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Coarse-grained fabrics are comprised of multi-bit configurable logic blocks 

and configurable interconnect. This work is focused on area and energy 

optimization techniques for coarse-grained reconfigurable fabric architectures. In 

this work, a variety of design techniques have been explored to improve the 

utilization of computational resources and increase energy savings. This includes 

splitting, folding, multi-level vertical interconnect. In addition to this, I have also 

studied fully connected homogeneous and heterogeneous architectures, and 3D 

architecture. I have also examined some of the hybrid strategies of computation 

unit’s arrangements. In order to perform energy and area analysis, I selected a set 

of signal and image processing benchmarks from MediaBench suite. I 

implemented various fabric architectures on 90nm ASIC process from Synopsys. 

Results show area improvement with energy savings as compared to baseline 

architecture. 
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CHAPTER 1

INTRODUCTION

The main concerns of modern day’s computationally intensive applications such as image

processing and recognition, streaming video, and signal processing are power and area con-

sumed by the processing units. For these kind of applications, we require custom hardware

which should be faster, more flexible, energy-efficient and requires less area. Computing

architectures which are widely used can be divided into three categories: general-purpose

processors (GPPs), application-specific integrated circuits (ASICs) and reconfigurable archi-

tectures (RAs). Unfortunately when speed is required, GPP cannot be used for complex

applications. The application-specific integrated circuit is designed for a specific applica-

tion or task, which is faster and energy-efficient, but it limits the flexibility; on the other

hand RAs (FPGAs) are flexible, but require more energy as compared to ASICs. Since re-

configurable architectures provide the good flexibility, they are getting more attention. The

granularity of the reconfigurable architectures is defined as the size on the smallest functional

units. Based on granularity, reconfigurable architectures can be divided into two categories:

fine-grained reconfigurable architectures (FPGAs) and coarse-grained reconfigurable archi-

tectures (CGRAs). Fine-grained architectures work at bit-level and that is why they can

be reconfigured at the bit-level, whereas coarse-grained architectures work at multiple-bit

datapaths that give the flexibility to reconfigure the whole processing units of the device.

Due to inflexibility of AISCs and poor energy-efficiency of FPGAs, CGRAs have been

getting attention in computing world from a decade. Figure 1.1 depicts the tradeoff between

energy and flexibility of various computing architectures. CGRA bridges the gap between

FPGAs and ASICs, as they are promising good energy-efficiency and high flexibility.
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Flexibility 

Energy 

FPGAs ASICs CGRAs 

Figure 1.1: Flexibility vs energy tradeoff for ASICs, FPGAs and CGRAs.

1.1. Fine Grain Reconfigurable Architectures

Most of the FPGA architectures are known as fine-grain reconfigurable architectures.

FPGAs have high granularity, which is also known as fine-grain. Fine-grain reconfigurable

architectures are made up of configurable logic blocks (CLBs), programmable interconnectors

for routing, and programmable input/output ports. Each CLB is made up of one or more

than one k -input lookup tables which are interconnected through fast local interconnectors.

Each k -LUT can implement any function with a single output and with k -inputs or less.

Figure 1.2 shows a conventional island-style FPGA architecture, which is a widely accepted

architecture model. The CLBs are placed in arrays which are surrounded by horizontal and

vertical interconnectors. Both the interconnectors are connected through a programmable

switch block to route the data between CLB-CLB, CLB-I/O. This flexibility of routing al-

lows every CLB to reach every other CLB and I/O port. The main advantage of FPGAs

over ASICs is that circuits and all the functions are fixed in the chip after fabrication and

they cannot be altered again, whereas in FPGAs base gates and base cells are fixed, but

the connections between them are programmable (not fixed), which helps to realize several

required circuits while maintaining the high level of flexibility.

However, FPGAs have inherent disadvantages:
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Figure 1.2: Example of fine grain reconfigurable architecture (FPGA).

Logic Granularity: Basically FPGAs are designed for logic replacement. As a result, it

is inefficient to perform multimedia computations and complex signal processing.

Routability: Because of bit-level operations, several functional units are needed to op-

erate wide datapaths. This includes huge routing overhead and poor routability [2], [7]. In

addition, introduced switches used to connect the wires will take both area and power.

Configuration Time: With fine granularity, the high volume of configuration data is

needed for the fabric. The time to load such a high volume of configuration data ranges

from hundreds of microsecond to hundreds of milliseconds.

1.2. Coarse Grain Reconfigurable Architectures

Coarse-grain reconfigurable architectures (CGRAs) try to overcome the disadvantages

of FPGAs-based computing, which was discussed in Section 1.1. CGRAs are capable of
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implementing high-level operators in their processing units, which can operate at a multiple-

bit width datapath [26], [8], [1], [3]. Since interconnectors used in CGRAs are mainly buses,

less configuration data is needed for CGRAs and that solves the long configuration time

problem of fine-grain reconfigurable architectures. Communication resources in CGRAs

have buses for the interconnections that are low in number but have a high granularity of

communication lines, which is an advantage over fine-grain architectures.

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

Co
nf
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ur
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le

 M
em

or
y 

Configuration 

O/P 
Reg 

Register 
File ALU 

from neighbor PEs 

Configurable Buses Interconnectors 

Figure 1.3: Example of coarse grain reconfigurable architecture (CGRA).

The designing and specifications of CGRAs is based on target application domain. In

CGRA, processing elements (PEs) are placed in arrays, which are connected to each other

with flexible topology. Each PE is made up of an arithmetic logic unit (ALU) that is capable

of execute arithmatic operations ( i.e. addition, multiplication, etc.) and logic operations

(i.e. shift, etc.) or load/store. Each PE also has a register file to store the data or to load

the data. Since CGRAs have more computational resources, thay provide high performance.

Configurable buses connect the PEs to communication resources and the configurable mem-

ory. Figure 1.3 shows a basic CGRA architecture in which PEs are connected by a mesh-like

interconnector. Many architectures have been proposed and developed both in academia and

industry during the last decade such as MATRIX [1], Garp [4], MorphoSys [6], [5], RaPiD [8],

[10], PipeRench [11], [13], [14], HFPGA [27], Kilocore [30], CFPA [28], Montium [22],[18]
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ADRES [9], SmartCell [24] [20]. These architectures have sequential structure and use local

registers or shared register files for storing data values.

1.3. Contribution of the Thesis

This work focused on area and energy optimization techniques for coarse grained re-

configurable fabric architectures. In this work, a variety of design techniques have being

explored to improve the utilization of computational resources and increase energy savings.

My studies are based on design domain specific fabrics which are developed with the goals

of reducing power consumption and area optimization. Stripe-based fabric in particular are

quite promising due to their good fit to a data flow graph structure [16, 23, 21, 15] but I

have observed that the data flow graphs of the application domain have some common graphs

which are narrower from one end and wide on other end, resulting in inefficient resource uti-

lization. The main contribution of this thesis is to explore new fabric optimization techniques

for coarse-grained fabrics in which ALUs of the fabric can be utilized more efficiently. This

includes splitting, folding, multi-level vertical interconnect. In addition to this, I also studied

fully connected homogeneous and heterogeneous architectures, and 3D architecture. In split

architecture, instead of using one big fabric I used two smaller fabrics of different sizes which

work together to perform computation. And in fold architecture, I reduced the total height

of the fabric by accommodating working ALUs of the bottom rows in the idle locations of

the top row. Hence the results of splitting and folding the fabric show reduction in power

as well as area consumption. I also examined some of the hybrid strategies of computation

unit’s arrangements. To reduce the ALUs used as pass-gate I introduced multi-level vertical

interconnect which routes the data more efficiently in vertical direction.

In addition to stripe based fabric architectures, I also studied non-stripe based fabric

architectures with horizontal interconnect, fully connected homogeneous and heterogeneous

architectures, and three dimensional (3D) architecture. These architectures have being ex-

plored to improve resource utilization. One of the interesting features of 3D architectures is

that you can stack a layer of computational units on top of a two dimensional (2D) array.
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This kind of arrangement gives you a dense packing of computational units. By using 3D

architecture the number of neighbors is increased, and each computational unit can access

large number of nearest neighbor computational units with shorter wire length.

1.4. Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides some background

material in the area of reconfigurable computing and coarse-grain architectures in general.

Then an overview on the domain-specific fabric is provided. After that application mapping

onto domain-specific and their related results are discussed. Chapter 3 explores the various

area and energu efficient techniques for coarse-grained reconfigurable fabrics. Chapter 4

includes an experimental setup, results and an analysis of area and energy consumption for

a suite of image and signal proceesing benchmarks. Chapter 5 discusses the conclusions and

future work.
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CHAPTER 2

BACKGROUND

2.1. Related Work

Coarse-grained fabrics are comprised of multi-bit configurable logic blocks and multi-bit

configurable interconnector. Many coarse grain reconfigurable architectures such as MA-

TRIX [1], Garp [4], MorphoSys [6], [5], RaPiD [8], [10], PipeRench [11], [13], [14],HFPGA [27],

Kilocore [30], CFPA [28], Montium [22],[18] ADRES [9], SmartCell [24] [20] have been pro-

posed in recent years. Of these, PipeRench and Kilocore are stripe-based coarse grain fabrics.

These fabrics use pass register files to manage constants and pass computed values from one

stripe to another; [25] describes how to manage short-lived and long-lived values in coarse-

grained fabrics. It discusses various architectural options for storing values when optimizing

for area and energy. They consider constants as long-lived values and store them in register

files. An application-specific optimization concept can also be used for CGRA architecture

optimization[17], [29], [19], in which a large area consuming critical resources of process

elements (PEs) can be shared whereas pipelining of the critical resources saves delay. [12]

describes how fewer number of processing elements (PEs) with a enhanced interconnection

lead to area and energy savings.

The domain-specific reconfigurable fabric (DSRF) considered here is also stripe-based,

but it does not have storage elements. In previous research on this DSRF, the impact of

varying different design parameters such as the width of the functional units, homogeneous

vs. heterogeneous functional units, various functional unit implementation techniques, gran-

ularity of the interconnect, interconnect patterns, and horizontal and vertical routing onto

physical characteristics like power, performance, and area has being studied [[16, 23, 21, 15]].
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I observed that a large number of ALUs are still used for pass operation resulting in ineffi-

cient utilization of ALUs. There is a potential to make further improvement to increase the

energy and area savings.

2.2. Domain Specific Fabric Overview

In stripe-based fabric, ALUs are organized into rows or computational stripes within

which each functional unit operates independently and works in parallel. The results of these

ALU operations are then fed into interconnection stripes constructed using multiplexers.

Interconnect 

Interconnect 

ALU(1, 1) ALU(1, 2) ALU(1, 3) ALU(1, W) 

ALU(H, 2) ALU(H, 1) 

ALU(2, W) ALU(2, 3) ALU(2, 2) ALU(2, 1) 

ALU(H, W) ALU(H, 3) 

Figure 2.1: The fabric model is comprised of ALUs and a reconfigurable interconnects.

The fabric model was implemented in parameterized VHDL using the generic capability

of the VHDL language. The fabric size is determined with the parameters specifying the

width of the fabric W and height of the fabric H. W dictates the number of ALUs imple-

mented in each computational stripe. H determines the number of computational stripes

and H − 1 determines the number of interconnection stripes in the fabric model shown in

Figure 2.1. To route the outputs more efficiently from different ALUs to the final output
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port, several early exit rows are placed evenly in the device. For example, if fabric has height

18, each alternate row (i.e. 2, 4, 6, 8 ...18) is connected to early exit row. If the output is

available in row 7, it will be passed to the next row (row 8), and from there it can be passed

to final output row through early exit row. This technique saves a significant number of

functional units in the fabric which is being used for passing the output till the end of the

fabric.

2.2.1. Mapping of Applications Onto Domain-Specific Reconfigurable Fabric

The mapping of an application onto reconfigurable fabric means the assignment of dif-

ferent operations to different ALUs in the fabric in order to preserve the functionality of

the application. Because of the layered structure of the fabric, ALUs are used as pass-gates,

which take a single input and pass the input value to one or more ALUs of the next stripe.

In general, not all of the available ALUs will be used for a single DFG mapping.

An example of DFG and its corresponding mapping on stripe-based reconfigurable fabric

is shown in Figure 2.2 and Figure 2.3 respectively. The DFG shown in Figure 2.2 is imple-

mented on our standard architecture where inputs and constants are routed from the top of

the fabric. ALUs are shown in white colored squares with operators marked in them, ALUs

used as pass gates are shown in blue color and labeled as “P” The inputs and outputs are

shown in white colored ovals. Consider an ALU in row 14 and column 8 i.e. ALU(14,8), one

of its inputs is a constant and is being routed all the way from the top of the fabric. It uses

13 ALUs for just passing this input to the desired location. A large number of hardware

resources including computational units and interconnect get wasted in routing inputs from

the top of the device.

This DFG has two outputs, one of which is computed and available early in the fabric

(in row 12). Because of early exit rows in the fabric, this output can come out directly to

the final output without using any ALUs in the successive stripes for the pass operation.

9



Figure 2.2: An example of a data flow graph (DFG).

2.2.2. Design Case Studies

In order to conduct architectural exploration case studies, I selected a set of core signal

processing benchmarks from MediaBench benchmark suite including the ADPCM encoder

(enc), ADPCM decoder (dec), GSM channel encoder (gsm), and the MPEG II decoder (row,

col). I added the Sobel (sob) and Laplace (lap) edge detection algorithms to the benchmark

suite I computed the number of operations and number of constants in each benchmark.

Table 2.1 shows the number of operations and the number of constants contained in the
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Figure 2.3: Example mapping of the DFG in Figure 2.2 onto a stripe-based coarse-grained

fabric.

Table 2.1: Number of operations, constants, inputs, pass gates in the data flow graphs of

the benchmarks

enc dec row col gsm sob lap

Operations 36 29 52 61 29 24 29

Constants 14 20 23 32 20 10 5

Inputs 3 4 8 8 3 8 25

Pass gates 126 71 41 72 139 19 17

benchmark suite. Operations include only regular arithmetic, logic and shift operations such

as addition, multiplication, AND, OR, right-shift, etc. It also shows the number of pass

gates required to pass inputs and constants to the functional units where they are needed in

the baseline architecture, as it can be seen that a large of functional units are being wasted

for routing inputs and constants. For example, in “enc”, 126 pass gates are used to route
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only 3 inputs and 14 constants and some intermediate results. These numbers reflect the

number of pass gates added to implement the data flow graphs on the reconfigurable fabric.
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Figure 2.4: A DFG shown in Figure 2.2 mapped on the architecture with 33% dedicated

pass gates.

2.2.3. Fabric Architecture with Dedicated Pass Gates

In our previous work, in order to reduce power consumption due to large numbers of

ALUs being used as pass gates, the dedicated pass gates are introduced in the fabric, which

simply route data vertically from one row to the next row [21]. The dedicated pass gate can

also be set to idle state when not being used. For vertical routing, I varied the percentage

of dedicated pass-gates at levels of 25% (1 out of 4), 33% (1 out of 3), and 50% (1 out of 2).

Figure 2.4 shows an example of a data flow graph (DFG) from Figure 2.2 mapped onto

the architecture with 33% DPs. ALUs used as operators are shown in white colored squares

with operators marked in them, ALUs used as pass gates are shown in blue color and labeled

as “P”, the dedicated pass gates are shown in green color and are labeled as “DP”, and the

white empty squares are idle. The goal of using dedicated pass-gates is to minimize the

usage of ALUs for pass operations. As it can be seen that the number of ALUs used as pass
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gates shown in blue color have been reduced from the baseline architecture but there are

still many ALUs which are being used for pass operation.

2.2.4. Fabric Architecture with Inputs Coming from Side (ICS)
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ALU ALU ALU ALU ALU 

Interconnect 

Figure 2.5: Multiplexer-based interconnector used for inputs coming from side (ICS) concept.
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Figure 2.6: A DFG shown in Figure 2.2 mapped on the architecture with ICS.

13



In our previous work, instead of routing inputs and constants from the top of the fabric

I fed them directly to the ALUs where they are needed. By routing inputs and constants

efficiently from the side, I had achieved significant improvement in area and energy savings.

For example, Figure 2.6 shows the DFG shown in Figure 2.2 mapped onto the architecture

where inputs and constants are routed directly to the functional units where needed. In

order to keep the figures simple, I show the constants integrated inside the ALUs and the

variables in bubbles off to the sides. Constants are labeled within an ALU as “LC” and

”RC”. ”LC” stands for a left constant, and it means that the left operand of the ALU is

a constant. ”RC” stands for a right constant, and it means that the right operand of the

ALU is a constant. The same graph which used 17x16 standard fabric is using only 9x16

fabric having ICS. It requires 47% fewer functional units to implement the same DFG onto

the fabric having ICS than the standard implementation.
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CHAPTER 3

ARCHITECTURE EXPLORATION

3.1. Split/Fold Architecture

3.1.1. Motivation
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Figure 3.1: A set of subfigures to demonstrate the implementation of diamond data flow

on split and fold architecture: (a) Diamond data-flow.; (b) shows fabric after folding the

architecture whereas (c) and (d) are showing left and right fabric for (a).

I have observed that the data flow graphs of the application domain examined here have

some common structures like wedge, diamond, trapezoid, etc. When I considered these

structures, I could see that the structures got narrower as we move from top to bottom,

resulting in inefficient resource utilization. ALUs of the fabric can be utilized more efficiently

with reduction in the number of ALUs of the fabric after splitting/folding the fabric. I have
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Figure 3.2: A set of subfigures to demonstrate the implementation of wedge data flow on split

and fold architecture: (a) Merged data-flow.; (b) shows fabric after folding the architecture

whereas (c) and (d) are showing left and right fabric for (a).

considered only two shapes in this thesis to explain the concept of the folding and splitting.

Figure 3.1 shows the diamond structure and its corresponding split and fold architectures.

Figure 3.2 shows the wedge structure and its corresponding split and fold architectures.

The main motivation behind splitting of the fabric is that, instead of using one big

fabric, I can use two smaller fabrics of different sizes which work together to compute the

desired output. By splitting the diamond structure, I get 14% theoretical area savings and

by splitting the wedge structure, I get 29% theoretical area savings. I have used folding to

get rid of idle ALUs of the bottom rows and utilized the idle ALUs of the top row. In the

folding I have adjusted the processing ALUs of the bottom rows in the top rows. The results

of folding shows huge reduction in height of the fabric with a small increase in width of the

fabric. By folding the diamond structure, I get 29% theoretical area savings and by folding

the wedge structure I get 29% theoretical area savings. These results motivated us to use

these techniques for CGRA architecture.
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3.1.2. Split Architecture
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(b) Split CGRA architecture.

Figure 3.3: Base CGRA architectures and CGRA architecture after split .

To demonstrate the steps involved in getting a split architecture, consider an 8x8 fabric

shown in Figure 3.4a. ALUs used for computations and passing data down are shown as

blue-colored and red-colored boxes and the empty boxes are idle ALUs. As you can see, the

graph has fewer ALUs doing work at the top and the bottom, as compared to the middle

part of the fabric, where there are many ALUs that are idle and can be used in a more

efficient manner. In order to achieve a split architecture, I first shift the working ALUs to

either left/right as much as I can. In this example, I have shifted the working ALUs to the

left side. After shifting, I have the idle ALUs on the right hand side of the fabric as shown

in Figure 3.4b. Next, I split the fabric into two unequal parts. The horizontal cut (dotted

line) shows the point from where the fabric can be split and the vertical dotted lines show

the new maximum widths of the split fabrics. In the bottom stripes, very few ALUs are

being used for computation. Due to this, I can make the bottom fabric much smaller as

compared to the top fabric. Figure 3.4c and Figure 3.4d shows the split fabric architecture

which consists of left fabric and right fabric with sizes 7x4 and 4x4 respectively. The results
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Figure 3.4: A set of subfigures to demonstrate the steps involved in getting an ICS-split

architecture: (a) Basic Fabric Model.; (b) Fabric model after shifting the working ALUs

towards left.; (c) and (d) left and right fabric after Splitting.
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Figure 3.5: Schematic for 8:1 interconnect used in split architecture, fold achitecture, and

architecture with horizontal interconnect.

of computations from the left fabric are fed to the right fabric, as shown, and the final output

will be taken out from the bottom of the right fabric; the results can also be taken out from

the left fabric. To route the output more efficiently from the different ALUs to the final
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output port, several early exit rows are placed evenly in the left fabric as well as the right

fabric. For example, if fabrics have height 9, each row (except the 1st row) is connected to

early exit rows. If the output is available in any row (except the 1st row), it can be passed

to the final output row through the early exit row. If output is available in row 1, then it

will be passed to the row 2 and from there it can be further passed to final output port. This

technique saves a significant number of functional units in the fabric which is being used for

passing the output to the end of the fabric. In this example, our original graph has 64 total

functional units, whereas the split fabric has 44 total functional units.
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(b) Right fabric.

Figure 3.6: A DFG shown in Figure 2.2 mapped on the ICS-split architecture.

I implemented the graph from Figure 2.2 using split architecture as shown in Figure 3.6.

The two split fabrics (left fabric and right fabric) are connected through interconnection.

The signals A, B, C, D and E in Figure 3.6a shows the results of the left fabric which

are fed to the right fabric as shown in Figure 3.6b. This DFG has two outputs, one of

which is computed and available early in the right fabric (in row 4). Because of early exit

rows in the fabric, this output can come out directly to the final output without using any

ALUs in the successive stripes for the pass operation. The size of the ICS graph was 9x16,

when the same graph is implemented on split architecture having ICS uses 9x9 and 6x8
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(b) Right fabric.

Figure 3.7: A DFG shown in Figure 2.2 mapped on the ICS-split architecture with 33%

dedicated pass gates.

fabrics and requires 10% fewer functional units as compared to the baseline (ICS-No-DPs)

architecture. Figure 3.7 shows the implementation of the same DFG (Figure 2.2) onto split

architecture fabric with 33% DPs. It requires 40% fewer functional units than the baseline

implementation.

3.1.3. Fold Architecture

As I can see in Figure 3.8, there are some idle ALUs in the top rows of the fabric which

can be used for computations. The blue and red colored ALUs are doing computations and

the empty ALUs are the idle ones. In order to reduce the total number of ALUs in the

fabric, I can cut the fabric using a horizontal dotted line and the idle ALUs in the top rows

can now be used to do operations done by the red-colored ALUs. I call this architecture

“fold architecture” because the fabric is folded from the row where the cut is made and the

outputs of the blue-colored ALUs are fed back to the red-colored ALUs. The final folded

fabric is shown in Figure 3.9. During the first execution cycle, blue-colored operations will

do computations and red-colored ALUs stay idle, and in the second execution cycle, the
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Figure 3.8: Fabric model: Hor-

izontal line show the point from

where fabric is folded.
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Figure 3.9: Final folded fabric

model.
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(b) Fold CGRA Architecture.

Figure 3.10: Base CGRA architectures and CGRA architecture after fold.

blue-colored ALUs stay idle and the red-colored ones do the actual computations. The fold

architecture has multiplexers at the top of the first ALU stripe that provides flexibility of

getting inputs from top/outside and intermediate results from the bottom stripe. Now, if
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we compare Figure 3.4a and Figure 3.9 we observe that the fabric size is reduced from 8x8

to 8x4, which shows 50% savings in terms of total number of functional units.
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Figure 3.11: A DFG shown in Figure 2.2

mapped on the ICS-fold architecture.
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Figure 3.12: A DFG shown in Figure 2.2

mapped on the ICS-fold architecture with

33% dedicated pass gates.

Figure 3.11 shows the DFG shown in Figure 2.2 mapped onto the architecture where

I have folded the fabric from the 9th row. In the first execution cycle, the intermediate

results A, B, C, D, and E are taken out and sent back to the top computational stripe for

the second cycle of execution and final outputs are taken out. The inputs and constants are

routed directly to the functional units where needed.

The same graph that used 9x16 ICS fabric can be implemented on 10x9 fabric when

I introduce ICS with folding. It will require 38% fewer functional units to implement the

same DFG onto the fold architecture as compared to the ICS (ICS-No-DPs) implementation.

Figure 3.12 shows the implementation of the same DFG (Figure 2.2) onto ICS-fold fabric

with 33% DPs; it requires 50% fewer functional units as compared to baseline architecture.
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3.2. Architecture with Multi-Level Vertical Interconnects

By looking into various benchmarks of reconfigurable fabric architecture, I observed that

some intermediate results are not consumed in the stripe next to the ALUs that produced

that result. To route that result to the intended ALUs, I have to use ALU only for routing

that result which is a penalty in terms of area as well as in terms of energy. Architecture

with multi-level vertical interconnect is a complementary approach to reduce the number of

ALUs used for pass operation. This technique can route the results in a more efficient way.
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Figure 3.13: A simple example of compu-

tation.
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Figure 3.14: Implementation of Fig-

ure 3.13 with vertical step connection.

For example, Figure 3.13 shows a series of operations to compute a desired output ”Y”

on a 2x4 fabric. The result obtained from the addition of ”C” and ”D” is later used in mul-

tiplication and subtraction operations. To route that intermediate result to the subtraction

operation, two ALUs are used for pass operation. By adding multi-level vertical interconnect,

we can route the intermediate result directly to the desired ALU for subtraction operation

and save ALUs used for pass operation as shown in Figure 3.14.
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Figure 3.15: Schematic for 5:1 Interconnect build using 4:1 multiplexers.

To implement fabric architecture using multi-level vertical interconnect, I have used a

4:1 multiplexer for each operand of an ALU. Each 4:1 multiplexer can take one input from

the parent stripe above using another 5:1 interconnect, one from the side (ICS), one from

the grandparent stripe’s ALU (from same column), and one from the great-grandparent

stripe’s ALU (from same column). One input out of these four inputs is used by the ALU.

The obtained result from the ALU will be available at all the possible destinations which

can be used by the intended ALU. The same result can be used by all possible intended

ALUs which are connected to the producer ALU. The functionality will remain the same,

but it will just be connected to the ALUs in a more flexible way. In other words, ALUs

will work independently but they will have more vertical reachability in the same column.

Architecture with multi-level vertical interconnect will have an additional interconnectivity

between grandparent-to-grandchild and great-grandparent to great-grandchild of the same

column.

As a result, this approach can reduce the number of ALUs used for routing and will

increase the routing flexibility. In architecture with multi-level vertical interconnect, most

of the intermediate results can be sent to intended ALUs directly.

Figure 3.16 shows our technique and the interconnection I have used for vertical step

architecture. In order to keep the figure simple, I have shown arrows which are depicting
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Figure 3.16: A fabric model comprises

of ALUs with multi-level vertical intercon-

nect.
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Figure 3.17: A detailed version of multi-

level vertical interconnect.

all possible vertical routing interconnection except the ICS (Input Coming from Side). Fig-

ure 3.17 shows the actual interconnection of an ALU with all possible ALUs. Each operand of

an ALU is coming from the multiplexer which is connected to a total of 7 different ALUs and

one external input port (input coming from side or ICS). Out of 7 connected ALUs, 5 of them

are from the parent stripe which is connected through the 5:1 interconnect, and one is from

the grandparent stripe’s ALU (from same column), and one is from the great-grandparent

stripe’s ALU (from same column).

In our research, I have achieved a significant improvement in area and energy savings by

using architecture with multi-level vertical interconnect. For example, Figure 3.18 shows the

DFG shown in Figure 2.2 mapped onto the architecture with multi-level vertical interconnect.

The same graph that used 9x16 ICS fabric is using only 5x16 fabric. It requires 47% fewer

functional units as compared to ICS implementation.

3.3. Architecture with Horizontal Interconnect

In addition to multi-level vertical interconnect between stripes, I have also studied the

impact of horizontal interconnect between the adjacent ALUs of the same stripe onto energy
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Figure 3.18: A DFG shown in Figure 2.2 mapped on the architecture with multi-level

vertical interconnect.

and area. To implement architecture using horizontal interconnection I have used a 4:1

multiplexer for each operand of an ALU. Each 4:1 multiplexer can take input from the stripe

above, from the side, from the adjacent right ALU, and from the adjacent left ALU. One

input out of these four inputs is used by the ALU at a time. Obtained result from the ALU

will be available at all the destinations which can be used by the intended ALU. The same

result can be used by all possible intended ALUs which are connected to the producer ALU.

In this architecture, we can wrap the ALUs in the stripes because it will restrict the ALUs to

work in parallel. In this architecture, the functionality will remain the same, but the ALUs
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will be connected in a more flexible way. In other words ALUs will work independently but

they will have reachability to the other ALUs of the same row.

ALU ALU ALU ALU ALU 

ALU ALU ALU ALU ALU 

ALU ALU ALU ALU ALU 

ALU ALU ALU ALU ALU 

Interconnect 

Interconnect 

Interconnect 

Figure 3.19: A fabric model comprises of

ALUs with horizontal interconnect.

ALU ALU ALU 

8:1 Interconnect 

ICS ICS ICS 

Figure 3.20: A fabric model showing hor-

izontal interconnect concept.

Figure 3.19 shows the fabric model comprised of ALUs with horizontal interconnections.

In order to keep the figure simple, I have shown the horizontal left-right arrow depicting the

interconnection between two adjacent ALUs of the same ALU stripe. Figure 3.20 shows the

actual interconnection of an ALU with all possible ALUs. Each operand of the center ALU

is connected to total 10 different ALUs and one external input port (input coming from side

(ICS)). Out of 10 connected ALUs, 8 of them are from parent stripe which is connected

through the 8:1 interconnect and one is from the left adjacent ALU, and one is from the

right adjacent ALU. The third multiplexer is used to provide a selector signal when the ALU

is used for multiplexer operation.

This approach can reduce the height of the fabric and its overall fabric size by moving

certain operations up in the fabric. This technique saves a significant number of functional

units in the fabric which is being used for passing the output to the end of the fabric.

In our research, I have achieved a significant improvement in area and energy savings by

using architecture with horizontal interconnect. For example, Figure 3.21 shows the DFG
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Figure 3.21: A DFG shown in Figure 2.2 mapped on the architecture with horizontal

interconnect.

shown in Figure 2.2 mapped onto the architecture with horizontal interconnect. Consider

red-colored ALU, the parent ALU of green-colored ALU, and child of yellow-colored ALU

are in the same row. Once the parent ALU (yellow in color) computes the result it will pass

it to the next ALU(red in color) which will be processed and passed to its child ALU(Green

in color). The same graph which used 9x16 ICS fabric is using only 8x9 fabric. It requires

49% fewer functional units to implement the same DFG onto the architecture with horizontal

interconnect than the ICS implementation.

3.4. Fully Connected Architectures

In our previous architectures (Standard, Split, Fold, architecture with horizontal inter-

connect and multi-level vertical interconnect), I have used the unidirectional interconnectors

like “8:1 Interconnector”, “8:3 Interconnector” and “5:3 Interconnector”, which restrict the

data flow, and data can flow from top to bottom. Second drawback is that, the ALUs are

wrapped into stripes that force them to work in parallel. If in any case, when we have to
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rerun a single ALU, we have to rerun the whole stripe resulting inefficient power utilization.

Thirdly, suppose there are only 3 ALUs out of 8 in a single stripe are used at a time then

there is no other way to use these 5 idle ALUs in the same run, since we have unidirectional

data flow, and ALUs are working in parallel. To improve these drawbacks and provid the

required reconfigurable functionality, I have used a bigger reconfigurable interconnector.

ALU(0,0) ALU(0,1) ALU(0,2) ALU(0,3) ALU(0,4) ALU(0,5) ALU(0,6) ALU(0,7) 

ALU(1,0) ALU(1,1) ALU(1,2) ALU(1,3) ALU(1,4) ALU(1,5) ALU(1,6) ALU(1,7) 

ALU(2,0) ALU(2,1) ALU(2,2) ALU(2,3) ALU(2,4) ALU(2,5) ALU(2,6) ALU(2,7) 

ALU(3,0) ALU(3,1) ALU(3,2) ALU(3,3) ALU(3,4) ALU(3,5) ALU(3,6) ALU(3,7) 

ALU(4,0) ALU(4,1) ALU(4,2) ALU(4,3) ALU(4,4) ALU(4,5) ALU(4,6) ALU(4,7) 

ALU(5,0) ALU(5,1) ALU(5,2) ALU(5,3) ALU(5,4) ALU(5,5) ALU(5,6) ALU(5,7) 

ALU(6,0) ALU(6,1) ALU(6,2) ALU(6,3) ALU(6,4) ALU(6,5) ALU(6,6) ALU(6,7) 

ALU(7,0) ALU(7,1) ALU(7,2) ALU(7,3) ALU(7,4) ALU(7,5) ALU(7,6) ALU(7,7) 

ALU(4,7) 

From other 63 ALUs except 
ALU(4,7) 

From other 63 ALUs except 
ALU(4,7) 

ICS  (Input Coming from Side) ICS  (Input Coming from Side) 

Multiplexer 64:1 
For 

 input A 

Multiplexer 64:1 
For 

 input B 

To the all other ALUs and O/P Pad 

Figure 3.22: Fully connected architecture shown with its interconnects.

The proposed architecture as shown in Figure 3.22 is comprised of 8x8 fabric. In order to

reduce the number ALU in the fabric, it is neccessary to provide a wide range of interconnect

to support the various benchmarks. Each operand of an ALU is connected to other 63 ALUs

through a 64:1 multiplexer. Since each ALU is connected to other 63 ALUs, multiplexer

have an extra input node that is connected to the external input port, i.e. inputs can come

from the side (ICS). One input out of these sixty four inputs is used by the ALU in each

cycle. The obtained result from any ALU will be available at all the destinations that can

be used by intended ALUs. The result obtained from a particular ALU can’t be used by

itself, but can be used by other 63 ALUs of the fabric. Under fully connected architecture

I will discuss two architectures (i) fully connected homogeneous architecture and (ii) fully

connected heterogeneous architecture. In homogeneous architecture each ALU can support
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same type and same number of operations, which I have used in ALUs of earlier architectures,

whereas in heterogeneous architecture, ALUs can support only 3 operations including noop (

No Operation). Each row of the fabric consists of same type of ALUs. ALUs of different rows

will have different combination of operations. Since each ALU is working independently, the

data will follow ZigZag-path.

To route the output more efficiently from the different ALUs to the final output port,

several early exit rows and early exit columns are placed evenly in the fabric. For example,

if the fabric size is 8x8, each row and each column is connected to early exit row and early

exit column respectively. If two outputs are available in same column but in different rows

(let say column 2 and row 7 and row 5), one output can passed to the final output port

through early exit row and other can be passed through early exit column. This technique

saves a significant number of functional units in the fabric which are being used for passing

the output till the end of the fabric.

3.4.1. Homogeneous Architecture

In this architecture, same ALUs are used through out the fabric with new type of ar-

rangement. Each ALU can support same number of operations and same type of operations.

The only difference between this architecture and previous ones is the way in which ALUs

are arranged in the fabric. Each ALU is independent, they are physically placed in a square

fabric (i.e. 8x8) but they are non-stripes based architecture. They have their separate

independent interconnections which are connected to all other ALUs in the fabric.

In our research, I have achieved a significant improvement in area by using fully connected

homogeneous architecture. For example, Figure 3.23 shows the DFG shown in Figure 2.2

mapped onto fully connected homogeneous architecture. In order to keep the figure simple,

I have shown the data flow with arrow lines of different colors. If producer and consumer

are 2 or more row apart or 2 or more column apart I have used red arrow and green arrow

respectively to show the connectivity else I have used black arrows. The same graph which

used 9x16 ICS fabric is using only 8x5 fabric. It requires 77% fewer functional units to

30



- 
LC:0 

>> 
RC:3 

M 

>> 
RC:1 

M 

+ >> 
RC:1 

- 
M 

RC:8,
LC:0 

!= 
RC:0 

- M 

+ 

<= 

<= 

< 
RC:0 

M M 

M 
LC:4,
RC:0 

- 

M 

| 
RC:2 

vaplred val 

step 

step 
step 

+ 

- < 
LC: 

-32767 
+ M < 

LC: 
32768 

M 
LC: 

-32768 

M 
LC: 

32767 

<= 

M 

| 
LC:1 

M | 

!= 
RC:0 

vaplred 
delta 

Vaplred_o 

Figure 3.23: A DFG shown in Figure 2.2 mapped on the fully connected homogeneous

architecture.

implement the same DFG onto fully connected homogeneous architecture than the ICS

implementation.

3.4.2. Heterogeneous Architecture

In our previous architectures (Split, Fold, architecture with horizontal interconnect and

vertical interconnect), I have used the ALUs which can support 15 different operations.

One out of 15 operations is used in each cycle and other will remain idle. I have focused

on seven different benchmarks to do case study in earlier architectures. I have observed

that not all the 15 operations are used in a single benchmark but all of them are used in

total seven different benchmarks I have studied. Thus, I concluded that there is a room to

utilize the operations in a single ALU more efficiently. In order to do so, I came up with a

novel heterogeneous architecture in which I don’t have to support 15 different operations.

ALUs in the new heterogeneous architecture will support fewer operations as compared to 15

operation with a penalty of additional interconnect. The reason of having fewer operations

in ALU is that, any operation inside an ALU with fewer operations will take less power than
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the same operations will take in an ALU with more number of operations. Fewer operations

per ALU also provide area savings.

3.5. 3D CGRA Architecture

The wire length and the interconnection consume a large portion of total area of the

fabric array. Three dimensional (3D) architectures which contains multiple functional lay-

ers, mitigate many of the limitations of two dimensional (2D) architecture like functionality,

performance and density [31]. The 2D architectures has limitations because of long wire

length which consumes a large portion of the power as well as the area. Since in 3D ar-

chitecture the number of neighbors will increase, each computational unit can access large

number of nearest neighbor computational units with shorter wire length. By bringing the

computational units closer together in three dimensional architecture we can achieve a huge

reduction in the size of the reconfigurable interconnectors required for routing the data [32],

[33].

LAYER 1  

LAYER 2  

      LAYER 3  

      LAYER 4  

Figure 3.24: An example showing the stacking of 4x4 fabrics on top of each other.

Figure 3.24 shows the stacking of four 4x4 fabric array on top of each other. Top layer

of the 3D architecture is named as layer 1, then the second layer then the third layer and

the bottom layer is named as layer 4. Figure 3.25 shows the detailed version of the 3D
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direction 
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Mux 
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Figure 3.25: Three Dimensional Fabric Architecture shown with various interconnects.

architecture and the various interconnections I have used. XZ plane is shown by the blue

colored ALUs, XY planes is shown by the green colored ALUs and YZ plane is shown with

gray colored ALUs where columns are placed along with X-axis, rows are placed along with

Y-axis and Z-axis gives the depth of the fabric. In any direction (each row, each column,

each depth, each diagonal of each plane, and each diagonal of the 3D architecture (Cube

architecture)) if 3D architecture have four ALUs in a straight line I have connected them

with hopping interconnections. Between two rows I have used unidirectional 4:1 intercon-

nect. Figure 3.26 show the direction of 4:1 interconnection as well as main data flow in 3D

architecture.

Figure 3.27 shows the various diagonal in the three dimensional architecture and the

hopping interconection structure for them. Figure 3.27a shows the diagonals of a plane or

a layer. Each plane has 4 layers resulting in 12 layers in 3D architecture (i.e. XY-plane =4

, XZ-plane = 4, YZ-plane = 4). Figure 3.27b shows the diagonal of the cubicle structure.

3D architecture has 4 diagonal which also have hopping interconnections. Since diagonal is

connecting the ALUs of different layer they are shown in different color.
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showing placements of 4:1 interconnec-
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Figure 3.26: A set figures showing the placement of 4:1 interconnectors and the data main

data flow in 3D architecrure.

(a) Hopping Interconnection for Diag-

onals of a Layer

A B 

F 
E 

G 

C 
D 

A 

Interconnection structure for the 
diagonals of the 3D architecture. 

Different colors showing the different 
layer starting from each plane. 

(b) Hopping Interconnection for Diag-

onals of the 3D Architecture.

Figure 3.27: A set of figure showing the various diagonals with hopping interconnection in

the proposed 3D architecture.

The 3D fabric architecture also have several early exit rows, placed evenly in the fabric.

Since 3D architecture have six faces, out of those six faces three faces have early exit rows

which are placed in front of each ALU. Three faces I have chosen for this are adjacent to

each other. Each face have 16 ALUs so 16 early exit ports are there, a total of 48 early exit

rows are in 3D architecture. The main reason of using early exit rows in each direction is to
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avoid some conflicts occurring when different final results are computed in the same row and

same column. This will give the flexibility to take those results more efficiently and connect

them to the final output port of the device.

- 

vaplred val 

< 
RC:0 

M 
RC:8,
LC:0 

!= 
RC:0 

- 
LC:0 

>> 

+ - <= M 

M >> 
RC:1 

M 
M 

LC:4,
RC:0 

Step 

Step 

Step 

A                 B                 C                  D 

X 

M M P 

| 
LC:1 

P <= 

>> 
RC:1 

M M M 

<= + - | 
RC:2 

+ 

A                 B                 C                  D 

X P                Q                 R                   

!= 
RC:0 

| - 

M 

< 
LC: 

32767 

+ 

P               Q                   R                   vaplred 

< 
LC: 

32768 

M 
LC: 

32768 

M 
LC: 

32767 

delta 

Vaplred_o 

To 2nd layer 

Figure 3.28: A DFG shown in Figure 2.2 mapped on the fully connected homogeneous

architecture.

In our research I have achieved a significant improvement in area by using 3D archi-

tecture. For example Figure 3.28 shows the DFG shown in Figure 2.2 mapped onto 3D

architecture. The intermediate outputs (shown in red color) of layer one are fed to the layer

two, intermediate outputs (shown in green color) of layer two are fed to the layer three. The

same graph which used 9x16 ICS fabric is using only 4x4x3 fabric. It requires 67% fewer

functional units to implement the same DFG onto 3D architecture as compared to the ICS

implementation.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1. Experimetal Setup

4.1.1. Evaluated Applications

In order to conduct the experiments, I selected a set of core signal processing benchmarks

from MediaBench benchmark suite including the ADPCM encoder (enc), ADPCM decoder

(dec), GSM channel encoder (gsm), and the MPEG II decoder (row, col). I added the Sobel

(sob) and Laplace (lap) edge detection algorithms to the benchmark suite. Operations in

these benchmarks include only regular arithmetic, logic and shift operations such as addition,

multiplication, AND, OR, right-shift, etc.

4.1.2. Experimental Methodology

VHDL is used as a hardware description language because of the flexibility to exchange

among the environments. The fabric models are implemented in parameterized VHDL using

the generic capability of the VHDL language. I used Synopsys Design Compiler to synthesize

our designs and Synopsys PrimePower is used for the power estimation.

The whole experiment process consists of three phases (i) synthesis phase (ii) simulation

phase (iii) power analysis phase. Synthesis phase is one of the most important steps involved

in any design. Synthesis is an automatic method of converting a higher level of abstraction

to a lower level of abstraction. In other words the synthesis process converts register transfer

level (RTL) descriptions to gate-level netlists. These gate-level netlists can be optimized

for area, speed, testability, etc. I synthesized the fabric VHDL into synopsys 90nm generic

library using Synopsys Design Compiler. In simulation phase the post-synthesis design

(Gate-level Netlist) was simulated in Mentor Graphics ModelSim to calculate the delay of

each design and these simulations were used as stimulus to the Syopsys PrimePower tool to
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Figure 4.1: Experimental flow.

estimate the power consumption of the device. The Energy was calculated by computing

the product of the power and delay of the design. Figure 4.1 shows the experimental flow,

the area and timing reports are based on the results of Synopsys Design Compiler, delay

is based on simulation from ModelSim and power number is based on the results given by

Synposys PrimeTime tool.

4.2. Results

4.2.1. Split and Fold Architectures

4.2.1.1. Fabric Sizes

Table 4.1 and Table 4.2 provides a summary of the size requirements of the seven signal

and image processing benchmarks Section 4.1.1 mapped to the fabric for different standard

and ICS architectures. The fabric size is given by Width x Height. As we can see that by

folding and by splitting the size of the fabric get reduced and the benchmarks can fit in smaller

fabric. The benchmarks with higher number of constants such as “enc”, “dec”, “col”, and

“gsm” show large area improvements with Splitting and Folding techniques. Folding gives us
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Table 4.1: Fabric size (Width x Height) for mapping various benchmarks onto various stan-

dard, standard-split and standard-fold architectures using the heuristic mapper.

enc dec row col gsm sob lap

std-No DPs 17x16 16x14 18x10 20x12 18x18 10x10 15x8

std-25% DPs 16x16 15x14 13x10 15x12 15x18 9x10 13x8

std-33% DPs 16x16 14x14 13x12 16x12 16x18 10x10 14x8

std-50% DPs 10x16 10x14 11x12 12x18 11x18 8x10 13x10

std-split-No DPs 13x9 14x9 17x9 19x9 10x9 10x9 15x8

10x8 4x4 4x2 5x4 12x9 0x0 0x0

std-split-25% DPs 9x9 10x9 12x9 13x9 9x9 8x9 13x8

7x8 3x4 4x2 4x4 9x9 0x0 0x0

std-split-33% DPs 9x9 9x9 11x9 12x9 8x9 8x9 13x8

6x8 4x4 4x2 4x4 8x9 0x0 0x0

std-split-50% DPs 7x9 6x9 11x9 11x9 6x9 8x9 12x9

5x8 2x4 5x4 8x9 6x9 0x0 0x0

std-fold-No DPs 19x9 17x9 21x9 23x9 16x9 10x9 15x8

std-fold-25% DPs 16x9 12x9 15x9 17x9 12x9 8x9 13x8

std-fold-33% DPs 16x9 12x9 15x9 14x9 12x9 8x9 13x9

std-fold-50% DPs 12x9 8x9 16x9 14x9 10x9 8x9 12x9

better improvements in all the benchmarks. For example, “enc” implemented on standard

fabric with 33% DPs was using 16x16 fabric and the same benchmark after folding takes

16x9 and after splitting takes two fabrics with size 9x9 & 6x8. When the same benchmark

is implemented on the fabric with ICS & 33% DPs takes 6x16 fabric whereas the splitting

of the same benchmark it can be implemented onto two fabrics of size 6x9 & 4x8. When we

fold the architecture, same benchmark can be implemented on smaller fabric with size 8x9.

Once all benchmarks were mapped to a fabric using a particular architecture, the fabric

size was fixed to the smallest size that could fit all seven benchmarks. For various standard

architectures, I have fixed the fabric sizes to 20x18, 16x18, 16x18, and 13x18 for std-No DPs,

std-25%DPs, std-33%DPs, and std-50%DPs respectively. Table 4.3 shows the final fabric

sizes of the various Split and Fold architecture. The benchmarks can be mapped onto smaller
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Table 4.2: Fabric size (Width x Height) for mapping various benchmarks onto various ICS,

ICS-split and ICS-fold architectures using the heuristic mapper.

enc dec row col gsm sob lap

ICS-No DPs 9x16 4x14 9x10 9x12 5x18 7x10 8x10

ICS-25% DPs 7x16 6x14 8x10 8x12 3x18 8x10 8x10

ICS-33% DPs 6x16 4x14 8x10 7x12 3x18 6x10 8x10

ICS-50% DPs 5x16 3x14 7x10 6x12 3x18 6x10 7x10

ICS-split-No DPs 9x9 4x9 9x9 9x9 4x9 7x9 8x9

6x8 4x4 4x2 4x4 4x9 0x0 0x0

ICS-split-25% DPs 7x9 4x9 8x9 8x9 3x9 6x9 8x9

5x8 3x4 3x2 4x2 3x9 0x0 0x0

ICS-split-33% DPs 6x9 4x9 8x9 7x9 3x9 6x9 8x9

4x8 2x4 4x2 4x4 3x9 0x0 0x0

ICS-split-50% DPs 5x9 3x9 7x9 6x9 3x9 6x9 7x9

4x8 2x6 3x2 3x6 3x9 0x0 1x2

ICS-fold-No DPs 10x9 8x9 13x9 13x9 6x9 7x9 8x9

ICS-fold-25% DPs 9x9 6x9 10x9 11x9 5x9 6x9 8x9

ICS-fold-33% DPs 8x9 6x9 10x9 11x9 4x9 6x9 8x9

ICS-fold-50% DPs 7x9 5x9 9x9 9x9 4x9 6x9 7x9

size fabric with folding and splitting having ICS architectures as compared to the folding of

standard architectures. For example, the benchmarks implemented on standard architecture

with no DPs used 20x18 size fabric and the same set of benchmarks can be implemented

on 23x9 fabric when we fold the fabric. The same benchmarks can be implemented with

combination of 19x9 & 12x9 fabrics when we split the standard fabric, but when we introduce

the ICS along with folding, the same benchmarks can be implemented 13x9 fabric whereas

using ICS along with splitting reduces the fabric to 9x9 & 6x9.

Table 4.4 and Table 4.5 shows the comparison between the base fabric size and the fabrics

we will get after splitting or folding the base architectures.

Table 4.4 shows the reduction in the total number of functional units in fabric architecture

with std-split & std-fold architectures Vs standard implementation. On an average, the
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Table 4.3: Minimum fabric size (Width x Height) for various fabric architectures.

Architecture Fabric size Fabric size Fabric size

(std) std-split std-fold

No DPs 20x18 19x9 23x9

12x9

25% DPs 16x18 13x9 17x9

9x9

33% DPs 16x18 12x9 16x9

8x9

50% DPs 13x18 11x9 16x9

8x9

(a) Standard Architectures.

Architecture Fabric size Fabric size Fabric size

ICS ICS-split ICS-fold

No DPs 9x18 9x9 13x9

6x9

25% DPs 8x18 8x9 11x9

5x9

33% DPs 8x18 8x9 11x9

4x9

50% DPs 7x18 7x9 9x9

4x9

(b) ICS Architectures.

Table 4.4: Comparison of the total number of functional units in standard fabric architectures

vs standard-split & standard-fold fabric architectures.

Architecture Standard std-split % Savings

No DPs 360 279 23

25% DPs 288 198 31

33% DPs 288 180 38

50% DPs 234 171 27

(a) Standard-Split.

Architecture Standard std-fold % Savings

No DPs 360 207 43

25% DPs 288 153 47

33% DPs 288 144 50

50% DPs 234 144 38

(b) Standard-Fold.

number of functional units gets reduced by 38% and 50% in std-split and std-fold fabrics both

having 33% DPs as compared to standard architecture having 33% DPs. Table 4.5 shows

the reduction in the total number of functional units in fabric architecture with ICS-split

& ICS-fold architectures Vs ICS implementation. On an average, the number of functional

units gets reduced by 20% and 29% in ICS-split and ICS-fold fabrics as compared to ICS

architecture.
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Table 4.5: Comparison of the total number of functional units in ICS fabric architectures vs

ICS-split & ICS-fold fabric architectures.

Architecture ICS ICS-split % Savings

No DPs 162 129 20

25% DPs 144 117 19

33% DPs 144 108 25

50% DPs 126 99 21

(a) ICS-split.

Architecture ICS ICS-fold % Savings

No DPs 162 117 28

25% DPs 144 99 31

33% DPs 144 99 31

50% DPs 126 81 36

(b) ICS-fold.

I have also looked at the utilization of ALUs for pass operation for various fabric archi-

tecture implementations. Table 4.6 shows the total number of ALUs used as pass gate in

various fabric architecture. The numbers of ALUs used as pass gate have significantly been

reduced when we split or fold the standard fabric. The number of ALUs used as pass gates

have significantly been reduced when we compare the ICS, ICS-fold architectures, ICS-fold

architectures having a combination of ICs and DPs features with the baseline architectures.

Consider the case of ”gsm”. When we mapped this benchmark onto the standard fabric with

no dedicated pass gates, 139 out of 360 ALUs were being used for pass operation. When we

split the architecture, the numbers of ALUs being used as pass gates were reduced to 94 and

after folding they get reduced to 62. In the Standard architecture, when we introduced ICS

It gives the better result than other options.

4.2.1.2. Area Evaluation

This section presents area savings for the suite of benchmarks for splitting & folding of

standard architecture and splitting & folding of ICS architecture.

Table 4.11 shows the area savings per benchmark for various standard fabric implemen-

tations. Our baseline architecture is “std-No-DPs”. We compared every standard, standard-

split and standard fold architectural option with our reference baseline architecture to obtain

savings. On an average, the standard fabric architecture with 50% DPs achieves 19% area
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Table 4.6: Number of ALUs used as pass gates in various standard (std), std-split, std-fold,

ICS, ICS-split, ICS-fold fabric architectures.

enc dec row col gsm sob lap

std-No DPs 126 71 41 72 139 19 17

std-25% DPs 65 23 14 26 69 4 2

std-33% DPs 41 16 3 14 50 1 1

std-50% DPs 19 4 7 6 22 0 1

std-split-No DPs 91 52 43 66 94 18 17

std-split-25% DPs 54 31 18 28 55 1 1

std-split-33% DPs 34 18 5 16 31 1 0

std-split-50% DPs 16 5 2 3 8 0 0

std-fold-No DPs 91 52 43 63 62 18 17

std-fold-25% DPs 56 31 18 28 38 1 1

std-fold-33% DPs 40 17 4 16 31 1 0

std-fold-50% DPs 20 4 2 0 6 0 0

IC-No DPs 21 12 4 4 9 5 5

IC-25% DPs 6 0 0 0 1 0 0

IC-33% DPs 2 0 0 0 1 0 0

IC-50% DPs 0 0 0 0 0 0 0

ICS-split-No DPs 23 10 8 8 8 4 4

ICS-split-25% DPs 7 2 2 3 0 0 0

ICS-split-33% DPs 2 0 2 2 0 0 0

ICS-split-50% DPs 0 0 0 0 0 0 0

ICS-fold-No DPs 23 10 4 8 8 4 4

ICS-fold-25% DPs 5 2 0 0 3 0 0

ICS-fold-33% DPs 2 0 0 0 0 0 0

ICS-fold-50% DPs 0 0 0 0 0 0 0

improvement as compared to the baseline architecture. std-split architecture with 50% dedi-

cated pass gates provides 40% area savings whereas std-fold architecture with 50% dedicated

pass gates provides 40% area savings as compared to the baseline architecture.

Table 4.12 shows the area savings per benchmark for various ICS fabric implementations.

Our baseline architecture is “ICS-No-DPs”. We compared every architectural option with

our reference baseline architecture to obtain savings. The baseline architecture with 50%
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Table 4.7: Percentage area savings per benchmark mapped onto standard, DP, std-split,

std-fold and hybrid architectures. (Negative numbers mean cost).

enc dec row col gsm sob lap average

std-No DPs - - - - - - - -

std-25% DPs 4 4 26 23 15 8 12 13

std-33% DPs 3 10 11 18 8 -2 4 7

std-50% DPs 38 34 23 4 35 16 -14 19

std-split-No DPs 27 37 10 20 39 10 0 21

std-Split-25% DPs 48 53 34 45 49 27 12 38

std-Split-33% DPs 51 55 39 47 54 27 11 40

std-split-50% DPs 59 70 30 25 64 25 5 40

std-fold-No DPs 37 31 -6 13 55 9 -1 20

std-fold-25% DPs 45 50 23 34 66 26 11 36

std-fold-33% DPs 45 50 22 45 65 26 10 38

std-fold-50% DPs 56 65 15 44 70 23 4 40

Table 4.8: Percentage area savings per benchmark mapped onto ICS, DP, ICS-split, ICS-fold

and hybrid architectures. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 21 -1 9 9 39 14 -1 13

ICS-33% DPs 32 -3 9 21 39 13 -2 16

ICS-50% DPs 41 22 19 30 38 10 8 24

ICS-split-No DPs 10 7 1 10 20 10 10 10

ICS-split-25% DPs 27 13 12 25 39 22 9 21

ICS-split-33% DPs 39 19 9 27 39 21 8 23

ICS-split-50% DPs 44 27 20 30 39 19 15 28

ICS-fold-No DPs 37 -30 -31 -9 40 22 9 5

ICS-fold-25% DPs 42 1 -3 6 48 21 8 18

ICS-fold-33% DPs 49 0 -3 6 59 21 7 20

ICS-fold-50% DPs 54 15 4 20 58 18 17 27
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dedicated pass gates provides 24% area savings base architecture. The ICS-split and ICS-

fold architectures with 25% dedicated pass gates provide area savings of 21% and 18%

respectively. The ICS-split with 50% dedicated pass gates provides 28% area savings and

the ICS-fold with 50% dedicated pass gates provides 27% area savings as compared to the

baseline architecture.

4.2.1.3. Energy Evaluation

Table 4.9: Energy savings (%) per benchmark mapped onto standard, DP, std-split, std-fold

and hybrid architectures. (Negative numbers mean cost).

enc dec row col gsm sob lap average

std-No DPs - - - - - - - -

std-25% DPs 21 28 4 6 20 7 13 14

std-33% DPs 30 29 5 9 27 9 13 18

std-50% DPs 37 38 3 6 30 8 9 19

std-split-No DPs 20 18 -1 2 21 1 0 9

std-split-25% DPs 33 28 2 7 28 9 13 17

std-split-33% DPs 38 29 5 9 33 10 13 20

std-split-50% DPs 44 38 3 9 47 10 9 23

std-fold-No DPs 19 17 -2 2 37 0 -3 10

std-fold-25% DPs 30 26 1 6 38 8 11 17

std-fold-33% DPs 33 33 4 9 36 9 10 19

std-fold-50% DPs 42 43 2 9 51 9 6 23

This section presents area savings for the suite of benchmarks for splitting & folding of

standard architecture and splitting & folding of ICS architecture.

I have also conducted energy simulations on a subset of architectures discussed in this

subsection for comparative study of the energy consumed by the device. The energy results

for different standard fabric architectures are shown in Table 4.9 and the energy results for

different ICS fabric architectures are shown in Table 4.10. The standard fabric with 33%

DPs shows an energy improvement of 18%. There is a minimal power and energy cost to

pay for the additional hardware required to route the intermediate signals in Split & Fold

44



Table 4.10: Energy savings (%) per benchmark mapped onto ICS, DP, ICS-split, ICS-fold

and hybrid architectures. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 13 14 1 4 9 7 3 7

ICS-33% DPs 19 17 0 4 9 9 3 8

ICS-50% DPs 19 16 0 2 8 8 3 7

ICS-split-No DPs -3 4 -2 -2 1 1 2 0

ICS-split-25% DPs 12 16 0 3 9 4 5 7

ICS-split-33% DPs 18 16 -1 3 8 4 6 8

ICS-split-50% DPs 19 18 0 2 9 4 2 8

ICS-fold-No DPs -1 3 -3 3 0 -1 -5 -1

ICS-fold-25% DPs 16 15 -2 3 10 1 -2 6

ICS-fold-33% DPs 18 16 -2 3 7 1 -2 6

ICS-fold-50% DPs 19 16 -1 2 8 1 -4 6

fabric but the same benchmarks can now be implemented on much smaller fabric that leads

to savings in the energy consumption. The splitting of standard fabric with 33% DPS shows

20% energy improvement whereas folding of standard fabric with 33% DPS shows 19% energy

saving as compared to baseline (std-No-DPs) architecture.

The ICS fabric with 33% DPs shows an energy improvement of 8% as compared to the

baseline architecture (ICS-No-DPs), whereas by having a combination of 50% DPs and ICS

in the ICS-split and ICS-fold hybrid architectures, we achieved energy savings of 8% and

6% respectively as compared to the baseline (ICS-No-DPs) architecture with a significant

improvement in terms of area. There is a minimal power and energy cost to pay for the

additional hardware.

4.2.1.4. Energy Evaluation

This section presents energy vs area tradeoffs for the suite of benchmarks for standard,

dedicated pass gate, std-split, std-fold, ICS, ICS-split, ICS-fold, and hybrid fabric archi-

tectures. Our baseline architecture for various implementation for standard architecture is
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Table 4.11: Percentage savings in terms of number of functional units per benchmark

mapped onto standard, DP, std-split, std-fold and hybrid architectures. (Negative numbers

mean cost).

enc dec row col gsm sob lap average

std-No DPs - - - - - - - -

std-25% DPs 6 6 28 25 17 10 13 15

std-33% DPs 6 13 13 20 11 0 7 10

std-50% DPs 41 38 27 10 39 20 -8 24

std-split-No DPs 28 37 11 20 39 10 0 21

std-split-25% DPs 50 54 36 45 50 28 13 39

std-split-33% DPs 53 57 41 48 56 28 13 42

std-split-50% DPs 62 72 34 29 67 28 10 43

std-fold-No DPs 37 32 -5 14 56 10 0 19

std-fold-25% DPs 47 52 25 36 67 28 13 38

std-fold-33% DPs 47 52 25 48 67 28 13 40

std-fold-50% DPs 60 68 20 48 72 28 10 44

“std-No-DPs” and our baseline architecture for various implementation for ICS architec-

ture is “ICS-No-DPs”. I compared every architectural option with our reference baseline

architecture to obtain savings. On an average, the standard fabric architecture with 50%

DPs achieves 19% energy improvement, 19% area savings and requires 24% fewer functional

units as compared to the baseline architecture. std-split architecture with 50% dedicated

pass gates provides 23% energy savings, 40% area savings and requires 43% fewer functional

units as compared to the baseline architecture whereas std-fold architecture with 50% ded-

icated pass gates provides 23% energy savings, 40% area savings and requires 44% fewer

functional units as compared to the baseline architecture. The ICS architecture with 50%

dedicated pass gates provides 7% energy savings, 24% area savings and requires 27% fewer

functional units as compared to its base architecture. The ICS-split with 25% dedicated

pass gates provides 7% energy savings, 21% area savings and requires 22% fewer functional

units as compared to the baseline architecture. The ICS-split with 50% dedicated pass gates
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Table 4.12: Percentage savings in terms of number of functional units per benchmark

mapped onto ICS, DP, ICS-split, ICS-fold and hybrid architectures. (Negative numbers

mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 22 0 11 11 40 14 0 14

ICS-33% DPs 33 0 11 22 40 14 0 17

ICS-50% DPs 44 25 22 33 40 14 13 27

ICS-split-No DPs 10 7 1 10 20 10 10 10

ICS-split-25% DPs 28 14 13 26 40 23 10 22

ICS-split-33% DPs 40 21 11 27 40 23 10 25

ICS-split-50% DPs 47 30 23 33 40 23 19 31

ICS-fold-No DPs 38 -29 -30 -8 40 23 10 6

ICS-fold-25% DPs 44 4 0 8 50 23 10 20

ICS-fold-33% DPs 50 4 0 8 60 23 10 22

ICS-fold-50% DPs 56 20 10 25 60 23 21 31

provides 8% energy savings, 28% area savings and requires 31% fewer functional units as

compared to the baseline architecture whereas The ICS-fold with 50% dedicated pass gates

provides 6% energy savings, 27% area savings and requires 31% fewer functional units as

compared to the baseline architecture.

4.2.2. Architectures with Multi-level Vertical Interconnect and Horizontal Interconnect

4.2.2.1. Fabric Sizes

Table 4.13 provides a summary of the size requirements of the seven signal and image

processing benchmarks Section 4.1.1 mapped to the fabric for various ICS architectures,

architecture with multi-level vertical interconnect and architecture with horizontal inter-

connect. As we can see that the result we are getting with the help of 50% DPs in ICS

architecture can be obtained by using multi-level vertical interconnects. When we use hori-

zontal interconnect in the architecture having ICS, benchmarks can be fit on much smaller

fabrics as compare to ICS architectures. For example, “enc” implemented on ICS fabric
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Table 4.13: Fabric size (Width x Height) for mapping various benchmarks onto various ICS

architectures , architectures with multi-level VI and architectures with HI using the heuristic

mapper.

enc dec row col gsm sob lap

ICS-No DPs 9x16 4x14 9x10 9x12 5x18 7x10 8x10

ICS-25% DPs 7x16 6x14 8x10 8x12 3x18 8x10 8x10

ICS-33% DPs 6x16 4x14 8x10 7x12 3x18 6x10 8x10

ICS-50% DPs 5x16 3x14 7x10 6x12 3x18 6x10 7x10

Architecture with multi-level VI 5x16 3x14 8x10 8x12 3x18 5x10 6x12

Architecture with HI 8x9 6x6 9x7 11x7 4x8 7x6 8x6

with 50% DPs was using 5x16 fabric, the same benchmark takes 5x16 fabric when we used

multi-level vertical interconnect whereas architecture having horizontal interconnect takes

8x9 fabric.

Table 4.14: Minimum Fabric size (Width x Height) for various fabric architectures.

Architecture Fabric size Fabric size Fabric size

ICS Architecture with multi-level VI Architecture with HI

No DPs 9x18 8x18 11x9

25% DPs 8x18 - -

33% DPs 8x18 - -

50% DPs 7x18 - -

Table 4.14 shows the final fabric sizes of the various ICS architectures, architectures

having multi-level VI and architectures having HI.

Table 4.15 shows the comparison between the ICS fabric size Vs the fabrics we will get

after using multi-level vertical interconnect and horizontal interconnect.

As Table 4.16a shows, the number of functional units get reduced by 11% when we

use the multi-level vertical interconnect (VI) to route the data vertically in the fabric as

compared to base architecture (ICS-NO-DPs). Table 4.16b shows the number of functional
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Table 4.15: Comparison of the total number of functional units in ICS fabric architec-

tures vs Architecture with multi-level vertical interconnect & Architecture with horizontal

interconnect.

Architecture ICS Architecture % Savings

with multi-level VI

No DPs 162 144 11

(a) Architecture with multi-level vertical interconnect.

Architecture ICS Architecture % Savings

with HI

No DPs 162 99 39

(b) Architecture with horizontal interconnects.

Table 4.16: Number of ALUs used as pass gates in various ICS architectures, architecture

with multi-level VI and architecture with HI.

enc dec row col gsm sob lap

IC-No DPs 21 12 4 4 9 5 5

IC-25% DPs 6 0 0 0 1 0 0

IC-33% DPs 2 0 0 0 1 0 0

IC-50% DPs 0 0 0 0 0 0 0

Architecture with multi-level VI 4 1 1 1 0 0 2

Architecture with HI 5 0 3 3 0 1 0

units get reduced by 39% when we use the horizontal interconnects (HIs) as compared to

base architecture (ICS-NO-DPs).

Table 4.16 shows the total number of ALUs used as pass gate in various fabric architec-

ture. The number of ALUs used as pass gates has significantly been reduced when we used

the multi-level VI or HI in the fabric. Results shows that complementary approaches for

routing the data provides the improvement in the fabric size as well as the number of ALUs

used as pass-gate also reduced significantly. On the other hand the additional hardware we

required for these techniques are much smaller than the conventional technique.
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Table 4.17: Percentage area savings per benchmark mapped onto ICS, DPs, and hybrid

architectures, architecture with multi-level VIs and HIs. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 21 -1 9 9 39 14 -1 13

ICS-33% DPs 32 -3 9 21 39 13 -2 16

ICS-50% DPs 41 22 19 30 38 10 8 24

Architecture with multi-level VI 47 28 14 14 42 31 13 27

Architecture with HI 49 35 29 28 64 39 39 41

4.2.2.2. Area Evaluation

Table 4.19 shows the area savings per benchmark for various ICS fabric implementations.

Our baseline architecture is “ICS-No-DPs”. I compared every architectural option with

our reference baseline architecture to obtain savings. The baseline architecture with 50%

dedicated pass gates provides 24% area savings as compared to base architecture. The

architectures with multi-level VI provide area savings of 27% and the architectures with HI

provides 41% area savings.

4.2.2.3. Energy Evaluation

Table 4.18: Energy savings (%) per benchmark mapped onto ICS, DPs, and hybrid archi-

tectures, architecture with multi-level VI and HI. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 13 14 1 4 9 7 3 7

ICS-33% DPs 19 17 0 4 9 9 3 8

ICS-50% DPs 19 16 0 2 8 8 3 7

Architecture with multi-level VI 30 25 3 5 14 7 5 13

Architecture with HI 18 22 -1 2 9 4 2 8
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Table 4.19: Percentage savings in terms of number of functional units per benchmark

mapped onto ICS, DPs, and hybrid architectures, architecture with multi-level VIs and HIs.

(Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 22 0 11 11 40 14 0 14

ICS-33% DPs 33 0 11 22 40 14 0 17

ICS-50% DPs 44 25 22 33 40 14 13 27

Architecture with multi-level VI 44 25 11 11 40 29 10 24

Architecture with HI 50 36 30 29 64 40 40 41

The energy results for different ICS fabric architectures and architecture with multi-

level VI and architecture with HI are shown in Table 4.18. The ICS fabric with 33% DPs

shows an energy improvement of 8% as compared to the baseline architecture(ICS-No-DPs),

whereas by having multi-level VI in the architectures, we achieved energy savings of 13%

and by having HIs in the architectures, we achieved energy savings of 8% as compared to

the baseline (ICS-No-DPs).

4.2.2.4. Energy Evaluation

This section presents energy vs area tradeoffs for the suite of benchmarks for ICS hybrid

fabric architectures, architecture with multi-level VI and HI. Our baseline architecture for

various implementation is “ICS-No-DPs”. We compared every architectural option with our

reference baseline architecture to obtain savings. The ICS architecture with 50% dedicated

pass gates provides 7% energy savings, 24% area savings and requires 27% fewer functional

units as compared to its base architecture. Whereas architecture having multi-level VI

provides 13% energy savings, 27% area savings and requires 24% fewer functional units

as compared to the baseline architecture and architecture having HIs provides 8% energy

savings, 41% area savings and requires 41% fewer functional units as compared to the baseline

architecture.
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Table 4.20: Fabric size (Width x Height) for mapping various benchmarks onto various

ICS architectures, fully connected homogeneous and heterogeneous architectures using the

heuristic mapper.

enc dec row col gsm sob lap

ICS-No DPs 9x16 4x14 9x10 9x12 5x18 7x10 8x10

ICS-25% DPs 7x16 6x14 8x10 8x12 3x18 8x10 8x10

ICS-33% DPs 6x16 4x14 8x10 7x12 3x18 6x10 8x10

ICS-50% DPs 5x16 3x14 7x10 6x12 3x18 6x10 7x10

fully connected Homogeneous Architecture 8x5 8x4 8x7 8x8 8x4 8x3 8x4

fully connected Heterogeneous Architecture 8x8 6x7 8x6 8x6 6x8 7x6 8x5

4.2.3. Fully Connected Homogeneous and Heterogeneous Architectures

4.2.3.1. Fabric Sizes

Table 4.20 provides a summary of the size requirements of the seven signal and image

processing benchmarks Section 4.1.1 mapped to the fabric for various ICS architectures, fully

connected homogeneous and heterogeneous architectures. Results shows that the fabric

size can be reduced significantly by using fully connected interconnections in the fabric

as compared to using ICS and combination of ICS and DPs in the fabric. For example,

“lap” implemented on ICS fabric with 50% DPs was using 7x10 fabric, the same benchmark

can be implemented on 8x4 and 8x5 fabric when we use fully connected homogeneous and

heterogeneous architectures respectively.

Table 4.21: Minimum Fabric size (Width x Height) for various fabric architectures.

Architecture Fabric size Fabric size Fabric size

ICS fully connected homogeneous architecture fully connected heterogeneous architecture

No DPs 9x18 8x8 8x8

25% DPs 8x18 - -

33% DPs 8x18 - -

50% DPs 7x18 - -
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Table 4.21 shows the final fabric sizes of the various ICS architectures, fully connected

homogeneous and heterogeneous architectures. The benchmarks can be mapped onto smaller

size fabric having fully connected homogeneous or heterogeneous fuctional units as compared

to the ICS architectures. For example, the benchmarks implemented on ICS architecture

with no DPs used 9x18 size fabric and the same set of benchmarks can be implemented on

7x18 fabric when we use 50% DPs in ICS architecture whereas benchmarks can be imple-

mented on a 8x8 fabric with fully connected homogeneous and heterogeneous architectures

which are much smaller in size as compared to base architecture.

Table 4.22: Comparison of the total number of functional units in various ICS architectures,

fully connected homogeneous and heterogeneous architectures.

Architecture ICS Homogeneous % Savings

Architecture

No DPs 162 64 61

(a) fully connected homogeneous architecture.

Architecture ICS Heterogeneous % Savings

Architecture

No DPs 162 64 61

(b) fully connected heterogeneous architecture.

Table 4.22 shows the comparison between the ICS fabric size Vs fully connected homo-

geneous and heterogeneous architectures. Results shows, the number of functional units get

reduced by 61% when we used fully connected homogeneous and heterogeneous architectures

instead of base architecture (ICS-NO-DPs). In real fully connected heterogeneous architec-

ture occupy less area as compared to fully connected homogeneous architecture because of

less number of operations inside the ALUs. Because of fully connected ALUs, there is not a

single ALU used as PASS-gate to route the data.

4.2.3.2. Area Evaluation

Table 4.25 shows the area savings per benchmark for various ICS architectures, fully

connected homogeneous and heterogeneous architectures. Fully connected homogeneous and

heterogeneous architectures shows huge area savings as compared to baseline architecture.
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Table 4.23: Percentage area savings per benchmark mapped onto various ICS architectures,

fully connected homogeneous and heterogeneous architectures. (Negative numbers mean

cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 21 -1 9 9 39 14 -1 13

ICS-33% DPs 32 -3 9 21 39 13 -2 16

ICS-50% DPs 41 22 19 30 38 10 8 24

fully connected Homogeneous Architecture 57 12 4 9 45 47 38 30

fully connected Heterogeneous Architecture 65 40 56 63 58 51 61 56

The best area savings for various ICS architectures is given by ICS architecture with 50% ded-

icated pass gates which provides 24% area savings as compared to base architecture whereas

fully connected homogeneous architecture provides 30% area savings and fully connected

heterogeneous architecture provides 55% area saving as compared to base architecture.

4.2.3.3. Energy Evaluation

Table 4.24: Energy savings (%) per benchmark mapped onto various ICS architectures, fully

connected homogeneous and heterogeneous architectures. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 13 14 1 4 9 7 3 7

ICS-33% DPs 19 17 0 4 9 9 3 8

ICS-50% DPs 19 16 0 2 8 8 3 7

fully connected Homogeneous Architecture -76 -94 -40 -40 -65 -47 -128 -70

fully connected Heterogeneous Architecture -107 -136 -2 -6 -60 -17 -95 -60

The energy results for various ICS architectures, fully connected homogeneous and het-

erogeneous architectures are shown in Table 4.24. The energy consumption is increased
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Table 4.25: Percentage savings in terms of number of functional units per benchmark

mapped onto various ICS architectures fully connected homogeneous and heterogeneous

architectures. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 22 0 11 11 40 14 0 14

ICS-33% DPs 33 0 11 22 40 14 0 17

ICS-50% DPs 44 25 22 33 40 14 13 27

fully connected homogeneous architecture 77 43 38 41 64 66 60 55

fully connected heterogeneous architecture 56 25 47 56 47 40 50 46

due to huge interconnector being used here to route the data. Each benchmark is show-

ing a penalty in terms of energy consumption, on average 60% energy consumption in fully

connected heterogeneous architecture is increased as compared to baseline architecture.

4.2.3.4. Energy Evaluation

This section presents energy vs area tradeoffs for the suite of benchmarks for various

ICS architectures, fully connected homogeneous and heterogeneous architectures. The ICS

architecture with 33% dedicated pass gates provides 8% energy savings, 7% area savings

and requires 10% fewer functional units as compared to its base architecture. Whereas

fully connected homogeneous architecture provides 30% area savings and requires 55% fewer

functional units with a penalty of 70% in terms of energy as compared to the baseline

architecture, and fully connected heterogeneous architecture provides 56% area savings and

requires 46% fewer functional units with a penalty of 60% in terms of energy as compared

to the baseline architecture.
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Table 4.26: Fabric size (Width x Height) for mapping various benchmarks onto various ICS

architectures, three dimensional architecture using the heuristic mapper.

enc dec row col gsm sob lap

ICS-No DPs 9x16 4x14 9x10 9x12 5x18 7x10 8x10

ICS-25% DPs 7x16 6x14 8x10 8x12 3x18 8x10 8x10

ICS-33% DPs 6x16 4x14 8x10 7x12 3x18 6x10 8x10

ICS-50% DPs 5x16 3x14 7x10 6x12 3x18 6x10 7x10

3D Architectures 4x4x3 4x4x3 4x4x4 4x4x4 4x4x3 4x4x2 4x4x2

4.2.4. Three Dimensional Architectures

4.2.4.1. Fabric Sizes

Table 4.26 provides a summary of the size requirements, results shows that the fabric

size is reduced when we used 3D architecture instead of using ICS and combination of ICS

and DPs in the fabric. For example, “lap” implemented on ICS fabric with 50% DPs was

using 7x10 fabric (i.e 70 ALUs), the same benchmark can be implemented on 4x4x2 fabric

(i.e.32 ALUs) when we use 3D architecture.

Table 4.27: Minimum Fabric size (Width x Height) for various fabric architectures.

Architecture Fabric size Fabric size

ICS 3D Architecture

No DPs 9x18 4x4x4

25% DPs 8x18 -

33% DPs 8x18 -

50% DPs 7x18 -

Table 4.27 shows the final fabric sizes of the 3D architecture and various ICS architectures.

Results shows that by placing ALUs closer with proper interconnect the size minimum size

required to map the all benchmarks can be reduced to much smaller fabric. For example,

the benchmarks implemented on ICS architecture with no DPs used 9x18 size fabric and the

same set of benchmarks can be implemented on 7x18 fabric when we use 50% DPs in ICS
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architecture whereas benchmarks can be implemented on a 4x4x4 3D fabric which provides

61% area savings in terms of functional units. The numbers of ALUs used as pass-gate are

also reduced to zero because of enhanced interconnections of the 3D architecture.

Table 4.28: Comparison of the total number of functional units in various ICS architectures,

three dimensional architectures.

Architecture ICS 3D Architecture % Savings

No DPs 162 64 61

4.2.4.2. Area Evaluation

Table 4.31 shows the area savings per benchmark for 3D architecture and various ICS

architectures. 3D architecture shows a huge area savings as compared to baseline architec-

tures. As per results, the best area savings for various ICS architectures is given by ICS

architecture with 50% dedicated pass gates which provides 24% area savings as compared to

base architecture whereas 3D architecture provides 38% area savings as compared to base

architecture.

4.2.4.3. Energy Evaluation

The energy results for 3D architecture and various ICS architectures are shown in Ta-

ble 4.30. On an average, ICS architecture having 33% DPs provides 8% energy improvement

Table 4.29: Percentage area savings per benchmark mapped onto various ICS architectures,

three dimensional architecture. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 21 -1 9 9 39 14 -1 13

ICS-33% DPs 32 -3 9 21 39 13 -2 16

ICS-50% DPs 41 22 19 30 38 10 8 24

3D Architecture 63 5 21 34 41 49 55 38
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Table 4.30: Energy savings (%) per benchmark mapped onto various ICS architectures,

three dimensional architecture. (Negative numbers mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 13 14 1 4 9 7 3 7

ICS-33% DPs 19 17 0 4 9 9 3 8

ICS-50% DPs 19 16 0 2 8 8 3 7

3D Architecture 25 20 0 4 9 2 1 9

Table 4.31: Percentage savings in terms of number of functional units per benchmark

mapped onto various ICS architectures, three dimensional architecture. (Negative numbers

mean cost).

enc dec row col gsm sob lap average

ICS-No DPs - - - - - - - -

ICS-25% DPs 22 0 11 11 40 14 0 14

ICS-33% DPs 33 0 11 22 40 14 0 17

ICS-50% DPs 44 25 22 33 40 14 13 27

3D Architecture 67 14 29 41 47 54 60 45

as compared to base architecture whereas the 3D architecture provides 9% energy improve-

ment as compared to base architecture.

4.2.4.4. Energy Evaluation

This section presents energy vs area tradeoffs for the suite of benchmarks for 3D archi-

tecture and various ICS architectures. The ICS architecture with 33% dedicated pass gates

provides 8% energy savings, 7% area savings and requires 10% fewer functional units as com-

pared to its base architecture. When we increase the dedicated pass gates from 33% to 50%

in ICS architecture, it will provides 7% energy savings, 24% area savings and requires 27%

fewer functional units as compared to base architecture whereas 3D architecture provides
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9% energy savings, 38% area savings and requires 45% fewer functional units as compared

to its base architecture.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this chapter, I am giving an overview and conclusion of my presented work in Sec-

tion 5.1. Finally, in Section 5.2 I will discuss further improvement and studies that can be

done in future.

5.1. Conclusion

The objective of Coarse-Grained Reconfigurable Architecture (CGRA) is to achieve low-

power customized hardware which can support a large range of applications. This the-

sis presented some methodologies to optimize Coarse-Grained Reconfigurable Architecture

(CGRA) in terms of area as well as energy. In stripe-based coarse grained fabrics, the typi-

cal design approach of routing inputs from the top of the fabric has a high power and area

cost, as large numbers of computational units are used as pass gates and the number of idle

computational units remains idle which cost in terms of area as well as energy. In my work, I

had investigated a complimentary design approached to get rid of ALUs which are not used

for any application. I had explored the impact of splitting, folding and new approaches on

energy and area of the domain-based coarse-grained reconfigurable fabric.

Figure 5.1 shows the area consumption of different architectures implementated on Syn-

opsys 90nm Generic Library. Figure 5.2 shows the energy consumption of different archi-

tectures implementated on Synopsys 90nm Generic Library. Figure 5.3 shows the energy

vs area graph for various architectures I have discussed in this thesis. On an average, The

ICS-Split architecture having ICS and 33% DPs provides 20% energy savings, 8% area sav-

ings, and requires 25% fewer functional units than the baseline ICS implementation. The

ICS-Fold architecture with ICS and 50% dedicated pass gates achieves 6% energy improve-

ment, 27% area improvement, and requires 31% fewer functional units compared to the ICS
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Figure 5.1: Area consumption for various fabric architectures implemented on synopsys 90nm

generic library.

architecture. When I used multi-level vertical inteconnect along with ICS (inputs coming

from side), I have achieved 13% energy savings, 27% area savings, whereas architecture with

horizontal inteconnector provedes 8% energy savings, and 41% area savings as compared

to baseline architecture. The fully connected homogeneous and heterogeneous architecture

provides 30% and 56% area savings respectively with cost of 70% and 60% energy savings

respectively. 3D architecture provides 9% energy improvement, 38% area improvements and

requires 45% fewer functional units as compare to baseline architecture.

In terms of area, fully connected heterogeneous architecture provides best result whereas

in terms of energy, split and fold architectures with 50% DPs provides best results. 3D

architecture provide a good balance between energy and area.

5.2. Future Work

I have focused on overall area and energy optimization for my architectures. Unfor-

tunately, much important information is still hidden in the proposed architectures. For
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Figure 5.2: Energy consumption for various fabric architectures implemented on synopsys

90nm generic library.

example, wire lengths and the energy consumed by them. There is still room for further

optimizations that can be done, for example the energy consumed by the interconnectors is

much more than the energy consumed by the functional units especially in fully connected

homogeneous and heterogeneous architectures. In future work, the optimizations for the

interconnectors have to be done. The proposed three dimensional architecture can be im-

proved in many ways, for example we can use the register with each ALU to store the data

or results for bigger applications. We can also use the optimizations techniques like resource

sharing for further improvements.
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