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Due to the vast amount of information we are faced with, summarization has 

become a critical necessity of everyday human life. Given that a large fraction of the 

electronic documents available online and elsewhere consist of short texts such as 

Web pages, news articles, scientific reports, and others, the focus of natural language 

processing techniques to date has been on the automation of methods targeting short 

documents. We are witnessing however a change: an increasingly larger number of 

books become available in electronic format. This means that the need for language 

processing techniques able to handle very large documents such as books is becoming 

increasingly important. 

This thesis addresses the problem of summarization of novels, which are long 

and complex literary narratives. While there is a significant body of research that has 

been carried out on the task of automatic text summarization, most of this work has 

been concerned with the summarization of short documents, with a particular focus 

on news stories. However, novels are different in both length and genre, and 

consequently different summarization techniques are required. This thesis attempts 

to close this gap by analyzing a new domain for summarization, and by building 

unsupervised and supervised systems that effectively take into account the properties 

of long documents, and outperform the traditional extractive summarization systems 

typically addressing news genre. 
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CHAPTER 1

INTRODUCTION

1.1. Motivation and Problem Definition

Due to the vast amount of information we are faced with, summarization has become

a critical necessity of everyday human life. When we apply for a job, we first prepare a

resume, which summarizes all of our achievements to date to a few pages. In order to

select the relevant papers to read, the first thing the researchers look at is the abstracts,

which summarize the work and the contributions of the authors. The CNN’s online web

page provides 3-4 bullets for each article, which points out to the main events of the story.

People prefer to watch the trailer of a movie first before they decide to see it, as the movie

trailers give a glimpse of the plot, and a taste of what is to come. Many other examples can

be added to this list, including book reviews, web page snippets given by search engines,

newspaper headlines, and even computer programs, which can be seen as a compact and

precise implementation of an idea. In general, as stated in [57], the goal of summarization

is to take an information source, extract content from it, and present the most important

content to the user in a condensed form and in a manner sensitive to the user’s or application’s

needs.

It is important to note that, in the above examples, the notion of a summary takes

a different form depending on the information source and the application. In this thesis,

however, documents are the only source of information. Furthermore, the documents are

assumed to contain only textual material, thus in a general sense, they can be thought of as

a means for the written representation of thoughts. Hence it is assumed that the documents

do not contain other types of media such as images or videos. Therefore, throughout the

thesis, the following definition of a summary is adopted:
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Definition 1.1. A summary is a text that is produced from one or more texts, that contains

a significant portion of the information in the original text(s), and that is no longer than

half of the original text(s) [81].

Note that the above definition suggests that there may be more than one source

document involved in the process. This task, referred to as multi-document summarization,

attempts to generate a single summary from a collection of different but conceptually related

documents. Although advances in multi-document summarization is of great interest, the

task described in this work is only concerned with single document summarization. Thus

the term summarization refers to generating a summary from only one source document

according to the definition above.

As in the case of machine translation and other fields of artificial intelligence, it is

possible to build summarization systems that make use of human assistance to a degree.

However, this thesis is only concerned about fully automatic summarization systems, which

require no human assistance in generating the summaries.

Given that a large fraction of the electronic documents available online and elsewhere

consist of short texts such as web pages, news articles, scientific reports, and others, the focus

of natural language processing techniques to date has been on the automation of methods

targeting short documents. We are witnessing however a change: an increasingly larger

number of books become available in electronic format, in projects such as Gutenberg1,

Google Book Search2, or the Million Books project3. Similarly, a large number of the books

published in recent years are often available – for purchase or through libraries – in electronic

format. This means that the need for language processing techniques able to handle very

large documents such as books is becoming increasingly important.

This thesis addresses the problem of summarization of novels, which are long and

complex literary narratives. While there is a significant body of research that has been

1http://www.gutenberg.org
2http://books.google.com
3http://www.archive.org/details/millionbooks
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carried out on the task of automatic text summarization, most of this work has been con-

cerned with the summarization of short documents, with a particular focus on news stories.

However, novels are different in both length and genre, and consequently different summa-

rization techniques are required. In fact, the straight-forward application of state-of-the-art

summarization methods leads to poor results on this domain. This is not surprising since

these systems were developed specifically for other genre types, which contain documents

that are much shorter than novels.

Since a significant amount of interest and effort has been given to the summarization

of short documents, there is a considerable amount of datasets, and tools developed by the

research community for these domains. In contrast, with the only exception of [40, 41], in

which the summarization of short fiction stories are investigated, no attempts were made

for the summarization of long documents, hence neither a dataset collection nor a tool

development is presented for this task. This thesis tries to close this gap by introducing a

new dataset, benchmarks, and analysis methods, and by describing systems that make use

of novel features as well as the existing ones for the summarization of a new domain, literary

novels.

In order to be able to carry out various experiments and to draw conclusions on

them, the first thing needed is the collection of a new dataset for this genre. To date, a

set of novels consisting of 66 books, which are all literature classics, was collected together

with their summaries, which are human-generated abstracts. Currently there are a total of

1109 abstracts in the dataset in three categories, where there are a total of 442 in the first

category, 290 in the second one, and 377 in the third. The majority of the interest, however,

is given to the summaries in the first category. The definitions of these cateogries are given

in detail in Chapter 3.

However, due to the specific constraints required by each study, the dataset used in

the experiments may differ across some of the chapters. Even though they are all drawn

from the same collection, some of them are tailored for the specific application, for example
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by eliminating the novels that do not meet certain requirements the application needs. Each

such process is described as a separate section in the chapters where it is applied.

1.2. Research Questions

Perhaps the most obvious question that comes to mind prior to starting a research for

a new domain in an existing field is whether this new genre exhibits certain characteristics

that make it suitable for further investigation. Chapter 4 tries to answer this question by

considering the applicability of the first stage of a text summarization model to literary

novels. This objective is performed by analyzing the parameters of a dynamic programming

algorithm, which was previously applied to news articles in order to align the abstracts to the

source documents. Furthermore, the chapter makes a second contribution by distinguishing

between the two abstract categories in the dataset for their suitability to the automatic

summarization task.

Having analyzed the question of whether literary novels are suitable for perhaps the

most critical stage of text summarization, i.e. extraction, the thesis seeks the answer to the

question of how far one can go with this stage in various domains. As the next chapter

explains in detail, the extraction step of the text summarization model assumes that certain

units from the input source are copied and pasted verbatim to the generated summary. Given

that there are a finite number of such units in any text, in theory, it is possible to compute the

limits of this copy-paste step via a simple enumeration. However, the exponential complexity

resulting from this combinatorial problem imposes a big challenge. Chapter 5 describes a

novel attempt to overcome this challenge by using large computational resources as well

as a divide-and-conquer approach that makes it possible to estimate the theoretical limits

of this problem via probability density functions induced over an entire dataset. Another

contribution of this chapter is the comparison results of application of this methodology

to three other domains in addition to the literary domain that makes the foucs of this

dissertation.

Chapter 6 describes the first summarization system in this thesis, which builds upon

methods previously found successful in the newswire domain, but takes into account various

4



attributes of long documents, and develops novel features for them. The primary purpose of

the research here is to confirm the earlier insights by implementing a real system, and evalu-

ating it on the newly constructed dataset of literary novels. It is shown in this chapter that

the existing methods prove insufficient on the new dataset, and even an ad-hoc combination

of features that consider the length and the structure of the long documents give a big boost

on the evaluaion scores.

The research question addressed in Chapter 7 is concerned with the combination

of summarization systems in a supervised fashion using machine learning algorithms. The

features used in this process are various unsupervised extractive summarization systems

that are built on either existing ideas or new ones that are adjusted for the literary novels

domain. Furthermore, the learning process also makes use of the exhaustive evaluation

results in order to calculate the labels for the training instances. For comparison purposes,

the process is applied also to a dataset from the news genre. This study confirms that the

prevelant features differ for each domain, and also shows that a formal supervised approach

to combining different extractive summarization systems outperform each individual system.

The final contribution of the thesis, given in Chapter 8, is to break away from the

sentence extraction techniques, and look into the steps of bringing the summary sentences

into more compact form. This work considers the interpretation phase of the text summa-

rization model, which is also explained in the next chapter. The main purpose at this step is

to improve the summarization performance by compressing the compressing each extracted

sentence without losing too much information so that more sentences can be included in

the summary. A novel sentence compression approach is used at this stage. The algorithm

uses information theoretic measures and gives considerable success on a corpus developed

as a testbed for sentence compression systems. Furthermore, the design of this algorithm

resulted in another important contribution; a fast indexing and retrieval system for large

n-gram corpora. This system is also described in detail in Chapter 8.

Hence the goal of this thesis is to investigate a new domain, literary novels, for ex-

tractive summarization. This goal is successfully achieved in many aspects; i.e. by analyzing
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the applicability of extraction to literary novels, by quantifying the limits and success of

this extraction, by building unsupervised and supervised extractive summarization systems,

and by adapting an external sentence compressor to the system. It should be noted that the

purpose here is not to build the best possible summarization system for this new domain, but

rather to lay a new ground by constructing novel frameworks in all the mentioned aspects,

and thus providing a proof of concept.

While the thesis builds a framework for many aspects of summarization, it also leaves

out some of the important ones such as sentence planning, and sentence fusion. These two

aspects are parts of the interpretation, and summary generation steps (see Chapter 2), and

are used to bring the summaries into more coherent and human-readable forms. Since this

thesis is concerned with extractive summarization, those aspects are out of its scope.

As a final note this thesis benefits from publications [67, 10, 12, 11] in the following

conferences; EMNLP 2007, CICLING 2009, NAACL 2010, and ACL 2011. Furthermore,

the work in chapter 7 is also to be submitted to an upcoming natural language processing

conference.
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CHAPTER 2

EXTRACTIVE SUMMARIZATION

2.1. Overview of Text Summarization

There are two main points of summarization that usually separates it from other tasks

such as text compression, information extraction, question answering, etc. These two points

are the summary text being in a condensed form of the original information source (i.e.

the document), and being produced for human consumption i.e. to satisfy the user’s needs.

Note that these two properties, which do not necessarily exist together in other fields, are the

main goals of the field of summarization. It should, however, be noted that summarization

can benefit from other fields. For example, a summarization system focused on providing

summaries based on user queries may very well benefit from question answering, although

in general it is a much broader field.

The restrictions that are employed in Section 1.1 in order to define the focus of this

thesis, represent an instance of a broader classification of summarization systems, which is

given in detail in [92], where three main classes that affect the summarization systems are

identified. These classes consist of the input factors, purpose factors, and the output factors.

The input factors define the characteristics of the information source, such as its

language, length, structure, and genre. For example a news article differs in its input factors

than an article found in a medical journal. Due to the differences in genre, the discourse

structure of the texts in both information sources vary as well as their length, and the

linguistic style. Therefore the summarization systems designed for these domains typically

take into account these differences.

The purpose factors define the use of summaries from the perspective of the intended

audience, as well as the application. Factors such as time, location, and formality may
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also be included. Continuing with the same example, summaries of news articles are gen-

erally intended for ordinary users, whereas the abstracts in medical journals are intended

for researchers in the medical field. The web page snipptes given by the search engines are

also produced for ordinary users, but specific to a query, which in this sense examplify the

difference from the application point of view.

Finally, the output factors are concerned with the style, and format of the summary

as well as the coverage and the compression aspects. Note that the output factors are affected

by both the input and the purpose factors in the sense that the style of the information source

and the intended audience usually constrain the output style of the summary. However these

factors alone do not determine the output factors as a whole. The most widely considered

output factors are coverage, compression, style and form.

The coverage refers to parts of the information source mentioned in the summary.

A summary can have either comprehensive or selective coverage. For example; the systems

developed for query-focused summarization employ selective coverage as they are only con-

cerned with the parts of the information source related to a query. On the other hand, generic

summarization systems attempt to find all the salient points of the information source, and

produce their concise representation, thereby giving comprehensive coverage.

The compression factor defines the length of the summary compared to its information

source, and is usually given as a ratio. Thus a compression ratio of 80% suggests that the

length of the summary is 20% of the length of the input text. Here, the length of a text

document is usually measured in terms of the number of words, and rarely the number of

sentences. The compression ratio is mostly dependent on the genre of the input document

and the intended application.

Regarding the style of the summaries, the literature typically distinguishes between

indicative vs. informative summaries [8, 35, 93, 57, 92]. The indicative summaries help the

readers assess the aboutness of the content of the information source so that the reader may

decide whether to do further reading on it. Indicative summaries do not elaborate on the

salient points of the text but rather just point to them without giving any details. Hence
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they usually provide information about the purpose and general scope of the text without

mentioning the specific events, results or conclusions. In contrast, the informative summaries

provide the most important points of the text in the summary, and attempt to cover as many

of these aspects as possible.

The form (or derivation) of the summary is usually given as one of the two types;

extracts, concerned with the identification of the information that is important in the input

text, and abstracts, which involves a generation step to add fluency to a previously com-

pressed text [35, 93, 57, 92]. The extracts reproduce parts of the information source, which

can be a single word, sentence or an entire paragraph, verbatim in the summary. Moreover

the extracted parts need not be contiguous so the summaries are not usually coherent in ex-

tractive summarization. The abstracts, however, produce newly generated text usually with

novel phrases or sentences that are not found in the original text. In contrast to extracts,

the abstracts are coherent, and may deliver the same amount of information with a shorter

summary as they may benefit from paraphrasing, and fusion of the ideas in the information

source.

In the automatic summarization literature, abstracts are generally considered as the

further processed, or the transformed form of the extracts. This view results from the

widely accepted three-phase model [93, 59, 37, 49, 57, 92]. The model consists of the topic

identification, interpretation, and the summary generation steps. Although the phases will

be referred as such in this thesis, it should be noted that there is not a consensus among

the authors on these names. For example, in [93, 92], the first two phases are given as

interpretation, and transformation. Instead, [57] uses the names analysis, transformation,

and synthesis. Perhaps this unagreement results from the fact that these phases are not clear-

cut but are rather intervened with each other. Moreover, [69] defines four phases rather than

three, which puts an extra reinterpretation step as the third.

Topic identification is the first stage of the three-phase model of automatic text sum-

marization, and its goal is to analyze the source text, represent it internally, and identify the
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most important units in the document, i.e., phrases, sentences, or paragraphs. The extrac-

tive summarization systems only employ this stage, and simply output a ranked list of the

units according to a compression ratio criterion. In general, for most systems, sentences are

the preferred units in this stage, as they are the smallest grammatical units that can express

a statement. Scoring of the sentences are generally done using a module that combines the

scores of independent modules, either in a supervised or unsupervised fashion.

In the interpretation step, the units of text identified in the previous stage are fused

and put into a new representation. Hence, this stage is also referred to as concept fusion. The

topics found in the identification stage are aggregated and expressed in novel ways. Thus,

this stage distinguishes the systems geared towards producing abstracts from the extractive

summarization systems. The idea of aggregating the identified topics, and formulating them

in new ways gives these systems a greater chance of condensing the source content. This

intuitive notion is supported by the study in [61] in which it was found for 10 news articles

that the extracts are 2.76 times longer on average than the corresponding abstract which

covers the same points of the source document. Therefore an abstract-type summary usually

carries more information compared to an extract-type summary of the same length.

Note that in order for the summarization systems to perform the interpratation phase,

an external knowledge is required as this stage involves making inferences so that the sen-

tences can be rephrased or rewritten. For example, a phrase such as “He bought tulips,

roses, and daises” can be brought into a more compact form “He bought flowers”. Therefore

the knowledge acquisition is a major obstacle for summarization systems to perform the

interpretation stage. Hence the systems to date mostly concentrated on the extraction step,

and very little has been done on the second phase [48, 65, 84, 83].

The third stage of the three-phase model is summary generation, and it is used to

bring the internally represented summary to a more coherent and human-readeble form.

Natural Language Generation techniques such as content planning are used in this step in

order to avoid contradictory information, and repetition of sentences, as well as resolving

coreferences, and adding pronominalizations, and discourse cues [58, 5]. Another technique
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related to this stage but also studied independently is sentence compression, which is the

task of producing a shortened version of a sentence by retaining the salient information

while keeping the grammatical constraints intact. Several successful sentence compression

techniques are developed to date [43, 14, 15].

Insights for the field of automatic summarization are obtained by investigating the

way professional human abstractors compose their summaries [23, 69, 17]. Note that the

professional abstractors mentioned here are not experts on the fields in which the source

articles are written. An empirical study of six human abstractors, given in [23], found that

the process followed by humans can be broken down into three steps; document exploration,

relevance assesment, and summary production. In document exploration, the summarizer

gets familiar with the input features of the document, such as style, format, and organi-

zational layout. In relevance assesment, the theme of the document is identified, and the

salient passages and sentences are marked. Finally, in the summary production step, the

abstractors “cut-and-paste” the previously identified passages into the summary by reorga-

nizing and bringing them into a coherent form. Furthermore, the study suggests that the

human abstractors never read the entire document but rather skim over it as the whole

summarization process is completed in about 15-20 minutes. Finally, the most important

features the abstractors use are discovered to be the cue phrases, location of the sentences,

and title headings.

2.2. Overview of the Previous Work

Various approaches to automatic summarization have been considered to date, in

which most of the efforts have been on the topic identification phase. The earliest two

studies cited heavily in the literature are [55], and [6]. In [55], the term frequency feature is

used along with stemming, and stop words removal. In [6], the sentence position feature is

analyzed and it was found that in 85% of the 200 paragraphs considered, the topic sentence

came first, and in only 7% it was found to be the last sentence. These two features, with the

addition of cue words, and title headings, are used later in [22], in which the term frequency

feature is also weighted with dispersion, i.e. inverse document frequency. The weighted
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features are then combined using a linear model, and a manual evaluation found 44% of the

generated summaries successful.

With the advancement of statistical techniques in natural language processing, as well

as the machine learning methods, starting with 1990s, the field of automatic summariza-

tion received a considerabe attention from the natural language processing and information

retrieval communities. Moreover, starting in 2001, Document Understanding Conferences

(DUC)1 are organized by the National Institute of Standards and Technology (NIST), which

presented several summarization tasks for the systems to participate. Among the many

competitions carried out, some of the tasks were; the generation of short (10 words) sum-

maries, exploratory summaries, multi-document summaries, and event or question focused

summaries. The task of 100 words single-document summarization of news articles was only

employed in 2001, and 2002, as none of the systems participated in these years were able to

significantly outperform the lead baseline, which extracts the first N sentences of the article

until the length limit is reached. Hence this task is removed in the upcoming years.2

One of the first supervised systems in text summarization, which uses a naive Bayes

classifier, is described in [44], where each sentence in the source document goes through

a binary classification, i.e. whether to be included in the summary or not. The features

used in this classifier were mainly the ones in [22] with a few new ones such as the length

of the sentence. Based on a manual matching of the medical abstracts to source text, the

study found the most successful system as the one that is using position, cue phrases, and

sentence length features together. In [97], the same classifier is used on a different data,

which consisted of scientific articles for which the summaries are written by the authors of

the articles themselves, rather than the professional abstractors. Another study that extends

the idea of naive Bayes classification is given in [1] which considered richer features such as

word collocations. Furthermore, an attempt is also made in [1] to bring some coherence into

1http://duc.nist.gov/
2Starting 2008, the scope of the conference is extended by including new tracks such as textual entailment
recognition, and knowledge base population, and the name of the conference is changed to Text Analysis
Conference (TAC) (http://www.nist.gov/tac/).
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the summaries by performing a shallow discourse analysis of the source text, and by using

coreference resolution.

Instead of a naive Bayes classifier, a decision tree is used in [49], which combined even

more features. The features used in the study ranged from very simple ones such as whether

a sentence has proper names, or numerical data, to more complex ones such as measures

of lexical connectivity. However, even these more complex features were still based on the

shallow statistical techniques. An important finding of the study was that even a simple ad-

hoc combination of the features did as well as the decision tree classifier most of the times,

and sometimes even exceeded it. Another important aspect of this study was disregarding

the assumption of feature independence. In a later work, this notion is also considered via a

maximum entropy model [75].

It should be noted that the behaviour of each feature would vary across domains as

the discourse structure of the documents would be different for each domain. For example,

the position of the sentence in the source document is found to be the most important feature

for the newswire domain [73]. However, as it is shown in Chapter 6 of this work, the leading

sentences in literary novels yield to poor performances. Therefore some of the features may

need tuning for each domain. The work of [51] describes a study that attempts to optimize

the positional feature across different genres. The study is based on developing an optimal

position policy (OPP) by ranking sentences for the highest yield, which is measured againist

the topic keywords given for each article of the Ziff-Davis Corpus.

The work of [89] describes a fast query based multi-document summarization system

that only uses simple term frequency based features. The learning setting presented is

similar to the work described in Chapter 7 except that the training instances are labeled

using the word overlap between the sentence and the model summaries instead of exhaustive

evaluations used here. A more complicated framework that takes the interdependencies

between the sentences into account using conditional random fields is presented in [90]. In

[105], an attempt is made to learn to predict the appearence of individual terms in the

references, independent from the sentence selection procedure. Finally, the work in [46]
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presents a system that jointly learns to optimize diversity, coverage, and balance. Hence the

proposed system seeks to minimize redundancy by including the main points of the summary

from as many aspects as possible.

Some of the more statistically enriched approaches that consider information-theoretic

features are described in [70, 53]. In [70], information gain is used to weight the terms of

the sentences. As usual the sentences which have the highest term weights in total are

extracted. In [53], the sentence scores are determined based on the number and the length

of noun phrases, which indicate the informativeness of a sentence based on the linguistic

theory of code quantity principle. Another type of a novel statistical feature based on

eigenvector centrality is given in [68, 24, 66]. The system described in [68] ranks among

the top systems on DUC 2001, and DUC 2002 datasets. Another top performing system in

DUC competitions was MEAD [82], which used the concept of centroids, indivudual words

or phrases associated with an importance score, which is based on the idea of tf.idf [87].

Systems that go beyond using shallow approaches by performing semantic processing,

exploiting the document structure are described in [65, 3, 60, 62, 4]. In [65], the SUMMONS

system is described, which uses predefined templates, which are limited to a specific do-

main, to identify the sentences to include in the summary, and a linguistic component that

makes use of symbolic techniques to determine the structure of the output sentences, and

to present the identified sentences in a refined form. The linguistic component presented in

the study consists of three parts; the ontologizer, lexical chooser, and the sentence gener-

ator. In [3], a new algorithm to compute the lexical chains is introduced and used for the

topic identification stage. The system developed segments the text first based on a linear

discourse structure assumption, identifies lexical chains in each segment, and finally extracts

sentences based on the strongest chains found. The identification of lexical chains made use

of external knowledge sources such as WordNet [26], as well as part of speech taggers, and

shallow parsers. A break away from the assumption of linear discourse structure is given

in [60, 62], where the rhetorical structure theory (RST) is used to develop a parser which

produces the discourse tree of the text, which represents relations between text units. Then,
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a summarization algorithm that extracts sentences based on the partial ordering between

these textual units is given. Finally, an approach that considers the text structure, but this

time in terms of content, is described in [4], where hidden Markov models (HMM) are used

to learn a content model of a specific domain from an unannotated corpus of documents. A

content model is basically used to assign topic labels to sentences in the source text with

associated probabilities. A summarization system based on these models first finds the most

likely topic in the source text that should be included in the summary, and then selects the

top sentences with the same topic based on their probabilities.

Regarding the use of external knowledge for the purpose of extraction, a novel work

is given in [95], in which the task was to mimic the summary generation of an online CNN

article, which is given in 3-4 bullets, where each bullet is a human-generated sentence de-

scribing the highlights of the story. In addition to using a neural network classifier, the novel

contributions of the work was integrating two external knowledge sources to the system;

search query logs and Wikipedia entities about the story. The resulting classifier signifi-

cantly outperforms the lead baseline, in 70% of the dataset. However, during the evaluation,

no attention was paid to keep the length of the system and the baseline summaries equal in

terms of the number of words. In other words, no chopping is done in the sentence level.

Another important aspect of automatic summarization is the evaluation of summaries.

According to [57], the task should include metrics such as coherence, conciseness, gram-

maticality, readability, and content. The manual evaluations performed in the DUC/TAC

competitions tackled some of these aspects by using two metrics; content responsiveness,

the degree to which a summary responds to the information need contained in the topic

statement, and readibility, which measures the linguistic aspects such as coherence, sentence

structure, and grammaticality independent of the content. The human judges evaluated both

the responsiveness, and the readibility using a five-point scale, from “very good” to “very

poor.” Another approach to evaluate the content of the summaries manually, also used in

DUC, is the pyramid method, and described in [74]. In this method, the human assessors

identify the informative units, which are words or phrases, in multiple human generated
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summaries, and then weight them based on the number of occurences across the multiple

summaries. Then a system generated summary is assigned a score based on these weights.

Even though manual evaluation is still the gold standard, it has many drawbacks.

First, manual evaluation of summaries performed by humans is very time-consuming, as it

is stated in [76, 50], the manual evaluation of summaries in the DUC competitions would

require more than 3,000 hours of human work. Furthermore, it was also found that there is

little agreement between humans for this task. This is perhaps understandable as there is

no single unique or perfect summary for a source text. In addition, each summarizer might

capture different aspects of the source text, and hence produce different summaries. This

also suggests that the human summarizers might not be objective at all times. Therefore,

given these facts, there is a need to automate this task in order to make fast, reliable, and

unbiased evaluations.

One of the first automatic evaluation systems was proposed in [85], in which three

methods were described in order to measure the content overlap between the reference (hu-

man) and the candidate (system) summaries. These three methods were cosine similarity,

unit overlap, and the longest common subsequence. The study however did not consider

how well these measures correlate with human judgments. In contrast, inspired from the

BLEU automatic evaluation system applied successfully to machine translation, the study

in [50] introduced a new system, ROUGE3, which uses the same features as well as n-gram

co-occurence statistics, and was shown to correlate well with human judgements. Although

ROUGE gained huge popularity from the summarization community, it also received a lot of

criticism due to the fact that it only used shallow n-gram matchings to judge the content of

the summaries without considering the semantic structure or taking aspects such as cohesion

and linguistic quality into account. Another system, Basic Elements (BE), described in [36]

employs a linguistic analysis to a degree. The basic elements in a text are composed of the

heads of the major syntactic constituents, and the dependency relations of their modifiers.

Hence, these basic elements are extracted from the candidate and the reference summaries

3ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation

16



after parsing the texts with a syntactic dependency parser, and then compared against each

other. This methodology is shown to have better correlations with humans than ROUGE,

although the results were not statistically significant. Finally, very recently, a slightly more

successful system than BE, DEPEVAL(summ) is introduced in [77]. The difference between

BE, and DEPEVAL(summ) comes from the fact that while the former uses Minipar parser to

extract the dependencies, the latter accomplishes this through Lexical-Functional Grammar

dependencies.
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CHAPTER 3

RESOURCES

3.1. Dataset

A first challenge encountered on the task of summarization of literary novels was

the lack of a suitable data set, designed specifically for the evaluation of summaries of long

documents. Unlike the summarization of short documents, which benefits from the data sets

made available through the annual Document Understanding Conference (DUC) evaluations,

there are not any publicly available data sets that can be used for the evaluation of methods

for novel summarization.

The lack of such data sets is perhaps not surprising since even for humans the summa-

rization of very long documents such as literary novels is more difficult and time consuming

than the summarization of short news documents. Moreover, even though more and more

books are becoming available in electronic format these days, they are typically protected

by copyright laws that do not allow their reproduction, which consequently prohibits their

public distribution.

The construction of the dataset used in this study started from the observation

that several English and literature courses make use of literary novels that are sometimes

available in the form of abstracts – to provide study materials, and ease access to the

content of the books. Several publishers are identified that make these abstracts avail-

able online for books studied in the U.S. high-school and college systems, such as Grade-

Saver (http://www.gradesaver.com), SparkNotes (http://www.sparknotes.com), and Cliff-

sNotes (http://www.cliffsnotes.com/). Fortunately, many of these novels are classics that

are already in the public domain, and thus for most of them it was possible to find the

online electronic version of the books on sites such as Gutenberg or Online Literature

(http://www.online-literature.com).
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Most of these novels are divided into chapters by their corresponding authors at the

time of their writing. Furthermore, most of the summary publishers also follow the same

format, and present a summary per chapter1. Hence the chapter information is clearly

identified in the dataset if it is available.

In general, three different kinds of summaries are provided by the publishers men-

tioned above, each summary serving for a different purpose. The types of these summaries

are named as objective summaries, interpretative summaries, and synopsis. The objective

summaries are the ones that describe the plot of the novel, without any interpretation from

the summary writer. The second type consists of analysis summaries that describe, in a

subjective manner, the interpretation of the facts and of the main story in the novel. The

publishers often give these summaries under Notes/Analysis/Interpretation sections, hence

these summaries are referred to as interpretative summaries. Objective and interpretative

summaries are collected in chapter level for each novel. The last type of summaries, synop-

sis, are similar in essence to objective summaries but much shorter. These summaries also

describe the main story of the novel in an objective manner, but they do not come in chapter

level. Hence these summaries are not as detailed as objective summaries but rather give a

very high level description of the events in the novel. Synopsis are no longer than one or two

pages.

It should be noted that the distiction between the objective and the interpretative

summaries is different from the distinction between the indicative and the informative sum-

maries. Recalling from Chapter 2 that, the indicative summaries provide the general idea of

the text to the reader without getting into details, whereas the informative summaries try

to provide all the important points. In this case, both the objective and the interpretative

summaries are informative summaries as they are both concerned with the salient points of

the story, although with a different style. The interpretative summaries can be classified

as critical summaries, which are also distinguished by some authors as a summary style in

addition to the informative and indicative summaries [57, 45].

1Sometimes a summary is given for a combination of some of the chapters.
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Objective summary: As the novel opens, the soldiers of a regiment are waiting for
battle. After one of the men, a tall soldier, suggests that a battle is imminent, other
soldiers argue against the notion. One of the young soldiers, Henry, a private, returns to
the hut where the regiment is camped and thinks about war. He recalls his desire to enlist
in the army, his mother’s refusal to support the idea, and his eventual decision to enlist
over her objections.

Interpretative summary: The overriding impression of this first chapter is one of
conflict. The Union soldiers await a physical battle with the Confederate troops in the
area. The eminent external conflict is paralleled by the fight raging in Henry’s mind. As
the book opens, the reader sees the main character, a soldier waiting for his first battle,
ironically engaged in an internal conflict with his own thoughts.

Synopsys: The Red Badge of Courage is the story of Henry Fleming, a teenager who
enlists with the Union Army in the hopes of fulfilling his dreams of glory. Shortly after
enlisting, the reality of his decision sets in. He experiences tedious waiting, not immediate
glory. The more he waits for battle, the more doubt and fear creep into his mind. When he
finally engages in his first battle, he blindly fires into the battle haze, never seeing his
enemy. As the next enemy assault approaches, Henry’s fears of death overwhelm him, and
he runs from the field.

Figure 3.1. Sample summaries

For instance, Figure 3.1 shows three sample snippets retrieved from an objective

summary, interpretative summary, and synopsys for “The Red Badge of Courage,” as made

available by CliffsNotes.

There are a total of 66 novels, each having 108,800 words on average, where the

shortest book has 16,620 words whereas the longest one has 467779 words. Furthermore,

each book has 32 chapters on average. Note that the chapters are created by the authors at

the time of the writing of the book. In addition, there are a total of 1109 abstracts in the

entire dataset, where 442 of these abstracts are objective, 290 are interpretative summaries,

and 377 are synopsis. Table 3.1 lists some of the properties of this dataset by summary

publisher. It should be noted however that the majority of interest in this thesis will be

given to objective summaries. Synopsis are never used in any study given in this thesis, and

the interpretative summaries are only used in Chapter 4.
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Publisher N µW minW maxW µC

Objective Summaries

CliffsNotes 56 6807 1527 24535 94%
SparkNotes 66 7179 1600 28697 93%
MonkeyNotes 61 8783 2153 29475 91%

GradeSaver 65 8561 2406 25557 92%
NovelGuide 53 6987 2058 23880 93%
JiffyNotes 28 9669 4711 18441 87%
Barrons 36 13108 5053 20254 88%

BookRags 52 11736 2559 46480 88%
BookWolf 25 4837 2348 13292 95%

Interpretative Summaries

CliffsNotes 53 8583 1958 23466 92%
SparkNotes 65 6241 2671 29907 94%

MonkeyNotes 61 6454 1713 12459 93%
GradeSaver 64 7805 1971 18630 92%
NovelGuide 25 4091 1192 12956 96%

BookWolf 22 4037 940 6636 96%

Synopsis

CliffsNotes 54 1022 348 2755 99%
SparkNotes 64 967 325 2686 99%
MonkeyNotes 61 951 135 4290 99%
GradeSaver 63 1454 417 3709 99%

JiffyNotes 25 922 252 1602 99%
Barrons 36 971 422 1624 99%
BookRags 52 764 319 1916 99%

BookWolf 21 748 320 1802 99%

Table 3.1. Statistical properties of the different types of summaries in the
dataset by publisher. N represents the number of summaries from the corre-
sponding publisher, µW , minW , and maxW represent the average, minimum,
and maximum number of words in the summaries respectively, and µC indi-
cates the average compression ratio.

3.2. Evaluation: ROUGE

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation [50]. It is a

package that includes measures to automatically determine the quality of a given summary

by comparing it to model summaries written by humans. Similar to BLEU [79], used in

machine translation evaluations, the metrics in ROUGE are found to be highly correlated

with human evaluations2.

The ROUGE package includes various methods based on different measures to auto-

matically evaluate summaries. Of these methods, ROUGE-1, ROUGE-2, and ROUGE-SU4

are the three metrics used in Document Understanding Conferences (DUC) to evaluate single

document summarization systems, as these metrics are found to correlate well with human

2ROUGE is available at http://berouge.com
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judgements. Hence the same convention is followed in this thesis. Therefore, the description

of other ROUGE metrics such as ROUGE-L, ROUGE-W are skipped. The reader can refer

to [50] for further details about them.

ROUGE-1, and ROUGE-2 belong to the same class of ROUGE metrics, namely

ROUGE-N, which is based on n-gram cooccurence statistics, and ROUGE-SU4 is an exten-

sion of ROUGE-S. ROUGE-N measure is based on the n-gram recall between the model

summaries and the candidate summary. Let R represent the set of n-grams found in a model

summary, M represent the set of model summaries, and C represent the set of n-grams found

in the candidate summary, then ROUGE-N metric can be formally defined as:

(1) RecallNM,C =

∑
R∈M |R ∩ C|∑

R∈M |R|

Since the denominator of this equation contains the sum of n-grams found in reference

summaries, ROUGE-N is a recall-based metric. Furthermore, replacing N with 1, and 2, it

should be clear that ROUGE-1 metric looks for the unigram cooccurences, and the ROUGE-2

metric looks for the bigram cooccurences in the candidate and model summaries.

One disadvantage of the ROUGE-2 measure is that it considers substrings rather than

subsequences. As a result, it cannot find a match between the strings “his old book” and

“his book”. In order to account for this, ROUGE-S metric is introduced which computes

the skip-bigram cooccurence statistics. The formula for ROUGE-S is the same as ROUGE-2

except that the number of bigram subsequences in a summary of m words is no longer m−1,

but rather given as C(m, 2) where C(x, y) is the combination function.

The ROUGE-S metric still has a drawback, that is it does not distinguish between

the cases where the reference and the candidate summaries have no word overlap vs. the

summaries do have word some overlapping words but no overlapping skip-bigrams. In order

to account for this, ROUGE-SU measure is introduced, which also calculates unigram over-

laps in addition to skip-bigram overlaps. In other words, ROUGE-SU is a weighted average

between ROUGE-S, and ROUGE-1.
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Finally, a limit is given to the number of words in between the words of a skip-bigram.

In the ROUGE-SU4 metric, this limit is 4, i.e. it is allowed to skip a maximum of 4 words

to form the skip-bigrams. Hence in this measure, the beginning and the ending words of a

sentence of 7 words would not form a skip-bigram as a subsequence of the sentence.
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CHAPTER 4

ALIGNMENT

4.1. Introduction

This chapter addresses the first step in automatic summarization, and analyze the

extent to which human-written summaries of literary novels can be obtained through extrac-

tive methods. A decomposition algorithm is used to automatically identify matches between

sentences in the summary and sentences in the novel, and thus determine the potential

coverage of extractive summarization.

The work is inspired by the decomposition algorithm previously proposed by [38] for

single-document summarization on the newswire domain. In this chapter, the applicability

of the algorithm to novels and their summaries is considered, and the effect of the various

parameters of the algorithm is analyzed with respect to the coverage of the decomposition.

The results suggest that different parameter settings are needed for long documents, and

even under restrictive conditions a significant number of summary sentences can be obtained

through cut-and-paste operations from the original novel. In turn, this coverage depends on

the type of summaries being analyzed, with significant differences observed between objective

(plot) summaries and interpretative summaries.

4.2. Dataset

Two kinds of summaries are targeted for the analysis in this study; the objective,

and the interpretative summaries. From the entire novel data set, the novels that have both

objective and interpretative summaries available from at least two publishers were selected.

Moreover, an additional constraint is also placed on the length of these summaries, such

that it is required that the interpretative summaries be at least as long as the corresponding

objective summaries, when considering the same source. The reason for this constraint is,

as the next sections will explain, the decomposition algorithm works with only surface level
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syntactic features of the text, hence is directly affected by the compression ratio. Thus the

more compressed a summary is, it is less likely that source sentences are directly used in it,

but more likely that the source sentences are rephrased to bring them into a more compact

form. Therefore the dataset gives bias to interpretative summaries rather than objective

summaries. As the results will show, even with the bias, the interpretative summaries are

not suitable for extraction.

The final dataset consisted of 31 books, which are used in the analysis described in

this chapter. The novels in this collection have an average length of 87,000 words. The

average length for the objective and interpretative summaries is 6,800 words per summary;

where it is 5,840, and 8,230 words for objective and interpretative summaries respectively.

4.3. Decomposition Algorithm

In order to analyze the sentences in human-written summaries, the summary sentence

decomposition methodology proposed in [38] is used. This methodology is based on the

assumption that the human summarizers often extract phrases from the original source, and

then make further editions to compose the summary sentence. The technique, also referred

to as cut-and-paste, is supported by the studies in [23] and [27].

The goal of the decomposition analysis of a summary sentence is to discover the

source sentences from which the cut-and-paste is done. Note that this could be a difficult

task, as the extracted phrases of the source sentence can go through several transformations

as a result of the editions that human-summarizers perform. The transformations may make

the summary sentence become quite different as compared to the the phrases extracted from

the source text.

4.3.1. Cut-and-Paste Operations

Six major operations performed during cut-and-paste based summarization are iden-

tified in [38] as a result of analyzing 120 sentences from 15 human-written summaries from

the newswire domain. These operations are sentence reduction, sentence combination, syn-

tactic transformation, lexical paraphrasing, generalization/specification, and reordering. It
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is found that the human-summarizers often use a combination of these operations in order

to come up with the summary of the information source.

Determining whether a phrase in a summary sentence is a result of lexical paraphras-

ing or a generalization/specification of phrase(s) of the source text is a difficult problem,

and it is omitted in [38] as well as this study. Hence, in the decomposition algorithm, the

only transformations considered are the sentence reduction, sentence combination, syntactic

transformation, and the reordering operations.

The sentence reduction operation refers to extracting a sentence from the original

source and then removing certain words or phrases from it. Sentence combination is the

process of combining two or more sentences from the original source and merging them into

one sentence. Note that it is possible to combine only parts of the sentences, hence this oper-

ation is often used together with the sentence reduction operation. Syntactic transformation

refers to modification of the syntactic structure of a sentence, such as word reordering or

passive transformations. Finally, the reordering operation is concerned with changing the

position of the sentence in the summary with respect to the sentences in the source text that

are used to construct it.

4.3.2. Problem Formulation

Based on the assumptions discussed in the previous section, the sentence decomposi-

tion problem translates into finding the words of a summary sentence inside the source text.

If the words come from a single sentence, then it can be concluded that either the source

sentence is included as-is in the summary, or that the sentence reduction operation is used

to get rid of some of the words. If the position of the words is changed with respect to

the source sentence, then syntactic transformations are also involved. Finally, if some of the

words come from different sentences, then it can be concluded that the sentence combination

operation is used. Note that if some words in a summary sentence are in a rephrased form

of the words in the source document, then the algorithm will not catch this as the lexical

paraphrasing, and generalization/specification operations are omitted.
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Figure 4.1. The document positions listed for each word of a part of a sum-
mary sentence.

Thus the problem is formulated as follows. Each summary sentence is represented as

a sequence of words (w1, w2, ..., wn), and each word wi can be represented as a set of tuples

Si = (K,L), where K is the position of the sentence in the source document which contains

wi, and L is the position of wi within the sentence. The tuple (K,L) is also referred to as

the document position of a word. For example, the tuple (5, 12) for a word w means that w

appears as the 12th word of the 5th sentence of the source document. Figure 4.1 shows an

example part of a sentence and the document positions listed for each word.

Hence, for a summary sentence of n words, there are M =
∏n

i=1 |Si| possible ways to

compose it, where |Si| denotes the cardinality of the set Si. The objective here is to find

the set that will select the most likely document position for each word. The next section

describes the algorithm that attempts to do this task in an efficient way.

4.3.3. Algorithm

The likelihood of the document position for a word can be estimated by looking at

the document positions of the preceding words. This estimation can be modeled using an

27



n-gram model. Using a bigram model, the probability P (wi = (Kq, Lq)|wi−1 = (Kr, Lr))

where (Kq, Lq) ∈ Si for q = 1, 2, ..., |Si| and (Kr, Lr) ∈ Si−1 for r = 1, 2, ..., |Si−1|, is specified

as the probability of the word wi coming from document position (Kq, Lq) given that the

word wi−1 comes from position (Kr, Rr).

Given two adjacent words in a summary sentence, the algorithm seeks to find these

two words in the source text. During this step, if the words are found in the source, then

it can be concluded that the algorithm encountered one of the following steps: Both words

might be found in the same sentence, placed next to each other, and following the same

order. This would be the ideal case as it would imply that the words are just cut from the

source sentence and pasted into the summary sentence. This case is referred to as case 1.

Case 2 occurs when the words are in the same sentence, in the same order, but not necessarily

consecutively as there might be other words in between. The third option, case 3, is where

the words are found in the same sentence but in different order. In the fourth option, case

4, the order of the words is retained, however they come from different but neighboring

sentences, where the neighboring is determined via a window parameter. Case 5 is the same

as case 4 but this time the order of the words is also reversed. The final option, case 6, is the

worst possible scenario and occurs when the words are found in non-neighboring sentences

in any order. Figure 4.2 shows an example of each possible case using the example given in

Figure 4.1.

Each document position can be seen as a state, and each of the cases defined above

can be seen as a transition from one of the states of the word wi to one of the states of

the adjacent word wi+1 (If the adjacent word has no states, then the states of the next

word, wi+2 are considered). These transitions can be represented using the bigram model

described above, and the probabilities for the possible transitions can be defined by assigning

a probability to each case. Building these states and the transition probabilities for the entire

summary sentence is equivalent to constructing a first-order Hidden Markov Model (HMM).

Thus it is possible to use the Viterbi algorithm to find the most likely sequence of states

in this HMM. The algorithm associates a probability for the current state based on the
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Figure 4.2. Illustration of cases. Note that not all the possible cases are drawn.

probability of the previous states and the transition probability from the previous state to

the current state. Hence a probability for state wi = (Kq, Lq) is defined as follows:

(2)

P (wi = (Kq, Lq)) = max
(Kr,Lr)∈Si−1

P (wi−1 = (Kr, Lr)) × P (wi = (Kq, Lq)|wi−1 = (Kr, Lr))

The probability for the base case is defined as P (w1 = (Kq, Lq)) = 1 for all q, to make

sure that every first word of a sentence has an equal chance of being selected. Hence the

probability maxP (w1, w2, ..., wn), which denotes the probability of the most likely sequence

of document positions that make the summary sentence, can now be approximated as:

(3) max P (w1, w2, ..., wn) = max
(Kq ,Lq)∈Sn

P (wn = (Kq, Lq))

In order to find the most likely sequence, as in any dynamic programming algorithm,

a back pointer is kept in each step to the previous state that gives the highest probability.

For cases 1 through 5, the same transition probabilities given in [38] are used. Namely

the probabilities are 1.0, 0.9, 0.8, 0.7, and 0.6 for case 1, case 2, case 3, case 4, and case 5

respectively. The probability of case 6 is used as a parameter, and varied during the analysis.
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Note that these values are not tuned for a particular task, but rather just assigned intuitively

in an ad-hoc fashion.

4.4. Parameter Analysis for the Decomposition Algorithm

The dataset used in [38] is composed of news articles and their summaries, and most of

the parameters were selected intuitively based on this data genre. In this study, rather than

taking the same parameters for granted, the goal is to see the effects of those parameters when

the decomposition algorithm is applied on novel summaries. Therefore having described the

algorithm, the first step is to describe the parameters, and then the analysis is performed

next. Note that the intention here is not to tune these parameters, but rather to see how

the decomposition algorithm is affected by different parameter choices.

Three parameters, whose values can have an effect on the algorithm, will be analyzed.

First, the window size parameter w, which is the number of neighboring sentences that can

be considered during a sentence combination operation alongside the current source sentence.

Second, the probability p which is assigned to the transition which occurs when a word is

found outside the current source sentence, and outside the neighboring sentences that are

within the window size. Since the novels are long documents and their summaries have lower

compression ratios1, it can be expected that human summarizers combine sentences that are

further apart from each other compared to news articles when forming the summary. Hence

it should be expected that both w and p will differ for novels. Furthermore, note that p

and w are dependent on each other such that decreasing (increasing) the window size will

increase (decrease) the chances of finding the next word outside of the neighboring sentences.

Finally, the last parameter is a rule that specifies the number of stop words, sw,

and/or the number of non-stop words, nsw, that need to be found in a document (source)

sentence in order to consider that sentence as being involved in the cut-and-paste process.

The values for these parameters used in [38] are w = 3, p = 0.5, and for the final rule, it was

enforced that a document sentence has to contribute to the summary sentence with either

1Recall from Chapter 1 that a lower compression ratio means a higher compression of the source text.
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two or more non-stop words or a non-stop word plus one or more stop words, which in logical

form can be written as (nsw ≥ 2) ∨ (nsw ≥ 1 ∧ sw ≥ 1).

Furthermore, it is assumed in [38] that a summary sentence is formed as a result

of cut-and-paste operations on source sentences if and only if at least half of the words in

the summary sentence can be found in the source sentences. Rather than using the same

assumption, in this study, a coverage for each summary sentence is computed, which is simply

the percentage of the words in the summary sentence that are found in the source document.

Using this notion, it is possible to create the plots of coverage for each summary-document

pair, and visualize the effect of varying coverage. In addition, this method also allows one to

specify a cutoff value for the coverage and discard the sentences that fall below the cutoff.

Note that when the cutoff value is equal to 0.5, the assumption would be the same as in [38].

It is also possible to parametrize the other transition probabilities from case 1 to

case 5, and analyze their effects individually as these probabilities are assigned intuitively

in an ad-hoc fashion. However the resulting analysis would not give us any insights for

novels. Therefore in order to be able to compare the results with the newswire domain,

those probabilities are left unchanged.

4.4.1. Number of Words in Contributing Document Sentences

The first parameter analyzed is the number of stop words and non-stop words in a

contributing document sentence. Note that even at chapter level, the novels have significantly

greater length than news articles. Since there is a substantially larger number of sentences,

the probability of finding a summary word or phrase in multiple sentences is also greatly

increased. Therefore in the experiments, the conditions are gradually made more restrictive.

During the analysis of this parameter, the other parameters w, and p are kept fixed to 3 and

0.5 respectively, which are the values used previously for news articles.

As the least restrictive rule, the experiments start with a simple condition, (nsw ≥ 1)

. The next rules in order of strength are; (nsw ≥ 2) ∨ (nsw ≥ 1 ∧ sw ≥ 1), (nsw ≥ 2),

(nsw ≥ 3) ∨ (nsw ≥ 2 ∧ sw ≥ 1), (nsw ≥ 3), (nsw ≥ 4) ∨ (nsw ≥ 3 ∧ sw ≥ 1), and

(nsw ≥ 4).
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Figure 4.3. (a) Objective summaries (b) Interpretative summaries

The results are shown in Figure 4.3. The figure plots the coverage for both the

objective and the interpretative summaries in the dataset. For each summary sentence, its

coverage is measured as the percentage of words in the sentence that are obtained from the

source text through the cut-and-paste operations. The Y axis shows all the sentences for

all the summaries in the dataset, in increasing order of their coverage. 17,665 objective and

21,077 interpretative summary sentences from 55 sources are analyzed in the experiments.

For both the objective and the interpretative summaries, increasing the restrictiveness

of the conditions results in less coverage. Furthermore, although the results are similar for

both objective and interpretative summaries, as the coverage rate increases, the drop in the

number of sentences is much quicker for the interpretative summaries. In order to see this

difference, a set of varying cutoff values are applied on these results and the percentage of

the sentences that exceed the cutoff value is reported. This value represents the percentage

of the sentences in the summary that are constructed by cut-and-paste operations for the

given parameter choices.

The difference between the objective and the interpretative summaries is quite clear

from the results in Table 4.1. For example, by applying the second rule and a cutoff of 0.5,

which are the same assumptions as in [38], 65.5% of the objective summary sentences can

be identified as constructed by cut-and-paste operations. Using the same assumptions, the

number dramatically reduces to 37.8% for the interpretative summaries. For the remainder
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Cutoff
Rules 0.2 0.3 0.4 0.5 0.6 0.7

Objective summaries
(nsw ≥ 1) 98.9 96.7 92.4 83.9 66.0 41.9
(nsw ≥ 2) ∨ (nsw ≥ 1 ∧ sw ≥ 1) 95.9 90.0 80.0 65.5 42.1 20.8
(nsw ≥ 2) 71.7 55.6 39.7 26.3 14.2 0.69
(nsw ≥ 3) ∨ (nsw ≥ 2 ∧ sw ≥ 1) 62.2 46.3 31.7 20.1 10.6 0.54
(nsw ≥ 3) 37.2 25.9 17.0 10.9 0.61 0.35
(nsw ≥ 4) ∨ (nsw ≥ 3 ∧ sw ≥ 1) 33.6 23.6 15.6 10.0 0.57 0.33
(nsw ≥ 4) 19.9 15.0 10.4 0.71 0.42 0.26

Interpretative summaries
(nsw ≥ 1) 94.7 87.5 74.9 57.7 35.0 17.0
(nsw ≥ 2) ∨ (nsw ≥ 1 ∧ sw ≥ 1) 88.5 75.5 57.5 37.8 18.2 0.78
(nsw ≥ 2) 48.2 30.7 17.9 10.2 0.53 0.30
(nsw ≥ 3) ∨ (nsw ≥ 2 ∧ sw ≥ 1) 40.5 24.7 14.1 0.81 0.44 0.27
(nsw ≥ 3) 19.5 12.1 0.73 0.48 0.31 0.20
(nsw ≥ 4) ∨ (nsw ≥ 3 ∧ sw ≥ 1) 17.8 11.2 0.68 0.46 0.30 0.20
(nsw ≥ 4) 10.5 0.75 0.51 0.37 0.26 0.18

Table 4.1. Percentage of sentences in the objective and interpretative sum-
maries that are constructed by cut-and-paste operations, as a function of cutoff
value and word restriction rules.

of the analysis reported in this section, for consistency purposes, this parameter is fixed to

the second rule, (nsw ≥ 2) ∨ (nsw ≥ 1 ∧ sw ≥ 1).

4.4.2. Probability Assigned to Distant Words

The parameter p is analyzed next, which specifies the bias of the algorithm to consider

combinations of phrases from sentences that are distant from each other, where the distance

is defined by the window-size w. For instance, when p is set to 0.1, the algorithm will assign

a probability value of 0.1 to the transitions occurring as a result of case 6. In order to see

the effect of this bias, p is varied in 0.1 increments from 0.0 to 0.5 while keeping the other

parameters fixed.

The results are plotted in Figure 4.4. Once again, the coverage of the summary

sentences are shown for both the objective and the interpretative summaries in the dataset.

A summary of the results are also displayed in Table 4.2, which shows the percentage of
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Figure 4.4. (a) Objective summaries (b) Interpretative summaries

sentences in the objective and interpretative summaries that are constructed by cut-and-

paste operations.

As seen in the figure and the table, the coverage is greatly affected when p is reduced

to 0, which only allows for the combination of sentences found within the specified window

size. This suggests that there is a substantial amount of sentences in the summary that

could be formed by the combination of distant sentences. However, it should be noted that

most of these sentences are most likely not constructed using the cut-and-paste techniques

but rather the words in the summary sentences are just found randomly in the source text

as even a small increment in p, results in a very big jump on the results. Nevertheless, it

can also be seen from Table 4.2 that for the objective summaries, when p is set to 0, and the

cutoff is set to 0.5, 18.8% of the summary sentences are formed by using the cut-and-paste

operations. In this case, the randomness factor is extremely reduced, as the parameters are

quite restrictive.

4.4.3. Window Size

The final parameter that will be investigated is the window size, w. As mentioned,

this parameter is related to p, so with increasing w it is expected that some of the sentences

that are lost with the reduction of p will be regained. Thus, for this experiment the value of p

will be fixed to 0, and w will be gradually increased by setting it successively to 3, 9, 15, 21, 27.

The results are presented in Figure 4.5.
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Cutoff
Probability 0.2 0.3 0.4 0.5 0.6 0.7

Objective summaries
p = 0.0 70.1 49.4 31.1 18.8 0.91 0.44
p = 0.1 94.3 86.5 74.2 57.8 34.6 16.3
p = 0.2 94.4 86.8 74.6 58.4 35.1 16.6
p = 0.3 94.8 87.5 75.9 56.9 36.5 17.2
p = 0.4 95.4 88.7 77.7 62.5 38.8 18.8
p = 0.5 95.9 90.0 80.0 65.5 42.1 20.8

Interpretative summaries
p = 0.0 54.0 30.8 15.6 0.75 0.34 0.20
p = 0.1 85.5 70.3 50.0 30.7 14.1 0.60
p = 0.2 85.7 70.7 50.6 31.2 14.4 0.61
p = 0.3 86.3 71.8 52.2 32.5 15.1 0.64
p = 0.4 87.4 73.4 54.8 34.9 16.5 0.69
p = 0.5 88.5 75.5 57.5 37.8 18.2 0.78

Table 4.2. Percentage of sentences in the objective and interpretative sum-
maries that are constructed by cut-and-paste operations varying with cutoff
and p.
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Figure 4.5. (a) Objective summaries (b) Interpretative summaries

As before, the results with the specific cutoff values applied are shown in Table 4.3.

Increasing the window size allows the algorithm to combine the sentences that are distant

from each other, which is an expected result. Almost a linear increment is observed on

the coverage with the increasing window size. Note that, even with an unrealistically large

window size of 27, the coverage reaches to only 39% for objective summaries with a cutoff

value of 0.5, which is quite below 57.8% achieved with p set to 0.1 with the same cutoff value.
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Cutoff
Probability 0.2 0.3 0.4 0.5 0.6 0.7

Objective summaries
w = 3 70.1 49.4 31.1 18.8 0.91 0.44
w = 9 75.3 56.6 39.0 25.2 13.2 0.65
w = 15 79.5 62.6 45.7 30.8 16.8 0.82
w = 21 82.5 67.3 51.1 35.6 19.9 0.96
w = 27 85.4 71.5 55.3 39.8 22.5 10.7

Interpretative summaries
w = 3 54.0 30.8 15.6 0.75 0.34 0.20
w = 9 59.8 37.0 20.5 10.8 0.48 0.26
w = 15 64.3 42.3 25.1 13.8 0.62 0.30
w = 21 68.3 47.2 29.3 16.4 0.76 0.35
w = 27 71.6 51.3 32.8 18.8 0.87 0.38

Table 4.3. Percentage of sentences in the objective and interpretative sum-
maries that are constructed by cut-and-paste operations varying with cutoff
and p.

This shows that, most of the increase in coverage when p is non-zero, comes from finding

the words of the summary sentence in random sentences in the source text.

4.4.4. The Decomposition of Novel Summaries

In an analysis of 1,642 summary sentences in [38], it is found out that 42% of these

sentences match to a single sentence in the document, 36% of them match to two sentences,

and only 3% match to three or more sentences. It was concluded that 78% of the summary

sentences are constructed by cut-and-paste operations by only counting the ones that use 1

or 2 document sentences. The study was however limited to news articles. In comparison,

for novel summaries, even at chapter level, the compression rates are quite smaller, so that

it would be quite reasonable for a novel summary sentence to use three or more document

sentences. See for instance the following example, which is a sentence from a human summary

for Moby Dick by Herman Melville, along with three sentences in the source text that

contribute to this summary sentence.
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Summary sentence (51 words): Flask is the last person down at the table and the
first one to leave; since Flask had become an officer he had never known what it was to be
otherwise than hungry, more or less, for what he eats does not relieve his hunger as keep it
immortal in him.

Book sentences:
Sentence 33 (8 words): Flask was the last person down at the dinner, and Flask is the

first man up.
Sentence 38 (20 words): Therefore it was that Flask once admitted in private, that ever
since he had arisen to the dignity of an officer, from that moment he had never

known what it was to be otherwise than hungry, more or less.
Sentence 39 (13 words): For what he ate did not so much relieve his hunger, as keep

it immortal in him.

Figure 4.6. Sample summary sentence and the three source sentences used
to compose it

Not only the above example demonstrates the fact that a summary sentence can easily

be constructed from three document sentences, but it also shows that a larger window-size

than 3 is quite possible for long documents.

As mentioned, 17,665 objective, and 21,077 interpretative summary sentences from

55 sources are analyzed in the experiments. For the purpose of comparison of the results

with the ones in [38], the parameters are fixed to w = 3, p = 0.5, and the rule (nsw ≥

2) ∨ (nsw ≥ 1 ∧ sw ≥ 1). The results are shown in Table 4.4. For objective summaries,

34.5% of the sentences cannot make the cutoff and hence are not identified as constructed

by cut-and-paste operations. On the other hand, 48.4% of the sentences use 1, 2, 3, or 4

document sentences, and 17.1% of them use 5 or more. For interpretative summaries, 62.2%

of them cannot make the cutoff, and 25.3% use 1, 2, 3, or 4 document sentences, and 12.5%

use 5 or more.

Although the objective summaries are clearly more suitable for extractive summariza-

tion than the interpretative ones, it is quite unlikely that 48.4% of the objective summary

sentences can be obtained through the cut-and-paste process using up to 4 document sen-

tences as this result is obtained by fixing the parameters to those tuned for news articles.
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Number of document sentences used
Summary type 1 2 3 4 5 or more
Objective 5.3% 13.8% 15.6% 13.7% 17.1%
Interpretative 3.1% 6.3% 8.6% 7.3% 12.5%

Table 4.4. Percentage of the number of document sentences used to compose
the summary sentences

Therefore it should be expected that there is some noise in the results due to the looser pa-

rameters. As it was seen in the experiments, increasing the window size w to even unrealistic

values still does not make up for the reduction obtained when the parameter p is set to 0.

Therefore, keeping p at 0, and increasing the window size to 9, which is more realistic, it

can be seen from Table 4.3 that, a coverage cutoff value of 0.4 gives 39%, and a value of 0.5

gives 25.2%. Given that these parameters are far more reasonable for novels, it is reasonable

to expect the actual number to be in this range.

4.5. Related Work

In terms of analysis of the composition of human-written summaries, the work most

closely related to the one described in this chapter is the decomposition algorithm proposed

in [39, 38], which analyzed the extent to which single-document summaries of news articles

are created by using cut-and-paste operations from the text. More recently, their technique

has been applied to the analysis of human summaries of Japanese broadcast news [96], and

has also been adapted for the analysis of multi-document human summaries [2].

Another document/abstract alignment approach is given in [18, 19], in which a more

sophisticated approach than the standard HMM model is used. The new model, phrase-based

HMM, which improves upon [38], is also unsupervised, and uses Dirichlet Priors rather than

the maximum likelihood estimates. It also recognizes paraphrasings in the summary to a

degree. However this method is not implemented for these experiments as it lacks the speed

to run it efficiently on novel summaries.
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4.6. Summary

In this chapter, the sentence decomposition algorithm proposed by [38] for the newswire

domain is applied to novel summaries, and the extent to which human-written novel sum-

maries can be obtained through cut-and-paste operations from the original source is analyzed.

Specifically, two separate chapter-level summary sources for novels are considered: one that

attempts to give a summary by redescribing the events in a compact form, which is referred

to as objective summaries, and one that attempts to give a summary by capturing the deep

meaning of the story by describing the author’s ideas and thoughts, which is referred to as

interpretative summaries.

The result of the analysis consistently suggests that, the percentage of the objective

summary sentences found by the algorithm to be constructed using cut-and-paste tech-

niques is about twice the size of the percentage found for the interpretative summaries.

Even with the varying parameters the argument still holds valid, except for cases where

the parameters are unrealistically restrictive. It can therefore be concluded that humans

use very little extraction from the source document when writing interpretative summaries,

and thus extractive summarization is non-suitable for this summary type. On the other

hand, with reasonable parameter choices, around 30% of the human-written objective sum-

mary sentences are constructed from the original document on average, which indicates that

extractive summarization is more suitable for this summary type.

The results differ from those reported in [38], where the analysis is performed on short

articles from the news domain. Using the same parameters, the decomposition algorithm

fails to find a match for 34.5% of the objective summary sentences compared to only 19% in

[38]. Although some of those sentences are still constructed by cut-and-paste, the algorithm

fails to find them due to other transformations applied to these sentences. Part of this

is most likely caused due to the fact that heavy editing operations such as paraphrasing or

generalization/specification are more frequently encountered in the construction of sentences

in book summaries due to the low compression ratios. Another effect of the lower compression

ratio is seen in the number of source sentences used to construct the novel summaries.

39



The average compression ratio per chapter was 7.5% for objective summaries, and 11% for

interpretative summaries, compared to a ratio around 20-30% that is typical for the newswire

domain.

A decomposition analysis for literary novel summaries not only helps us make the

distinction between two summary styles (e.g., objective vs. interpretative), but it also helps

us see how humans transform the document sentences into summary sentences, and which

document sentences are selected for inclusion into a summary through cut-and-paste opera-

tions.
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CHAPTER 5

ANALYSIS OF EXTRACTIVE SUMMARIZATION

5.1. Introduction

This chapter analyzes the topic identification stage of single-document automatic

text summarization across four different domains (genres), consisting of newswire, literary,

scientific and legal documents. It presents a study that explores the summary space of

each domain via an exhaustive search strategy, and finds the probability density function

(pdf) of the ROUGE score distributions. The resulting pdfs are then used to calculate the

percentile rank of extractive summarization systems. The results introduce a new way to

judge the success of automatic summarization systems and bring quantified explanations to

questions such as why it was so hard for the systems to date to have a statistically significant

improvement over the lead baseline in the news domain.

Since the sentences in a document are reproduced verbatim in extractive summaries,

it is theoretically possible to explore the search space of this problem through an enumeration

of all possible extracts for a document. Such an exploration would not only allow us to see

how far one can go with extractive summarization, but it would also make it possible to

judge the difficulty of the problem by looking at the distribution of the evaluation scores for

the generated extracts. Moreover, the high scoring extracts could also be used to train a

machine learning algorithm.

However, such an enumeration strategy has an exponential complexity as it requires

all possible sentence combinations of a document to be generated, constrained by a given

word or sentence length. Thus the problem quickly becomes impractical as the number

of sentences in a document increases and the compression ratio decreases. In this work,

an attempt is made to overcome this bottleneck by using a large cluster of computers, and

decomposing the task into smaller problems by using the given section boundaries or a linear
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text segmentation method. As a result of this exploration, a probability density function

(pdf) of the ROUGE score [50] distributions is generated for four different domains, which

shows the distribution of the evaluation scores for the generated extracts, and allows one to

assess the difficulty of each domain for extractive summarization.

Furthermore, using these pdfs, a new success measure is introduced for extractive

summarization systems. Namely, given a system’s average score over a data set, calculation

of the percentile rank of this system from the corresponding pdf of the data set is shown. This

allows one to see the true improvement a system achieves over another, such as a baseline,

and provides a standardized scoring scheme for systems performing on the same data set.

5.2. Related Work

Despite the large amount of work in automatic text summarization, there are only a

few studies in the literature that employ an exhaustive search strategy to create extracts,

which is mainly due to the prohibitively large search space of the problem. Furthermore, the

research regarding the alignment of abstracts to original documents has shown great varia-

tions across domains [44, 97, 61, 38, 10], which indicates that the extractive summarization

techniques are not applicable to all domains at the same level.

In order to automate the process of corpus construction for automatic summarization

systems, [61] used exhaustive search to generate the best extract from a given (abstract,

text) tuple, where the best extract contains a set of clauses from text that have the highest

similarity to the given abstract.

In addition, [21] used exhaustive search to create all the sentence extracts of length

three starting with 15 TREC Documents, in order to judge the performance of several

summary evaluation measures suggested in their paper.

Finally, the study most similar to the one given in this chapter is presented in [52],

which uses the articles with less than 30 sentences from the Document Understanding Con-

ference (DUC) 2001 data set to find oracle extracts of 100 and 150 (±5) words. These

extracts were compared against one summary source, selected as the one that gave the high-

est inter-human agreement. Although it was concluded that a 10% improvement was possible
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for extractive summarization systems, which typically score around the lead baseline, there

was no report on how difficult it would be to achieve this improvement, which was the main

objective and contribution of the work in this chapter.

5.3. Dataset

The data set used in this chapter is composed of four different domains: newswire,

literary, scientific and legal. 50 documents and only one summary for each document are

used for all domains, except for newswire where two summaries per document are used.

For the newswire domain, the articles and their summaries are selected from the DUC 2002

data set1. For the literary domain, 10 novels are randomly drawn from the pool described in

Chapter 3. Furthermore, 5 chapters are selected from each novel, and each chapter is treated

as a separate document. Thus 50 chapters in total are evaluated. Recall from Chapter 3

that these chapters are not defined by an automatic segmentation algorithm, but rather by

the authors of the novels at the time of their writing. For the scientific domain, the articles

are selected from the medical journal Autoimmunity Reviews2, and their abstracts are used

as summaries. Finally, for the legal domain, 50 law documents and their corresponding

summaries are gathered from the European Legislation Website,3 which comprises four types

of laws - Council Directives, Acts, Communications, and Decisions over several topics, such

as society, environment, education, economics and employment.

Although all the summaries are human generated abstracts for all the domains, it is

worth mentioning that the documents and their corresponding summaries exhibit a specific

writing style for each domain, in terms of the vocabulary used and the length of the sentences.

Some of the statistical properties of each domain are listed in Table 5.1.

5.4. Experimental Setup

As mentioned in Section 5.1, an exhaustive search algorithm requires generating all

possible sentence combinations from a document, and evaluating each one individually. For

1http://www-nlpir.nist.gov/projects/duc/data.html
2http://www.elsevier.com/wps/product/cws home/622356
3http://eur-lex.europa.eu/en/legis/index.htm
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Domain µDw µSw µR µC µCw

Newswire 641 101 84% 1 641
Literary 4973 1148 77% 6 196
Scientific 1989 160 92% 9 221
Legal 3469 865 75% 18 192

Table 5.1. Statistical properties of the data set. µDw, and µSw represent
the average number of words for each document and summary respectively;
µR indicates the average compression ratio; and µC and µCw represent the
average number of sections for each document, and the average number of
words for each section respectively.

example, using the values from Table 5.1, and assuming 20 words per sentence, one can find

that the search space for the news domain contains approximately
(
32
5

)
× 50 = 10, 068, 800

summaries. The same calculation method for the scientific domain gives
(
99
8

)
× 50 = 8.56 ×

1012 summaries. Obviously the search space gets much bigger for the legal and literary

domains due to their larger text size.

In order to be able to cope with such a huge search space, the first thing done was

to modify the ROUGE 1.5.54 Perl script by fixing the parameters to those used in the DUC

experiments,5 and also by modifying the way it handles the input and output to make it

suitable for streaming on the cluster.

The resulting script evaluates around 25-30 summaries per second on an Intel 2.33

GHz processor. Next, for each (document, summary) pair, the resulting ROUGE script is

run as part of a streaming job on a large cluster of computers running on a Hadoop Map-

Reduce framework.6 Based on the size of the search space for a (document, summary) pair,

the number of computers allocated in the cluster ranged from just a few to more than one

thousand.

Although the combination of a large cluster and a faster ROUGE is enough to handle

most of the documents in the news domain in just a few hours, a simple calculation shows

that the problem is still impractical for the other domains. Hence for the scientific, legal,

4http://berouge.com
5-n 2 -x -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0
6http://hadoop.apache.org/
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and literary domains, rather than considering each document as a whole, the documents

are divided into sections, and the extracts are created separately for each section with the

constraint that the length of the extract is proportional to the length of the section in the

original document. For the legal and scientific domains, the given section boundaries (with-

out considering the subsections for scientific documents) are used to chunk the the documents

into sections. For the novels, each chapter is treated as a single document (since each chapter

has its own summary), and is then divided into sections using a publicly available linear text

segmentation algorithm by [99].7 In all cases, the algorithm picks the number of segments

automatically.

To evaluate the sections, ROUGE is modified further so that it applies the length

constraint to the extracts only, not to the model summaries. This is due to the fact that the

extracts of each section are evaluated individually against the whole model summary, which

is larger than the extract. This way, an overall ROUGE recall score for a document extract

can be obtained by simply summing up the recall scores of the extracts of each section. The

precision score for the entire document can also be found by adding the weighted precision

scores for each section, where the weight is proportional to the length of the section in the

original document. In this study, however, only the recall scores are used.

Note that, since for the legal, scientific, and literary domains each section of a docu-

ment is considered independently, the process is not the same as performing a true exhaustive

search for these domains, but is rather equivalent to solving a suboptimal problem, as the

number of words in the model summary are divided to each section proportional to the

section’s length. This is however a fair assumption, as it has been shown repeatedly in the

past that text segmentation helps improving the performance of text summarization systems

[104, 72, 67].

7http://mastarpj.nict.go.jp/ mutiyama/software/textseg/textseg-1.211.tar.gz
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5.5. Exhaustive Search Algorithm

Let Eik = Si1 , Si2 , ..., Sik be the ith extract that has k sentences, and generated from

a document D with n sentences D = S1, S2, . . . , Sn. Further, let len(Sj) give the number of

words in sentence Sj. We enforce that Eik satisfies the following constraints:

len(Eik) = len(Si1) + . . . + len(Sik) ≥ L

len(Eik−1
) = len(Si1) + . . . + len(Sik−1

) < L

where L is the length constraint on all the extracts of document D. Note that for any Eik ,

the order of the sentences in Eik−1
does not affect the ROUGE scores, since only the last

sentence may be chopped off due to the length constraint.8 Hence, the algorithm starts

generating sentence combinations
(

n

r

)
in lexicographic order, for r = 1...n, and for each

combination Eik = Si1 , Si2 , ..., Sik where k > 1, it generates additional extracts E ′

ik
by

successfully swapping Sij with Sik for j = 1, ..., k − 1 and checking to see if the above

constraints are still satisfied. Therefore from a combination with k sentences that satisfies

the constraints, up to k − 1 additional extracts might be generated. Finally, the process

stops either when r = n and the last combination is generated, or the algorithm cannot find

any extract that satisfies the constraints for r.

5.6. Generating PDFs

Once the extracts for a document are generated and evaluated, the recall score of each

result is assigned to a range, which will be referred to as a bin here. 1, 000 equally spaced

bins are used between 0 and 1. As an example, a recall score of 0.46873 would be assigned

to the bin [0.468, 0.469]. Keeping a count for each bin is in fact equivalent to building a

histogram of scores for the document. Let this histogram be h, and h[j] be the value in the

jth bin of the histogram. Then the normalized histogram ĥ is defined as:

8Note that the coherence of extracts are not taken into account, i.e. the sentences in an extract do not need
to be sorted in order of their appearance in the original document. The position of the words in a sentence
are also not changed.
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Figure 5.1. The normalized histogram ĥ of ROUGE-1 recall scores for the
newswire document AP890323-0218.

(4) ĥ[j] =
N

∑N

i=1 h[j]
h[j]

where N = 1, 000 is the number of bins in the histogram. Note that since the width of each

bin is 1
N

, the Riemann sum of the normalized histogram ĥ is equal to 1, so ĥ can be used as

an approximation to the underlying pdf. As an example, the histogram ĥ for the newswire

document AP890323-0218 is shown in Figure 5.1.

The normalized histograms of all the documents in a domain are combined in order to

find the pdf for that domain. This requires multiplying the value of each bin in a document’s

histogram, with all the other possible combinations of bin values taken from each of the

remaining histograms, and assigning the result to the average bin for each combination.

This can be done iteratively by keeping a moving average. This procedure is illustrated in

Algorithm 1, where K represents the number of documents in a domain.

The resulting histogram hd, when normalized using Equation 4, is an approximation

to the pdf for domain d. Furthermore, the round() function is used in line 9, which rounds a
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Algorithm 1 Combine ĥi’s for i = 1, . . . , K to create hd, the histogram for domain d.

1: hd := {}
2: for i = 1 to N do

3: hd[i] := ĥ1[i]
4: end for

5: for i = 2 to K do

6: ht = {}
7: for j = 1 to N do

8: for k = 1 to N do

9: a = round(((k ∗ (i − 1)) + j)/i)

10: ht[a] = ht[a] + (hd[k] ∗ ĥi[j])
11: end for

12: end for

13: hd := ht

14: end for

number to the nearest integer, as the bins are indexed by integers. Note that this rounding

introduces an error, which is distributed uniformly due to the nature of the round() function.

It is also possible to lower the affect of this error with higher resolutions (i.e. larger number

of bins). A sample hd is shown in Figure 5.2, which is obtained by combining 10 documents

from the newswire domain.

Recall from Section 5.4 that the documents in the literary, legal, and scientific do-

mains are divided into sections either by using the given section boundaries or by applying

a text segmentation algorithm, and the extracts of each section are then evaluated individu-

ally. Hence for these domains, the histogram of each section is calculated individually first,

and then the histograms are combined to find the overall histogram of a document. The

combination procedure for the section histograms is similar to Algorithm 1, except that in

this case a moving average is not kept, but rather the bins of the sections are summed. Note

that when bin i and j are added, the resulting values should be expected to be half the times

in bin i + j, and half the times in i + j − 1.

5.7. Calculating Percentile Ranks

Given a pdf for a domain, the success of a system having a ROUGE recall score of

S could be simply measured by finding the area bounded by S. This gives us the percentile
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Figure 5.2. An example pdf obtained by combining 10 document histograms
of ROUGE-1 recall scores from the newswire domain. The x-axis is normalized
to [0,1].

rank of the system in the overall distribution. Assuming 0 ≤ S ≤ 1, let Ŝ = ⌊N × S⌋, then

the formula to calculate the percentile rank can be simply given as:

(5) PR(S) =
100

N

bS∑

i=1

ĥd[i]

5.8. Results and Discussion

The ensemble distributions of ROUGE-1 recall scores per document are shown in

Figure 5.3. The ensemble distributions show that the performance of the extracts, especially

for the news and the scientific domains, are mostly uniform for each document. This is due

to the fact that documents in these domains, and their corresponding summaries, are written

with a certain conventional style. There is however a little scattering in the distributions of

the literary and the legal domains. This is an expected result for the literary domain, as

there is no specific summarization style for these documents, but somehow surprising for the
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Figure 5.3. ROUGE-1 recall score distributions per document for Newswire,
Literary (top), Scientific and Legal Domains (bottom), respectively from left
to right.

legal domain, where the effect is probably due to the different types of legal documents in

the data set.

The pdf plots resulting from the ROUGE-1 recall scores are shown in Figure 5.4.9

In order to analyze the pdf plots, and better understand their differences, Table 5.2 lists

the mean (µ) and the standard deviation (σ) measures of the pdfs, as well as the average

minimum and maximum scores that an extractive summarization system can get for each

domain.

By looking at the pdf plots and the minimum and maximum columns from Table

5.2, it can be noticed that for all the domains, the pdfs are long-tailed distributions. This

immediately implies that most of the extracts in a summary space are clustered around the

mean, which means that for automatic summarization systems, it is very easy to get scores

9Similar pdfs are obtained for ROUGE-2 and ROUGE-SU4, even if at a different scale.
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Figure 5.4. Probability Density Functions of ROUGE-1 recall scores for the
Newswire, Literary, Scientific and Legal Domains, respectively from left to
right. The resolution of the x-axis is increased to 0.1.

around this range. Furthermore, it is possible to judge the hardness of each domain by

looking at the standard deviation values. A lower standard deviation indicates a steeper

curve, which implies that improving a system would be harder. From the table, it can be

inferred that the legal domain is the hardest while the newswire is the easiest.

Comparing Table 5.2 with the values in Table 5.1, it can be also noticed that the

compression ratio affects the performance differently for each domain. For example, although

the scientific domain has the highest compression ratio, it has a higher mean than the literary

and the newswire domains for ROUGE-1 and ROUGE-SU4 recall scores. This implies that

although the abstracts of the medical journals are highly compressed, they have a high

overlap with the document, probably caused by their writing style. This was in fact confirmed

earlier by the experiments in [44], where it was found out that for a data set of 188 scientific
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ROUGE-1
Domain µ σ max min

Newswire 39.39 0.87 65.70 20.20
Literary 45.20 0.47 63.90 28.40
Scientific 45.99 0.68 71.90 24.20
Legal 72.82 0.28 82.40 62.80

ROUGE-2
Domain µ σ max min

Newswire 11.57 0.79 37.40 1.60
Literary 5.41 0.34 16.90 1.80
Scientific 10.98 0.60 33.30 1.30
Legal 28.74 0.29 40.90 19.60

ROUGE-SU4
Domain µ σ max min

Newswire 15.33 0.69 38.10 6.40
Literary 13.28 0.30 24.30 6.90
Scientific 16.13 0.50 35.80 6.20
Legal 35.63 0.25 45.70 28.70

Table 5.2. Statistical properties of the pdfs

articles, 79% of the sentences in the abstracts could be perfectly matched with the sentences

in the corresponding documents.

Next, three different extractive summarization systems are tested on the same dataset

in order to confirm the experiments. The first system implemented is called Random, and

gives a random score between 1 and 100 to each sentence in a document, and then selects the

top scoring sentences. The second system, Lead, implements the lead baseline method which

takes the first k sentences of a document until the length limit is reached. Finally, the last

system implemented is TextRank, which uses a variation of the PageRank graph centrality

algorithm in order to identify the most important sentences in a document [78, 24, 68].

The reason TextRank is implemented is that it has a performance competitive with the top

systems participating in DUC ’02 [68]. It should also be mentioned that for the literary,

scientific, and legal domains, the systems apply the algorithms for each section and each

section is evaluated independently, and their resulting recall scores are summed up. This is

needed in order to be consistent with the exhaustive search experiments.
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ROUGE-1
Domain Random Lead TextRank

Newswire 39.13 45.63 44.43
Literary 45.39 45.36 46.12
Scientific 45.75 47.18 49.26
Legal 73.04 72.42 74.82

ROUGE-2
Domain Random Lead TextRank

Newswire 11.39 19.60 17.99
Literary 5.33 5.41 5.92
Scientific 10.73 12.07 12.76
Legal 28.56 28.92 31.06

ROUGE-SU4
Domain Random Lead TextRank

Newswire 15.07 21.58 20.46
Literary 13.21 13.28 13.81
Scientific 15.92 17.12 17.85
Legal 35.41 35.55 37.64

Table 5.3. ROUGE recall scores of the Lead baseline, TextRank, and Ran-
dom sentence selector across domains

The ROUGE recall scores of the three systems are shown in Table 5.3. As expected,

for the literary and legal domains, the Random, and the Lead systems score around the mean.

This is due to the fact that the leading sentences for these two domains do not indicate any

significance, hence the Lead system just behaves like Random. However for the scientific and

newswire domains, the leading sentences do have importance so the Lead system consistently

outperforms Random. Furthermore, although TextRank is the best system for the literary,

scientific, and legal domains, it gets outperformed by the Lead system on the newswire

domain. This is also an expected result as none of the single-document summarization

systems were able to achieve a statistically significant improvement over the lead baseline in

the previous Document Understanding Conferences.

The ROUGE scoring scheme does not show how much improvement a system achieved

over another, or how far it is from the upper bound. Since now it is possible to access the

pdf of each domain in the data set, this information can simply be found by calculating the

percentile rank of each system using the formula given in Equation 5.
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ROUGE-1
Domain Random Lead TextRank

Newswire %39.18 %99.99 %99.99
Literary %62.89 %62.89 %97.90
Scientific %42.30 %95.56 %99.87
Legal %79.47 %16.19 %99.99

ROUGE-2
Domain Random Lead TextRank

Newswire %39.57 %99.99 %99.99
Literary %42.20 %54.32 %94.34
Scientific %35.6 %96.03 %99.79
Legal %36.68 %75.38 %99.99

ROUGE-SU4
Domain Random Lead TextRank

Newswire %40.68 %99.99 %99.99
Literary %46.39 %46.39 %96.84
Scientific %36.37 %97.69 %99.94
Legal %23.53 %42.00 %99.99

Table 5.4. Percentile rankings of the Lead baseline, TextRank, and Random
sentence selector across domains

The percentile ranks of all three systems for each domain are shown in Table 5.4.

Notice how different the gap is between the scores of each system this time, compared to the

scores in Table 5.3. For example, it can be seen from Table 5.3 that TextRank on scientific

domain has only a 3.51 ROUGE-1 score improvement over a system that randomly selects

sentences to include in the extract. However, Table 5.4 shows that this improvement is in

fact 57.57%.

From Table 5.4, it can be seen that both TextRank and the Lead systems are in

the 99.99% percentile of the newswire domain although the systems have 1.20, 1.61, and

1.12 difference in their ROUGE-1, ROUGE-2, and ROUGE-SU4 scores respectively. The

high percentile for the Lead system explains why it was so hard to improve over these base-

line in previous evaluations on newswire data (e.g., see the evaluations from the Document

Understanding Conferences). Furthermore, Table 5.2 suggests that the upper bounds cor-

responding to these scores are 65.7, 37.4, and 38.1 respectively, which are well above both

the TextRank and the Lead systems. Therefore, the percentile rankings of the Lead and the
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TextRank systems for this domain do not seem to give any clues about how the two systems

compare to each other, nor about their actual distance from the upper bounds. There are

two reasons for this: First, as mentioned earlier, most of the summary space consists of easy

extracts, which make the distribution long-tailed.10 Therefore even though there are quite

a bit of systems achieving high scores, their number is negligible compared to the millions

of extracts that are clustered around the mean. Secondly, a higher resolution (i.e. larger

number of bins) is needed in constructing the pdfs in order to be able to see the difference

more clearly between the two systems. Finally, when comparing two successful systems using

percentile ranks, the use of error reduction would be more beneficial.

As a final note, a random sampling of extracts from documents in the scientific

and legal domains is also made, but this time without considering the section boundaries

and without performing any segmentation. The number of samples for each document is

kept equal to the number of extracts generated previously from the same document using

a divide-and-conquer approach. The samples are evaluated using ROUGE-1 recall scores,

and the pdfs are obtained for each domain using the same strategy discussed earlier in the

chapter. The resulting pdfs, although exhibit similar characteristics, they have mean values

(µ) around 10% lower than the ones listed in Table 5.2, which supports the findings from

earlier research that segmentation is useful for text summarization.

5.9. Summary

This chapter presented a study that explores the search space of extractive summaries

across four different domains. For the newswire domain all possible extracts of the given

documents are generated, and for the literary, scientific, and legal domains a divide-and-

conquer approach is followed by chunking the documents into sections, handling each section

independently, and combining the resulting scores at the end. Then the distributions of

the evaluations scores are used to generate the probability density functions (pdfs) for each

domain. Various statistical properties of these pdfs helped asses the difficulty of each domain.

10This also accounts for the fact that even though there might be two very close ROUGE scores that are
not statistically significant, their percentile rankings might differ quite a bit.
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Finally, a new scoring scheme is introduced for automatic text summarization systems which

can be derived from the pdfs. The new scheme calculates a percentile rank of the ROUGE-1

recall score of a system, which gives scores in the range [0-100]. This makes it possible to see

how far each system is from the upper bound, and thus make a better comparison among

the systems. The new scoring system showed that while there is a 20.1% gap between the

upper bound and the lead baseline for the news domain, closing this gap is difficult, as the

percentile rank of the lead baseline system, 99.99%, indicates that the system is already very

close to the upper bound.

Furthermore, except for the literary domain, the percentile rank of the TextRank

system is also very close to the upper bound. This result does not suggest that additional

improvements cannot be made in these domains, but that making further improvements

using only extractive summarization will be considerably difficult. Moreover, in order to see

these future improvements, a higher resolution (i.e. larger number of bins) will be needed

when constructing the pdfs.

In all the experiments performed, the ROUGE [50] evaluation package is used with

its ROUGE-1, ROUGE-2, and ROUGE-SU4 recall scores. It should be noted that since

ROUGE performs its evaluations based on the n-gram overlap between the peer and the

model summaries, it does not take other summary quality metrics such as coherence and

cohesion into account. However, the goal of this work was to analyze the topic-identification

stage only, which concentrates on selecting the right content from the document to include in

the summary, and the ROUGE scores were found to correlate well with the human judgments

on assessing the content overlap of summaries.
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CHAPTER 6

UNSUPERVISED EXTRACTION

6.1. Introduction

This chapter describes a set of empirical experiments performed as a first attempt to

summarizing novels. The features that are prevelant on the existing summarization systems

are modified so that specific attributes of long documents can be taken into account. The

combination of the features are performed in an unsupervised fashion.

In the following sections, the description of the dataset will be given first. Next,

the evaluation metrics that are used in the study will follow. Then using these metrics, a

benchmark that provides lower and upper bounds for the systems on this dataset will be

specified. Finally, after briefly describing a current state-of-the-art summarization system

that has been successfully used for the summarization of short documents, the techniques

that take into account the length of the documents to significantly improve the performance

of this system will be given.

6.2. Dataset

50 novels are selected from the dataset described in Chapter 3, that have objective

summaries available from CliffsNotes, and GradeSaver. The documents in this collection have

an average length of 92,000 words, with summaries with an average length of 6,500 words

(CliffsNotes) and 7,500 words (Grade Saver). Figure 6.1 plots the length of the summaries

(averaged over the two manual summaries) with respect to the length of the books. As seen

in the plot, most of the novels have a length of 50,000-150,000 words, with a summary of

2,000–6,000 words, corresponding to a compression rate of about 5-15%. There are also a

few very long books, with more than 150,000 words, for which the summaries tend to become

correspondingly longer.
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Figure 6.1. Summary and book lengths for 50 novels

6.2.1. Evaluation Metrics

For the evaluation, the ROUGE evaluation toolkit described in Chapter 3 is used.

Throughout the chapter, the evaluations are reported using the ROUGE-1 setting, which

seeks unigram matches between the generated and the reference summaries, and which was

found to have high correlation with human judgments at a 95% confidence level [50] . Ad-

ditionally, the final system is also evaluated using the ROUGE-2 (bigram matches) and

ROUGE-SU4 (non-contiguous bigrams in addition to unigrams) settings, which have been

frequently used in the Document Understanding Conference (DUC) evaluations.

In most of the previous summarization evaluations, the data sets were constructed

specifically for the purpose of enabling system evaluations, and thus the length of the refer-

ence and the generated summaries was established prior to building the data set and prior

to the evaluations. For instance, some of the previous DUC evaluations provided reference

summaries of 100-word each, and required the participating systems to generate summaries

of the same length.
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However, the dataset described in the previous section consists of pre-existing sum-

maries, with large summary-length variations across the 50 books and across the two refer-

ence summaries. To address this problem, one manual summary is kept as the main reference

(GradeSaver), and other summary (CliffsNotes) is used as a way to decide on the length of

the generated summaries. This means that for a given book, the CliffsNotes summary and

all the automatically generated summaries have the same length, and they are all evaluated

against the (possibly with a different length) Grade Saver summary.

This way, it is also possible to calculate an upper bound by comparing the two manual

summaries against each other, and at the same time ensure a fair comparison between the

automatically generated summaries and this upper bound.1

6.2.2. Lower and Upper Bounds

To determine the difficulty of the task on the 50 book data set, this section calculates

and reports lower and upper bounds. The lower bound is determined by using a baseline sum-

mary constructed by including the first sentences in the novel (also known in the literature

as the lead baseline).2 As mentioned in the previous section, all the generated summaries –

including this baseline – have a length equal to the CliffsNotes manual summary. The upper

bound is calculated by evaluating CliffsNotes manual summary against the reference Grade

Saver summary. Table 6.1 shows the precision (P), recall (R), and F-measure (F) for these

lower and upper bounds, calculated as average across 50 novels.

P R F
Lower bound (lead baseline) 0.380 0.284 0.325
Upper bound (manual summary) 0.569 0.493 0.528

Table 6.1. Lower and upper bounds for the book summarization task, cal-
culated on the 50 book data set

1An alternative solution would be to determine the length of the generated summaries using a predefined
compression rate (e.g., 10%). However, this again implies great variations across the lengths of the generated
versus the manual summaries, which can result in large and difficult to interpret variations across the
ROUGE scores.
2A second baseline that accounts for text segments is also calculated and reported in section 6.5.
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An automatic system evaluated on this data set is therefore expected to have an F-

measure higher than the lower bound of 0.325, and it is unlikely to exceed the upper bound

of 0.528 obtained with a human-generated summary.

6.3. An Initial Summarization System

The first summarization experiment was done using a re-implementation of an existing

state-of-the-art summarization system, which is a centroid-based method implemented in

the MEAD system [82]. MEAD is chosen for three main reasons. First, MEAD was

shown to lead to good performance in several DUC evaluations, e.g., [80, 47]. Second, it

is an unsupervised method which, unlike supervised approaches, does not require training

data. Finally, the centroid-based techniques implemented in MEAD is time wise an efficient

technique, which is an important aspect in the summarization of very long documents such

as novels.

The latest version of MEAD3 uses features, classifiers and re-rankers to determine

the sentences to include in the summary. The default features included are centroid, position

and sentence length. The centroid value of a sentence is the sum of the centroid values of the

words in the sentence. The centroid value of a word is calculated by multiplying the term

frequency (tf) of a word by the word’s inverse document frequency (idf) obtained from the

Topic Detection and Tracking (TDT) corpus. The tf of a word is calculated by dividing the

frequency of a word in a document cluster by the number of documents in the cluster. The

positional value Pi of a sentence is calculated using the formula given in [82]:

(6) Pi =
n − i + 1

n
∗ Cmax

where n represents the number of sentences in the document, i represents the position of

the sentence inside the text, and Cmax is the score of the sentence that has the maximum

centroid value.

3MEAD 3.11, http://www.summarization.com/mead/
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P R F
Mead (original download) 0.423 0.296 0.348
Mead (our implementation) 0.435 0.323 0.369

Table 6.2. Summarization results using the Mead system

The summarizer combines these features to give a score to each sentence. The default

setting consists of a linear combination of features that assigns equal weights to the centroid

and the positional values, and only considers the sentences that have more than nine words.

After the sentences are scored, the re-rankers are used to modify the scores of a sentence

depending on its relation with other sentences. The default re-ranker implemented in MEAD

first ranks the sentences by their scores in descending order and iteratively adds the top

ranked sentence if the sentence is not too similar to the already added sentences. This

similarity is computed as a cosine similarity and by default the sentences that exhibit a

cosine similarity higher than 0.7 are not added to the summary. The sole purpose of the

re-ranker in MEAD is to eliminate the similar sentences coming from different sources in

multi-document summarization. Note that although the MEAD distribution also includes

an optional feature calculated using the LexRank graph-based algorithm [24], this feature

could not be used for novels since it takes days to compute LexRank for very long documents

without any modifications, and thus its application was not tractable.

Although the MEAD system is publicly available for download, in order to be able

to make continuous modifications easily and efficiently to the system as the new methods

are developed, a new version is implemented. The implementation differs from the original

one in certain aspects. First, the document frequency counts are determined using the

British National Corpus (BNC) rather than the TDT corpus. Second, the sentence scores

are normalized by dividing the score of a sentence by the length of the sentence, and instead

the sentence length feature used by MEAD as a cutoff is eliminated. Note also that stop

words are not taken into account when calculating the length of a sentence. Finally, a re-

ranker is not used as the work in this thesis is concerned with single-document summarization

rather than multi-document summarization.
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Table 6.2 shows the results obtained on the dataset using the original MEAD imple-

mentation, as well as the new implementation. Although the performance of this system is

clearly better than the baseline (see Table 6.1), it is nonetheless far below the upper bound.

In the following section, techniques for improving the quality of the generated summaries

are explored by accounting for the length of the documents.

6.4. Techniques for the Summarization of Novels

In this section, several changes are made to the initial system in order to account for

the specifics of the dataset. In particular, since the dataset consists of very large documents,

correspondingly the summarization of such documents requires techniques that account for

their length.

6.4.1. Sentence Position in Very Large Documents

The general belief in the text summarization literature [22, 57] is that the position

of sentences in a text represents one of the most important sources of information for a

summarization system. In fact, a summary constructed using the lead sentences was often

found to be a competitive baseline, with no systems exceeding this baseline with a statistical

significance during the DUC summarization evaluations.

Although the position of sentences in a document seems like a pertinent heuristic

for the summarization of short documents, the hypothesis here is that this heuristic may

not hold for the summarization of very long documents such as novels, where the leading

sentences do not overlap much with the essence of the document.

To test this hypothesis, the initial system is modified so that it does not account for

the position of the sentences inside a document, but it only accounts for the weight of the

constituent words. Correspondingly, the score of a sentence is determined only as a function

of the word centroids and length, and excludes the positional score. Table 6.3 shows the

average ROUGE scores obtained using the summarization system with and without the

position scores.
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P R F
With positional scores 0.435 0.323 0.369
Without positional scores 0.459 0.329 0.383

Table 6.3. Summarization results with and without positional scores

As suspected, removing the position scores leads to a better overall performance,

with an increase observed in both the precision and the recall of the system. Although the

position in a document is a heuristic that helps the summarization of news articles and other

short documents, it appears that the sentences located toward the beginning of a book are

not necessarily useful for building the summary.

6.4.2. Text Segmentation

A major difference between the short and the long documents stands in the frequent

topic shifts typically observed in the latter. While short stories are usually concerned with

one topic at a time, long documents such as books often cover much more than a single

topic. Thus, the intuition is that a summary should include content covering the important

aspects of all the topics in the document, as opposed to only generic aspects relevant to the

document as a whole. A system for the summarization of long documents should therefore

extract key concepts from all the topics in the document, and this task is better performed

when the topic boundaries are known prior to the summarization step.

To accomplish this, the system is augmented with a text segmentation module that

attempts to determine the topic shifts, and correspondingly splits the document into smaller

segments. Note that although the chapter boundaries are available in some of the novels in

the data set, this is not always the case as there are also books in the data set for which the

chapters are not explicitly identified. Furthermore, the chapters are usually coarse grained

as segments, and need further chunking into fine grained segments. Therefore, to ensure

a uniform treatment of the entire data set, an automatic text segmentation algorithm is

applied on the novels rather than simply treating the chapters as segments.
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While several text segmentation systems have been proposed to date [33, 13, 99]), a

graph-based segmentation algorithm using normalized-cuts [56] is used, as it is recently shown

to exceed the performance of alternative segmentation methods, and it allows the user to

specify the number of segments to be created as a parameter. Very briefly, the segmentation

algorithm starts by modeling the text as a graph, where sentences are represented as nodes

in the graph, and inter-sentential similarities are used to draw weighted edges. The similarity

between sentences is calculated using cosine similarity, with a smoothing factor that adds the

counts of the words in the neighborhood sentences. Words are weighted using an adaptation

of the tf.idf metric, where a document is uniformly split into chunks that are used for the tf.idf

computation. There are two parameters that have to be set in this algorithm: (1) the length

in words of the blocks approximating sentences; and (2) the cut-off value for drawing edges

between nodes. Since the method was originally developed for spoken lecture segmentation,

different parameters had to be used than suggested in [56]. Thus a development set of three

books is used to optimize the parameters, and as a result the optimal sentence word-length

is determined as 20, and the optimal cut-off value is determined as 25.

Once the text is divided into segments, a separate summary is generated for each

segment, and consequently a final summary is created by collecting sentences from the in-

dividual segment summaries in a round-robin fashion. That is, starting with the ranked

list of sentences generated by the summarization algorithm for each segment, one sentence

at a time is picked from each segment summary until the desired book-summary length is

reached.

A useful property of the normalized-cut segmentation algorithm is that one can decide

apriori the number of segments to be generated, so it is possible to evaluate the summa-

rization algorithm for different segmentation granularities. Figure 6.2 shows the average

ROUGE-1 F-measure score obtained for summaries generated using 1 to 50 segments.

As seen in the figure, segmenting the text helps the summarization process. The

average ROUGE-1 F-measure score raises to more than 0.39 F-measure for increasingly
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Figure 6.2. Summarization results for different segmentation granularities.

larger number of segments, with a plateau reached at approximately 15–25 segments, followed

by a decrease when more than 30 segments are used.

In all the following evaluations, each novel is segmented into a constant number of 15

segments; in future work, more sophisticated methods should be considered for finding the

optimal number of segments individually for each book.

6.4.3. Modified Term Weighting

An interesting characteristic of documents with topic shifts is that words do not have

a uniform distribution across the entire document. Instead, their distribution can vary with

the topic, and thus the weight of the words should change accordingly.

To account for the distribution of the words inside the entire book, as well as inside

the individual topics (segments), a weighting scheme is devised that accounts for four factors:

the segment term frequency (stf), calculated as the number of occurrences of a word inside a

segment; the book term frequency (tf), determined as the number of occurrences of a word

inside a book; the inverse segment frequency (isf), measured as the inverse of the number
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of segments containing the word; and finally, the inverse document frequency (idf), which

takes into account the distribution of a word in a large external corpus (as before, the BNC

corpus is used). A word weight is consequently determined by multiplying the book term

frequency with the segment term frequency, and the result is then multiplied with the inverse

segment frequency and the inverse document frequency. This weighting scheme is referred

to as tf.stf.idf.isf.

Using this weighting scheme, a word is prevented from having the same score across

the entire book, and instead a higher weight is given to its occurrences in segments where

the word has a high frequency. For instance, the word doctor occurs 30 times in one of the

novels in the data set, which leads to a constant tf.idf score of 36.76 across the entire book.

Observing that from these 30 occurrences, 19 appear in just one segment, the tf.stf.idf.isf

weighting scheme will lead to a weight of 698.49 for that segment, much higher than e.g. the

weight of 36 calculated for other segments that have only a few occurrences of this word.

P R F
tf.idf weighting 0.463 0.339 0.391
tf.stf.idf.isf weighting 0.464 0.349 0.398

Table 6.4. Summarization results using a weighting scheme accounting for
the distribution of words inside and across segments

In this way, the role played by a word inside a segment is emphasized, by accounting

for its frequency in the segment, and discounting the words that appear in a large number of

segments. Table 6.4 shows the summarization results obtained for the new weighting scheme

(recall that all the results are calculated for a text segmentation into 15 segments).

6.4.4. Combining Summarization Methods

The next improvement made is to bring an additional source of knowledge into the

system, by combining the summarization provided by the current system with the summa-

rization obtained from a different method.

A variation of a centrality graph-based algorithm is implemented for unsupervised

summarization, which was successfully used in the past for the summarization of short
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documents. Very briefly, the TextRank system [68] – similar in spirit with the concurrently

proposed LexRank method [24] – works by building a graph representation of the text, where

sentences are represented as nodes, and weighted edges are drawn using inter-sentential word

overlap. An eigenvector centrality algorithm is then applied on the graph (e.g., PageRank),

leading to a ranking over the sentences in the document.

An impediment encountered for the algorithm was the size of the graphs, which

become intractably large and dense for very large documents such as the novels in the dataset.

Hence a cut-off value is used for drawing edges between the nodes, and consequently all the

edges between the nodes that are farther apart than a given threshold are removed. A

threshold value of 75 is empirically found to work best on the same development set of three

books used to optimize the parameters for the segmentation algorithm.

P R F
Our system 0.464 0.349 0.398
TextRank 0.449 0.356 0.397
combined 0.464 0.363 0.407

Table 6.5. Summarization results for individual and combined summariza-
tion algorithms

Using the same segmentation as before (15 segments), the TextRank method by itself

did not lead to improvements over the current centroid-based system. Instead, since it is

noticed that the summaries generated with the current system and with TextRank covered

different sentences, a method that combines the top ranked sentences from the two methods

is implemented. Specifically, the combination method picks one sentence at a time from

the summary generated by the current system for each segment, followed by one sentence

selected from the summary generated by the TextRank method, and so on. The combination

method also specifically avoids redundancy. Table 6.5 shows the results obtained with the

current centroid-based system, the TextRank method, as well as the combined method.
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6.4.5. Segment Ranking

In the current system, all the segments identified in a book have equal weights.

However, this might not always be the case, as there are sometimes topics inside the book

that have higher importance, and which consequently should be more heavily represented in

the generated summaries.

To account for this intuition, a segment ranking method that assigns to each segment

a score reflecting its importance inside the book is implemented. The ranking is performed

with a method similar to TextRank, using a random-walk model over a graph representing

segments and segment similarities. The resulting segment scores are multiplied with the

sentence scores obtained from the combined method described before, normalized over each

segment, resulting in a new set of scores. The top ranked sentences over the entire book

are then selected for inclusion in the summary. Table 6.6 shows the summarization results

obtained by using segment ranking.

P R F
combined 0.464 0.363 0.407
combined + Segment Ranking 0.471 0.363 0.410

Table 6.6. Summarization results using segment ranking

6.5. Discussion

In addition to the ROUGE-1 metric, the quality of the summaries generated with

the final summarization system was also evaluated using the ROUGE-2 and ROUGE-

SU4 metrics, which are frequently used in the DUC evaluations. Table 6.7 shows the figures

obtained with ROUGE-1, ROUGE-2 and ROUGE-SU4 for the final system, for the

original MEAD download, as well as for the lower and upper bounds. The table also shows

an additional baseline determined by selecting the first sentences in each segment, using the

segmentation into 15 segments as determined before.

Regardless of the evaluation metric used, the performance of the novel summarization

system is significantly higher than the one of an existing state-of-the-art summarization
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ROUGE-1 ROUGE-2 ROUGE-SU4
P R F P R F P R F

Lead Baseline 0.380 0.284 0.325 0.035 0.037 0.036 0.096 0.073 0.083
Segment baseline 0.402 0.301 0.344 0.040 0.031 0.035 0.102 0.079 0.089
MEAD 0.423 0.296 0.348 0.039 0.029 0.033 0.106 0.076 0.088
The System 0.471 0.363 0.410 0.069 0.054 0.061 0.148 0.114 0.129
Upper Bound 0.569 0.493 0.528 0.112 0.097 0.104 0.210 0.182 0.195

Table 6.7. Evaluation of the final summarization system using different
ROUGE metrics

system that has been designed for the summarization of short documents (MEAD). In fact,

if the upper bound of 0.528 is accounted, the relative error rate reduction for the ROUGE-1

F-measure score obtained by the system with respect to MEAD is a significant 34.44%.

The performance of the system is mainly due to the features that account for the

length of the document: exclusion of positional scores, text segmentation and segment rank-

ing, and a segment-based weighting scheme. An additional improvement is obtained by

combining two different summarization methods. It is also worth noting that the final sys-

tem is quite efficient, taking about 200 seconds to apply the segmentation algorithm, plus

an additional 65 seconds to generate the summary of one novel.4

To assess the usefulness of the final system with respect to the length of the docu-

ments, the individual results obtained for books of different sizes are analyzed. Averaging

the results obtained for the shorter novels in the collection, i.e. 17 books that have a length

between 20,000 and 50,000 words, the lead baseline gives a ROUGE-1 F-measure score

of 0.337, the proposed system leads to 0.378, and the upper bound is measured at 0.498,

indicating a relative error rate reduction of 25.46% obtained by the system with respect to

the lead baseline (accounting for the maximum achievable score given by the upper bound).

Instead, when only the books with a length over 100,000 words are considered (16 books in

the data set fall under this category), the lead baseline is determined as 0.347, the proposed

system leads to 0.418, and the upper bound is calculated as 0.552, which results in a higher

34.64% relative error rate reduction. This suggests that the proposed system is even more

4Running times measured on a Pentium IV 3GHz, 2GB RAM.
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effective for longer books, due perhaps to the features that specifically take into account the

length of the books.

There are also cases where the system does not improve over the baseline. For

instance, for the summarization of Candide by François Voltaire, the system achieves a

ROUGE-1 F-measure of 0.361, which is slightly worse than the lead baseline of 0.368.

There are also cases where the performance of the system comes close to the upper bound,

as it is the case with the summarization of The House of the Seven Gables by Nathaniel

Hawthorne, which has a lead baseline of 0.296, an upper bound of 0.457, and the proposed

system obtains 0.404. This either indicates that the summarization styles differ for some

of the books in the dataset, or perhaps a possible avenue for future research is to account

for the characteristics of a book, and devise summarization methods that can adapt to the

specifics of a given book such as length, genre, and others.

6.6. Related Work

There are two main trends that can be identified in the summarization literature: su-

pervised systems, that rely on machine learning algorithms trained on pre-existing document-

summary pairs, and unsupervised techniques, based on properties and heuristics derived from

the text.

Among the unsupervised techniques, typical summarization methods account for both

the weight of the words in sentences, as well as the sentence position inside a document. One

of the most successful systems is perhaps the centroid approach [82], which extends the idea of

tf.idf weighting [87] by introducing word centroids, as well as integrating other features such

as position, first-sentence overlap and sentence length. More recently, graph-based methods

that rely on sentence connectivity have also been found successful, using algorithms such as

node degree [87] or eigenvector centrality [68, 24, 102].

In addition to unsupervised methods, supervised machine learning techniques have

also been used with considerable success. Assuming the availability of a collection of doc-

uments and their corresponding manually constructed summaries, these methods attempt

to identify the key properties of a good summary, such as the presence of named entities,
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positional scores, or the location of key phrases. Such supervised techniques have been

successfully used in the systems proposed by e.g. [97, 34, 108, 20].

In addition to short news documents, which have been the focus of most of the

summarization systems proposed to date, only relatively little work has been carried out

on the summarization of other types of documents. This includes systems addressing the

summarization of e-mail threads [100], online discussions [109], or spoken dialogue [28].

6.7. Summary

In this chapter, an unsupervised system that attempts to summarize novels is given.

The system is composed of individual features take take into account the characteristics of

long documents. With an ad-hoc combination of features, the system significantly outper-

forms MEAD, a state-of-the-art system developed for short documents.

The work makes two important contributions. First, it introduced a new summa-

rization benchmark, specifically targeting the evaluation of systems for the summarization

of literary novels. Second, it showed that state-of-the-art summarization systems developed

for the summarization of short documents do not fare well when applied to very long doc-

uments, and instead a better performance can be achieved with a system that accounts for

the length of the documents. In particular, the summarization system that is developed was

found to lead to more than 30% relative error rate reduction with respect to an existing

state-of-the-art summarization tool.
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CHAPTER 7

SUPERVISED EXTRACTION

7.1. Introduction

This chapter is concerned with the process of building a supervised extractive summa-

rization system. Using the results from the exhaustive evaluations presented in Chapter 5,

the system learns how to generate good summaries by optimizing a sentence ranking function

that makes use of various features, which are basically unsupervised extractive summariza-

tion systems. The evaluation results show that a supervised approach to feature combination

generates better summaries in two domains than the unsupervised systems discussed so far.

In order to confirm the intuition from the previous chapter that the success of the features

depend on the genre, two different domains are analyzed; news, and literary novels.

The previous chapter revealed the fact that the traditional features do not suit well to

literary novels, hence they need adjustments, or even new features should be introduced in

order to build successful summarization systems in this domain. With this guidance, a new

system was introduced that uses a combination of such features, which in turn outperformed

the traditional summarization systems designed for news domain. However the new system

combines the mentioned features in an ad-hoc fashion, based on empirical observation. For

example, the final system in the previous chapter, combined the TextRank feature and the

new frequency based feature by giving equal weights to both. This chapter formalizes this

combination process by making use of machine learning algorithms that learns the weights

from training sets generated by using the exhaustive evaluations performed in Chapter 5.

In the remaining of this chapter; first, a description of the dataset will be given,

followed by the description, and the evaluation of the individual features used. Then the

experimental setup section will explain how the training instances are generated, hence how

the training and test sets are developed. Next, the evaluation results of the experiments will
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Type N µDw µSw µR

Training 197 475 101 79%
Test 50 655 101 85%

Table 7.1. Statistical properties of the news data. N represents the number
of documents; µDw, and µSw represent the average number of words for each
document and summary respectively; and µR indicates the average compres-
sion ratio.

be presented and discussed. Finally, the chapter will conclude with related work in this area,

and overall summary of the chapter.

7.2. Dataset

In order to confirm the intuitions from the previous chapter that different features

would be prevalent in different domains, the dataset is constructed from two different do-

mains; news and literary novels.

247 documents are collected from the news domain, where 197 of them are used for

training and 50 for testing. For the news domain, the articles and their summaries are

selected from the Document Understanding Conference (DUC) 2002 data set1. Table 7.1

shows the properties of this dataset.

The dataset selection process for the literary domain is a little more complicated.

Recall from Chapter 5 that exhaustive evaluations on long documents is not tractable due to

the exponentially growing search space with increasing number of sentences in a document.

Therefore the novels are segmented into smaller sections in order to perform the exhaustive

evaluations independently on each section, and combine the results later on. The segmenta-

tion process is done in two levels: The first level uses the chapters in the novel, defined by

the authors at the time of its writing. The second level of the process uses a segmentation

algorithm to further segment the chapters into smaller sections automatically. This step is

needed as the table in Chapter 3 shows that each book has 108,800 words, and 32 chapters on

average, which makes the length of each chapter 3,400 words on average, which is still much

1http://www-nlpir.nist.gov/projects/duc/data.html
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Type N µDw µSw µR µC µCw

Training 26 123,460 7430 94% 30 4115
Test 10 112,702 7220 94% 27 4174

Table 7.2. Statistical properties of the literary novels data. N represents
the number of novels; µDw, and µSw represent the average number of words
for each document and summary respectively; µR indicates the average com-
pression ratio; and µC and µCw represent the average number of sections for
each document, and the average number of words for each section respectively.

longer than an average news document shown in Table 7.1. The segmentation algorithm

used at this level is the publicly available linear text segmentation algorithm given in [99].2

For the training set in this domain, 26 novels are drawn from the collection described

in Chapter 3 having a total of 773 chapters, and 4650 segments. For the test set 10 novels are

selected, having a total of 270 chapters, and 1575 segments.Table 7.2 shows the properties

of this dataset.

7.3. Features

The features used in training a machine learning algorithm are unsupervised extrac-

tive summarization algorithms. As mentioned throughout the thesis, the extractive summa-

rization algorithms for single document summarization assign scores to the sentences of a

given document, and select the top scoring sentences based on a given compression ratio.

Thus the job of these algorithms is essentially to rank the sentences of a given document

based on certain criteria. Each feature described below uses a different criterion to form its

ranking function.

7.3.1. Length

This feature simply scores the sentences in a document based on their length. Hence,

given a document, the ranking function simply sorts the sentences in descending order of

2http://mastarpj.nict.go.jp/ mutiyama/software/textseg/textseg-1.211.tar.gz
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their length. In case two sentences have the same length, the selection of the higher ranked

one is random.3

7.3.2. Position

This feature simply ranks each sentence based on its occurrence in the text. Thus

the first sentence in the document gets the highest score. For a document with n sentences,

the positional score PSi
of sentence Si can be given as:

(7) PSi
=

n − i + 1

n

7.3.3. Term Frequency (TF)

This feature computes the number of occurrences of each term in the text by excluding

the terms from a predefined list of stop words. Then each sentence in the document is

assigned a score by taking the sum of the frequencies of the terms in the sentence. Formally,

let sentence Si = wi1wi2...wim be a sequence of m terms, and let the function f(w) return

the frequency of term w in the text. Then the term frequency score TFSi
for sentence Si can

be given as:

(8) TFSi
=

m∑

j=1

f(wij)

Furthermore, this general formula is modified for literary novels. As mentioned in

Section 7.2, as well as in Chapter 6 that since the novels are segmented, the segment fre-

quencies of the terms should also be taken into account in the computation of this feature for

this domain. Thus the straightforward application of the term frequency feature is modified

by multiplying the frequency of a term in the entire document with its frequency in the

segment. Formally, let sk(w) represent the frequency of term w in the kth segment. Then

the term frequency of sentence Sik in segment k is given as:

3In this, and the other features described below, it should be kept in mind that only the functional words,
i.e. the words that are not stop words are considered.
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(9) TFSik
=

m∑

j=1

f(wij) × sk(wij)

7.3.4. Term Frequency * Inverse Document Frequency (TF*IDF)

The term frequency feature is often discounted with inverse document frequency in

order to diminish the weight of the terms occurring very often in the corpus. The inverse

document frequency gives a term’s general importance in the corpus. For example, in a

corpus of computer science articles, the word computer may be very frequent yet not too

important for any of the documents, as it occurs in almost all of them, i.e. it has a high doc-

ument frequency. Hence the term’s importance should be offset by the number of documents

in the corpus in which the term is found. Formally, let D represent the set of documents in

the corpus, w represent a term, and d ∈ D, then the inverse document frequency of a term

w is defined as:

(10) idf(w) = log
|D|

|d : w ∈ d|

Therefore the combined metric, TFIDF [86], of a term w is simply given as TFIDF (w) =

f(w) × idf(w). It should be noted that slight variations of the TFIDF formula exist in lit-

erature. Furthermore, the TFIDF score of a sentence Si = wi1wi2...wim is assigned the same

way as the TF scores are assigned, i.e. by summation of the weights of the individual terms

of the sentence. Hence the formula is given as:

(11) TFIDFSi
=

m∑

j=1

TFIDF (wij)

The above formula is also modified for literary novels in order to take segment level

frequencies into account. The additional feature used here is the inverse segment frequency

(isf), which is also introduced in Chapter 6. Similar to the idea of inverse document frequency,
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the inverse segment frequency of a term is calculated from the number of segments containing

the term. Formally, let L = l1, l2, ..., lk denote the set of segments in the document, and l ∈ L

denote a segment, then the inverse segment frequency of a term w is given as:

(12) isf(w) = log
|L|

|l : w ∈ l|

Hence the combined TFIDF value of a term w for a term in segment k is defined as

TFIDFk(w) = f(w) × sk(w) × isf(w) × idf(w). Thus the feature for the sentence Sik in

segment k can be computed as:

(13) TFIDFSik
=

m∑

j=1

TFIDFk(wij)

7.3.5. Named Entities

This feature is similar to the Term Frequency but the terms in this case are formed

from the named entities instead of words. Thus, if we let E represent the set of named

entities in the document, and reuse the function f() to compute the frequency of a named

entity, the feature can be formalized as:

(14) NESi
=

∑

e∈E

f(e)

The detection of the named entities in the document is performed by using a publicly

available implementation as part of the Natural Language Processing Toolkit [7].

7.3.6. Code Quantity Principle

This feature is a model of a linguistic theory of the same name. In short, the Code

Quantity Principle states that if the part of the text that carries more important, or less

predictable, or simply just more information compared to another part, then it will also

be longer. This is in fact in line with other measures in information theory such as the
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descriptive complexity, and the Shannon Entropy. Simply put, the more you can compress

the information, the less important it is and the less amount of code it requires for its

representation.

A simple model built around this theory that is used here is given in [54]. In order

to assign a score to the importance of a sentence, the model assumes that the information

is contained in the noun phrases, and the longer the noun phrase is, the more information

it contains. Hence, the scoring function simply counts the number of words belonging to

noun phrases in the sentence, and then normalizes this count by the number of noun phrases

in the sentences. Formally, let P denote the set of phrases in sentence Si, and r(p) be the

function that returns the number of function words in phrase p, then the score of sentence

Si is assigned by:

(15) CQPi =

∑
p∈P r(p)

|P |

It should be noted that even though the equation has a normalization factor, i.e.

the number of phrases in the sentence, there is nothing stopping the model from preferring

longer phrases.

7.3.7. Lexical Chains

This feature relies on the cohesive structure of the text modeled by lexical chains.

The notion of cohesion is first introduced in [31], and is defined as the links that hold the

different parts of the text together. Among five categories of devices introduced in [31] that

are used to build a cohesive text, lexical cohesion is perhaps the easiest to model as it can be

identified by considering only the surface level forms of the text. Lexical cohesion occurring

among sequences of related words is referred to as lexical chains [71].

The use of lexical chains as a source representation for text summarization is first

introduced in [3]. The lexical chains are used together with a text segmentation algorithm

due to the close connection between the discourse structure and the cohesive structure of the

text. The objective is to reveal the central theme or discourse unit in the text, which in turn
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can be used for summarization. The feature used here relies entirely on the idea described

in this paper.

In summary, the algorithm described in [3] identifies the semantically related nouns or

noun phrases in each segment of the text, and forms a relation graph between them based on

their distance in the text as well as their semantic relations identified through WordNet [26].

Every possible relation in the semantic space is considered in forming the relation graph,

and the best interpretation is selected for each segment at the end. Then the chains in each

interpretation across all the segments are combined, and the final chains are scored based

on the links formed between semantically related words. The top scoring chains above a

certain threshold picked automatically from the distribution are identified as strong chains.

The sentences forming the summary are then selected based on the representative words in

the strong chains. One sentence is picked for each strong chain for which a representative

word makes its first occurrence.

It should be noted however that this algorithm does not give a well defined ranking

for all of the sentences in the document as it relies only on the strong chains in selecting

the sentences forming the summary. As it will be shown in Section 7.5, a complete ranking

of the sentences are needed in order to generate the training instances in the framework

presented in this chapter. Therefore the lexical chains algorithm is modified such that as

many sentences as possible are selected for the strong chains first, and then the same process

is applied for weak chains. If there are any remaining sentences, then they are randomly

ordered. The sentence selection from a chain is essentially the same except that one sentence

is selected for each representative word in the chain.

7.3.8. TextRank

This feature is a graph-based sentence ranking algorithm that tries to capture the

centrality of a document by taking into account the relations between the sentences. It is a

variation of the PageRank Algorithm [78], which is used by the search engines to rank web

documents. The TextRank algorithm is similar in spirit to LexRank [24], and in general it can

be applied for various text processing tasks that require a ranking of the individual text units
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such as keyword extraction. In Chapter 6, the algorithm is used both for summarization,

and segment ranking tasks. This feature uses the algorithm for summarization, i.e. to rank

the sentences of a given document.

Briefly, the TextRank algorithm constructs a graph representation of the text, where

sentences are represented as nodes, and weighted edges are drawn using inter-sentential

word overlap. An eigenvector centrality algorithm is then applied on the graph, leading to

a ranking over the sentences in the document. Formally, let S(Vi) denote the value of the

node Vi, In(Vi) denote the set of nodes that point to Vi, and Out(Vi) denote the set of nodes

that Vi points to. Then the equation to calculate the value of a single node can be given as:

(16) S(Vi) = (1 − d) + d ×
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk
S(Vj)

The algorithm starts by assigning constant values to each node, and converges after

the change in values after a single iteration is below a certain threshold. In this work, this

change is calculated as the square root of the sum of the squares of the differences of node

values between successive iterations. Formally, let V represent the set of nodes in the graph,

Sm(Vi) be the value of the node Vi in iteration m, then the formula to calculate the change

Cm can be given as:

(17) Cm =

√∑

Vi∈V

(Sm(Vi) − Sm−1(Vi))2

Once the algorithm converges each node value represents the score of the sentence.

Hence the ranking is performed by sorting the sentences in descending order of their Tex-

tRank scores.

7.4. Evaluation of the Features

Each feature described in the previous section give a different ranking for the sentences

of a document. Moreover, the top ranked sentences from those rankings are selected in order
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Feature ROUGE-1 ROUGE-2 ROUGE-SU4

Length 0.406 0.137 0.170
Position 0.468 0.204 0.212
TF 0.428 0.161 0.189
TF / Length 0.450 0.178 0.205
TF * IDF 0.425 0.158 0.186
TF * IDF / Length 0.450 0.178 0.205
Named Entities 0.405 0.135 0.169
Named Entities / Length 0.422 0.152 0.182
Code Quantity Principle 0.410 0.152 0.178
Lexical Chains 0.454 0.186 0.209
TextRank 0.444 0.172 0.201

Table 7.3. The ROUGE Recall results of the evaluation of each individual
feature on news domain.

to obtain the extractive summary. The number of top ranked sentences to include in the

summary depend on the number of words in the model summary. The Table 7.3, and

Table 7.4 present the ROUGE evaluation results obtained for the news and novels corpora

respectively.

Note that variations of some of the features that are normalized by the sentence

length are also considered. These variations are formed by combination of each feature with

the length feature, and is simply obtained by dividing the feature’s score by the number of

functional terms in the sentence.

7.5. Generating Training Instances

If the evaluation results for the individual features given in the previous section are

used directly to train a machine learning algorithm together with the exhaustive evaluation

results from Chapter 5, then the final system will learn how to pick the best summary out

of a given set of summaries, i.e. it will not learn how to select the sentences to include in

the summary but rather select the best summary generated out of a given set. Hence to

test this framework, all the possible summaries for a given document should be exhaustively

generated. This however is not feasible, and does not provide any benefit due to the obvious

fact that if one can generate all the possible summaries, then these summaries can also be
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Feature ROUGE-1 ROUGE-2 ROUGE-SU4

Length 0.423 0.078 0.156
Position 0.419 0.073 0.149
TF 0.443 0.085 0.164
TF / Length 0.441 0.079 0.157
TF * IDF 0.457 0.088 0.171
TF * IDF / Length 0.452 0.082 0.162
Named Entities 0.447 0.075 0.159
Named Entities / Length 0.444 0.074 0.158
Code Quantity Principle 0.426 0.073 0.151
Lexical Chains 0.409 0.067 0.142
TextRank 0.454 0.089 0.173

Table 7.4. The ROUGE Recall results of the evaluation of each individual
feature on literary novels domain.

evaluated at the same time, and the top one can easily be picked. Therefore, the supervised

system designed for this step should learn how to optimize the sentence ranking process for

a given document by looking at how each feature ranks them, and how the rankings of the

features overlap with the results from the exhaustive evaluations.

With this idea in mind, training instances are generated per sentence of every docu-

ment in the training data. For each sentence, the value of a feature is assigned by considering

the rank of the sentence; assigning higher values to sentences that are ranked higher by the

feature. Hence for a given sentence Si, with a ranking i given by a feature f , its value is

defined by the function g(Si) as:

(18) g(Si) =
1

log i

The label values are assigned by using the exhaustive evaluations from Chapter 5.

For a given sentence S, the average of the recall scores of all the possible summaries the

sentence is included is calculated. It should be noted that this is not an ideal labeling

situation but only an approximation. The assumption here is that if a sentence is picked in

a summary, then the summary’s score should reflect whether the choice of that sentence in
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Feature ROUGE-1 ROUGE-2 ROUGE-SU4

Linear Regression 0.473 0.207 0.228
Multi-layer Perceptron 0.476 0.211 0.232
SMOReg 0.476 0.212 0.232

Table 7.5. The ROUGE Recall results of the evaluation of machined learned
summarizers on news domain.

the summary is a good choice or not. The assumption might fail for certain individual cases

where the sentence could be a perfect candidate to be included in the summary but due to

the existence of other sentences, the overall score of the summary can be low. However since

all the possible scores are averaged, and the Chapter 5 showed that the extractive summary

space follow a Gaussian Distribution, the quality of a sentence would be expected to be

reflected in the label score.

Thus given M sentences, and K features, M training instances of the form (xi, yi) for

i = 1, 2, ...,M , where x is a K dimensional vector, and y represents the labels, is generated.

Three different supervised learning algorithms are then trained on this data using the Weka

Toolkit [30]. The supervised algorithms used are; linear regression, multi-layer perceptron,

and SMOReg, a sequential minimal optimization algorithm for training a support vector

regression using polynomial or RBF kernels, presented in [91].

7.6. Results and Discussions

Once the supervised learning algorithms are trained, they are tested on the test data.

However, since the algorithms learn a ranking function, the resulting system assigns a real

valued score to each sentence. Thus the results do not immediately tell us how the new

system performs. The sentences still need to be ranked in descending order of their scores

assigned by the new system, and the top sentences need to be picked according to the

compression ratio, determined by the number of words in the model summary. Once the top

sentences are picked, they are fed as input to ROUGE for the final evaluation results. Table

7.5, and Table 7.6 lists these results for the three supervised learning methods discussed in

the previous section for the news and novels domain respectively.
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Feature ROUGE-1 ROUGE-2 ROUGE-SU4

Linear Regression 0.459 0.089 0.171
Multi-layer Perceptron 0.455 0.083 0.168
SMOReg 0.462 0.090 0.173

Table 7.6. The ROUGE Recall results of the evaluation of machined learned
summarizers on novels domain.

For the news domain, all three supervised systems listed in Table 7.5 give superior

results to each one of the individual features listed in Table 7.3. For novels, except the

system that trained on the multi layer perceptron, the systems were able to beat the TFIDF

feature, which is the best scoring unsupervised system. However the multi layer perceptron

still achieves a good score, beating the rest of the individual features. This shows that the

framework proposed in this chapter can in fact be used to build systems that can be trained

to learn a new ranking function that combines each individual feature better than the ad-hoc

combinations the unsupervised systems provide.

7.7. Related Work

One of the first supervised systems in text summarization is described in [44]. The sys-

tem uses a Naive-Bayes Classifier where each sentence in the source document goes through

a binary classification, i.e. it is either included in the summary or not. The features used

in this classifier were mainly the ones in [22] with a few new ones such as the length of

the sentence, as described in Section 7.3.1. Based on a manual matching of the medical

abstracts to source texts, the study found that the most successful systems are the ones

that uses position, cue phrases, and sentence length features together. In [97], the same

classifier is used on a different dataset, which consisted of scientific articles for which the

summaries are written by the authors of the articles themselves, rather than the professional

abstractors. Another study that extends the idea of Naive-Bayes classification is given in [1]

which considered richer features such as word collocations. Furthermore, an attempt is also

made in [1] to bring some coherence into the summaries by performing a shallow discourse

analysis of the source text, and by using coreference resolution.
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Instead of a Naive-Bayes Classifier, a decision tree is used in [49], which combined

even more features. The features used in the study ranged from very simple ones such as

whether a sentence has proper names, or numerical data, to more complex ones such as

measures of lexical connectivity. However, even these more complex features were still based

on the shallow statistical techniques. An important finding of the study was that even a

simple ad-hoc combination of the features did as well as the decision tree classifier most of

the times, and sometimes even exceeded it. Another important aspect of this study was

disregarding the assumption of feature independence. In a later work, this notion is also

considered via a maximum entropy model [75].

The work of [89] describes a fast query based multi-document summarization sys-

tem that only uses simple term frequency based features. The learning setting presented is

similar to the work described in this thesis except that the training instances are labeled

using the word overlap between the sentence and the model summaries instead of exhaustive

evaluations used in this study. A more complicated framework that takes the interdepen-

dencies between the sentences into account using Conditional Random Fields is presented in

[90]. In [105], an attempt is made to learn to predict the appearence of individual terms in

the references, independent from the sentence selection procedure. Finally, the work in [46]

presents a system that jointly learns to optimize diversity, coverage, and balance. Hence the

proposed system seeks to minimize redundancy by including the main points of the summary

from as many aspects as possible.

7.8. Summary

In this chapter, a description of a new framework is given to build supervised ex-

tractive summarization systems using the unsupervised extraction systems as features, and

results from the exhaustive evaluations from Chapter 5 as labels. The individual perfor-

mance of each feature is analyzed first. Then the design process for generating training data

for the supervised systems is described, followed by the application of this process on two

different domains; news and literary novels. The results showed that most of the supervised
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systems built in this framework give better results than each of the individual unsupervised

system.
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CHAPTER 8

SENTENCE COMPRESSION

8.1. Introduction

This chapter describes a simple sentence compression algorithm that relies on external

knowledge. It uses the concept of self-information to judge whether adverbial phrases should

be excluded from a sentence or not. In order to compute the probabilities for self-information

of a given phrase, the algorithm makes heavy use of the Web1T Corpus. Thus in order to

make its job easier, a fast indexing and retrieval tool for large N-gram corpus is implemented,

which can also be used in many other areas of Natural Language Processing.

The newly developed tool indexes the entire Web1T dataset with an index size of only

100 MB and performs a retrieval of any N-gram with a single disk access. With an increased

index size of 420 MB and duplicate data, it also allows users to issue wild card queries

provided that the wild cards in the query are contiguous. Furthermore, it also implements

some of the smoothing algorithms that are designed specifically for large datasets and are

shown to yield better language models than the traditional ones on the Web1T 5-gram corpus

[107].

A description of the indexing tool will be given first, followed by the description of

the sentence compression algorithm. Then the results of applying the algorithm on the

test dataset described in previous chapter will be presented, followed by a discussion of the

results. The chapter will conclude with a brief description of the related work, and summary.

8.2. N-gram Indexer

The goal of statistical language modeling is to capture the properties of a language

through a probability distribution so that the probabilities of word sequences can be esti-

mated. Since the probability distribution is built from a corpus of the language by computing

the frequencies of the N-grams found in the corpus, the data sparsity is always an issue with
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the language models. Hence, as it is the case with many statistical models used in Natural

Language Processing (NLP), the models give a much better performance with larger data

sets.

However the large data sets, such as the Web1T 5-Gram corpus of [9], present a major

challenge. The language models built from these sets cannot fit in memory, hence efficient

accessing of the N-gram frequencies becomes an issue. Trivial methods such as linear or

binary search over the entire dataset in order to access a single N-gram prove inefficient, as

even a binary search over a single file of 10,000,000 records, which is the case of the Web1T

corpus, requires in the worst case ⌈log2(10, 000, 000)⌉ = 24 accesses to the disk drive.

Since the access to N-grams is costly for these large data sets, the implementation

of further improvements such as smoothing algorithms becomes impractical. This chapter

overcomes this problem by implementing a novel, publicly available tool1 that employs an

indexing strategy that reduces the access time to any N-gram in the Web1T corpus to a single

disk access. We also make a second contribution by implementing some of the smoothing

models that take into account the size of the dataset, and are shown to yield up to 31%

perplexity reduction on the Brown corpus [107]. Our implementation is space efficient, and

provides a fast access to both the N-gram frequencies, as well as their smoothed probabilities.

8.2.1. The Web1T 5-gram Corpus

The Web1T 5-gram corpus [9] consists of sequences of words (N-grams) and their

associated counts extracted from a Web corpus of approximately one trillion words. The

length of each sequence, N , ranges from 1 to 5, and the size of the entire corpus is approxi-

mately 88GB (25GB in compressed form). The unigrams form the vocabulary of the corpus

and are stored in a single file which includes around 13 million tokens and their associated

counts. The remaining N-grams are stored separately across multiple files in lexicographic

order. For example, there are 977,069,902 distinct trigrams in the dataset, and they are

stored consecutively in 98 files in lexicographic order. Furthermore, each N-gram file con-

tains 10,000,000 N-grams except the last one, which contains less. It is also important to

1Our tool can be freely downloaded from the download section under http://lit.csci.unt.edu
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note that N-grams with counts less than 40 are excluded from the dataset for N = 2, 3, 4, 5,

and the tokens with less than 200 are excluded from the unigrams.

8.2.2. B+-trees

We used a B+-tree structure for indexing. A B+-tree is essentially a balanced search

tree where each node has several children. Indexing large files using B+ trees is a popular

technique implemented by most database systems today as the underlying structure for

efficient range queries. Although many variations of B+-trees exist, we use the definition for

primary indexing given in [88]. Therefore we assume that the data, which is composed of

records, is only stored in the leaves of the tree and the internal nodes store only the keys.

The data in the leaves of a B+-tree is grouped into buckets, where the size of a bucket

is determined by a bucket factor parameter, bkfr. Therefore at any given time, each bucket

can hold a number of records in the range [1, bkfr]. Similarly, the number of keys that each

internal node can hold is determined by the order parameter, v. By definition, each internal

node except the root can have any number of keys in the range [v, 2v], and the root must

have at least one key. Finally, an internal node with k keys has k + 1 children.

8.2.3. Mapping Unigrams to Integer Keys

A key in a B+-tree is a lookup value for a record, and a record in our case is an

N-gram together with its count. Therefore each line of an N-gram file in the Web1T dataset

makes up a record. Since each N-gram is distinct, it is possible to use the N-gram itself as a

key. However in order to reduce the storage requirements and make the comparisons faster

during a lookup, we map each unigram to an integer, and form the keys of the records using

the integer values instead of the tokens themselves.2

To map unigrams to integers, we use the unigrams sorted in lexicographic order and

assign an integer value to each unigram starting from 1. In other words, if we let the m-

tuple U = (t1, t2, ..., tm) represent all the unigrams sorted in lexicographic order, then for a

unigram ti, i gives its key value. The key of trigram ”ti tj tk” is simply given as ”i j k.”

2This method does not give optimal storage, for which one should implement a compression Huffman coding
scheme.

89



Thus, the comparison of two keys can be done in a similar fashion to the comparison of two

N-grams; we first compare the first integer of each key, and in case of equality, we compare

the second integers, and so on. We stop the comparison as soon as an inequality is found.

If all the comparisons result in equality then the two keys (N-grams) are equal.

8.2.4. Searching for a Record

We construct a B+-tree for each N-gram file in the dataset for N = 2, 3, 4, 5, and

keep the key of the first N-gram for each file in memory. When a query q is issued, we first

find the file that contains q by comparing the key of q to the keys in memory. Since this

is an in-memory operation, it can be simply done by performing a binary search. Once the

correct file is found, we then search the B+-tree constructed for that file for the N-gram q

by using its key.

As is the case with any binary search tree, a search in a B+-tree starts at the root

level and ends in the leaves. If we let ri and pj represent a key and a pointer to the child

of an internal node respectively, for i = 1, 2, ..., k and j = 1, 2, ..., k + 1, then to search an

internal node, including the root, for a key q, we first find the key rm that satisfies one of

the following:

• (q < rm) ∧ (m = 1)

• (rm−1 ≤ q) ∧ (rm > q) for 1 < m ≤ k

• (q > rm) ∧ (m = k)

If one of the first two cases is satisfied, the search continues on the child node found

by following pm, whereas if the last condition is satisfied, the pointer pm+1 is followed. Since

the keys in an internal node are sorted, a binary search can be performed to find rm. Finally,

when a leaf node is reached, the entire bucket is read into memory first, then a record with

a key value of q is searched.
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8.2.5. Constructing a B+-tree

The construction of a B+-tree is performed through successive record insertions.3

Given a record, we first compute its key, find the leaf node it is supposed to be in, and insert

it if the bucket is not full. Otherwise, the leaf node is split into two nodes, each containing

⌈bkfr/2⌉, and ⌊bkfr/2⌋ + 1 records, and the first key of the node containing the larger key

values is placed into the parent internal node together with the node’s pointer. The insertion

of a key to an internal node is similar, only this time both split nodes contain v values, and

the middle key value is sent up to the parent node.

Note that not all the internal nodes of a B+-tree have to be kept on the disk, and

read from there each time we do a search. In practice, all but the last two levels of a B+-

tree are placed in memory. The reason for this is the high branching factor of the B+-trees

together with their effective storage utilization. It has been shown in [103] that the nodes of

a high-order B+-tree are ln2 ≈ 69% full on average.

However, note that the tree will be fixed in our case, i.e., once it is constructed we

will not be inserting any other N-gram records. Therefore we do not need to worry about

the 69% space utilization, but instead try to make each bucket, and each internal node full.

Thus, with a bkfr = 1250, and v = 100, an N-gram file with 10,000,000 records would

have 8,000 leaf nodes on level 3, 40 internal nodes on level 2, and the root node on level

1. Furthermore, let us assume that integers, disk and memory pointers all hold 8 bytes of

space. Therefore a 5-gram key would require 40 bytes, and a full internal node in level 2 would

require (200x40) + (201x8) = 9, 608 bytes. Thus the level 2 would require 9, 608x40 ≈ 384

Kbytes, and level 1 would require (40 ∗ 40) + (41 ∗ 8) = 1, 928 bytes. Hence, a Web1T

5-gram file, which has an average size of 286 MB can be indexed with approximately 386

Kbytes. There are 118 5-gram files in the Web1T dataset, so we would need 386x118 ≈ 46

MBytes of memory space in order to index all of them. A similar calculation for 4-grams,

trigrams, and bigrams for which the bucket factor values are selected as 1600, 2000, and

2500 respectively, shows that the entire Web1T corpus, except unigrams, can be indexed

3Note that this may cause efficiency issues for very large files as memory might become full during the
construction process, hence in practice, the file is usually sorted prior to indexing.
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with approximately 100 MBytes, all of which can be kept in memory, thereby reducing the

disk access to only one. As a final note, in order to compute a key for a given N-gram quickly,

we keep the unigrams in memory, and use a hashing scheme for mapping tokens to integers,

which additionally require 178 Mbytes of memory space.

The choice of the bucket factor and the internal node order parameters depend on

the hard-disk speed, and the available memory.4. Recall that even to fetch a single N-gram

record from the disk, the entire bucket needs to be read. Therefore as the bucket factor

parameter is reduced, the size of the index will grow, but the access time would be faster as

long as the index could be entirely fit in memory. On the other hand, with a too large bucket

factor, although the index can be made smaller, thereby reducing the memory requirements,

the access time may be unacceptable for the application. Note that a random reading of

a bucket of records from the hard-disk requires the disk head to first go to the location of

the first record, and then do a sequential read.5 Assuming a hard-disk having an average

transfer rate of 100 MBytes, once the disk head finds the correct location, a 40 bytes N-gram

record can be read in 4x10−7 seconds. Thus, assuming a seek time around 8-10 ms, even

with a bucket factor of 1,000, it can be seen that the seek time is still the dominating factor.

Therefore, as the bucket size gets smaller than 1,000, even though the index size will grow,

there would be almost no speed up in the access time, which justifies our parameter choices.

8.2.6. Handling Wild Card Queries

Having described the indexing scheme, and how to search for a single N-gram record,

we now turn our attention to queries including one or more wild card symbols, which in

our case is the underscore character ” ”, as it does not exist among the unigram tokens of

the Web1T dataset. We manually add the wild card symbol to our mapping of tokens to

integers, and map it to the integer 0, so that a search for a query with a wild card symbol

would be unsuccessful but would point to the first record in the file that replaces the wild

card symbol with a real token as the key for the wild card symbol is guaranteed to be the

4We used a 7200 RPM disk-drive with an average read seek time of 8.5 ms, write seek time of 10.0 ms, and
a data transfer time up to 3 GBytes per second.
5A rotational latency should also be taken into account before the sequential reading can be done.
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smallest. Having found the first record we perform a sequential read until the last read record

does not match the query. The reason this strategy works is because the N-grams are sorted

in lexicographic order in the data set, and also when we map unigram tokens to integers,

we preserve their order, i.e., the first token in the lexicographically sorted unigram list is

assigned the value 1, the second is assigned 2, and so forth. For example, for a given query

”Our Honorable ”, the record that would be pointed at the end of search in the trigram file

3gm-0041 is the N-gram ”Our Honorable Court 186”, which is the first N-gram in the data

set that starts with the bigram ”Our Honorable”.

Note however that the methodology that is described to handle the queries with wild

card symbols will only work if the wild card symbols are the last tokens of the query and

they are contiguous. For example a query such as ”Our Court” will not work as N-grams

satisfying this query are not stored contiguously in the data set. Therefore in order to

handle such queries, we need to store additional copies of the N-grams sorted in different

orders. When the last occurrence of the contiguous wild card symbols is in position p of

a query N-gram for p = 0, 1, ..., N − 1, then the N-grams sorted lexicographically starting

from position (p + 1)modN needs to be searched. A lexicographical sort for a position p,

for 0 ≤ p ≤ (N − 1) is performed by moving all the tokens in positions 0...(p − 1) to the

end for each N-gram in the data set. Thus, for all the bigrams in the data set, we need one

extra copy sorted in position 1, for all the trigrams, we need two extra copies; one sorted

in position 1, and another sorted in position 2, and so forth. Hence, in order to handle the

contiguous wild card queries in any position, in addition to the 88 GBytes of original Web1T

data, we need an extra disk space of 265 GBytes. Furthermore, the indexing cost of the

duplicate data is an additional 320 MBytes. Thus, the total disk cost of the system will be

approximately 353 GBytes plus the index size of 420 MBytes, and since we keep the entire

index in memory, the final memory cost of the system will be 420 MBytes + 178 MBytes =

598 MBytes.
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8.2.7. Performance

Given that today’s commodity hardware comes with at least 4 GBytes of memory and

1 TBytes of hard-disk space, the requirements of our tool are reasonable. Furthermore, our

tool is implemented in a client-server architecture, and it allows multiple clients to submit

multiple queries to the server over a network. The server can be queried with an N-gram

query either for its count in the corpus, or its smoothed probability with a given smoothing

method. The queries with wild cards can ask for the retrieval of all the N-grams satisfying

a query, or only for the total count so the network overhead can be avoided depending on

the application needs.

Our program requires about one day of offline processing due to resorting the entire

data a few times. Note that some of the files in the corpus need to be sorted as many as

four times. For the sorting process, the files are first individually sorted, and then a k-way

merge is performed. In our implementation, we used a min heap structure for this purpose,

and k is always chosen as the number of files for a given N. The index construction however

is relatively fast. It takes about an hour to construct the index for the 5-grams. Once the

offline processing is done, it only takes a few minutes to start the server, and from that point

the online performance of our tool is very fast. It takes about 1-2 seconds to process 1000

randomly picked 5-gram queries (with no wild card symbols), which may or may not exist

in the corpus. For the queries asking for the frequencies only, our tool implements a small

caching mechanism that takes the temporal locality into account. The mechanism is very

useful for wild card queries involving stop words, such as ”the ”, and ”of the ” which occur

frequently, and take a long time to process due to the sequential read of a large number of

records from the data set.

8.3. Sentence Compression Algorithm

The sentence compression algorithm presented in this chapter simply tries to get rid

of the adverbial phrases in the sentence. The adverbial phrases such as ”as well”, or ”so far”

often times do not bring extra information into the summary, and hence can be discarded.
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Feature ROUGE-1 ROUGE-2 ROUGE-SU4

Linear Regression 0.484 0.086 0.173
Multi-layer Perceptron 0.488 0.089 0.178
SMOReg 0.495 0.098 0.187

Table 8.1. The ROUGE Recall results of the machined learned summarizers
with sentence compressors on novels domain.

The adverbial phrases in a sentence are detected by using The Stanford Parser6 [63]. Once an

adverbial phrase is extracted, its n-gram probability is calculated from the Web1T Corpus

using the fast access tool introduced in the previous section. The n-gram probability is

calculated with absolute discounting. Once the probability pa is known, its self information

can be calculated via the following formula:

(19) I(pa) =
1

log(pa)
= −log(pa)

From a development set of 30 sentences, a threshold value is selected to decide on the

worthiness of the adverbial phrase. Given a new adverbial phrase, if its self-information falls

below this threshold, the phrase is discarded from the sentence. Otherwise it is kept as is.

8.4. Results

Compressing the sentences by removing certain adverbial phrases leads to a 17%

compression ratio. Hence more room is created for other sentences in a summary. In fact

this extra room leads to improvement on the supervised extraction systems of the novels

domain. This improvement is summarized in Table 8.1.

8.5. Related Work

Language modeling toolkits are used extensively for speech processing, machine trans-

lation, and many other NLP applications. The two of the most popular toolkits that are

also freely available are the CMU Statistical Language Modeling (SLM) Toolkit [16], and

6The parser is downloaded from http://nlp.stanford.edu/software/lex-parser.shtml
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the SRI Language Modeling Toolkit [94]. However, even though these tools represent a great

resource for building language models and applying them to various problems, they are not

designed for very large corpora, such as the Web1T 5-gram corpus [9], hence they do not

provide efficient implementations to access these data sets.

Furthermore, [107] has recently shown that the widely popular smoothing algorithms

for language models such as Kneser-Ney [42], Witten-Bell [101], or Absolute Discounting do

not realize the full potentials of very large corpora, which often come with missing counts.

The reason for the missing counts is due to the omission of low frequency N-grams in the

corpus. [107] shows that with a modified version of Kneser-Ney smoothing algorithm, named

as the Dirichlet-Kneser-Ney, a 31% reduction in perplexity can be obtained on the Brown

corpus.

A tool similar to ours that uses a hashing technique in order to provide a fast access to

the Web1T corpus is presented in detail in [32]. The tool provides access to queries with wild

card symbols, and the performance of the tool on 106 queries on a 2.66 GHz processor with

1.5 GBytes of memory is given approximately as one hour. Another tool, Web1T5-Easy,

described in [25], provides indexing of the Web1T corpus via relational database tables

implemented in an SQLite engine. It allows interactive searches on the corpus as well as

collocation discovery. The indexing time of this tool is reported to be two weeks, while the

non-cached retrieval time is given to be in order of a few seconds. Other tools that implement

a binary search algorithm as a simpler, yet less efficient method are also given in [29, 106].

Sentence extraction is a well studied topic in Natural Language Processing with

mostly supervised systems dominating the field [43, 98, 64, 14].

8.6. Summary

In this chapter a new publicly available tool that provides fast access to large N-

gram datasets with modest hardware requirements is described. In addition to providing

access to individual N-gram records, the tool also handles queries with wild card symbols,

provided that the wild cards in the query are contiguous. Furthermore, the tool also im-

plements smoothing algorithms that try to overcome the missing counts that are typical to
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N-gram corpora due to the omission of low frequencies. The tool is then used in a simple

sentence compression algorithm that simply calculates the self information contained in the

adverbial phrases of the generated summary sentences. The adverbial phrases are either

kept in or discarded from a summary sentence based on the threshold value obtained from

a development set. Removing the adverbial phrases with low self information scores from

the extracted summary sentences allows for more sentence extraction hence repeating this

process iteratively generates more compact and higher compressed summaries. As shown in

the evaluation results, this process increases the overall metrics for the system.
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CHAPTER 9

CONCLUSION

This thesis addressed the problem of summarization of novels, which are long and

complex literary narratives. Rather than providing a complete solution to this newly ad-

dressed problem, the main objective throughout the thesis was to break the ground on this

new domain by performing a deep investigation by collecting a new data set, analyzing the

problem, and finally developing models that make attempts towards a solution. While some

of the features included in the models developed were borrowed from the domain of short

document summarization and modified to adapt them to longer documents, some of the

features were newly introduced.

Since summarization of very long documents have never been investigated before,

introducing a new data set was mandatory to start tackling this problem. Hence Chapter 3

started by describing how various online resources were leveraged for this purpose. A total

of 66 novels were collected, where each novel had 108,800 words, and 32 chapters on average.

The summaries for the novels were provided per chapter, so each chapter of a novel, with

an average length of 3,400 words, was considered in isolation. It should be noted that the

average length of a document, i.e. a single chapter of a novel, is still much larger than news,

medical or any other domain studied for text summarization. Furthermore, the compression

ratio for the provided summaries were also higher in comparison to other domains, ranging

from 87% to 96% depending on the source of the summary. Finally, Chapter 3 also introduced

the ROUGE evaluation toolkit used throughout the thesis.

The summaries collected as described in 3 came in three different types; synopsis,

objective, and interpretative. Synopsis summaries do not provide a summary per chapter

but rather summarize the entire novel in one or two pages thereby having a very high

compression ratio. Evaluation of these types of highly compressed summaries via ROUGE
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or any other automatic evaluation methods developed to date cannot be relied on as the

original sentences of the novel go through a great amount of transformations. Therefore

decoding the information contained in a summary sentence and linking back to its original

source becomes a very challenging task. Thus the synopsis type of summaries were discarded

for this study.

Both the objective, and the interpretative types of summaries are in chapter level,

and have lower compression ratios as described above. The difference between these two

types of summaries come from the fact that the objective summaries describe the events in

a novel without adding any interpratation or exploratory information from the writer of the

summary. Hence in an interpretative summary, one would expect to see more transformations

of the novel sentences combined with new sentences and vocabulary usage as there would

be new information added by the summary writer. This intuition was analyzed in Chapter

4 by using a sentence decomposition algorithm.

The goal of the sentence decomposition algorithm used in Chapter 4 was to link a

summary sentence back to its source sentences in the novel by identifying the transforma-

tional operations, such as cut-and-paste. Knowing the percentage of summary sentences

that can be linked, it can be inferred whether a summary type is suitable for extractive

summarization or not. The result of this analysis in Chapter 4 showed that the percentage

of the objective summary sentences linked back to the their sources by the decomposition

algorithm was about twice the size of the percentage found for the interpretative summaries.

The conclusion was as expected; that humans use very little extraction from the source

document when writing interpretative summaries, and thus extractive summarization is not

suitable for this summary type. On the other hand, it was found that on average, around

30% of the human-written objective summary sentences are constructed through cut-and-

paste operations from the source document, which made this type of summaries worthy of

further investigation.

Having selected the objective summaries as ground truth for evaluation, Chapter 5

used them to perform a different type of analysis in which the objective was to understand
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how successful one can be by only doing extractive summarization in this new domain,

and how that compares with other domains. In order to reach this goal, the search space

of extractive summaries were explored across four different domains. This was achieved

by generating every possible summary for a document and then evaluating each of these

summaries via ROUGE againist the ground truth summary. Then the distributions of the

evaluation scores were used to generate the probability density functions (pdfs). The pdf for

a document was used to calculate the percentile rank of a given summary, which indicate

how well a given summary performs out of all the possible summaries for that document.

By combining pdfs obtained for a corpus of documents selected from a domain, it is also

possible to evaluate the performance of a summarization system for that domain in the same

way. Furthermore, when the entire domains are considered, the percentile rank indicates

how difficult it would be to move the needle for a given system which cannot be inferred

from the absolute score distance from the upper bound. For example, for the news domain

while there is a 20.1% gap between the upper bound and the lead baseline, the percentile

rank of 99.99% for the lead baseline suggests that closing this gap is difficult as the system

already performs significantly above the average.

The analysis in Chapter 5 for the literary novels revealed that extractive summariza-

tion in this domain is a harder task than both the news, and scientific domains but easier

than the legal domain as indicated by the standard deviations of the corresponding pdfs.

Furthermore, looking at the three extractive summarization systems used on these domains;

it can be seen that the lead baseline, which is very successful in the news domain, behaves

just like an algorithm that randomly selects sentences for the novels domain, meaning that

the lead sentences of a novel chapter have no importance, hence are not good candidates for

novel summaries. However, using the TextRank graph centrality algorithm, a much smarter

way of selecting the summary sentences, proved quite successful by bringing the percentile

rank for ROUGE-1 to 97.9%.

After concluding in Chapter 5 that there is room for improvement in extractive sum-

marization of novels, and smarter algorithms lead to better results, Chapter 6 made the
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first attempt towards building extractive summarization systems in an unsupervised fash-

ion. When the features used in these systems take into account the characteristics of long

documents, the systems achieved superior performance compared to those that give state of

the art results in news documents which are designed for shorter documents of a completely

different domain. Thus the final system developed in this chapter achieved a significant

improvement over MEAD by combining the following features: The positional scores were

discarded, the sentences are ranked using TextRank and were assigned a score based on their

importance, and the sentences were also segmented using a segmentation algorithm, and the

segment, and inverse segment frequency of a word was taken into account together with its

frequency in the chapter and its inverse document frequency obtained from an external cor-

pus. Moreover the segments of a chapter were ranked using TextRank, which assigned each

segment a score based on its importance, and the sentences in each segment were weighted

with this score.

In Chapter 6, the features developed were combined in an ad-hoc way so the resulting

system was unsupervised. Hence the next step was to experiment with supervised methods

in order to come up with better systems, which was the goal in Chapter 7. The training

data for the supervised methods came from the analysis performed in Chapter 5. The

supervised framework developed in this chapter treated each individual feature as a sentence

ranker for a given document, hence the objective function the system tried to optimize by

making use of the training data was a sentence ranking function that combined various

individual features including the position of the sentence within the document, the length of

the sentence, the term frequency score, the TextRank score, the number of named entities,

etc. All the individual features as well as the new system was evaluated on two different

domains; news and literary novels, which provided another view on the importance of each

feature depending on the domain. The results showed that most of the supervised systems

built using the given framework gave better results than each of the individual unsupervised

features.
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It should however be noted that the training data used in this framework was not

ideal in the sense that the labeling of a training instance was based on the average ROUGE

evaluation score of all the summaries that contain the sentence, rather than the evaluation

score of the sentence itself. Hence the individual contribution of the sentence to the overall

evaluation score was not known. With this approximation, the score of a high quality

sentence that should be included in a summary would still be higher than a low quality

sentence but the gap would be lowered due to the effect of averaging. Hence an evaluation

metric that scores the sentences on an individual basis is expected to make the supervised

framework described in Chapter 7 even more successful.

The final chapter, Chapter 8, broke away from the extractive summarization models,

and considered sentence compression, which is typically investigated in the interpretation

stage of automatic text summarization. The goal of this chapter was to see the effect

of sentence compression to the overall evaluation metrics. Since the summaries for the

literary novels are much longer in length than other domains such as news, an iterative

process that first compresses the sentences in a summary and then adds new ones as long

as the compression ratio allows is ultimately expected to increase the overall metrics, as the

summaries become more compact and contain more information. This was shown with a

new yet fairly simple compression algorithm. The algorithm used a probabilistic parser in

order to identify the adverbial phrases in a sentence, and then used a newly developed tool,

which provides fast access to large N-gram datasets, in order to compute the self information

contained in the adverbial phrases. An adverbial phrase is discarded if the algorithm decides

that it has very little self information. This process led to an overall 17% compression on

the generated sentences and caused the overall metrics to increase significantly.

In conclusion, the thesis provided a detailed study on many different aspects of a brand

new problem, the extractive summarization of literary novels, while also briefly touching the

interpretation stage in Chapter 8. The very last stage of automatic text summarization,

i.e. generation, which attempts to bring the summaries into a more coherent and human-

readable form is not addressed in this thesis as the task requires a detailed study of its own.
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Hence a more detailed investigation of the interpretation, and generation stages are left as

a future study.
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