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We calculate the low-frequency index of refraction of a medium which is homogeneous along axis z
and possesses a periodic dependence of the permittivity "�r� and permeability ��r� in the x-y plane (2D
magnetodielectric photonic crystal). Exact analytical formulas for the effective index of refraction for
two eigenmodes with vector E or H polarized along axis z are obtained. We show that, unlike
nonmagnetic photonic crystals where the E mode is ordinary and the H mode is extraordinary, now both
modes exhibit extraordinary behavior. Because of this distinction, the magnetodielectric photonic
crystals exhibit optical properties that do not exist for natural crystals. We also discuss the limiting case
of perfectly conducting cylinders and clarify the so-called problem of noncommuting limits, ! ! 0
and " ! 1.
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follows we show that, in an artificial medium with mac-
roscopic magnetic atoms, the tensor �ik � �ik and optical

E mode becomes the ordinary mode with neff indepen-
dent on k̂k [8].
Magnetodielectric photonic crystals (MDPCs)—peri-
odically arranged composites made up of magnetic semi-
conductors (or dielectrics)—represent a new class of
artificial materials [1] with tunable by external magnetic
field [2] band gap. In the low-frequency limit (! ! 0),
the wavelength covers many lattice periods thus repeating
the situation that exists in the optics of natural crystals
when the wavelength of visible light is much larger than
atomic spacing. Atoms of any transparent natural crystal
do not exhibit noticeable magnetic susceptibility in the
presence of light; therefore they are considered to be
nonmagnetic. As a result, all equations of crystal optics
have been derived for nonmagnetic (�ik � �ik) materials
[3]. Recently Smith and Schurig [4] have shown that
the electrodynamics of the left-hand medium requires
introduction of the tensor �ik in order to describe ade-
quately the effects of macroscopic magnetic inclusions.
Inclusions in a MDPC (with either positive or negative
permeability) are macroscopic magnetically susceptible
‘‘atoms.’’ Metallic inclusions in a dielectric medium may
give rise to the effective magnetic permeability at optical
frequencies [5]. Recently, magnetodielectric photonic
nanocrystals have been fabricated [6]. A review of the
properties of MDPCs is given in Ref. [7].

In this Letter we calculate the effective permittivity
and permeability of MDPCs and demonstrate that optics
of such a periodic medium turn out to be different from
the optics of natural crystals. In a natural crystal, since its
magnetic susceptibility is negligible, optical anisotropy is
due only to the dielectric tensor "ik. As a result, the
eigenmodes of Maxwell equations in crystals are classi-
fied as ‘‘ordinary’’ and ‘‘extraordinary’’ waves. The ordi-
nary wave exhibits higher symmetry as compared to the
extraordinary wave. In particular, its index of refraction
is independent on the direction of propagation. In what
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anisotropy are determined by both tensors "ik and �ik.
Therefore both eigenmodes turn out to be extraordinary
waves; i.e., their indices of refraction depend on the
direction of propagation.

To calculate the effective index of refraction

neff�k̂k� � lim
k!0

ck
!

; (1)

where k̂k � k=k is a unit vector in the direction of propa-
gation, one needs to consider the low-frequency limit in
the wave equation for inhomogeneous medium. Numeri-
cal calculations [1,2] show that the lowest (acoustic)
branch of the dispersion relation exhibits almost linear
behavior from k � 0 to the middle of the Brillouin zone.
Therefore the index of refraction (1) is valid not only in
the limit ka � 1 (a is the lattice period), but for much
shorter wavelength ka � 0:5 as well.

For a 2D photonic crystal, the equations for the E- and
H-polarized modes have the following form:

r 	 
��1�r�rE� � ��!=c�2"�r�E; (2)

r 	 
"�1�r�rH� � ��!=c�2��r�H: (3)

These equations are symmetric with respect to the re-
placement E $ H and " $ �. Therefore, in what fol-
lows, we calculate neff for the H mode only and the
effective index of refraction for the E mode is obtained
from that for the H mode by interchanging " and �, i.e.,
n�E�eff f"�r�; ��r�g � n�H�

eff f��r�; "�r�g. Even without fur-
ther calculations, it is clear from Eqs. (2) and (3) that
the E and H modes possess the same symmetry in a
MDPC; i.e., both of them are extraordinary. Unlike this,
if ��r� � 1, Eq. (2) has higher symmetry. As a result, the
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To obtain a homogenized equation from Eq. (3), we
apply the plane-wave method that was developed in
Ref. [8] for 2D nonmagnetic photonic crystal. Using the
Bloch theorem and the periodicity of the functions "�r�
and ��r�, we get the Fourier expansions:

H�r� � exp�ik 	 r�
X
G

hk�G� exp�iG 	 r�;

"�1�r� � ��r� �
X
G

��G� exp�iG 	 r�;
(4)

��1�r� � ��r� �
X
G

��G� exp�iG 	 r�;

where G are the reciprocal-lattice vectors. Substituting
Eq. (4) into Eq. (3), we get a generalized eigenvalue
problem in G space:X
G0

��G�G0��k�G�	

�k�G0�hk�G0� � �!=c�2
X
G0

��G�G0�hk�G0�:

(5)

The dispersion relation ! � !n�k� (n � 1; 2; . . . ) is ob-
tained from the condition that the set of Eq. (5) has a
nontrivial solution.

It is easy to get from Eq. (5) that in the static limit,
! � k � 0, the Fourier coefficients hk�G � 0� vanish.
The only nonvanishing component is hk�G � 0� � h0.
In the long-wavelength limit, ka � 1, this component
determines the amplitude of the plane-wave solution,
which is obtained from the first Eq. (4) by separating
the term with G � 0:

H�r� � h0 exp�ik 	 r� �
X
G�0

hk�G� exp�iG 	 r�: (6)

Here we neglected k in the exponent in the correction
term. Since the sun over G vanishes when k ! 0, Eq. (6)
means that the medium homogenizes; i.e., the solution of
the wave Eq. (3) approaches the plane wave.

Now the eigenvalue problem Eq. (5) can be solved
using a perturbation theory with respect to small parame-
ter ka. In the lowest approximation, we obtain

k 	G��G�h0 �
X
G0�0

G 	G0��G�G0�hk�G0� � 0: (7)

It follows from Eq. (7) that hk�G� / k. To obtain the
second independent equation for the unknown h0 and
hk�G�, we put G � 0 in Eq. (5) and keep the k2 terms:

� ���k2 � ���!2=c2�h0 �
X
G0�0

k 	G0���G0�hk�G0� � 0: (8)

Here ��� � ��G � 0� and ��� � ��G � 0� are the bulk
average of 1="�r� and ��r�, respectively. For a binary
composite, ��� � f="a � �1� f�="b and ��� � f�a �
�1� f��b, where f is the filling fraction of the inclusions
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(material a). Eliminating h0 from Eqs. (7) and (8) and
using the definition (1), we get a set of equations valid in
the limit k;! ! 0:

� ���� n�2
eff ����

X
G0�0

G 	G0��G�G0�hk�G0� �

X
G0�0

�k̂k 	G��k̂k 	G0���G����G0�hk�G0� � 0: (9)

Equation (9) has nonzero solution if

det
G;G0�0


� ���� n�2
eff ����G 	G0��G�G0��

�k̂k 	G0��k̂k 	G0���G����G0�� � 0: (10)

Although Eq. (10) is an infinite-order polynomial
equation with respect to � � � ���� n�2

eff ����, it turns out
that it has only a unique nonzero solution. To obtain this
solution, we reduce Eq. (10) to a standard eigenvalue
problem by multiplying it by the determinant of the
inverse matrix, detf
G 	G0��G�G0���1g:

det
G;G0�0


B�G;G0� ���GG0 � � 0; (11)

B�G;G0� � k̂k 	G��G�
X
G00�0

k̂k 	G00

� ���G00�
G00 	G0��G00 �G0���1: (12)

The matrix B�G;G0� is a product of two factors, one of
which depends only on G and the other only on G0. Then
this matrix corresponds to a projection operator that has
an eigenvalue � � TrB�G;G0�. This results in the final
formula for the index of refraction for the H mode:


n�H�
eff �k̂k��

2 � ���
�
����

X
G;G0�0

�k̂k 	G��k̂k 	G0���G�

� ���G0�
G 	G0��G�G0���1

�
�1
:

(13)

Equation (13) is valid for the arbitrary form of the unit
cell, geometry of the inclusions, material composition of
the photonic crystal, and direction of propagation in the
plane of periodicity. The second factor f	 	 	g�1 coincides
with the effective dielectric constant for a nonmagnetic
photonic crystal. Therefore, in the case of � � ��� � 1,
Eq. (13) is reduced to the result of Ref. [8].

The formula for n�E�eff is obtained from Eq. (13) by the
above mentioned interchange " by � and vice versa.


n�E�eff �k̂k��
2 � �""

�
����

X
G;G0�0

�k̂k 	G��k̂k 	G0���G�

� ���G0�
G 	G0��G�G0���1

�
�1
: (14)

Equation (14) is reduced to 
n�E�eff �
2 � �"" for nonmagnetic

photonic crystal [8] when ��� � 1 and ��G� � 0.
Transformation that occurs with the effective index of

refraction for the H mode in a MDPC is not very drastic.
023904-2
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It acquires an additional factor ���, which is obviously the
effective permeability for the case when magnetic field is
parallel to the cylinders. The directional dependence
remains the same as it is for nonmagnetic photonic crys-
tal. Unlike this, the E mode undergoes qualitative trans-
formation since the magnetic component of this mode
lies in the plane of periodicity, and thus it is strongly
affected by inhomogeneous magnetic medium. The ef-
fective index of refraction becomes k̂k dependent; i.e., this
mode becomes extraordinary. The angular dependence of
neff for both modes can be easily obtained from Eqs. (13)
and (14):
n�2
eff �k̂k� � Aijk̂kik̂kj; i; j � x; y: (15)
For the H mode, tensor Aij is given by
FIG. 1 (color online). One octant of the wave-vector surface
Eq. (17) drawn for "x � 1, "y � 4, "z � 25, �x � 1:3, �y �
15:3, and �z � 25. The point of self-intersection lies in the x-y
plane. The inset shows the projections on the coordinate planes.
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A�H�
ij � � ���= �����ij � �1=2 ����

X
G;G0�0

�GiG 0
j �GjG 0

i �

� ��G����G0�
G 	G0��G�G0���1: (16)

For the E mode one needs to interchange dielectric and
magnetic constants in Eq. (16). Equation (15) describes an
ellipse in the x-y plane, which means that both modes are
extraordinary waves. This situation does not exist in
natural crystals, where one of the polarizations always
exhibits isotropy when the wave vector sweeps a plane.
The reason for this universal symmetry is due to the fact
that the fundamental equation of crystal optics—the
Fresnel equation—is derived assuming that atoms of a
transparent medium are nonmagnetic [3]. This assump-
tion is not applicable for MDPCs. In magnetically aniso-
tropic medium, Fresnel’s equation is replaced by the
following one:
�
n̂n2x

�y�z
�

n̂n2y
�x�z

�
n̂n2z

�x�y

�
�"xn̂n

2
x � "yn̂n

2
y � "zn̂n

2
z� �

"x

�
"y
�y

�
"z
�z

�
n̂n2x � "y

�
"x
�x

�
"z
�z

�
n̂n2y � "z

�
"x
�x

�
"y
�y

�
n̂n2z � "x"y"z � 0: (17)
Here n � �kc=!�k̂k, and we assumed that the tensors "ik
and �ik have common principal axes.

This fourth-order equation defines the wave-vector
surface. The surface has four points of self-intersection
as well as in the case of nonmagnetic atoms. One octant of
this surface is shown in Fig. 1. Intersection of the surface
with the x-y plane (nz � 0) occurs along two ellipses:

n2x=�"z�y� � n2y=�"z�x� � 1; (18)
n2x=�"y�z� � n2y=�"x�z� � 1: (19)

To establish a correspondence between these two ellipses
and the E and H modes of a 2D MDPC, we take into
account that in a nonmagnetic medium the ellipse (18)
becomes a circle; i.e., the corresponding mode becomes
ordinary wave. It is clear that this ellipse corresponds to
the E mode which is known to be an ordinary wave in a
nonmagnetic photonic crystal [8]. Then the ellipse (19)
corresponds to the H mode. The principal components of
the tensors "ik and �ik can be obtained from Eqs. (15) and
(16). The products 1=�"z�y� and 1=�"z�x� are the princi-
pal values of the tensor A�E�

ik . Since for the E mode "z � �"",
the inverse permeabilities in the plane of periodicity, �y
and �x, are the eigenvalues of the tensor �""A�E�

ik . Similarly,
considering Eq. (19), we obtain that 1="x and 1="y are the
eigenvalues of the tensor ���A�H�

ik and �z � ���. Thus all the
components of the tensors "ik and �ik can be obtained
from Eqs. (15) and (16). These equations together with the
modified Fresnel equation (17) are the fundamental equa-
tions of the optics of MDPCs.

Using tensors "ik and �ik, the tensor of surface imped-
ance Zik can be introduced. Its principal values are Zi �������������
�i="i

p
. This tensor determines the reflection coefficient

from homogeneous anisotropic medium. Recently, the
effective surface impedance was calculated for 2D
MDPCs at frequencies close to the Mie resonance [9].

Since for the MDPCs both polarizations turn out to be
extraordinary waves, the index (or Fresnel) ellipsoid can-
not be introduced. In nonmagnetic crystals the index
ellipsoid determines (for each direction of k̂k) two values
023904-3
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of the index of refraction n for two independent polar-
izations and also two orthogonal directions of the dis-
placement vector D. If the vector k̂k sweeps a plane, one of
the values of n remains unchanged. Equations (18) and
(19) show that this is not the case for the MDPCs.
Leaving the details for a complete publication, we men-
tion here that for arbitrary direction k̂k the values of n are
given by the principal values of a two-dimensional tensor

n�� �
��̂�"̂"�1���

det�̂�
: (20)

Here �;� � 1; 2 label two orthogonal directions u1;u2

in the plane perpendicular to k̂k. Tensors "̂" and �̂� are
projections of the corresponding three-dimensional ten-
sors on this plane, i.e., "�� � "iku

���
i u���k and ��� �

�iku
���
i u���k . The directions of the displacement vector D

for two independent polarizations coincide with princi-
pal axes of the tensor n��.

Having calculated all the homogenized parameters of a
MDPC, let us compare the results for neff obtained from
static and dynamic approaches. In this Letter we are using
dynamic approach since we calculate the limit (1) from
the Maxwell equations. According to Eqs. (13) and (14),
the index of refraction for the two polarizations is written
as follows:

n�E�eff �
����������
�""�st

p
; and n�H�

eff �
����������
"st ���

p
: (21)

Here "st and �st are the statics values of the effective
permeability and permittivity. They are given by the
expressions in curly bracket in Eqs. (13) and (14), respec-
tively. These quantities can be calculated using either
electrostatic or magnetostatic approach. However, neff
cannot be calculated using only one of these approaches.
This is because in the electrostatic (magnetostatic) ap-
proach magnetic (dielectric) properties of matter are
completely ignored. Static and dynamic approaches coin-
cide only for structures with �"" � 1 ( ��� � 1).

A particular case of perfectly conducting cylinders,
�a ! 1, requires special attention. In this case, n�E�eff �
1; therefore the E mode does not exist. At finite frequen-
cies the magnetic field does not penetrate into a perfect
conductor, and it behaves like a superconductor, i.e., ideal
diamagnetic, with �a � 0. Then ��� � 1� f and it fol-
lows from Eq. (21) that

n�H�
eff �

���������������������
�1� f�"st

p
: (22)

Here "st depends only on the filling fraction f. An explicit
formula for "st for square lattice and circular cylinders is
given in Ref. [10]. It was shown there that this formula is
in complete agreement with numerical results obtained
much earlier [11] using static approach. A photonic band
structure for a PC of perfectly conducting cylinders has
been calculated numerically in Ref. [12]. The effective
dielectric constant was evaluated from the slope of the
acoustic band at k ! 0. This dynamic dielectric constant
023904-4
"dyn turned out to be different from static value "st. It was
claimed in Ref. [12] that this difference is due to the
noncommuting limits �a ! 1 and k ! 0. In a recent
publication, Felbacq [13] gave a rigorous proof that
"dyn � �1� f�"st for an array of circular cylinders ar-
ranged in a square lattice and also attributed this to the
noncommuting limits. Now it is clear from Eq. (22) that
the case of perfectly conducting cylinders is not anoma-
lous and the limits do commute. The factor 1� f in
Eq. (22), which causes the discrepancy, is the average
magnetic constant of the structure. It is worthwhile to
mention that the dynamic dielectric constant "dyn, being a
product of magnetic and dielectric constants, does not
have physical meaning. The effective index of refraction
(22) should be considered instead. Equation (22) in not
valid for metallic cylinders where j "a j/ !�1. Results
for this special case will be published elsewhere.

In conclusion, in this Letter we demonstrated that 2D
periodic magnetodielectric structure homogenizes at low
frequencies and calculated the low-frequency index of
refraction. Unlike pure dielectric structures, MDPC ex-
hibits unusual optical anisotropy. Both polarizations, E
and H modes, are extraordinary waves with unusual
angular dependence of the speed of light. The effects of
birefringence and conical refraction require special study
since they apparently manifest themselves in a way dif-
ferent from that in natural crystals.
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