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CHAPTER 1

INTRODUCTION

1.1. Overview

Disintegrations of measures are used commonly in ergodic theory, probability, and

descriptive set theory. One of the first known definitions of a disintegration is due to von

Neumann [12] in the early 1930s. The concept was developed further in the early 1940s by

Maharam [7], Rokhlin [10], and Halmos [4]. In [8] Maharam considers σ-finite disintegrations

that are uniformly σ-finite but leaves as an open question whether every given σ-finite

disintegration is necessarily uniformly σ-finite. In [3] Mauldin and Graf sharpen Maharam’s

results and also prove that any given σ-finite disintegration (µy) is uniformly σ-finite in a

weak sense. This weaker sense being that Borel sets are replaced with sets that are µy-

measurable for every y.

In this paper Maharam’s question is answered in the negative. Assuming Gödel’s

axiom of constructibility, a specific σ-finite disintegration of a σ-finite measure is constructed

which is not uniformly σ-finite. The construction of this disintegration relies on building

counting measure over the fibers of a Π1
1 subset of ωω × ωω having countable sections but

which is not the countable union of Π1
1 graphs. The existence of such a set was shown by

Mauldin and Jackson in [5]. However, in order for counting measure on the fibers of this

set to be a disintegration the proof of the existence of the Π1
1 set needs stronger additional

properties.

1.2. Structure of the Paper

The paper is broken down into two parts. The first is on logic and set theory, and

the second is on measure theory. The logic and set theory portion consists of the proof of

1



the modified version of Mauldin and Jackson’s theorem from [5] as well as preliminaries that

are needed. The reader well-versed in logic and set theory may want to skip the majority of

Chapter 2 which introduces these preliminaries. However in Section 2.2 a coding of models

is developed that is essential to the proof of Theorem 2.15. Chapter 3 contains definitions

of disintegrations of measures, theorems regarding their existence, and the construction of a

σ-finite disintegration that is not uniformly σ-finite.
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CHAPTER 2

TOOLS FROM LOGIC AND SET THEORY

2.1. The L Hierarchy

The objects of interest in set theory are, not surprisingly, sets. The class of all sets

is denoted by V which can be defined by V = {x : x = x}. Here V is defined as the

collection of objects satisfying a particular formula, namely x = x. Defining objects by

formulas is a common practice in set theory and we would like a manner of doing so that

avoids any paradoxes. Gödel’s L hierarchy of sets accomplishes this and its construction

will be presented. Given a set A we wish to describe the subsets of A given by n-place

relations on A defined by a formula relativized to A. This notion is made precise below.

First, however, some preliminary notions are presented.

A structure in the language of set theory is a pair (M,E) where M is a set and

E is a binary relation on M . The basic symbols of the language of set theory consist of

∨, ∧, ¬, the relation E, =, (, ), and variable symbols xi for each natural number i. Since

the allowable symbols in our language depend on the binary relation E, LE will denote the

language with the specific relation E. Formulas are finite strings of these basic symbols

built recursively by

Definition 2.1. (1) xiExj and xi = xj are formulas

(2) if φ and ψ are formulas then (φ ∨ ψ), (φ ∧ ψ), and (¬φ) are formulas

(3) if φ is a formula then (∀xiφ) and (∃xiφ) are formulas.

A variable in a formula is considered free if it occurs outside the scope of all existential

and universal quantifiers. A sentence is a formula which contains no free variables. If S

is a collection of sentences and φ is a sentence define S ` φ iff there is a finite sequence of

sentences, φ1, . . . , φn such that φn is φ and for each i, either φi is in S or φi follows from
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φ1, . . . , φi−1 by logical rules of inference. If φ is a formula, define S ` φ iff S ` ψ where ψ is

the sentence obtained by quantifying all occurrences of free variables in φ with ∀.

Since formulas are finite strings of symbols from a countable alphabet the collection

of formulas must be countable. The Gödel numbering is a standard method of ordering

formulas of a language, LE, and its details can be found in [6] or [9]. Let φn denote that φ

is the nth formula under the Gödel numbering of the formulas of L∈.

Definition 2.2. Two structures, (M1, E1) and (M2, E2), are isomorphic and denoted

(M1, E1) ∼= (M2, E2) (or simply M1
∼= M2 if the relations are understood) provided there

exists a bijection F : M1 →M2 such that for all x, y ∈M1

xE1y ⇐⇒ F (x)E2F (y).

Definition 2.3. If (M1, E1) and (M2, E2) are structures such that M1 ⊂ M2 and E1 =

E2 ∩ (M1 ×M1) then M1 is a substructure of M2 (or M2 is an extension of M1).

For each ordinal, α, define a structure, (Lα,∈), in the language, L∈, by considering

the definable subsets of a given set.

Definition 2.4. Let A be a set, let n ∈ ω and i, j < n. Define the elementary relations

on A to be

Diag∈(A, i, j, n) = {x ∈ An : x(i) ∈ x(j)}

Diag=(A, i, j, n) = {x ∈ An : x(i) = x(j)}

Proj(A,R, n) = {x ∈ An : ∃y ∈ R(y � n = x)}

where y � n denotes the restriction of y to n. Using recursion on k define ∀n Defk(A, n) by

(1) Def0(A, n) = {Diag∈(A, i, j, n) : i, j < n} ∪ {Diag=(A, i, j, n) : i, j < n}

(2) Defk+1(A, n) = Defk(A, n) ∪ {An \ R : R ∈ Dfk(A, n)} ∪ {R ∩ S : R, S ∈

Defk(A, n)} ∪ {Proj(A,R, n) : R ∈ Defk(A, n).

Def(A, n) =
⋃
k∈ω{Defk(A, n)}.
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The definable power set operation, D which produces the definable subsets of a given

set may now be defined.

Definition 2.5.

D(A) = {X ⊂ A : ∃n ∈ ω ∃s ∈ An ∃R ∈ Def(A, n+ 1)

(X = {x ∈ A : s _< x >∈ R})}.

The class L of all definable sets is built recursively on the ordinals as follows.

Definition 2.6. For each ordinal α define

(1) L0 = ∅.

(2) Lα+1 = D(Lα).

(3) Lα =
⋃
β<α Lβ when α is a limit ordinal.

(4) L =
⋃
β Lβ where the union ranges over all ordinals, β.

The axiom V = L states that every set is definable. This axiom will be necessary in

Section 2.15. A canonical well-ordering of L is constructed in [6] and [9]. This well-ordering

will be referred to as <L.

Each Lα and L has the property of being transitive, meaning that every element

of Lα is a subset of Lα. Transitive sets or classes are important for finding isomorphisms

between structures. If A is a set which is not transitive, the least transitive set containing

A as a subset may be determined. This is made precise in the following definition.

Definition 2.7. If A is a set the transitive closure of A is the set TC(A) =
⋃
n∈ω TCn(A)

where TCn(A) is defined recursively by

(1) TC0(A) = A

(2) TCn+1(A) =
⋃
TCn(A)

Using the transitive closure a version of the L-hierarchy is defined starting from

particular elements of ωω.
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Definition 2.8. For each ordinal α and each x ∈ ωω define

(1) L0(x) = TC(x)

(2) Lα+1(x) = D(Lα(x))

(3) Lα+1(x) =
⋃
β<α Lβ(x) when α is a limit ordinal

(4) L(x) =
⋃
β Lβ(x) where the union ranges over all ordinals, β.

Note that for every ordinal α, Lα = Lα(∅) and thus for every set A, Lα ⊂ Lα(A).

2.2. A Coding of Models

In this section a particular coding of models is developed that will be essential in

proving Theorem 2.15. A similar, but more powerful, coding is the concept of standard

codes given in Devlin [1]. The coding given in this section is a tailored version of Devlin’s.

To accomplish this coding the concept of a Skolem Hull will be employed which is developed

presently.

If (M,E) is a structure and φ is a formula in the language LE then define the statement

(M,E) models φ to mean that (M,E) |= φ (or simplyM |= φ if the E relation is understood)

provided that the formula is true when all variable assignment takes place within the set

M . Given a structure, (M,E), the theory of (M,E) is the set of all sentences, φ, such that

(M,E) |= φ.

Definition 2.9. Suppose (M,EM) and (N,EN) are structures with M ⊂ N and EM =

EN ∩ (M ×M), i.e. (M,EM) is a substructure of (N,EN). If φ(x1, . . . , xk) is a formula in

LEN with free variables among x1, . . . , xk define the statement φ is absolute for M,N to

mean

∀x1, . . . , xk ∈M(M |= φ(x1, . . . , xk) ⇐⇒ N |= φ(x1, . . . , xk)).

If EN is ∈, then φ is absolute for M if

∀x1, . . . , xk ∈M(M |= φ(x1, . . . , xk) ⇐⇒ V |= φ(x1, . . . , xk)
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Denote ZFN to be a sufficiently large finite fragment of ZF such that Π1
1 and Σ1

1

formulas are absolute for transitive models of ZFN .

For each n let φn be the n-th formula in the Gödel numbering of the formulas in the

language L∈. Given an x ∈ ωω such that x(n) ∈ {0, 1} for each n ∈ ω define the theory Thx

by φn ∈ Thx ⇐⇒ x(n) = 1. Let φ<L be a formula defining the canonical well-ordering of

L and let M ∈ ω be the integer such that φ<L = φM .

Define a set of codes C ⊂ ωω by x ∈ C iff:

(1) ∀n ∈ ω x(n) ∈ {0, 1}

(2) Thx is a consistent and complete theory of ZFN + (V = L)

(3) x(M) = 1.

Given a formula φn(x1, . . . , xk) with free variables x1, . . . , xk the Skolem function

for φn is the function τn : ωk → ω such that:

(1) if φn is ∃z φj(z, x1, . . . , xk) and ∃y ∈ ω φj(y, x1, . . . , xk) then τn(x1, . . . , xk) is the

<L least such y, or

(2) if φn is ∃z φj(z, x1, . . . , xk) and ¬∃y ∈ ω φj(y, x1, . . . , xk) then τn(x1, . . . , xk) = 0,

or

(3) if φn is not of the form ∃z φj(z, x1, . . . , xk) or k = 0 then τn(x1, . . . , xk) = 0.

Fix x ∈ C and let Sx be the collection of Skolem functions for the theory Thx. Define

an equivalence relation, ≡, on Sx by

τn ≡ τm ⇐⇒ Thx ` τn(x1, . . . xk) = τm(y1, . . . , yl).

Define Mx to be the set of equivalence classes of all Skolem functions arising from

formulas, φ, such that Thx ` φ. Here, Mx is the Skolem Hull of the theory, Thx. Define

the relation Ex on Mx ×Mx by

[τi]Ex[τj] ⇐⇒ Thx ` τi(x1, . . . , xk) ∈ τj(y1, . . . , yk).

It will now be shown that if an element of ωω is constructed at an ordinal α then

there exists a code x ∈ C for a structure (Mx, Ex) that is isomorphic to Lα.
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Proposition 2.10. If w ∈ ωω ∩ Lα+1 \ Lα then ∃x ∈ ωω such that Mx
∼= Lα.

Proof. Let T be the theory of Lα and let x ∈ ωω such that Thx = T . Then (Mx, Ex) is

an elementary submodel of (Lα,∈). Since Lα is well-founded Mx is well-founded. Then ∈ is

well-founded on the transitive collapse TC(Mx) and thus (Mx, Ex) ∼= (TC(Mx),∈) ∼= (Lβ,∈)

for some β and w ∈ Lβ+1. Thus β = α. �

2.3. Uniformizations and Nonuniformizations

In this section the concept of uniformizations is discussed, and theorems guaranteeing

their existence are presented. Also a modified version of a result by S. Jackson and R. D.

Mauldin is proved which constructs a coanalytic set not having a particular uniformization

property. This construction will be used in Section 3.2.

Definition 2.11. Let X and Y be Polish spaces and B ⊂ X × Y . A set C ⊂ B is called a

uniformization of B provided that ∀x ∈ X, the section Cx = {y ∈ Y : (x, y) ∈ C} contains

no more than one point and πX(C) = πX(B) where πX : X × Y → X is the projection map.

In other words, C is a uniformization of B if C is the graph of a function f : πX(B)→ Y .

Using the axiom of choice we can always produce C ⊂ B which is a uniformization

of B however we may not know much about the set C (is it Borel, analytic, PCA, etc.).

There are a number of theorems guaranteeing the existence of “nice” uniformizations of

sets satisfying particular conditions on their sections. This section contains a few existence

theorems which will be useful. For further detail see [11]. The following theorem guarantees

the existence of a uniformization that is a Borel set and is due to Lusin. For a proof of the

following two theorems see [11].

Theorem 2.12. Let X and Y be Polish spaces and B ∈ B(X × Y ) with Bx countable for

each x ∈ X. Then there exists a Borel uniformization of B.
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Kondo proved that coanalytic uniformizations exist for coanalytic sets regardless of

what their sections look like.

Theorem 2.13. Let X and Y be Polish spaces and let C be a coanalytic subset of X × Y .

Then C admits a coanalytic uniformization.

In [5], Jackson and Mauldin prove that coanalytic sets with finite sections may be

filled up by countably many coanalytic graphs.

Theorem 2.14. If X and Y are Polish spaces and C is a coanalytic subset of X × Y such

that each section Cx is finite then there exist for each n a coanalytic function fn : πX(C)→ Y

such that C is the union of the graphs of the functions fn.

However, Jackson and Mauldin also prove in [5] that within ZF coanalytic sets with

countable sections may fail to be the union of countably many coanalytic graphs. The

following theorem is a modification of their result and requires the additional assumption

V = L.

Theorem 2.15. Assume V = L. Let X = Y = ωω. Let P be a closed subset of X × Y such

that ∀x ∈ X, Px is nonempty and perfect and if x 6= x′, Px ∩ Px′ = ∅. Then there exists a

Π1
1 set G ⊂ P with the following properties:

(1) ∀x ∈ X, |Gx| = ω0

(2) For every n ∈ ω and for every ∆1
1 set B ⊂ Y, {x ∈ X : |B ∩Gx| ≥ n} is ∆1

1

(3) G is not the union of countably many Π1
1 uniformizations over X.

Proof. Fix a pair of recursive bijections, x 7→ (xn)∞n=0 from ωω onto (ωω)ω and x 7→ (x0, x1)

from ωω onto ωω×ωω. Denote the inverse of the second bijection by (y, z) 7→ 〈y, z〉. Call an

ordinal β good (with respect to x) if Lβ(x) |= ZFN + (V = L). Let p ∈ ωω be a code for P .

Recall from Section 2.2 that C ⊂ ωω such that each x ∈ C is a code for a model

(Mx, Ex) of ZFN + (V = L). Define U ⊂ C by x ∈ U if and only if there exists an ordinal

α(x) ≥ ω0 such that Mx
∼= Lα(x) and p ∈ Lα(x). Define V ⊂ C by x ∈ V iff Mx is an

ω-model, and Mx |= “p ∈ ωω”. Note that U ⊂ V and that V is ∆1
1.
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For each n ∈ ω let fn : X → Y be ∆1
1 functions such that ∀x ∈ X and for n 6= m

fn(x) 6= fm(x) and such that ∀x ∈ X ∀n ∈ ω fn(x) ∈ Px.

Define the set G′ ⊂ X × Y by (x, y) ∈ G′ ⇐⇒

[x 6∈ V ∧ ∃n(y = fn(x))] ∨ [x ∈ V ∧ (x, y) ∈ P ∧ [Mx |= “y ∈ ωω”∨

there exists a well-founded extension M of Mx ∃α < ω1

(Mx ⊂M ∼= Lα ∧ y ∈ Lα(x)∧

[∀γ < α(¬(γ is good and a limit of good ordinals)∨

∃φ ∈ Σ1
2 ∃τ > γ (Lγ(x) |= φ ∧ Lτ (x) |= ¬φ))])]].

Note that G′ is Σ1
2 and let Ω′(x, y) be the above Σ1

2 formula defining G′.

It will first shown that the sections of G′ are countable. Clearly G′x is countable for

every x 6∈ V . Since each model Mx is countable G′x is countable for every x ∈ V \U . Finally

suppose x ∈ U . Then there is a well-founded extension M of Mx and an ordinal α such

that M ∼= Lα(x). Let β be the least ordinal less than ω1 such that Lβ(x) is a Σ2 elementary

substructure of L(x). Then for every β′ > β and every Σ1
2 formula φ,

Lβ(x) |= φ ⇐⇒ Lβ′(x) |= φ ⇐⇒ L(x) |= φ.

By the definition of G′, β ≥ α. Thus G′x ⊂ Lβ(x) and is therefore countable.

Let G ⊂ ωω × ωω be such that for every x ∈ ωω

G′(x, y) ⇐⇒ ∃z G(x, 〈y, z〉) ⇐⇒ ∃!z G(x, 〈y, z〉).

Let Ω be a Π1
1 formula defining G. It is assumed that ZFN was chosen large enough so that

the following is a theorem of ZFN .

∀x∀w [Ω′(x, y) ⇐⇒ ∃zΩ(x, 〈y, z〉) ⇐⇒ ∃!zΩ(x, 〈y, z〉)].

Note that since the sections of G′ are countable, so too are the sections of G. Next it

is shown that the Borel condition in property (2) holds for G.
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Fix a ∆1
1 set B ⊂ Y , fix an n ∈ ω, let Kn = {x ∈ X : |B ∩ Gx| ≥ n}, let b ∈ ωω

be a code for B, and let τ be the level of L at which b is constructed. Partition V into the

following ∆1
1 sets: C = {x ∈ V : “b 6∈Mx”} and D = {x ∈ V : “b ∈Mx”}.

First consider x ∈ V \U . Then by the definition of G, x ∈ Kn∩V \U ⇐⇒ (x ∈ V \

U)∧ (Mx |= “∃a1, . . . , an ∈ B”). Now consider x ∈ D∩U . Also by the definition of G, there

is an ordinal α and an extension M of Mx such that M ∼= Lα with b ∈ Lα. Since Mx |= ZFN ,

Mx |= “∃a1, . . . , an ∈ B” ⇐⇒ M |= “∃a1, . . . an ∈ B” ⇐⇒ Lα(x) |= ∃a1, . . . , an ∈ B.

Hence x ∈ Kn ∩D ∩ V ⇐⇒ (x ∈ D ∩ V ) ∧ (Mx |= ∃a1, . . . , an ∈ B).

Since τ < ω1 and each x ∈ U uniquely determines a well-founded Lα there can be

only countably many x ∈ U which are constructed before τ . Here V = L is used and so every

x ∈ U is constructed at some Lα. Let C0 be this countable collection and let C∗ = C \ C0.

Then C∗ ⊂ V \ U . Now x ∈ Kn ∩ C∗ ⇐⇒ (x ∈ C∗) ∧ (Mx |= ∃“a1, . . . , an ∈ B”).

For every x ∈ V, Mx is a countable model and thus all objects that Mx models as

reals are recursive ∆1
1(x). Thus for a given a ∈ ωω {x : Mx |= “a ∈ B”} is ∆1

1. To see

that Kn ∩ (C∗ ∪ D) is ∆1
1 write {x : Mx |= “∃a1, . . . , an ∈ B”} as the following countable

projection of a ∆1
1 set:

proj1

 ⋃
(a1,...,an)∈ωn

{(x, a1, . . . , an) : (Mx |= “a1, . . . , an ∈ ωω”) ∧ (TC(a1), . . . , TC(an) ∈ B)}

 .

Thus Kn ∩ (C∗ ∪D) is ∆1
1 and hence so is Kn ∩ V .

For x ∈ X \ V each section Gx =
⋃∞
n=1 fn(x). Thus for each x ∈ X \ V ,

|B ∩Gx| ≥ n ⇐⇒ ∃k1, . . . , kn[fk1(x) ∈ B, . . . , fkn(x) ∈ B]

⇐⇒ x ∈
⋃

(k1,...,kn)

f−1k1 (B) ∩ . . . ∩ f−1kn (B).

Therefore Kn ∩X \ V is ∆1
1.

Finally it will be shown that property (3) holds for G. Proceeding by contradiction

suppose that G could be written as a countable union of Π1
1 graphs Gm. Choose a sequence

(xm) from ωω and formulas ψm(x, y) so that ψm are Π1
1(xm) formulas defining the Gm. Let
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x′ ∈ ωω be such that x′ 7→ (xm)∞m=0 and choose x ∈ U and α such that Mx ⊂M ∼= Lα(x) and

x′ ∈ Lα(x). Next let β be the least ordinal such that (β is good and a limit of goods)∧∀φ ∈

Σ1
2 (Lβ(x) |= ¬φ⇒ ∀τ > β Lτ(x) |= ¬φ).

From the definition of G′, ωω ∩ Lβ(x) ⊂ G′x. Furthermore if y ∈ Lβ(x) then for

some good ordinal α < β, y ∈ Lα(x). Since β was chosen to be minimal then ∀γ <

α[¬(γ is good and a limit of good ordinals) ∨ ∃φ ∈ Σ1
2 (Lα(x) |= ¬φ ∧ ∃τ > γ(Lτ (x) |= φ))].

In fact we may replace “∃τ > γ” in the previous statement with “∃τ > γ, τ < β”. Thus α

witnesses that Lβ(x) |= Ω′(x, y).

Since β was defined to be a Σ2 elementary substructure of L(x), we have that Lβ(x) |=

“{y : ∃mψm(x, y)} is countable”. However, Lβ(x) |= “ωω is uncountable”. Thus we may let

y, z ∈ Lβ(x) such that

Lβ(x) |= Ω(x, 〈y, z〉) and

Lβ(x) |= ∀m ¬ψm(x, 〈y, z〉).

Then from the definition of β, L(x) |= ∀m¬ψ(xm, 〈y, z〉) and therefore V |= ∀m¬ψ(xm, 〈y, z〉).

Thus ∀m(x, 〈y, z〉) 6∈ Gm. However this contradicts the fact that V |= Ω(x, 〈y, z〉) by abso-

luteness and therefore (x, 〈y, z〉) ∈ G.

�
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CHAPTER 3

MEASURE THEORY

3.1. Disintegrations of Measures

Throughout this section let (X,B(X)) and (Y,B(Y )) be uncountable standard Borel

spaces, i.e. measure spaces isomorphic to uncountable Polish spaces equipped with the σ-

algebra of Borel sets, let φ : X → Y be measurable, and let µ and ν be measures on B(X)

and B(Y ) respectively.

Definition 3.1. A disintegration of µ with respect to (ν, φ) is a family, {µy : y ∈ Y }, of

measures on (X,B(X)) satisfying:

(1) ∀B ∈ B(X), y 7→ µy(B) is B(Y )-measurable

(2) ∀y ∈ Y, µy(X \ φ−1(y)) = 0 and

(3) ∀B ∈ B(X), µ(B) =
∫
µy(B)dν(y).

Remark 3.2. Suppose that {µy : y ∈ Y } is a disintegration of µ with respect to (ν, φ). If

N ∈ B(Y ) with ν(N) = 0 then combining properties (2) and (3) we have

µ ◦ φ−1(N) =

∫
µy(φ

−1N)dν(y)

=

∫
N

µy(X)dν(y)

= 0.

Therefore the image measure, µ ◦ φ−1, is absolutely continuous with respect to ν.

Definition 3.3. If {µy : y ∈ Y } is a disintegration of µ with respect to (ν, φ) such that

∀y ∈ Y , µy is σ-finite then define the disintegration to be σ-finite. If {µy : y ∈ Y } is a

σ-finite disintegration of µ with respect to (ν, φ) define the disintegration to be uniformly

σ-finite provided there exists a sequence, (Bn), from B(X) such that
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(1) ∀n ∈ N ∀y ∈ Y, µy(Bn) <∞ and

(2) ∀y ∈ Y, µy(X \
⋃
nBn) = 0.

The following existence theorem for disintegrations can be found in Fabec [2].

Theorem 3.4. Suppose (X,B(X)) and (Y,B(Y ) are standard Borel spaces, µ is a σ-finite

measure on B(X), ν is a σ-finite measure on B(X), and φ : X → Y is a Borel measurable

function. If µ ◦ φ−1 << ν then there exists a σ-finite disintegration {µy : y ∈ Y } of µ with

respect to (ν, φ). Moreover this disintegration is unique in the sense that if {µ̂y : y ∈ Y }

is any σ-finite disintegration of µ with respect to (ν, φ) then there exists N ⊂ Y such that

ν(N) = 0 and ∀y 6∈ N µy = µ̂y.

Dorothy Maharam asked in [8] whether every σ-finite disintegration was in fact uni-

formly σ-finite. This chapter provides an answer to Maharam’s question in the form of a

counterexample.

The following theorem demonstrates in what manner a given disintegration is “al-

most” uniformly σ-finite.

Theorem 3.5. Suppose {µy : y ∈ Y } is a σ-finite disintegration of the σ-finite measure µ

with respect to (ν, φ). Then there exists a sequence, (Dn), from B(X) such that

(1) ∀y ∈ Y , µy(Dn) <∞

(2) for ν-a.e. y ∈ Y , µy (X \
⋃
nDn) = 0.

Proof. Define F : B(X)→ B(Y ) by

F (B) = {y ∈ Y : µy(B) <∞}.

Note that ∀B ∈ B(X), F (B) =
⋃
n{y ∈ Y : µy(B) < n}. Thus F properly maps B(X) into

B(Y ).

Let (Bn) be a sequence from B(X) such that ∀n ∈ N, µ(Bn) < ∞ and X =
⋃
nBn.

Note that for every n we have that µ(Bn) =
∫
µy(Bn)dν(y) < ∞. Thus µy(Bn) < ∞ for

14



ν-a.e. y and thus ν(Y \ F (Bn)) = 0. Let E =
⋂
n F (Bn). Note that

ν(Y \ E) = ν

(
Y \

⋂
n

F (Bn)

)

= ν

(⋃
n

Y \ F (Bn)

)

≤
∑
n

ν(Y \ F (Bn))

= 0,

and consequently

µ(X \ φ−1(E)) = µ(φ−1(Y \ E))

=

∫
Y \E

µy(X)dν(y)

= 0.

For each n ∈ N define Dn = φ−1(E) ∩ Bn. For every y ∈ E we have that µy(Dn) =

µy(φ
−1(E)∩Bn) ≤ µy(Bn) <∞ and for every y ∈ Y \E we have that µy(Dn) = µy(φ

−1(E ∩

Bn)) ≤ µy(φ
−1(E)) = 0. Furthermore

µy

(
X \

⋃
n

Dn

)
= µy

(
X \

(
φ−1(E) ∩

⋃
n

Bn

))

= µy

(
X \ φ−1(E) ∪

(
X \

⋃
n

Bn

))

≤ µy
(
X \ φ−1(E)

)
+ µy

(
X \

⋃
n

Bn

)

= 0 for ν-a.e. y.

�

Corollary 3.6. Suppose {µy : y ∈ Y } is a σ-finite disintegration of the σ-finite measure µ

with respect to (ν, φ). There exists a uniformly σ-finite disintegration {µ̂y : y ∈ Y } of µ with

respect to (ν, φ) such that µy = µ̂y for ν-almost every y ∈ Y .
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Proof. Let (Dn) be the sequence from B(X) that is constructed in Theorem 3.5. Let

N ∈ B(Y ) be such that ν(N) = 0 and such that µy(X \
⋃
nDn) = 0 for every y 6∈ N . Define

µ̂y by

µ̂y(B) =


µy, if y 6∈ N

0, if y ∈ N

�

3.2. A Nonuniformly σ-finite Disintegration

In this section a specific example is constructed of a disintegration of a σ-finite mea-

sure which is not uniformly σ-finite. A σ-finite measure on a subset of ωω will be constructed

by integrating over a family, {µx : x ∈ X} of σ-finite measures on the Borel subsets of ωω.

Let X = Y = ωω. Let P = {((xi), (yi)) ∈ ωω × ωω : ∀i ∈ ω[y2i = xi]}. Let

πi : ωω × ωω → ωω be the projection map onto the ith coordinate. P is closed, π1(P ) =

ωω = π2(P ), and if x, x′ ∈ ωω with x 6= x′ then Px ∩ Px′ = ∅. Since the sections, Px,

are disjoint define the function, φ : Y → X, by φ(y) = x ⇐⇒ y ∈ Px. If E ∈ B(X)

then φ−1(E) =
⋃
x∈E Px = π2((E × ωω) ∩ P ) ∈ Σ1

1(Y ) and Y \ φ−1(E) =
⋃
x 6∈E Px =

π2((X \ E × ωω) ∩ P ) ∈ Σ1
1(Y ). Thus φ is a Borel measurable function. Let G be the set

constructed in Theorem 2.15. To recall, G is a Π1
1 subset of X × Y such that

(1) ∀x ∈ X |Gx| = ω0

(2) For every n ∈ ω and for every B ∈ B(Y ), {x ∈ X : |B ∩Gx| = n} ∈ B(X)

(3) G is not the union of countably many Π1
1 uniformizations over X.

Also recall that in the proof of Theorem 2.15 a Borel set V ⊂ X and Borel functions

fn : X → Y were constructed such that for x 6∈ V Gx =
⋃
n{fn(x)}. Let H = X \ V and let

ν be a nonatomic probability measure on B(X) such that ν(H) = 1.

For each x ∈ X and B ∈ B(Y ) define µx(B) = |B∩Gx|, i.e. counting measure on the

fibers of G. Since each fiber, Gx, is countably infinite, µx is σ-finite ∀x ∈ X. Also since the
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fibers are pairwise disjoint, µx(Y \ φ−1(x)) = 0. If B ∈ B(Y ) then {x : µx(B) ≥ n} = {x :

|B ∩Gx| ≥ n} which is a Borel subset of X by Theorem 2.15. Thus for every B ∈ B(Y ) the

function x→ µx(B) is B(X)-measurable.

Define a measure µ on the Borel subsets of Y by

µ(B) =

∫
µx(B)dν(x).

It will first be shown that µ is σ-finite. Let Bn = fn(H) and note that ∀x ∈ H,

Gx ⊂
⋃
nBn. EachBn is Borel since each fn is injective, and ∀x ∈ H, µx(Bn) = |Bn∩Gx| = 1.

Furthermore

µ

(
Y \

⋃
n

Bn

)
=

∫
µx

(
Y \

⋃
n

Bn

)
dν(x)

=

∫
X\H

∣∣∣∣∣
(
Y \

⋃
n

Bn

)
∩Gx

∣∣∣∣∣ dν(x) +

∫
H

∣∣∣∣∣
(
Y \

⋃
n

Bn

)
∩Gx

∣∣∣∣∣ dν(x)

=

∫
H

∣∣∣∣∣
(
Y \

⋃
n

Bn

)
∩Gx

∣∣∣∣∣ dν(x)

= 0.

The measure µ is thus a σ-finite measure on Y and the family {µx : x ∈ X} is a

disintegration of µ with respect to (ν, φ) into σ-finite measures. However, this disintegration

cannot be uniformly σ-finite. If it were, there would exist countably many Borel sets En ⊂ Y

such that ∀x ∈ X, µx(En) <∞ and µx(Y \∪nEn) = 0. Thus for each x ∈ X, |Gx∩En| <∞

and G ⊂
⋃
nX × En. For each n, G ∩ (X × En) is Π1

1 with finite sections and is thus a

countable union of Π1
1 graphs implying that G =

⋃
nG ∩ En is a countable union of Π1

1

graphs, a contradiction.

Remark 3.7. In order for the measure µ in the previous construction to be σ-finite a

particular Borel set H ⊂ X was used such that ν(H) = 1 and so that G ∩ (H × Y ) is a

Borel subset of X × Y . The set H was the complement of a set V which was defined in the

proof of Theorem 2.15. However it should be noted that the existence of such an H does

17



not generally hold for Π1
1 subsets G of the product of Polish spaces X × Y . The following

demonstrates this fact indicating the delicate nature of the construction.

Let W ⊂ [0, 1] × [0, 1] be a Σ1
2 (or PCA) well-ordering of [0, 1] into type ω1. As

Gödel showed, if V = L then there exists such a well-ordering with stronger properties.

For further details see [9]. Let C be a Π1
1 subset of [0, 1]3 such that π12(C) = W . By

Kondo’s uniformization theorem we may assume this projection is one-to-one on C. For

every y ∈ [0, 1] Cy = {(x, z) ∈ [0, 1]2 : (x, y, z) ∈ C} is countable since only countably many

x can precede a fixed y. Also for every x ∈ [0, 1] Cx = {(y, z) ∈ [0, 1]2 : (x, y, z) ∈ C} is co-

countable. Let ν be a nonatomic probability measure on [0, 1]. If there were an H ∈ B([0, 1]2)

with (ν × ν)(H) > 0 and W ∩ (H × [0, 1]) ∈ B([0, 1]3) then we may use Fubini’s theorem to

calculate

(ν × ν × ν)(C ∩ (H × [0, 1])) =

∫
(ν × ν)([C ∩ (H × [0, 1])]y)dν(y)

= 0.

However applying Fubini’s theorem again we see that

(ν × ν × ν)(C ∩ (H × [0, 1])) =

∫
(ν × ν)([C ∩ (H × [0, 1])]x)dν(x)

= ν(H) > 0.

As an alternative a specific Borel set H ⊂ X may be chosen with ν(H) = 1 and

|X \H| = ω1. Then build the non-uniformizable set G over X \H and build a set over H

that is uniformizable (similar to the construction of G over X \ V in the proof of Theorem

2.15). This may be a more satisfactory method for constructing µ as it relies only on the

conclusion of Theorem 2.15 and not on the specific details of its proof.
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