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Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal
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We calculate analytically the effective index of refraction n.¢ of a periodic arrangement of nonmagnetic
metallic cylinders in the low-frequency limit. At w—0 the dielectric constant of the cylinders is singular,
en(w)=—(w,/ o)?, allowing propagation in the plane of periodicity of a mode with the magnetic field parallel
to the cylinders (H polarization). The in-plane electric field induces eddy currents, which are localized in a
narrow skin layer. We show that the magnetic moment of the eddy currents leads to diamagnetic response if the
radius of the cylinders is larger than the skin depth §~ 107> cm. Otherwise, the cylinders are transparent for the
electromagnetic field and their magnetic moment can be neglected. Magnetization of the cylinders gives rise to
distinct values of the quasistatic and static indices of refraction and explains a paradox with noncommuting

limits €, —% and w—0.
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Photonic crystals with metallic inclusions provide an ex-
ample of an artificial medium possessing flat bands,! wide
band gaps,? very low plasma frequency,’ and negative index
of refraction.* All these features are due to the large negative
values of the dielectric constant of the metal, €,(w)=1
—(w,,/w)z, at frequencies well below the plasma frequency
w,. The highly conducting metallic inclusions shield their
interiors from the electromagnetic field and the only region
where the field penetrates is a narrow skin layer of width
Sw)=c/[wy]|€,(w)|]. At low frequencies w<w,, the skin
depth is ~ 107 cm for typical metals. If the size of the me-
tallic inclusions greatly exceeds the skin depth, the narrow
skin layer can be neglected and the interior of the metal can
be considered as a perfect conductor with infinite dielectric
permittivity. In this case the details of the field distribution
inside the metal are lost but this has little effect on the di-
electric properties of the metallodielectric composite. Since
|€,(w)| — in the low-frequency limit, some effective pa-
rameters of the medium turn out to be independent of the
properties of the metal, in particular of w,. For example, the
effective plasma frequency for the E-polarized mode and the
effective dielectric constant for the H-polarized mode are
determined only by the geometry of the unit cell.> This
approximation of a perfect conductor is valid for good metals
at low frequencies when dissipation is negligible.

The magnetic properties of the inclusions (which are sup-
posed to be fabricated from a nonmagnetic metal) are due to
the eddy currents induced by the propagating wave.® The
currents in the skin layer produce a magnetic moment, which
depends on the geometry of the inclusions, the conductivity
of the metal (i.e., the plasma frequency w,), and the fre-
quency of the propagating wave.” Thus, the magnetic prop-
erties have to be calculated for each type of inclusion. It is
also clear that the effect of magnetization on the electrody-
namics of the medium is small if |€,,(w)| ~ 1 since the eddy
currents are not localized and do not screen the interior of the
inclusions from the electromagnetic wave. In this case the
effective permeability of the medium Mepr=1. If, however,
|€,,(w)| =1 that happens at low frequencies o< w,, magne-
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tization of the inclusions leads to a noticeable diamagnetic
response.® The diamagnetic response in the infrared and vis-
ible region of frequencies has been calculated recently in
Ref. 9, using the coherent potential approximation. Our re-
sults obtained in the quasistatic limit are in agreement with
the results of Ref. 9.

Since the eddy currents always lead to a diamagnetic re-
sponse, the quasistatic effective index of refraction e,

is always less than the static index of refraction Ve, For
metallic inclusions this difference may be very large and for
special geometry of the inclusions, e.g., for split-ring resona-
tors, the effective index of refraction may even become
negative.* It is much less obvious that the static and quasi-
static indices of refraction are different for photonic crystals
with dielectric inclusions. Here the surface currents are as-

sociated with the time-dependent vector of polarization P.
For inclusions with e=1 the magnetic moment produced by
the polarization currents gives a negligible contribution;
therefore the static and quasistatic indices are practically
equal. However, for inclusions with €> 1 the alternating po-
larization vector P(z) induces a magnetic moment, which
may be comparable with that induced in a good conductor.
Thus, the magnetic response has to be taken into account in
the case of dielectric inclusions if e> 1.

The difference between the static and quasistatic indices
of refraction was first mentioned in Ref. 10 where the band
structure of dielectric cylinders with e>1 arranged in a
square lattice has been calculated numerically. The effective
index of refraction of the periodic structure was extracted
from the measurement of the slope of the acoustic band and
compared with the static results for v'egff obtained in Ref. 17.
It was suggested that this difference is due to singular behav-
ior of the wave equation for a medium with perfectly con-
ducting cylinders, which is manifested in noncommutativity
of the limits €,—% and w—0. In a series of publications
following Ref. 10 the idea of the noncommutativity of the
limits has been elaborated and extended.'! A thorough math-
ematical analysis of the Helmholtz equation in a heteroge-
neous medium led to the conclusion that the singular behav-
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ior of the index of refraction originates from a large gradient
of the electromagnetic field inside the inclusions with €>1.
Here we show that the physical reason for the difference
between the static and quasistatic indices of refraction is the
magnetization produced by the eddy currents. We obtain an
analytical result for the effective index of refraction, which
demonstrates that the metallic inclusions may exhibit metal-
lic or dielectric behavior depending on the relation between
the skin depth and the size of the inclusions. When the radius
a of the cylindrical inclusions gradually increases from zero,
a transition from dielectric to metallic behavior occurs. Since
this transition occurs in a narrow region of radii a, a sharp
(but analytical) change in the index of refraction may be
interpreted as a singularity. In our approach we do not meet
the problem of noncommutativity of the limits, and propose
a clear physical explanation of the difference between the
static and quasistatic results for the effective index of refrac-
tion.

Examples of cases when the magnetic moment produced
by the eddy currents becomes essential are well known in
classical electrodynamics. We refer here to the problem of
Rayleigh scattering at a dielectric sphere of radius a. For
finite values of the dielectric constant € the scattering cross
section is given by!?

4 _6 2

8mw'a
)=

e—1

(1)

€+2

In order to obtain the scattering cross section for a perfectly
conducting sphere it is not enough to take the limit e — . It
is also necessary to add the contribution from the magneti-
zation produced by the eddy currents, which in this case is
25% of the scattering cross section (1) at a dielectric
sphere,!?

107 '’

3 &

o,=1250,(e= )= (2)
The coefficient 1.25 in Eq. (2) originates from metallic be-
havior of the dielectric sphere with e=%. A smooth analyti-
cal transition from Eq. (1) (dielectric behavior) to Eq. (2)
(perfect-conductor behavior) can be obtained. It is given by
the equation'?

87 wta®|e-1|2
= 1+, 3
olO=7""7"| 2| 17 3)
which is valid for arbitrary €. Here the second term with
1 cot 3 -
—y=—<1+3 q——2>, q = wa\elc, (4)
2 a 4q

describes the contribution of a magnetized dielectric sphere
to the scattering cross section. Its value depends on the di-
mensionless parameter g, which is the ratio of the radius of
the sphere to the wavelength in the dielectric. If the dielectric
constant e~ 1, this ratio is small in the Rayleigh approxima-
tion, a<<c/w. Taylor expansion of Eq. (4) over the small
parameter g gives y=0. In the metallic limit, when not only
e€>1 but also g>1, the parameter y approaches 1/2. The
transition from dielectric to metallic behavior occurs at g
~ 1, i.e., when the wavelength in the material becomes of the
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order of the size of the scatterer. The two different results
obtained from Eq. (4) in the limits e—% (¢— ©) and w
—0 (¢—0) may be formally interpreted as noncommutativ-
ity of the limits. For inclusions with temporal dispersion
|€,(w)| =(w,/w)" the parameter ¢ approaches zero (dielec-
tric behavior) for p>2 in the long-wavelength limit, and
approaches infinity for p<<2 (metallic behavior), indepen-
dently of the size of the inclusions. This conclusion is in
agreement with the results obtained in Ref. 11. The case of
the free electron plasma, p=2, is the only case when the
parameter ¢ remains finite in the long-wavelength limit. Here
it also depends on the plasma frequency w, and the radius a
of the inclusions, giving the possibility for realization of di-
electric (g=w,a/c<1) and metallic (g=w,a/c>1) behav-
ior.

A very similar physical situation appears in the theory of
homogenization of metallodielectric photonic crystals. The
wave equation for the H mode is written as follows:

w2
V. ($VH) = S u(H. (5)

Since we consider the case of nonmagnetic constituents, val-
ues of w(r) different from 1 may appear only due to the
magnetic moment M = ma’aH acquired by a cylinder of ra-
dius a. For the magnetic field parallel to the axis the magne-
tization per unit length is given by'?

- L 2 ate)
a__417(1 kaJy(ka)) (©)

Here k=(w/c¢) Veis the complex wave number in the cylinder
and Jy(x) and J;(x) are the Bessel functions. For the case of
a collisionless plasma at low frequencies w << w,,, the param-
eter ka is pure imaginary, ka=ia/ &), where §,=c/w), is the
limiting value of the skin depth. A metallic cylinder with
currents circulating in the skin layer can be considered as a
diamagnetic cylinder with magnetic permeability

28 1,(al &)

Hom = a I()(a/50) ’ (7)

Here I,(x) and I,(x) are the modified Bessel functions of the
first kind. This low-frequency permeability is independent of
o but it depends on the plasma frequency w, and cylinder
radius a. As for a dielectric sphere there are two distinct
physical situations. For very thin cylinders, a << §,, the me-
tallic inclusions are practically transparent for radiation and
their magnetic properties can be neglected. Expansion of the
right-hand side of Eq. (7) gives u,,~1—(a/26,)*. This case
is realized for metallic cylinders with radius =107 cm.
Thicker cylinders exhibit diamagnetic behavior, i.e., u<<1.If
a> & Eq. (7) gives a close to zero value of the permeability
Mn=2080/a<<1, ie., the inclusions can be considered as
ideal diamagnetic cylinders.
The low-frequency index of refraction is defined as
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NE lim<. (3)
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This limit depends on the direction of propagation k=k/k
and it is obtained from the wave equation (5) where e(r) and
wu(r) are periodic functions in the plane perpendicular to the
cylinders (x-y plane). To calculate the limit (8) we apply the
method of homogenization developed in Refs. 5 and 14-16.
The plane-wave expansion of Eq. (5) leads to the following
set of linear equations for the Fourier components of the
Bloch wave H(r)=exp(ik-r)Zqhi(G)exp(iG r):

2 7G-G)k+G)- (k+G)(G)
G!

= (o) 2 (G -G (G). 9)
-

Here G are the reciprocal-lattice vectors. The Fourier coeffi-
cients of the periodic functions 7(r)=€'(r) and wu(r) are
determined as follows:

7(G #0)= 1 ( ! l)exp(— iG -r)dr, (10)

Al oy \ €(0) - €
1
w(G #0)= " (y(w) = Dexp(=iG - r)dr. (11)
cv eyl

Here A, is the area of the unit cell, the integrals are taken
over the cross section of the cylinder, and ¢, is the dielectric
constant of the background material. The Fourier compo-
nents with G=0 are reduced to the bulk average values,

fo1=f

+ _,
Em(w) €

7G=0)=7= (12)

G =0)=p=fu,(w)+1-f, (13)

where f is the filling fraction of the metallic component and
€, is the dielectric constant of the background material.

In the low-frequency limit the Fourier components 7(G)
and 7 become independent of the frequency w and the di-
electric constant of the metal ¢,

17(G7ﬁ0)2—L

€ cyl

exp(- iG - r)dr. (14)

With the same accuracy the magnetic permeability of the
cylinders in Egs. (11) and (13) can by substituted by the
w-independent value given by Eq. (7). Thus Eq. (9) is re-
duced to the generalized eigenvalue problem for a magneto-
dielectric photonic crystal. A homogenization procedure for
this problem has been proposed in Ref. 16 and the effective
index of refraction has been calculated. Due to the continuity
of the magnetic field at the surface of the cylinders the ef-
fective permeability coincides with the bulk average value
given by Eq. (13). Then for the index of refraction for the
H-polarized mode one obtains
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FIG. 1. (Color online) The effective index of refraction 7,
=\ efrEepy Tor the H mode for a photonic crystal of metallic cylin-
ders arranged in a square lattice. The cylinders are of three different
metals: aluminum (circles), copper (triangles), and bismuth
(squares). We also plot the static effective index of refraction \e’seff,
which almost coincides with the effective index of refraction of
bismuth cylinders.

2f50 Il (a/ 50)
Iy(al &)

Mofy= e gy(k) = (1 —-f+ >eeff(f<), (15)

where the effective dielectric constant is given by!4!

> (k-G)(k-G)7G)p(-G")
G,G'#0

eeff(l;) = { 7]_

-1

><[G~G’7](G—G’)]‘1} (16)

Here [ --]~! stands for the matrix inversion in G space. Equa-
tions (15) and (16) are exact and valid for any geometry of
the unit cell and arbitrary filling fraction. The dependence on
the direction of propagation k in Eq. (16) gives an ellipse in
the x-y plane.'*!3 It becomes a circle if the crystal possesses
a third- or higher-order rotational axis of symmetry. The ob-
tained results are valid when the direction of propagation is

in the plane of periodicity, kAzzO. This is the only case when
an electromagnetic wave propagates in the low-frequency
limit. Any deviation from this plane induces infinite currents
along the cylinders, i.e., the effective dielectric constant be-
comes infinite. At the same time the effective permeability
remains finite and it can be calculated using the formulas
given in Ref. 16.

The effective index of refraction Eq. (15) depends on the
filling fraction. In Fig. 1 this dependence is plotted for the
cases of metallic cylinders made of aluminum, copper, and
bismuth and arranged in a square lattice with period d=1.5
X 107* cm in air, &,=1. The low-frequency permittivities €y
of these metallic structures are universal (material indepen-
dent) and they are calculated numerically, substituting e,
=o in Eq. (16).” The dependence \'€,;(f) is shown in Fig. 1,
where it practically coincides with the curve n,.(f) obtained
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FIG. 2. (Color online) The effective permeability vs filling frac-
tion for (a) the whole range of filling fractions and (b) the transition
region of small filling fractions.

for the bismuth cylinders. Since bismuth is a semimetal with
low plasma frequency, w,]fi=9.8447 THz, the corresponding
skin depth &5'=c/®;'=3.05X 107> cm exceeds the maxi-
mum possible cylinder radius a,,,,=d/2=0.75X107* cm at
the close-packing filling fraction f,,,,=7/4. In this case, ac-
cording to Eq. (7) the conducting bismuth cylinder does not
exhibit diamagnetism, i.e., e \’:ﬁ In other words, the
electric response of the bismuth cylinders is calculated in the
perfect-metal approximation, (€,,=); however, their mag-
netic response (for radii a =a,,,,) is negligible because of the
relatively low concentration of conduction electrons. With
respect to the magnetic component of the propagating wave
the material of the cylinders behaves like a dielectric. The
latter means that the effective index of refraction of a peri-
odic structure of bismuth cylinders can be calculated using
the pure electrostatic approach developed in Ref. 17. In fact,
the numerical values of the effective dielectric constant €,
in Fig. 1 coincide with those calculated in Ref. 10, using the
electrostatic approach, in the whole range of the filling frac-
tion.

The above result does not hold for the aluminum and
copper photonic crystals. These metals are good conductors
with plasma frequencies w?1=22 788.7 THz and w‘S”

=6077.4 THz and skin depths &,'=1.32X 107 cm and 8"
=4.94X107% cm. Since in this case & <a,,,. the electro-
magnetic radiation does not penetrate inside the cylinders
and they exhibit diamagnetic behavior practically for all val-
ues of f. In Fig. 2(a) we plot the effective permeability vs
filling fraction for Al, Cu, and Bi photonic crystals. For the
good conductors aluminum and cooper, the permeability (13)
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is close to the dependence w,;=1-f, which is the perme-
ability of a photonic crystal of ideally diamagnetic cylinders
with u,,=0. In real metals dispersion and dissipation lead to
saturation of the diamagnetic response. It is saturated at the
level of ,ueff%0.8.9 For bismuth there in no magnetic re-
sponse, w.;r=1. Because of the different magnetic behavior
of the material cylinders, the curves for the effective index of
refraction in Fig. 1 turn out to be different. It is clear that the
magnetic response cannot be calculated in the framework of
the electrostatic approach. Since the cylinders are nonmag-
netic, their index of refraction formally may be attributed to
the dielectric response only: n, = N €7 In this approach de-
veloped in Refs. 10 and 11 it is assumed that n,;= Ve, and
the magnetic properties of the cylinders are not separated
from their dielectric properties. The difference between the
static and quasistatic indices of refraction is then explained
by noncommutativity of the limits.

The diamagnetic response of the conducting cylinders
gradually increases with the filling fraction since they be-
come less and less transparent when the radius a increases.
The transition from the dielectriclike behavior with p, g~ 1
to the ideal-diamagnetic-like behavior with w,,=~1-f oc-
curs in the region of very small filling fractions, f=0.05,
where a= §,. This transition is shown in Fig. 2(b). Although
the effective permeabilities for the good metals Al and Cu
are close to the ideal-diamagnetic line, the distinction is still
visible even for Al. This is because the parameter 8)'/a is
not sufficiently small. At the close-packing filling it is about
0.02. The asymptotical behavior n,r,=/(1-f)€,; has been
calculated by Poulton et al.,'" Felbacq,'® and later Hu and
Chan,'? using the Dirichlet boundary condition at the surface
of the cylinders. This condition corresponds to the cylinders
of an ideal diamagnetic. Our method of calculation of 7,
based on the Fourier expansion does not use any boundary
conditions at the surfaces of the cylinders.

The aforementioned difference between . and 1-f for
periodic structures with inclusions of good metals is clear
evidence that it is much more difficult to design a photonic
crystal with negative . than one with negative €, A par-
ticular spatial geometry of the inclusions is necessary in or-
der to overcome the critical value of u,,=0 in metamaterials
fabricated from real metals where dissipation plays an impor-
tant role.*

In conclusion, we calculated the index of refraction for
two-dimensional photonic crystals containing either metallic
cylinders or dielectric cylinders with e<<1. It is shown that,
due to the eddy currents (or polarization currents) induced by
the low-frequency wave, a nonmagnetic photonic crystal ex-
hibits a diamagnetic response. This response depends on the
relation between the radius of the cylinder and the skin depth
(wavelength inside the inclusion). If the skin depth is smaller
than the radius of the cylinder, the interior of the inclusion is
screened from the electromagnetic field. Each inclusion be-
haves like an ideal-diamagnetic cylinder with u=0. For the
H-polarized wave the macroscopic magnetic permeability of
the photonic crystal as a whole decreases linearly with in-
creasing filling fraction, w,,=1-f. In the opposite case,
when the skin layer is larger the radius, the diamagnetic
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response is negligibly small. Unlike the magnetic permeabil-
ity, the effective dielectric permittivity turns out to be mate-
rial independent and it is calculated assuming that the cylin-
ders are perfect metals with e=c. We also explain the
problem of the noncommuting limits, which appears if the
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index of refraction is attributed only to the dielectric re-
sponse of the photonic crystal.
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