 0.255473 0.7607

Cumulative

Sums-

Forward

N/A N/A 0.122325 0.565004 0.9205

Cumulative

Sums-

Reverse

N/A N/A 0.122325 N/A 0.9307

2.3. Digital Random Number Generators

Different random number generators have been proposed using different architectures

and algorithms and prototyped in FPGAs [2]. In [12] a truly random number generator

using an FPGA is presented. Using a Xilinx Vertex II Pro FPGA they were able to use

the built-in clock to get random seeds. This FPGA has a Delay-Locked-Loop (DLL) clock

generator. The problem with this clock is that is susceptible jitter during transitions. This

is normally a problem, but in this paper they were able to use the jitter to advantage for

generating the random numbers. The problem with the values generated is that they could

be biased to ones or zeros. By using a parity filter, they were able to get the bias close to

50-50.

Many implementations have been made for digital random number generators. In [21],

the authors have presented the implementation of Tausworthe random number generator

optimized for parallel processing environments. They did a VLSI implementation in silicon

and simulated using Monte-Carlo simulation. The advantage of this simulation is that it

13

takes in consideration process variation. In this paper the authors demonstrated a successful

simulation of the random number generator passing some of the standard randomness tests

including the following: moment test, coupon collector’s test, serial test, poker test, the

equidistribution test, run test, Gap test, Kolmogorov-Smirnov test, and Visual test [21].

Implementations of random number generators have been proposed to predict the

present and future state of an architecture. In [22], the authors have introduced such an

architecture. The authors proposed a random number generator architecture that produces

160-bit words using a SHA technique. The size of the word is ideal for many security

applications. They implemented their design using VHDL and synthesized it for a Xilinx

FPGA. They tested the architecture with the FIPS randomness test suite. The architecture

was able to pass all tests. This shows that it could be used for cryptographic applications.

In [24], a very similar implementation is presented. The architecture is shown in Fig.

2.3. The authors used an LFSR to generate bits with the combination of a truly random

source. The truly random source is generated by an unstable clock frequency [24]. This is a

clock that is oscillating at a very high speed and with high sensibility to ambient conditions.

The proposed architecture used a simple XOR of the output from the LFSR and the bits

from the truly random source. This implementation passed the NIST statistical test suite

tests. The architecture has also been implemented using an FPGA.

2.4. Contribution of this Thesis

The random generator is simulated using MATLAB. FPGA prototyping of the ran-

dom number generator is presented along with the register-transfer level (RTL) synthesis

results. This thesis has introduced a random number generator based on cells. These cells

can generate random bits using only CMOS technology. These bits are used to control an

LFSR to produce a random number sequence that can’t be reproduced. Unlike most random

number generators that either require analog components or just produce a sequence that can

be reproduced, this random number generator does not require analog components and the

sequence can’t be reproduced. Exhaustive experiments using state-of-the-art benchmarks

were performed to test the quality of the numbers. The sequence produced passed several

14

Figure 2.3. Architecture of a digital random number generator [22].

statistical randomness tests. This means that this can be used for encryption to a military

standard.

15

CHAPTER 3

FPGA IMPLEMENTATION OF THE RANDOM NUMBER GENERATOR

In this chapter the simulation of the proposed random number generator in MATLAB

and its rapid prototyping using field programmable gate-array (FPGAs) are discussed. The

steps and theory of the design are explained. First the chapter discusses the MATLAB

implementation. In this section the theory behind the design is explained and the simulation

of the whole design is then presented. Then the implementation of the design in Verilog for

an FPGA is explained. This is followed by the RTL synthesis of the design.

3.1. Architecture of the Proposed Random Number Generator using MATLAB

A recent random number cell presented in [5] is considered for a full-fledged random

number generator implementation in this chapter. The cells on their own are not be able to

pass randomness tests. The cells need additional logic to make the results “more random”.

This is accomplished by evenly distributing bits and making the sequence more random like.

The overall idea of making the conditioner and the pseudorandom-number generator

is depicted in Fig. 3.1. The overall design will be using the bits obtained from step 1. At

this step, a cell is designed using 45nm CMOS technology. The cell generates all the bits

and the resulting bits are stored. The overall architecture uses the XOR technique for the

conditioner. A LFSR is used for the pseudorandom-number generation.

Figure 3.1. Three step process for the random number generator.

3.1.1. The XOR Conditioner

The conditioner is the block which is used to reduce the possible bias in bits from the

random generator cells. Cells, because of manufacturing parasitics, will never give perfect

16

results. That is, their results will not be evenly distributed for ones and zeros.

In the current design, the conditioner raw bits are generated from the cells by per-

forming XORing operation of the two bits. It is observed from the experiments that by

XORing two randomly generated bits with bias probabilities for ones and zeros, one will be

able to improve the bias (that is making it more like a 50-50 change on one and zero) by

approx. 200%.

It is now discussed how the XOR operation will improve the bias of two cells. Assume

that there are two cells A and B. The XOR operation of the values of the two cells is

performed using Fig. 3.2. Let us assume the probability of the two as follows:

P (A0) = PA0,(1)

P (A1) = PA1,(2)

P (B0) = PB0, and(3)

P (B1) = PB1.(4)

Here, P (A0) is the probability of cell A being zero. P (A1) is the probability of cell A being

one. P (B0) is the probability of cell B being zero. P (B1) is the probability of cell B being

one.

Figure 3.2. XOR gate with input of Cell A and B.

The truth table of an XOR gate looks as in table 3.1. By substituting the values from

the truth table with probabilities, the values in Table 3.2 are obtained.

By multiplying the probabilities of each row the probability of Y in each row is

17

Table 3.1. Truth table of XOR logic gate.

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.2. Truth table of XOR gate with probability from the cells.

A B Y

PA0 PB0 PA0 ∗ PB0

PA0 PB1 PA0 ∗ PB1

PA1 PB0 PA1 ∗ PB0

PA1 PB1 PA1 ∗ PB1

obtained as follows:

PY0 = PA0 ∗ PB0 + PA1 ∗ PB1,(5)

PY1 = PA0 ∗ PB1 + PA1 ∗ PB0.(6)

Where PY0 is the probability of Y being zero and PY1 is the probability of Y being one.

The bias of a cell is obtained by using the following equation:

(7) PB =

(
|0.50− P0|+ |0.50− P1|

2

)
,

where PB is the probability bias of the cell, P0 is the probability of the cell being zero and

P1 is the probability of the cell being one. From this, the probability bias of two cells A and

B is calculated as follows:

(8) PBAB =

(
|0.50− PA0|+ |0.50− PA1|+ |0.50− PB0|+ |0.50− PB1|

4

)
,

18

where PBAB is the probability bias of both cells. We can also obtain the probability bias of

Y as follows:

PBY =

(
|0.50− (PY0)|+ |0.50− (PY1)|

2

)
,(9)

PBY =

(
|0.50− (PA0 ∗ PB0 + PA1 ∗ PB1)|+ |0.50− (PA0 ∗ PB1 + PA1 ∗ PB0)|

2

)
.(10)

3.1.2. The Pseudorandom-Number Generator

The next step after the conditioner is the pseudorandom generator. This step is used

to make the final bits for the random sequence. It uses the bits from the XOR conditioner

to generate the final bits. In this design, a 32 bit liner feedback shift register (LFSR) is used

for this step. An LFSR (Fig. 3.3) is made of a shift register of a given size, a few XOR gates

and a tap. A tap determines which bits from the register will be XORed to obtain a new bit

to shift in the register. The seed is the initial values in the register.

Figure 3.3. LFSR

This design uses the bits given by the XOR conditioner to determine the seed, the tap

and the time of refresh (TR). The time of refresh (TR) is the time the design needs to wait

until a new seed is supplied and a new tap to the LFSR. The units of TR are cycles. These

are the cycles from the LFSR. TR is a 10-bit number in the proposed design. They come

from the bits generated by the cells. The conditioner will output a 32 bit value. From these

values the seeds, the tab and TR will feed. These values are denoted as LFSR IN. A single

bit from LFSR IN is called bit(N) where N represents the bit number within LFSR IN. A

19

function with LFSR IN will look as follows:

(11) LFSR IN = [bit(31), bit(30), ..., bit(1), bit(0)] .

The time of refresh is:

TR = [bit(22), bit(20), bit(18), bit(16), bit(12), bit(10), bit(6), bit(4), bit(2), bit(0)],(12)

TR = LFSR IN [22, 20, 18, 16, 12, 10, 6, 4, 2, 0].(13)

The seeds will use all of the values from LFSR IN so the function will be of the following

form:

(14) SEED = LFSR IN.

The following mechanism is used to have the tap values dependent on the cells. The

bits and a tap are not selected at random. The taps that will give a maximal length are

selected. For the longest length, the following cycle is obtained:

(15) 2N − 1 = 232 − 1 = 4294967296− 1 = 4294967295.

A lookup table is obtained that contains 8 different taps that will give maximal length. Then

3 bits are picked from LFSR IN to choose a row from the lookup table 3.3.

Table 3.3. Lookup table for taps used in this design.

Value Bits Tap

0 [000] [31,30,28,0]

1 [001] [31,30,4,3]

2 [010] [31,29,7,2]

3 [011] [31,29,6,3]

4 [100] [31,28,5,4]

5 [101] [31,28,5,3]

6 [110] [31,25,14,6]

7 [111] [31,30,15,1]

20

The equation for the tap is given by:

Tap = [bit(23), bit(10), bit(2)] ,(16)

Tap = LFSR IN [23, 10, 2] .(17)

Hence, if for example LFSR IN [23, 10, 2] = 101 , then the tap values will be [31,28,5,3].

This is very useful to prevent picking a random tap with a very low cycle and run in a loop

if the cycle is less that TR. The design for this part is shown in figure 3.4.

3.2. Rapid Prototyping using Field Programmable Gate Array (FPGA)

For the implementation of the algorithm the hardware description language Verilog

is used. Verilog is a well known hardware description language used in the industry. The

Altera Quartus II 9.0 software suite is used for the simulation and synthesis of the design.

In Fig. 3.5 a design flow of the implementation is presented.

The design was separated into three distinct modules. The first module was the XOR

handler. The second is the LFSR. The third is the controller. These modules are connected

to generate 32-bit random bits using the cells as inputs. A memory element was made in

the XOR handler to store all of the values from the cells. The memory was initialized before

the time of simulation.

The main job of the XOR handler is to XOR a set of sixteen 32-bits word from the

cells and output to the controller. The XOR handler has two inputs and two outputs. The

two inputs are the clock and the signal called got it. The clock is a global clock that has

been set to 50 MHz. The other signal is a control signal that the controller has. This signal

is used to tell the XOR handler that the controller already read the bits. After got it is set

to high, the XOR handler will generate another value. The XOR handler also has 2 outputs:

the first one is a rdy snd signal and a 32-bit word called bitsout. When the XOR handler is

ready to send the 32-bits it generated it will raise the rdy snd signal to 1.

The LFSR is an implementation of a regular LFSR but it also allows for change of

tap. The LFSR has 4 inputs and only one output. The first input is the clock which is the

global clock. The second input is reset. Every time reset is set to one (by the controller) it

21

Figure 3.4. Design of the LFSR with lookup table and XOR logic.

22

Figure 3.5. Design flow of FPGA RNG implementation

will change the tap and the seed of the LFSR and start producing values. The third input

is the init-tap. This input is what specifies the tap when the module is reset. The fourth

input is init (or seed). This is what contains the seed when the module is reset. The output

of the LFSR is just a 32-bit word that is updated every clock cycle.

23

The controller module, as the name implies, controls the XOR handler. The LFSR

produces the random bits. This module has 4 inputs and 5 outputs as shown in Table 3.4.

Table 3.4. Pin assignment of the controller module of the design.

Pin Direction Description

clock Input This is the 50 MHz global clock.

rdy snd Input This is the signal that lets the controller

know if XOR Handler is ready to send a new

value.

bitsin Input This is the 32-bit word that is sent by XOR

Handler.

LFSR in Input This is the 32-bit word that is sent by the

LFSR.

LFSR reset Output This is the pin to Reset the LFSR to change

the TAP and the SEED.

got it Output This is the pin to tell XOR Handle that Con-

troller received the 32-bit word.

LFSR seed Output This is the seed that is sent to the LFSR

when the LFSR is reset.

LFST Tap Output This is the TAP that is sent to the LFSR

when the LFSR is reset.

bitsout Output This is the final bits that will be output.

3.3. Simulation of the FPGA Prototype

After the implementation of the FPGA design, it is tested to ensure the design was

correct. The design was tested by simulating the FPGA design. The results are compared

with the results of the MATLAB implementation. The MATLAB implementation’s results

were tested by using common statistical testing suite.

24

The same inputs were given to both the MATLAB implementation and the FPGA

design. It is expected to get the same values in both provided the same inputs are given.

From Table 3.5 it can be seen that the first 20 outputs of the two design are the same. The

comparison test was performed over 1 million 32 bit values. However, for brevity, only 20 of

them are shown. These numbers are decimal representation of the 32 bit values calculated

in the design.

3.4. RTL Synthesis from FPGA

After writing the synthesizable Verilog code in Quartus, an RTL version of the design

is obtained. The top view shows the three modules connected as explained in the last section.

In Figure 3.6, the RTL schematic view of the FPGA implementation is presented. In Figure

3.7, the RTL view of the XOR module is presented. In Figure 3.8, the RTL view of the

LFSR module is shown. In Figure 3.9, the RTL view of the controller module is provided.

From FPGA synthesis results the resource utilization data are obtained. The resource

usage of the FPGA implementation is given in Table 3.6. It is evident from the table that

the design does not require too many resource and will be simple to add to existing designs.

25

Figure 3.6. Top level view of design using Quartus II RTL viewer.

26

Figure 3.7. XOR handler of design using Quartus II RTL viewer.

27

Figure 3.8. LFSR module of design using Quartus II RTL viewer.

28

Figure 3.9. Controller module of design using Quartus II RTL viewer.

29

Table 3.5. Comparison of the MATLAB and FPGA results.

MATLAB (32 bit in decimal) FPGA (32 bit in decimal) Equal?

3869298507 3869298507 YES

1934649253 1934649253 YES

967324626 967324626 YES

2631145961 2631145961 YES

1315572980 1315572980 YES

657786490 657786490 YES

328893245 328893245 YES

2311930270 2311930270 YES

1155965135 1155965135 YES

2725466215 2725466215 YES

1362733107 1362733107 YES

681366553 681366553 YES

2488166924 2488166924 YES

1244083462 1244083462 YES

2769525379 2769525379 YES

3532246337 3532246337 YES

1766123168 1766123168 YES

3030545232 3030545232 YES

3662756264 3662756264 YES

1831378132 1831378132 YES

30

Table 3.6. Resource usage of the FPGA implementation

Element Name Number Used

Total Logic Elements 83

Dedicated Logic Registers 64

Total Pins 33

Total PLLS 0

31

CHAPTER 4

CIRCUIT DESIGN OF THE RANDOM NUMBER GENERATOR

In this chapter the cell used to generate the seeds is explained. A layout of the cell

is also shown using state-of-the art computer-aided design (CAD) tools. First, a transistor

level design of the cell is performed using Cadence Virtuoso with the Schematic drawing

tool. Then a layout level design of the cell performed using Virtuoso is also presented.

4.1. The Design Flow for the Random Number Generator Circuit

The custom integrated implementation of the random number generator is now dis-

cussed. A modular design approach is followed to generate the layout of the complete chip

in which the logic design is top-down and the physical design is bottom-up. The overall

design flow is presented in Fig. 4.1. By using a hierarchical approach, the layout of various

resources is created. Finally, once the complete chip layout is generated, parasitic extrac-

tion and power, area, and performance analysis can be performed on the post-layout silicon

design.

The Virtuoso tool from Cadence was used to generate a transistor-level schematic of

the random number generator. This schematic is generated using a 45nm technology library

from Cadence. This library included a PMOS and NMOS which are used for the transistor-

level schematic design and layout design. For SPICE simulations, models included in the

process design kit (PDK) are used. Another alternative is the use of the predictive technology

model (PTM). The design first starts with the schematic design of the cell. The next step is

to simulate the schematic so that a tes tbench could be created using a clock and a voltage

source to power the cell. Using the electronic design automation (EDA) tool to perform the

actual simulation, it is possible to probe the wires and get the results in a wave form.

The physical design (layout or true representative of true silicon) is performed using

the Cadence layout editor, Virtuoso. The layout editor allows to perform mapping of the

design. After the layout is performed, then a Design Rule Check (DRC) is conducted to

ensure the manufacturability of the design. The design is compared against the rules of

32

Figure 4.1. The design flow used for the physical design of the random num-

ber generator circuits.

the specific process technology to make sure there are not violations. Then the Layout vs.

Schematic check is done. This phase compares the schematic design with the layout design

to make sure they are alike. Then an RCX extraction is performed for the full-flown (RCLK)

parasitic extraction of the circuit. This step changes the netlist by adding the followings

33

parasitic elements:

(1) parasitic resistors (R),

(2) parasitic capacitors (C),

(3) self-inductors (L),

(4) mutual inductance (K).

This ensures silicon accurate simulation of the design with all parasitic.

The last phase of the custom design process is to simulate the extracted view of the

physical design. This is performed using EDA tools from Cadence as well. This simulation

is performed in the same simulator as the schematic. This simulation took much longer to

finish than the schematic simulation since the netlist is much bigger containing the following

elements:

(1) active devices (i.e. transistors),

(2) parasitics from the active devices, and

(3) the parasitics from the interconnects (i.e. metal wires).

The parasitics due to active devices consist of RC elements. The parasitics due to the

interconnect consist of RCLK elements. Thus the parasitics from interconnects are more

severe than the active devices themselves for nanoscale circuits. The full-blown parasitic-

aware netlist is therefore much more complex compared to schematic netlist.

4.2. Transistor Level Design

A single cell random generator cell circuit which was introduced by Intel was used [5].

The idea behind the design is to use something that is normally avoided, race conditions.

Race conditions are defined as a flaw of electronic systems where the results may be altered

or changed by a timing miscalculation. In other words, race conditions are unknown states

of digital circuits. Race conditions cannot be predicted easily [5].

The way this circuit works is by connecting 2 inverters in a serial and circular con-

nection. The two wires that connect the inverters are connected to a PMOS each on one

side and VDD on the other side of the PMOS. When the voltage in the gates goes to ground

34

Figure 4.2. The mixed transistor and logic level view of the single cell ran-

dom number generator design [8].

both sides of the inverters will become high or 1. Then when the values in the gate of the

PMOS go high the inverter system will become unstable. Systems stabilize in nature and

this system is not an exemption so one side will become logic 1 and the other logic 0. This

is where the randomness of this design is introduced.

4.3. Layout Level Design

In this section the detailed discussion of the physical design of the random number

generator circuit is provided. The design is implemented using a 45 nm CMOS technology

process design kit (PDK) provided by Cadence.

The transistor-level schematic design of the random number generator cell is presented

in Fig. 4.3. The physical design (or layout) of the random number generator cell is presented

in Fig. 4.4. A comparison between the number of elements used in the schematic design

and the number of elements used in the extracted view of the physical design is presented in

35

Figure 4.3. The transistor-level schematic design of the single cell random

number generator design.

Table 4.1. The number of circuit elements give a broad perspective to compare the increase

in the simulation time of the schematic and layout design of the circuit.

36

Table 4.1. Number of elements in the schematic design versus the physical

design after RCX extraction.

Circuit Information Schematic Layout After RCX

Number Of Elements in Netlist 6 24

Number of Cell types used 5 13

Once the design is performed, rigorous tests are necessary to ensure that the design

is robust and withstands all security related attacks. After running randomness tests such

as die hard and runstest in MATLAB, it is observed that the RND cells alone do not pass

the tests for their use with cryptographic applications. There is a need for using extra

circuitry to make them pass the randomness tests [5]. The design with additional circuitry

works because the numbers of ones and zeros being produce are generated in a random like

sequence.

37

Figure 4.4. The physical design of the single cell random number generator circuit.

38

CHAPTER 5

EXPERIMENTAL EVALUATIONS

In this chapter the experiments and evaluation used to test the proposed random

number generator design are explained. The results of these evaluations are presented along

with their interpretation. First the experiments of the Random Number Generator Cell

are introduced. Then the experiments of the MATLAB implementation of the design are

discussed. Finally, the experiments and results of the FPGA design are presented.

5.1. Experiments of the Random Number Cell

After making the design of the random number generator cell in virtuoso, the Spectre

simulator is used to perform the simulations. Spectre is an analog simulator that is used

to simulate a large number of devices like transistors, resistors, capacitors and inductors.

Spectre is used as the design of the actual cell was made in Virtuoso, another cadence tool

to draw Schematic and layout of designs. The simulation waveforms for a single cell are

presented in Fig. 5.1. The simulation waveforms are presented in enhanced fashion in Fig.

5.2. As can be observed from Fig. 5.1, when Vsource goes logic high the value from nodeA

will randomly go to logic high or logic low. This demonstrates that the random number

generator cell circuit works.

The simulation time for the cell was very complicated and not trivial at all. Since a

large number of bits were needed to use the randomness benchmarks, the simulation time

was very long. A total of 80 million bits were needed to use the DIE HARD benchmark. The

design of one cell has a clock cycle time of 20 ns. So there is a needed for simulation covering

20 ∗ 80 ∗ 106 ns. The time for one simulation is 1.6 seconds. To simulate this using only one

cell will take about a week. This is despite of the availability of the fast processors including

multi core processors. Some of the steps of the simulation, for example model evaluation are

not simply parallelizable. To reduce the amount to time to simulate the design 16 different

simulations were being executed at the same time on the server. This means that each

simulation was using one core. Now each simulation only have to run for 100 ms which it is

39

Figure 5.1. Simulation of a random number generator cell of the design using Spectre.

a big improvement. This reduces the time needed for the simulation to about 10 hours.

The ‘10011101001111101110011’ sequence generated during the simulation is pre-

sented in Fig. 5.2. This is a random like sequence as can be seen from the waveforms. To

prove statistically that the numbers are random like is achieved by generating many bits and

checking how many ones and zeros are obtained. After running the simulation for 80 Mbits

it is observed that there are about the same number of ones and zeros. This is a strong

indicator that the random number generator design works. However, the problem is that

this is not sufficient information to prove the numbers are robust. After running the results

in the DIEHARD benchmark, it can be seen that the results are not really random.

This is evident from the discussion in [5] that the cells are not meant to be used on

their own for random numbers. There was extra logic that needed to implemented. The

cells are like unpredictable-hard-to-hack sources to use with known pseudorandom number

40

Figure 5.2. Zoomed view of the simulationof a random number generator

cell of the design using Spectre.

generators. This is why the data obtained from the cells did not pass the tests.

5.2. Experiments of the 32-bit Random Number Generator using CMOS Circuit and MAT-

LAB

After showing the design and implementation of the Random Number Generator, the

experiments conducted on the data are elaborated. The state-of-the art approach to test if

a set of given numbers or values is random is by using a randomness test benchmark. These

benchmarks calculate the probability of the set of numbers to be random.

In this section the results of the random bit cell are discussed. The cells alone do

not pass the tests. This is because the CMOS design and manufacturing reveals information

41

because of switching. This will make the probability of the output being one or zero not

be 50-50. Also, even if the two transistors were in fact ’perfect’ the natural characteristics

of transistors in a circuit are not exactly equal. A good example of this is the difference of

temperature in different parts of a chip.

The additional logic after the individual cells ensures to make the resulting data more

random like. Several tests are performed using a tool from Computer Security Division in the

Computer Security Resource Center of the National Institute of Standards and Technology

(NIST). The tool is called Statistical Test Suite (STS). The main goals of this tool are the

following:

(1) Develop a set of tools for statistical tests to detect non-randomness in a sequence

of numbers and determine if these numbers could be used for cryptographic appli-

cations.

(2) Document and provide software tools for these tests [20].

(3) Provide sample data and tests using the tool [7].

STS will give results to all of the different randomness tests. A list of these tests are

the following:

(1) Frequency: The emphasis of the test is the amount of zeroes and ones for the entire

sequence. The purpose of this test is to determine whether the number of ones and

zeros in a sequence are about the same as would be expected for a truly random

sequence. The test assesses the closeness of the fraction of ones to 1/2. In other

words, the number of ones and zeroes in a sequence should be about the same. All

of the other tests depend on this tests passing.

(2) BlockFrequency: The emphasis of the test is the distribution of ones within M -

bit blocks. The purpose of this test is to find out whether the frequency of ones

in an M -bit block is about M/2, as would be anticipated under a hypothesis of

randomness. For block size M = 1, this test deteriorates to test 1, the Frequency

(Monobit) test.

(3) CumulativeSums: The emphasis of this test is the best excursion (from zero) of the

42

random walk that is defined by the increasing sum of adjusted (-1, +1) digits in the

sequence. The resolution of the test is to determine whether the cumulative sum

of the partial sequences occurring in the tested set of random numbers is too large

or too small relative to the behavior supposed to be obtained from that cumulative

sum of random sequences. This cumulative sum may be considered as a random

walk. For a random sequence, the excursions of the random walk should be near

zero. For some types of non-random sequences, the excursions of the random walk

from zero will be large.

(4) Runs: The emphasis of this test is the total amount of runs in the sequence, where

a run is an continuous sequence of equal bits. A run of size k consists of precisely

k equal bits and is bounded before and after with a bit of the differing value. The

purpose of the runs test is to find out whether the amount of runs of ones and zeros

of several lengths is as likely for a random sequence. In other words, this test finds

out whether the fluctuation between such zeros and ones is too fast or too slow.

(5) LongestRun: The emphasis of the test is the longest run of ones in M -bit blocks.

The reason for this test is to determine whether the size of the longest run of ones

within the tried sequence is constant with the size of the longest run of ones that

would be estimated in a random sequence. Remember that an irregularity in the

expected size of the longest run of ones infers that there is also an irregularity in

the expected size of the biggest run of zeroes. So only a test for ones is necessary.

(6) Rank: The emphasis of the test is the rank of disjoint sub-matrices of the whole

sequence. The purpose of this test is to look for linear dependence between fixed

size substrings of the original sequence.

(7) Fast Fourier Transform (FFT): The emphasis of this test is the top heights in the

Discrete Fourier Transform (DFT) of the sequence. The purpose of this test is to

find periodic structures (i.e., repetitive patterns that are close each other) in the

verified sequence that would show a deviation from the hypothesis of randomness.

(8) NonOverlappingTemplate: The emphasis of this test is the number of incidences of

43

pre-specified target strings. The purpose of this test is to perceive generators that

make too many incidences of a given non-periodic (aperiodic) pattern. For this test

an m-bit window is used to examine for a exact m-bit pattern. If the pattern is not

found, the window shifts one bit position. If the pattern is found, the window is set

to the bit after the found pattern, and the search resumes.

(9) OverlappingTemplate: The emphasis of the Overlapping Template Matching test

is the amount of incidences of pre-specified target strings. This test uses an m-

bit spam to search for a specific m-bit pattern. If the pattern is not found, the

window slides one bit location. The difference among this test and NonOverlapping

Template is that when the pattern is found, the window shifts only one bit before

resuming the search.

(10) Universal: The emphasis of this test is the number of bits among matching patterns.

This is a measure that is related to the size of a compressed sequence. The purpose

of the test is to sense whether or not the sequence can be compressed without loss

of information. A compressible sequence is determined to be non-random.

(11) ApproximateEntropy: As with the serial test, the focus of this test is the rate of all

possible overlapping m-bit patterns through the whole sequence. The purpose of

the test is to compare the frequency of overlapping blocks of two sequential/together

lengths (m and m+ 1) against the expected result for a random sequence.

(12) RandomExcursions: The emphasis of this test is the amount of cycles taking exactly

k visits in an increasing sum random walk. The increasing sum random walk is

derived from part sums after the (0,1) sequence is transferred to the appropriate

(-1, +1) sequence. A cycle of a random walk consists of a series of steps of unit

length taken at random that start at and return to the origin. The purpose of this

test is to find out if the number of calls to a specific state within a cycle deviates

from what one would expect for a random sequence. This test is actually a series of

eight tests (and conclusions), one test and conclusion for each of the states: -4, -3,

-2, -1 and +1, +2, +3, +4.

44

(13) RandomExcursionsVariant: The emphasis of this test is the whole amount of times

that a specific state is visited (i.e., occurs) in a increasing sum random walk. The

purpose of this test is to notice deviations from the expected number of visits to

various states in the random walk. This test is actually a series of eighteen tests

(and conclusions), one test and conclusion for each of the states: -9, -8, -1 and +1,

+2, +9.

(14) Serial: The emphasis of this test is the frequency of all likely overlapping m-bit

patterns across the whole sequence. The purpose of this test is to find out whether

the number of occurrences of the 2m m-bit overlapping patterns is about the same as

would be expected for a random sequence. Random sequences have homogeneous-

ness. In other words, every m-bit pattern has the same chance of showing up as

every other m-bit pattern.

(15) LinearComplexity: The emphasis of this test is the size of a linear feedback shift

register (LFSR). The purpose of this test is to find out whether or not the sequence

is complex enough to be considered random. Random sequences are categorized by

longer LFSRs. An LFSR that is too small suggests non-randomness.

Input parameters from [9] were used to test the number sequence. The results of

various tests conducted on the generated random numbers are presented in Table 5.1. The

results are shown for various tests and different input sizes. The values of the parameters

used during the experiments are also presented in the same Table.

Table 5.1: The test parameters, input sizes, and test

names for studying the randomness of the number gen-

erated from the random number generator [9].

Test Name Input Size Other Parameters

Frequency 100

BlockFrequency 2000 M=20, N=10

45

CumulativeSums 100

Runs 100

LongestRun 6272 M=128

Rank 38912

FFT 1024

NonOverlappingTemplate 1048576 m=9, B=111111111

OverlappingTemplate 998976 m=9, M=1032, N=96

Universal 387840 L=6, Q=64

ApproximateEntropy 500 m=5, n=500

RandomExcursions 1000000

RandomExcursionsVariant 1000000

Serial 500 m=5, n=500

LinearComplexity 1000000 M=20, N=100

To determine a passing score of a test, the P-value must be between 0.0001 and 0.9999

[28]. In that case, the random number data test passes with a 95% confidence. The test

results are presented in Table 5.2. As can be observed from in the table, the random number

generator passed all of the tests performed using the benchmarks from NIST. This shows

that this random number generator technique can be used for encryption, watermarking,

and other security application needs.

Table 5.2: The test results of the overall random number

generator for a 32-bit design.

Test Name P-value Pass-Fail

Frequency 0.350485 Pass

BlockFrequency 0.213309 Pass

46

CumulativeSums 0.739918 Pass

Runs 0.534146 Pass

LongestRun 0.122325 Pass

Rank 0.288341 Pass

FFT 0.534146 Pass

NonOverlappingTemplate 0.213309 Pass

OverlappingTemplate 0.834499 Pass

Universal 0.739918 Pass

ApproximateEntropy 0.122325 Pass

RandomExcursions 0.714438 Pass

RandomExcursionsVariant 0.668627 Pass

Serial 0.739918 Pass

LinearComplexity 0.311800 Pass

5.3. Experiments of FPGA Implementation

In this section the experiments and results of the FPGA implementation of the ran-

dom number generator are discussed.

The Verilog model of the random number generator architecture is the top-level design

of the implementation. It is a test-bench made for ModelSim. The waveform of the simulation

which was performed using ModelSim is presented in Fig. 5.3. The last two port maps are

for saving the final bits to a file. This allows us to compare the output of the Verilog design

with the output of the MATLAB design. The Verilog model was tested for correctness

by comparing the result from MATLAB with the results from Verilog. As expected the two

results were identical. This demonstrates that the Verilog design is identical to the MATLAB

based behavioral simulation of the random number generator.

47

Figure 5.3. Simulation waveform from ModelSim

48

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this thesis, the schematic design and 45nm CMOS based layout design of a ran-

dom number generator cell were performed. Unfortunately this design will not pass the

randomness tests for cryptography. Additional logic is needed to increase distribution and

randomness on the numbers. This circuit generates the initial sequence for the 32-bit random

number generator.

The design of the random number generator using CMOS circuit and MATLAB was

able the to pass the randomness tests. This was able to show that the logic done in MATLAB

using the results from the random number generator cell was conditioning the bias bits and

making them pass the randomness tests.

The design of the random number generator in Verilog was a necessary step to show

that the implementation in MATLAB was feasible and practical. With the RTL design of

the random number generator it was proved that the design is feasible. As the results from

MATLAB and Verilog were identical given the same inputs, the thesis confirms that both of

the implementations were identical.

In this current research the thesis showed the effectiveness of the design. A more

involved approach is the overall layout implementation with tests. This will bring many

challenges to the designers because of time and closure in real hardware. Also the combina-

tion of the cell with the layout of the implementation will allow to perform a more rigorous

testing. An actual silicon chip will allow to fully test and confirm that this chip will produce

strong, true random numbers.

49

BIBLIOGRAPHY

[1] A.A. Chowdhury, L. Bertling, B.P. Glover, and G.E. Haringa, A monte carlo simulation

model for multi-area generation reliability evaluation, Probabilistic Methods Applied to

Power Systems, 2006. PMAPS 2006. International Conference on, june 2006, pp. 1 –10.

[2] Viktor Fischer and Milos Drutarovsky, True random number generator embedded in

reconfigurable hardware, Proc. of CHES 2002 (2003), 415–430.

[3] W.A. Fuller, Sampling statistics, Wiley series in survey methodology, Wiley, 2009.

[4] GaoFei, Generalized chaotic binary sequence generation method, Computer Engineering

(2007).

[5] George Cox Greg Taylor, Behind intel’s new random-number generator, IEEE Spectrum

(2011).

[6] F. Hartung and F. Ramme, Digital rights management and watermarking of multime-

dia content for m-commerce applications, Communications Magazine, IEEE 38 (2000),

no. 11, 78 – 84.

[7] Lawrence E Bassham II, A statistical test for random and pseudorandom number gen-

erators for cryptographic applications, National Institute of Standards and Technology,

revision 1a ed., April 2010.

[8] Benjamin Jun and Paul Kocher, The intel random number generator, CRYPTOGRA-

PHY RESEARCH, INC. WHITE PAPER PREPARED FOR INTEL CORPORATION

(1999).

[9] Charmaine Kenny, Random number generators: An evaluation and comparison of ran-

dom.org and some commonly used generators, Tech. report, Computer Science Depart-

ment, TCD, April 2005.

[10] Kougianos, A Comparative Study on Gate Leakage and Performance of High-κ Nano-

CMOS Logic Gates, Taylor & Francis International Journal of Electronics (IJE) 97

(2010), 985–1005.

50

[11] Elias Kougianos, Saraju P. Mohanty, and Rabi N. Mahapatra, Hardware assisted wa-

termarking for multimedia, Comput. Electr. Eng. 35 (2009), 339–358.

[12] Sammy H. M. Kwok, Fpga-based high-speed true random number generator for crypto-

graphic applications, IEEE- Pokfulam Road (2006).

[13] S. P. Mohanty, D. Ghai, E. Kougianos, and P. Patra, A Combined Packet Classifier and

Scheduler Towards Net-Centric Multimedia Processor Design, Proceedings of the 27th

IEEE International Conference on Consumer Electronics (ICCE), 2009, pp. 11–12.

[14] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kanakanhalli, An Adaptive DCT Domain

Visible Watermarking Technique for Protection of Publicly Available Images, Proceed-

ings of the International Conference on Multimedia Processing and Systems (ICMPS),

2000, pp. 195–198.

[15] Saraju P. Mohanty, A secure digital camera architecture for integrated real-time digital

rights management, J. Syst. Archit. 55 (2009), 468–480.

[16] Saraju P. Mohanty, Uls: A dual-vth/high-k nano-cmos universal level shifter for system-

level power management, (2010).

[17] Saraju P. Mohanty, Renuka Kumara C., and Sridhara Nayak, Fpga based implementation

of an invisible-robust image watermarking encoder, Lecture Notes in Computer Science,

2004, pp. 344–353.

[18] Saraju P. Mohanty, K. R. Ramakrishnan, and Mohan S. Kankanhalli, A dct domain vis-

ible watermarking technique for images, IEEE International Conference on Multimedia

and Expo (II), 2000, pp. 1029–1032.

[19] S.P. Mohanty, R. Sheth, A. Pinto, and M. Chandy, Cryptmark: A novel secure invisible

watermarking technique for color images, Consumer Electronics, 2007. ISCE 2007. IEEE

International Symposium on, june 2007, pp. 1 –6.

[20] National Institute of Standards and Technology, Random number genera-

tor, ”http://csrc.nist.gov/groups/ST/toolkit/rng/documentation software.html”, April

2008.

51

[21] J. Saarinen, Vlsi implementation of tausworthe random number generator for parallel

processing environment, IEEE Proceedings-E 138 (1991), no. 3.

[22] N. Sklavos, P. Kitsos, K. Papadomanolakis, and O. Koufopavlou, Random number gen-

erator architecture and vlsi implementation, Circuits and Systems, 2002. ISCAS 2002.

IEEE International Symposium on, vol. 4, 2002, pp. IV–854 – IV–857 vol.4.

[23] Tatsuro Sugiura, Demonstration of 30 gbit/s generation of superconductive true random

number generator, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY

21 (2011), no. 3, 843–846.

[24] N. M. Thamrin, An enhanced hardware-based hybrid random number generator for

cryptosystem, International Conference on Information Management and Engineering

(2009).

[25] Toshinari Takayanagi Vincent von Kaenel, Dual true random number generators for

cryptographic applications embedded on a 200 million device dual cpu soc, Custom In-

tergrated Circuits Conference (CICC) (2007).

[26] GUAN Xiaohui, The design of combined random number generator, International Con-

ference on Multimedia Information Networking and Security (2010).

[27] R.K. Youree, J.S. Yalowitz, A. Corder, and T.K. Ooi, A multivariate statistical analysis

technique for on-line fault prediction, Prognostics and Health Management, 2008. PHM

2008. International Conference on, oct. 2008, pp. 1 –5.

[28] Guanglie Zhang, P.H.W. Leong, Dong-U Lee, J.D. Villasenor, R.C.C. Cheung, and

W. Luk, Ziggurat-based hardware gaussian random number generator, Field Pro-

grammable Logic and Applications, 2005. International Conference on, aug. 2005,

pp. 275 – 280.

[29] ZhangXuefeng, Improved chaotic sequence generation method, Computer Engineering

and Design (2007).

52

