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Electron localization in a two-channel tight-binding model with correlated disorder
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We calculate the localization length in a two-channel tight-binding model for correlated disordered site

potential. Both intra- and interchannel correlations are taken into account. The localization length is obtained
in quadratic approximation by expanding the two-channel conductance over weak disorder. The result is
applied to a simple two-stranded model of DNA molecule and it is shown that a strong pair coupling between
the basic nucleotides in the strands is not sufficient to delocalize electronic states.
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I. INTRODUCTION

A random one-dimensional potential localizes a quantum
particle even if the amplitude of the fluctuations is very
weak. This fundamental property of a linear random medium
is characterized by the localization length /., which gives the
scaling for the transmission coefficient through random lin-
ear wire of length L, T(L)exp(~L/1,). Qualitative charac-
teristics of the transport properties are usually studied in the
tight-binding model.! This model is represented by a se-
quence of potential sites with on-site energies &, and con-
stant amplitude of hopping between the neighboring sites .
The quantum states in this chain are obtained from the dis-
crete Schrodinger equation,

[(¢n+l+¢n—l)=(E_8n)¢n- (1)

The strength of the fluctuations is measured by the variance
eg=(g2). Since localization occurs for arbitrary weak poten-
tial, the case of weak disorder, £,<<t, is of a general interest.
In this case, the inverse localization length can be calculated
in Born approximation and for an uncorrelated potential,
(8i81)=€5 0y, it reads?

£

NE)= —2—.
0 (B) 8(1 — E¥47%)

2)

Equation (2) is the first term of the expansion over the pow-
ers of disorder, 83. The validity of Born approximation sug-
gests that a localized state covers many sites, i.e., [o(E)>1;
therefore, it is invalid in the vicinity of the band edges,
|E/2t| — 1. Here, more accurate expansion over &, leads to
unusual scaling, I;'(E) « 3*.? This “anomalous” behavior of
the localization length is accompanied by violation of the
scaling hypothesis.* In what follows, we consider the interval
of energies in Eq. (2) where the standard Born approximation
remains valid.

Correlations in the random sequence of the site energies
g, strongly affect the interference pattern between the for-
ward and backward scattered waves. In the lowest Born ap-
proximation, the localization length is determined by a pair
correlation function, <8i8k>=£(2)§(i—k), only. It was found, us-
ing three different variants of perturbation theory, that in the
correlated potential, the localization length is modified and it
is given by the following formula:
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o(p) = 1+22 &k)cos(uk).
k=1

WE)=1""(E) =I5 (E)p(2p),

3)

Here, the parameter w plays the role of Bloch vector, defin-
ing the dispersion relation

E=2tcos . (4)

Higher-order corrections to Eq. (3) were obtained in Ref. 6.
Because of the presence of the Fourier series in the definition
of the function ¢(u), the Lyapunov exponent [Eq. (3)] may
vanish, giving rise to extended states in a one-dimensional
disordered system. Extended states may form a discrete set
(for short-range correlations) or a continuum of eigenstates.
In the latter case, the energy spectrum possesses a mobility
edge. Both these peculiarities of the spectra of the systems
with short- and long-range correlated disorder have been ex-
perimentally observed.’

In the majority of publications, the role of correlations has
been studied in single-channel tight-binding model.>®° Two-
dimensional or multichannel random systems with correla-
tions got much less attention. Metal-insulator transition in
two-dimensional (2D) random lattice with specific symmetry
in the distribution of the impurities was predicted in Ref. 10.
Recently, the presence of delocalized states in 2D random
lattice with long-range correlations has been demonstrated
numerically by means of Bloch-like oscillations in dc elec-
tric field."! Generalization of the dimer model (short-range
correlations) to the two-lag ladder case was done in Ref. 12
and the delocalized state at the band center was obtained. In
quasi-one-dimensional models, a continuum of delocalized
states may appear for weak long-range correlated disorder.
Analytical results for the localization length were obtained
for surface'? and bulk scatterers'# in the limit when inter-
channel scattering is strongly suppressed, i.e., the electron
transport remains effectively one dimensional. This limita-
tion makes it difficult to estimate the localization length in
real systems, such as random waveguides or DNA molecule,
where inter- and intrachannel scattering amplitudes are of the
same order. Moreover, in a DNA molecule, the interchannel
coupling is the necessary feature, which originates from the
double-helix structure. It was claimed that this coupling may
by itself give rise to a continuum of the extended states.'
However, this result (based on the numerical simulations of
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the inverse participation ratio) turned out to be erroneous and
the long-range correlations are still the necessary condition
for the presence of the mobility edge in single- and multi-
channel random systems.'®

Here, we consider the two-channel tight-binding model
and calculate analytically the localization length for the
weakly disordered correlated site potential. We take into ac-
count the autocorrelations along each channel and also the
cross correlations between the channels. Thus, our approach
is valid for the analysis of the electron transport in DNA. In
particular, it follows from our general formula for the local-
ization length that the interchannel correlations cannot lead
to the extended states, if the site potentials in each channel
remain uncorrelated. This confirms the result of Ref. 16.

Electron localization in the multichannel tight-binding
model with white-noise potential was recently considered in
Refs. 17-19. There, the perturbation theory with respect to
weak disorder was developed, using the transfer-matrix
approach.?> In our calculations, we closely follow the
method proposed in Refs. 17-19 and adopt the notations pro-
posed there. However, in the expansion of the transfer (and
scattering) matrix, we keep quadratic over weak disorder
terms, which contain the effect produced by the correlations.
At this point, we modify the perturbation theory of Refs. 17
and 18, where the linear approximation was sufficient for the
case of uncorrelated potential.

II. TWO-CHANNEL TIGHT-BINDING MODEL

A generalization of the tight-binding model [Eq. (1)] for
the two-channel system is easily done by introducing an in-
dex i at the wave function ¢, and the potential energy &,.
This index denotes the channel, i=1,2. A term describing the
interchannel coupling (with constant hopping parameter /) is
added to the left-hand side. The second equation for the two-
component wave function ¢;, is obtained by symmetrizing
with respect to the index i. Finally, the Schrodinger equation
for the two-channel tight-binding model is written as fol-
lows:

t(¢1,n+1 + ¢l,n—l) + h¢2,n = (E_ sl,n)(;b],n’

o pi1 + Prp) + hpy = (E—€5,) s . (5)

In order to apply the Landauer formula g=(2¢>/h)Tr(if"), we
consider a two-channel sample of finite length L=Na. The
spacing a is used as a unit of length. This disordered finite-
length sample is connected to the ideal wires, i.e., the site
potential &, vanishes for n<1 and n>N. The hopping pa-
rameter ¢ enters in Eq. (5) as a natural unit for energy; there-
fore, in what follows, we take r=1 and all the energies are
assumed to be normalized to .

A set of equations [Eq. (5)] can be rewritten in matrix

form
<¢1,n+1+¢1,n—1>_(E—81,n —h )(d’l,n) ©)
Drni1 + Poni —h  E-g,/\¢,
The two channels remain coupled even in the region of the
leads since the nondiagonal elements of the 2 X2 matrix in
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Eq. (5) are independent of n and do not vanish. The eigen-
functions for the leads are the plane waves exp(xiw;n) with
the wave vectors u,(E) and u,(E). They are related to the
energy by

2cos u=E-nh,

2cos uy=E+h. (7)

In the region of energies —2+h <<E <2 -h, where both chan-
nels are propagating, the quantum states apart from standard
degeneracy E(—u)=E(u) possess additional symmetry with
respect to the channel index i. Because of this symmetry,
there are two different wave vectors, u; and w,, for each
value of E. In order to develop a perturbation theory, the
unperturbed wave functions with definite parity (symmetric
and antisymmetric) have to be selected,

wl,n _ L 1 1 ¢l,n
<l//2,n)— \'E(l _1)<¢2,n>. (8)

In the ¢ basis, the ideal leads are uncoupled and the
Schrodinger equation takes the following form:

(‘/fl,n+1 + P11 )
Va1 + Yo
~ (E— h— %(sl,n +&5,)
- %(SZ,n —&1,)

wl,n )
. 9
8 ( (//2,n ( )

1
5(82,n - 81,n) )

E+ ]’l - %(Sl,n + 82,}1)

Here, the channels are uncoupled in the region of ideal leads
where g, ,=¢,,=0.

The transmission matrix 7 in the Landauer formula is cal-
culated as a product of N; on-site transfer matrices. Due to
disorder, these transfer matrices are random. Johnston and
Kunz?® have shown, using the results of Ref. 21 on the prod-
ucts of random matrices, that the Lyapunov coefficient vy is a
self-averaging quantity referred to as the inverse localization
length,

WD) =1 ()=~ lim %NLan ), (10)

where (---) denotes averaging over disorder and 7 is the 2
X2 transmission matrix.

II1. CALCULATION OF TRANSFER AND SCATTERING
MATRIX

In order to introduce the transfer matrix, we rewrite Eq.
(9) in a form of a four-dimensional map,

134202-2



ELECTRON LOCALIZATION IN A TWO-CHANNEL TIGHT- ... PHYSICAL REVIEW B 76, 134202 (2007)

Dinst E-h—(g1,+8&,)2 -1 (82— &1,0)/2 0 Din
hin | 1 0 0 (U |
Your | | (eaa—e)2 0 Exh=(er,+e)2 =1 || ¢, | (11)
rn 0 1 0/ \t,
N _
VT
X

The matrix X, translates the wave function by one spacing
through the site n. It is worthwhile to represent this matrix in
the basis of unperturbed Bloch waves—the waves propagat-
ing in the perfect leads. Since there are no real scatterers in
the leads, the translation through any lead site changes only
the phase of the wave function, ,,,=e**y,. The details of
this transformation are given in Ref. 17. The translation ma-

trix )A(n for site n in the lead basis is written as follows:
X, =Xo+X.. (12)

The matrix X, is diagonal; it takes into account the accumu-
lation of the phase of the wave function at the translation by
the period. The disorder terms, leading to real scattering, are
collected in the matrix X', which is linear over energy fluc-
tuations &;,. Equation (12) is valid for arbitrary strength of
the random potential. The transfer matrix for the whole
sample containing N; sites is a product of N; single-site
matrices. In this product, we keep up to quadratic over the
random potential terms,

Ny Ny
x=11x,=x0c+> x). x!. xo-!
n=1 n=1
+ > XN xrel gl xet (13)
m>n

The last two terms are responsible for the scattering and
mixing of the modes. From here on, we substitute L instead
of N; as the number of sites along the wire for convenience.

Introducing the amplitudes of the Bloch waves at the left
and at the right ends of the sample, the matrix X can be
represented as the following linear relation between these
wave functions:

+ +
ar aro
app ag
0. (14)
a aso
ar as o

In order to calculate the transmission matrix 7, we need to
find the scattering matrix S,

N
§= P ’ (15)

where

e S_(ri oy
t++=<:: e A N (16)
2

¥
I»n o) Iy

Here, #'(f;7) and r;;"(r}") are the transmission and reflection
amplitudes in the channel i, provided that there is a unit flux
incident from left (right) in the channel j. In our case of the
two-channel scattering system, the matrix S is defined as
follows:

- +
aro ago
- +
aro al @20
P N (17)
apr ayr
+ _
ar a L

Two linear sets [Eqs. (14) and (17)] establish the relations
between the elements of the scattering and transfer matrices.
It was shown!” that the transmission matrix 7 is expressed
through the elements of the matrix X as follows:

A 1{ X -X
t:t"=—< . 24>, (18)

O\-Xp Xn
0=X0X4s— X0uXs5. (19)

Now, it is straightforward to expand the conductance [Eq.
(10)] over weak disorder and calculate the localization
length. This will be done in the next section, separately for
the situation when both of the channels are propagating and
when one is propagating and the other one is evanescent.

IV. RESULTS FOR LOCALIZATION LENGTH
A. Two propagating modes

The expansion of the matrix elements that determine the
transmission matrix [Eq. (18)] has the following form:

Xy = e‘i“lL[l + iZ a, - E (1- eZim(m—n))aman
m

m>n

-> (ei(ﬂl‘ﬂz)(’"‘”)—ei("1+"2)('”"’))cmc”]’

m>n

Xy = e-sz[ 1+i, b, — 2, (1=e¥mm=myp b

m=>n

- (ei(#z—#l)(m—”)—ei(“1+“2)(m_”))cfnc"]’

m>n
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m

Xou=— e_i“lL[iE ei(”l_”z)mcm + 0(82)] ,

Xpp=- e_i“zL[iE elrammme 4 0(82)] . (20)

m

The elements X,, and X,, are written in the linear ap-
proximation because the quadratic terms there lead to higher-
order corrections in the transmission matrix. Substituting
these expansions into Egs. (18) and (10) and performing av-
eraging over disorder, after some algebra, the following for-
mula for the inverse localization length is obtained:

AE) = 8_%[ en(2um1) N e11(2u9) N 20 (uy + ,uz)}

"~ 64| sin® sin’ u, sin g sin U,
2
L& 20(21) . ®20(241) . 2¢0( 11 + p2)
64| sin® u, sin® sin g sin U,
g e2m)  e2m) 201 + o)
32| sin® u, sin® u, sin u; sin wy |

(1)

The structure of this formula for the inverse localization
length is similar to the corresponding formula [Eq. (3)] for a
single-channel system. The localization of an electron occurs
due to elastic backscattering processes in both channels with
change of the momentum by 2u; and 2u, and due to inter-
channel scattering with change of the momentum by u,
+u,. An unperturbed wave, which according to Eq. (8) is
either symmetric or antisymmetric, is scattered at three ran-
dom potentials with variances s%, s%, and &, and the corre-
lation functions are defined as follows:

2 2
<81,n81,n+k> =7 1(k), <82,n82,n+k> = 82522(]‘), <81,n82,n+k>

=epépp(k). (22)

Here, the mean value &;,=(g; ,&,,) can be either positive or
negative, unlike always positive variances 8% and s%. In the
Born approximation, these three potentials give additive con-
tributions to the Lyapunov exponent—a kind of Mattisen
rule for the rate of the backscattering processes. The corre-
lations enter through the functions ¢;;(x), which are repre-
sented by the Fourier series,

[’

QDij(:“) =1+ 22 gij(k)COS(IL'Lk)' (23)
k=1

As well as in the single-channel case [Eq. (3)], the Fourier
coefficient for the uth harmonics is the binary correlator of
the corresponding potential.

The Lyapunov coefficient [Eq. (21)] is positively defined
for all the allowed energies. In the case of uncoupled chan-
nels, h=0, the dispersion relations [Eq. (7)] are identical,
M=M=, and the cross-correlation term vanishes. As a re-
sult, Eq. (21) is simplified to the following form:
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AHE) = ——[hpn @) + denCw)].  (24)

sin”
For identical channels, &,=¢, and ¢,;(2u)=¢,(2u), the
single-chain case [Eq. (3)] is recovered. Finally, if the poten-
tials in both channels are uncorrelated (white noise), then
@;/()=1 and £,=0. In this case, Eq. (21) reproduces Hei-
nrichs’ result,!’

2, .2 2

gjt+e 1 1

AE) == 2( 4 ) : (25)
64 \sinpw; sinu,

B. One evanescent and one propagating mode

In the energy regions —2-h<E<h-2 and 2-h<E<2
+h, one of the wave numbers w; is necessarily a pure imagi-
nary number. The corresponding wave function decays expo-
nentially away from the entering point with decrement |u,|.
Since the transmission matrix is a relation between the
propagating wave modes only, the evanescent modes do not
contribute to the conductance of a long sample if L> |u,|™".

It was shown in Ref. 18 that in the case of uncorrelated
disorder, the evanescent mode term does not contribute to the
Lyapunov exponent [Eq. (25)] and has to be omitted. More-
over, the coupling between the propagating and evanescent
modes is strongly suppressed. This results in an extra factor
of 2 in Eq. (25). In what follows, we demonstrate that this
scenario of transition from propagating to evanescent regime
remains unchanged in the case of correlated potential.

It is worthwhile to note that in the weak disorder approxi-
mation, the formulas for the Lyapunov exponents are invalid
in the vicinity of the critical energies E.=+2+h, where the
transition from propagating to evanescent regime occurs. At
these energies, the perturbation g;/sin u;— % and the Born
approximation fails even for weak disorder.

Let us consider the energy domain 2—h <E <2+h where
the second mode is evanescent, u,=ik. The transfer matrix

of the nth site, )A(n, establishes a linear relation between the
wave functions on both sides of this site. Since the evanes-
cent mode does not contribute to the conductance, we are
interested only on the elements of the transfer matrix which
describe scattering from propagating to propagating mode.
For the propagating mode with index 1, those elements are at
the 2 X2 upper left block of the 4 X4 transmission matrix

X

n»

Xot Xn12

4
Ay n+l

ai g |- (26)

+
A1t
a _| - A

L+l Xuo1 Xum

Now, we can introduce a transfer matrix for the nth site,
using the basis of the propagating modes only,

. . A A

a ~[a ~ X X,

1,n+1 1.n n,11 n,12
(_ ):Tn<_ ) Tnz(A . ) (27)
al,n+1 al,n Xn’21 Xn’zz

Similar to the transfer matrix Xn, the transfer matrix fn has a
zero-order diagonal component and linear over the random
potential term,
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A . er 0 ieMa,  ie"™
T,=Ty+T,= 0 eim + iei"lan e
(28)

The matrix 7, being a unitary matrix, conserves the flux.

The total transfer matrix 7" of a sample is a product of all fn
matrices. Keeping up to quadratic over disorder terms in this
product, a formula similar to Eq. (13) is obtained,

L L
T={[If%=:76*_:2infﬂ']i']84
n

n=1

+ 2 T T, T T Ty

m>n

(29)

In the presence of evanescent mode, the dimension of the
scattering matrix is also reduced since now it relates the in-
coming and outgoing components of the propagating wave

only,
+ + - +
ao apr aro af 41,0
=T ), I .
aro ayr apr apr
The transmission matrix 7, which determines the conductance

[Eq. (10)], becomes scalar. It is obtained from the scattering
matrix, using Eq. (15),

1 (T21 1

oL
W\ 1 =Ty,

(30)

)’ i =Ty, (31)

Thus, in the presence of evanescent mode, the conduc-
tance (and hence the localization length) is determined by
|T,,|%. This quantity can be calculated from Eq. (29) and in
the quadratic approximation, we get

|TH|2: 1*’:2 aman_'zA:S (e

m,n m>n

+2 > cos2u,(m—-n)a,a,. (32)

m>n

Now, expanding In #t"=—In|T},|?, the following result for the
inverse localization length [Eq. (10)] is obtained,

1
YE) = D P [e1e11(21) + £300(211) + 281,012 ].
|
(33)

In the counterpart region —2—-h<E<-2+h, the first mode
becomes evanescent and the Bloch number u; in Eq. (33) is
replaced by w,.

The localization length is a complicated linear functional
of the correlation functions &;(k). Analysis of the localiza-
tion length for different classes of short- and long-range cor-
relations requires separate publication. It is not yet clear what
kind of long-range correlations is sufficient for the mobility
edge to appear in the spectrum of two-channel system. Here,
we give numerical results for the uncorrelated potential and
for the exponentially decaying correlation function of the
following form:
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FIG. 1. The localization length vs energy. Solid line is for the
uncorrelated (white noise) potential. Dashed-dotted line is for ex-
ponential intra- and interchannel correlation functions; all three are
given by Eq. (34). Dotted line is for exponential intrachannel cor-
relations and delta-correlated interchannel scattering. The param-
eters of the model are h=0.5 eV, t=1.0 eV, and (s%):(a%}:(sﬁ)
=0.25%

(k) = (- 1)k€_a‘k‘,

where « is the inverse radius of correlations. Here, correla-
tions alternate with anti-correlations. The localization length
for this specific correlation function shows oscillatory behav-
ior in the interval of E where both channels are open. (Fig. 1)
Unlike this, in the regions where only one of the channels is
propagating, the localization length is a monotonic function
of energy. There is a discontinuous jump for /(E) at the criti-
cal energies E=+(2—h) where a transition from propagating
to evanescent mode occurs. These discontinuities are clear
evidences of the fact that the Born approximation is not valid
in the vicinities of the critical points. Extended states do not
appear for this class of short-range correlations. They prob-
ably may appear if the correlations are of long range, i.e., the
correlations decay as a power law.

(34)

V. DISCUSSION

Equations (21) and (33) are the main results of the
paper—they give the localization length in a two-channel
system in the whole region of energies. In the case of an
uncorrelated potential, the Lyapunov exponent y(E) does not
vanish and all the states remain localized!”"'® as there are in
a single-channel system.? Correlations strongly modify the
localization length and may give rise to a discrete or continu-
ous set of extended states.>’%131% Using Eq. (3), it is easy to
express the correlator (k) (which plays a role of Fourier
coefficient) through the Lyapunov exponent in the single-
channel case,

/2
§(k)=% f NE(W I E(w)Jcoskpw)dp.  (35)
0

If the binary correlation function [Eq. (35)] is known, the
correlated sequence of the site potential &; can be recon-
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structed using the algorithm proposed by Kuhl et al.” Thus,
in the single-channel case, the “inverse” scattering
problem—reconstruction of the statistical ensemble of the
correlated potentials through the localization length
[(E)—has a unique solution. It follows from the general
properties of the Fourier integrals that if the Lyapunov expo-
nent vanishes within a finite interval of energies, the corre-
lation function decays as a power law, &(k)oc1/k”. For a
sharp mobility edge, the parameter p=1.

In a two-channel system, the inverse scattering problem is
more complicated since there are three correlators, &;,(k),
& (k), and &;,(k), which have to be reconstructed from the
function y(E), given by Egs. (21) and (22). However, it is
clear from the structure of Egs. (3), (21), and (33) that the
power-decaying correlation functions are necessary in order
to have a mobility edge. If the correlations are of a short
range, only a discrete set of resonant extended states may
appear in the spectrum.

In particular, an extended state at the band center E=0
was predicted for a two-channel random dimer for some spe-
cific parameters of the random potential.'> The random dimer
is an example of a dichotomous sequence where the on-site
potential takes on only two values, e.g., g, and —g,. For all
sites, &1 ,=¢&, ,. At a site n, the value g, or —g, emerges with
probability of 1/2 and it is repeated at the nearest site n+1.
Statistical properties of this model are characterized by the
mean value (g,)=0, variances (sin>=(s§’n>=s§, £
=(e| ,&2.,)=8p, and the correlator (g,&,_;)=1/2. By substi-
tuting this correlator into Eq. (21), we obtain the inverse
localization length for the dimer,

£
WE) = E(Cot2 iy + cot® wy). (36)

This function does not vanish, if the interchannel hopping
parameter £ is different from zero, i.e., there is no extended
state in a two-channel dimer. Unlike this, in a single-channel
dimer there are two extended states, which in the case of
weak disorder are situated in the vicinity of the band center
E=0.° Indeed, the Lyapunov exponent [Eq. (36)] vanishes
quadratically at a single point £=0 if u;=u,=m/2. Equation
(36) is valid for weakly disordered potential, when g,<<1;
therefore, it does not show the existence of the extended state
at E=0 for the dimer with g,=1.1?

Finally, we apply the obtained results to the two-channel
system, which models two-stranded DNA molecule. The on-
site potential takes on four different values, &4, &¢, €7, and
gg, associated with four basic nucleotides—adenine, cy-
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tosine, thymine, and guanine. It is well established that ad-
enine in a strand is always bonded to thymine in the coun-
terpart strand and cytosine—to guanine. In a simple model of
DNA, ' the four basic nucleotides are evenly represented in a
molecule and both strands form uncorrelated sequences of
the nucleotides.?? In terms of our parameters, it means that
en=(eser+eceq)/2, (e1,)=(e3,)= (e +e7+e¢+85)/4, and
(&1 01k€1.0)=(€2 14x82.,,)=0. Substituting these values into Eq.
(21), we get

1 1 1
E)=—[(es+ &7+ (ec+eg)° ( + )
YE) 128[(8A e7)” +(ec+8g)7] sin? e sin? 115

1

+—————[(ea—e1)’+(ec-80)°].  (37)
64 sin w; sin u,

Here, the electron energy E which enters through the disper-
sion relations [Eq. (7)] and the on-site energies of the nucle-
otides are counted from the mean site energy (g;,). Since
sin w; and sin u, are positive functions (0=< u,, u, < 7), the
Lyapunov exponent [Eq. (37)] is a sum of two positive quan-
tities, independent of the particular values of the on-site en-
ergies. This means that the discussed model of DNA does not
allow existence of the extended states. A band of extended
states was predicted in Ref. 15, using numerical simulations
of the inverse participation ratio. Later, this result has been
criticized in Ref. 16 on the basis of group theory arguments.
Formula (37) explicitly shows that in a two-channel system,
the extended states cannot appear solely due to base pairing
A-T, C-G. The base pairing indeed decreases the Lyapunov
exponent [Eq. (21)] because of the negative value of the
parameter &;,, but this pairing (even being strong) is not
enough to give rise to the extended states in the uncorrelated
DNA strands. Unlike this, the long-range correlations in a
single-stranded model of DNA may lead to a band of ex-
tended states.’*

This discussion shows that the existence of the extended
states in DNA is still an open question. Equation (21) may
shed light on this problem since this formula takes into ac-
count the inter- as well as intrachannel correlations—the ef-
fects which were considered separately in the previous stud-
ies. The results concerning the existence of the extended
states in a double-stranded correlated sequence of nucle-
otides will be published elsewhere.
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