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We suggest a method for generation of random binary sequences of elements 0 and 1, with prescribed
correlation properties. It is based on a modification of the widely used convolution method of constructing
continuous random processes. Using this method, a binary sequence with a power-law decaying pair correlator
can be easily generated.
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Generators of random numbers or white-noise signals are
customary elements in modern digital electronics. Different
algorithms are used for this purpose. The quality of a gener-
ated white noise is determined by the length of the sequence,
elements of which can be considered as uncorrelated. In
many areas of physics, such as engineering and signal pro-
cessing, it is required to generate a colored noise, i.e., a
correlated random process. Since the pair correlations usu-
ally give the principal contribution to the observable quanti-
ties, the problem of generation of a random sequence with a
prescribed pair correlator is of particular interest. It has been
known for a long time that continuous colored noise with
exponential correlations is generated by a linear Ornstein-
Uhlenbeck process, which is based on integration of a linear
Langevin equation driven by a white-noise fluctuating force.
�1� A more general method, valid for the generation of con-
tinuous random sequences with an arbitrary correlator, is
based on the convolution of white noise with the modulation
function defined by the pair correlator. Originally, the convo-
lution method was proposed by Rice. �2� Applications of
modern versions of this method for the generation of random
sequences with specific correlations, including the long-
range nonexponential correlations, can be found in Refs.
�3–8�.

In the theory of spatially disordered systems the role of
the pair correlator �for random potentials� is emphasized by
the fact that it determines the scattering cross section in the
Born approximation �for weak potentials�. As a result, many
linear transport characteristics �conductance, transmission
and reflection coefficients, localization length, etc.� are
expressed through the pair correlator �7,9,10�.

There are some examples of the systems �or processes�
with correlated disorder, for which the fluctuating parameter
takes discrete values. An example of such a system is the
DNA macromolecule. Here, the genetic information is writ-
ten using four symbols that are the basic nucleotides. In the
digital devices the information is transmitted in a form of a
telegraphic signal, i.e., a binary code. The binary sequence is
the limiting case of sequences with the least number of val-
ues accessible for the random variable. For practical applica-

tions it is desirable to develop a method of generation of a
binary sequence with prescribed pair correlator—a kind of
colored noise containing two elements, e.g., 0 and 1. Al-
though there have been some attempts to obtain a robust
algorithm for generation of a correlated binary sequence with
the purpose of increasing the performance of a pulse radar
�11�, the problem is still lacking a general solution. It is
worth mentioning that there are methods of generation of a
correlated binary sequence that are not based on the proper-
ties of the correlation function; see, e.g., Ref. �12�. It is not
known yet what are the constraints �if there are any� for the
pair correlator, imposed by the fact that the sequence is di-
chotomous �binary�. For example, an attempt to generate a
dichotomous sequence with the correlations decaying ac-
cording to the inverse power law was unsuccessful �13�.

Recently, we addressed the mathematical problem of gen-
eration of a dichotomous sequence with prescribed correla-
tion properties �14�. We concentrated our attention on statis-
tical properties of binary additive Markov chains. It was
shown that the dichotomous sequences with short-range cor-
relations and some particular sequences with long-range cor-
relations can be reconstructed with the use of the so-called
memory function. The latter is related to the pair correlator
through a quite complicated linear integral equation. Analyti-
cal solution of this equation can be obtained in some special
cases only, which narrows the area of practical validity of the
method �14�.

In this paper, we present an approach based on the con-
volution method that was modified for the generation of cor-
related binary sequences. The relation between the filtering
function—the kernel of the convolution operator—and the
pair correlator turns out to be relatively simple. The advan-
tage of this numerically simple method is that it is valid for
generation of sequences with power-law decaying
correlations—a problem attracting a lot of attention in phys-
ics and technology.

The convolution method of generation of a continuous
colored noise ��n� starting from a white noise ��n� is based
on a linear transformation with the use of the modulation
function G�n� �7,15�

��n� = �̄ +�C��0�
C��0� �

n�=−�

�

G�n − n�����n�� − �̄� . �1�

Here �̄ and �̄ are the mean values, and C��0�=�2�n�− ��̄�2

and C��0�=�2�n�− ��̄�2 are the variances of the white and
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colored noise, respectively. For a homogeneous sequence
��n�, the generated sequence ��n� is also homogeneous. In
what follows, we introduce the normalized pair correlator
K��r�=K��−r�=C��r� /C��0�. Substituting the linear trans-
formation �1� into the correlation function C��r�
=��n+r���n�− ��̄�2 and taking into account that the se-
quence ��n� is � correlated, the following relation between
the pair correlator and the modulation function is readily
obtained:

K��r� = �
n=−�

�

G�n�G�n + r� . �2�

From the condition K��0�=1, one gets

�
n=−�

�

G2�n� = 1. �3�

Since K��n� and G�n� are even functions, we apply the
cosine Fourier transform to both sides of the convolution �2�.
This results in the following relation:

K��k� = G2�k� , �4�

where

K��k� = 1 + 2�
r=1

�

K��r�cos�kr� , �5�

K��r� =
1

�
�

0

�

K��k�cos�kr�dk .

Similar relations can be written for G�k� and G�n�.
The expression �4� determines the modulation function in

terms of the Fourier transform of the pair correlator,

G�n� =
1

�
�

0

�

K�
1/2�k�cos�kn�dk . �6�

Evidently, the solution �6� satisfies the normalization condi-
tion �3�.

For different white-noise sequences ��n�, the convolution
method Eqs. �1�, �5�, and �6� defines an ensemble of colored-
noise sequences ��n�, where −����n���. All the se-
quences in this ensemble have the same pair correlator
K��n�. The number of terms contributing to the series �1�
depends on the sharpness of the correlator K��n�. For short-
range correlations, when K��n� decays very fast, the modu-
lation function G�n� is also sharp; therefore, the principal
contribution is mainly given by a single term with n�=n. The
sequence ��n� in this case is practically � correlated for both
continuous and binary sequences ��n�. In the opposite case
of long-range correlations, when the correlation length Rc is
large �Rc	1�, many terms contribute to Eq. �1�. In this case,
even for a binary sequence ��n�, employing the method of
characteristic functions, one can obtain that the probability
density 
B��� for the stochastic variable ��n� has the
Gaussian form


B��� = �1/�2�C��0�� exp�− �� − �̄�2/2C��0�� , �7�

provided the condition

�� − �̄�2/2C��0� � Rc �8�

is satisfied. The deviations from the Gaussian shape may

appear only at the far tails, where ��− �̄�2 /2C��0�	Rc. Note
that, for a continuous Gaussian distribution of ��n�, Eq. �7�
is exact independently of Rc.

From the above consideration, it is clear that the corre-
lated sequence ��n� may be generated using very different
uncorrelated sequences ��n�, including binary white noise.
However, if we start with the binary white noise ��n�, the
sequence ��n� is obviously a nonbinary one, since the value
of ��n� in Eq. �1� results from a linear superposition of bi-
nary entries. Thus, the direct application of the convolution
method does not generate a binary correlated sequence.

Let us now consider the problem of generating a binary
sequence ��n� with prescribed correlations, assuming that the
sequence ��n� is also binary. We suppose that both the se-
quence ��n� and ��n� contain 0’s and 1’s. Let the nth site for
��n� be associated with the number Pn �0
 Pn
1�, which is
the probability of 1 obtaining at this site. In order to calculate
the filtering probabilities Pn from white noise ��n�, in anal-
ogy with Eq. �1� we propose the linear transformation

Pn = �̄ + �C��0�/C��0� �
n�=−�

�

F�n − n�����n�� − �̄� . �9�

Here C��0�= �̄�1− �̄� and C��0�= �̄�1− �̄� are the variances
of ��n� and ��n�, respectively, and F�n� is an unknown
modulation function to be determined. Having the value of
Pn, the nth symbol is generated by drawing randomly a num-
ber from the interval �0,1�. If this number is less than Pn,
then ��n�=1, otherwise, ��n�=0. Thus, a binary sequence
��n� can be generated, once the set of numbers �Pn	n=−�

� is
known due to Eq. �9�. The values of Pn are correlated in the
following way:

�Pn+r − �̄��Pn − �̄� = C��0� �
n=−�

�

F�n�F�n + r� for r � 0.

�10�

According to the method of generation of the sequence
��n� from the filtering probabilities, the probability of the
symbol ��n+r� obtaining at the �n+r�th site does not depend
on the emergence of the symbol ��n� at the nth site �for r
�0�. Therefore, the product Pn+rPn gives the joint probabil-
ity of 1 obtaining at the nth and �n+r�th sites. If 0 appears at
either of these sites, the corresponding pair does not contrib-
ute to the product ��n+r���n�. Hence, the correlation func-
tion for sequence ��n� can be expressed through the correla-
tion function of the filtering probabilities
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���n + r� − �̄����n� − �̄� = lim
N→�

1

2N + 1 �
n=−N

N

Pn+rPn − �̄2

= �Pn+r − �̄��Pn − �̄� . �11�

As one can see, the correlations in the sequence ��n� occur
because of the correlations between the filtering probabili-
ties. The latter are enforced by the modulation function �see
Eq. �9��. Thus, using Eqs. �10� and �11� the relation between
the correlator of the binary sequence and the modulation
function can be written as

K��r� = �
n=−�

�

F�n�F�n + r� for r � 0, �12�

K��0� = 1. �13�

The normalization condition �13� is the property of the
correlator K��r�. It should be stressed that, unlike Eq. �2�,
which is valid for all values of r including r=0, in the case of
binary sequences the derived Eq. �12� is not valid for r=0.
Therefore, the sum �nF2�n� remains undefined and has to be
considered as a free constant,

A = �
n=−�

�

F2�n� =
1

2�
�

−�

�

F2�k�dk . �14�

This constant appears now in the Fourier transform of Eq.
�12� as follows:

K��k� = 1 − A + F2�k� . �15�

Using Eq. �15�, the relation between the modulation function
and the pair correlator of the binary sequence can be written
in the form

F�n� =
1

�
�

0

�

�K��k� − 1 + A�1/2 cos�kn�dk . �16�

Thus, Eqs. �9� and �16� define the algorithm of the genera-
tion of a binary sequence with the prescribed pair correlator.

The values of Pn in Eq. �9� can be associated with prob-
ability if 0
 Pn
1. This condition leads to the following
constraints for the unknown constant A,

�
n=−�

�


F�n�
 

min��̄,1 − �̄�
��̄�1 − �̄�

��̄�1 − �̄�
max��̄,1 − �̄�


 1. �17�

Taking into account that the argument of the square root in
Eq. �16� must be positive, this inequality can be rewritten
�for �̄= �̄=1/2� in terms of the constant A,

1 − K��k� 
 A = �
n=−�

�

F2�n� 
 �
n=−�

�


F�n�
 
 1. �18�

The constraints imposed by Eqs. �17� and �18� limit the class
of generated binary sequences that can have a given pair
correlator. In particular, a binary sequence with the slow-
decaying correlator K��r�=sin�ar� /ar cannot be generated
with the use of the proposed algorithm, since the sum
�n 
F�n�
 diverges in this case. As is known, the power-law

decaying correlators provide the emergence of a kind of mo-
bility edge in systems with random one-dimensional poten-
tials �7,16�. In this case, a sharp transition from localized to
delocalized eigenstates occurs when crossing some value in
the energy spectrum, specified by the mobility edge. Al-
though such mobility edges have been experimentally ob-
served for a continuous distribution of fluctuations in artifi-
cially fabricated site potentials with long-range correlations
�15�, it is not clear yet if they do exist for a correlated binary
sequence. That is why the existence of a mobility edge in a
sequence of nucleotides in a DNA molecule is still question-
able �13,17�.

As an example of short-range correlations, let us consider
the exponential binary correlator with the corresponding
Fourier representation,

K��r� = exp�− �
r
�, K��k� = sinh �/�cosh � − cos k� . �19�

Since K��k� reaches its minimum at k=�, the condition 1
−K��k�
A is satisfied for A=1−K����=1−tanh�� /2�.
Therefore, we have

F2�k� = ��1 + cos k�/�cosh � − cos k��tanh �/2, �20�

and the function F�n� reads

F�n� =
1

�
�tanh

�

2
�

0

�

cos�kn�� 1 + cos k

cosh � − cos k
dk . �21�

For n	1 the modulation function decays as follows:

F�n� � ��− 1�n+1/2n2 cosh��/2���tanh �/2 � 1/n2; �22�

therefore, the sum �n 
F�n�
 converges. However, it exceeds
1 for ���cr�1.60, thus violating the last inequality in Eq.
�18�. The numerical simulation shows that for ���cr the
method works quite well, giving the possibility of designing
binary chains with exponentially decaying correlations.

Since a method of generation of a binary sequence with
exponentially decaying correlations is already known �1�, it
is important to demonstrate the validity of the proposed al-
gorithm for generation of binary sequences with long-range
correlations. Let us consider a power-law decaying correla-
tion function

K��n� = �±1�na/n2, n � 0. �23�

For these correlators, the modulation function can be explic-
itly calculated,

F�n� = ± �a/2�1/�n2��1 − �− 1�n�, F�0� = ��/2��a/2. �24�

The constant a is obtained from Eq. �18�, which leads to the
following inequality:

�
n=−�

�


F�n�
 =
3�

4
�a

2

 1. �25�

It is satisfied for 0�a
32/ �9�2��0.36. For numerical cal-
culations, we chose a=0.2. Two filtering functions Eq. �24�
were used to generate two binary sequences of length 105

each. The correlators of these sequences are plotted in Fig. 1.
A good agreement between the theoretical Eq. �23� and nu-
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merical results is obtained for the sequence with monotoni-
cally decaying correlations and for the sequence with
alternating-sign correlations. Note that the sequences with
monotonically power-law decaying correlations are used for
modeling of superdiffusion �6�, and anticorrelations �i.e., a
long negative tail for K��r�� are necessary in the fluctuations
of the force, driving a subdiffusion process �8�.

Thus, the proposed method can be used for generation of
binary sequences with long-range correlations. To the best of
our knowledge, this is the first successful attempt to generate
a random binary sequence with power-law decaying correla-
tions from white noise. It is worth mentioning that a renewal
binary sequence with prescribed correlations can be gener-
ated using the relation d2K��n� /dn2=��n� between the cor-
relation function K��n� and the probability density ��n� of

occurrence of a laminar layer of length n �18�. The binary
sequences that can be designed from this relation are those
with K���n��0. This constraint does not allow generation of
sequences with alternating-sign correlations. Numerous ap-
plications of the aforementioned relation for stochastic dy-
namical processes with intermittency can be found in Ref.
�19�.

As compared to a sequence of continuously distributed
random elements, a binary sequence leaves much less free-
dom to implant correlations. Therefore, the proposed modi-
fication of the convolution method allows generation of ran-
dom binary sequences with a much narrower class of
correlation functions than the traditional convolution
method. In the latter case, practically any function, decaying
at r→� and possessing a nonnegative Fourier transforma-
tion �see Eq. �4��, can serve as K��r�—a correlator of the
random sequence �1�. More examples of sequences with
short- and long-range correlations generated by the convolu-
tion method can be found in Refs. �6–8,15,16�.

In conclusion, we suggest a method of filtering probabili-
ties to construct a binary correlated sequence from a white
noise. The proposed algorithm consists of the following
steps. First, starting from the prescribed mean value �̄, vari-
ance C��0�, and power spectrum K��k�, one calculates the
filtering function F�n� by making use of Eq. �16�. The next
step is optimization of the value of the constant A according
to Eq. �18�. Then, the filtering probabilities Pn are calculated
from Eq. �9�. Finally, for any site n, by comparing the value
of Pn with a number drawn randomly from the interval �0,1�,
one gets the number 0 or 1 that creates the binary sequence
��n�.
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FIG. 1. �Color online� Correlation function of the binary se-
quence with power-law decaying correlations. The inset shows the
correlation function with alternating sign. Solid circles are for the
theoretical formulas Eq. �23�, and open circles are for the numerical
data for generated sequences of length 105. The value K�0�=1 is not
shown.
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